NVMe: Implement doorbell stride capability
[linux-2.6-block.git] / drivers / block / nvme.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
8de05535 21#include <linux/bitops.h>
b60503ba 22#include <linux/blkdev.h>
fd63e9ce 23#include <linux/delay.h>
b60503ba
MW
24#include <linux/errno.h>
25#include <linux/fs.h>
26#include <linux/genhd.h>
5aff9382 27#include <linux/idr.h>
b60503ba
MW
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/io.h>
31#include <linux/kdev_t.h>
1fa6aead 32#include <linux/kthread.h>
b60503ba
MW
33#include <linux/kernel.h>
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/moduleparam.h>
37#include <linux/pci.h>
be7b6275 38#include <linux/poison.h>
b60503ba
MW
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
42#include <linux/version.h>
43
44#define NVME_Q_DEPTH 1024
45#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
46#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
47#define NVME_MINORS 64
e85248e5
MW
48#define IO_TIMEOUT (5 * HZ)
49#define ADMIN_TIMEOUT (60 * HZ)
b60503ba
MW
50
51static int nvme_major;
52module_param(nvme_major, int, 0);
53
58ffacb5
MW
54static int use_threaded_interrupts;
55module_param(use_threaded_interrupts, int, 0);
56
1fa6aead
MW
57static DEFINE_SPINLOCK(dev_list_lock);
58static LIST_HEAD(dev_list);
59static struct task_struct *nvme_thread;
60
b60503ba
MW
61/*
62 * Represents an NVM Express device. Each nvme_dev is a PCI function.
63 */
64struct nvme_dev {
1fa6aead 65 struct list_head node;
b60503ba
MW
66 struct nvme_queue **queues;
67 u32 __iomem *dbs;
68 struct pci_dev *pci_dev;
091b6092 69 struct dma_pool *prp_page_pool;
99802a7a 70 struct dma_pool *prp_small_pool;
b60503ba
MW
71 int instance;
72 int queue_count;
f1938f6e 73 int db_stride;
b60503ba
MW
74 u32 ctrl_config;
75 struct msix_entry *entry;
76 struct nvme_bar __iomem *bar;
77 struct list_head namespaces;
51814232
MW
78 char serial[20];
79 char model[40];
80 char firmware_rev[8];
b60503ba
MW
81};
82
83/*
84 * An NVM Express namespace is equivalent to a SCSI LUN
85 */
86struct nvme_ns {
87 struct list_head list;
88
89 struct nvme_dev *dev;
90 struct request_queue *queue;
91 struct gendisk *disk;
92
93 int ns_id;
94 int lba_shift;
95};
96
97/*
98 * An NVM Express queue. Each device has at least two (one for admin
99 * commands and one for I/O commands).
100 */
101struct nvme_queue {
102 struct device *q_dmadev;
091b6092 103 struct nvme_dev *dev;
b60503ba
MW
104 spinlock_t q_lock;
105 struct nvme_command *sq_cmds;
106 volatile struct nvme_completion *cqes;
107 dma_addr_t sq_dma_addr;
108 dma_addr_t cq_dma_addr;
109 wait_queue_head_t sq_full;
1fa6aead 110 wait_queue_t sq_cong_wait;
b60503ba
MW
111 struct bio_list sq_cong;
112 u32 __iomem *q_db;
113 u16 q_depth;
114 u16 cq_vector;
115 u16 sq_head;
116 u16 sq_tail;
117 u16 cq_head;
82123460 118 u16 cq_phase;
b60503ba
MW
119 unsigned long cmdid_data[];
120};
121
122/*
123 * Check we didin't inadvertently grow the command struct
124 */
125static inline void _nvme_check_size(void)
126{
127 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
136}
137
e85248e5
MW
138struct nvme_cmd_info {
139 unsigned long ctx;
140 unsigned long timeout;
141};
142
143static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
144{
145 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
146}
147
b60503ba 148/**
714a7a22
MW
149 * alloc_cmdid() - Allocate a Command ID
150 * @nvmeq: The queue that will be used for this command
151 * @ctx: A pointer that will be passed to the handler
152 * @handler: The ID of the handler to call
b60503ba
MW
153 *
154 * Allocate a Command ID for a queue. The data passed in will
155 * be passed to the completion handler. This is implemented by using
156 * the bottom two bits of the ctx pointer to store the handler ID.
157 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
158 * We can change this if it becomes a problem.
184d2944
MW
159 *
160 * May be called with local interrupts disabled and the q_lock held,
161 * or with interrupts enabled and no locks held.
b60503ba 162 */
e85248e5
MW
163static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
164 unsigned timeout)
b60503ba 165{
e6d15f79 166 int depth = nvmeq->q_depth - 1;
e85248e5 167 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba
MW
168 int cmdid;
169
170 BUG_ON((unsigned long)ctx & 3);
171
172 do {
173 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
174 if (cmdid >= depth)
175 return -EBUSY;
176 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
177
e85248e5
MW
178 info[cmdid].ctx = (unsigned long)ctx | handler;
179 info[cmdid].timeout = jiffies + timeout;
b60503ba
MW
180 return cmdid;
181}
182
183static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
e85248e5 184 int handler, unsigned timeout)
b60503ba
MW
185{
186 int cmdid;
187 wait_event_killable(nvmeq->sq_full,
e85248e5 188 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
b60503ba
MW
189 return (cmdid < 0) ? -EINTR : cmdid;
190}
191
fa922821
MW
192/*
193 * If you need more than four handlers, you'll need to change how
be7b6275
MW
194 * alloc_cmdid and nvme_process_cq work. Consider using a special
195 * CMD_CTX value instead, if that works for your situation.
b60503ba
MW
196 */
197enum {
198 sync_completion_id = 0,
199 bio_completion_id,
200};
201
00df5cb4 202/* Special values must be a multiple of 4, and less than 0x1000 */
be7b6275 203#define CMD_CTX_BASE (POISON_POINTER_DELTA + sync_completion_id)
d2d87034
MW
204#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
205#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
206#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
00df5cb4 207#define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
be7b6275 208
184d2944
MW
209/*
210 * Called with local interrupts disabled and the q_lock held. May not sleep.
