NVMe: Add the nvme thread to the wait queue before waking it up
[linux-2.6-block.git] / drivers / block / nvme.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
8de05535 21#include <linux/bitops.h>
b60503ba 22#include <linux/blkdev.h>
fd63e9ce 23#include <linux/delay.h>
b60503ba
MW
24#include <linux/errno.h>
25#include <linux/fs.h>
26#include <linux/genhd.h>
5aff9382 27#include <linux/idr.h>
b60503ba
MW
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/io.h>
31#include <linux/kdev_t.h>
1fa6aead 32#include <linux/kthread.h>
b60503ba
MW
33#include <linux/kernel.h>
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/moduleparam.h>
37#include <linux/pci.h>
be7b6275 38#include <linux/poison.h>
b60503ba
MW
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
42#include <linux/version.h>
43
44#define NVME_Q_DEPTH 1024
45#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
46#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
47#define NVME_MINORS 64
e85248e5
MW
48#define IO_TIMEOUT (5 * HZ)
49#define ADMIN_TIMEOUT (60 * HZ)
b60503ba
MW
50
51static int nvme_major;
52module_param(nvme_major, int, 0);
53
58ffacb5
MW
54static int use_threaded_interrupts;
55module_param(use_threaded_interrupts, int, 0);
56
1fa6aead
MW
57static DEFINE_SPINLOCK(dev_list_lock);
58static LIST_HEAD(dev_list);
59static struct task_struct *nvme_thread;
60
b60503ba
MW
61/*
62 * Represents an NVM Express device. Each nvme_dev is a PCI function.
63 */
64struct nvme_dev {
1fa6aead 65 struct list_head node;
b60503ba
MW
66 struct nvme_queue **queues;
67 u32 __iomem *dbs;
68 struct pci_dev *pci_dev;
091b6092 69 struct dma_pool *prp_page_pool;
99802a7a 70 struct dma_pool *prp_small_pool;
b60503ba
MW
71 int instance;
72 int queue_count;
73 u32 ctrl_config;
74 struct msix_entry *entry;
75 struct nvme_bar __iomem *bar;
76 struct list_head namespaces;
51814232
MW
77 char serial[20];
78 char model[40];
79 char firmware_rev[8];
b60503ba
MW
80};
81
82/*
83 * An NVM Express namespace is equivalent to a SCSI LUN
84 */
85struct nvme_ns {
86 struct list_head list;
87
88 struct nvme_dev *dev;
89 struct request_queue *queue;
90 struct gendisk *disk;
91
92 int ns_id;
93 int lba_shift;
94};
95
96/*
97 * An NVM Express queue. Each device has at least two (one for admin
98 * commands and one for I/O commands).
99 */
100struct nvme_queue {
101 struct device *q_dmadev;
091b6092 102 struct nvme_dev *dev;
b60503ba
MW
103 spinlock_t q_lock;
104 struct nvme_command *sq_cmds;
105 volatile struct nvme_completion *cqes;
106 dma_addr_t sq_dma_addr;
107 dma_addr_t cq_dma_addr;
108 wait_queue_head_t sq_full;
1fa6aead 109 wait_queue_t sq_cong_wait;
b60503ba
MW
110 struct bio_list sq_cong;
111 u32 __iomem *q_db;
112 u16 q_depth;
113 u16 cq_vector;
114 u16 sq_head;
115 u16 sq_tail;
116 u16 cq_head;
82123460 117 u16 cq_phase;
b60503ba
MW
118 unsigned long cmdid_data[];
119};
120
121/*
122 * Check we didin't inadvertently grow the command struct
123 */
124static inline void _nvme_check_size(void)
125{
126 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
133 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
134 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
135}
136
e85248e5
MW
137struct nvme_cmd_info {
138 unsigned long ctx;
139 unsigned long timeout;
140};
141
142static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
143{
144 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
145}
146
b60503ba 147/**
714a7a22
MW
148 * alloc_cmdid() - Allocate a Command ID
149 * @nvmeq: The queue that will be used for this command
150 * @ctx: A pointer that will be passed to the handler
151 * @handler: The ID of the handler to call
b60503ba
MW
152 *
153 * Allocate a Command ID for a queue. The data passed in will
154 * be passed to the completion handler. This is implemented by using
155 * the bottom two bits of the ctx pointer to store the handler ID.
156 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
157 * We can change this if it becomes a problem.
184d2944
MW
158 *
159 * May be called with local interrupts disabled and the q_lock held,
160 * or with interrupts enabled and no locks held.
b60503ba 161 */
e85248e5
MW
162static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
163 unsigned timeout)
b60503ba 164{
e6d15f79 165 int depth = nvmeq->q_depth - 1;
e85248e5 166 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba
MW
167 int cmdid;
168
169 BUG_ON((unsigned long)ctx & 3);
170
171 do {
172 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
173 if (cmdid >= depth)
174 return -EBUSY;
175 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
176
e85248e5
MW
177 info[cmdid].ctx = (unsigned long)ctx | handler;
178 info[cmdid].timeout = jiffies + timeout;
b60503ba
MW
179 return cmdid;
180}
181
182static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
e85248e5 183 int handler, unsigned timeout)
b60503ba
MW
184{
185 int cmdid;
186 wait_event_killable(nvmeq->sq_full,
e85248e5 187 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
b60503ba
MW
188 return (cmdid < 0) ? -EINTR : cmdid;
189}
190
fa922821
MW
191/*
192 * If you need more than four handlers, you'll need to change how
be7b6275
MW
193 * alloc_cmdid and nvme_process_cq work. Consider using a special
194 * CMD_CTX value instead, if that works for your situation.
b60503ba
MW
195 */
196enum {
197 sync_completion_id = 0,
198 bio_completion_id,
199};
200
00df5cb4 201/* Special values must be a multiple of 4, and less than 0x1000 */
be7b6275 202#define CMD_CTX_BASE (POISON_POINTER_DELTA + sync_completion_id)
d2d87034
MW
203#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
204#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
205#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
00df5cb4 206#define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
be7b6275 207
184d2944
MW
208/*
209 * Called with local interrupts disabled and the q_lock held. May not sleep.
