Merge tag 'powerpc-4.20-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux-2.6-block.git] / drivers / block / zram / zram_drv.c
CommitLineData
306b0c95 1/*
f1e3cfff 2 * Compressed RAM block device
306b0c95 3 *
1130ebba 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
7bfb3de8 5 * 2012, 2013 Minchan Kim
306b0c95
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
306b0c95
NG
13 */
14
f1e3cfff 15#define KMSG_COMPONENT "zram"
306b0c95
NG
16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18#include <linux/module.h>
19#include <linux/kernel.h>
8946a086 20#include <linux/bio.h>
306b0c95
NG
21#include <linux/bitops.h>
22#include <linux/blkdev.h>
23#include <linux/buffer_head.h>
24#include <linux/device.h>
25#include <linux/genhd.h>
26#include <linux/highmem.h>
5a0e3ad6 27#include <linux/slab.h>
b09ab054 28#include <linux/backing-dev.h>
306b0c95 29#include <linux/string.h>
306b0c95 30#include <linux/vmalloc.h>
fcfa8d95 31#include <linux/err.h>
85508ec6 32#include <linux/idr.h>
6566d1a3 33#include <linux/sysfs.h>
c0265342 34#include <linux/debugfs.h>
1dd6c834 35#include <linux/cpuhotplug.h>
306b0c95 36
16a4bfb9 37#include "zram_drv.h"
306b0c95 38
85508ec6 39static DEFINE_IDR(zram_index_idr);
6566d1a3
SS
40/* idr index must be protected */
41static DEFINE_MUTEX(zram_index_mutex);
42
f1e3cfff 43static int zram_major;
b7ca232e 44static const char *default_compressor = "lzo";
306b0c95 45
306b0c95 46/* Module params (documentation at end) */
ca3d70bd 47static unsigned int num_devices = 1;
60f5921a
SS
48/*
49 * Pages that compress to sizes equals or greater than this are stored
50 * uncompressed in memory.
51 */
52static size_t huge_class_size;
33863c21 53
1f7319c7
MK
54static void zram_free_page(struct zram *zram, size_t index);
55
c4d6c4cc
MK
56static void zram_slot_lock(struct zram *zram, u32 index)
57{
58 bit_spin_lock(ZRAM_LOCK, &zram->table[index].value);
59}
60
61static void zram_slot_unlock(struct zram *zram, u32 index)
62{
63 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].value);
64}
65
08eee69f 66static inline bool init_done(struct zram *zram)
be2d1d56 67{
08eee69f 68 return zram->disksize;
be2d1d56
SS
69}
70
c0265342
MK
71static inline bool zram_allocated(struct zram *zram, u32 index)
72{
73
74 return (zram->table[index].value >> (ZRAM_FLAG_SHIFT + 1)) ||
75 zram->table[index].handle;
76}
77
9b3bb7ab
SS
78static inline struct zram *dev_to_zram(struct device *dev)
79{
80 return (struct zram *)dev_to_disk(dev)->private_data;
81}
82
643ae61d
MK
83static unsigned long zram_get_handle(struct zram *zram, u32 index)
84{
85 return zram->table[index].handle;
86}
87
88static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
89{
90 zram->table[index].handle = handle;
91}
92
b31177f2 93/* flag operations require table entry bit_spin_lock() being held */
c0265342 94static bool zram_test_flag(struct zram *zram, u32 index,
522698d7 95 enum zram_pageflags flag)
99ebbd30 96{
beb6602c 97 return zram->table[index].value & BIT(flag);
522698d7 98}
99ebbd30 99
beb6602c 100static void zram_set_flag(struct zram *zram, u32 index,
522698d7
SS
101 enum zram_pageflags flag)
102{
beb6602c 103 zram->table[index].value |= BIT(flag);
522698d7 104}
99ebbd30 105
beb6602c 106static void zram_clear_flag(struct zram *zram, u32 index,
522698d7
SS
107 enum zram_pageflags flag)
108{
beb6602c 109 zram->table[index].value &= ~BIT(flag);
522698d7 110}
99ebbd30 111
beb6602c 112static inline void zram_set_element(struct zram *zram, u32 index,
8e19d540 113 unsigned long element)
114{
beb6602c 115 zram->table[index].element = element;
8e19d540 116}
117
643ae61d 118static unsigned long zram_get_element(struct zram *zram, u32 index)
8e19d540 119{
643ae61d 120 return zram->table[index].element;
8e19d540 121}
122
beb6602c 123static size_t zram_get_obj_size(struct zram *zram, u32 index)
522698d7 124{
beb6602c 125 return zram->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99ebbd30
AM
126}
127
beb6602c 128static void zram_set_obj_size(struct zram *zram,
522698d7 129 u32 index, size_t size)
9b3bb7ab 130{
beb6602c 131 unsigned long flags = zram->table[index].value >> ZRAM_FLAG_SHIFT;
9b3bb7ab 132
beb6602c 133 zram->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
522698d7
SS
134}
135
1f7319c7 136#if PAGE_SIZE != 4096
1c53e0d2 137static inline bool is_partial_io(struct bio_vec *bvec)
522698d7
SS
138{
139 return bvec->bv_len != PAGE_SIZE;
140}
1f7319c7
MK
141#else
142static inline bool is_partial_io(struct bio_vec *bvec)
143{
144 return false;
145}
146#endif
522698d7
SS
147
148/*
149 * Check if request is within bounds and aligned on zram logical blocks.
150 */
1c53e0d2 151static inline bool valid_io_request(struct zram *zram,
522698d7
SS
152 sector_t start, unsigned int size)
153{
154 u64 end, bound;
155
156 /* unaligned request */
157 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
1c53e0d2 158 return false;
522698d7 159 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
1c53e0d2 160 return false;
522698d7
SS
161
162 end = start + (size >> SECTOR_SHIFT);
163 bound = zram->disksize >> SECTOR_SHIFT;
164 /* out of range range */
165 if (unlikely(start >= bound || end > bound || start > end))
1c53e0d2 166 return false;
522698d7
SS
167
168 /* I/O request is valid */
1c53e0d2 169 return true;
522698d7
SS
170}
171
172static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
173{
e86942c7 174 *index += (*offset + bvec->bv_len) / PAGE_SIZE;
522698d7
SS
175 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
176}
177
178static inline void update_used_max(struct zram *zram,
179 const unsigned long pages)
180{
181 unsigned long old_max, cur_max;
182
183 old_max = atomic_long_read(&zram->stats.max_used_pages);
184
185 do {
186 cur_max = old_max;
187 if (pages > cur_max)
188 old_max = atomic_long_cmpxchg(
189 &zram->stats.max_used_pages, cur_max, pages);
190 } while (old_max != cur_max);
191}
192
48ad1abe 193static inline void zram_fill_page(void *ptr, unsigned long len,
8e19d540 194 unsigned long value)
195{
8e19d540 196 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
48ad1abe 197 memset_l(ptr, value, len / sizeof(unsigned long));
8e19d540 198}
199
200static bool page_same_filled(void *ptr, unsigned long *element)
522698d7
SS
201{
202 unsigned int pos;
203 unsigned long *page;
f0fe9984 204 unsigned long val;
522698d7
SS
205
206 page = (unsigned long *)ptr;
f0fe9984 207 val = page[0];
522698d7 208
f0fe9984
SP
209 for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
210 if (val != page[pos])
1c53e0d2 211 return false;
522698d7
SS
212 }
213
f0fe9984 214 *element = val;
8e19d540 215
1c53e0d2 216 return true;
522698d7
SS
217}
218
9b3bb7ab
SS
219static ssize_t initstate_show(struct device *dev,
220 struct device_attribute *attr, char *buf)
221{
a68eb3b6 222 u32 val;
9b3bb7ab
SS
223 struct zram *zram = dev_to_zram(dev);
224
a68eb3b6
SS
225 down_read(&zram->init_lock);
226 val = init_done(zram);
227 up_read(&zram->init_lock);
9b3bb7ab 228
56b4e8cb 229 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
9b3bb7ab
SS
230}
231
522698d7
SS
232static ssize_t disksize_show(struct device *dev,
233 struct device_attribute *attr, char *buf)
234{
235 struct zram *zram = dev_to_zram(dev);
236
237 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
238}
239
9ada9da9
MK
240static ssize_t mem_limit_store(struct device *dev,
241 struct device_attribute *attr, const char *buf, size_t len)
242{
243 u64 limit;
244 char *tmp;
245 struct zram *zram = dev_to_zram(dev);
246
247 limit = memparse(buf, &tmp);
248 if (buf == tmp) /* no chars parsed, invalid input */
249 return -EINVAL;
250
251 down_write(&zram->init_lock);
