NVMe: Use requested sync command timeout
[linux-2.6-block.git] / drivers / block / nvme-core.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
15#include <linux/nvme.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
42f61420 19#include <linux/cpu.h>
fd63e9ce 20#include <linux/delay.h>
b60503ba
MW
21#include <linux/errno.h>
22#include <linux/fs.h>
23#include <linux/genhd.h>
4cc09e2d 24#include <linux/hdreg.h>
5aff9382 25#include <linux/idr.h>
b60503ba
MW
26#include <linux/init.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/kdev_t.h>
1fa6aead 30#include <linux/kthread.h>
b60503ba
MW
31#include <linux/kernel.h>
32#include <linux/mm.h>
33#include <linux/module.h>
34#include <linux/moduleparam.h>
35#include <linux/pci.h>
be7b6275 36#include <linux/poison.h>
c3bfe717 37#include <linux/ptrace.h>
b60503ba
MW
38#include <linux/sched.h>
39#include <linux/slab.h>
e1e5e564 40#include <linux/t10-pi.h>
b60503ba 41#include <linux/types.h>
5d0f6131 42#include <scsi/sg.h>
797a796a
HM
43#include <asm-generic/io-64-nonatomic-lo-hi.h>
44
b3fffdef 45#define NVME_MINORS (1U << MINORBITS)
9d43cf64 46#define NVME_Q_DEPTH 1024
d31af0a3 47#define NVME_AQ_DEPTH 256
b60503ba
MW
48#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
49#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
9d43cf64 50#define ADMIN_TIMEOUT (admin_timeout * HZ)
2484f407 51#define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
9d43cf64
KB
52
53static unsigned char admin_timeout = 60;
54module_param(admin_timeout, byte, 0644);
55MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
b60503ba 56
bd67608a
MW
57unsigned char nvme_io_timeout = 30;
58module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
b355084a 59MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
b60503ba 60
2484f407
DM
61static unsigned char shutdown_timeout = 5;
62module_param(shutdown_timeout, byte, 0644);
63MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
64
b60503ba
MW
65static int nvme_major;
66module_param(nvme_major, int, 0);
67
b3fffdef
KB
68static int nvme_char_major;
69module_param(nvme_char_major, int, 0);
70
58ffacb5
MW
71static int use_threaded_interrupts;
72module_param(use_threaded_interrupts, int, 0);
73
1fa6aead
MW
74static DEFINE_SPINLOCK(dev_list_lock);
75static LIST_HEAD(dev_list);
76static struct task_struct *nvme_thread;
9a6b9458 77static struct workqueue_struct *nvme_workq;
b9afca3e 78static wait_queue_head_t nvme_kthread_wait;
1fa6aead 79
b3fffdef
KB
80static struct class *nvme_class;
81
d4b4ff8e 82static void nvme_reset_failed_dev(struct work_struct *ws);
a4aea562 83static int nvme_process_cq(struct nvme_queue *nvmeq);
d4b4ff8e 84
4d115420
KB
85struct async_cmd_info {
86 struct kthread_work work;
87 struct kthread_worker *worker;
a4aea562 88 struct request *req;
4d115420
KB
89 u32 result;
90 int status;
91 void *ctx;
92};
1fa6aead 93
b60503ba
MW
94/*
95 * An NVM Express queue. Each device has at least two (one for admin
96 * commands and one for I/O commands).
97 */
98struct nvme_queue {
99 struct device *q_dmadev;
091b6092 100 struct nvme_dev *dev;
3193f07b 101 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
102 spinlock_t q_lock;
103 struct nvme_command *sq_cmds;
104 volatile struct nvme_completion *cqes;
105 dma_addr_t sq_dma_addr;
106 dma_addr_t cq_dma_addr;
b60503ba
MW
107 u32 __iomem *q_db;
108 u16 q_depth;
6222d172 109 s16 cq_vector;
b60503ba
MW
110 u16 sq_head;
111 u16 sq_tail;
112 u16 cq_head;
c30341dc 113 u16 qid;
e9539f47
MW
114 u8 cq_phase;
115 u8 cqe_seen;
4d115420 116 struct async_cmd_info cmdinfo;
a4aea562 117 struct blk_mq_hw_ctx *hctx;
b60503ba
MW
118};
119
120/*
121 * Check we didin't inadvertently grow the command struct
122 */
123static inline void _nvme_check_size(void)
124{
125 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
126 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 130 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 131 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
132 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 136 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
137}
138
edd10d33 139typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
c2f5b650
MW
140 struct nvme_completion *);
141
e85248e5 142struct nvme_cmd_info {
c2f5b650
MW
143 nvme_completion_fn fn;
144 void *ctx;
c30341dc 145 int aborted;
a4aea562 146 struct nvme_queue *nvmeq;
ac3dd5bd 147 struct nvme_iod iod[0];
e85248e5
MW
148};
149
ac3dd5bd
JA
150/*
151 * Max size of iod being embedded in the request payload
152 */
153#define NVME_INT_PAGES 2
154#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size)
fda631ff 155#define NVME_INT_MASK 0x01
ac3dd5bd
JA
156
157/*
158 * Will slightly overestimate the number of pages needed. This is OK
159 * as it only leads to a small amount of wasted memory for the lifetime of
160 * the I/O.
161 */
162static int nvme_npages(unsigned size, struct nvme_dev *dev)
163{
164 unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
165 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
166}
167
168static unsigned int nvme_cmd_size(struct nvme_dev *dev)
169{
170 unsigned int ret = sizeof(struct nvme_cmd_info);
171
172 ret += sizeof(struct nvme_iod);
173 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
174 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
175
176 return ret;
177}
178
a4aea562
MB
179static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
180 unsigned int hctx_idx)
e85248e5 181{
a4aea562
MB
182 struct nvme_dev *dev = data;
183 struct nvme_queue *nvmeq = dev->queues[0];
184
185 WARN_ON(nvmeq->hctx);
186 nvmeq->hctx = hctx;
187 hctx->driver_data = nvmeq;
188 return 0;
e85248e5
MW
189}
190
a4aea562
MB
191static int nvme_admin_init_request(void *data, struct request *req,
192 unsigned int hctx_idx, unsigned int rq_idx,
193 unsigned int numa_node)
22404274 194{
a4aea562
MB
195 struct nvme_dev *dev = data;
196 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
197 struct nvme_queue *nvmeq = dev->queues[0];
198
199 BUG_ON(!nvmeq);
200 cmd->nvmeq = nvmeq;
201 return 0;
22404274
KB
202}
203
2c30540b
JA
204static void nvme_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
205{
206 struct nvme_queue *nvmeq = hctx->driver_data;
207
208 nvmeq->hctx = NULL;
209}
210
a4aea562
MB
211static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
212 unsigned int hctx_idx)
b60503ba 213{
a4aea562
MB
214 struct nvme_dev *dev = data;
215 struct nvme_queue *nvmeq = dev->queues[
216 (hctx_idx % dev->queue_count) + 1];
b60503ba 217
a4aea562
MB
218 if (!nvmeq->hctx)
219 nvmeq->hctx = hctx;
220
221 /* nvmeq queues are shared between namespaces. We assume here that
222 * blk-mq map the tags so they match up with the nvme queue tags. */
223 WARN_ON(nvmeq->hctx->tags != hctx->tags);
b60503ba 224
a4aea562
MB
225 hctx->driver_data = nvmeq;
226 return 0;
b60503ba
MW
227}
228
a4aea562
MB
229static int nvme_init_request(void *data, struct request *req,
230 unsigned int hctx_idx, unsigned int rq_idx,
231 unsigned int numa_node)
b60503ba 232{
a4aea562
MB
233 struct nvme_dev *dev = data;
234 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
235 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
236
237 BUG_ON(!nvmeq);
238 cmd->nvmeq = nvmeq;
239 return 0;
240}
241
242static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
243 nvme_completion_fn handler)
244{
245 cmd->fn = handler;
246 cmd->ctx = ctx;
247 cmd->aborted = 0;
c917dfe5 248 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
b60503ba
MW
249}
250
ac3dd5bd
JA
251static void *iod_get_private(struct nvme_iod *iod)
252{
253 return (void *) (iod->private & ~0x1UL);
254}
255
256/*
257 * If bit 0 is set, the iod is embedded in the request payload.
258 */
259static bool iod_should_kfree(struct nvme_iod *iod)
260{
fda631ff 261 return (iod->private & NVME_INT_MASK) == 0;
ac3dd5bd
JA
262}
263
c2f5b650
MW
264/* Special values must be less than 0x1000 */
265#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
d2d87034
MW
266#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
267#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
268#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
be7b6275 269
edd10d33 270static void special_completion(struct nvme_queue *nvmeq, void *ctx,
c2f5b650
MW
271 struct nvme_completion *cqe)
272{
273 if (ctx == CMD_CTX_CANCELLED)
274 return;
c2f5b650 275 if (ctx == CMD_CTX_COMPLETED) {
edd10d33 276 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
277 "completed id %d twice on queue %d\n",
278 cqe->command_id, le16_to_cpup(&cqe->sq_id));
279 return;
280 }
281 if (ctx == CMD_CTX_INVALID) {
edd10d33 282 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
283 "invalid id %d completed on queue %d\n",
284 cqe->command_id, le16_to_cpup(&cqe->sq_id));
285 return;
286 }
edd10d33 287 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
c2f5b650
MW
288}
289
a4aea562 290static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
b60503ba 291{
c2f5b650 292 void *ctx;
b60503ba 293
859361a2 294 if (fn)
a4aea562
MB
295 *fn = cmd->fn;
296 ctx = cmd->ctx;
297 cmd->fn = special_completion;
298 cmd->ctx = CMD_CTX_CANCELLED;
c2f5b650 299 return ctx;
b60503ba
MW
300}
301
a4aea562
MB
302static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
303 struct nvme_completion *cqe)
3c0cf138 304{
a4aea562
MB
305 u32 result = le32_to_cpup(&cqe->result);
306 u16 status = le16_to_cpup(&cqe->status) >> 1;
307
308 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
309 ++nvmeq->dev->event_limit;
310 if (status == NVME_SC_SUCCESS)
311 dev_warn(nvmeq->q_dmadev,
312 "async event result %08x\n", result);
b60503ba
MW
313}
314
a4aea562
MB
315static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
316 struct nvme_completion *cqe)
5a92e700 317{
a4aea562
MB
318 struct request *req = ctx;
319
320 u16 status = le16_to_cpup(&cqe->status) >> 1;
321 u32 result = le32_to_cpup(&cqe->result);
a51afb54 322
9d135bb8 323 blk_mq_free_hctx_request(nvmeq->hctx, req);
a51afb54 324
a4aea562
MB
325 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
326 ++nvmeq->dev->abort_limit;
5a92e700
KB
327}
328
a4aea562
MB
329static void async_completion(struct nvme_queue *nvmeq, void *ctx,
330 struct nvme_completion *cqe)
b60503ba 331{
a4aea562
MB
332 struct async_cmd_info *cmdinfo = ctx;
333 cmdinfo->result = le32_to_cpup(&cqe->result);
334 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
335 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
9d135bb8 336 blk_mq_free_hctx_request(nvmeq->hctx, cmdinfo->req);
b60503ba
MW
337}
338
a4aea562
MB
339static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
340 unsigned int tag)
b60503ba 341{
a4aea562
MB
342 struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
343 struct request *req = blk_mq_tag_to_rq(hctx->tags, tag);
a51afb54 344
a4aea562 345 return blk_mq_rq_to_pdu(req);
4f5099af
KB
346}
347
a4aea562
MB
348/*
349 * Called with local interrupts disabled and the q_lock held. May not sleep.