210 */
b60503ba
MW
211static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
212{
213 unsigned long data;
e85248e5 214 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba 215
e85248e5 216 if (cmdid >= nvmeq->q_depth)
48e3d398 217 return CMD_CTX_INVALID;
e85248e5
MW
218 data = info[cmdid].ctx;
219 info[cmdid].ctx = CMD_CTX_COMPLETED;
b60503ba
MW
220 clear_bit(cmdid, nvmeq->cmdid_data);
221 wake_up(&nvmeq->sq_full);
222 return data;
223}
224
21075bde 225static unsigned long cancel_cmdid(struct nvme_queue *nvmeq, int cmdid)
3c0cf138 226{
21075bde 227 unsigned long data;
e85248e5 228 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
21075bde 229 data = info[cmdid].ctx;
e85248e5 230 info[cmdid].ctx = CMD_CTX_CANCELLED;
21075bde 231 return data;
3c0cf138
MW
232}
233
b60503ba
MW
234static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
235{
9ecdc946 236 return ns->dev->queues[get_cpu() + 1];
b60503ba
MW
237}
238
239static void put_nvmeq(struct nvme_queue *nvmeq)
240{
1b23484b 241 put_cpu();
b60503ba
MW
242}
243
244/**
714a7a22 245 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
246 * @nvmeq: The queue to use
247 * @cmd: The command to send
248 *
249 * Safe to use from interrupt context
250 */
251static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
252{
253 unsigned long flags;
254 u16 tail;
b60503ba
MW
255 spin_lock_irqsave(&nvmeq->q_lock, flags);
256 tail = nvmeq->sq_tail;
257 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
b60503ba
MW
258 if (++tail == nvmeq->q_depth)
259 tail = 0;
7547881d 260 writel(tail, nvmeq->q_db);
b60503ba
MW
261 nvmeq->sq_tail = tail;
262 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
263
264 return 0;
265}
266
e025344c
SMM
267struct nvme_prps {
268 int npages;
269 dma_addr_t first_dma;
270 __le64 *list[0];
271};
272
d567760c 273static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
e025344c
SMM
274{
275 const int last_prp = PAGE_SIZE / 8 - 1;
276 int i;
277 dma_addr_t prp_dma;
278
279 if (!prps)
280 return;
281
282 prp_dma = prps->first_dma;
99802a7a
MW
283
284 if (prps->npages == 0)
285 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
e025344c
SMM
286 for (i = 0; i < prps->npages; i++) {
287 __le64 *prp_list = prps->list[i];
288 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
091b6092 289 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
e025344c
SMM
290 prp_dma = next_prp_dma;
291 }
292 kfree(prps);
293}
294
d534df3c 295struct nvme_bio {
b60503ba
MW
296 struct bio *bio;
297 int nents;
e025344c 298 struct nvme_prps *prps;
b60503ba
MW
299 struct scatterlist sg[0];
300};
301
302/* XXX: use a mempool */
d534df3c 303static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
b60503ba 304{
d534df3c 305 return kzalloc(sizeof(struct nvme_bio) +
b60503ba
MW
306 sizeof(struct scatterlist) * nseg, gfp);
307}
308
d534df3c 309static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
b60503ba 310{
d567760c 311 nvme_free_prps(nvmeq->dev, nbio->prps);
d534df3c 312 kfree(nbio);
b60503ba
MW
313}
314
315static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
316 struct nvme_completion *cqe)
317{
d534df3c
MW
318 struct nvme_bio *nbio = ctx;
319 struct bio *bio = nbio->bio;
b60503ba
MW
320 u16 status = le16_to_cpup(&cqe->status) >> 1;
321
d534df3c 322 dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
b60503ba 323 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
d534df3c 324 free_nbio(nvmeq, nbio);
09a58f53 325 if (status) {
1ad2f893 326 bio_endio(bio, -EIO);
09a58f53 327 } else if (bio->bi_vcnt > bio->bi_idx) {
eac623ba
MW
328 if (bio_list_empty(&nvmeq->sq_cong))
329 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
1ad2f893
MW
330 bio_list_add(&nvmeq->sq_cong, bio);
331 wake_up_process(nvme_thread);
332 } else {
333 bio_endio(bio, 0);
334 }
b60503ba
MW
335}
336
184d2944 337/* length is in bytes. gfp flags indicates whether we may sleep. */
d567760c 338static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
e025344c 339 struct nvme_common_command *cmd,
b77954cb
MW
340 struct scatterlist *sg, int *len,
341 gfp_t gfp)
ff22b54f 342{
99802a7a 343 struct dma_pool *pool;
b77954cb 344 int length = *len;
ff22b54f
MW
345 int dma_len = sg_dma_len(sg);
346 u64 dma_addr = sg_dma_address(sg);
347 int offset = offset_in_page(dma_addr);
e025344c
SMM
348 __le64 *prp_list;
349 dma_addr_t prp_dma;
350 int nprps, npages, i, prp_page;
351 struct nvme_prps *prps = NULL;
ff22b54f
MW
352
353 cmd->prp1 = cpu_to_le64(dma_addr);
354 length -= (PAGE_SIZE - offset);
355 if (length <= 0)
e025344c 356 return prps;
ff22b54f
MW
357
358 dma_len -= (PAGE_SIZE - offset);
359 if (dma_len) {
360 dma_addr += (PAGE_SIZE - offset);
361 } else {
362 sg = sg_next(sg);
363 dma_addr = sg_dma_address(sg);
364 dma_len = sg_dma_len(sg);
365 }
366
367 if (length <= PAGE_SIZE) {
368 cmd->prp2 = cpu_to_le64(dma_addr);
e025344c
SMM
369 return prps;
370 }
371
372 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
373 npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
b77954cb
MW
374 prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, gfp);
375 if (!prps) {
376 cmd->prp2 = cpu_to_le64(dma_addr);
377 *len = (*len - length) + PAGE_SIZE;
378 return prps;
379 }
e025344c 380 prp_page = 0;
99802a7a
MW
381 if (nprps <= (256 / 8)) {
382 pool = dev->prp_small_pool;
383 prps->npages = 0;
384 } else {
385 pool = dev->prp_page_pool;
386 prps->npages = npages;
387 }
388
b77954cb
MW
389 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
390 if (!prp_list) {
391 cmd->prp2 = cpu_to_le64(dma_addr);
392 *len = (*len - length) + PAGE_SIZE;
393 kfree(prps);
394 return NULL;
395 }
e025344c
SMM
396 prps->list[prp_page++] = prp_list;
397 prps->first_dma = prp_dma;
398 cmd->prp2 = cpu_to_le64(prp_dma);
399 i = 0;
400 for (;;) {
7523d834 401 if (i == PAGE_SIZE / 8) {
e025344c 402 __le64 *old_prp_list = prp_list;
b77954cb
MW
403 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
404 if (!prp_list) {
405 *len = (*len - length);
406 return prps;
407 }
e025344c 408 prps->list[prp_page++] = prp_list;
7523d834
MW
409 prp_list[0] = old_prp_list[i - 1];
410 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
411 i = 1;
e025344c
SMM
412 }
413 prp_list[i++] = cpu_to_le64(dma_addr);
414 dma_len -= PAGE_SIZE;
415 dma_addr += PAGE_SIZE;
416 length -= PAGE_SIZE;
417 if (length <= 0)
418 break;
419 if (dma_len > 0)
420 continue;
421 BUG_ON(dma_len < 0);
422 sg = sg_next(sg);
423 dma_addr = sg_dma_address(sg);
424 dma_len = sg_dma_len(sg);
ff22b54f
MW
425 }
426
e025344c 427 return prps;
ff22b54f
MW
428}
429
1ad2f893
MW
430/* NVMe scatterlists require no holes in the virtual address */
431#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
432 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
433
d534df3c 434static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
b60503ba
MW
435 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
436{
76830840
MW
437 struct bio_vec *bvec, *bvprv = NULL;
438 struct scatterlist *sg = NULL;
1ad2f893 439 int i, old_idx, length = 0, nsegs = 0;
b60503ba 440
76830840 441 sg_init_table(nbio->sg, psegs);
1ad2f893 442 old_idx = bio->bi_idx;
b60503ba 443 bio_for_each_segment(bvec, bio, i) {
76830840
MW
444 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
445 sg->length += bvec->bv_len;
446 } else {
1ad2f893
MW
447 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
448 break;
76830840
MW
449 sg = sg ? sg + 1 : nbio->sg;
450 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
451 bvec->bv_offset);
452 nsegs++;
453 }
1ad2f893 454 length += bvec->bv_len;
76830840 455 bvprv = bvec;
b60503ba 456 }
1ad2f893 457 bio->bi_idx = i;
d534df3c 458 nbio->nents = nsegs;
76830840 459 sg_mark_end(sg);
1ad2f893
MW
460 if (dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir) == 0) {
461 bio->bi_idx = old_idx;
462 return -ENOMEM;
463 }
464 return length;
b60503ba
MW
465}
466
00df5cb4
MW
467static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
468 int cmdid)
469{
470 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
471
472 memset(cmnd, 0, sizeof(*cmnd));
473 cmnd->common.opcode = nvme_cmd_flush;
474 cmnd->common.command_id = cmdid;
475 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
476
477 if (++nvmeq->sq_tail == nvmeq->q_depth)
478 nvmeq->sq_tail = 0;
479 writel(nvmeq->sq_tail, nvmeq->q_db);
480
481 return 0;
482}
483
484static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
485{
486 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
487 sync_completion_id, IO_TIMEOUT);
488 if (unlikely(cmdid < 0))
489 return cmdid;
490
491 return nvme_submit_flush(nvmeq, ns, cmdid);
492}
493
184d2944
MW
494/*
495 * Called with local interrupts disabled and the q_lock held. May not sleep.