252 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
253 up_write(&zram->init_lock);
254
255 return len;
256}
257
461a8eee
MK
258static ssize_t mem_used_max_store(struct device *dev,
259 struct device_attribute *attr, const char *buf, size_t len)
260{
261 int err;
262 unsigned long val;
263 struct zram *zram = dev_to_zram(dev);
461a8eee
MK
264
265 err = kstrtoul(buf, 10, &val);
266 if (err || val != 0)
267 return -EINVAL;
268
269 down_read(&zram->init_lock);
5a99e95b 270 if (init_done(zram)) {
461a8eee 271 atomic_long_set(&zram->stats.max_used_pages,
beb6602c 272 zs_get_total_pages(zram->mem_pool));
5a99e95b 273 }
461a8eee
MK
274 up_read(&zram->init_lock);
275
276 return len;
277}
278
013bf95a
MK
279#ifdef CONFIG_ZRAM_WRITEBACK
280static bool zram_wb_enabled(struct zram *zram)
281{
282 return zram->backing_dev;
283}
284
285static void reset_bdev(struct zram *zram)
286{
287 struct block_device *bdev;
288
289 if (!zram_wb_enabled(zram))
290 return;
291
292 bdev = zram->bdev;
293 if (zram->old_block_size)
294 set_blocksize(bdev, zram->old_block_size);
295 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
296 /* hope filp_close flush all of IO */
297 filp_close(zram->backing_dev, NULL);
298 zram->backing_dev = NULL;
299 zram->old_block_size = 0;
300 zram->bdev = NULL;
4f7a7bea
MK
301 zram->disk->queue->backing_dev_info->capabilities |=
302 BDI_CAP_SYNCHRONOUS_IO;
1363d466
MK
303 kvfree(zram->bitmap);
304 zram->bitmap = NULL;
013bf95a
MK
305}
306
307static ssize_t backing_dev_show(struct device *dev,
308 struct device_attribute *attr, char *buf)
309{
310 struct zram *zram = dev_to_zram(dev);
311 struct file *file = zram->backing_dev;
312 char *p;
313 ssize_t ret;
314
315 down_read(&zram->init_lock);
316 if (!zram_wb_enabled(zram)) {
317 memcpy(buf, "none\n", 5);
318 up_read(&zram->init_lock);
319 return 5;
320 }
321
322 p = file_path(file, buf, PAGE_SIZE - 1);
323 if (IS_ERR(p)) {
324 ret = PTR_ERR(p);
325 goto out;
326 }
327
328 ret = strlen(p);
329 memmove(buf, p, ret);
330 buf[ret++] = '\n';
331out:
332 up_read(&zram->init_lock);
333 return ret;
334}
335
336static ssize_t backing_dev_store(struct device *dev,
337 struct device_attribute *attr, const char *buf, size_t len)
338{
339 char *file_name;
c8bd134a 340 size_t sz;
013bf95a
MK
341 struct file *backing_dev = NULL;
342 struct inode *inode;
343 struct address_space *mapping;
1363d466
MK
344 unsigned int bitmap_sz, old_block_size = 0;
345 unsigned long nr_pages, *bitmap = NULL;
013bf95a
MK
346 struct block_device *bdev = NULL;
347 int err;
348 struct zram *zram = dev_to_zram(dev);
349
350 file_name = kmalloc(PATH_MAX, GFP_KERNEL);
351 if (!file_name)
352 return -ENOMEM;
353
354 down_write(&zram->init_lock);
355 if (init_done(zram)) {
356 pr_info("Can't setup backing device for initialized device\n");
357 err = -EBUSY;
358 goto out;
359 }
360
c8bd134a
PK
361 strlcpy(file_name, buf, PATH_MAX);
362 /* ignore trailing newline */
363 sz = strlen(file_name);
364 if (sz > 0 && file_name[sz - 1] == '\n')
365 file_name[sz - 1] = 0x00;
013bf95a
MK
366
367 backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
368 if (IS_ERR(backing_dev)) {
369 err = PTR_ERR(backing_dev);
370 backing_dev = NULL;
371 goto out;
372 }
373
374 mapping = backing_dev->f_mapping;
375 inode = mapping->host;
376
377 /* Support only block device in this moment */
378 if (!S_ISBLK(inode->i_mode)) {
379 err = -ENOTBLK;
380 goto out;
381 }
382
383 bdev = bdgrab(I_BDEV(inode));
384 err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
385 if (err < 0)
386 goto out;
387
1363d466
MK
388 nr_pages = i_size_read(inode) >> PAGE_SHIFT;
389 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
390 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
391 if (!bitmap) {
392 err = -ENOMEM;
393 goto out;
394 }
395
013bf95a
MK
396 old_block_size = block_size(bdev);
397 err = set_blocksize(bdev, PAGE_SIZE);
398 if (err)
399 goto out;
400
401 reset_bdev(zram);
1363d466 402 spin_lock_init(&zram->bitmap_lock);
013bf95a
MK
403
404 zram->old_block_size = old_block_size;
405 zram->bdev = bdev;
406 zram->backing_dev = backing_dev;
1363d466
MK
407 zram->bitmap = bitmap;
408 zram->nr_pages = nr_pages;
4f7a7bea
MK
409 /*
410 * With writeback feature, zram does asynchronous IO so it's no longer
411 * synchronous device so let's remove synchronous io flag. Othewise,
412 * upper layer(e.g., swap) could wait IO completion rather than
413 * (submit and return), which will cause system sluggish.
414 * Furthermore, when the IO function returns(e.g., swap_readpage),
415 * upper layer expects IO was done so it could deallocate the page
416 * freely but in fact, IO is going on so finally could cause
417 * use-after-free when the IO is really done.
418 */
419 zram->disk->queue->backing_dev_info->capabilities &=
420 ~BDI_CAP_SYNCHRONOUS_IO;
013bf95a
MK
421 up_write(&zram->init_lock);
422
423 pr_info("setup backing device %s\n", file_name);
424 kfree(file_name);
425
426 return len;
427out:
1363d466
MK
428 if (bitmap)
429 kvfree(bitmap);
430
013bf95a
MK
431 if (bdev)
432 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
433
434 if (backing_dev)
435 filp_close(backing_dev, NULL);
436
437 up_write(&zram->init_lock);
438
439 kfree(file_name);
440
441 return err;
442}
443
1363d466
MK
444static unsigned long get_entry_bdev(struct zram *zram)
445{
446 unsigned long entry;
447
448 spin_lock(&zram->bitmap_lock);
449 /* skip 0 bit to confuse zram.handle = 0 */
450 entry = find_next_zero_bit(zram->bitmap, zram->nr_pages, 1);
451 if (entry == zram->nr_pages) {
452 spin_unlock(&zram->bitmap_lock);
453 return 0;
454 }
455
456 set_bit(entry, zram->bitmap);
457 spin_unlock(&zram->bitmap_lock);
458
459 return entry;
460}
461
462static void put_entry_bdev(struct zram *zram, unsigned long entry)
463{
464 int was_set;
465
466 spin_lock(&zram->bitmap_lock);
467 was_set = test_and_clear_bit(entry, zram->bitmap);
468 spin_unlock(&zram->bitmap_lock);
469 WARN_ON_ONCE(!was_set);
470}
471
384bc41f 472static void zram_page_end_io(struct bio *bio)
db8ffbd4 473{
263663cd 474 struct page *page = bio_first_page_all(bio);
db8ffbd4
MK
475
476 page_endio(page, op_is_write(bio_op(bio)),
477 blk_status_to_errno(bio->bi_status));
478 bio_put(bio);
479}
480
8e654f8f
MK
481/*
482 * Returns 1 if the submission is successful.
483 */
484static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
485 unsigned long entry, struct bio *parent)
486{
487 struct bio *bio;
488
489 bio = bio_alloc(GFP_ATOMIC, 1);
490 if (!bio)
491 return -ENOMEM;
492
493 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
a0725ab0 494 bio_set_dev(bio, zram->bdev);
8e654f8f
MK
495 if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
496 bio_put(bio);
497 return -EIO;
498 }
499
500 if (!parent) {
501 bio->bi_opf = REQ_OP_READ;
502 bio->bi_end_io = zram_page_end_io;
503 } else {
504 bio->bi_opf = parent->bi_opf;
505 bio_chain(bio, parent);
506 }
507
508 submit_bio(bio);
509 return 1;
510}
511
512struct zram_work {
513 struct work_struct work;
514 struct zram *zram;
515 unsigned long entry;
516 struct bio *bio;
517};
518
519#if PAGE_SIZE != 4096
520static void zram_sync_read(struct work_struct *work)
521{
522 struct bio_vec bvec;
523 struct zram_work *zw = container_of(work, struct zram_work, work);
524 struct zram *zram = zw->zram;
525 unsigned long entry = zw->entry;
526 struct bio *bio = zw->bio;
527
528 read_from_bdev_async(zram, &bvec, entry, bio);
529}
530
531/*
532 * Block layer want one ->make_request_fn to be active at a time
533 * so if we use chained IO with parent IO in same context,
534 * it's a deadlock. To avoid, it, it uses worker thread context.