350 */
351static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
352 nvme_completion_fn *fn)
4f5099af 353{
a4aea562
MB
354 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
355 void *ctx;
356 if (tag >= nvmeq->q_depth) {
357 *fn = special_completion;
358 return CMD_CTX_INVALID;
359 }
360 if (fn)
361 *fn = cmd->fn;
362 ctx = cmd->ctx;
363 cmd->fn = special_completion;
364 cmd->ctx = CMD_CTX_COMPLETED;
365 return ctx;
b60503ba
MW
366}
367
368/**
714a7a22 369 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
370 * @nvmeq: The queue to use
371 * @cmd: The command to send
372 *
373 * Safe to use from interrupt context
374 */
a4aea562 375static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
b60503ba 376{
a4aea562
MB
377 u16 tail = nvmeq->sq_tail;
378
b60503ba 379 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
b60503ba
MW
380 if (++tail == nvmeq->q_depth)
381 tail = 0;
7547881d 382 writel(tail, nvmeq->q_db);
b60503ba 383 nvmeq->sq_tail = tail;
b60503ba
MW
384
385 return 0;
386}
387
a4aea562
MB
388static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
389{
390 unsigned long flags;
391 int ret;
392 spin_lock_irqsave(&nvmeq->q_lock, flags);
393 ret = __nvme_submit_cmd(nvmeq, cmd);
394 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
395 return ret;
396}
397
eca18b23 398static __le64 **iod_list(struct nvme_iod *iod)
e025344c 399{
eca18b23 400 return ((void *)iod) + iod->offset;
e025344c
SMM
401}
402
ac3dd5bd
JA
403static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
404 unsigned nseg, unsigned long private)
eca18b23 405{
ac3dd5bd
JA
406 iod->private = private;
407 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
408 iod->npages = -1;
409 iod->length = nbytes;
410 iod->nents = 0;
eca18b23 411}
b60503ba 412
eca18b23 413static struct nvme_iod *
ac3dd5bd
JA
414__nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
415 unsigned long priv, gfp_t gfp)
b60503ba 416{
eca18b23 417 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
ac3dd5bd 418 sizeof(__le64 *) * nvme_npages(bytes, dev) +
eca18b23
MW
419 sizeof(struct scatterlist) * nseg, gfp);
420
ac3dd5bd
JA
421 if (iod)
422 iod_init(iod, bytes, nseg, priv);
eca18b23
MW
423
424 return iod;
b60503ba
MW
425}
426
ac3dd5bd
JA
427static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
428 gfp_t gfp)
429{
430 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
431 sizeof(struct nvme_dsm_range);
ac3dd5bd
JA
432 struct nvme_iod *iod;
433
434 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
435 size <= NVME_INT_BYTES(dev)) {
436 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
437
438 iod = cmd->iod;
ac3dd5bd 439 iod_init(iod, size, rq->nr_phys_segments,
fda631ff 440 (unsigned long) rq | NVME_INT_MASK);
ac3dd5bd
JA
441 return iod;
442 }
443
444 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
445 (unsigned long) rq, gfp);
446}
447
d29ec824 448static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
b60503ba 449{
1d090624 450 const int last_prp = dev->page_size / 8 - 1;
eca18b23
MW
451 int i;
452 __le64 **list = iod_list(iod);
453 dma_addr_t prp_dma = iod->first_dma;
454
455 if (iod->npages == 0)
456 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
457 for (i = 0; i < iod->npages; i++) {
458 __le64 *prp_list = list[i];
459 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
460 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
461 prp_dma = next_prp_dma;
462 }
ac3dd5bd
JA
463
464 if (iod_should_kfree(iod))
465 kfree(iod);
b60503ba
MW
466}
467
b4ff9c8d
KB
468static int nvme_error_status(u16 status)
469{
470 switch (status & 0x7ff) {
471 case NVME_SC_SUCCESS:
472 return 0;
473 case NVME_SC_CAP_EXCEEDED:
474 return -ENOSPC;
475 default:
476 return -EIO;
477 }
478}
479
52b68d7e 480#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
481static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
482{
483 if (be32_to_cpu(pi->ref_tag) == v)
484 pi->ref_tag = cpu_to_be32(p);
485}
486
487static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
488{
489 if (be32_to_cpu(pi->ref_tag) == p)
490 pi->ref_tag = cpu_to_be32(v);
491}
492
493/**
494 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
495 *
496 * The virtual start sector is the one that was originally submitted by the
497 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
498 * start sector may be different. Remap protection information to match the
499 * physical LBA on writes, and back to the original seed on reads.
500 *
501 * Type 0 and 3 do not have a ref tag, so no remapping required.
502 */
503static void nvme_dif_remap(struct request *req,
504 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
505{
506 struct nvme_ns *ns = req->rq_disk->private_data;
507 struct bio_integrity_payload *bip;
508 struct t10_pi_tuple *pi;
509 void *p, *pmap;
510 u32 i, nlb, ts, phys, virt;
511
512 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
513 return;
514
515 bip = bio_integrity(req->bio);
516 if (!bip)
517 return;
518
519 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
520
521 p = pmap;
522 virt = bip_get_seed(bip);
523 phys = nvme_block_nr(ns, blk_rq_pos(req));
524 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
525 ts = ns->disk->integrity->tuple_size;
526
527 for (i = 0; i < nlb; i++, virt++, phys++) {
528 pi = (struct t10_pi_tuple *)p;
529 dif_swap(phys, virt, pi);
530 p += ts;
531 }
532 kunmap_atomic(pmap);
533}
534
52b68d7e
KB
535static int nvme_noop_verify(struct blk_integrity_iter *iter)
536{
537 return 0;
538}
539
540static int nvme_noop_generate(struct blk_integrity_iter *iter)
541{
542 return 0;
543}
544
545struct blk_integrity nvme_meta_noop = {
546 .name = "NVME_META_NOOP",
547 .generate_fn = nvme_noop_generate,
548 .verify_fn = nvme_noop_verify,
549};
550
551static void nvme_init_integrity(struct nvme_ns *ns)
552{
553 struct blk_integrity integrity;
554
555 switch (ns->pi_type) {
556 case NVME_NS_DPS_PI_TYPE3:
557 integrity = t10_pi_type3_crc;
558 break;
559 case NVME_NS_DPS_PI_TYPE1:
560 case NVME_NS_DPS_PI_TYPE2:
561 integrity = t10_pi_type1_crc;
562 break;
563 default:
564 integrity = nvme_meta_noop;
565 break;
566 }
567 integrity.tuple_size = ns->ms;
568 blk_integrity_register(ns->disk, &integrity);
569 blk_queue_max_integrity_segments(ns->queue, 1);
570}
571#else /* CONFIG_BLK_DEV_INTEGRITY */
572static void nvme_dif_remap(struct request *req,
573 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
574{
575}
576static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
577{
578}
579static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
580{
581}
582static void nvme_init_integrity(struct nvme_ns *ns)
583{
584}
585#endif
586
a4aea562 587static void req_completion(struct nvme_queue *nvmeq, void *ctx,
b60503ba
MW
588 struct nvme_completion *cqe)
589{
eca18b23 590 struct nvme_iod *iod = ctx;
ac3dd5bd 591 struct request *req = iod_get_private(iod);
a4aea562
MB
592 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
593
b60503ba
MW
594 u16 status = le16_to_cpup(&cqe->status) >> 1;
595
edd10d33 596 if (unlikely(status)) {
a4aea562
MB
597 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
598 && (jiffies - req->start_time) < req->timeout) {
c9d3bf88
KB
599 unsigned long flags;
600
a4aea562 601 blk_mq_requeue_request(req);
c9d3bf88
KB
602 spin_lock_irqsave(req->q->queue_lock, flags);
603 if (!blk_queue_stopped(req->q))
604 blk_mq_kick_requeue_list(req->q);
605 spin_unlock_irqrestore(req->q->queue_lock, flags);
edd10d33
KB
606 return;
607 }
d29ec824 608 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
d29ec824
CH
609 req->errors = status;
610 } else {
611 req->errors = nvme_error_status(status);
612 }
a4aea562
MB
613 } else
614 req->errors = 0;
a0a931d6
KB
615 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
616 u32 result = le32_to_cpup(&cqe->result);
617 req->special = (void *)(uintptr_t)result;
618 }
a4aea562
MB
619
620 if (cmd_rq->aborted)
e75ec752 621 dev_warn(nvmeq->dev->dev,
a4aea562
MB
622 "completing aborted command with status:%04x\n",
623 status);
624
e1e5e564 625 if (iod->nents) {
e75ec752 626 dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
a4aea562 627 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
e1e5e564
KB
628 if (blk_integrity_rq(req)) {
629 if (!rq_data_dir(req))
630 nvme_dif_remap(req, nvme_dif_complete);
e75ec752 631 dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
e1e5e564
KB
632 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
633 }
634 }
edd10d33 635 nvme_free_iod(nvmeq->dev, iod);
3291fa57 636
a4aea562 637 blk_mq_complete_request(req);
b60503ba
MW
638}
639
184d2944 640/* length is in bytes. gfp flags indicates whether we may sleep. */
d29ec824
CH
641static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
642 int total_len, gfp_t gfp)
ff22b54f 643{
99802a7a 644 struct dma_pool *pool;
eca18b23
MW
645 int length = total_len;
646 struct scatterlist *sg = iod->sg;
ff22b54f
MW
647 int dma_len = sg_dma_len(sg);
648 u64 dma_addr = sg_dma_address(sg);
f137e0f1
MI
649 u32 page_size = dev->page_size;
650 int offset = dma_addr & (page_size - 1);
e025344c 651 __le64 *prp_list;
eca18b23 652 __le64 **list = iod_list(iod);
e025344c 653 dma_addr_t prp_dma;
eca18b23 654 int nprps, i;
ff22b54f 655
1d090624 656 length -= (page_size - offset);
ff22b54f 657 if (length <= 0)
eca18b23 658 return total_len;
ff22b54f 659
1d090624 660 dma_len -= (page_size - offset);
ff22b54f 661 if (dma_len) {
1d090624 662 dma_addr += (page_size - offset);
ff22b54f
MW
663 } else {
664 sg = sg_next(sg);
665 dma_addr = sg_dma_address(sg);
666 dma_len = sg_dma_len(sg);
667 }
668
1d090624 669 if (length <= page_size) {
edd10d33 670 iod->first_dma = dma_addr;
eca18b23 671 return total_len;
e025344c
SMM
672 }
673
1d090624 674 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
675 if (nprps <= (256 / 8)) {
676 pool = dev->prp_small_pool;
eca18b23 677 iod->npages = 0;
99802a7a
MW
678 } else {
679 pool = dev->prp_page_pool;
eca18b23 680 iod->npages = 1;
99802a7a
MW
681 }
682
b77954cb
MW
683 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
684 if (!prp_list) {
edd10d33 685 iod->first_dma = dma_addr;
eca18b23 686 iod->npages = -1;
1d090624 687 return (total_len - length) + page_size;
b77954cb 688 }
eca18b23
MW
689 list[0] = prp_list;
690 iod->first_dma = prp_dma;
e025344c
SMM
691 i = 0;
692 for (;;) {
1d090624 693 if (i == page_size >> 3) {
e025344c 694 __le64 *old_prp_list = prp_list;
b77954cb 695 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
eca18b23
MW
696 if (!prp_list)
697 return total_len - length;
698 list[iod->npages++] = prp_list;
7523d834
MW
699 prp_list[0] = old_prp_list[i - 1];
700 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
701 i = 1;
e025344c
SMM
702 }
703 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
704 dma_len -= page_size;
705 dma_addr += page_size;
706 length -= page_size;
e025344c
SMM
707 if (length <= 0)
708 break;
709 if (dma_len > 0)
710 continue;
711 BUG_ON(dma_len < 0);
712 sg = sg_next(sg);
713 dma_addr = sg_dma_address(sg);
714 dma_len = sg_dma_len(sg);
ff22b54f
MW
715 }
716
eca18b23 717 return total_len;
ff22b54f
MW
718}
719
d29ec824
CH
720static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
721 struct nvme_iod *iod)
722{
723 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
724
725 memcpy(cmnd, req->cmd, sizeof(struct nvme_command));
726 cmnd->rw.command_id = req->tag;
727 if (req->nr_phys_segments) {
728 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
729 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
730 }
731
732 if (++nvmeq->sq_tail == nvmeq->q_depth)
733 nvmeq->sq_tail = 0;
734 writel(nvmeq->sq_tail, nvmeq->q_db);
735}
736
a4aea562
MB
737/*
738 * We reuse the small pool to allocate the 16-byte range here as it is not
739 * worth having a special pool for these or additional cases to handle freeing
740 * the iod.
