mtd: use class_groups instead of class_attrs
[linux-2.6-block.git] / drivers / block / zram / zram_drv.c
CommitLineData
306b0c95 1/*
f1e3cfff 2 * Compressed RAM block device
306b0c95 3 *
1130ebba 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
7bfb3de8 5 * 2012, 2013 Minchan Kim
306b0c95
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
306b0c95
NG
13 */
14
f1e3cfff 15#define KMSG_COMPONENT "zram"
306b0c95
NG
16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18#include <linux/module.h>
19#include <linux/kernel.h>
8946a086 20#include <linux/bio.h>
306b0c95
NG
21#include <linux/bitops.h>
22#include <linux/blkdev.h>
23#include <linux/buffer_head.h>
24#include <linux/device.h>
25#include <linux/genhd.h>
26#include <linux/highmem.h>
5a0e3ad6 27#include <linux/slab.h>
b09ab054 28#include <linux/backing-dev.h>
306b0c95 29#include <linux/string.h>
306b0c95 30#include <linux/vmalloc.h>
fcfa8d95 31#include <linux/err.h>
85508ec6 32#include <linux/idr.h>
6566d1a3 33#include <linux/sysfs.h>
1dd6c834 34#include <linux/cpuhotplug.h>
306b0c95 35
16a4bfb9 36#include "zram_drv.h"
306b0c95 37
85508ec6 38static DEFINE_IDR(zram_index_idr);
6566d1a3
SS
39/* idr index must be protected */
40static DEFINE_MUTEX(zram_index_mutex);
41
f1e3cfff 42static int zram_major;
b7ca232e 43static const char *default_compressor = "lzo";
306b0c95 44
306b0c95 45/* Module params (documentation at end) */
ca3d70bd 46static unsigned int num_devices = 1;
33863c21 47
1f7319c7
MK
48static void zram_free_page(struct zram *zram, size_t index);
49
08eee69f 50static inline bool init_done(struct zram *zram)
be2d1d56 51{
08eee69f 52 return zram->disksize;
be2d1d56
SS
53}
54
9b3bb7ab
SS
55static inline struct zram *dev_to_zram(struct device *dev)
56{
57 return (struct zram *)dev_to_disk(dev)->private_data;
58}
59
643ae61d
MK
60static unsigned long zram_get_handle(struct zram *zram, u32 index)
61{
62 return zram->table[index].handle;
63}
64
65static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
66{
67 zram->table[index].handle = handle;
68}
69
b31177f2 70/* flag operations require table entry bit_spin_lock() being held */
beb6602c 71static int zram_test_flag(struct zram *zram, u32 index,
522698d7 72 enum zram_pageflags flag)
99ebbd30 73{
beb6602c 74 return zram->table[index].value & BIT(flag);
522698d7 75}
99ebbd30 76
beb6602c 77static void zram_set_flag(struct zram *zram, u32 index,
522698d7
SS
78 enum zram_pageflags flag)
79{
beb6602c 80 zram->table[index].value |= BIT(flag);
522698d7 81}
99ebbd30 82
beb6602c 83static void zram_clear_flag(struct zram *zram, u32 index,
522698d7
SS
84 enum zram_pageflags flag)
85{
beb6602c 86 zram->table[index].value &= ~BIT(flag);
522698d7 87}
99ebbd30 88
beb6602c 89static inline void zram_set_element(struct zram *zram, u32 index,
8e19d540 90 unsigned long element)
91{
beb6602c 92 zram->table[index].element = element;
8e19d540 93}
94
643ae61d 95static unsigned long zram_get_element(struct zram *zram, u32 index)
8e19d540 96{
643ae61d 97 return zram->table[index].element;
8e19d540 98}
99
beb6602c 100static size_t zram_get_obj_size(struct zram *zram, u32 index)
522698d7 101{
beb6602c 102 return zram->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99ebbd30
AM
103}
104
beb6602c 105static void zram_set_obj_size(struct zram *zram,
522698d7 106 u32 index, size_t size)
9b3bb7ab 107{
beb6602c 108 unsigned long flags = zram->table[index].value >> ZRAM_FLAG_SHIFT;
9b3bb7ab 109
beb6602c 110 zram->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
522698d7
SS
111}
112
1f7319c7 113#if PAGE_SIZE != 4096
1c53e0d2 114static inline bool is_partial_io(struct bio_vec *bvec)
522698d7
SS
115{
116 return bvec->bv_len != PAGE_SIZE;
117}
1f7319c7
MK
118#else
119static inline bool is_partial_io(struct bio_vec *bvec)
120{
121 return false;
122}
123#endif
522698d7 124
b09ab054
MK
125static void zram_revalidate_disk(struct zram *zram)
126{
127 revalidate_disk(zram->disk);
128 /* revalidate_disk reset the BDI_CAP_STABLE_WRITES so set again */
e1735496 129 zram->disk->queue->backing_dev_info->capabilities |=
b09ab054
MK
130 BDI_CAP_STABLE_WRITES;
131}
132
522698d7
SS
133/*
134 * Check if request is within bounds and aligned on zram logical blocks.