496 */
b60503ba
MW
497static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
498 struct bio *bio)
499{
ff22b54f 500 struct nvme_command *cmnd;
d534df3c 501 struct nvme_bio *nbio;
b60503ba 502 enum dma_data_direction dma_dir;
1ad2f893 503 int cmdid, length, result = -ENOMEM;
b60503ba
MW
504 u16 control;
505 u32 dsmgmt;
b60503ba
MW
506 int psegs = bio_phys_segments(ns->queue, bio);
507
00df5cb4
MW
508 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
509 result = nvme_submit_flush_data(nvmeq, ns);
510 if (result)
511 return result;
512 }
513
eeee3226 514 nbio = alloc_nbio(psegs, GFP_ATOMIC);
d534df3c 515 if (!nbio)
eeee3226 516 goto nomem;
d534df3c 517 nbio->bio = bio;
b60503ba 518
eeee3226 519 result = -EBUSY;
d534df3c 520 cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
b60503ba 521 if (unlikely(cmdid < 0))
d534df3c 522 goto free_nbio;
b60503ba 523
00df5cb4
MW
524 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
525 return nvme_submit_flush(nvmeq, ns, cmdid);
526
b60503ba
MW
527 control = 0;
528 if (bio->bi_rw & REQ_FUA)
529 control |= NVME_RW_FUA;
530 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
531 control |= NVME_RW_LR;
532
533 dsmgmt = 0;
534 if (bio->bi_rw & REQ_RAHEAD)
535 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
536
ff22b54f 537 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
b60503ba 538
b8deb62c 539 memset(cmnd, 0, sizeof(*cmnd));
b60503ba 540 if (bio_data_dir(bio)) {
ff22b54f 541 cmnd->rw.opcode = nvme_cmd_write;
b60503ba
MW
542 dma_dir = DMA_TO_DEVICE;
543 } else {
ff22b54f 544 cmnd->rw.opcode = nvme_cmd_read;
b60503ba
MW
545 dma_dir = DMA_FROM_DEVICE;
546 }
547
1ad2f893
MW
548 result = nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs);
549 if (result < 0)
eeee3226 550 goto free_nbio;
1ad2f893 551 length = result;
b60503ba 552
ff22b54f
MW
553 cmnd->rw.command_id = cmdid;
554 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
d567760c 555 nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
b77954cb 556 &length, GFP_ATOMIC);
ff22b54f 557 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
1ad2f893 558 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
ff22b54f
MW
559 cmnd->rw.control = cpu_to_le16(control);
560 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba 561
d8ee9d69
MW
562 bio->bi_sector += length >> 9;
563
b60503ba
MW
564 if (++nvmeq->sq_tail == nvmeq->q_depth)
565 nvmeq->sq_tail = 0;
7547881d 566 writel(nvmeq->sq_tail, nvmeq->q_db);
b60503ba 567
1974b1ae
MW
568 return 0;
569
d534df3c
MW
570 free_nbio:
571 free_nbio(nvmeq, nbio);
eeee3226
MW
572 nomem:
573 return result;
b60503ba
MW
574}
575
576/*
577 * NB: return value of non-zero would mean that we were a stacking driver.
578 * make_request must always succeed.
579 */
580static int nvme_make_request(struct request_queue *q, struct bio *bio)
581{
582 struct nvme_ns *ns = q->queuedata;
583 struct nvme_queue *nvmeq = get_nvmeq(ns);
eeee3226
MW
584 int result = -EBUSY;
585
586 spin_lock_irq(&nvmeq->q_lock);
587 if (bio_list_empty(&nvmeq->sq_cong))
588 result = nvme_submit_bio_queue(nvmeq, ns, bio);
589 if (unlikely(result)) {
590 if (bio_list_empty(&nvmeq->sq_cong))
591 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
b60503ba
MW
592 bio_list_add(&nvmeq->sq_cong, bio);
593 }
eeee3226
MW
594
595 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
596 put_nvmeq(nvmeq);
597
598 return 0;
599}
600
601struct sync_cmd_info {
602 struct task_struct *task;
603 u32 result;
604 int status;
605};
606
607static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
608 struct nvme_completion *cqe)
609{
610 struct sync_cmd_info *cmdinfo = ctx;
c4270559 611 if (unlikely((unsigned long)cmdinfo == CMD_CTX_CANCELLED))
be7b6275 612 return;
00df5cb4
MW
613 if ((unsigned long)cmdinfo == CMD_CTX_FLUSH)
614 return;
b36235df
MW
615 if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
616 dev_warn(nvmeq->q_dmadev,
617 "completed id %d twice on queue %d\n",
618 cqe->command_id, le16_to_cpup(&cqe->sq_id));
619 return;
620 }
48e3d398
MW
621 if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
622 dev_warn(nvmeq->q_dmadev,
623 "invalid id %d completed on queue %d\n",
624 cqe->command_id, le16_to_cpup(&cqe->sq_id));
625 return;
626 }
b60503ba
MW
627 cmdinfo->result = le32_to_cpup(&cqe->result);
628 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
629 wake_up_process(cmdinfo->task);
630}
631
632typedef void (*completion_fn)(struct nvme_queue *, void *,
633 struct nvme_completion *);
634
8de05535
MW
635static const completion_fn nvme_completions[4] = {
636 [sync_completion_id] = sync_completion,
637 [bio_completion_id] = bio_completion,
638};
639
b60503ba
MW
640static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
641{
82123460 642 u16 head, phase;
b60503ba 643
b60503ba 644 head = nvmeq->cq_head;
82123460 645 phase = nvmeq->cq_phase;
b60503ba
MW
646
647 for (;;) {
648 unsigned long data;
649 void *ptr;
650 unsigned char handler;
651 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 652 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
653 break;
654 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
655 if (++head == nvmeq->q_depth) {
656 head = 0;
82123460 657 phase = !phase;
b60503ba
MW
658 }
659
660 data = free_cmdid(nvmeq, cqe.command_id);
661 handler = data & 3;
662 ptr = (void *)(data & ~3UL);
8de05535 663 nvme_completions[handler](nvmeq, ptr, &cqe);
b60503ba
MW
664 }
665
666 /* If the controller ignores the cq head doorbell and continuously
667 * writes to the queue, it is theoretically possible to wrap around
668 * the queue twice and mistakenly return IRQ_NONE. Linux only
669 * requires that 0.1% of your interrupts are handled, so this isn't
670 * a big problem.