535 */
536static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
537 unsigned long entry, struct bio *bio)
538{
539 struct zram_work work;
540
541 work.zram = zram;
542 work.entry = entry;
543 work.bio = bio;
544
545 INIT_WORK_ONSTACK(&work.work, zram_sync_read);
546 queue_work(system_unbound_wq, &work.work);
547 flush_work(&work.work);
548 destroy_work_on_stack(&work.work);
549
550 return 1;
551}
552#else
553static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
554 unsigned long entry, struct bio *bio)
555{
556 WARN_ON(1);
557 return -EIO;
558}
559#endif
560
561static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
562 unsigned long entry, struct bio *parent, bool sync)
563{
564 if (sync)
565 return read_from_bdev_sync(zram, bvec, entry, parent);
566 else
567 return read_from_bdev_async(zram, bvec, entry, parent);
568}
569
db8ffbd4
MK
570static int write_to_bdev(struct zram *zram, struct bio_vec *bvec,
571 u32 index, struct bio *parent,
572 unsigned long *pentry)
573{
574 struct bio *bio;
575 unsigned long entry;
576
577 bio = bio_alloc(GFP_ATOMIC, 1);
578 if (!bio)
579 return -ENOMEM;
580
581 entry = get_entry_bdev(zram);
582 if (!entry) {
583 bio_put(bio);
584 return -ENOSPC;
585 }
586
587 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
a0725ab0 588 bio_set_dev(bio, zram->bdev);
db8ffbd4
MK
589 if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len,
590 bvec->bv_offset)) {
591 bio_put(bio);
592 put_entry_bdev(zram, entry);
593 return -EIO;
594 }
595
596 if (!parent) {
597 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
598 bio->bi_end_io = zram_page_end_io;
599 } else {
600 bio->bi_opf = parent->bi_opf;
601 bio_chain(bio, parent);
602 }
603
604 submit_bio(bio);
605 *pentry = entry;
606
607 return 0;
608}
609
610static void zram_wb_clear(struct zram *zram, u32 index)
611{
612 unsigned long entry;
613
614 zram_clear_flag(zram, index, ZRAM_WB);
615 entry = zram_get_element(zram, index);
616 zram_set_element(zram, index, 0);
617 put_entry_bdev(zram, entry);
618}
619
013bf95a
MK
620#else
621static bool zram_wb_enabled(struct zram *zram) { return false; }
622static inline void reset_bdev(struct zram *zram) {};
db8ffbd4
MK
623static int write_to_bdev(struct zram *zram, struct bio_vec *bvec,
624 u32 index, struct bio *parent,
625 unsigned long *pentry)
626
627{
628 return -EIO;
629}
8e654f8f
MK
630
631static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
632 unsigned long entry, struct bio *parent, bool sync)
633{
634 return -EIO;
635}
db8ffbd4 636static void zram_wb_clear(struct zram *zram, u32 index) {}
013bf95a
MK
637#endif
638
c0265342
MK
639#ifdef CONFIG_ZRAM_MEMORY_TRACKING
640
641static struct dentry *zram_debugfs_root;
642
643static void zram_debugfs_create(void)
644{
645 zram_debugfs_root = debugfs_create_dir("zram", NULL);
646}
647
648static void zram_debugfs_destroy(void)
649{
650 debugfs_remove_recursive(zram_debugfs_root);
651}
652
653static void zram_accessed(struct zram *zram, u32 index)
654{
655 zram->table[index].ac_time = ktime_get_boottime();
656}
657
658static void zram_reset_access(struct zram *zram, u32 index)
659{
660 zram->table[index].ac_time = 0;
661}
662
663static ssize_t read_block_state(struct file *file, char __user *buf,
664 size_t count, loff_t *ppos)
665{
666 char *kbuf;
667 ssize_t index, written = 0;
668 struct zram *zram = file->private_data;
669 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
670 struct timespec64 ts;
671
672 kbuf = kvmalloc(count, GFP_KERNEL);
673 if (!kbuf)
674 return -ENOMEM;
675
676 down_read(&zram->init_lock);
677 if (!init_done(zram)) {
678 up_read(&zram->init_lock);
679 kvfree(kbuf);
680 return -EINVAL;
681 }
682
683 for (index = *ppos; index < nr_pages; index++) {
684 int copied;
685
686 zram_slot_lock(zram, index);
687 if (!zram_allocated(zram, index))
688 goto next;
689
690 ts = ktime_to_timespec64(zram->table[index].ac_time);
691 copied = snprintf(kbuf + written, count,
692 "%12zd %12lld.%06lu %c%c%c\n",
693 index, (s64)ts.tv_sec,
694 ts.tv_nsec / NSEC_PER_USEC,
695 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
696 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
697 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.');
698
699 if (count < copied) {
700 zram_slot_unlock(zram, index);
701 break;
702 }
703 written += copied;
704 count -= copied;
705next:
706 zram_slot_unlock(zram, index);
707 *ppos += 1;
708 }
709
710 up_read(&zram->init_lock);
711 if (copy_to_user(buf, kbuf, written))
712 written = -EFAULT;
713 kvfree(kbuf);
714
715 return written;
716}
717
718static const struct file_operations proc_zram_block_state_op = {
719 .open = simple_open,
720 .read = read_block_state,
721 .llseek = default_llseek,
722};
723
724static void zram_debugfs_register(struct zram *zram)
725{
726 if (!zram_debugfs_root)
727 return;
728
729 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
730 zram_debugfs_root);
731 debugfs_create_file("block_state", 0400, zram->debugfs_dir,
732 zram, &proc_zram_block_state_op);
733}
734
735static void zram_debugfs_unregister(struct zram *zram)
736{
737 debugfs_remove_recursive(zram->debugfs_dir);
738}
739#else
740static void zram_debugfs_create(void) {};
741static void zram_debugfs_destroy(void) {};
742static void zram_accessed(struct zram *zram, u32 index) {};
743static void zram_reset_access(struct zram *zram, u32 index) {};
744static void zram_debugfs_register(struct zram *zram) {};
745static void zram_debugfs_unregister(struct zram *zram) {};
746#endif
013bf95a 747
43209ea2
SS
748/*
749 * We switched to per-cpu streams and this attr is not needed anymore.
750 * However, we will keep it around for some time, because:
751 * a) we may revert per-cpu streams in the future
752 * b) it's visible to user space and we need to follow our 2 years
753 * retirement rule; but we already have a number of 'soon to be
754 * altered' attrs, so max_comp_streams need to wait for the next
755 * layoff cycle.