135 */
1c53e0d2 136static inline bool valid_io_request(struct zram *zram,
522698d7
SS
137 sector_t start, unsigned int size)
138{
139 u64 end, bound;
140
141 /* unaligned request */
142 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
1c53e0d2 143 return false;
522698d7 144 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
1c53e0d2 145 return false;
522698d7
SS
146
147 end = start + (size >> SECTOR_SHIFT);
148 bound = zram->disksize >> SECTOR_SHIFT;
149 /* out of range range */
150 if (unlikely(start >= bound || end > bound || start > end))
1c53e0d2 151 return false;
522698d7
SS
152
153 /* I/O request is valid */
1c53e0d2 154 return true;
522698d7
SS
155}
156
157static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
158{
e86942c7 159 *index += (*offset + bvec->bv_len) / PAGE_SIZE;
522698d7
SS
160 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
161}
162
163static inline void update_used_max(struct zram *zram,
164 const unsigned long pages)
165{
166 unsigned long old_max, cur_max;
167
168 old_max = atomic_long_read(&zram->stats.max_used_pages);
169
170 do {
171 cur_max = old_max;
172 if (pages > cur_max)
173 old_max = atomic_long_cmpxchg(
174 &zram->stats.max_used_pages, cur_max, pages);
175 } while (old_max != cur_max);
176}
177
8e19d540 178static inline void zram_fill_page(char *ptr, unsigned long len,
179 unsigned long value)
180{
181 int i;
182 unsigned long *page = (unsigned long *)ptr;
183
184 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
185
186 if (likely(value == 0)) {
187 memset(ptr, 0, len);
188 } else {
189 for (i = 0; i < len / sizeof(*page); i++)
190 page[i] = value;
191 }
192}
193
194static bool page_same_filled(void *ptr, unsigned long *element)
522698d7
SS
195{
196 unsigned int pos;
197 unsigned long *page;
f0fe9984 198 unsigned long val;
522698d7
SS
199
200 page = (unsigned long *)ptr;
f0fe9984 201 val = page[0];
522698d7 202
f0fe9984
SP
203 for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
204 if (val != page[pos])
1c53e0d2 205 return false;
522698d7
SS
206 }
207
f0fe9984 208 *element = val;
8e19d540 209
1c53e0d2 210 return true;
522698d7
SS
211}
212
9b3bb7ab
SS
213static ssize_t initstate_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
215{
a68eb3b6 216 u32 val;
9b3bb7ab
SS
217 struct zram *zram = dev_to_zram(dev);
218
a68eb3b6
SS
219 down_read(&zram->init_lock);
220 val = init_done(zram);
221 up_read(&zram->init_lock);
9b3bb7ab 222
56b4e8cb 223 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
9b3bb7ab
SS
224}
225
522698d7
SS
226static ssize_t disksize_show(struct device *dev,
227 struct device_attribute *attr, char *buf)
228{
229 struct zram *zram = dev_to_zram(dev);
230
231 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
232}
233
9ada9da9
MK
234static ssize_t mem_limit_store(struct device *dev,
235 struct device_attribute *attr, const char *buf, size_t len)
236{
237 u64 limit;
238 char *tmp;
239 struct zram *zram = dev_to_zram(dev);
240
241 limit = memparse(buf, &tmp);
242 if (buf == tmp) /* no chars parsed, invalid input */
243 return -EINVAL;
244
245 down_write(&zram->init_lock);
246 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
247 up_write(&zram->init_lock);
248
249 return len;
250}
251
461a8eee
MK
252static ssize_t mem_used_max_store(struct device *dev,
253 struct device_attribute *attr, const char *buf, size_t len)
254{
255 int err;
256 unsigned long val;
257 struct zram *zram = dev_to_zram(dev);
461a8eee
MK
258
259 err = kstrtoul(buf, 10, &val);
260 if (err || val != 0)
261 return -EINVAL;
262
263 down_read(&zram->init_lock);
5a99e95b 264 if (init_done(zram)) {
461a8eee 265 atomic_long_set(&zram->stats.max_used_pages,
beb6602c 266 zs_get_total_pages(zram->mem_pool));
5a99e95b 267 }
461a8eee
MK
268 up_read(&zram->init_lock);
269
270 return len;
271}
272
43209ea2
SS
273/*
274 * We switched to per-cpu streams and this attr is not needed anymore.
275 * However, we will keep it around for some time, because:
276 * a) we may revert per-cpu streams in the future
277 * b) it's visible to user space and we need to follow our 2 years
278 * retirement rule; but we already have a number of 'soon to be
279 * altered' attrs, so max_comp_streams need to wait for the next
280 * layoff cycle.
281 */
522698d7
SS
282static ssize_t max_comp_streams_show(struct device *dev,
283 struct device_attribute *attr, char *buf)
284{
43209ea2 285 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
522698d7
SS
286}
287
beca3ec7
SS
288static ssize_t max_comp_streams_store(struct device *dev,
289 struct device_attribute *attr, const char *buf, size_t len)
290{
43209ea2 291 return len;
beca3ec7
SS
292}
293
e46b8a03
SS
294static ssize_t comp_algorithm_show(struct device *dev,
295 struct device_attribute *attr, char *buf)
296{
297 size_t sz;
298 struct zram *zram = dev_to_zram(dev);
299
300 down_read(&zram->init_lock);
301 sz = zcomp_available_show(zram->compressor, buf);
302 up_read(&zram->init_lock);
303
304 return sz;
305}
306
307static ssize_t comp_algorithm_store(struct device *dev,
308 struct device_attribute *attr, const char *buf, size_t len)
309{
310 struct zram *zram = dev_to_zram(dev);
415403be 311 char compressor[CRYPTO_MAX_ALG_NAME];
4bbacd51
SS
312 size_t sz;
313
415403be
SS
314 strlcpy(compressor, buf, sizeof(compressor));
315 /* ignore trailing newline */
316 sz = strlen(compressor);
317 if (sz > 0 && compressor[sz - 1] == '\n')
318 compressor[sz - 1] = 0x00;
319
320 if (!zcomp_available_algorithm(compressor))
1d5b43bf
LH
321 return -EINVAL;
322
e46b8a03
SS
323 down_write(&zram->init_lock);
324 if (init_done(zram)) {
325 up_write(&zram->init_lock);
326 pr_info("Can't change algorithm for initialized device\n");
327 return -EBUSY;
328 }
4bbacd51 329
415403be 330 strlcpy(zram->compressor, compressor, sizeof(compressor));
e46b8a03
SS
331 up_write(&zram->init_lock);
332 return len;
333}
334
522698d7
SS
335static ssize_t compact_store(struct device *dev,