671 */
82123460 672 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
b60503ba
MW
673 return IRQ_NONE;
674
675 writel(head, nvmeq->q_db + 1);
676 nvmeq->cq_head = head;
82123460 677 nvmeq->cq_phase = phase;
b60503ba
MW
678
679 return IRQ_HANDLED;
680}
681
682static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
683{
684 irqreturn_t result;
685 struct nvme_queue *nvmeq = data;
686 spin_lock(&nvmeq->q_lock);
687 result = nvme_process_cq(nvmeq);
688 spin_unlock(&nvmeq->q_lock);
689 return result;
690}
691
692static irqreturn_t nvme_irq_check(int irq, void *data)
693{
694 struct nvme_queue *nvmeq = data;
695 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
696 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
697 return IRQ_NONE;
698 return IRQ_WAKE_THREAD;
699}
700
3c0cf138
MW
701static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
702{
703 spin_lock_irq(&nvmeq->q_lock);
21075bde 704 cancel_cmdid(nvmeq, cmdid);
3c0cf138
MW
705 spin_unlock_irq(&nvmeq->q_lock);
706}
707
b60503ba
MW
708/*
709 * Returns 0 on success. If the result is negative, it's a Linux error code;
710 * if the result is positive, it's an NVM Express status code
711 */
3c0cf138 712static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
e85248e5 713 struct nvme_command *cmd, u32 *result, unsigned timeout)
b60503ba
MW
714{
715 int cmdid;
716 struct sync_cmd_info cmdinfo;
717
718 cmdinfo.task = current;
719 cmdinfo.status = -EINTR;
720
e85248e5
MW
721 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
722 timeout);
b60503ba
MW
723 if (cmdid < 0)
724 return cmdid;
725 cmd->common.command_id = cmdid;
726
3c0cf138
MW
727 set_current_state(TASK_KILLABLE);
728 nvme_submit_cmd(nvmeq, cmd);
b60503ba
MW
729 schedule();
730
3c0cf138
MW
731 if (cmdinfo.status == -EINTR) {
732 nvme_abort_command(nvmeq, cmdid);
733 return -EINTR;
734 }
735
b60503ba
MW
736 if (result)
737 *result = cmdinfo.result;
738
739 return cmdinfo.status;
740}
741
742static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
743 u32 *result)
744{
e85248e5 745 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
b60503ba
MW
746}
747
748static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
749{
750 int status;
751 struct nvme_command c;
752
753 memset(&c, 0, sizeof(c));
754 c.delete_queue.opcode = opcode;
755 c.delete_queue.qid = cpu_to_le16(id);
756
757 status = nvme_submit_admin_cmd(dev, &c, NULL);
758 if (status)
759 return -EIO;
760 return 0;
761}
762
763static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
764 struct nvme_queue *nvmeq)
765{
766 int status;
767 struct nvme_command c;
768 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
769
770 memset(&c, 0, sizeof(c));
771 c.create_cq.opcode = nvme_admin_create_cq;
772 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
773 c.create_cq.cqid = cpu_to_le16(qid);
774 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
775 c.create_cq.cq_flags = cpu_to_le16(flags);
776 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
777
778 status = nvme_submit_admin_cmd(dev, &c, NULL);
779 if (status)
780 return -EIO;
781 return 0;
782}
783
784static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
785 struct nvme_queue *nvmeq)
786{
787 int status;
788 struct nvme_command c;
789 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
790
791 memset(&c, 0, sizeof(c));
792 c.create_sq.opcode = nvme_admin_create_sq;
793 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
794 c.create_sq.sqid = cpu_to_le16(qid);
795 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
796 c.create_sq.sq_flags = cpu_to_le16(flags);
797 c.create_sq.cqid = cpu_to_le16(qid);
798
799 status = nvme_submit_admin_cmd(dev, &c, NULL);
800 if (status)
801 return -EIO;
802 return 0;
803}
804
805static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
806{
807 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
808}
809
810static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
811{
812 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
813}
814
815static void nvme_free_queue(struct nvme_dev *dev, int qid)
816{
817 struct nvme_queue *nvmeq = dev->queues[qid];
aba2080f 818 int vector = dev->entry[nvmeq->cq_vector].vector;
b60503ba 819
aba2080f
MW
820 irq_set_affinity_hint(vector, NULL);
821 free_irq(vector, nvmeq);
b60503ba
MW
822
823 /* Don't tell the adapter to delete the admin queue */
824 if (qid) {
825 adapter_delete_sq(dev, qid);
826 adapter_delete_cq(dev, qid);
827 }
828
829 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
830 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
831 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
832 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
833 kfree(nvmeq);
834}
835
836static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
837 int depth, int vector)
838{
839 struct device *dmadev = &dev->pci_dev->dev;
e85248e5 840 unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
b60503ba
MW
841 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
842 if (!nvmeq)
843 return NULL;
844
845 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
846 &nvmeq->cq_dma_addr, GFP_KERNEL);
847 if (!nvmeq->cqes)
848 goto free_nvmeq;
849 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
850
851 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
852 &nvmeq->sq_dma_addr, GFP_KERNEL);
853 if (!nvmeq->sq_cmds)
854 goto free_cqdma;
855
856 nvmeq->q_dmadev = dmadev;
091b6092 857 nvmeq->dev = dev;
b60503ba
MW
858 spin_lock_init(&nvmeq->q_lock);
859 nvmeq->cq_head = 0;
82123460 860 nvmeq->cq_phase = 1;
b60503ba 861 init_waitqueue_head(&nvmeq->sq_full);
1fa6aead 862 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
b60503ba
MW
863 bio_list_init(&nvmeq->sq_cong);
864 nvmeq->q_db = &dev->dbs[qid * 2];
865 nvmeq->q_depth = depth;
866 nvmeq->cq_vector = vector;
867
868 return nvmeq;
869
870 free_cqdma:
871 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
872 nvmeq->cq_dma_addr);
873 free_nvmeq:
874 kfree(nvmeq);
875 return NULL;
876}
877
3001082c
MW
878static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
879 const char *name)
880{
58ffacb5
MW
881 if (use_threaded_interrupts)
882 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
ec6ce618 883 nvme_irq_check, nvme_irq,
58ffacb5
MW
884 IRQF_DISABLED | IRQF_SHARED,
885 name, nvmeq);
3001082c
MW
886 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
887 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
888}
889
b60503ba
MW
890static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
891 int qid, int cq_size, int vector)
892{
893 int result;
894 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
895
3f85d50b 896 if (!nvmeq)
6f0f5449 897 return ERR_PTR(-ENOMEM);
3f85d50b 898
b60503ba
MW
899 result = adapter_alloc_cq(dev, qid, nvmeq);
900 if (result < 0)
901 goto free_nvmeq;
902
903 result = adapter_alloc_sq(dev, qid, nvmeq);
904 if (result < 0)
905 goto release_cq;
906
3001082c 907 result = queue_request_irq(dev, nvmeq, "nvme");
b60503ba
MW
908 if (result < 0)
909 goto release_sq;
910
911 return nvmeq;
912
913 release_sq:
914 adapter_delete_sq(dev, qid);