741 */
742static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
743 struct request *req, struct nvme_iod *iod)
0e5e4f0e 744{
edd10d33
KB
745 struct nvme_dsm_range *range =
746 (struct nvme_dsm_range *)iod_list(iod)[0];
0e5e4f0e
KB
747 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
748
0e5e4f0e 749 range->cattr = cpu_to_le32(0);
a4aea562
MB
750 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
751 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
0e5e4f0e
KB
752
753 memset(cmnd, 0, sizeof(*cmnd));
754 cmnd->dsm.opcode = nvme_cmd_dsm;
a4aea562 755 cmnd->dsm.command_id = req->tag;
0e5e4f0e
KB
756 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
757 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
758 cmnd->dsm.nr = 0;
759 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
760
761 if (++nvmeq->sq_tail == nvmeq->q_depth)
762 nvmeq->sq_tail = 0;
763 writel(nvmeq->sq_tail, nvmeq->q_db);
0e5e4f0e
KB
764}
765
a4aea562 766static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
00df5cb4
MW
767 int cmdid)
768{
769 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
770
771 memset(cmnd, 0, sizeof(*cmnd));
772 cmnd->common.opcode = nvme_cmd_flush;
773 cmnd->common.command_id = cmdid;
774 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
775
776 if (++nvmeq->sq_tail == nvmeq->q_depth)
777 nvmeq->sq_tail = 0;
778 writel(nvmeq->sq_tail, nvmeq->q_db);
00df5cb4
MW
779}
780
a4aea562
MB
781static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
782 struct nvme_ns *ns)
b60503ba 783{
ac3dd5bd 784 struct request *req = iod_get_private(iod);
ff22b54f 785 struct nvme_command *cmnd;
a4aea562
MB
786 u16 control = 0;
787 u32 dsmgmt = 0;
00df5cb4 788
a4aea562 789 if (req->cmd_flags & REQ_FUA)
b60503ba 790 control |= NVME_RW_FUA;
a4aea562 791 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
b60503ba
MW
792 control |= NVME_RW_LR;
793
a4aea562 794 if (req->cmd_flags & REQ_RAHEAD)
b60503ba
MW
795 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
796
ff22b54f 797 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
b8deb62c 798 memset(cmnd, 0, sizeof(*cmnd));
b60503ba 799
a4aea562
MB
800 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
801 cmnd->rw.command_id = req->tag;
ff22b54f 802 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
edd10d33
KB
803 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
804 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
a4aea562
MB
805 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
806 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
e1e5e564
KB
807
808 if (blk_integrity_rq(req)) {
809 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
810 switch (ns->pi_type) {
811 case NVME_NS_DPS_PI_TYPE3:
812 control |= NVME_RW_PRINFO_PRCHK_GUARD;
813 break;
814 case NVME_NS_DPS_PI_TYPE1:
815 case NVME_NS_DPS_PI_TYPE2:
816 control |= NVME_RW_PRINFO_PRCHK_GUARD |
817 NVME_RW_PRINFO_PRCHK_REF;
818 cmnd->rw.reftag = cpu_to_le32(
819 nvme_block_nr(ns, blk_rq_pos(req)));
820 break;
821 }
822 } else if (ns->ms)
823 control |= NVME_RW_PRINFO_PRACT;
824
ff22b54f
MW
825 cmnd->rw.control = cpu_to_le16(control);
826 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba 827
b60503ba
MW
828 if (++nvmeq->sq_tail == nvmeq->q_depth)
829 nvmeq->sq_tail = 0;
7547881d 830 writel(nvmeq->sq_tail, nvmeq->q_db);
b60503ba 831
1974b1ae 832 return 0;
edd10d33
KB
833}
834
d29ec824
CH
835/*
836 * NOTE: ns is NULL when called on the admin queue.
837 */
a4aea562
MB
838static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
839 const struct blk_mq_queue_data *bd)
edd10d33 840{
a4aea562
MB
841 struct nvme_ns *ns = hctx->queue->queuedata;
842 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 843 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
844 struct request *req = bd->rq;
845 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
edd10d33 846 struct nvme_iod *iod;
a4aea562 847 enum dma_data_direction dma_dir;
edd10d33 848
e1e5e564
KB
849 /*
850 * If formated with metadata, require the block layer provide a buffer
851 * unless this namespace is formated such that the metadata can be
852 * stripped/generated by the controller with PRACT=1.
853 */
d29ec824 854 if (ns && ns->ms && !blk_integrity_rq(req)) {
e1e5e564
KB
855 if (!(ns->pi_type && ns->ms == 8)) {
856 req->errors = -EFAULT;
857 blk_mq_complete_request(req);
858 return BLK_MQ_RQ_QUEUE_OK;
859 }
860 }
861
d29ec824 862 iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
edd10d33 863 if (!iod)
fe54303e 864 return BLK_MQ_RQ_QUEUE_BUSY;
a4aea562 865
a4aea562 866 if (req->cmd_flags & REQ_DISCARD) {
edd10d33
KB
867 void *range;
868 /*
869 * We reuse the small pool to allocate the 16-byte range here
870 * as it is not worth having a special pool for these or
871 * additional cases to handle freeing the iod.
872 */
d29ec824 873 range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
edd10d33 874 &iod->first_dma);
a4aea562 875 if (!range)
fe54303e 876 goto retry_cmd;
edd10d33
KB
877 iod_list(iod)[0] = (__le64 *)range;
878 iod->npages = 0;
ac3dd5bd 879 } else if (req->nr_phys_segments) {
a4aea562
MB
880 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
881
ac3dd5bd 882 sg_init_table(iod->sg, req->nr_phys_segments);
a4aea562 883 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
fe54303e
JA
884 if (!iod->nents)
885 goto error_cmd;
a4aea562
MB
886
887 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
fe54303e 888 goto retry_cmd;
a4aea562 889
fe54303e 890 if (blk_rq_bytes(req) !=
d29ec824
CH
891 nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
892 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
fe54303e
JA
893 goto retry_cmd;
894 }
e1e5e564
KB
895 if (blk_integrity_rq(req)) {
896 if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
897 goto error_cmd;
898
899 sg_init_table(iod->meta_sg, 1);
900 if (blk_rq_map_integrity_sg(
901 req->q, req->bio, iod->meta_sg) != 1)
902 goto error_cmd;
903
904 if (rq_data_dir(req))
905 nvme_dif_remap(req, nvme_dif_prep);
906
907 if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
908 goto error_cmd;
909 }
edd10d33 910 }
1974b1ae 911
9af8785a 912 nvme_set_info(cmd, iod, req_completion);
a4aea562 913 spin_lock_irq(&nvmeq->q_lock);
d29ec824
CH
914 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
915 nvme_submit_priv(nvmeq, req, iod);
916 else if (req->cmd_flags & REQ_DISCARD)
a4aea562
MB
917 nvme_submit_discard(nvmeq, ns, req, iod);
918 else if (req->cmd_flags & REQ_FLUSH)
919 nvme_submit_flush(nvmeq, ns, req->tag);
920 else
921 nvme_submit_iod(nvmeq, iod, ns);
922
923 nvme_process_cq(nvmeq);
924 spin_unlock_irq(&nvmeq->q_lock);
925 return BLK_MQ_RQ_QUEUE_OK;
926
fe54303e 927 error_cmd:
d29ec824 928 nvme_free_iod(dev, iod);
fe54303e
JA
929 return BLK_MQ_RQ_QUEUE_ERROR;
930 retry_cmd:
d29ec824 931 nvme_free_iod(dev, iod);
fe54303e 932 return BLK_MQ_RQ_QUEUE_BUSY;
b60503ba
MW
933}
934
e9539f47 935static int nvme_process_cq(struct nvme_queue *nvmeq)
b60503ba 936{
82123460 937 u16 head, phase;
b60503ba 938
b60503ba 939 head = nvmeq->cq_head;
82123460 940 phase = nvmeq->cq_phase;
b60503ba
MW
941
942 for (;;) {
c2f5b650
MW
943 void *ctx;
944 nvme_completion_fn fn;
b60503ba 945 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 946 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
947 break;
948 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
949 if (++head == nvmeq->q_depth) {
950 head = 0;
82123460 951 phase = !phase;
b60503ba 952 }
a4aea562 953 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
edd10d33 954 fn(nvmeq, ctx, &cqe);
b60503ba
MW
955 }
956
957 /* If the controller ignores the cq head doorbell and continuously
958 * writes to the queue, it is theoretically possible to wrap around
959 * the queue twice and mistakenly return IRQ_NONE. Linux only
960 * requires that 0.1% of your interrupts are handled, so this isn't
961 * a big problem.