336 struct device_attribute *attr, const char *buf, size_t len)
306b0c95 337{
522698d7 338 struct zram *zram = dev_to_zram(dev);
306b0c95 339
522698d7
SS
340 down_read(&zram->init_lock);
341 if (!init_done(zram)) {
342 up_read(&zram->init_lock);
343 return -EINVAL;
344 }
306b0c95 345
beb6602c 346 zs_compact(zram->mem_pool);
522698d7 347 up_read(&zram->init_lock);
d2d5e762 348
522698d7 349 return len;
d2d5e762
WY
350}
351
522698d7
SS
352static ssize_t io_stat_show(struct device *dev,
353 struct device_attribute *attr, char *buf)
d2d5e762 354{
522698d7
SS
355 struct zram *zram = dev_to_zram(dev);
356 ssize_t ret;
d2d5e762 357
522698d7
SS
358 down_read(&zram->init_lock);
359 ret = scnprintf(buf, PAGE_SIZE,
360 "%8llu %8llu %8llu %8llu\n",
361 (u64)atomic64_read(&zram->stats.failed_reads),
362 (u64)atomic64_read(&zram->stats.failed_writes),
363 (u64)atomic64_read(&zram->stats.invalid_io),
364 (u64)atomic64_read(&zram->stats.notify_free));
365 up_read(&zram->init_lock);
306b0c95 366
522698d7 367 return ret;
9b3bb7ab
SS
368}
369
522698d7
SS
370static ssize_t mm_stat_show(struct device *dev,
371 struct device_attribute *attr, char *buf)
9b3bb7ab 372{
522698d7 373 struct zram *zram = dev_to_zram(dev);
7d3f3938 374 struct zs_pool_stats pool_stats;
522698d7
SS
375 u64 orig_size, mem_used = 0;
376 long max_used;
377 ssize_t ret;
a539c72a 378
7d3f3938
SS
379 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
380
522698d7 381 down_read(&zram->init_lock);
7d3f3938 382 if (init_done(zram)) {
beb6602c
MK
383 mem_used = zs_get_total_pages(zram->mem_pool);
384 zs_pool_stats(zram->mem_pool, &pool_stats);
7d3f3938 385 }
9b3bb7ab 386
522698d7
SS
387 orig_size = atomic64_read(&zram->stats.pages_stored);
388 max_used = atomic_long_read(&zram->stats.max_used_pages);
9b3bb7ab 389
522698d7 390 ret = scnprintf(buf, PAGE_SIZE,
7d3f3938 391 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
522698d7
SS
392 orig_size << PAGE_SHIFT,
393 (u64)atomic64_read(&zram->stats.compr_data_size),
394 mem_used << PAGE_SHIFT,
395 zram->limit_pages << PAGE_SHIFT,
396 max_used << PAGE_SHIFT,
8e19d540 397 (u64)atomic64_read(&zram->stats.same_pages),
860c707d 398 pool_stats.pages_compacted);
522698d7 399 up_read(&zram->init_lock);
9b3bb7ab 400
522698d7
SS
401 return ret;
402}
403
623e47fc
SS
404static ssize_t debug_stat_show(struct device *dev,
405 struct device_attribute *attr, char *buf)
406{
407 int version = 1;
408 struct zram *zram = dev_to_zram(dev);
409 ssize_t ret;
410
411 down_read(&zram->init_lock);
412 ret = scnprintf(buf, PAGE_SIZE,
413 "version: %d\n%8llu\n",
414 version,
415 (u64)atomic64_read(&zram->stats.writestall));
416 up_read(&zram->init_lock);
417
418 return ret;
419}
420
522698d7
SS
421static DEVICE_ATTR_RO(io_stat);
422static DEVICE_ATTR_RO(mm_stat);
623e47fc 423static DEVICE_ATTR_RO(debug_stat);
522698d7 424
86c49814
MK
425static void zram_slot_lock(struct zram *zram, u32 index)
426{
beb6602c 427 bit_spin_lock(ZRAM_ACCESS, &zram->table[index].value);
86c49814
MK
428}
429
430static void zram_slot_unlock(struct zram *zram, u32 index)
431{
beb6602c 432 bit_spin_unlock(ZRAM_ACCESS, &zram->table[index].value);
86c49814
MK
433}
434
1f7319c7
MK
435static bool zram_same_page_read(struct zram *zram, u32 index,
436 struct page *page,
437 unsigned int offset, unsigned int len)
438{
86c49814 439 zram_slot_lock(zram, index);
643ae61d
MK
440 if (unlikely(!zram_get_handle(zram, index) ||
441 zram_test_flag(zram, index, ZRAM_SAME))) {
1f7319c7
MK
442 void *mem;
443
86c49814 444 zram_slot_unlock(zram, index);
1f7319c7 445 mem = kmap_atomic(page);
643ae61d
MK
446 zram_fill_page(mem + offset, len,
447 zram_get_element(zram, index));
1f7319c7
MK
448 kunmap_atomic(mem);
449 return true;
450 }
86c49814 451 zram_slot_unlock(zram, index);
1f7319c7
MK
452
453 return false;
454}
455
456static bool zram_same_page_write(struct zram *zram, u32 index,
457 struct page *page)
458{
459 unsigned long element;
460 void *mem = kmap_atomic(page);
461
462 if (page_same_filled(mem, &element)) {
1f7319c7
MK
463 kunmap_atomic(mem);
464 /* Free memory associated with this sector now. */
86c49814 465 zram_slot_lock(zram, index);
1f7319c7 466 zram_free_page(zram, index);
beb6602c
MK
467 zram_set_flag(zram, index, ZRAM_SAME);
468 zram_set_element(zram, index, element);
86c49814 469 zram_slot_unlock(zram, index);
1f7319c7
MK
470
471 atomic64_inc(&zram->stats.same_pages);
472 return true;
473 }
474 kunmap_atomic(mem);
475
476 return false;
477}
478
beb6602c 479static void zram_meta_free(struct zram *zram, u64 disksize)
522698d7
SS
480{
481 size_t num_pages = disksize >> PAGE_SHIFT;
482 size_t index;
1fec1172
GM
483
484 /* Free all pages that are still in this zram device */
302128dc
MK
485 for (index = 0; index < num_pages; index++)
486 zram_free_page(zram, index);
1fec1172 487
beb6602c
MK
488 zs_destroy_pool(zram->mem_pool);
489 vfree(zram->table);
9b3bb7ab
SS
490}
491
beb6602c 492static bool zram_meta_alloc(struct zram *zram, u64 disksize)
9b3bb7ab
SS
493{
494 size_t num_pages;
9b3bb7ab 495
9b3bb7ab 496 num_pages = disksize >> PAGE_SHIFT;
beb6602c
MK
497 zram->table = vzalloc(num_pages * sizeof(*zram->table));
498 if (!zram->table)
499 return false;
9b3bb7ab 500
beb6602c
MK
501 zram->mem_pool = zs_create_pool(zram->disk->disk_name);
502 if (!zram->mem_pool) {
503 vfree(zram->table);
504 return false;
9b3bb7ab
SS
505 }
506
beb6602c 507 return true;
9b3bb7ab
SS
508}
509
d2d5e762
WY
510/*
511 * To protect concurrent access to the same index entry,
512 * caller should hold this table index entry's bit_spinlock to
513 * indicate this index entry is accessing.
514 */
f1e3cfff 515static void zram_free_page(struct zram *zram, size_t index)
306b0c95 516{
643ae61d 517 unsigned long handle = zram_get_handle(zram, index);
306b0c95 518
8e19d540 519 /*
520 * No memory is allocated for same element filled pages.
521 * Simply clear same page flag.