915 release_cq:
916 adapter_delete_cq(dev, qid);
917 free_nvmeq:
918 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
919 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
920 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
921 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
922 kfree(nvmeq);
6f0f5449 923 return ERR_PTR(result);
b60503ba
MW
924}
925
926static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
927{
928 int result;
929 u32 aqa;
22605f96
MW
930 u64 cap;
931 unsigned long timeout;
b60503ba
MW
932 struct nvme_queue *nvmeq;
933
934 dev->dbs = ((void __iomem *)dev->bar) + 4096;
935
936 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
3f85d50b
MW
937 if (!nvmeq)
938 return -ENOMEM;
b60503ba
MW
939
940 aqa = nvmeq->q_depth - 1;
941 aqa |= aqa << 16;
942
943 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
944 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
945 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
7f53f9d2 946 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
b60503ba 947
5911f200 948 writel(0, &dev->bar->cc);
b60503ba
MW
949 writel(aqa, &dev->bar->aqa);
950 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
951 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
952 writel(dev->ctrl_config, &dev->bar->cc);
953
22605f96
MW
954 cap = readq(&dev->bar->cap);
955 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
956
b60503ba
MW
957 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
958 msleep(100);
959 if (fatal_signal_pending(current))
960 return -EINTR;
22605f96
MW
961 if (time_after(jiffies, timeout)) {
962 dev_err(&dev->pci_dev->dev,
963 "Device not ready; aborting initialisation\n");
964 return -ENODEV;
965 }
b60503ba
MW
966 }
967
3001082c 968 result = queue_request_irq(dev, nvmeq, "nvme admin");
b60503ba
MW
969 dev->queues[0] = nvmeq;
970 return result;
971}
972
7fc3cdab
MW
973static int nvme_map_user_pages(struct nvme_dev *dev, int write,
974 unsigned long addr, unsigned length,
975 struct scatterlist **sgp)
b60503ba 976{
36c14ed9 977 int i, err, count, nents, offset;
7fc3cdab
MW
978 struct scatterlist *sg;
979 struct page **pages;
36c14ed9
MW
980
981 if (addr & 3)
982 return -EINVAL;
7fc3cdab
MW
983 if (!length)
984 return -EINVAL;
985
36c14ed9 986 offset = offset_in_page(addr);
7fc3cdab
MW
987 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
988 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
36c14ed9
MW
989
990 err = get_user_pages_fast(addr, count, 1, pages);
991 if (err < count) {
992 count = err;
993 err = -EFAULT;
994 goto put_pages;
995 }
7fc3cdab
MW
996
997 sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
36c14ed9 998 sg_init_table(sg, count);
ff22b54f 999 sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
7fc3cdab
MW
1000 length -= (PAGE_SIZE - offset);
1001 for (i = 1; i < count; i++) {
1002 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
1003 length -= PAGE_SIZE;
1004 }
1005
1006 err = -ENOMEM;
1007 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1008 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
36c14ed9
MW
1009 if (!nents)
1010 goto put_pages;
b60503ba 1011
7fc3cdab
MW
1012 kfree(pages);
1013 *sgp = sg;
1014 return nents;
b60503ba 1015
7fc3cdab
MW
1016 put_pages:
1017 for (i = 0; i < count; i++)
1018 put_page(pages[i]);
1019 kfree(pages);
1020 return err;
1021}
b60503ba 1022
7fc3cdab
MW
1023static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1024 unsigned long addr, int length,
1025 struct scatterlist *sg, int nents)
1026{
1027 int i, count;
b60503ba 1028
7fc3cdab 1029 count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
36c14ed9 1030 dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
7fc3cdab 1031
36c14ed9 1032 for (i = 0; i < count; i++)
7fc3cdab
MW
1033 put_page(sg_page(&sg[i]));
1034}
b60503ba 1035
7fc3cdab
MW
1036static int nvme_submit_user_admin_command(struct nvme_dev *dev,
1037 unsigned long addr, unsigned length,
1038 struct nvme_command *cmd)
1039{
b77954cb 1040 int err, nents, tmplen = length;
7fc3cdab 1041 struct scatterlist *sg;
e025344c 1042 struct nvme_prps *prps;
7fc3cdab
MW
1043
1044 nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
1045 if (nents < 0)
1046 return nents;
b77954cb
MW
1047 prps = nvme_setup_prps(dev, &cmd->common, sg, &tmplen, GFP_KERNEL);
1048 if (tmplen != length)
1049 err = -ENOMEM;
1050 else
1051 err = nvme_submit_admin_cmd(dev, cmd, NULL);
7fc3cdab 1052 nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
d567760c 1053 nvme_free_prps(dev, prps);
7fc3cdab 1054 return err ? -EIO : 0;
b60503ba
MW
1055}
1056
bd38c555 1057static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
b60503ba 1058{
b60503ba 1059 struct nvme_command c;
b60503ba 1060
bd38c555
MW
1061 memset(&c, 0, sizeof(c));
1062 c.identify.opcode = nvme_admin_identify;
1063 c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
1064 c.identify.cns = cpu_to_le32(cns);
1065
1066 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
1067}
1068
1069static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
1070{
1071 struct nvme_command c;
b60503ba
MW
1072
1073 memset(&c, 0, sizeof(c));
1074 c.features.opcode = nvme_admin_get_features;
1075 c.features.nsid = cpu_to_le32(ns->ns_id);
b60503ba
MW
1076 c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1077
bd38c555 1078 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
b60503ba
MW
1079}
1080
a53295b6
MW
1081static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1082{
1083 struct nvme_dev *dev = ns->dev;
1084 struct nvme_queue *nvmeq;
1085 struct nvme_user_io io;
1086 struct nvme_command c;
1087 unsigned length;
a53295b6
MW
1088 int nents, status;
1089 struct scatterlist *sg;
e025344c 1090 struct nvme_prps *prps;
a53295b6
MW
1091
1092 if (copy_from_user(&io, uio, sizeof(io)))
1093 return -EFAULT;
6c7d4945
MW
1094 length = (io.nblocks + 1) << ns->lba_shift;
1095
1096 switch (io.opcode) {
1097 case nvme_cmd_write:
1098 case nvme_cmd_read:
1099 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr,
1100 length, &sg);
1101 default:
1102 return -EFAULT;
1103 }
1104
a53295b6
MW
1105 if (nents < 0)
1106 return nents;
1107
1108 memset(&c, 0, sizeof(c));
1109 c.rw.opcode = io.opcode;
1110 c.rw.flags = io.flags;
6c7d4945 1111 c.rw.nsid = cpu_to_le32(ns->ns_id);
a53295b6 1112 c.rw.slba = cpu_to_le64(io.slba);
6c7d4945 1113 c.rw.length = cpu_to_le16(io.nblocks);
a53295b6
MW
1114 c.rw.control = cpu_to_le16(io.control);
1115 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
6c7d4945
MW
1116 c.rw.reftag = io.reftag;
1117 c.rw.apptag = io.apptag;
1118 c.rw.appmask = io.appmask;
a53295b6 1119 /* XXX: metadata */
b77954cb 1120 prps = nvme_setup_prps(dev, &c.common, sg, &length, GFP_KERNEL);
a53295b6 1121
d567760c 1122 nvmeq = get_nvmeq(ns);
fa922821
MW
1123 /*
1124 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
b1ad37ef
MW
1125 * disabled. We may be preempted at any point, and be rescheduled
1126 * to a different CPU. That will cause cacheline bouncing, but no
1127 * additional races since q_lock already protects against other CPUs.