962 */
82123460 963 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
e9539f47 964 return 0;
b60503ba 965
b80d5ccc 966 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 967 nvmeq->cq_head = head;
82123460 968 nvmeq->cq_phase = phase;
b60503ba 969
e9539f47
MW
970 nvmeq->cqe_seen = 1;
971 return 1;
b60503ba
MW
972}
973
974static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
975{
976 irqreturn_t result;
977 struct nvme_queue *nvmeq = data;
978 spin_lock(&nvmeq->q_lock);
e9539f47
MW
979 nvme_process_cq(nvmeq);
980 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
981 nvmeq->cqe_seen = 0;
58ffacb5
MW
982 spin_unlock(&nvmeq->q_lock);
983 return result;
984}
985
986static irqreturn_t nvme_irq_check(int irq, void *data)
987{
988 struct nvme_queue *nvmeq = data;
989 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
990 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
991 return IRQ_NONE;
992 return IRQ_WAKE_THREAD;
993}
994
b60503ba
MW
995/*
996 * Returns 0 on success. If the result is negative, it's a Linux error code;
997 * if the result is positive, it's an NVM Express status code
998 */
d29ec824
CH
999int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1000 void *buffer, void __user *ubuffer, unsigned bufflen,
1001 u32 *result, unsigned timeout)
b60503ba 1002{
d29ec824
CH
1003 bool write = cmd->common.opcode & 1;
1004 struct bio *bio = NULL;
f705f837 1005 struct request *req;
d29ec824 1006 int ret;
f705f837 1007
d29ec824 1008 req = blk_mq_alloc_request(q, write, GFP_KERNEL, false);
f705f837
CH
1009 if (IS_ERR(req))
1010 return PTR_ERR(req);
b60503ba 1011
d29ec824
CH
1012 req->cmd_type = REQ_TYPE_DRV_PRIV;
1013 req->__data_len = 0;
1014 req->__sector = (sector_t) -1;
1015 req->bio = req->biotail = NULL;
b60503ba 1016
f4ff414a 1017 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
a4aea562 1018
d29ec824
CH
1019 req->cmd = (unsigned char *)cmd;
1020 req->cmd_len = sizeof(struct nvme_command);
a0a931d6 1021 req->special = (void *)0;
b60503ba 1022
d29ec824
CH
1023 if (buffer && bufflen) {
1024 ret = blk_rq_map_kern(q, req, buffer, bufflen, __GFP_WAIT);
1025 if (ret)
1026 goto out;
1027 } else if (ubuffer && bufflen) {
1028 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, __GFP_WAIT);
1029 if (ret)
1030 goto out;
1031 bio = req->bio;
1032 }
3c0cf138 1033
d29ec824
CH
1034 blk_execute_rq(req->q, NULL, req, 0);
1035 if (bio)
1036 blk_rq_unmap_user(bio);
b60503ba 1037 if (result)
a0a931d6 1038 *result = (u32)(uintptr_t)req->special;
d29ec824
CH
1039 ret = req->errors;
1040 out:
f705f837 1041 blk_mq_free_request(req);
d29ec824 1042 return ret;
f705f837
CH
1043}
1044
d29ec824
CH
1045int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1046 void *buffer, unsigned bufflen)
f705f837 1047{
d29ec824 1048 return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
b60503ba
MW
1049}
1050
a4aea562
MB
1051static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1052{
1053 struct nvme_queue *nvmeq = dev->queues[0];
1054 struct nvme_command c;
1055 struct nvme_cmd_info *cmd_info;
1056 struct request *req;
1057
1efccc9d 1058 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
9f173b33
DC
1059 if (IS_ERR(req))
1060 return PTR_ERR(req);
a4aea562 1061
c917dfe5 1062 req->cmd_flags |= REQ_NO_TIMEOUT;
a4aea562 1063 cmd_info = blk_mq_rq_to_pdu(req);
1efccc9d 1064 nvme_set_info(cmd_info, NULL, async_req_completion);
a4aea562
MB
1065
1066 memset(&c, 0, sizeof(c));
1067 c.common.opcode = nvme_admin_async_event;
1068 c.common.command_id = req->tag;
1069
1efccc9d 1070 blk_mq_free_hctx_request(nvmeq->hctx, req);
a4aea562
MB
1071 return __nvme_submit_cmd(nvmeq, &c);
1072}
1073
1074static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
4d115420
KB
1075 struct nvme_command *cmd,
1076 struct async_cmd_info *cmdinfo, unsigned timeout)
1077{
a4aea562
MB
1078 struct nvme_queue *nvmeq = dev->queues[0];
1079 struct request *req;
1080 struct nvme_cmd_info *cmd_rq;
4d115420 1081
a4aea562 1082 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
9f173b33
DC
1083 if (IS_ERR(req))
1084 return PTR_ERR(req);
a4aea562
MB
1085
1086 req->timeout = timeout;
1087 cmd_rq = blk_mq_rq_to_pdu(req);
1088 cmdinfo->req = req;
1089 nvme_set_info(cmd_rq, cmdinfo, async_completion);
4d115420 1090 cmdinfo->status = -EINTR;
a4aea562
MB
1091
1092 cmd->common.command_id = req->tag;
1093
4f5099af 1094 return nvme_submit_cmd(nvmeq, cmd);
4d115420
KB
1095}
1096
b60503ba
MW
1097static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1098{
b60503ba
MW
1099 struct nvme_command c;
1100
1101 memset(&c, 0, sizeof(c));
1102 c.delete_queue.opcode = opcode;
1103 c.delete_queue.qid = cpu_to_le16(id);
1104
d29ec824 1105 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
b60503ba
MW
1106}
1107
1108static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1109 struct nvme_queue *nvmeq)
1110{
b60503ba
MW
1111 struct nvme_command c;
1112 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1113
d29ec824
CH
1114 /*
1115 * Note: we (ab)use the fact the the prp fields survive if no data
1116 * is attached to the request.
1117 */
b60503ba
MW
1118 memset(&c, 0, sizeof(c));
1119 c.create_cq.opcode = nvme_admin_create_cq;
1120 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1121 c.create_cq.cqid = cpu_to_le16(qid);
1122 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1123 c.create_cq.cq_flags = cpu_to_le16(flags);
1124 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1125
d29ec824 1126 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
b60503ba
MW
1127}
1128
1129static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1130 struct nvme_queue *nvmeq)
1131{
b60503ba
MW
1132 struct nvme_command c;
1133 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1134
d29ec824
CH
1135 /*
1136 * Note: we (ab)use the fact the the prp fields survive if no data
1137 * is attached to the request.
1138 */
b60503ba
MW
1139 memset(&c, 0, sizeof(c));
1140 c.create_sq.opcode = nvme_admin_create_sq;
1141 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1142 c.create_sq.sqid = cpu_to_le16(qid);
1143 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1144 c.create_sq.sq_flags = cpu_to_le16(flags);
1145 c.create_sq.cqid = cpu_to_le16(qid);
1146
d29ec824 1147 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
b60503ba
MW
1148}
1149
1150static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1151{
1152 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1153}
1154
1155static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1156{
1157 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1158}
1159
d29ec824 1160int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
bc5fc7e4 1161{
d29ec824
CH
1162 struct nvme_command c = {
1163 .identify.opcode = nvme_admin_identify,
1164 .identify.cns = cpu_to_le32(1),
1165 };
1166 int error;
bc5fc7e4 1167
d29ec824
CH
1168 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1169 if (!*id)
1170 return -ENOMEM;
1171
1172 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1173 sizeof(struct nvme_id_ctrl));
1174 if (error)
1175 kfree(*id);
1176 return error;
1177}
1178
1179int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
1180 struct nvme_id_ns **id)
1181{
1182 struct nvme_command c = {
1183 .identify.opcode = nvme_admin_identify,
1184 .identify.nsid = cpu_to_le32(nsid),
1185 };
1186 int error;
bc5fc7e4 1187
d29ec824
CH
1188 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
1189 if (!*id)
1190 return -ENOMEM;
1191
1192 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1193 sizeof(struct nvme_id_ns));
1194 if (error)
1195 kfree(*id);
1196 return error;
bc5fc7e4
MW
1197}
1198
5d0f6131 1199int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
08df1e05 1200 dma_addr_t dma_addr, u32 *result)
bc5fc7e4
MW
1201{
1202 struct nvme_command c;
1203
1204 memset(&c, 0, sizeof(c));
1205 c.features.opcode = nvme_admin_get_features;
a42cecce 1206 c.features.nsid = cpu_to_le32(nsid);
bc5fc7e4
MW
1207 c.features.prp1 = cpu_to_le64(dma_addr);
1208 c.features.fid = cpu_to_le32(fid);
bc5fc7e4 1209
d29ec824
CH
1210 return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1211 result, 0);
df348139
MW
1212}
1213
5d0f6131
VV
1214int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1215 dma_addr_t dma_addr, u32 *result)
df348139
MW
1216{
1217 struct nvme_command c;
1218
1219 memset(&c, 0, sizeof(c));
1220 c.features.opcode = nvme_admin_set_features;
1221 c.features.prp1 = cpu_to_le64(dma_addr);
1222 c.features.fid = cpu_to_le32(fid);
1223 c.features.dword11 = cpu_to_le32(dword11);
1224
d29ec824
CH
1225 return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1226 result, 0);
1227}
1228
1229int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
1230{
1231 struct nvme_command c = {
1232 .common.opcode = nvme_admin_get_log_page,
1233 .common.nsid = cpu_to_le32(0xFFFFFFFF),
1234 .common.cdw10[0] = cpu_to_le32(
1235 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
1236 NVME_LOG_SMART),
1237 };
1238 int error;
1239
1240 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
1241 if (!*log)
1242 return -ENOMEM;
1243
1244 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
1245 sizeof(struct nvme_smart_log));
1246 if (error)
1247 kfree(*log);
1248 return error;
bc5fc7e4
MW
1249}
1250
c30341dc 1251/**
a4aea562 1252 * nvme_abort_req - Attempt aborting a request
c30341dc
KB
1253 *
1254 * Schedule controller reset if the command was already aborted once before and
1255 * still hasn't been returned to the driver, or if this is the admin queue.