211 */
b60503ba
MW
212static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
213{
214 unsigned long data;
e85248e5 215 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba 216
e85248e5 217 if (cmdid >= nvmeq->q_depth)
48e3d398 218 return CMD_CTX_INVALID;
e85248e5
MW
219 data = info[cmdid].ctx;
220 info[cmdid].ctx = CMD_CTX_COMPLETED;
b60503ba
MW
221 clear_bit(cmdid, nvmeq->cmdid_data);
222 wake_up(&nvmeq->sq_full);
223 return data;
224}
225
21075bde 226static unsigned long cancel_cmdid(struct nvme_queue *nvmeq, int cmdid)
3c0cf138 227{
21075bde 228 unsigned long data;
e85248e5 229 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
21075bde 230 data = info[cmdid].ctx;
e85248e5 231 info[cmdid].ctx = CMD_CTX_CANCELLED;
21075bde 232 return data;
3c0cf138
MW
233}
234
b60503ba
MW
235static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
236{
9ecdc946 237 return ns->dev->queues[get_cpu() + 1];
b60503ba
MW
238}
239
240static void put_nvmeq(struct nvme_queue *nvmeq)
241{
1b23484b 242 put_cpu();
b60503ba
MW
243}
244
245/**
714a7a22 246 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
247 * @nvmeq: The queue to use
248 * @cmd: The command to send
249 *
250 * Safe to use from interrupt context
251 */
252static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
253{
254 unsigned long flags;
255 u16 tail;
b60503ba
MW
256 spin_lock_irqsave(&nvmeq->q_lock, flags);
257 tail = nvmeq->sq_tail;
258 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
b60503ba
MW
259 if (++tail == nvmeq->q_depth)
260 tail = 0;
7547881d 261 writel(tail, nvmeq->q_db);
b60503ba
MW
262 nvmeq->sq_tail = tail;
263 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
264
265 return 0;
266}
267
e025344c 268struct nvme_prps {
0d1bc912 269 int npages; /* 0 means small pool in use */
e025344c
SMM
270 dma_addr_t first_dma;
271 __le64 *list[0];
272};
273
d567760c 274static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
e025344c
SMM
275{
276 const int last_prp = PAGE_SIZE / 8 - 1;
277 int i;
278 dma_addr_t prp_dma;
279
280 if (!prps)
281 return;
282
283 prp_dma = prps->first_dma;
99802a7a
MW
284
285 if (prps->npages == 0)
286 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
e025344c
SMM
287 for (i = 0; i < prps->npages; i++) {
288 __le64 *prp_list = prps->list[i];
289 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
091b6092 290 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
e025344c
SMM
291 prp_dma = next_prp_dma;
292 }
293 kfree(prps);
294}
295
d534df3c 296struct nvme_bio {
b60503ba
MW
297 struct bio *bio;
298 int nents;
e025344c 299 struct nvme_prps *prps;
b60503ba
MW
300 struct scatterlist sg[0];
301};
302
303/* XXX: use a mempool */
d534df3c 304static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
b60503ba 305{
d534df3c 306 return kzalloc(sizeof(struct nvme_bio) +
b60503ba
MW
307 sizeof(struct scatterlist) * nseg, gfp);
308}
309
d534df3c 310static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
b60503ba 311{
d567760c 312 nvme_free_prps(nvmeq->dev, nbio->prps);
d534df3c 313 kfree(nbio);
b60503ba
MW
314}
315
316static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
317 struct nvme_completion *cqe)
318{
d534df3c
MW
319 struct nvme_bio *nbio = ctx;
320 struct bio *bio = nbio->bio;
b60503ba
MW
321 u16 status = le16_to_cpup(&cqe->status) >> 1;
322
d534df3c 323 dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
b60503ba 324 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
d534df3c 325 free_nbio(nvmeq, nbio);
09a58f53 326 if (status) {
1ad2f893 327 bio_endio(bio, -EIO);
09a58f53 328 } else if (bio->bi_vcnt > bio->bi_idx) {
eac623ba
MW
329 if (bio_list_empty(&nvmeq->sq_cong))
330 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
1ad2f893
MW
331 bio_list_add(&nvmeq->sq_cong, bio);
332 wake_up_process(nvme_thread);
333 } else {
334 bio_endio(bio, 0);
335 }
b60503ba
MW
336}
337
184d2944 338/* length is in bytes. gfp flags indicates whether we may sleep. */
d567760c 339static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
e025344c 340 struct nvme_common_command *cmd,
b77954cb
MW
341 struct scatterlist *sg, int *len,
342 gfp_t gfp)
ff22b54f 343{
99802a7a 344 struct dma_pool *pool;
b77954cb 345 int length = *len;
ff22b54f
MW
346 int dma_len = sg_dma_len(sg);
347 u64 dma_addr = sg_dma_address(sg);
348 int offset = offset_in_page(dma_addr);
e025344c
SMM
349 __le64 *prp_list;
350 dma_addr_t prp_dma;
0d1bc912 351 int nprps, npages, i;
e025344c 352 struct nvme_prps *prps = NULL;
ff22b54f
MW
353
354 cmd->prp1 = cpu_to_le64(dma_addr);
355 length -= (PAGE_SIZE - offset);
356 if (length <= 0)
e025344c 357 return prps;
ff22b54f
MW
358
359 dma_len -= (PAGE_SIZE - offset);
360 if (dma_len) {
361 dma_addr += (PAGE_SIZE - offset);
362 } else {
363 sg = sg_next(sg);
364 dma_addr = sg_dma_address(sg);
365 dma_len = sg_dma_len(sg);
366 }
367
368 if (length <= PAGE_SIZE) {
369 cmd->prp2 = cpu_to_le64(dma_addr);
e025344c
SMM
370 return prps;
371 }
372
373 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
0d1bc912 374 npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
b77954cb
MW
375 prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, gfp);
376 if (!prps) {
377 cmd->prp2 = cpu_to_le64(dma_addr);
378 *len = (*len - length) + PAGE_SIZE;
379 return prps;
380 }
0d1bc912 381
99802a7a
MW
382 if (nprps <= (256 / 8)) {
383 pool = dev->prp_small_pool;
384 prps->npages = 0;
385 } else {
386 pool = dev->prp_page_pool;
0d1bc912 387 prps->npages = 1;
99802a7a
MW
388 }
389
b77954cb
MW
390 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
391 if (!prp_list) {
392 cmd->prp2 = cpu_to_le64(dma_addr);
393 *len = (*len - length) + PAGE_SIZE;
394 kfree(prps);
395 return NULL;
396 }
0d1bc912 397 prps->list[0] = prp_list;
e025344c
SMM
398 prps->first_dma = prp_dma;
399 cmd->prp2 = cpu_to_le64(prp_dma);
400 i = 0;
401 for (;;) {
7523d834 402 if (i == PAGE_SIZE / 8) {
e025344c 403 __le64 *old_prp_list = prp_list;
b77954cb
MW
404 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
405 if (!prp_list) {
406 *len = (*len - length);
407 return prps;
408 }
0d1bc912 409 prps->list[prps->npages++] = prp_list;
7523d834
MW
410 prp_list[0] = old_prp_list[i - 1];
411 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
412 i = 1;
e025344c
SMM
413 }
414 prp_list[i++] = cpu_to_le64(dma_addr);
415 dma_len -= PAGE_SIZE;
416 dma_addr += PAGE_SIZE;
417 length -= PAGE_SIZE;
418 if (length <= 0)
419 break;
420 if (dma_len > 0)
421 continue;
422 BUG_ON(dma_len < 0);
423 sg = sg_next(sg);
424 dma_addr = sg_dma_address(sg);
425 dma_len = sg_dma_len(sg);
ff22b54f
MW
426 }
427
e025344c 428 return prps;
ff22b54f
MW
429}
430
1ad2f893
MW
431/* NVMe scatterlists require no holes in the virtual address */
432#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
433 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
434
d534df3c 435static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
b60503ba
MW
436 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
437{
76830840
MW
438 struct bio_vec *bvec, *bvprv = NULL;
439 struct scatterlist *sg = NULL;
1ad2f893 440 int i, old_idx, length = 0, nsegs = 0;
b60503ba 441
76830840 442 sg_init_table(nbio->sg, psegs);
1ad2f893 443 old_idx = bio->bi_idx;
b60503ba 444 bio_for_each_segment(bvec, bio, i) {
76830840
MW
445 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
446 sg->length += bvec->bv_len;
447 } else {
1ad2f893
MW
448 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
449 break;
76830840
MW
450 sg = sg ? sg + 1 : nbio->sg;
451 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
452 bvec->bv_offset);
453 nsegs++;
454 }
1ad2f893 455 length += bvec->bv_len;
76830840 456 bvprv = bvec;
b60503ba 457 }
1ad2f893 458 bio->bi_idx = i;
d534df3c 459 nbio->nents = nsegs;
76830840 460 sg_mark_end(sg);
1ad2f893
MW
461 if (dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir) == 0) {
462 bio->bi_idx = old_idx;
463 return -ENOMEM;
464 }
465 return length;
b60503ba
MW
466}
467
00df5cb4
MW
468static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
469 int cmdid)
470{
471 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
472
473 memset(cmnd, 0, sizeof(*cmnd));
474 cmnd->common.opcode = nvme_cmd_flush;
475 cmnd->common.command_id = cmdid;
476 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
477
478 if (++nvmeq->sq_tail == nvmeq->q_depth)
479 nvmeq->sq_tail = 0;
480 writel(nvmeq->sq_tail, nvmeq->q_db);
481
482 return 0;
483}
484
485static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
486{
487 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
488 sync_completion_id, IO_TIMEOUT);
489 if (unlikely(cmdid < 0))
490 return cmdid;
491
492 return nvme_submit_flush(nvmeq, ns, cmdid);
493}
494
184d2944
MW
495/*
496 * Called with local interrupts disabled and the q_lock held. May not sleep.