522 */
beb6602c
MK
523 if (zram_test_flag(zram, index, ZRAM_SAME)) {
524 zram_clear_flag(zram, index, ZRAM_SAME);
643ae61d 525 zram_set_element(zram, index, 0);
8e19d540 526 atomic64_dec(&zram->stats.same_pages);
306b0c95
NG
527 return;
528 }
529
8e19d540 530 if (!handle)
531 return;
532
beb6602c 533 zs_free(zram->mem_pool, handle);
306b0c95 534
beb6602c 535 atomic64_sub(zram_get_obj_size(zram, index),
d2d5e762 536 &zram->stats.compr_data_size);
90a7806e 537 atomic64_dec(&zram->stats.pages_stored);
306b0c95 538
643ae61d 539 zram_set_handle(zram, index, 0);
beb6602c 540 zram_set_obj_size(zram, index, 0);
306b0c95
NG
541}
542
1f7319c7 543static int zram_decompress_page(struct zram *zram, struct page *page, u32 index)
306b0c95 544{
1f7319c7 545 int ret;
92967471 546 unsigned long handle;
ebaf9ab5 547 unsigned int size;
1f7319c7 548 void *src, *dst;
1f7319c7
MK
549
550 if (zram_same_page_read(zram, index, page, 0, PAGE_SIZE))
551 return 0;
92967471 552
86c49814 553 zram_slot_lock(zram, index);
643ae61d 554 handle = zram_get_handle(zram, index);
beb6602c 555 size = zram_get_obj_size(zram, index);
306b0c95 556
beb6602c 557 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
ebaf9ab5 558 if (size == PAGE_SIZE) {
1f7319c7
MK
559 dst = kmap_atomic(page);
560 memcpy(dst, src, PAGE_SIZE);
561 kunmap_atomic(dst);
562 ret = 0;
ebaf9ab5
SS
563 } else {
564 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
565
1f7319c7
MK
566 dst = kmap_atomic(page);
567 ret = zcomp_decompress(zstrm, src, size, dst);
568 kunmap_atomic(dst);
ebaf9ab5
SS
569 zcomp_stream_put(zram->comp);
570 }
beb6602c 571 zs_unmap_object(zram->mem_pool, handle);
86c49814 572 zram_slot_unlock(zram, index);
a1dd52af 573
8c921b2b 574 /* Should NEVER happen. Return bio error if it does. */
1f7319c7 575 if (unlikely(ret))
8c921b2b 576 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
306b0c95 577
1f7319c7 578 return ret;
306b0c95
NG
579}
580
37b51fdd 581static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1f7319c7 582 u32 index, int offset)
924bd88d
JM
583{
584 int ret;
37b51fdd 585 struct page *page;
37b51fdd 586
1f7319c7
MK
587 page = bvec->bv_page;
588 if (is_partial_io(bvec)) {
589 /* Use a temporary buffer to decompress the page */
590 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
591 if (!page)
592 return -ENOMEM;
924bd88d
JM
593 }
594
1f7319c7
MK
595 ret = zram_decompress_page(zram, page, index);
596 if (unlikely(ret))
597 goto out;
7e5a5104 598
1f7319c7
MK
599 if (is_partial_io(bvec)) {
600 void *dst = kmap_atomic(bvec->bv_page);
601 void *src = kmap_atomic(page);
37b51fdd 602
1f7319c7
MK
603 memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
604 kunmap_atomic(src);
605 kunmap_atomic(dst);
37b51fdd 606 }
1f7319c7 607out:
37b51fdd 608 if (is_partial_io(bvec))
1f7319c7 609 __free_page(page);
37b51fdd 610
37b51fdd 611 return ret;
924bd88d
JM
612}
613
1f7319c7
MK
614static int zram_compress(struct zram *zram, struct zcomp_strm **zstrm,
615 struct page *page,
616 unsigned long *out_handle, unsigned int *out_comp_len)
306b0c95 617{
1f7319c7
MK
618 int ret;
619 unsigned int comp_len;
620 void *src;
621 unsigned long alloced_pages;
da9556a2 622 unsigned long handle = 0;
924bd88d 623
da9556a2 624compress_again:
1f7319c7
MK
625 src = kmap_atomic(page);
626 ret = zcomp_compress(*zstrm, src, &comp_len);
627 kunmap_atomic(src);
306b0c95 628
b7ca232e 629 if (unlikely(ret)) {
8c921b2b 630 pr_err("Compression failed! err=%d\n", ret);
1f7319c7 631 if (handle)
beb6602c 632 zs_free(zram->mem_pool, handle);
1f7319c7 633 return ret;
8c921b2b 634 }
da9556a2 635
1f7319c7
MK
636 if (unlikely(comp_len > max_zpage_size))
637 comp_len = PAGE_SIZE;
a1dd52af 638
da9556a2
SS
639 /*
640 * handle allocation has 2 paths:
641 * a) fast path is executed with preemption disabled (for
642 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
643 * since we can't sleep;
644 * b) slow path enables preemption and attempts to allocate
645 * the page with __GFP_DIRECT_RECLAIM bit set. we have to
646 * put per-cpu compression stream and, thus, to re-do
647 * the compression once handle is allocated.
648 *
649 * if we have a 'non-null' handle here then we are coming
650 * from the slow path and handle has already been allocated.
651 */
652 if (!handle)
beb6602c 653 handle = zs_malloc(zram->mem_pool, comp_len,
da9556a2
SS
654 __GFP_KSWAPD_RECLAIM |
655 __GFP_NOWARN |
9bc482d3
MK
656 __GFP_HIGHMEM |
657 __GFP_MOVABLE);
fd1a30de 658 if (!handle) {
2aea8493 659 zcomp_stream_put(zram->comp);
623e47fc 660 atomic64_inc(&zram->stats.writestall);
beb6602c 661 handle = zs_malloc(zram->mem_pool, comp_len,
9bc482d3
MK
662 GFP_NOIO | __GFP_HIGHMEM |
663 __GFP_MOVABLE);
1f7319c7 664 *zstrm = zcomp_stream_get(zram->comp);
da9556a2
SS
665 if (handle)
666 goto compress_again;
1f7319c7 667 return -ENOMEM;
8c921b2b 668 }
9ada9da9 669
beb6602c 670 alloced_pages = zs_get_total_pages(zram->mem_pool);
12372755
SS
671 update_used_max(zram, alloced_pages);
672
461a8eee 673 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
beb6602c 674 zs_free(zram->mem_pool, handle);
1f7319c7
MK
675 return -ENOMEM;
676 }
677
678 *out_handle = handle;
679 *out_comp_len = comp_len;
680 return 0;
681}
682
683static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index)
684{
685 int ret;
686 unsigned long handle;
687 unsigned int comp_len;
688 void *src, *dst;
689 struct zcomp_strm *zstrm;
1f7319c7
MK
690 struct page *page = bvec->bv_page;
691
692 if (zram_same_page_write(zram, index, page))
693 return 0;
694
695 zstrm = zcomp_stream_get(zram->comp);
696 ret = zram_compress(zram, &zstrm, page, &handle, &comp_len);
697 if (ret) {
698 zcomp_stream_put(zram->comp);
699 return ret;
9ada9da9
MK
700 }
701
beb6602c 702 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1f7319c7
MK
703
704 src = zstrm->buffer;
705 if (comp_len == PAGE_SIZE)
397c6066 706 src = kmap_atomic(page);
1f7319c7
MK
707 memcpy(dst, src, comp_len);
708 if (comp_len == PAGE_SIZE)
397c6066 709 kunmap_atomic(src);
306b0c95 710
2aea8493 711 zcomp_stream_put(zram->comp);
beb6602c 712 zs_unmap_object(zram->mem_pool, handle);
fd1a30de 713
f40ac2ae
SS
714 /*
715 * Free memory associated with this sector
716 * before overwriting unused sectors.