1256 */
a4aea562 1257static void nvme_abort_req(struct request *req)
c30341dc 1258{
a4aea562
MB
1259 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1260 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
c30341dc 1261 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
1262 struct request *abort_req;
1263 struct nvme_cmd_info *abort_cmd;
1264 struct nvme_command cmd;
c30341dc 1265
a4aea562 1266 if (!nvmeq->qid || cmd_rq->aborted) {
7a509a6b
KB
1267 unsigned long flags;
1268
1269 spin_lock_irqsave(&dev_list_lock, flags);
c30341dc 1270 if (work_busy(&dev->reset_work))
7a509a6b 1271 goto out;
c30341dc 1272 list_del_init(&dev->node);
e75ec752 1273 dev_warn(dev->dev, "I/O %d QID %d timeout, reset controller\n",
a4aea562 1274 req->tag, nvmeq->qid);
9ca97374 1275 dev->reset_workfn = nvme_reset_failed_dev;
c30341dc 1276 queue_work(nvme_workq, &dev->reset_work);
7a509a6b
KB
1277 out:
1278 spin_unlock_irqrestore(&dev_list_lock, flags);
c30341dc
KB
1279 return;
1280 }
1281
1282 if (!dev->abort_limit)
1283 return;
1284
a4aea562
MB
1285 abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1286 false);
9f173b33 1287 if (IS_ERR(abort_req))
c30341dc
KB
1288 return;
1289
a4aea562
MB
1290 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1291 nvme_set_info(abort_cmd, abort_req, abort_completion);
1292
c30341dc
KB
1293 memset(&cmd, 0, sizeof(cmd));
1294 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1295 cmd.abort.cid = req->tag;
c30341dc 1296 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
a4aea562 1297 cmd.abort.command_id = abort_req->tag;
c30341dc
KB
1298
1299 --dev->abort_limit;
a4aea562 1300 cmd_rq->aborted = 1;
c30341dc 1301
a4aea562 1302 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
c30341dc 1303 nvmeq->qid);
a4aea562
MB
1304 if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1305 dev_warn(nvmeq->q_dmadev,
1306 "Could not abort I/O %d QID %d",
1307 req->tag, nvmeq->qid);
c87fd540 1308 blk_mq_free_request(abort_req);
a4aea562 1309 }
c30341dc
KB
1310}
1311
a4aea562
MB
1312static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx *hctx,
1313 struct request *req, void *data, bool reserved)
a09115b2 1314{
a4aea562
MB
1315 struct nvme_queue *nvmeq = data;
1316 void *ctx;
1317 nvme_completion_fn fn;
1318 struct nvme_cmd_info *cmd;
cef6a948
KB
1319 struct nvme_completion cqe;
1320
1321 if (!blk_mq_request_started(req))
1322 return;
a09115b2 1323
a4aea562 1324 cmd = blk_mq_rq_to_pdu(req);
a09115b2 1325
a4aea562
MB
1326 if (cmd->ctx == CMD_CTX_CANCELLED)
1327 return;
1328
cef6a948
KB
1329 if (blk_queue_dying(req->q))
1330 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1331 else
1332 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1333
1334
a4aea562
MB
1335 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1336 req->tag, nvmeq->qid);
1337 ctx = cancel_cmd_info(cmd, &fn);
1338 fn(nvmeq, ctx, &cqe);
a09115b2
MW
1339}
1340
a4aea562 1341static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
9e866774 1342{
a4aea562
MB
1343 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1344 struct nvme_queue *nvmeq = cmd->nvmeq;
1345
1346 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1347 nvmeq->qid);
7a509a6b 1348 spin_lock_irq(&nvmeq->q_lock);
07836e65 1349 nvme_abort_req(req);
7a509a6b 1350 spin_unlock_irq(&nvmeq->q_lock);
a4aea562 1351
07836e65
KB
1352 /*
1353 * The aborted req will be completed on receiving the abort req.
1354 * We enable the timer again. If hit twice, it'll cause a device reset,
1355 * as the device then is in a faulty state.
1356 */
1357 return BLK_EH_RESET_TIMER;
a4aea562 1358}
22404274 1359
a4aea562
MB
1360static void nvme_free_queue(struct nvme_queue *nvmeq)
1361{
9e866774
MW
1362 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1363 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1364 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1365 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1366 kfree(nvmeq);
1367}
1368
a1a5ef99 1369static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1370{
1371 int i;
1372
a1a5ef99 1373 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1374 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1375 dev->queue_count--;
a4aea562 1376 dev->queues[i] = NULL;
f435c282 1377 nvme_free_queue(nvmeq);
121c7ad4 1378 }
22404274
KB
1379}
1380
4d115420
KB
1381/**
1382 * nvme_suspend_queue - put queue into suspended state
1383 * @nvmeq - queue to suspend
4d115420
KB
1384 */
1385static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1386{
2b25d981 1387 int vector;
b60503ba 1388
a09115b2 1389 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1390 if (nvmeq->cq_vector == -1) {
1391 spin_unlock_irq(&nvmeq->q_lock);
1392 return 1;
1393 }
1394 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
42f61420 1395 nvmeq->dev->online_queues--;
2b25d981 1396 nvmeq->cq_vector = -1;
a09115b2
MW
1397 spin_unlock_irq(&nvmeq->q_lock);
1398
6df3dbc8
KB
1399 if (!nvmeq->qid && nvmeq->dev->admin_q)
1400 blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1401
aba2080f
MW
1402 irq_set_affinity_hint(vector, NULL);
1403 free_irq(vector, nvmeq);
b60503ba 1404
4d115420
KB
1405 return 0;
1406}
b60503ba 1407
4d115420
KB
1408static void nvme_clear_queue(struct nvme_queue *nvmeq)
1409{
a4aea562
MB
1410 struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
1411
22404274 1412 spin_lock_irq(&nvmeq->q_lock);
a4aea562
MB
1413 if (hctx && hctx->tags)
1414 blk_mq_tag_busy_iter(hctx, nvme_cancel_queue_ios, nvmeq);
22404274 1415 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1416}
1417
4d115420
KB
1418static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1419{
a4aea562 1420 struct nvme_queue *nvmeq = dev->queues[qid];
4d115420
KB
1421
1422 if (!nvmeq)
1423 return;
1424 if (nvme_suspend_queue(nvmeq))
1425 return;
1426
0e53d180
KB
1427 /* Don't tell the adapter to delete the admin queue.
1428 * Don't tell a removed adapter to delete IO queues. */
1429 if (qid && readl(&dev->bar->csts) != -1) {
b60503ba
MW
1430 adapter_delete_sq(dev, qid);
1431 adapter_delete_cq(dev, qid);
1432 }
07836e65
KB
1433
1434 spin_lock_irq(&nvmeq->q_lock);
1435 nvme_process_cq(nvmeq);
1436 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1437}
1438
1439static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1440 int depth)
b60503ba 1441{
a4aea562 1442 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1443 if (!nvmeq)
1444 return NULL;
1445
e75ec752 1446 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1447 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1448 if (!nvmeq->cqes)
1449 goto free_nvmeq;
b60503ba 1450
e75ec752 1451 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
b60503ba
MW
1452 &nvmeq->sq_dma_addr, GFP_KERNEL);
1453 if (!nvmeq->sq_cmds)
1454 goto free_cqdma;
1455
e75ec752 1456 nvmeq->q_dmadev = dev->dev;
091b6092 1457 nvmeq->dev = dev;
3193f07b
MW
1458 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1459 dev->instance, qid);
b60503ba
MW
1460 spin_lock_init(&nvmeq->q_lock);
1461 nvmeq->cq_head = 0;
82123460 1462 nvmeq->cq_phase = 1;
b80d5ccc 1463 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1464 nvmeq->q_depth = depth;
c30341dc 1465 nvmeq->qid = qid;
22404274 1466 dev->queue_count++;
a4aea562 1467 dev->queues[qid] = nvmeq;
b60503ba
MW
1468
1469 return nvmeq;
1470
1471 free_cqdma:
e75ec752 1472 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1473 nvmeq->cq_dma_addr);
1474 free_nvmeq:
1475 kfree(nvmeq);
1476 return NULL;
1477}
1478
3001082c
MW
1479static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1480 const char *name)
1481{
58ffacb5
MW
1482 if (use_threaded_interrupts)
1483 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
481e5bad 1484 nvme_irq_check, nvme_irq, IRQF_SHARED,
58ffacb5 1485 name, nvmeq);
3001082c 1486 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
481e5bad 1487 IRQF_SHARED, name, nvmeq);
3001082c
MW
1488}
1489
22404274 1490static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1491{
22404274 1492 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1493
7be50e93 1494 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1495 nvmeq->sq_tail = 0;
1496 nvmeq->cq_head = 0;
1497 nvmeq->cq_phase = 1;
b80d5ccc 1498 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1499 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1500 dev->online_queues++;
7be50e93 1501 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1502}
1503
1504static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1505{
1506 struct nvme_dev *dev = nvmeq->dev;
1507 int result;
3f85d50b 1508
2b25d981 1509 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1510 result = adapter_alloc_cq(dev, qid, nvmeq);
1511 if (result < 0)
22404274 1512 return result;
b60503ba
MW
1513
1514 result = adapter_alloc_sq(dev, qid, nvmeq);
1515 if (result < 0)
1516 goto release_cq;
1517
3193f07b 1518 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
b60503ba
MW
1519 if (result < 0)
1520 goto release_sq;
1521
22404274 1522 nvme_init_queue(nvmeq, qid);
22404274 1523 return result;
b60503ba
MW
1524
1525 release_sq:
1526 adapter_delete_sq(dev, qid);
1527 release_cq:
1528 adapter_delete_cq(dev, qid);
22404274 1529 return result;
b60503ba
MW
1530}
1531
ba47e386
MW
1532static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1533{
1534 unsigned long timeout;
1535 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1536
1537 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1538
1539 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1540 msleep(100);
1541 if (fatal_signal_pending(current))
1542 return -EINTR;
1543 if (time_after(jiffies, timeout)) {
e75ec752 1544 dev_err(dev->dev,
27e8166c
MW
1545 "Device not ready; aborting %s\n", enabled ?