497 */
b60503ba
MW
498static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
499 struct bio *bio)
500{
ff22b54f 501 struct nvme_command *cmnd;
d534df3c 502 struct nvme_bio *nbio;
b60503ba 503 enum dma_data_direction dma_dir;
1ad2f893 504 int cmdid, length, result = -ENOMEM;
b60503ba
MW
505 u16 control;
506 u32 dsmgmt;
b60503ba
MW
507 int psegs = bio_phys_segments(ns->queue, bio);
508
00df5cb4
MW
509 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
510 result = nvme_submit_flush_data(nvmeq, ns);
511 if (result)
512 return result;
513 }
514
eeee3226 515 nbio = alloc_nbio(psegs, GFP_ATOMIC);
d534df3c 516 if (!nbio)
eeee3226 517 goto nomem;
d534df3c 518 nbio->bio = bio;
b60503ba 519
eeee3226 520 result = -EBUSY;
d534df3c 521 cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
b60503ba 522 if (unlikely(cmdid < 0))
d534df3c 523 goto free_nbio;
b60503ba 524
00df5cb4
MW
525 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
526 return nvme_submit_flush(nvmeq, ns, cmdid);
527
b60503ba
MW
528 control = 0;
529 if (bio->bi_rw & REQ_FUA)
530 control |= NVME_RW_FUA;
531 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
532 control |= NVME_RW_LR;
533
534 dsmgmt = 0;
535 if (bio->bi_rw & REQ_RAHEAD)
536 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
537
ff22b54f 538 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
b60503ba 539
b8deb62c 540 memset(cmnd, 0, sizeof(*cmnd));
b60503ba 541 if (bio_data_dir(bio)) {
ff22b54f 542 cmnd->rw.opcode = nvme_cmd_write;
b60503ba
MW
543 dma_dir = DMA_TO_DEVICE;
544 } else {
ff22b54f 545 cmnd->rw.opcode = nvme_cmd_read;
b60503ba
MW
546 dma_dir = DMA_FROM_DEVICE;
547 }
548
1ad2f893
MW
549 result = nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs);
550 if (result < 0)
eeee3226 551 goto free_nbio;
1ad2f893 552 length = result;
b60503ba 553
ff22b54f
MW
554 cmnd->rw.command_id = cmdid;
555 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
d567760c 556 nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
b77954cb 557 &length, GFP_ATOMIC);
ff22b54f 558 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
1ad2f893 559 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
ff22b54f
MW
560 cmnd->rw.control = cpu_to_le16(control);
561 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba 562
d8ee9d69
MW
563 bio->bi_sector += length >> 9;
564
b60503ba
MW
565 if (++nvmeq->sq_tail == nvmeq->q_depth)
566 nvmeq->sq_tail = 0;
7547881d 567 writel(nvmeq->sq_tail, nvmeq->q_db);
b60503ba 568
1974b1ae
MW
569 return 0;
570
d534df3c
MW
571 free_nbio:
572 free_nbio(nvmeq, nbio);
eeee3226
MW
573 nomem:
574 return result;
b60503ba
MW
575}
576
577/*
578 * NB: return value of non-zero would mean that we were a stacking driver.
579 * make_request must always succeed.
580 */
581static int nvme_make_request(struct request_queue *q, struct bio *bio)
582{
583 struct nvme_ns *ns = q->queuedata;
584 struct nvme_queue *nvmeq = get_nvmeq(ns);
eeee3226
MW
585 int result = -EBUSY;
586
587 spin_lock_irq(&nvmeq->q_lock);
588 if (bio_list_empty(&nvmeq->sq_cong))
589 result = nvme_submit_bio_queue(nvmeq, ns, bio);
590 if (unlikely(result)) {
591 if (bio_list_empty(&nvmeq->sq_cong))
592 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
b60503ba
MW
593 bio_list_add(&nvmeq->sq_cong, bio);
594 }
eeee3226
MW
595
596 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
597 put_nvmeq(nvmeq);
598
599 return 0;
600}
601
602struct sync_cmd_info {
603 struct task_struct *task;
604 u32 result;
605 int status;
606};
607
608static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
609 struct nvme_completion *cqe)
610{
611 struct sync_cmd_info *cmdinfo = ctx;
c4270559 612 if (unlikely((unsigned long)cmdinfo == CMD_CTX_CANCELLED))
be7b6275 613 return;
00df5cb4
MW
614 if ((unsigned long)cmdinfo == CMD_CTX_FLUSH)
615 return;
b36235df
MW
616 if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
617 dev_warn(nvmeq->q_dmadev,
618 "completed id %d twice on queue %d\n",
619 cqe->command_id, le16_to_cpup(&cqe->sq_id));
620 return;
621 }
48e3d398
MW
622 if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
623 dev_warn(nvmeq->q_dmadev,
624 "invalid id %d completed on queue %d\n",
625 cqe->command_id, le16_to_cpup(&cqe->sq_id));
626 return;
627 }
b60503ba
MW
628 cmdinfo->result = le32_to_cpup(&cqe->result);
629 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
630 wake_up_process(cmdinfo->task);
631}
632
633typedef void (*completion_fn)(struct nvme_queue *, void *,
634 struct nvme_completion *);
635
8de05535
MW
636static const completion_fn nvme_completions[4] = {
637 [sync_completion_id] = sync_completion,
638 [bio_completion_id] = bio_completion,
639};
640
b60503ba
MW
641static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
642{
82123460 643 u16 head, phase;
b60503ba 644
b60503ba 645 head = nvmeq->cq_head;
82123460 646 phase = nvmeq->cq_phase;
b60503ba
MW
647
648 for (;;) {
649 unsigned long data;
650 void *ptr;
651 unsigned char handler;
652 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 653 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
654 break;
655 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
656 if (++head == nvmeq->q_depth) {
657 head = 0;
82123460 658 phase = !phase;
b60503ba
MW
659 }
660
661 data = free_cmdid(nvmeq, cqe.command_id);
662 handler = data & 3;
663 ptr = (void *)(data & ~3UL);
8de05535 664 nvme_completions[handler](nvmeq, ptr, &cqe);
b60503ba
MW
665 }
666
667 /* If the controller ignores the cq head doorbell and continuously
668 * writes to the queue, it is theoretically possible to wrap around
669 * the queue twice and mistakenly return IRQ_NONE. Linux only
670 * requires that 0.1% of your interrupts are handled, so this isn't
671 * a big problem.