717 */
86c49814 718 zram_slot_lock(zram, index);
f40ac2ae 719 zram_free_page(zram, index);
643ae61d 720 zram_set_handle(zram, index, handle);
beb6602c 721 zram_set_obj_size(zram, index, comp_len);
86c49814 722 zram_slot_unlock(zram, index);
306b0c95 723
8c921b2b 724 /* Update stats */
1f7319c7 725 atomic64_add(comp_len, &zram->stats.compr_data_size);
90a7806e 726 atomic64_inc(&zram->stats.pages_stored);
1f7319c7
MK
727 return 0;
728}
729
730static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
731 u32 index, int offset)
732{
733 int ret;
734 struct page *page = NULL;
735 void *src;
736 struct bio_vec vec;
737
738 vec = *bvec;
739 if (is_partial_io(bvec)) {
740 void *dst;
741 /*
742 * This is a partial IO. We need to read the full page
743 * before to write the changes.
744 */
745 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
746 if (!page)
747 return -ENOMEM;
748
749 ret = zram_decompress_page(zram, page, index);
750 if (ret)
751 goto out;
752
753 src = kmap_atomic(bvec->bv_page);
754 dst = kmap_atomic(page);
755 memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
756 kunmap_atomic(dst);
757 kunmap_atomic(src);
758
759 vec.bv_page = page;
760 vec.bv_len = PAGE_SIZE;
761 vec.bv_offset = 0;
762 }
763
764 ret = __zram_bvec_write(zram, &vec, index);
924bd88d 765out:
397c6066 766 if (is_partial_io(bvec))
1f7319c7 767 __free_page(page);
924bd88d 768 return ret;
8c921b2b
JM
769}
770
f4659d8e
JK
771/*
772 * zram_bio_discard - handler on discard request
773 * @index: physical block index in PAGE_SIZE units
774 * @offset: byte offset within physical block
775 */
776static void zram_bio_discard(struct zram *zram, u32 index,
777 int offset, struct bio *bio)
778{
779 size_t n = bio->bi_iter.bi_size;
780
781 /*
782 * zram manages data in physical block size units. Because logical block
783 * size isn't identical with physical block size on some arch, we
784 * could get a discard request pointing to a specific offset within a
785 * certain physical block. Although we can handle this request by
786 * reading that physiclal block and decompressing and partially zeroing
787 * and re-compressing and then re-storing it, this isn't reasonable
788 * because our intent with a discard request is to save memory. So
789 * skipping this logical block is appropriate here.
790 */
791 if (offset) {
38515c73 792 if (n <= (PAGE_SIZE - offset))
f4659d8e
JK
793 return;
794
38515c73 795 n -= (PAGE_SIZE - offset);
f4659d8e
JK
796 index++;
797 }
798
799 while (n >= PAGE_SIZE) {
86c49814 800 zram_slot_lock(zram, index);
f4659d8e 801 zram_free_page(zram, index);
86c49814 802 zram_slot_unlock(zram, index);
015254da 803 atomic64_inc(&zram->stats.notify_free);
f4659d8e
JK
804 index++;
805 n -= PAGE_SIZE;
806 }
807}
808
522698d7 809static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
c11f0c0b 810 int offset, bool is_write)
9b3bb7ab 811{
522698d7 812 unsigned long start_time = jiffies;
c11f0c0b 813 int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ;
9b3bb7ab 814 int ret;
9b3bb7ab 815
c11f0c0b 816 generic_start_io_acct(rw_acct, bvec->bv_len >> SECTOR_SHIFT,
522698d7 817 &zram->disk->part0);
46a51c80 818
c11f0c0b 819 if (!is_write) {
522698d7
SS
820 atomic64_inc(&zram->stats.num_reads);
821 ret = zram_bvec_read(zram, bvec, index, offset);
1f7319c7 822 flush_dcache_page(bvec->bv_page);
522698d7
SS
823 } else {
824 atomic64_inc(&zram->stats.num_writes);
825 ret = zram_bvec_write(zram, bvec, index, offset);
1b672224 826 }
9b3bb7ab 827
c11f0c0b 828 generic_end_io_acct(rw_acct, &zram->disk->part0, start_time);
9b3bb7ab 829
522698d7 830 if (unlikely(ret)) {
c11f0c0b 831 if (!is_write)
522698d7
SS
832 atomic64_inc(&zram->stats.failed_reads);
833 else
834 atomic64_inc(&zram->stats.failed_writes);
1b672224 835 }
9b3bb7ab 836
1b672224 837 return ret;
8c921b2b
JM
838}
839
be257c61 840static void __zram_make_request(struct zram *zram, struct bio *bio)
8c921b2b 841{
abf54548 842 int offset;
8c921b2b 843 u32 index;
7988613b
KO
844 struct bio_vec bvec;
845 struct bvec_iter iter;
8c921b2b 846
4f024f37
KO
847 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
848 offset = (bio->bi_iter.bi_sector &
849 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
8c921b2b 850
31edeacd
CH
851 switch (bio_op(bio)) {
852 case REQ_OP_DISCARD:
853 case REQ_OP_WRITE_ZEROES:
f4659d8e 854 zram_bio_discard(zram, index, offset, bio);
4246a0b6 855 bio_endio(bio);
f4659d8e 856 return;
31edeacd
CH
857 default:
858 break;
f4659d8e
JK
859 }
860
7988613b 861 bio_for_each_segment(bvec, bio, iter) {
e86942c7
MK
862 struct bio_vec bv = bvec;
863 unsigned int unwritten = bvec.bv_len;
924bd88d 864
e86942c7
MK
865 do {
866 bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
867 unwritten);
abf54548 868 if (zram_bvec_rw(zram, &bv, index, offset,
e86942c7 869 op_is_write(bio_op(bio))) < 0)
924bd88d
JM
870 goto out;
871
e86942c7
MK
872 bv.bv_offset += bv.bv_len;
873 unwritten -= bv.bv_len;
924bd88d 874
e86942c7
MK
875 update_position(&index, &offset, &bv);
876 } while (unwritten);
a1dd52af 877 }
306b0c95 878
4246a0b6 879 bio_endio(bio);
7d7854b4 880 return;
306b0c95
NG
881
882out:
306b0c95 883 bio_io_error(bio);
306b0c95
NG
884}
885
306b0c95 886/*
f1e3cfff 887 * Handler function for all zram I/O requests.