1546 "initialisation" : "reset");
ba47e386
MW
1547 return -ENODEV;
1548 }
1549 }
1550
1551 return 0;
1552}
1553
1554/*
1555 * If the device has been passed off to us in an enabled state, just clear
1556 * the enabled bit. The spec says we should set the 'shutdown notification
1557 * bits', but doing so may cause the device to complete commands to the
1558 * admin queue ... and we don't know what memory that might be pointing at!
1559 */
1560static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1561{
01079522
DM
1562 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1563 dev->ctrl_config &= ~NVME_CC_ENABLE;
1564 writel(dev->ctrl_config, &dev->bar->cc);
44af146a 1565
ba47e386
MW
1566 return nvme_wait_ready(dev, cap, false);
1567}
1568
1569static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1570{
01079522
DM
1571 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1572 dev->ctrl_config |= NVME_CC_ENABLE;
1573 writel(dev->ctrl_config, &dev->bar->cc);
1574
ba47e386
MW
1575 return nvme_wait_ready(dev, cap, true);
1576}
1577
1894d8f1
KB
1578static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1579{
1580 unsigned long timeout;
1894d8f1 1581
01079522
DM
1582 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1583 dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1584
1585 writel(dev->ctrl_config, &dev->bar->cc);
1894d8f1 1586
2484f407 1587 timeout = SHUTDOWN_TIMEOUT + jiffies;
1894d8f1
KB
1588 while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1589 NVME_CSTS_SHST_CMPLT) {
1590 msleep(100);
1591 if (fatal_signal_pending(current))
1592 return -EINTR;
1593 if (time_after(jiffies, timeout)) {
e75ec752 1594 dev_err(dev->dev,
1894d8f1
KB
1595 "Device shutdown incomplete; abort shutdown\n");
1596 return -ENODEV;
1597 }
1598 }
1599
1600 return 0;
1601}
1602
a4aea562 1603static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1604 .queue_rq = nvme_queue_rq,
a4aea562
MB
1605 .map_queue = blk_mq_map_queue,
1606 .init_hctx = nvme_admin_init_hctx,
2c30540b 1607 .exit_hctx = nvme_exit_hctx,
a4aea562
MB
1608 .init_request = nvme_admin_init_request,
1609 .timeout = nvme_timeout,
1610};
1611
1612static struct blk_mq_ops nvme_mq_ops = {
1613 .queue_rq = nvme_queue_rq,
1614 .map_queue = blk_mq_map_queue,
1615 .init_hctx = nvme_init_hctx,
2c30540b 1616 .exit_hctx = nvme_exit_hctx,
a4aea562
MB
1617 .init_request = nvme_init_request,
1618 .timeout = nvme_timeout,
1619};
1620
ea191d2f
KB
1621static void nvme_dev_remove_admin(struct nvme_dev *dev)
1622{
1623 if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1624 blk_cleanup_queue(dev->admin_q);
1625 blk_mq_free_tag_set(&dev->admin_tagset);
1626 }
1627}
1628
a4aea562
MB
1629static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1630{
1631 if (!dev->admin_q) {
1632 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1633 dev->admin_tagset.nr_hw_queues = 1;
1634 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1efccc9d 1635 dev->admin_tagset.reserved_tags = 1;
a4aea562 1636 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1637 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1638 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1639 dev->admin_tagset.driver_data = dev;
1640
1641 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1642 return -ENOMEM;
1643
1644 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
35b489d3 1645 if (IS_ERR(dev->admin_q)) {
a4aea562
MB
1646 blk_mq_free_tag_set(&dev->admin_tagset);
1647 return -ENOMEM;
1648 }
ea191d2f
KB
1649 if (!blk_get_queue(dev->admin_q)) {
1650 nvme_dev_remove_admin(dev);
1651 return -ENODEV;
1652 }
0fb59cbc
KB
1653 } else
1654 blk_mq_unfreeze_queue(dev->admin_q);
a4aea562
MB
1655
1656 return 0;
1657}
1658
8d85fce7 1659static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1660{
ba47e386 1661 int result;
b60503ba 1662 u32 aqa;
ba47e386 1663 u64 cap = readq(&dev->bar->cap);
b60503ba 1664 struct nvme_queue *nvmeq;
1d090624
KB
1665 unsigned page_shift = PAGE_SHIFT;
1666 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1667 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1668
1669 if (page_shift < dev_page_min) {
e75ec752 1670 dev_err(dev->dev,
1d090624
KB
1671 "Minimum device page size (%u) too large for "
1672 "host (%u)\n", 1 << dev_page_min,
1673 1 << page_shift);
1674 return -ENODEV;
1675 }
1676 if (page_shift > dev_page_max) {
e75ec752 1677 dev_info(dev->dev,
1d090624
KB
1678 "Device maximum page size (%u) smaller than "
1679 "host (%u); enabling work-around\n",
1680 1 << dev_page_max, 1 << page_shift);
1681 page_shift = dev_page_max;
1682 }
b60503ba 1683
ba47e386
MW
1684 result = nvme_disable_ctrl(dev, cap);
1685 if (result < 0)
1686 return result;
b60503ba 1687
a4aea562 1688 nvmeq = dev->queues[0];
cd638946 1689 if (!nvmeq) {
2b25d981 1690 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1691 if (!nvmeq)
1692 return -ENOMEM;
cd638946 1693 }
b60503ba
MW
1694
1695 aqa = nvmeq->q_depth - 1;
1696 aqa |= aqa << 16;
1697
1d090624
KB
1698 dev->page_size = 1 << page_shift;
1699
01079522 1700 dev->ctrl_config = NVME_CC_CSS_NVM;
1d090624 1701 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
b60503ba 1702 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
7f53f9d2 1703 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
b60503ba
MW
1704
1705 writel(aqa, &dev->bar->aqa);
1706 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1707 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
b60503ba 1708
ba47e386 1709 result = nvme_enable_ctrl(dev, cap);
025c557a 1710 if (result)
a4aea562
MB
1711 goto free_nvmeq;
1712
2b25d981 1713 nvmeq->cq_vector = 0;
3193f07b 1714 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
025c557a 1715 if (result)
0fb59cbc 1716 goto free_nvmeq;
025c557a 1717
b60503ba 1718 return result;
a4aea562 1719
a4aea562
MB
1720 free_nvmeq:
1721 nvme_free_queues(dev, 0);
1722 return result;
b60503ba
MW
1723}
1724
a53295b6
MW
1725static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1726{
1727 struct nvme_dev *dev = ns->dev;
a53295b6
MW
1728 struct nvme_user_io io;
1729 struct nvme_command c;
d29ec824 1730 unsigned length, meta_len;
a67a9513 1731 int status, write;
a67a9513
KB
1732 dma_addr_t meta_dma = 0;
1733 void *meta = NULL;
a53295b6
MW
1734
1735 if (copy_from_user(&io, uio, sizeof(io)))
1736 return -EFAULT;
6c7d4945
MW
1737
1738 switch (io.opcode) {
1739 case nvme_cmd_write:
1740 case nvme_cmd_read:
6bbf1acd 1741 case nvme_cmd_compare:
6413214c 1742 break;
6c7d4945 1743 default:
6bbf1acd 1744 return -EINVAL;
6c7d4945
MW
1745 }
1746
d29ec824
CH
1747 length = (io.nblocks + 1) << ns->lba_shift;
1748 meta_len = (io.nblocks + 1) * ns->ms;
1749 write = io.opcode & 1;
a53295b6 1750
a67a9513 1751 if (meta_len) {
d29ec824
CH
1752 if (((io.metadata & 3) || !io.metadata) && !ns->ext)
1753 return -EINVAL;
1754
1755 if (ns->ext) {
1756 length += meta_len;
1757 meta_len = 0;
1758 }
1759
e75ec752 1760 meta = dma_alloc_coherent(dev->dev, meta_len,
a67a9513
KB
1761 &meta_dma, GFP_KERNEL);
1762 if (!meta) {
1763 status = -ENOMEM;
1764 goto unmap;
1765 }
1766 if (write) {
1767 if (copy_from_user(meta, (void __user *)io.metadata,
1768 meta_len)) {
1769 status = -EFAULT;
1770 goto unmap;
1771 }
1772 }
1773 }
1774
a53295b6
MW
1775 memset(&c, 0, sizeof(c));
1776 c.rw.opcode = io.opcode;
1777 c.rw.flags = io.flags;
6c7d4945 1778 c.rw.nsid = cpu_to_le32(ns->ns_id);
a53295b6 1779 c.rw.slba = cpu_to_le64(io.slba);
6c7d4945 1780 c.rw.length = cpu_to_le16(io.nblocks);
a53295b6 1781 c.rw.control = cpu_to_le16(io.control);
1c9b5265
MW
1782 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1783 c.rw.reftag = cpu_to_le32(io.reftag);
1784 c.rw.apptag = cpu_to_le16(io.apptag);
1785 c.rw.appmask = cpu_to_le16(io.appmask);
a67a9513 1786 c.rw.metadata = cpu_to_le64(meta_dma);
d29ec824
CH
1787
1788 status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
1789 (void __user *)io.addr, length, NULL, 0);
f410c680 1790 unmap:
a67a9513
KB
1791 if (meta) {
1792 if (status == NVME_SC_SUCCESS && !write) {
1793 if (copy_to_user((void __user *)io.metadata, meta,
1794 meta_len))
1795 status = -EFAULT;
1796 }
e75ec752 1797 dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
f410c680 1798 }
a53295b6
MW
1799 return status;
1800}
1801
a4aea562
MB
1802static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1803 struct nvme_passthru_cmd __user *ucmd)
6ee44cdc 1804{
7963e521 1805 struct nvme_passthru_cmd cmd;
6ee44cdc 1806 struct nvme_command c;
d29ec824
CH
1807 unsigned timeout = 0;
1808 int status;
6ee44cdc 1809
6bbf1acd
MW
1810 if (!capable(CAP_SYS_ADMIN))
1811 return -EACCES;
1812 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
6ee44cdc 1813 return -EFAULT;
6ee44cdc
MW
1814
1815 memset(&c, 0, sizeof(c));
6bbf1acd
MW
1816 c.common.opcode = cmd.opcode;
1817 c.common.flags = cmd.flags;
1818 c.common.nsid = cpu_to_le32(cmd.nsid);