672 */
82123460 673 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
b60503ba
MW
674 return IRQ_NONE;
675
f1938f6e 676 writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
b60503ba 677 nvmeq->cq_head = head;
82123460 678 nvmeq->cq_phase = phase;
b60503ba
MW
679
680 return IRQ_HANDLED;
681}
682
683static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
684{
685 irqreturn_t result;
686 struct nvme_queue *nvmeq = data;
687 spin_lock(&nvmeq->q_lock);
688 result = nvme_process_cq(nvmeq);
689 spin_unlock(&nvmeq->q_lock);
690 return result;
691}
692
693static irqreturn_t nvme_irq_check(int irq, void *data)
694{
695 struct nvme_queue *nvmeq = data;
696 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
697 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
698 return IRQ_NONE;
699 return IRQ_WAKE_THREAD;
700}
701
3c0cf138
MW
702static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
703{
704 spin_lock_irq(&nvmeq->q_lock);
21075bde 705 cancel_cmdid(nvmeq, cmdid);
3c0cf138
MW
706 spin_unlock_irq(&nvmeq->q_lock);
707}
708
b60503ba
MW
709/*
710 * Returns 0 on success. If the result is negative, it's a Linux error code;
711 * if the result is positive, it's an NVM Express status code
712 */
3c0cf138 713static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
e85248e5 714 struct nvme_command *cmd, u32 *result, unsigned timeout)
b60503ba
MW
715{
716 int cmdid;
717 struct sync_cmd_info cmdinfo;
718
719 cmdinfo.task = current;
720 cmdinfo.status = -EINTR;
721
e85248e5
MW
722 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
723 timeout);
b60503ba
MW
724 if (cmdid < 0)
725 return cmdid;
726 cmd->common.command_id = cmdid;
727
3c0cf138
MW
728 set_current_state(TASK_KILLABLE);
729 nvme_submit_cmd(nvmeq, cmd);
b60503ba
MW
730 schedule();
731
3c0cf138
MW
732 if (cmdinfo.status == -EINTR) {
733 nvme_abort_command(nvmeq, cmdid);
734 return -EINTR;
735 }
736
b60503ba
MW
737 if (result)
738 *result = cmdinfo.result;
739
740 return cmdinfo.status;
741}
742
743static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
744 u32 *result)
745{
e85248e5 746 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
b60503ba
MW
747}
748
749static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
750{
751 int status;
752 struct nvme_command c;
753
754 memset(&c, 0, sizeof(c));
755 c.delete_queue.opcode = opcode;
756 c.delete_queue.qid = cpu_to_le16(id);
757
758 status = nvme_submit_admin_cmd(dev, &c, NULL);
759 if (status)
760 return -EIO;
761 return 0;
762}
763
764static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
765 struct nvme_queue *nvmeq)
766{
767 int status;
768 struct nvme_command c;
769 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
770
771 memset(&c, 0, sizeof(c));
772 c.create_cq.opcode = nvme_admin_create_cq;
773 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
774 c.create_cq.cqid = cpu_to_le16(qid);
775 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
776 c.create_cq.cq_flags = cpu_to_le16(flags);
777 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
778
779 status = nvme_submit_admin_cmd(dev, &c, NULL);
780 if (status)
781 return -EIO;
782 return 0;
783}
784
785static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
786 struct nvme_queue *nvmeq)
787{
788 int status;
789 struct nvme_command c;
790 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
791
792 memset(&c, 0, sizeof(c));
793 c.create_sq.opcode = nvme_admin_create_sq;
794 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
795 c.create_sq.sqid = cpu_to_le16(qid);
796 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
797 c.create_sq.sq_flags = cpu_to_le16(flags);
798 c.create_sq.cqid = cpu_to_le16(qid);
799
800 status = nvme_submit_admin_cmd(dev, &c, NULL);
801 if (status)
802 return -EIO;
803 return 0;
804}
805
806static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
807{
808 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
809}
810
811static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
812{
813 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
814}
815
bc5fc7e4
MW
816static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
817 dma_addr_t dma_addr)
818{
819 struct nvme_command c;
820
821 memset(&c, 0, sizeof(c));
822 c.identify.opcode = nvme_admin_identify;
823 c.identify.nsid = cpu_to_le32(nsid);
824 c.identify.prp1 = cpu_to_le64(dma_addr);
825 c.identify.cns = cpu_to_le32(cns);
826
827 return nvme_submit_admin_cmd(dev, &c, NULL);
828}
829
830static int nvme_get_features(struct nvme_dev *dev, unsigned fid,
831 unsigned dword11, dma_addr_t dma_addr, u32 *result)
832{
833 struct nvme_command c;
834
835 memset(&c, 0, sizeof(c));
836 c.features.opcode = nvme_admin_get_features;
837 c.features.prp1 = cpu_to_le64(dma_addr);
838 c.features.fid = cpu_to_le32(fid);
839 c.features.dword11 = cpu_to_le32(dword11);
840
841 return nvme_submit_admin_cmd(dev, &c, result);
842}
843
b60503ba
MW
844static void nvme_free_queue(struct nvme_dev *dev, int qid)
845{
846 struct nvme_queue *nvmeq = dev->queues[qid];
aba2080f 847 int vector = dev->entry[nvmeq->cq_vector].vector;
b60503ba 848
aba2080f
MW
849 irq_set_affinity_hint(vector, NULL);
850 free_irq(vector, nvmeq);
b60503ba
MW
851
852 /* Don't tell the adapter to delete the admin queue */
853 if (qid) {
854 adapter_delete_sq(dev, qid);
855 adapter_delete_cq(dev, qid);
856 }
857
858 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
859 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
860 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
861 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
862 kfree(nvmeq);
863}
864
865static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
866 int depth, int vector)
867{
868 struct device *dmadev = &dev->pci_dev->dev;
e85248e5 869 unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
b60503ba
MW
870 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
871 if (!nvmeq)
872 return NULL;
873
874 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
875 &nvmeq->cq_dma_addr, GFP_KERNEL);
876 if (!nvmeq->cqes)
877 goto free_nvmeq;
878 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
879
880 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
881 &nvmeq->sq_dma_addr, GFP_KERNEL);
882 if (!nvmeq->sq_cmds)
883 goto free_cqdma;
884
885 nvmeq->q_dmadev = dmadev;
091b6092 886 nvmeq->dev = dev;
b60503ba
MW
887 spin_lock_init(&nvmeq->q_lock);
888 nvmeq->cq_head = 0;
82123460 889 nvmeq->cq_phase = 1;
b60503ba 890 init_waitqueue_head(&nvmeq->sq_full);
1fa6aead 891 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
b60503ba 892 bio_list_init(&nvmeq->sq_cong);
f1938f6e 893 nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
b60503ba
MW
894 nvmeq->q_depth = depth;
895 nvmeq->cq_vector = vector;
896
897 return nvmeq;
898
899 free_cqdma:
900 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