1128 */
a53295b6 1129 put_nvmeq(nvmeq);
b77954cb
MW
1130 if (length != (io.nblocks + 1) << ns->lba_shift)
1131 status = -ENOMEM;
1132 else
1133 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, IO_TIMEOUT);
a53295b6
MW
1134
1135 nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
d567760c 1136 nvme_free_prps(dev, prps);
a53295b6
MW
1137 return status;
1138}
1139
6ee44cdc
MW
1140static int nvme_download_firmware(struct nvme_ns *ns,
1141 struct nvme_dlfw __user *udlfw)
1142{
1143 struct nvme_dev *dev = ns->dev;
1144 struct nvme_dlfw dlfw;
1145 struct nvme_command c;
b77954cb 1146 int nents, status, length;
6ee44cdc 1147 struct scatterlist *sg;
e025344c 1148 struct nvme_prps *prps;
6ee44cdc
MW
1149
1150 if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
1151 return -EFAULT;
1152 if (dlfw.length >= (1 << 30))
1153 return -EINVAL;
b77954cb 1154 length = dlfw.length * 4;
6ee44cdc 1155
b77954cb 1156 nents = nvme_map_user_pages(dev, 1, dlfw.addr, length, &sg);
6ee44cdc
MW
1157 if (nents < 0)
1158 return nents;
1159
1160 memset(&c, 0, sizeof(c));
1161 c.dlfw.opcode = nvme_admin_download_fw;
1162 c.dlfw.numd = cpu_to_le32(dlfw.length);
1163 c.dlfw.offset = cpu_to_le32(dlfw.offset);
b77954cb
MW
1164 prps = nvme_setup_prps(dev, &c.common, sg, &length, GFP_KERNEL);
1165 if (length != dlfw.length * 4)
1166 status = -ENOMEM;
1167 else
1168 status = nvme_submit_admin_cmd(dev, &c, NULL);
6ee44cdc 1169 nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
d567760c 1170 nvme_free_prps(dev, prps);
6ee44cdc
MW
1171 return status;
1172}
1173
1174static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
1175{
1176 struct nvme_dev *dev = ns->dev;
1177 struct nvme_command c;
1178
1179 memset(&c, 0, sizeof(c));
1180 c.common.opcode = nvme_admin_activate_fw;
1181 c.common.rsvd10[0] = cpu_to_le32(arg);
1182
1183 return nvme_submit_admin_cmd(dev, &c, NULL);
1184}
1185
b60503ba
MW
1186static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1187 unsigned long arg)
1188{
1189 struct nvme_ns *ns = bdev->bd_disk->private_data;
1190
1191 switch (cmd) {
1192 case NVME_IOCTL_IDENTIFY_NS:
36c14ed9 1193 return nvme_identify(ns, arg, 0);
b60503ba 1194 case NVME_IOCTL_IDENTIFY_CTRL:
36c14ed9 1195 return nvme_identify(ns, arg, 1);
b60503ba 1196 case NVME_IOCTL_GET_RANGE_TYPE:
bd38c555 1197 return nvme_get_range_type(ns, arg);
a53295b6
MW
1198 case NVME_IOCTL_SUBMIT_IO:
1199 return nvme_submit_io(ns, (void __user *)arg);
6ee44cdc
MW
1200 case NVME_IOCTL_DOWNLOAD_FW:
1201 return nvme_download_firmware(ns, (void __user *)arg);
1202 case NVME_IOCTL_ACTIVATE_FW:
1203 return nvme_activate_firmware(ns, arg);
b60503ba
MW
1204 default:
1205 return -ENOTTY;
1206 }
1207}
1208
1209static const struct block_device_operations nvme_fops = {
1210 .owner = THIS_MODULE,
1211 .ioctl = nvme_ioctl,
49481682 1212 .compat_ioctl = nvme_ioctl,
b60503ba
MW
1213};
1214
8de05535
MW
1215static void nvme_timeout_ios(struct nvme_queue *nvmeq)
1216{
1217 int depth = nvmeq->q_depth - 1;
1218 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1219 unsigned long now = jiffies;
1220 int cmdid;
1221
1222 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1223 unsigned long data;
1224 void *ptr;
1225 unsigned char handler;
1226 static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, };
1227
1228 if (!time_after(now, info[cmdid].timeout))
1229 continue;
1230 dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid);
1231 data = cancel_cmdid(nvmeq, cmdid);
1232 handler = data & 3;
1233 ptr = (void *)(data & ~3UL);
1234 nvme_completions[handler](nvmeq, ptr, &cqe);
1235 }
1236}
1237
1fa6aead
MW
1238static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1239{
1240 while (bio_list_peek(&nvmeq->sq_cong)) {
1241 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1242 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1243 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1244 bio_list_add_head(&nvmeq->sq_cong, bio);
1245 break;
1246 }
3cb967c0
MW
1247 if (bio_list_empty(&nvmeq->sq_cong))
1248 remove_wait_queue(&nvmeq->sq_full,
1249 &nvmeq->sq_cong_wait);
1fa6aead
MW
1250 }
1251}
1252
1253static int nvme_kthread(void *data)
1254{
1255 struct nvme_dev *dev;
1256
1257 while (!kthread_should_stop()) {
1258 __set_current_state(TASK_RUNNING);
1259 spin_lock(&dev_list_lock);
1260 list_for_each_entry(dev, &dev_list, node) {
1261 int i;
1262 for (i = 0; i < dev->queue_count; i++) {
1263 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
1264 if (!nvmeq)
1265 continue;
1fa6aead
MW
1266 spin_lock_irq(&nvmeq->q_lock);
1267 if (nvme_process_cq(nvmeq))
1268 printk("process_cq did something\n");
8de05535 1269 nvme_timeout_ios(nvmeq);
1fa6aead
MW
1270 nvme_resubmit_bios(nvmeq);
1271 spin_unlock_irq(&nvmeq->q_lock);
1272 }
1273 }
1274 spin_unlock(&dev_list_lock);
1275 set_current_state(TASK_INTERRUPTIBLE);
1276 schedule_timeout(HZ);
1277 }
1278 return 0;
1279}
1280
5aff9382
MW
1281static DEFINE_IDA(nvme_index_ida);
1282
1283static int nvme_get_ns_idx(void)
1284{
1285 int index, error;
1286
1287 do {
1288 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1289 return -1;
1290
1291 spin_lock(&dev_list_lock);
1292 error = ida_get_new(&nvme_index_ida, &index);
1293 spin_unlock(&dev_list_lock);
1294 } while (error == -EAGAIN);
1295
1296 if (error)
1297 index = -1;
1298 return index;
1299}
1300
1301static void nvme_put_ns_idx(int index)
1302{
1303 spin_lock(&dev_list_lock);
1304 ida_remove(&nvme_index_ida, index);
1305 spin_unlock(&dev_list_lock);
1306}
1307
1308static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
b60503ba
MW
1309 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1310{
1311 struct nvme_ns *ns;
1312 struct gendisk *disk;
1313 int lbaf;
1314
1315 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1316 return NULL;
1317
1318 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1319 if (!ns)
1320 return NULL;
1321 ns->queue = blk_alloc_queue(GFP_KERNEL);
1322 if (!ns->queue)
1323 goto out_free_ns;
1324 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1325 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1326 blk_queue_make_request(ns->queue, nvme_make_request);