1819 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1820 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1821 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1822 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1823 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1824 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1825 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1826 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1827
d29ec824
CH
1828 if (cmd.timeout_ms)
1829 timeout = msecs_to_jiffies(cmd.timeout_ms);
f705f837
CH
1830
1831 status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
d29ec824
CH
1832 NULL, (void __user *)cmd.addr, cmd.data_len,
1833 &cmd.result, timeout);
1834 if (status >= 0) {
1835 if (put_user(cmd.result, &ucmd->result))
1836 return -EFAULT;
6bbf1acd 1837 }
f4f117f6 1838
6ee44cdc
MW
1839 return status;
1840}
1841
b60503ba
MW
1842static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1843 unsigned long arg)
1844{
1845 struct nvme_ns *ns = bdev->bd_disk->private_data;
1846
1847 switch (cmd) {
6bbf1acd 1848 case NVME_IOCTL_ID:
c3bfe717 1849 force_successful_syscall_return();
6bbf1acd
MW
1850 return ns->ns_id;
1851 case NVME_IOCTL_ADMIN_CMD:
a4aea562 1852 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
7963e521 1853 case NVME_IOCTL_IO_CMD:
a4aea562 1854 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
a53295b6
MW
1855 case NVME_IOCTL_SUBMIT_IO:
1856 return nvme_submit_io(ns, (void __user *)arg);
5d0f6131
VV
1857 case SG_GET_VERSION_NUM:
1858 return nvme_sg_get_version_num((void __user *)arg);
1859 case SG_IO:
1860 return nvme_sg_io(ns, (void __user *)arg);
b60503ba
MW
1861 default:
1862 return -ENOTTY;
1863 }
1864}
1865
320a3827
KB
1866#ifdef CONFIG_COMPAT
1867static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1868 unsigned int cmd, unsigned long arg)
1869{
320a3827
KB
1870 switch (cmd) {
1871 case SG_IO:
e179729a 1872 return -ENOIOCTLCMD;
320a3827
KB
1873 }
1874 return nvme_ioctl(bdev, mode, cmd, arg);
1875}
1876#else
1877#define nvme_compat_ioctl NULL
1878#endif
1879
9ac27090
KB
1880static int nvme_open(struct block_device *bdev, fmode_t mode)
1881{
9e60352c
KB
1882 int ret = 0;
1883 struct nvme_ns *ns;
9ac27090 1884
9e60352c
KB
1885 spin_lock(&dev_list_lock);
1886 ns = bdev->bd_disk->private_data;
1887 if (!ns)
1888 ret = -ENXIO;
1889 else if (!kref_get_unless_zero(&ns->dev->kref))
1890 ret = -ENXIO;
1891 spin_unlock(&dev_list_lock);
1892
1893 return ret;
9ac27090
KB
1894}
1895
1896static void nvme_free_dev(struct kref *kref);
1897
1898static void nvme_release(struct gendisk *disk, fmode_t mode)
1899{
1900 struct nvme_ns *ns = disk->private_data;
1901 struct nvme_dev *dev = ns->dev;
1902
1903 kref_put(&dev->kref, nvme_free_dev);
1904}
1905
4cc09e2d
KB
1906static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1907{
1908 /* some standard values */
1909 geo->heads = 1 << 6;
1910 geo->sectors = 1 << 5;
1911 geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1912 return 0;
1913}
1914
e1e5e564
KB
1915static void nvme_config_discard(struct nvme_ns *ns)
1916{
1917 u32 logical_block_size = queue_logical_block_size(ns->queue);
1918 ns->queue->limits.discard_zeroes_data = 0;
1919 ns->queue->limits.discard_alignment = logical_block_size;
1920 ns->queue->limits.discard_granularity = logical_block_size;
1921 ns->queue->limits.max_discard_sectors = 0xffffffff;
1922 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1923}
1924
1b9dbf7f
KB
1925static int nvme_revalidate_disk(struct gendisk *disk)
1926{
1927 struct nvme_ns *ns = disk->private_data;
1928 struct nvme_dev *dev = ns->dev;
1929 struct nvme_id_ns *id;
a67a9513
KB
1930 u8 lbaf, pi_type;
1931 u16 old_ms;
e1e5e564 1932 unsigned short bs;
1b9dbf7f 1933
d29ec824
CH
1934 if (nvme_identify_ns(dev, ns->ns_id, &id)) {
1935 dev_warn(dev->dev, "%s: Identify failure\n", __func__);
1b9dbf7f
KB
1936 return 0;
1937 }
1938
e1e5e564
KB
1939 old_ms = ns->ms;
1940 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1b9dbf7f 1941 ns->lba_shift = id->lbaf[lbaf].ds;
e1e5e564 1942 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
a67a9513 1943 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
e1e5e564
KB
1944
1945 /*
1946 * If identify namespace failed, use default 512 byte block size so
1947 * block layer can use before failing read/write for 0 capacity.
1948 */
1949 if (ns->lba_shift == 0)
1950 ns->lba_shift = 9;
1951 bs = 1 << ns->lba_shift;
1952
1953 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
1954 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
1955 id->dps & NVME_NS_DPS_PI_MASK : 0;
1956
52b68d7e
KB
1957 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
1958 ns->ms != old_ms ||
e1e5e564 1959 bs != queue_logical_block_size(disk->queue) ||
a67a9513 1960 (ns->ms && ns->ext)))
e1e5e564
KB
1961 blk_integrity_unregister(disk);
1962
1963 ns->pi_type = pi_type;
1964 blk_queue_logical_block_size(ns->queue, bs);
1965
52b68d7e 1966 if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
a67a9513 1967 !ns->ext)
e1e5e564
KB
1968 nvme_init_integrity(ns);
1969
52b68d7e 1970 if (id->ncap == 0 || (ns->ms && !blk_get_integrity(disk)))
e1e5e564
KB
1971 set_capacity(disk, 0);
1972 else
1973 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1974
1975 if (dev->oncs & NVME_CTRL_ONCS_DSM)
1976 nvme_config_discard(ns);
1b9dbf7f 1977
d29ec824 1978 kfree(id);
1b9dbf7f
KB
1979 return 0;
1980}
1981
b60503ba
MW
1982static const struct block_device_operations nvme_fops = {
1983 .owner = THIS_MODULE,
1984 .ioctl = nvme_ioctl,
320a3827 1985 .compat_ioctl = nvme_compat_ioctl,
9ac27090
KB
1986 .open = nvme_open,
1987 .release = nvme_release,
4cc09e2d 1988 .getgeo = nvme_getgeo,
1b9dbf7f 1989 .revalidate_disk= nvme_revalidate_disk,
b60503ba
MW
1990};
1991
1fa6aead
MW
1992static int nvme_kthread(void *data)
1993{
d4b4ff8e 1994 struct nvme_dev *dev, *next;
1fa6aead
MW
1995
1996 while (!kthread_should_stop()) {
564a232c 1997 set_current_state(TASK_INTERRUPTIBLE);
1fa6aead 1998 spin_lock(&dev_list_lock);
d4b4ff8e 1999 list_for_each_entry_safe(dev, next, &dev_list, node) {
1fa6aead 2000 int i;
07836e65 2001 if (readl(&dev->bar->csts) & NVME_CSTS_CFS) {
d4b4ff8e
KB
2002 if (work_busy(&dev->reset_work))
2003 continue;
2004 list_del_init(&dev->node);
e75ec752 2005 dev_warn(dev->dev,
a4aea562
MB
2006 "Failed status: %x, reset controller\n",
2007 readl(&dev->bar->csts));
9ca97374 2008 dev->reset_workfn = nvme_reset_failed_dev;
d4b4ff8e
KB
2009 queue_work(nvme_workq, &dev->reset_work);
2010 continue;
2011 }
1fa6aead 2012 for (i = 0; i < dev->queue_count; i++) {
a4aea562 2013 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
2014 if (!nvmeq)
2015 continue;
1fa6aead 2016 spin_lock_irq(&nvmeq->q_lock);
bc57a0f7 2017 nvme_process_cq(nvmeq);
6fccf938
KB
2018
2019 while ((i == 0) && (dev->event_limit > 0)) {
a4aea562 2020 if (nvme_submit_async_admin_req(dev))
6fccf938
KB
2021 break;
2022 dev->event_limit--;
2023 }
1fa6aead
MW
2024 spin_unlock_irq(&nvmeq->q_lock);
2025 }
2026 }
2027 spin_unlock(&dev_list_lock);
acb7aa0d 2028 schedule_timeout(round_jiffies_relative(HZ));
1fa6aead
MW
2029 }
2030 return 0;
2031}
2032
e1e5e564 2033static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
b60503ba
MW
2034{
2035 struct nvme_ns *ns;
2036 struct gendisk *disk;
e75ec752 2037 int node = dev_to_node(dev->dev);
b60503ba 2038
a4aea562 2039 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
b60503ba 2040 if (!ns)
e1e5e564
KB
2041 return;
2042
a4aea562 2043 ns->queue = blk_mq_init_queue(&dev->tagset);
9f173b33 2044 if (IS_ERR(ns->queue))
b60503ba 2045 goto out_free_ns;
4eeb9215
MW
2046 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2047 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
a4aea562 2048 queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
b60503ba
MW
2049 ns->dev = dev;
2050 ns->queue->queuedata = ns;
2051
a4aea562 2052 disk = alloc_disk_node(0, node);
b60503ba
MW
2053 if (!disk)
2054 goto out_free_queue;
a4aea562 2055
5aff9382 2056 ns->ns_id = nsid;
b60503ba 2057 ns->disk = disk;
e1e5e564
KB
2058 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2059 list_add_tail(&ns->list, &dev->namespaces);
2060
e9ef4636 2061 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
8fc23e03
KB
2062 if (dev->max_hw_sectors)
2063 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
a4aea562
MB
2064 if (dev->stripe_size)
2065 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
a7d2ce28
KB
2066 if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2067 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
b60503ba
MW
2068
2069 disk->major = nvme_major;
469071a3 2070 disk->first_minor = 0;
b60503ba
MW
2071 disk->fops = &nvme_fops;
2072 disk->private_data = ns;
2073 disk->queue = ns->queue;
b3fffdef 2074 disk->driverfs_dev = dev->device;
469071a3 2075 disk->flags = GENHD_FL_EXT_DEVT;
5aff9382 2076 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
b60503ba 2077
e1e5e564
KB
2078 /*
2079 * Initialize capacity to 0 until we establish the namespace format and
2080 * setup integrity extentions if necessary. The revalidate_disk after
2081 * add_disk allows the driver to register with integrity if the format
2082 * requires it.