901 nvmeq->cq_dma_addr);
902 free_nvmeq:
903 kfree(nvmeq);
904 return NULL;
905}
906
3001082c
MW
907static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
908 const char *name)
909{
58ffacb5
MW
910 if (use_threaded_interrupts)
911 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
ec6ce618 912 nvme_irq_check, nvme_irq,
58ffacb5
MW
913 IRQF_DISABLED | IRQF_SHARED,
914 name, nvmeq);
3001082c
MW
915 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
916 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
917}
918
b60503ba
MW
919static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
920 int qid, int cq_size, int vector)
921{
922 int result;
923 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
924
3f85d50b 925 if (!nvmeq)
6f0f5449 926 return ERR_PTR(-ENOMEM);
3f85d50b 927
b60503ba
MW
928 result = adapter_alloc_cq(dev, qid, nvmeq);
929 if (result < 0)
930 goto free_nvmeq;
931
932 result = adapter_alloc_sq(dev, qid, nvmeq);
933 if (result < 0)
934 goto release_cq;
935
3001082c 936 result = queue_request_irq(dev, nvmeq, "nvme");
b60503ba
MW
937 if (result < 0)
938 goto release_sq;
939
940 return nvmeq;
941
942 release_sq:
943 adapter_delete_sq(dev, qid);
944 release_cq:
945 adapter_delete_cq(dev, qid);
946 free_nvmeq:
947 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
948 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
949 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
950 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
951 kfree(nvmeq);
6f0f5449 952 return ERR_PTR(result);
b60503ba
MW
953}
954
955static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
956{
957 int result;
958 u32 aqa;
22605f96
MW
959 u64 cap;
960 unsigned long timeout;
b60503ba
MW
961 struct nvme_queue *nvmeq;
962
963 dev->dbs = ((void __iomem *)dev->bar) + 4096;
964
965 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
3f85d50b
MW
966 if (!nvmeq)
967 return -ENOMEM;
b60503ba
MW
968
969 aqa = nvmeq->q_depth - 1;
970 aqa |= aqa << 16;
971
972 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
973 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
974 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
7f53f9d2 975 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
b60503ba 976
5911f200 977 writel(0, &dev->bar->cc);
b60503ba
MW
978 writel(aqa, &dev->bar->aqa);
979 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
980 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
981 writel(dev->ctrl_config, &dev->bar->cc);
982
22605f96
MW
983 cap = readq(&dev->bar->cap);
984 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
f1938f6e 985 dev->db_stride = NVME_CAP_STRIDE(cap);
22605f96 986
b60503ba
MW
987 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
988 msleep(100);
989 if (fatal_signal_pending(current))
990 return -EINTR;
22605f96
MW
991 if (time_after(jiffies, timeout)) {
992 dev_err(&dev->pci_dev->dev,
993 "Device not ready; aborting initialisation\n");
994 return -ENODEV;
995 }
b60503ba
MW
996 }
997
3001082c 998 result = queue_request_irq(dev, nvmeq, "nvme admin");
b60503ba
MW
999 dev->queues[0] = nvmeq;
1000 return result;
1001}
1002
7fc3cdab
MW
1003static int nvme_map_user_pages(struct nvme_dev *dev, int write,
1004 unsigned long addr, unsigned length,
1005 struct scatterlist **sgp)
b60503ba 1006{
36c14ed9 1007 int i, err, count, nents, offset;
7fc3cdab
MW
1008 struct scatterlist *sg;
1009 struct page **pages;
36c14ed9
MW
1010
1011 if (addr & 3)
1012 return -EINVAL;
7fc3cdab
MW
1013 if (!length)
1014 return -EINVAL;
1015
36c14ed9 1016 offset = offset_in_page(addr);
7fc3cdab
MW
1017 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1018 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
36c14ed9
MW
1019
1020 err = get_user_pages_fast(addr, count, 1, pages);
1021 if (err < count) {
1022 count = err;
1023 err = -EFAULT;
1024 goto put_pages;
1025 }
7fc3cdab
MW
1026
1027 sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
36c14ed9 1028 sg_init_table(sg, count);
d0ba1e49
MW
1029 for (i = 0; i < count; i++) {
1030 sg_set_page(&sg[i], pages[i],
1031 min_t(int, length, PAGE_SIZE - offset), offset);
1032 length -= (PAGE_SIZE - offset);
1033 offset = 0;
7fc3cdab
MW
1034 }
1035
1036 err = -ENOMEM;
1037 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1038 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
36c14ed9
MW
1039 if (!nents)
1040 goto put_pages;
b60503ba 1041
7fc3cdab
MW
1042 kfree(pages);
1043 *sgp = sg;
1044 return nents;
b60503ba 1045
7fc3cdab
MW
1046 put_pages:
1047 for (i = 0; i < count; i++)
1048 put_page(pages[i]);
1049 kfree(pages);
1050 return err;
1051}
b60503ba 1052
7fc3cdab 1053static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
d1a490e0 1054 unsigned long addr, int length, struct scatterlist *sg)
7fc3cdab
MW
1055{
1056 int i, count;
b60503ba 1057
7fc3cdab 1058 count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
d1a490e0 1059 dma_unmap_sg(&dev->pci_dev->dev, sg, count, DMA_FROM_DEVICE);
7fc3cdab 1060
36c14ed9 1061 for (i = 0; i < count; i++)
7fc3cdab
MW
1062 put_page(sg_page(&sg[i]));
1063}
b60503ba 1064
a53295b6
MW
1065static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1066{
1067 struct nvme_dev *dev = ns->dev;
1068 struct nvme_queue *nvmeq;
1069 struct nvme_user_io io;
1070 struct nvme_command c;
1071 unsigned length;
a53295b6
MW
1072 int nents, status;
1073 struct scatterlist *sg;
e025344c 1074 struct nvme_prps *prps;
a53295b6
MW
1075
1076 if (copy_from_user(&io, uio, sizeof(io)))
1077 return -EFAULT;
6c7d4945
MW
1078 length = (io.nblocks + 1) << ns->lba_shift;
1079
1080 switch (io.opcode) {
1081 case nvme_cmd_write:
1082 case nvme_cmd_read:
6bbf1acd 1083 case nvme_cmd_compare:
6c7d4945
MW
1084 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr,
1085 length, &sg);
6413214c 1086 break;
6c7d4945 1087 default:
6bbf1acd 1088 return -EINVAL;
6c7d4945
MW
1089 }
1090
a53295b6
MW
1091 if (nents < 0)
1092 return nents;
1093
1094 memset(&c, 0, sizeof(c));
1095 c.rw.opcode = io.opcode;
1096 c.rw.flags = io.flags;
6c7d4945 1097 c.rw.nsid = cpu_to_le32(ns->ns_id);
a53295b6 1098 c.rw.slba = cpu_to_le64(io.slba);
6c7d4945 1099 c.rw.length = cpu_to_le16(io.nblocks);
a53295b6
MW
1100 c.rw.control = cpu_to_le16(io.control);
1101 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
6c7d4945
MW
1102 c.rw.reftag = io.reftag;
1103 c.rw.apptag = io.apptag;
1104 c.rw.appmask = io.appmask;
a53295b6 1105 /* XXX: metadata */
b77954cb 1106 prps = nvme_setup_prps(dev, &c.common, sg, &length, GFP_KERNEL);
a53295b6 1107
d567760c 1108 nvmeq = get_nvmeq(ns);
fa922821
MW
1109 /*
1110 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
b1ad37ef
MW
1111 * disabled. We may be preempted at any point, and be rescheduled
1112 * to a different CPU. That will cause cacheline bouncing, but no
1113 * additional races since q_lock already protects against other CPUs.