306b0c95 888 */
dece1635 889static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
306b0c95 890{
f1e3cfff 891 struct zram *zram = queue->queuedata;
306b0c95 892
54850e73 893 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
894 bio->bi_iter.bi_size)) {
da5cc7d3 895 atomic64_inc(&zram->stats.invalid_io);
a09759ac 896 goto error;
6642a67c
JM
897 }
898
be257c61 899 __zram_make_request(zram, bio);
dece1635 900 return BLK_QC_T_NONE;
a09759ac 901
0900beae
JM
902error:
903 bio_io_error(bio);
dece1635 904 return BLK_QC_T_NONE;
306b0c95
NG
905}
906
2ccbec05
NG
907static void zram_slot_free_notify(struct block_device *bdev,
908 unsigned long index)
107c161b 909{
f1e3cfff 910 struct zram *zram;
107c161b 911
f1e3cfff 912 zram = bdev->bd_disk->private_data;
a0c516cb 913
86c49814 914 zram_slot_lock(zram, index);
f614a9f4 915 zram_free_page(zram, index);
86c49814 916 zram_slot_unlock(zram, index);
f614a9f4 917 atomic64_inc(&zram->stats.notify_free);
107c161b
NG
918}
919
8c7f0102 920static int zram_rw_page(struct block_device *bdev, sector_t sector,
c11f0c0b 921 struct page *page, bool is_write)
8c7f0102 922{
08eee69f 923 int offset, err = -EIO;
8c7f0102 924 u32 index;
925 struct zram *zram;
926 struct bio_vec bv;
927
928 zram = bdev->bd_disk->private_data;
08eee69f 929
8c7f0102 930 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
931 atomic64_inc(&zram->stats.invalid_io);
08eee69f 932 err = -EINVAL;
a09759ac 933 goto out;
8c7f0102 934 }
935
936 index = sector >> SECTORS_PER_PAGE_SHIFT;
4ca82dab 937 offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
8c7f0102 938
939 bv.bv_page = page;
940 bv.bv_len = PAGE_SIZE;
941 bv.bv_offset = 0;
942
c11f0c0b 943 err = zram_bvec_rw(zram, &bv, index, offset, is_write);
08eee69f 944out:
8c7f0102 945 /*
946 * If I/O fails, just return error(ie, non-zero) without
947 * calling page_endio.
948 * It causes resubmit the I/O with bio request by upper functions
949 * of rw_page(e.g., swap_readpage, __swap_writepage) and
950 * bio->bi_end_io does things to handle the error
951 * (e.g., SetPageError, set_page_dirty and extra works).
952 */
953 if (err == 0)
c11f0c0b 954 page_endio(page, is_write, 0);
8c7f0102 955 return err;
956}
957
522698d7
SS
958static void zram_reset_device(struct zram *zram)
959{
522698d7
SS
960 struct zcomp *comp;
961 u64 disksize;
306b0c95 962
522698d7 963 down_write(&zram->init_lock);
9b3bb7ab 964
522698d7
SS
965 zram->limit_pages = 0;
966
967 if (!init_done(zram)) {
968 up_write(&zram->init_lock);
969 return;
970 }
971
522698d7
SS
972 comp = zram->comp;
973 disksize = zram->disksize;
522698d7 974 zram->disksize = 0;
522698d7
SS
975
976 set_capacity(zram->disk, 0);
977 part_stat_set_all(&zram->disk->part0, 0);
978
979 up_write(&zram->init_lock);
980 /* I/O operation under all of CPU are done so let's free */
beb6602c 981 zram_meta_free(zram, disksize);
302128dc 982 memset(&zram->stats, 0, sizeof(zram->stats));
522698d7
SS
983 zcomp_destroy(comp);
984}
985
986static ssize_t disksize_store(struct device *dev,
987 struct device_attribute *attr, const char *buf, size_t len)
2f6a3bed 988{
522698d7
SS
989 u64 disksize;
990 struct zcomp *comp;
2f6a3bed 991 struct zram *zram = dev_to_zram(dev);
522698d7 992 int err;
2f6a3bed 993
522698d7
SS
994 disksize = memparse(buf, NULL);
995 if (!disksize)
996 return -EINVAL;
2f6a3bed 997
beb6602c
MK
998 down_write(&zram->init_lock);
999 if (init_done(zram)) {
1000 pr_info("Cannot change disksize for initialized device\n");
1001 err = -EBUSY;
1002 goto out_unlock;
1003 }
1004
522698d7 1005 disksize = PAGE_ALIGN(disksize);
beb6602c
MK
1006 if (!zram_meta_alloc(zram, disksize)) {
1007 err = -ENOMEM;
1008 goto out_unlock;
1009 }
522698d7 1010
da9556a2 1011 comp = zcomp_create(zram->compressor);
522698d7 1012 if (IS_ERR(comp)) {
70864969 1013 pr_err("Cannot initialise %s compressing backend\n",
522698d7
SS
1014 zram->compressor);
1015 err = PTR_ERR(comp);
1016 goto out_free_meta;
1017 }
1018
522698d7
SS
1019 zram->comp = comp;
1020 zram->disksize = disksize;
1021 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
b09ab054 1022 zram_revalidate_disk(zram);
e7ccfc4c 1023 up_write(&zram->init_lock);
522698d7
SS
1024
1025 return len;
1026
522698d7 1027out_free_meta:
beb6602c
MK
1028 zram_meta_free(zram, disksize);
1029out_unlock:
1030 up_write(&zram->init_lock);
522698d7 1031 return err;
2f6a3bed
SS
1032}
1033
522698d7
SS
1034static ssize_t reset_store(struct device *dev,
1035 struct device_attribute *attr, const char *buf, size_t len)
4f2109f6 1036{
522698d7
SS
1037 int ret;
1038 unsigned short do_reset;
1039 struct zram *zram;
1040 struct block_device *bdev;
4f2109f6 1041
f405c445
SS
1042 ret = kstrtou16(buf, 10, &do_reset);
1043 if (ret)
1044 return ret;
1045
1046 if (!do_reset)
1047 return -EINVAL;
1048
522698d7
SS
1049 zram = dev_to_zram(dev);
1050 bdev = bdget_disk(zram->disk, 0);
522698d7
SS
1051 if (!bdev)
1052 return -ENOMEM;
4f2109f6 1053
522698d7 1054 mutex_lock(&bdev->bd_mutex);
f405c445
SS
1055 /* Do not reset an active device or claimed device */
1056 if (bdev->bd_openers || zram->claim) {
1057 mutex_unlock(&bdev->bd_mutex);