756 */
522698d7
SS
757static ssize_t max_comp_streams_show(struct device *dev,
758 struct device_attribute *attr, char *buf)
759{
43209ea2 760 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
522698d7
SS
761}
762
beca3ec7
SS
763static ssize_t max_comp_streams_store(struct device *dev,
764 struct device_attribute *attr, const char *buf, size_t len)
765{
43209ea2 766 return len;
beca3ec7
SS
767}
768
e46b8a03
SS
769static ssize_t comp_algorithm_show(struct device *dev,
770 struct device_attribute *attr, char *buf)
771{
772 size_t sz;
773 struct zram *zram = dev_to_zram(dev);
774
775 down_read(&zram->init_lock);
776 sz = zcomp_available_show(zram->compressor, buf);
777 up_read(&zram->init_lock);
778
779 return sz;
780}
781
782static ssize_t comp_algorithm_store(struct device *dev,
783 struct device_attribute *attr, const char *buf, size_t len)
784{
785 struct zram *zram = dev_to_zram(dev);
f357e345 786 char compressor[ARRAY_SIZE(zram->compressor)];
4bbacd51
SS
787 size_t sz;
788
415403be
SS
789 strlcpy(compressor, buf, sizeof(compressor));
790 /* ignore trailing newline */
791 sz = strlen(compressor);
792 if (sz > 0 && compressor[sz - 1] == '\n')
793 compressor[sz - 1] = 0x00;
794
795 if (!zcomp_available_algorithm(compressor))
1d5b43bf
LH
796 return -EINVAL;
797
e46b8a03
SS
798 down_write(&zram->init_lock);
799 if (init_done(zram)) {
800 up_write(&zram->init_lock);
801 pr_info("Can't change algorithm for initialized device\n");
802 return -EBUSY;
803 }
4bbacd51 804
f357e345 805 strcpy(zram->compressor, compressor);
e46b8a03
SS
806 up_write(&zram->init_lock);
807 return len;
808}
809
522698d7
SS
810static ssize_t compact_store(struct device *dev,
811 struct device_attribute *attr, const char *buf, size_t len)
306b0c95 812{
522698d7 813 struct zram *zram = dev_to_zram(dev);
306b0c95 814
522698d7
SS
815 down_read(&zram->init_lock);
816 if (!init_done(zram)) {
817 up_read(&zram->init_lock);
818 return -EINVAL;
819 }
306b0c95 820
beb6602c 821 zs_compact(zram->mem_pool);
522698d7 822 up_read(&zram->init_lock);
d2d5e762 823
522698d7 824 return len;
d2d5e762
WY
825}
826
522698d7
SS
827static ssize_t io_stat_show(struct device *dev,
828 struct device_attribute *attr, char *buf)
d2d5e762 829{
522698d7
SS
830 struct zram *zram = dev_to_zram(dev);
831 ssize_t ret;
d2d5e762 832
522698d7
SS
833 down_read(&zram->init_lock);
834 ret = scnprintf(buf, PAGE_SIZE,
835 "%8llu %8llu %8llu %8llu\n",
836 (u64)atomic64_read(&zram->stats.failed_reads),
837 (u64)atomic64_read(&zram->stats.failed_writes),
838 (u64)atomic64_read(&zram->stats.invalid_io),
839 (u64)atomic64_read(&zram->stats.notify_free));
840 up_read(&zram->init_lock);
306b0c95 841
522698d7 842 return ret;
9b3bb7ab
SS
843}
844
522698d7
SS
845static ssize_t mm_stat_show(struct device *dev,
846 struct device_attribute *attr, char *buf)
9b3bb7ab 847{
522698d7 848 struct zram *zram = dev_to_zram(dev);
7d3f3938 849 struct zs_pool_stats pool_stats;
522698d7
SS
850 u64 orig_size, mem_used = 0;
851 long max_used;
852 ssize_t ret;
a539c72a 853
7d3f3938
SS
854 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
855
522698d7 856 down_read(&zram->init_lock);
7d3f3938 857 if (init_done(zram)) {
beb6602c
MK
858 mem_used = zs_get_total_pages(zram->mem_pool);
859 zs_pool_stats(zram->mem_pool, &pool_stats);
7d3f3938 860 }
9b3bb7ab 861
522698d7
SS
862 orig_size = atomic64_read(&zram->stats.pages_stored);
863 max_used = atomic_long_read(&zram->stats.max_used_pages);
9b3bb7ab 864
522698d7 865 ret = scnprintf(buf, PAGE_SIZE,
89e85bce 866 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n",
522698d7
SS
867 orig_size << PAGE_SHIFT,
868 (u64)atomic64_read(&zram->stats.compr_data_size),
869 mem_used << PAGE_SHIFT,
870 zram->limit_pages << PAGE_SHIFT,
871 max_used << PAGE_SHIFT,
8e19d540 872 (u64)atomic64_read(&zram->stats.same_pages),
89e85bce
MK
873 pool_stats.pages_compacted,
874 (u64)atomic64_read(&zram->stats.huge_pages));
522698d7 875 up_read(&zram->init_lock);
9b3bb7ab 876
522698d7
SS
877 return ret;
878}
879
623e47fc
SS
880static ssize_t debug_stat_show(struct device *dev,
881 struct device_attribute *attr, char *buf)
882{
883 int version = 1;
884 struct zram *zram = dev_to_zram(dev);
885 ssize_t ret;
886
887 down_read(&zram->init_lock);
888 ret = scnprintf(buf, PAGE_SIZE,
889 "version: %d\n%8llu\n",
890 version,
891 (u64)atomic64_read(&zram->stats.writestall));
892 up_read(&zram->init_lock);
893
894 return ret;
895}
896
522698d7
SS
897static DEVICE_ATTR_RO(io_stat);
898static DEVICE_ATTR_RO(mm_stat);
623e47fc 899static DEVICE_ATTR_RO(debug_stat);
522698d7 900
beb6602c 901static void zram_meta_free(struct zram *zram, u64 disksize)
522698d7
SS
902{
903 size_t num_pages = disksize >> PAGE_SHIFT;
904 size_t index;
1fec1172
GM
905
906 /* Free all pages that are still in this zram device */
302128dc
MK
907 for (index = 0; index < num_pages; index++)
908 zram_free_page(zram, index);
1fec1172 909
beb6602c
MK
910 zs_destroy_pool(zram->mem_pool);
911 vfree(zram->table);
9b3bb7ab
SS
912}
913
beb6602c 914static bool zram_meta_alloc(struct zram *zram, u64 disksize)
9b3bb7ab
SS
915{
916 size_t num_pages;
9b3bb7ab 917
9b3bb7ab 918 num_pages = disksize >> PAGE_SHIFT;
fad953ce 919 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
beb6602c
MK
920 if (!zram->table)
921 return false;
9b3bb7ab 922
beb6602c
MK
923 zram->mem_pool = zs_create_pool(zram->disk->disk_name);
924 if (!zram->mem_pool) {
925 vfree(zram->table);
926 return false;
9b3bb7ab
SS
927 }
928
60f5921a
SS
929 if (!huge_class_size)
930 huge_class_size = zs_huge_class_size(zram->mem_pool);
beb6602c 931 return true;
9b3bb7ab
SS
932}
933
d2d5e762
WY
934/*
935 * To protect concurrent access to the same index entry,
936 * caller should hold this table index entry's bit_spinlock to
937 * indicate this index entry is accessing.
938 */
f1e3cfff 939static void zram_free_page(struct zram *zram, size_t index)
306b0c95 940{
db8ffbd4
MK
941 unsigned long handle;
942
d7eac6b6
MK
943 zram_reset_access(zram, index);
944
89e85bce
MK
945 if (zram_test_flag(zram, index, ZRAM_HUGE)) {
946 zram_clear_flag(zram, index, ZRAM_HUGE);
947 atomic64_dec(&zram->stats.huge_pages);
948 }
949
db8ffbd4
MK
950 if (zram_wb_enabled(zram) && zram_test_flag(zram, index, ZRAM_WB)) {
951 zram_wb_clear(zram, index);
952 atomic64_dec(&zram->stats.pages_stored);
953 return;
954 }
306b0c95 955
8e19d540 956 /*
957 * No memory is allocated for same element filled pages.
958 * Simply clear same page flag.
959 */
beb6602c
MK
960 if (zram_test_flag(zram, index, ZRAM_SAME)) {
961 zram_clear_flag(zram, index, ZRAM_SAME);
643ae61d 962 zram_set_element(zram, index, 0);
8e19d540 963 atomic64_dec(&zram->stats.same_pages);
51f9f82c 964 atomic64_dec(&zram->stats.pages_stored);
306b0c95
NG
965 return;
966 }
967
db8ffbd4 968 handle = zram_get_handle(zram, index);
8e19d540 969 if (!handle)
970 return;
971
beb6602c 972 zs_free(zram->mem_pool, handle);
306b0c95 973
beb6602c 974 atomic64_sub(zram_get_obj_size(zram, index),
d2d5e762 975 &zram->stats.compr_data_size);
90a7806e 976 atomic64_dec(&zram->stats.pages_stored);
306b0c95 977
643ae61d 978 zram_set_handle(zram, index, 0);
beb6602c 979 zram_set_obj_size(zram, index, 0);
306b0c95
NG
980}
981
8e654f8f
MK
982static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
983 struct bio *bio, bool partial_io)
306b0c95 984{
1f7319c7 985 int ret;
92967471 986 unsigned long handle;
ebaf9ab5 987 unsigned int size;
1f7319c7 988 void *src, *dst;
1f7319c7 989
8e654f8f
MK
990 if (zram_wb_enabled(zram)) {
991 zram_slot_lock(zram, index);
992 if (zram_test_flag(zram, index, ZRAM_WB)) {
993 struct bio_vec bvec;
994
995 zram_slot_unlock(zram, index);
996
997 bvec.bv_page = page;
998 bvec.bv_len = PAGE_SIZE;
999 bvec.bv_offset = 0;
1000 return read_from_bdev(zram, &bvec,
1001 zram_get_element(zram, index),
1002 bio, partial_io);
1003 }
1004 zram_slot_unlock(zram, index);
1005 }
1006
86c49814 1007 zram_slot_lock(zram, index);
643ae61d 1008 handle = zram_get_handle(zram, index);
ae94264e
MK
1009 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1010 unsigned long value;
1011 void *mem;
1012
1013 value = handle ? zram_get_element(zram, index) : 0;
1014 mem = kmap_atomic(page);
1015 zram_fill_page(mem, PAGE_SIZE, value);
1016 kunmap_atomic(mem);
1017 zram_slot_unlock(zram, index);
1018 return 0;
1019 }
1020