1114 */
a53295b6 1115 put_nvmeq(nvmeq);
b77954cb
MW
1116 if (length != (io.nblocks + 1) << ns->lba_shift)
1117 status = -ENOMEM;
1118 else
1119 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, IO_TIMEOUT);
a53295b6 1120
d1a490e0 1121 nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg);
d567760c 1122 nvme_free_prps(dev, prps);
a53295b6
MW
1123 return status;
1124}
1125
6bbf1acd
MW
1126static int nvme_user_admin_cmd(struct nvme_ns *ns,
1127 struct nvme_admin_cmd __user *ucmd)
6ee44cdc
MW
1128{
1129 struct nvme_dev *dev = ns->dev;
6bbf1acd 1130 struct nvme_admin_cmd cmd;
6ee44cdc 1131 struct nvme_command c;
6bbf1acd 1132 int status, length, nents = 0;
6ee44cdc 1133 struct scatterlist *sg;
6bbf1acd 1134 struct nvme_prps *prps = NULL;
6ee44cdc 1135
6bbf1acd
MW
1136 if (!capable(CAP_SYS_ADMIN))
1137 return -EACCES;
1138 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
6ee44cdc 1139 return -EFAULT;
6ee44cdc
MW
1140
1141 memset(&c, 0, sizeof(c));
6bbf1acd
MW
1142 c.common.opcode = cmd.opcode;
1143 c.common.flags = cmd.flags;
1144 c.common.nsid = cpu_to_le32(cmd.nsid);
1145 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1146 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1147 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1148 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1149 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1150 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1151 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1152 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1153
1154 length = cmd.data_len;
1155 if (cmd.data_len) {
1156 nents = nvme_map_user_pages(dev, 1, cmd.addr, length, &sg);
1157 if (nents < 0)
1158 return nents;
1159 prps = nvme_setup_prps(dev, &c.common, sg, &length, GFP_KERNEL);
1160 }
1161
1162 if (length != cmd.data_len)
b77954cb
MW
1163 status = -ENOMEM;
1164 else
1165 status = nvme_submit_admin_cmd(dev, &c, NULL);
6bbf1acd 1166 if (cmd.data_len) {
d1a490e0 1167 nvme_unmap_user_pages(dev, 0, cmd.addr, cmd.data_len, sg);
6bbf1acd
MW
1168 nvme_free_prps(dev, prps);
1169 }
6ee44cdc
MW
1170 return status;
1171}
1172
b60503ba
MW
1173static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1174 unsigned long arg)
1175{
1176 struct nvme_ns *ns = bdev->bd_disk->private_data;
1177
1178 switch (cmd) {
6bbf1acd
MW
1179 case NVME_IOCTL_ID:
1180 return ns->ns_id;
1181 case NVME_IOCTL_ADMIN_CMD:
1182 return nvme_user_admin_cmd(ns, (void __user *)arg);
a53295b6
MW
1183 case NVME_IOCTL_SUBMIT_IO:
1184 return nvme_submit_io(ns, (void __user *)arg);
b60503ba
MW
1185 default:
1186 return -ENOTTY;
1187 }
1188}
1189
1190static const struct block_device_operations nvme_fops = {
1191 .owner = THIS_MODULE,
1192 .ioctl = nvme_ioctl,
49481682 1193 .compat_ioctl = nvme_ioctl,
b60503ba
MW
1194};
1195
8de05535
MW
1196static void nvme_timeout_ios(struct nvme_queue *nvmeq)
1197{
1198 int depth = nvmeq->q_depth - 1;
1199 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1200 unsigned long now = jiffies;
1201 int cmdid;
1202
1203 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1204 unsigned long data;
1205 void *ptr;
1206 unsigned char handler;
1207 static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, };
1208
1209 if (!time_after(now, info[cmdid].timeout))
1210 continue;
1211 dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid);
1212 data = cancel_cmdid(nvmeq, cmdid);
1213 handler = data & 3;
1214 ptr = (void *)(data & ~3UL);
1215 nvme_completions[handler](nvmeq, ptr, &cqe);
1216 }
1217}
1218
1fa6aead
MW
1219static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1220{
1221 while (bio_list_peek(&nvmeq->sq_cong)) {
1222 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1223 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1224 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1225 bio_list_add_head(&nvmeq->sq_cong, bio);
1226 break;
1227 }
3cb967c0
MW
1228 if (bio_list_empty(&nvmeq->sq_cong))
1229 remove_wait_queue(&nvmeq->sq_full,
1230 &nvmeq->sq_cong_wait);
1fa6aead
MW
1231 }
1232}
1233
1234static int nvme_kthread(void *data)
1235{
1236 struct nvme_dev *dev;
1237
1238 while (!kthread_should_stop()) {
1239 __set_current_state(TASK_RUNNING);
1240 spin_lock(&dev_list_lock);
1241 list_for_each_entry(dev, &dev_list, node) {
1242 int i;
1243 for (i = 0; i < dev->queue_count; i++) {
1244 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
1245 if (!nvmeq)
1246 continue;
1fa6aead
MW
1247 spin_lock_irq(&nvmeq->q_lock);
1248 if (nvme_process_cq(nvmeq))
1249 printk("process_cq did something\n");
8de05535 1250 nvme_timeout_ios(nvmeq);
1fa6aead
MW
1251 nvme_resubmit_bios(nvmeq);
1252 spin_unlock_irq(&nvmeq->q_lock);
1253 }
1254 }
1255 spin_unlock(&dev_list_lock);
1256 set_current_state(TASK_INTERRUPTIBLE);
1257 schedule_timeout(HZ);
1258 }
1259 return 0;
1260}
1261
5aff9382
MW
1262static DEFINE_IDA(nvme_index_ida);
1263
1264static int nvme_get_ns_idx(void)
1265{
1266 int index, error;
1267
1268 do {
1269 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1270 return -1;
1271
1272 spin_lock(&dev_list_lock);
1273 error = ida_get_new(&nvme_index_ida, &index);
1274 spin_unlock(&dev_list_lock);
1275 } while (error == -EAGAIN);
1276
1277 if (error)
1278 index = -1;
1279 return index;
1280}
1281
1282static void nvme_put_ns_idx(int index)
1283{
1284 spin_lock(&dev_list_lock);
1285 ida_remove(&nvme_index_ida, index);
1286 spin_unlock(&dev_list_lock);
1287}
1288
1289static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
b60503ba
MW
1290 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1291{
1292 struct nvme_ns *ns;
1293 struct gendisk *disk;
1294 int lbaf;
1295
1296 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1297 return NULL;
1298
1299 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1300 if (!ns)
1301 return NULL;
1302 ns->queue = blk_alloc_queue(GFP_KERNEL);
1303 if (!ns->queue)
1304 goto out_free_ns;
1305 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1306 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1307 blk_queue_make_request(ns->queue, nvme_make_request);