1058 bdput(bdev);
1059 return -EBUSY;
522698d7
SS
1060 }
1061
f405c445
SS
1062 /* From now on, anyone can't open /dev/zram[0-9] */
1063 zram->claim = true;
1064 mutex_unlock(&bdev->bd_mutex);
522698d7 1065
f405c445 1066 /* Make sure all the pending I/O are finished */
522698d7
SS
1067 fsync_bdev(bdev);
1068 zram_reset_device(zram);
b09ab054 1069 zram_revalidate_disk(zram);
522698d7
SS
1070 bdput(bdev);
1071
f405c445
SS
1072 mutex_lock(&bdev->bd_mutex);
1073 zram->claim = false;
1074 mutex_unlock(&bdev->bd_mutex);
1075
522698d7 1076 return len;
f405c445
SS
1077}
1078
1079static int zram_open(struct block_device *bdev, fmode_t mode)
1080{
1081 int ret = 0;
1082 struct zram *zram;
1083
1084 WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1085
1086 zram = bdev->bd_disk->private_data;
1087 /* zram was claimed to reset so open request fails */
1088 if (zram->claim)
1089 ret = -EBUSY;
4f2109f6
SS
1090
1091 return ret;
1092}
1093
522698d7 1094static const struct block_device_operations zram_devops = {
f405c445 1095 .open = zram_open,
522698d7
SS
1096 .swap_slot_free_notify = zram_slot_free_notify,
1097 .rw_page = zram_rw_page,
1098 .owner = THIS_MODULE
1099};
1100
1101static DEVICE_ATTR_WO(compact);
1102static DEVICE_ATTR_RW(disksize);
1103static DEVICE_ATTR_RO(initstate);
1104static DEVICE_ATTR_WO(reset);
c87d1655
SS
1105static DEVICE_ATTR_WO(mem_limit);
1106static DEVICE_ATTR_WO(mem_used_max);
522698d7
SS
1107static DEVICE_ATTR_RW(max_comp_streams);
1108static DEVICE_ATTR_RW(comp_algorithm);
a68eb3b6 1109
9b3bb7ab
SS
1110static struct attribute *zram_disk_attrs[] = {
1111 &dev_attr_disksize.attr,
1112 &dev_attr_initstate.attr,
1113 &dev_attr_reset.attr,
99ebbd30 1114 &dev_attr_compact.attr,
9ada9da9 1115 &dev_attr_mem_limit.attr,
461a8eee 1116 &dev_attr_mem_used_max.attr,
beca3ec7 1117 &dev_attr_max_comp_streams.attr,
e46b8a03 1118 &dev_attr_comp_algorithm.attr,
2f6a3bed 1119 &dev_attr_io_stat.attr,
4f2109f6 1120 &dev_attr_mm_stat.attr,
623e47fc 1121 &dev_attr_debug_stat.attr,
9b3bb7ab
SS
1122 NULL,
1123};
1124
1125static struct attribute_group zram_disk_attr_group = {
1126 .attrs = zram_disk_attrs,
1127};
1128
92ff1528
SS
1129/*
1130 * Allocate and initialize new zram device. the function returns
1131 * '>= 0' device_id upon success, and negative value otherwise.
1132 */
1133static int zram_add(void)
306b0c95 1134{
85508ec6 1135 struct zram *zram;
ee980160 1136 struct request_queue *queue;
92ff1528 1137 int ret, device_id;
85508ec6
SS
1138
1139 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1140 if (!zram)
1141 return -ENOMEM;
1142
92ff1528 1143 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
85508ec6
SS
1144 if (ret < 0)
1145 goto out_free_dev;
92ff1528 1146 device_id = ret;
de1a21a0 1147
0900beae 1148 init_rwsem(&zram->init_lock);
306b0c95 1149
ee980160
SS
1150 queue = blk_alloc_queue(GFP_KERNEL);
1151 if (!queue) {
306b0c95
NG
1152 pr_err("Error allocating disk queue for device %d\n",
1153 device_id);
85508ec6
SS
1154 ret = -ENOMEM;
1155 goto out_free_idr;
306b0c95
NG
1156 }
1157
ee980160 1158 blk_queue_make_request(queue, zram_make_request);
306b0c95 1159
85508ec6 1160 /* gendisk structure */
f1e3cfff
NG
1161 zram->disk = alloc_disk(1);
1162 if (!zram->disk) {
70864969 1163 pr_err("Error allocating disk structure for device %d\n",
306b0c95 1164 device_id);
201c7b72 1165 ret = -ENOMEM;
39a9b8ac 1166 goto out_free_queue;
306b0c95
NG
1167 }
1168
f1e3cfff
NG
1169 zram->disk->major = zram_major;
1170 zram->disk->first_minor = device_id;
1171 zram->disk->fops = &zram_devops;
ee980160
SS
1172 zram->disk->queue = queue;
1173 zram->disk->queue->queuedata = zram;
f1e3cfff
NG
1174 zram->disk->private_data = zram;
1175 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
306b0c95 1176
33863c21 1177 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
f1e3cfff 1178 set_capacity(zram->disk, 0);
b67d1ec1
SS
1179 /* zram devices sort of resembles non-rotational disks */
1180 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
b277da0a 1181 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
a1dd52af
NG
1182 /*
1183 * To ensure that we always get PAGE_SIZE aligned
1184 * and n*PAGE_SIZED sized I/O requests.
1185 */
f1e3cfff 1186 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
7b19b8d4
RJ
1187 blk_queue_logical_block_size(zram->disk->queue,
1188 ZRAM_LOGICAL_BLOCK_SIZE);
f1e3cfff
NG
1189 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1190 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
f4659d8e 1191 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
2bb4cd5c 1192 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
31edeacd
CH
1193 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1194
f4659d8e
JK
1195 /*
1196 * zram_bio_discard() will clear all logical blocks if logical block
1197 * size is identical with physical block size(PAGE_SIZE). But if it is
1198 * different, we will skip discarding some parts of logical blocks in
1199 * the part of the request range which isn't aligned to physical block
1200 * size. So we can't ensure that all discarded logical blocks are
1201 * zeroed.