beb6602c 1021 size = zram_get_obj_size(zram, index);
306b0c95 1022
beb6602c 1023 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
ebaf9ab5 1024 if (size == PAGE_SIZE) {
1f7319c7
MK
1025 dst = kmap_atomic(page);
1026 memcpy(dst, src, PAGE_SIZE);
1027 kunmap_atomic(dst);
1028 ret = 0;
ebaf9ab5
SS
1029 } else {
1030 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
1031
1f7319c7
MK
1032 dst = kmap_atomic(page);
1033 ret = zcomp_decompress(zstrm, src, size, dst);
1034 kunmap_atomic(dst);
ebaf9ab5
SS
1035 zcomp_stream_put(zram->comp);
1036 }
beb6602c 1037 zs_unmap_object(zram->mem_pool, handle);
86c49814 1038 zram_slot_unlock(zram, index);
a1dd52af 1039
8c921b2b 1040 /* Should NEVER happen. Return bio error if it does. */
1f7319c7 1041 if (unlikely(ret))
8c921b2b 1042 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
306b0c95 1043
1f7319c7 1044 return ret;
306b0c95
NG
1045}
1046
37b51fdd 1047static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
8e654f8f 1048 u32 index, int offset, struct bio *bio)
924bd88d
JM
1049{
1050 int ret;
37b51fdd 1051 struct page *page;
37b51fdd 1052
1f7319c7
MK
1053 page = bvec->bv_page;
1054 if (is_partial_io(bvec)) {
1055 /* Use a temporary buffer to decompress the page */
1056 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1057 if (!page)
1058 return -ENOMEM;
924bd88d
JM
1059 }
1060
8e654f8f 1061 ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1f7319c7
MK
1062 if (unlikely(ret))
1063 goto out;
7e5a5104 1064
1f7319c7
MK
1065 if (is_partial_io(bvec)) {
1066 void *dst = kmap_atomic(bvec->bv_page);
1067 void *src = kmap_atomic(page);
37b51fdd 1068
1f7319c7
MK
1069 memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
1070 kunmap_atomic(src);
1071 kunmap_atomic(dst);
37b51fdd 1072 }
1f7319c7 1073out:
37b51fdd 1074 if (is_partial_io(bvec))
1f7319c7 1075 __free_page(page);
37b51fdd 1076
37b51fdd 1077 return ret;
924bd88d
JM
1078}
1079
db8ffbd4
MK
1080static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1081 u32 index, struct bio *bio)
306b0c95 1082{
ae85a807 1083 int ret = 0;
1f7319c7 1084 unsigned long alloced_pages;
da9556a2 1085 unsigned long handle = 0;
97ec7c8b
MK
1086 unsigned int comp_len = 0;
1087 void *src, *dst, *mem;
1088 struct zcomp_strm *zstrm;
1089 struct page *page = bvec->bv_page;
1090 unsigned long element = 0;
1091 enum zram_pageflags flags = 0;
db8ffbd4 1092 bool allow_wb = true;
97ec7c8b
MK
1093
1094 mem = kmap_atomic(page);
1095 if (page_same_filled(mem, &element)) {
1096 kunmap_atomic(mem);
1097 /* Free memory associated with this sector now. */
1098 flags = ZRAM_SAME;
1099 atomic64_inc(&zram->stats.same_pages);
1100 goto out;
1101 }
1102 kunmap_atomic(mem);
924bd88d 1103
da9556a2 1104compress_again:
97ec7c8b 1105 zstrm = zcomp_stream_get(zram->comp);
1f7319c7 1106 src = kmap_atomic(page);
97ec7c8b 1107 ret = zcomp_compress(zstrm, src, &comp_len);
1f7319c7 1108 kunmap_atomic(src);
306b0c95 1109
b7ca232e 1110 if (unlikely(ret)) {
97ec7c8b 1111 zcomp_stream_put(zram->comp);
8c921b2b 1112 pr_err("Compression failed! err=%d\n", ret);
97ec7c8b 1113 zs_free(zram->mem_pool, handle);
1f7319c7 1114 return ret;
8c921b2b 1115 }
da9556a2 1116
60f5921a 1117 if (unlikely(comp_len >= huge_class_size)) {
89e85bce 1118 comp_len = PAGE_SIZE;
db8ffbd4
MK
1119 if (zram_wb_enabled(zram) && allow_wb) {
1120 zcomp_stream_put(zram->comp);
1121 ret = write_to_bdev(zram, bvec, index, bio, &element);
1122 if (!ret) {
1123 flags = ZRAM_WB;
1124 ret = 1;
1125 goto out;
1126 }
1127 allow_wb = false;
1128 goto compress_again;
1129 }
db8ffbd4 1130 }
a1dd52af 1131
da9556a2
SS
1132 /*
1133 * handle allocation has 2 paths:
1134 * a) fast path is executed with preemption disabled (for
1135 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1136 * since we can't sleep;
1137 * b) slow path enables preemption and attempts to allocate
1138 * the page with __GFP_DIRECT_RECLAIM bit set. we have to
1139 * put per-cpu compression stream and, thus, to re-do
1140 * the compression once handle is allocated.
1141 *
1142 * if we have a 'non-null' handle here then we are coming
1143 * from the slow path and handle has already been allocated.
1144 */
1145 if (!handle)
beb6602c 1146 handle = zs_malloc(zram->mem_pool, comp_len,
da9556a2
SS
1147 __GFP_KSWAPD_RECLAIM |
1148 __GFP_NOWARN |
9bc482d3
MK
1149 __GFP_HIGHMEM |
1150 __GFP_MOVABLE);
fd1a30de 1151 if (!handle) {
2aea8493 1152 zcomp_stream_put(zram->comp);
623e47fc 1153 atomic64_inc(&zram->stats.writestall);
beb6602c 1154 handle = zs_malloc(zram->mem_pool, comp_len,
9bc482d3
MK
1155 GFP_NOIO | __GFP_HIGHMEM |
1156 __GFP_MOVABLE);
da9556a2
SS
1157 if (handle)
1158 goto compress_again;
1f7319c7 1159 return -ENOMEM;
8c921b2b 1160 }
9ada9da9 1161
beb6602c 1162 alloced_pages = zs_get_total_pages(zram->mem_pool);
12372755
SS
1163 update_used_max(zram, alloced_pages);
1164
461a8eee 1165 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
97ec7c8b 1166 zcomp_stream_put(zram->comp);
beb6602c 1167 zs_free(zram->mem_pool, handle);
1f7319c7
MK
1168 return -ENOMEM;
1169 }
1170
beb6602c 1171 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1f7319c7
MK
1172
1173 src = zstrm->buffer;
1174 if (comp_len == PAGE_SIZE)
397c6066 1175 src = kmap_atomic(page);
1f7319c7
MK
1176 memcpy(dst, src, comp_len);
1177 if (comp_len == PAGE_SIZE)
397c6066 1178 kunmap_atomic(src);
306b0c95 1179
2aea8493 1180 zcomp_stream_put(zram->comp);
beb6602c 1181 zs_unmap_object(zram->mem_pool, handle);
4ebbe7f7
MK
1182 atomic64_add(comp_len, &zram->stats.compr_data_size);
1183out:
f40ac2ae
SS
1184 /*
1185 * Free memory associated with this sector
1186 * before overwriting unused sectors.
1187 */
86c49814 1188 zram_slot_lock(zram, index);
f40ac2ae 1189 zram_free_page(zram, index);
db8ffbd4 1190
89e85bce
MK
1191 if (comp_len == PAGE_SIZE) {
1192 zram_set_flag(zram, index, ZRAM_HUGE);
1193 atomic64_inc(&zram->stats.huge_pages);
1194 }
1195
db8ffbd4
MK
1196 if (flags) {
1197 zram_set_flag(zram, index, flags);
4ebbe7f7 1198 zram_set_element(zram, index, element);
db8ffbd4 1199 } else {
4ebbe7f7
MK
1200 zram_set_handle(zram, index, handle);
1201 zram_set_obj_size(zram, index, comp_len);
1202 }
86c49814 1203 zram_slot_unlock(zram, index);
306b0c95 1204
8c921b2b 1205 /* Update stats */
90a7806e 1206 atomic64_inc(&zram->stats.pages_stored);
ae85a807 1207 return ret;
1f7319c7
MK
1208}
1209
1210static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
db8ffbd4 1211 u32 index, int offset, struct bio *bio)
1f7319c7
MK
1212{
1213 int ret;
1214 struct page *page = NULL;
1215 void *src;
1216 struct bio_vec vec;
1217
1218 vec = *bvec;
1219 if (is_partial_io(bvec)) {
1220 void *dst;
1221 /*
1222 * This is a partial IO. We need to read the full page
1223 * before to write the changes.
1224 */
1225 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1226 if (!page)
1227 return -ENOMEM;
1228
8e654f8f 1229 ret = __zram_bvec_read(zram, page, index, bio, true);
1f7319c7
MK
1230 if (ret)
1231 goto out;
1232
1233 src = kmap_atomic(bvec->bv_page);
1234 dst = kmap_atomic(page);
1235 memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1236 kunmap_atomic(dst);
1237 kunmap_atomic(src);
1238
1239 vec.bv_page = page;
1240 vec.bv_len = PAGE_SIZE;
1241 vec.bv_offset = 0;
1242 }
1243
db8ffbd4 1244 ret = __zram_bvec_write(zram, &vec, index, bio);
924bd88d 1245out:
397c6066 1246 if (is_partial_io(bvec))
1f7319c7 1247 __free_page(page);
924bd88d 1248 return ret;
8c921b2b
JM
1249}
1250
f4659d8e
JK
1251/*
1252 * zram_bio_discard - handler on discard request
1253 * @index: physical block index in PAGE_SIZE units
1254 * @offset: byte offset within physical block
1255 */
1256static void zram_bio_discard(struct zram *zram, u32 index,
1257 int offset, struct bio *bio)
1258{
1259 size_t n = bio->bi_iter.bi_size;
1260
1261 /*
1262 * zram manages data in physical block size units. Because logical block
1263 * size isn't identical with physical block size on some arch, we
1264 * could get a discard request pointing to a specific offset within a
1265 * certain physical block. Although we can handle this request by
1266 * reading that physiclal block and decompressing and partially zeroing
1267 * and re-compressing and then re-storing it, this isn't reasonable
1268 * because our intent with a discard request is to save memory. So
1269 * skipping this logical block is appropriate here.