1327 ns->dev = dev;
1328 ns->queue->queuedata = ns;
1329
1330 disk = alloc_disk(NVME_MINORS);
1331 if (!disk)
1332 goto out_free_queue;
5aff9382 1333 ns->ns_id = nsid;
b60503ba
MW
1334 ns->disk = disk;
1335 lbaf = id->flbas & 0xf;
1336 ns->lba_shift = id->lbaf[lbaf].ds;
1337
1338 disk->major = nvme_major;
1339 disk->minors = NVME_MINORS;
5aff9382 1340 disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
b60503ba
MW
1341 disk->fops = &nvme_fops;
1342 disk->private_data = ns;
1343 disk->queue = ns->queue;
388f037f 1344 disk->driverfs_dev = &dev->pci_dev->dev;
5aff9382 1345 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
b60503ba
MW
1346 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1347
1348 return ns;
1349
1350 out_free_queue:
1351 blk_cleanup_queue(ns->queue);
1352 out_free_ns:
1353 kfree(ns);
1354 return NULL;
1355}
1356
1357static void nvme_ns_free(struct nvme_ns *ns)
1358{
5aff9382 1359 int index = ns->disk->first_minor / NVME_MINORS;
b60503ba 1360 put_disk(ns->disk);
5aff9382 1361 nvme_put_ns_idx(index);
b60503ba
MW
1362 blk_cleanup_queue(ns->queue);
1363 kfree(ns);
1364}
1365
b3b06812 1366static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
1367{
1368 int status;
1369 u32 result;
1370 struct nvme_command c;
b3b06812 1371 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba
MW
1372
1373 memset(&c, 0, sizeof(c));
1374 c.features.opcode = nvme_admin_get_features;
1375 c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1376 c.features.dword11 = cpu_to_le32(q_count);
1377
1378 status = nvme_submit_admin_cmd(dev, &c, &result);
1379 if (status)
1380 return -EIO;
1381 return min(result & 0xffff, result >> 16) + 1;
1382}
1383
b60503ba
MW
1384static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1385{
b348b7d5 1386 int result, cpu, i, nr_io_queues;
b60503ba 1387
b348b7d5
MW
1388 nr_io_queues = num_online_cpus();
1389 result = set_queue_count(dev, nr_io_queues);
1b23484b
MW
1390 if (result < 0)
1391 return result;
b348b7d5
MW
1392 if (result < nr_io_queues)
1393 nr_io_queues = result;
b60503ba 1394
1b23484b
MW
1395 /* Deregister the admin queue's interrupt */
1396 free_irq(dev->entry[0].vector, dev->queues[0]);
1397
b348b7d5 1398 for (i = 0; i < nr_io_queues; i++)
1b23484b
MW
1399 dev->entry[i].entry = i;
1400 for (;;) {
b348b7d5
MW
1401 result = pci_enable_msix(dev->pci_dev, dev->entry,
1402 nr_io_queues);
1b23484b
MW
1403 if (result == 0) {
1404 break;
1405 } else if (result > 0) {
b348b7d5 1406 nr_io_queues = result;
1b23484b
MW
1407 continue;
1408 } else {
b348b7d5 1409 nr_io_queues = 1;
1b23484b
MW
1410 break;
1411 }
1412 }
1413
1414 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1415 /* XXX: handle failure here */
1416
1417 cpu = cpumask_first(cpu_online_mask);
b348b7d5 1418 for (i = 0; i < nr_io_queues; i++) {
1b23484b
MW
1419 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1420 cpu = cpumask_next(cpu, cpu_online_mask);
1421 }
1422
b348b7d5 1423 for (i = 0; i < nr_io_queues; i++) {
1b23484b
MW
1424 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1425 NVME_Q_DEPTH, i);
6f0f5449
MW
1426 if (IS_ERR(dev->queues[i + 1]))
1427 return PTR_ERR(dev->queues[i + 1]);
1b23484b
MW
1428 dev->queue_count++;
1429 }
b60503ba 1430
9ecdc946
MW
1431 for (; i < num_possible_cpus(); i++) {
1432 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1433 dev->queues[i + 1] = dev->queues[target + 1];
1434 }
1435
b60503ba
MW
1436 return 0;
1437}
1438
1439static void nvme_free_queues(struct nvme_dev *dev)
1440{
1441 int i;
1442
1443 for (i = dev->queue_count - 1; i >= 0; i--)
1444 nvme_free_queue(dev, i);
1445}
1446
1447static int __devinit nvme_dev_add(struct nvme_dev *dev)
1448{
1449 int res, nn, i;
1450 struct nvme_ns *ns, *next;
51814232 1451 struct nvme_id_ctrl *ctrl;
b60503ba
MW
1452 void *id;
1453 dma_addr_t dma_addr;
1454 struct nvme_command cid, crt;
1455
1456 res = nvme_setup_io_queues(dev);
1457 if (res)
1458 return res;
1459
1460 /* XXX: Switch to a SG list once prp2 works */
1461 id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1462 GFP_KERNEL);
1463
1464 memset(&cid, 0, sizeof(cid));
1465 cid.identify.opcode = nvme_admin_identify;
1466 cid.identify.nsid = 0;
1467 cid.identify.prp1 = cpu_to_le64(dma_addr);
1468 cid.identify.cns = cpu_to_le32(1);
1469
1470 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1471 if (res) {
1472 res = -EIO;
1473 goto out_free;
1474 }
1475
51814232
MW
1476 ctrl = id;
1477 nn = le32_to_cpup(&ctrl->nn);
1478 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1479 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1480 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
b60503ba
MW
1481
1482 cid.identify.cns = 0;
1483 memset(&crt, 0, sizeof(crt));
1484 crt.features.opcode = nvme_admin_get_features;
1485 crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1486 crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1487
ac88c36a 1488 for (i = 0; i <= nn; i++) {
b60503ba
MW
1489 cid.identify.nsid = cpu_to_le32(i);
1490 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1491 if (res)
1492 continue;
1493
1494 if (((struct nvme_id_ns *)id)->ncap == 0)
1495 continue;
1496
1497 crt.features.nsid = cpu_to_le32(i);
1498 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1499 if (res)
1500 continue;
1501
1502 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1503 if (ns)
1504 list_add_tail(&ns->list, &dev->namespaces);
1505 }
1506 list_for_each_entry(ns, &dev->namespaces, list)
1507 add_disk(ns->disk);
1508
1509 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1510 return 0;
1511
1512 out_free:
1513 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1514 list_del(&ns->list);
1515 nvme_ns_free(ns);
1516 }
1517
1518 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1519 return res;
1520}
1521
1522static int nvme_dev_remove(struct nvme_dev *dev)
1523{
1524 struct nvme_ns *ns, *next;
1525
1fa6aead
MW
1526 spin_lock(&dev_list_lock);
1527 list_del(&dev->node);
1528 spin_unlock(&dev_list_lock);
1529
b60503ba
MW
1530 /* TODO: wait all I/O finished or cancel them */
1531
1532 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1533 list_del(&ns->list);