1308 ns->dev = dev;
1309 ns->queue->queuedata = ns;
1310
1311 disk = alloc_disk(NVME_MINORS);
1312 if (!disk)
1313 goto out_free_queue;
5aff9382 1314 ns->ns_id = nsid;
b60503ba
MW
1315 ns->disk = disk;
1316 lbaf = id->flbas & 0xf;
1317 ns->lba_shift = id->lbaf[lbaf].ds;
1318
1319 disk->major = nvme_major;
1320 disk->minors = NVME_MINORS;
5aff9382 1321 disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
b60503ba
MW
1322 disk->fops = &nvme_fops;
1323 disk->private_data = ns;
1324 disk->queue = ns->queue;
388f037f 1325 disk->driverfs_dev = &dev->pci_dev->dev;
5aff9382 1326 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
b60503ba
MW
1327 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1328
1329 return ns;
1330
1331 out_free_queue:
1332 blk_cleanup_queue(ns->queue);
1333 out_free_ns:
1334 kfree(ns);
1335 return NULL;
1336}
1337
1338static void nvme_ns_free(struct nvme_ns *ns)
1339{
5aff9382 1340 int index = ns->disk->first_minor / NVME_MINORS;
b60503ba 1341 put_disk(ns->disk);
5aff9382 1342 nvme_put_ns_idx(index);
b60503ba
MW
1343 blk_cleanup_queue(ns->queue);
1344 kfree(ns);
1345}
1346
b3b06812 1347static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
1348{
1349 int status;
1350 u32 result;
b3b06812 1351 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba 1352
bc5fc7e4
MW
1353 status = nvme_get_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1354 &result);
b60503ba
MW
1355 if (status)
1356 return -EIO;
1357 return min(result & 0xffff, result >> 16) + 1;
1358}
1359
b60503ba
MW
1360static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1361{
f1938f6e 1362 int result, cpu, i, nr_io_queues, db_bar_size;
b60503ba 1363
b348b7d5
MW
1364 nr_io_queues = num_online_cpus();
1365 result = set_queue_count(dev, nr_io_queues);
1b23484b
MW
1366 if (result < 0)
1367 return result;
b348b7d5
MW
1368 if (result < nr_io_queues)
1369 nr_io_queues = result;
b60503ba 1370
1b23484b
MW
1371 /* Deregister the admin queue's interrupt */
1372 free_irq(dev->entry[0].vector, dev->queues[0]);
1373
f1938f6e
MW
1374 db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1375 if (db_bar_size > 8192) {
1376 iounmap(dev->bar);
1377 dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
1378 db_bar_size);
1379 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1380 dev->queues[0]->q_db = dev->dbs;
1381 }
1382
b348b7d5 1383 for (i = 0; i < nr_io_queues; i++)
1b23484b
MW
1384 dev->entry[i].entry = i;
1385 for (;;) {
b348b7d5
MW
1386 result = pci_enable_msix(dev->pci_dev, dev->entry,
1387 nr_io_queues);
1b23484b
MW
1388 if (result == 0) {
1389 break;
1390 } else if (result > 0) {
b348b7d5 1391 nr_io_queues = result;
1b23484b
MW
1392 continue;
1393 } else {
b348b7d5 1394 nr_io_queues = 1;
1b23484b
MW
1395 break;
1396 }
1397 }
1398
1399 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1400 /* XXX: handle failure here */
1401
1402 cpu = cpumask_first(cpu_online_mask);
b348b7d5 1403 for (i = 0; i < nr_io_queues; i++) {
1b23484b
MW
1404 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1405 cpu = cpumask_next(cpu, cpu_online_mask);
1406 }
1407
b348b7d5 1408 for (i = 0; i < nr_io_queues; i++) {
1b23484b
MW
1409 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1410 NVME_Q_DEPTH, i);
6f0f5449
MW
1411 if (IS_ERR(dev->queues[i + 1]))
1412 return PTR_ERR(dev->queues[i + 1]);
1b23484b
MW
1413 dev->queue_count++;
1414 }
b60503ba 1415
9ecdc946
MW
1416 for (; i < num_possible_cpus(); i++) {
1417 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1418 dev->queues[i + 1] = dev->queues[target + 1];
1419 }
1420
b60503ba
MW
1421 return 0;
1422}
1423
1424static void nvme_free_queues(struct nvme_dev *dev)
1425{
1426 int i;
1427
1428 for (i = dev->queue_count - 1; i >= 0; i--)
1429 nvme_free_queue(dev, i);
1430}
1431
1432static int __devinit nvme_dev_add(struct nvme_dev *dev)
1433{
1434 int res, nn, i;
1435 struct nvme_ns *ns, *next;
51814232 1436 struct nvme_id_ctrl *ctrl;
bc5fc7e4
MW
1437 struct nvme_id_ns *id_ns;
1438 void *mem;
b60503ba 1439 dma_addr_t dma_addr;
b60503ba
MW
1440
1441 res = nvme_setup_io_queues(dev);
1442 if (res)
1443 return res;
1444
bc5fc7e4 1445 mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
b60503ba
MW
1446 GFP_KERNEL);
1447
bc5fc7e4 1448 res = nvme_identify(dev, 0, 1, dma_addr);
b60503ba
MW
1449 if (res) {
1450 res = -EIO;
1451 goto out_free;
1452 }
1453
bc5fc7e4 1454 ctrl = mem;
51814232
MW
1455 nn = le32_to_cpup(&ctrl->nn);
1456 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1457 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1458 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
b60503ba 1459
bc5fc7e4 1460 id_ns = mem;
2b2c1896 1461 for (i = 1; i <= nn; i++) {
bc5fc7e4 1462 res = nvme_identify(dev, i, 0, dma_addr);
b60503ba
MW
1463 if (res)
1464 continue;
1465
bc5fc7e4 1466 if (id_ns->ncap == 0)
b60503ba
MW
1467 continue;
1468
bc5fc7e4
MW
1469 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1470 dma_addr + 4096, NULL);
b60503ba
MW
1471 if (res)
1472 continue;
1473
bc5fc7e4 1474 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
b60503ba
MW
1475 if (ns)
1476 list_add_tail(&ns->list, &dev->namespaces);
1477 }
1478 list_for_each_entry(ns, &dev->namespaces, list)
1479 add_disk(ns->disk);
1480
bc5fc7e4 1481 goto out;
b60503ba
MW
1482
1483 out_free:
1484 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1485 list_del(&ns->list);
1486 nvme_ns_free(ns);
1487 }
1488
bc5fc7e4 1489 out:
684f5c20 1490 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
b60503ba
MW
1491 return res;
1492}
1493
1494static int nvme_dev_remove(struct nvme_dev *dev)
1495{
1496 struct nvme_ns *ns, *next;
1497
1fa6aead
MW
1498 spin_lock(&dev_list_lock);
1499 list_del(&dev->node);
1500 spin_unlock(&dev_list_lock);
1501
b60503ba
MW
1502 /* TODO: wait all I/O finished or cancel them */
1503
1504 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1505 list_del(&ns->list);
1506 del_gendisk(ns->disk);
1507 nvme_ns_free(ns);
1508 }
1509
1510 nvme_free_queues(dev);