1270 */
1271 if (offset) {
38515c73 1272 if (n <= (PAGE_SIZE - offset))
f4659d8e
JK
1273 return;
1274
38515c73 1275 n -= (PAGE_SIZE - offset);
f4659d8e
JK
1276 index++;
1277 }
1278
1279 while (n >= PAGE_SIZE) {
86c49814 1280 zram_slot_lock(zram, index);
f4659d8e 1281 zram_free_page(zram, index);
86c49814 1282 zram_slot_unlock(zram, index);
015254da 1283 atomic64_inc(&zram->stats.notify_free);
f4659d8e
JK
1284 index++;
1285 n -= PAGE_SIZE;
1286 }
1287}
1288
ae85a807
MK
1289/*
1290 * Returns errno if it has some problem. Otherwise return 0 or 1.
1291 * Returns 0 if IO request was done synchronously
1292 * Returns 1 if IO request was successfully submitted.
1293 */
522698d7 1294static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
3f289dcb 1295 int offset, unsigned int op, struct bio *bio)
9b3bb7ab 1296{
522698d7 1297 unsigned long start_time = jiffies;
d62e26b3 1298 struct request_queue *q = zram->disk->queue;
9b3bb7ab 1299 int ret;
9b3bb7ab 1300
ddcf35d3 1301 generic_start_io_acct(q, op, bvec->bv_len >> SECTOR_SHIFT,
522698d7 1302 &zram->disk->part0);
46a51c80 1303
3f289dcb 1304 if (!op_is_write(op)) {
522698d7 1305 atomic64_inc(&zram->stats.num_reads);
8e654f8f 1306 ret = zram_bvec_read(zram, bvec, index, offset, bio);
1f7319c7 1307 flush_dcache_page(bvec->bv_page);
522698d7
SS
1308 } else {
1309 atomic64_inc(&zram->stats.num_writes);
db8ffbd4 1310 ret = zram_bvec_write(zram, bvec, index, offset, bio);
1b672224 1311 }
9b3bb7ab 1312
ddcf35d3 1313 generic_end_io_acct(q, op, &zram->disk->part0, start_time);
9b3bb7ab 1314
d7eac6b6
MK
1315 zram_slot_lock(zram, index);
1316 zram_accessed(zram, index);
1317 zram_slot_unlock(zram, index);
1318
ae85a807 1319 if (unlikely(ret < 0)) {
3f289dcb 1320 if (!op_is_write(op))
522698d7
SS
1321 atomic64_inc(&zram->stats.failed_reads);
1322 else
1323 atomic64_inc(&zram->stats.failed_writes);
1b672224 1324 }
9b3bb7ab 1325
1b672224 1326 return ret;
8c921b2b
JM
1327}
1328
be257c61 1329static void __zram_make_request(struct zram *zram, struct bio *bio)
8c921b2b 1330{
abf54548 1331 int offset;
8c921b2b 1332 u32 index;
7988613b
KO
1333 struct bio_vec bvec;
1334 struct bvec_iter iter;
8c921b2b 1335
4f024f37
KO
1336 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1337 offset = (bio->bi_iter.bi_sector &
1338 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
8c921b2b 1339
31edeacd
CH
1340 switch (bio_op(bio)) {
1341 case REQ_OP_DISCARD:
1342 case REQ_OP_WRITE_ZEROES:
f4659d8e 1343 zram_bio_discard(zram, index, offset, bio);
4246a0b6 1344 bio_endio(bio);
f4659d8e 1345 return;
31edeacd
CH
1346 default:
1347 break;
f4659d8e
JK
1348 }
1349
7988613b 1350 bio_for_each_segment(bvec, bio, iter) {
e86942c7
MK
1351 struct bio_vec bv = bvec;
1352 unsigned int unwritten = bvec.bv_len;
924bd88d 1353
e86942c7
MK
1354 do {
1355 bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1356 unwritten);
abf54548 1357 if (zram_bvec_rw(zram, &bv, index, offset,
3f289dcb 1358 bio_op(bio), bio) < 0)
924bd88d
JM
1359 goto out;
1360
e86942c7
MK
1361 bv.bv_offset += bv.bv_len;
1362 unwritten -= bv.bv_len;
924bd88d 1363
e86942c7
MK
1364 update_position(&index, &offset, &bv);
1365 } while (unwritten);
a1dd52af 1366 }
306b0c95 1367
4246a0b6 1368 bio_endio(bio);
7d7854b4 1369 return;
306b0c95
NG
1370
1371out:
306b0c95 1372 bio_io_error(bio);
306b0c95
NG
1373}
1374
306b0c95 1375/*
f1e3cfff 1376 * Handler function for all zram I/O requests.
306b0c95 1377 */
dece1635 1378static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
306b0c95 1379{
f1e3cfff 1380 struct zram *zram = queue->queuedata;
306b0c95 1381
54850e73 1382 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1383 bio->bi_iter.bi_size)) {
da5cc7d3 1384 atomic64_inc(&zram->stats.invalid_io);
a09759ac 1385 goto error;
6642a67c
JM
1386 }
1387
be257c61 1388 __zram_make_request(zram, bio);
dece1635 1389 return BLK_QC_T_NONE;
a09759ac 1390
0900beae
JM
1391error:
1392 bio_io_error(bio);
dece1635 1393 return BLK_QC_T_NONE;
306b0c95
NG
1394}
1395
2ccbec05
NG
1396static void zram_slot_free_notify(struct block_device *bdev,
1397 unsigned long index)
107c161b 1398{
f1e3cfff 1399 struct zram *zram;
107c161b 1400
f1e3cfff 1401 zram = bdev->bd_disk->private_data;
a0c516cb 1402
86c49814 1403 zram_slot_lock(zram, index);
f614a9f4 1404 zram_free_page(zram, index);
86c49814 1405 zram_slot_unlock(zram, index);
f614a9f4 1406 atomic64_inc(&zram->stats.notify_free);
107c161b
NG
1407}
1408
8c7f0102 1409static int zram_rw_page(struct block_device *bdev, sector_t sector,
3f289dcb 1410 struct page *page, unsigned int op)
8c7f0102 1411{
ae85a807 1412 int offset, ret;
8c7f0102 1413 u32 index;
1414 struct zram *zram;
1415 struct bio_vec bv;
1416
98cc093c
HY
1417 if (PageTransHuge(page))
1418 return -ENOTSUPP;
8c7f0102 1419 zram = bdev->bd_disk->private_data;
08eee69f 1420
8c7f0102 1421 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1422 atomic64_inc(&zram->stats.invalid_io);
ae85a807 1423 ret = -EINVAL;
a09759ac 1424 goto out;
8c7f0102 1425 }
1426
1427 index = sector >> SECTORS_PER_PAGE_SHIFT;
4ca82dab 1428 offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
8c7f0102 1429
1430 bv.bv_page = page;
1431 bv.bv_len = PAGE_SIZE;
1432 bv.bv_offset = 0;
1433
3f289dcb 1434 ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
08eee69f 1435out:
8c7f0102 1436 /*
1437 * If I/O fails, just return error(ie, non-zero) without
1438 * calling page_endio.
1439 * It causes resubmit the I/O with bio request by upper functions
1440 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1441 * bio->bi_end_io does things to handle the error
1442 * (e.g., SetPageError, set_page_dirty and extra works).