1202 */
1203 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
31edeacd 1204 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
5d83d5a0 1205
f1e3cfff 1206 add_disk(zram->disk);
306b0c95 1207
33863c21
NG
1208 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1209 &zram_disk_attr_group);
1210 if (ret < 0) {
70864969
SS
1211 pr_err("Error creating sysfs group for device %d\n",
1212 device_id);
39a9b8ac 1213 goto out_free_disk;
33863c21 1214 }
e46b8a03 1215 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
d12b63c9
SS
1216
1217 pr_info("Added device: %s\n", zram->disk->disk_name);
92ff1528 1218 return device_id;
de1a21a0 1219
39a9b8ac
JL
1220out_free_disk:
1221 del_gendisk(zram->disk);
1222 put_disk(zram->disk);
1223out_free_queue:
ee980160 1224 blk_cleanup_queue(queue);
85508ec6
SS
1225out_free_idr:
1226 idr_remove(&zram_index_idr, device_id);
1227out_free_dev:
1228 kfree(zram);
de1a21a0 1229 return ret;
306b0c95
NG
1230}
1231
6566d1a3 1232static int zram_remove(struct zram *zram)
306b0c95 1233{
6566d1a3
SS
1234 struct block_device *bdev;
1235
1236 bdev = bdget_disk(zram->disk, 0);
1237 if (!bdev)
1238 return -ENOMEM;
1239
1240 mutex_lock(&bdev->bd_mutex);
1241 if (bdev->bd_openers || zram->claim) {
1242 mutex_unlock(&bdev->bd_mutex);
1243 bdput(bdev);
1244 return -EBUSY;
1245 }
1246
1247 zram->claim = true;
1248 mutex_unlock(&bdev->bd_mutex);
1249
85508ec6
SS
1250 /*
1251 * Remove sysfs first, so no one will perform a disksize
6566d1a3
SS
1252 * store while we destroy the devices. This also helps during
1253 * hot_remove -- zram_reset_device() is the last holder of
1254 * ->init_lock, no later/concurrent disksize_store() or any
1255 * other sysfs handlers are possible.
85508ec6
SS
1256 */
1257 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1258 &zram_disk_attr_group);
306b0c95 1259
6566d1a3
SS
1260 /* Make sure all the pending I/O are finished */
1261 fsync_bdev(bdev);
85508ec6 1262 zram_reset_device(zram);
6566d1a3
SS
1263 bdput(bdev);
1264
1265 pr_info("Removed device: %s\n", zram->disk->disk_name);
1266
85508ec6
SS
1267 blk_cleanup_queue(zram->disk->queue);
1268 del_gendisk(zram->disk);
1269 put_disk(zram->disk);
1270 kfree(zram);
6566d1a3
SS
1271 return 0;
1272}
1273
1274/* zram-control sysfs attributes */
1275static ssize_t hot_add_show(struct class *class,
1276 struct class_attribute *attr,
1277 char *buf)
1278{
1279 int ret;
1280
1281 mutex_lock(&zram_index_mutex);
1282 ret = zram_add();
1283 mutex_unlock(&zram_index_mutex);
1284
1285 if (ret < 0)
1286 return ret;
1287 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1288}
1289
1290static ssize_t hot_remove_store(struct class *class,
1291 struct class_attribute *attr,
1292 const char *buf,
1293 size_t count)
1294{
1295 struct zram *zram;
1296 int ret, dev_id;
1297
1298 /* dev_id is gendisk->first_minor, which is `int' */
1299 ret = kstrtoint(buf, 10, &dev_id);
1300 if (ret)
1301 return ret;
1302 if (dev_id < 0)
1303 return -EINVAL;
1304
1305 mutex_lock(&zram_index_mutex);
1306
1307 zram = idr_find(&zram_index_idr, dev_id);
17ec4cd9 1308 if (zram) {
6566d1a3 1309 ret = zram_remove(zram);
529e71e1
TI
1310 if (!ret)
1311 idr_remove(&zram_index_idr, dev_id);
17ec4cd9 1312 } else {
6566d1a3 1313 ret = -ENODEV;
17ec4cd9 1314 }
6566d1a3
SS
1315
1316 mutex_unlock(&zram_index_mutex);
1317 return ret ? ret : count;
85508ec6 1318}
a096cafc 1319
5c7e9ccd
SS
1320/*
1321 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1322 * sense that reading from this file does alter the state of your system -- it
1323 * creates a new un-initialized zram device and returns back this device's
1324 * device_id (or an error code if it fails to create a new device).
1325 */
6566d1a3 1326static struct class_attribute zram_control_class_attrs[] = {
5c7e9ccd 1327 __ATTR(hot_add, 0400, hot_add_show, NULL),
6566d1a3
SS
1328 __ATTR_WO(hot_remove),
1329 __ATTR_NULL,
1330};
1331
1332static struct class zram_control_class = {
1333 .name = "zram-control",
1334 .owner = THIS_MODULE,
1335 .class_attrs = zram_control_class_attrs,
1336};
1337
85508ec6
SS
1338static int zram_remove_cb(int id, void *ptr, void *data)
1339{
1340 zram_remove(ptr);
1341 return 0;
1342}
a096cafc 1343
85508ec6
SS
1344static void destroy_devices(void)
1345{
6566d1a3 1346 class_unregister(&zram_control_class);
85508ec6
SS
1347 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1348 idr_destroy(&zram_index_idr);
a096cafc 1349 unregister_blkdev(zram_major, "zram");
1dd6c834 1350 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
306b0c95
NG
1351}
1352
f1e3cfff 1353static int __init zram_init(void)
306b0c95 1354{
92ff1528 1355 int ret;
306b0c95 1356
1dd6c834
AMG
1357 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
1358 zcomp_cpu_up_prepare, zcomp_cpu_dead);
1359 if (ret < 0)
1360 return ret;
1361
6566d1a3
SS
1362 ret = class_register(&zram_control_class);
1363 if (ret) {
70864969 1364 pr_err("Unable to register zram-control class\n");
1dd6c834 1365 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
6566d1a3
SS
1366 return ret;
1367 }
1368
f1e3cfff
NG
1369 zram_major = register_blkdev(0, "zram");
1370 if (zram_major <= 0) {
70864969 1371 pr_err("Unable to get major number\n");
6566d1a3 1372 class_unregister(&zram_control_class);
1dd6c834 1373 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
a096cafc 1374 return -EBUSY;
306b0c95
NG
1375 }
1376
92ff1528 1377 while (num_devices != 0) {
6566d1a3 1378 mutex_lock(&zram_index_mutex);
92ff1528 1379 ret = zram_add();
6566d1a3 1380 mutex_unlock(&zram_index_mutex);
92ff1528 1381 if (ret < 0)
a096cafc 1382 goto out_error;
92ff1528 1383 num_devices--;
de1a21a0
NG
1384 }
1385
306b0c95 1386 return 0;
de1a21a0 1387
a096cafc 1388out_error:
85508ec6 1389 destroy_devices();
306b0c95
NG
1390 return ret;
1391}
1392
f1e3cfff 1393static void __exit zram_exit(void)
306b0c95 1394{
85508ec6 1395 destroy_devices();
306b0c95
NG
1396}
1397
f1e3cfff
NG
1398module_init(zram_init);
1399module_exit(zram_exit);
306b0c95 1400
9b3bb7ab 1401module_param(num_devices, uint, 0);
c3cdb40e 1402MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
9b3bb7ab 1403
306b0c95
NG
1404MODULE_LICENSE("Dual BSD/GPL");
1405MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
f1e3cfff 1406MODULE_DESCRIPTION("Compressed RAM Block Device");