1511
1512 return 0;
1513}
1514
091b6092
MW
1515static int nvme_setup_prp_pools(struct nvme_dev *dev)
1516{
1517 struct device *dmadev = &dev->pci_dev->dev;
1518 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1519 PAGE_SIZE, PAGE_SIZE, 0);
1520 if (!dev->prp_page_pool)
1521 return -ENOMEM;
1522
99802a7a
MW
1523 /* Optimisation for I/Os between 4k and 128k */
1524 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1525 256, 256, 0);
1526 if (!dev->prp_small_pool) {
1527 dma_pool_destroy(dev->prp_page_pool);
1528 return -ENOMEM;
1529 }
091b6092
MW
1530 return 0;
1531}
1532
1533static void nvme_release_prp_pools(struct nvme_dev *dev)
1534{
1535 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1536 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1537}
1538
b60503ba
MW
1539/* XXX: Use an ida or something to let remove / add work correctly */
1540static void nvme_set_instance(struct nvme_dev *dev)
1541{
1542 static int instance;
1543 dev->instance = instance++;
1544}
1545
1546static void nvme_release_instance(struct nvme_dev *dev)
1547{
1548}
1549
1550static int __devinit nvme_probe(struct pci_dev *pdev,
1551 const struct pci_device_id *id)
1552{
574e8b95 1553 int bars, result = -ENOMEM;
b60503ba
MW
1554 struct nvme_dev *dev;
1555
1556 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1557 if (!dev)
1558 return -ENOMEM;
1559 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1560 GFP_KERNEL);
1561 if (!dev->entry)
1562 goto free;
1b23484b
MW
1563 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1564 GFP_KERNEL);
b60503ba
MW
1565 if (!dev->queues)
1566 goto free;
1567
0ee5a7d7
SMM
1568 if (pci_enable_device_mem(pdev))
1569 goto free;
f64d3365 1570 pci_set_master(pdev);
574e8b95
MW
1571 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1572 if (pci_request_selected_regions(pdev, bars, "nvme"))
1573 goto disable;
0ee5a7d7 1574
b60503ba
MW
1575 INIT_LIST_HEAD(&dev->namespaces);
1576 dev->pci_dev = pdev;
1577 pci_set_drvdata(pdev, dev);
2930353f
MW
1578 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1579 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
b60503ba 1580 nvme_set_instance(dev);
53c9577e 1581 dev->entry[0].vector = pdev->irq;
b60503ba 1582
091b6092
MW
1583 result = nvme_setup_prp_pools(dev);
1584 if (result)
1585 goto disable_msix;
1586
b60503ba
MW
1587 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1588 if (!dev->bar) {
1589 result = -ENOMEM;
574e8b95 1590 goto disable_msix;
b60503ba
MW
1591 }
1592
1593 result = nvme_configure_admin_queue(dev);
1594 if (result)
1595 goto unmap;
1596 dev->queue_count++;
1597
1fa6aead
MW
1598 spin_lock(&dev_list_lock);
1599 list_add(&dev->node, &dev_list);
1600 spin_unlock(&dev_list_lock);
1601
740216fc
MW
1602 result = nvme_dev_add(dev);
1603 if (result)
1604 goto delete;
1605
b60503ba
MW
1606 return 0;
1607
1608 delete:
740216fc
MW
1609 spin_lock(&dev_list_lock);
1610 list_del(&dev->node);
1611 spin_unlock(&dev_list_lock);
1612
b60503ba
MW
1613 nvme_free_queues(dev);
1614 unmap:
1615 iounmap(dev->bar);
574e8b95 1616 disable_msix:
b60503ba
MW
1617 pci_disable_msix(pdev);
1618 nvme_release_instance(dev);
091b6092 1619 nvme_release_prp_pools(dev);
574e8b95 1620 disable:
0ee5a7d7 1621 pci_disable_device(pdev);
574e8b95 1622 pci_release_regions(pdev);
b60503ba
MW
1623 free:
1624 kfree(dev->queues);
1625 kfree(dev->entry);
1626 kfree(dev);
1627 return result;
1628}
1629
1630static void __devexit nvme_remove(struct pci_dev *pdev)
1631{
1632 struct nvme_dev *dev = pci_get_drvdata(pdev);
1633 nvme_dev_remove(dev);
1634 pci_disable_msix(pdev);
1635 iounmap(dev->bar);
1636 nvme_release_instance(dev);
091b6092 1637 nvme_release_prp_pools(dev);
0ee5a7d7 1638 pci_disable_device(pdev);
574e8b95 1639 pci_release_regions(pdev);
b60503ba
MW
1640 kfree(dev->queues);
1641 kfree(dev->entry);
1642 kfree(dev);
1643}
1644
1645/* These functions are yet to be implemented */
1646#define nvme_error_detected NULL
1647#define nvme_dump_registers NULL
1648#define nvme_link_reset NULL
1649#define nvme_slot_reset NULL
1650#define nvme_error_resume NULL
1651#define nvme_suspend NULL
1652#define nvme_resume NULL
1653
1654static struct pci_error_handlers nvme_err_handler = {
1655 .error_detected = nvme_error_detected,
1656 .mmio_enabled = nvme_dump_registers,
1657 .link_reset = nvme_link_reset,
1658 .slot_reset = nvme_slot_reset,
1659 .resume = nvme_error_resume,
1660};
1661
1662/* Move to pci_ids.h later */
1663#define PCI_CLASS_STORAGE_EXPRESS 0x010802
1664
1665static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1666 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1667 { 0, }
1668};
1669MODULE_DEVICE_TABLE(pci, nvme_id_table);
1670
1671static struct pci_driver nvme_driver = {
1672 .name = "nvme",
1673 .id_table = nvme_id_table,
1674 .probe = nvme_probe,
1675 .remove = __devexit_p(nvme_remove),
1676 .suspend = nvme_suspend,
1677 .resume = nvme_resume,
1678 .err_handler = &nvme_err_handler,
1679};
1680
1681static int __init nvme_init(void)
1682{
1fa6aead
MW
1683 int result = -EBUSY;
1684
1685 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1686 if (IS_ERR(nvme_thread))
1687 return PTR_ERR(nvme_thread);
b60503ba
MW
1688
1689 nvme_major = register_blkdev(nvme_major, "nvme");
1690 if (nvme_major <= 0)
1fa6aead 1691 goto kill_kthread;
b60503ba
MW
1692
1693 result = pci_register_driver(&nvme_driver);
1fa6aead
MW
1694 if (result)
1695 goto unregister_blkdev;
1696 return 0;
b60503ba 1697
1fa6aead 1698 unregister_blkdev:
b60503ba 1699 unregister_blkdev(nvme_major, "nvme");
1fa6aead
MW
1700 kill_kthread:
1701 kthread_stop(nvme_thread);
b60503ba
MW
1702 return result;
1703}
1704
1705static void __exit nvme_exit(void)
1706{
1707 pci_unregister_driver(&nvme_driver);
1708 unregister_blkdev(nvme_major, "nvme");
1fa6aead 1709 kthread_stop(nvme_thread);
b60503ba
MW
1710}
1711
1712MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1713MODULE_LICENSE("GPL");
ce38c149 1714MODULE_VERSION("0.7");
b60503ba
MW
1715module_init(nvme_init);
1716module_exit(nvme_exit);