1443 */
ae85a807
MK
1444 if (unlikely(ret < 0))
1445 return ret;
1446
1447 switch (ret) {
1448 case 0:
3f289dcb 1449 page_endio(page, op_is_write(op), 0);
ae85a807
MK
1450 break;
1451 case 1:
1452 ret = 0;
1453 break;
1454 default:
1455 WARN_ON(1);
1456 }
1457 return ret;
8c7f0102 1458}
1459
522698d7
SS
1460static void zram_reset_device(struct zram *zram)
1461{
522698d7
SS
1462 struct zcomp *comp;
1463 u64 disksize;
306b0c95 1464
522698d7 1465 down_write(&zram->init_lock);
9b3bb7ab 1466
522698d7
SS
1467 zram->limit_pages = 0;
1468
1469 if (!init_done(zram)) {
1470 up_write(&zram->init_lock);
1471 return;
1472 }
1473
522698d7
SS
1474 comp = zram->comp;
1475 disksize = zram->disksize;
522698d7 1476 zram->disksize = 0;
522698d7
SS
1477
1478 set_capacity(zram->disk, 0);
1479 part_stat_set_all(&zram->disk->part0, 0);
1480
1481 up_write(&zram->init_lock);
1482 /* I/O operation under all of CPU are done so let's free */
beb6602c 1483 zram_meta_free(zram, disksize);
302128dc 1484 memset(&zram->stats, 0, sizeof(zram->stats));
522698d7 1485 zcomp_destroy(comp);
013bf95a 1486 reset_bdev(zram);
522698d7
SS
1487}
1488
1489static ssize_t disksize_store(struct device *dev,
1490 struct device_attribute *attr, const char *buf, size_t len)
2f6a3bed 1491{
522698d7
SS
1492 u64 disksize;
1493 struct zcomp *comp;
2f6a3bed 1494 struct zram *zram = dev_to_zram(dev);
522698d7 1495 int err;
2f6a3bed 1496
522698d7
SS
1497 disksize = memparse(buf, NULL);
1498 if (!disksize)
1499 return -EINVAL;
2f6a3bed 1500
beb6602c
MK
1501 down_write(&zram->init_lock);
1502 if (init_done(zram)) {
1503 pr_info("Cannot change disksize for initialized device\n");
1504 err = -EBUSY;
1505 goto out_unlock;
1506 }
1507
522698d7 1508 disksize = PAGE_ALIGN(disksize);
beb6602c
MK
1509 if (!zram_meta_alloc(zram, disksize)) {
1510 err = -ENOMEM;
1511 goto out_unlock;
1512 }
522698d7 1513
da9556a2 1514 comp = zcomp_create(zram->compressor);
522698d7 1515 if (IS_ERR(comp)) {
70864969 1516 pr_err("Cannot initialise %s compressing backend\n",
522698d7
SS
1517 zram->compressor);
1518 err = PTR_ERR(comp);
1519 goto out_free_meta;
1520 }
1521
522698d7
SS
1522 zram->comp = comp;
1523 zram->disksize = disksize;
1524 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
e447a015
MK
1525
1526 revalidate_disk(zram->disk);
e7ccfc4c 1527 up_write(&zram->init_lock);
522698d7
SS
1528
1529 return len;
1530
522698d7 1531out_free_meta:
beb6602c
MK
1532 zram_meta_free(zram, disksize);
1533out_unlock:
1534 up_write(&zram->init_lock);
522698d7 1535 return err;
2f6a3bed
SS
1536}
1537
522698d7
SS
1538static ssize_t reset_store(struct device *dev,
1539 struct device_attribute *attr, const char *buf, size_t len)
4f2109f6 1540{
522698d7
SS
1541 int ret;
1542 unsigned short do_reset;
1543 struct zram *zram;
1544 struct block_device *bdev;
4f2109f6 1545
f405c445
SS
1546 ret = kstrtou16(buf, 10, &do_reset);
1547 if (ret)
1548 return ret;
1549
1550 if (!do_reset)
1551 return -EINVAL;
1552
522698d7
SS
1553 zram = dev_to_zram(dev);
1554 bdev = bdget_disk(zram->disk, 0);
522698d7
SS
1555 if (!bdev)
1556 return -ENOMEM;
4f2109f6 1557
522698d7 1558 mutex_lock(&bdev->bd_mutex);
f405c445
SS
1559 /* Do not reset an active device or claimed device */
1560 if (bdev->bd_openers || zram->claim) {
1561 mutex_unlock(&bdev->bd_mutex);
1562 bdput(bdev);
1563 return -EBUSY;
522698d7
SS
1564 }
1565
f405c445
SS
1566 /* From now on, anyone can't open /dev/zram[0-9] */
1567 zram->claim = true;
1568 mutex_unlock(&bdev->bd_mutex);
522698d7 1569
f405c445 1570 /* Make sure all the pending I/O are finished */
522698d7
SS
1571 fsync_bdev(bdev);
1572 zram_reset_device(zram);
e447a015 1573 revalidate_disk(zram->disk);
522698d7
SS
1574 bdput(bdev);
1575
f405c445
SS
1576 mutex_lock(&bdev->bd_mutex);
1577 zram->claim = false;
1578 mutex_unlock(&bdev->bd_mutex);
1579
522698d7 1580 return len;
f405c445
SS
1581}
1582
1583static int zram_open(struct block_device *bdev, fmode_t mode)
1584{
1585 int ret = 0;
1586 struct zram *zram;
1587
1588 WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1589
1590 zram = bdev->bd_disk->private_data;
1591 /* zram was claimed to reset so open request fails */
1592 if (zram->claim)
1593 ret = -EBUSY;
4f2109f6
SS
1594
1595 return ret;
1596}
1597
522698d7 1598static const struct block_device_operations zram_devops = {
f405c445 1599 .open = zram_open,
522698d7
SS
1600 .swap_slot_free_notify = zram_slot_free_notify,
1601 .rw_page = zram_rw_page,
1602 .owner = THIS_MODULE
1603};
1604
1605static DEVICE_ATTR_WO(compact);
1606static DEVICE_ATTR_RW(disksize);
1607static DEVICE_ATTR_RO(initstate);
1608static DEVICE_ATTR_WO(reset);
c87d1655
SS
1609static DEVICE_ATTR_WO(mem_limit);
1610static DEVICE_ATTR_WO(mem_used_max);
522698d7
SS
1611static DEVICE_ATTR_RW(max_comp_streams);
1612static DEVICE_ATTR_RW(comp_algorithm);
013bf95a
MK
1613#ifdef CONFIG_ZRAM_WRITEBACK
1614static DEVICE_ATTR_RW(backing_dev);
1615#endif
a68eb3b6 1616
9b3bb7ab
SS
1617static struct attribute *zram_disk_attrs[] = {
1618 &dev_attr_disksize.attr,
1619 &dev_attr_initstate.attr,
1620 &dev_attr_reset.attr,
99ebbd30 1621 &dev_attr_compact.attr,
9ada9da9 1622 &dev_attr_mem_limit.attr,
461a8eee 1623 &dev_attr_mem_used_max.attr,
beca3ec7 1624 &dev_attr_max_comp_streams.attr,
e46b8a03 1625 &dev_attr_comp_algorithm.attr,
013bf95a
MK
1626#ifdef CONFIG_ZRAM_WRITEBACK
1627 &dev_attr_backing_dev.attr,
1628#endif
2f6a3bed 1629 &dev_attr_io_stat.attr,
4f2109f6 1630 &dev_attr_mm_stat.attr,
623e47fc 1631 &dev_attr_debug_stat.attr,
9b3bb7ab
SS
1632 NULL,
1633};
1634
bc1bb362 1635static const struct attribute_group zram_disk_attr_group = {
9b3bb7ab
SS
1636 .attrs = zram_disk_attrs,
1637};
1638
98af4d4d
HR
1639static const struct attribute_group *zram_disk_attr_groups[] = {
1640 &zram_disk_attr_group,
1641 NULL,
1642};
1643
92ff1528
SS
1644/*
1645 * Allocate and initialize new zram device. the function returns
1646 * '>= 0' device_id upon success, and negative value otherwise.
1647 */
1648static int zram_add(void)
306b0c95 1649{
85508ec6 1650 struct zram *zram;
ee980160 1651 struct request_queue *queue;
92ff1528 1652 int ret, device_id;
85508ec6
SS
1653
1654 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1655 if (!zram)
1656 return -ENOMEM;
1657
92ff1528 1658 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
85508ec6
SS
1659 if (ret < 0)
1660 goto out_free_dev;
92ff1528 1661 device_id = ret;
de1a21a0 1662
0900beae 1663 init_rwsem(&zram->init_lock);
306b0c95 1664
ee980160
SS
1665 queue = blk_alloc_queue(GFP_KERNEL);
1666 if (!queue) {
306b0c95
NG
1667 pr_err("Error allocating disk queue for device %d\n",
1668 device_id);
85508ec6
SS
1669 ret = -ENOMEM;
1670 goto out_free_idr;
306b0c95
NG
1671 }
1672
ee980160 1673 blk_queue_make_request(queue, zram_make_request);
306b0c95 1674
85508ec6 1675 /* gendisk structure */
f1e3cfff
NG
1676 zram->disk = alloc_disk(1);
1677 if (!zram->disk) {
70864969 1678 pr_err("Error allocating disk structure for device %d\n",
306b0c95 1679 device_id);
201c7b72 1680 ret = -ENOMEM;
39a9b8ac 1681 goto out_free_queue;
306b0c95
NG
1682 }
1683
f1e3cfff
NG
1684 zram->disk->major = zram_major;
1685 zram->disk->first_minor = device_id;
1686 zram->disk->fops = &zram_devops;
ee980160
SS
1687 zram->disk->queue = queue;
1688 zram->disk->queue->queuedata = zram;
f1e3cfff
NG
1689 zram->disk->private_data = zram;
1690 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
306b0c95 1691
33863c21 1692 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
f1e3cfff 1693 set_capacity(zram->disk, 0);
b67d1ec1 1694 /* zram devices sort of resembles non-rotational disks */
8b904b5b
BVA
1695 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1696 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
e447a015 1697
a1dd52af
NG
1698 /*
1699 * To ensure that we always get PAGE_SIZE aligned
1700 * and n*PAGE_SIZED sized I/O requests.