1534 del_gendisk(ns->disk);
1535 nvme_ns_free(ns);
1536 }
1537
1538 nvme_free_queues(dev);
1539
1540 return 0;
1541}
1542
091b6092
MW
1543static int nvme_setup_prp_pools(struct nvme_dev *dev)
1544{
1545 struct device *dmadev = &dev->pci_dev->dev;
1546 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1547 PAGE_SIZE, PAGE_SIZE, 0);
1548 if (!dev->prp_page_pool)
1549 return -ENOMEM;
1550
99802a7a
MW
1551 /* Optimisation for I/Os between 4k and 128k */
1552 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1553 256, 256, 0);
1554 if (!dev->prp_small_pool) {
1555 dma_pool_destroy(dev->prp_page_pool);
1556 return -ENOMEM;
1557 }
091b6092
MW
1558 return 0;
1559}
1560
1561static void nvme_release_prp_pools(struct nvme_dev *dev)
1562{
1563 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1564 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1565}
1566
b60503ba
MW
1567/* XXX: Use an ida or something to let remove / add work correctly */
1568static void nvme_set_instance(struct nvme_dev *dev)
1569{
1570 static int instance;
1571 dev->instance = instance++;
1572}
1573
1574static void nvme_release_instance(struct nvme_dev *dev)
1575{
1576}
1577
1578static int __devinit nvme_probe(struct pci_dev *pdev,
1579 const struct pci_device_id *id)
1580{
574e8b95 1581 int bars, result = -ENOMEM;
b60503ba
MW
1582 struct nvme_dev *dev;
1583
1584 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1585 if (!dev)
1586 return -ENOMEM;
1587 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1588 GFP_KERNEL);
1589 if (!dev->entry)
1590 goto free;
1b23484b
MW
1591 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1592 GFP_KERNEL);
b60503ba
MW
1593 if (!dev->queues)
1594 goto free;
1595
0ee5a7d7
SMM
1596 if (pci_enable_device_mem(pdev))
1597 goto free;
f64d3365 1598 pci_set_master(pdev);
574e8b95
MW
1599 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1600 if (pci_request_selected_regions(pdev, bars, "nvme"))
1601 goto disable;
0ee5a7d7 1602
b60503ba
MW
1603 INIT_LIST_HEAD(&dev->namespaces);
1604 dev->pci_dev = pdev;
1605 pci_set_drvdata(pdev, dev);
2930353f
MW
1606 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1607 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
b60503ba 1608 nvme_set_instance(dev);
53c9577e 1609 dev->entry[0].vector = pdev->irq;
b60503ba 1610
091b6092
MW
1611 result = nvme_setup_prp_pools(dev);
1612 if (result)
1613 goto disable_msix;
1614
b60503ba
MW
1615 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1616 if (!dev->bar) {
1617 result = -ENOMEM;
574e8b95 1618 goto disable_msix;
b60503ba
MW
1619 }
1620
1621 result = nvme_configure_admin_queue(dev);
1622 if (result)
1623 goto unmap;
1624 dev->queue_count++;
1625
1fa6aead
MW
1626 spin_lock(&dev_list_lock);
1627 list_add(&dev->node, &dev_list);
1628 spin_unlock(&dev_list_lock);
1629
740216fc
MW
1630 result = nvme_dev_add(dev);
1631 if (result)
1632 goto delete;
1633
b60503ba
MW
1634 return 0;
1635
1636 delete:
740216fc
MW
1637 spin_lock(&dev_list_lock);
1638 list_del(&dev->node);
1639 spin_unlock(&dev_list_lock);
1640
b60503ba
MW
1641 nvme_free_queues(dev);
1642 unmap:
1643 iounmap(dev->bar);
574e8b95 1644 disable_msix:
b60503ba
MW
1645 pci_disable_msix(pdev);
1646 nvme_release_instance(dev);
091b6092 1647 nvme_release_prp_pools(dev);
574e8b95 1648 disable:
0ee5a7d7 1649 pci_disable_device(pdev);
574e8b95 1650 pci_release_regions(pdev);
b60503ba
MW
1651 free:
1652 kfree(dev->queues);
1653 kfree(dev->entry);
1654 kfree(dev);
1655 return result;
1656}
1657
1658static void __devexit nvme_remove(struct pci_dev *pdev)
1659{
1660 struct nvme_dev *dev = pci_get_drvdata(pdev);
1661 nvme_dev_remove(dev);
1662 pci_disable_msix(pdev);
1663 iounmap(dev->bar);
1664 nvme_release_instance(dev);
091b6092 1665 nvme_release_prp_pools(dev);
0ee5a7d7 1666 pci_disable_device(pdev);
574e8b95 1667 pci_release_regions(pdev);
b60503ba
MW
1668 kfree(dev->queues);
1669 kfree(dev->entry);
1670 kfree(dev);
1671}
1672
1673/* These functions are yet to be implemented */
1674#define nvme_error_detected NULL
1675#define nvme_dump_registers NULL
1676#define nvme_link_reset NULL
1677#define nvme_slot_reset NULL
1678#define nvme_error_resume NULL
1679#define nvme_suspend NULL
1680#define nvme_resume NULL
1681
1682static struct pci_error_handlers nvme_err_handler = {
1683 .error_detected = nvme_error_detected,
1684 .mmio_enabled = nvme_dump_registers,
1685 .link_reset = nvme_link_reset,
1686 .slot_reset = nvme_slot_reset,
1687 .resume = nvme_error_resume,
1688};
1689
1690/* Move to pci_ids.h later */
1691#define PCI_CLASS_STORAGE_EXPRESS 0x010802
1692
1693static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1694 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1695 { 0, }
1696};
1697MODULE_DEVICE_TABLE(pci, nvme_id_table);
1698
1699static struct pci_driver nvme_driver = {
1700 .name = "nvme",
1701 .id_table = nvme_id_table,
1702 .probe = nvme_probe,
1703 .remove = __devexit_p(nvme_remove),
1704 .suspend = nvme_suspend,
1705 .resume = nvme_resume,
1706 .err_handler = &nvme_err_handler,
1707};
1708
1709static int __init nvme_init(void)
1710{
1fa6aead
MW
1711 int result = -EBUSY;
1712
1713 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1714 if (IS_ERR(nvme_thread))
1715 return PTR_ERR(nvme_thread);
b60503ba
MW
1716
1717 nvme_major = register_blkdev(nvme_major, "nvme");
1718 if (nvme_major <= 0)
1fa6aead 1719 goto kill_kthread;
b60503ba
MW
1720
1721 result = pci_register_driver(&nvme_driver);
1fa6aead
MW
1722 if (result)
1723 goto unregister_blkdev;
1724 return 0;
b60503ba 1725
1fa6aead 1726 unregister_blkdev:
b60503ba 1727 unregister_blkdev(nvme_major, "nvme");
1fa6aead
MW
1728 kill_kthread:
1729 kthread_stop(nvme_thread);
b60503ba
MW
1730 return result;
1731}
1732
1733static void __exit nvme_exit(void)
1734{
1735 pci_unregister_driver(&nvme_driver);
1736 unregister_blkdev(nvme_major, "nvme");
1fa6aead 1737 kthread_stop(nvme_thread);
b60503ba
MW
1738}
1739
1740MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1741MODULE_LICENSE("GPL");
be5e0948 1742MODULE_VERSION("0.6");
b60503ba
MW
1743module_init(nvme_init);
1744module_exit(nvme_exit);