1701 */
f1e3cfff 1702 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
7b19b8d4
RJ
1703 blk_queue_logical_block_size(zram->disk->queue,
1704 ZRAM_LOGICAL_BLOCK_SIZE);
f1e3cfff
NG
1705 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1706 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
f4659d8e 1707 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
2bb4cd5c 1708 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
8b904b5b 1709 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
31edeacd 1710
f4659d8e
JK
1711 /*
1712 * zram_bio_discard() will clear all logical blocks if logical block
1713 * size is identical with physical block size(PAGE_SIZE). But if it is
1714 * different, we will skip discarding some parts of logical blocks in
1715 * the part of the request range which isn't aligned to physical block
1716 * size. So we can't ensure that all discarded logical blocks are
1717 * zeroed.
1718 */
1719 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
31edeacd 1720 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
5d83d5a0 1721
e447a015 1722 zram->disk->queue->backing_dev_info->capabilities |=
23c47d2a 1723 (BDI_CAP_STABLE_WRITES | BDI_CAP_SYNCHRONOUS_IO);
98af4d4d
HR
1724 device_add_disk(NULL, zram->disk, zram_disk_attr_groups);
1725
e46b8a03 1726 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
d12b63c9 1727
c0265342 1728 zram_debugfs_register(zram);
d12b63c9 1729 pr_info("Added device: %s\n", zram->disk->disk_name);
92ff1528 1730 return device_id;
de1a21a0 1731
39a9b8ac 1732out_free_queue:
ee980160 1733 blk_cleanup_queue(queue);
85508ec6
SS
1734out_free_idr:
1735 idr_remove(&zram_index_idr, device_id);
1736out_free_dev:
1737 kfree(zram);
de1a21a0 1738 return ret;
306b0c95
NG
1739}
1740
6566d1a3 1741static int zram_remove(struct zram *zram)
306b0c95 1742{
6566d1a3
SS
1743 struct block_device *bdev;
1744
1745 bdev = bdget_disk(zram->disk, 0);
1746 if (!bdev)
1747 return -ENOMEM;
1748
1749 mutex_lock(&bdev->bd_mutex);
1750 if (bdev->bd_openers || zram->claim) {
1751 mutex_unlock(&bdev->bd_mutex);
1752 bdput(bdev);
1753 return -EBUSY;
1754 }
1755
1756 zram->claim = true;
1757 mutex_unlock(&bdev->bd_mutex);
1758
c0265342 1759 zram_debugfs_unregister(zram);
306b0c95 1760
6566d1a3
SS
1761 /* Make sure all the pending I/O are finished */
1762 fsync_bdev(bdev);
85508ec6 1763 zram_reset_device(zram);
6566d1a3
SS
1764 bdput(bdev);
1765
1766 pr_info("Removed device: %s\n", zram->disk->disk_name);
1767
85508ec6 1768 del_gendisk(zram->disk);
392db380 1769 blk_cleanup_queue(zram->disk->queue);
85508ec6
SS
1770 put_disk(zram->disk);
1771 kfree(zram);
6566d1a3
SS
1772 return 0;
1773}
1774
1775/* zram-control sysfs attributes */
27104a53
GKH
1776
1777/*
1778 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1779 * sense that reading from this file does alter the state of your system -- it
1780 * creates a new un-initialized zram device and returns back this device's
1781 * device_id (or an error code if it fails to create a new device).
1782 */
6566d1a3
SS
1783static ssize_t hot_add_show(struct class *class,
1784 struct class_attribute *attr,
1785 char *buf)
1786{
1787 int ret;
1788
1789 mutex_lock(&zram_index_mutex);
1790 ret = zram_add();
1791 mutex_unlock(&zram_index_mutex);
1792
1793 if (ret < 0)
1794 return ret;
1795 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1796}
f40609d1 1797static CLASS_ATTR_RO(hot_add);
6566d1a3
SS
1798
1799static ssize_t hot_remove_store(struct class *class,
1800 struct class_attribute *attr,
1801 const char *buf,
1802 size_t count)
1803{
1804 struct zram *zram;
1805 int ret, dev_id;
1806
1807 /* dev_id is gendisk->first_minor, which is `int' */
1808 ret = kstrtoint(buf, 10, &dev_id);
1809 if (ret)
1810 return ret;
1811 if (dev_id < 0)
1812 return -EINVAL;
1813
1814 mutex_lock(&zram_index_mutex);
1815
1816 zram = idr_find(&zram_index_idr, dev_id);
17ec4cd9 1817 if (zram) {
6566d1a3 1818 ret = zram_remove(zram);
529e71e1
TI
1819 if (!ret)
1820 idr_remove(&zram_index_idr, dev_id);
17ec4cd9 1821 } else {
6566d1a3 1822 ret = -ENODEV;
17ec4cd9 1823 }
6566d1a3
SS
1824
1825 mutex_unlock(&zram_index_mutex);
1826 return ret ? ret : count;
85508ec6 1827}
27104a53 1828static CLASS_ATTR_WO(hot_remove);
a096cafc 1829
27104a53
GKH
1830static struct attribute *zram_control_class_attrs[] = {
1831 &class_attr_hot_add.attr,
1832 &class_attr_hot_remove.attr,
1833 NULL,
6566d1a3 1834};
27104a53 1835ATTRIBUTE_GROUPS(zram_control_class);
6566d1a3
SS
1836
1837static struct class zram_control_class = {
1838 .name = "zram-control",
1839 .owner = THIS_MODULE,
27104a53 1840 .class_groups = zram_control_class_groups,
6566d1a3
SS
1841};
1842
85508ec6
SS
1843static int zram_remove_cb(int id, void *ptr, void *data)
1844{
1845 zram_remove(ptr);
1846 return 0;
1847}
a096cafc 1848
85508ec6
SS
1849static void destroy_devices(void)
1850{
6566d1a3 1851 class_unregister(&zram_control_class);
85508ec6 1852 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
c0265342 1853 zram_debugfs_destroy();
85508ec6 1854 idr_destroy(&zram_index_idr);
a096cafc 1855 unregister_blkdev(zram_major, "zram");
1dd6c834 1856 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
306b0c95
NG
1857}
1858
f1e3cfff 1859static int __init zram_init(void)
306b0c95 1860{
92ff1528 1861 int ret;
306b0c95 1862
1dd6c834
AMG
1863 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
1864 zcomp_cpu_up_prepare, zcomp_cpu_dead);
1865 if (ret < 0)
1866 return ret;
1867
6566d1a3
SS
1868 ret = class_register(&zram_control_class);
1869 if (ret) {
70864969 1870 pr_err("Unable to register zram-control class\n");
1dd6c834 1871 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
6566d1a3
SS
1872 return ret;
1873 }
1874
c0265342 1875 zram_debugfs_create();
f1e3cfff
NG
1876 zram_major = register_blkdev(0, "zram");
1877 if (zram_major <= 0) {
70864969 1878 pr_err("Unable to get major number\n");
6566d1a3 1879 class_unregister(&zram_control_class);
1dd6c834 1880 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
a096cafc 1881 return -EBUSY;
306b0c95
NG
1882 }
1883
92ff1528 1884 while (num_devices != 0) {
6566d1a3 1885 mutex_lock(&zram_index_mutex);
92ff1528 1886 ret = zram_add();
6566d1a3 1887 mutex_unlock(&zram_index_mutex);
92ff1528 1888 if (ret < 0)
a096cafc 1889 goto out_error;
92ff1528 1890 num_devices--;
de1a21a0
NG
1891 }
1892
306b0c95 1893 return 0;
de1a21a0 1894
a096cafc 1895out_error:
85508ec6 1896 destroy_devices();
306b0c95
NG
1897 return ret;
1898}
1899
f1e3cfff 1900static void __exit zram_exit(void)
306b0c95 1901{
85508ec6 1902 destroy_devices();
306b0c95
NG
1903}
1904
f1e3cfff
NG
1905module_init(zram_init);
1906module_exit(zram_exit);
306b0c95 1907
9b3bb7ab 1908module_param(num_devices, uint, 0);
c3cdb40e 1909MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
9b3bb7ab 1910
306b0c95
NG
1911MODULE_LICENSE("Dual BSD/GPL");
1912MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
f1e3cfff 1913MODULE_DESCRIPTION("Compressed RAM Block Device");