2083 */
2084 set_capacity(disk, 0);
2085 nvme_revalidate_disk(ns->disk);
2086 add_disk(ns->disk);
2087 if (ns->ms)
2088 revalidate_disk(ns->disk);
2089 return;
b60503ba
MW
2090 out_free_queue:
2091 blk_cleanup_queue(ns->queue);
2092 out_free_ns:
2093 kfree(ns);
b60503ba
MW
2094}
2095
42f61420
KB
2096static void nvme_create_io_queues(struct nvme_dev *dev)
2097{
a4aea562 2098 unsigned i;
42f61420 2099
a4aea562 2100 for (i = dev->queue_count; i <= dev->max_qid; i++)
2b25d981 2101 if (!nvme_alloc_queue(dev, i, dev->q_depth))
42f61420
KB
2102 break;
2103
a4aea562
MB
2104 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2105 if (nvme_create_queue(dev->queues[i], i))
42f61420
KB
2106 break;
2107}
2108
b3b06812 2109static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
2110{
2111 int status;
2112 u32 result;
b3b06812 2113 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba 2114
df348139 2115 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
bc5fc7e4 2116 &result);
27e8166c
MW
2117 if (status < 0)
2118 return status;
2119 if (status > 0) {
e75ec752 2120 dev_err(dev->dev, "Could not set queue count (%d)\n", status);
badc34d4 2121 return 0;
27e8166c 2122 }
b60503ba
MW
2123 return min(result & 0xffff, result >> 16) + 1;
2124}
2125
9d713c2b
KB
2126static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2127{
b80d5ccc 2128 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
2129}
2130
8d85fce7 2131static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 2132{
a4aea562 2133 struct nvme_queue *adminq = dev->queues[0];
e75ec752 2134 struct pci_dev *pdev = to_pci_dev(dev->dev);
42f61420 2135 int result, i, vecs, nr_io_queues, size;
b60503ba 2136
42f61420 2137 nr_io_queues = num_possible_cpus();
b348b7d5 2138 result = set_queue_count(dev, nr_io_queues);
badc34d4 2139 if (result <= 0)
1b23484b 2140 return result;
b348b7d5
MW
2141 if (result < nr_io_queues)
2142 nr_io_queues = result;
b60503ba 2143
9d713c2b
KB
2144 size = db_bar_size(dev, nr_io_queues);
2145 if (size > 8192) {
f1938f6e 2146 iounmap(dev->bar);
9d713c2b
KB
2147 do {
2148 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2149 if (dev->bar)
2150 break;
2151 if (!--nr_io_queues)
2152 return -ENOMEM;
2153 size = db_bar_size(dev, nr_io_queues);
2154 } while (1);
f1938f6e 2155 dev->dbs = ((void __iomem *)dev->bar) + 4096;
5a92e700 2156 adminq->q_db = dev->dbs;
f1938f6e
MW
2157 }
2158
9d713c2b 2159 /* Deregister the admin queue's interrupt */
3193f07b 2160 free_irq(dev->entry[0].vector, adminq);
9d713c2b 2161
e32efbfc
JA
2162 /*
2163 * If we enable msix early due to not intx, disable it again before
2164 * setting up the full range we need.
2165 */
2166 if (!pdev->irq)
2167 pci_disable_msix(pdev);
2168
be577fab 2169 for (i = 0; i < nr_io_queues; i++)
1b23484b 2170 dev->entry[i].entry = i;
be577fab
AG
2171 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2172 if (vecs < 0) {
2173 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2174 if (vecs < 0) {
2175 vecs = 1;
2176 } else {
2177 for (i = 0; i < vecs; i++)
2178 dev->entry[i].vector = i + pdev->irq;
fa08a396
RRG
2179 }
2180 }
2181
063a8096
MW
2182 /*
2183 * Should investigate if there's a performance win from allocating
2184 * more queues than interrupt vectors; it might allow the submission
2185 * path to scale better, even if the receive path is limited by the
2186 * number of interrupts.
2187 */
2188 nr_io_queues = vecs;
42f61420 2189 dev->max_qid = nr_io_queues;
063a8096 2190
3193f07b 2191 result = queue_request_irq(dev, adminq, adminq->irqname);
a4aea562 2192 if (result)
22404274 2193 goto free_queues;
1b23484b 2194
cd638946 2195 /* Free previously allocated queues that are no longer usable */
42f61420 2196 nvme_free_queues(dev, nr_io_queues + 1);
a4aea562 2197 nvme_create_io_queues(dev);
9ecdc946 2198
22404274 2199 return 0;
b60503ba 2200
22404274 2201 free_queues:
a1a5ef99 2202 nvme_free_queues(dev, 1);
22404274 2203 return result;
b60503ba
MW
2204}
2205
422ef0c7
MW
2206/*
2207 * Return: error value if an error occurred setting up the queues or calling
2208 * Identify Device. 0 if these succeeded, even if adding some of the
2209 * namespaces failed. At the moment, these failures are silent. TBD which
2210 * failures should be reported.
2211 */
8d85fce7 2212static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 2213{
e75ec752 2214 struct pci_dev *pdev = to_pci_dev(dev->dev);
c3bfe717
MW
2215 int res;
2216 unsigned nn, i;
51814232 2217 struct nvme_id_ctrl *ctrl;
159b67d7 2218 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
b60503ba 2219
d29ec824 2220 res = nvme_identify_ctrl(dev, &ctrl);
b60503ba 2221 if (res) {
e75ec752 2222 dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
e1e5e564 2223 return -EIO;
b60503ba
MW
2224 }
2225
51814232 2226 nn = le32_to_cpup(&ctrl->nn);
0e5e4f0e 2227 dev->oncs = le16_to_cpup(&ctrl->oncs);
c30341dc 2228 dev->abort_limit = ctrl->acl + 1;
a7d2ce28 2229 dev->vwc = ctrl->vwc;
51814232
MW
2230 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2231 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2232 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
159b67d7 2233 if (ctrl->mdts)
8fc23e03 2234 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
68608c26 2235 if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
a4aea562
MB
2236 (pdev->device == 0x0953) && ctrl->vs[3]) {
2237 unsigned int max_hw_sectors;
2238
159b67d7 2239 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
a4aea562
MB
2240 max_hw_sectors = dev->stripe_size >> (shift - 9);
2241 if (dev->max_hw_sectors) {
2242 dev->max_hw_sectors = min(max_hw_sectors,
2243 dev->max_hw_sectors);
2244 } else
2245 dev->max_hw_sectors = max_hw_sectors;
2246 }
d29ec824 2247 kfree(ctrl);
a4aea562
MB
2248
2249 dev->tagset.ops = &nvme_mq_ops;
2250 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2251 dev->tagset.timeout = NVME_IO_TIMEOUT;
e75ec752 2252 dev->tagset.numa_node = dev_to_node(dev->dev);
a4aea562
MB
2253 dev->tagset.queue_depth =
2254 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ac3dd5bd 2255 dev->tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
2256 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2257 dev->tagset.driver_data = dev;
2258
2259 if (blk_mq_alloc_tag_set(&dev->tagset))
e1e5e564 2260 return 0;
b60503ba 2261
e1e5e564
KB
2262 for (i = 1; i <= nn; i++)
2263 nvme_alloc_ns(dev, i);
b60503ba 2264
e1e5e564 2265 return 0;
b60503ba
MW
2266}
2267
0877cb0d
KB
2268static int nvme_dev_map(struct nvme_dev *dev)
2269{
42f61420 2270 u64 cap;
0877cb0d 2271 int bars, result = -ENOMEM;
e75ec752 2272 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
2273
2274 if (pci_enable_device_mem(pdev))
2275 return result;
2276
2277 dev->entry[0].vector = pdev->irq;
2278 pci_set_master(pdev);
2279 bars = pci_select_bars(pdev, IORESOURCE_MEM);
be7837e8
JA
2280 if (!bars)
2281 goto disable_pci;
2282
0877cb0d
KB
2283 if (pci_request_selected_regions(pdev, bars, "nvme"))
2284 goto disable_pci;
2285
e75ec752
CH
2286 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2287 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 2288 goto disable;
0877cb0d 2289
0877cb0d
KB
2290 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2291 if (!dev->bar)
2292 goto disable;
e32efbfc 2293
0e53d180
KB
2294 if (readl(&dev->bar->csts) == -1) {
2295 result = -ENODEV;
2296 goto unmap;
2297 }
e32efbfc
JA
2298
2299 /*
2300 * Some devices don't advertse INTx interrupts, pre-enable a single
2301 * MSIX vec for setup. We'll adjust this later.
2302 */
2303 if (!pdev->irq) {
2304 result = pci_enable_msix(pdev, dev->entry, 1);
2305 if (result < 0)
2306 goto unmap;
2307 }
2308
42f61420
KB
2309 cap = readq(&dev->bar->cap);
2310 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2311 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
0877cb0d
KB
2312 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2313
2314 return 0;
2315
0e53d180
KB
2316 unmap:
2317 iounmap(dev->bar);
2318 dev->bar = NULL;
0877cb0d
KB
2319 disable:
2320 pci_release_regions(pdev);
2321 disable_pci:
2322 pci_disable_device(pdev);
2323 return result;
2324}
2325
2326static void nvme_dev_unmap(struct nvme_dev *dev)
2327{
e75ec752
CH
2328 struct pci_dev *pdev = to_pci_dev(dev->dev);
2329
2330 if (pdev->msi_enabled)
2331 pci_disable_msi(pdev);
2332 else if (pdev->msix_enabled)
2333 pci_disable_msix(pdev);
0877cb0d
KB
2334
2335 if (dev->bar) {
2336 iounmap(dev->bar);
2337 dev->bar = NULL;
e75ec752 2338 pci_release_regions(pdev);
0877cb0d
KB
2339 }
2340
e75ec752
CH
2341 if (pci_is_enabled(pdev))
2342 pci_disable_device(pdev);
0877cb0d
KB
2343}
2344
4d115420
KB
2345struct nvme_delq_ctx {
2346 struct task_struct *waiter;
2347 struct kthread_worker *worker;
2348 atomic_t refcount;
2349};
2350
2351static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2352{
2353 dq->waiter = current;
2354 mb();
2355
2356 for (;;) {
2357 set_current_state(TASK_KILLABLE);
2358 if (!atomic_read(&dq->refcount))
2359 break;
2360 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2361 fatal_signal_pending(current)) {
0fb59cbc
KB
2362 /*
2363 * Disable the controller first since we can't trust it
2364 * at this point, but leave the admin queue enabled
2365 * until all queue deletion requests are flushed.
2366 * FIXME: This may take a while if there are more h/w
2367 * queues than admin tags.
2368 */
4d115420 2369 set_current_state(TASK_RUNNING);
4d115420 2370 nvme_disable_ctrl(dev, readq(&dev->bar->cap));
0fb59cbc 2371 nvme_clear_queue(dev->queues[0]);
4d115420 2372 flush_kthread_worker(dq->worker);
0fb59cbc 2373 nvme_disable_queue(dev, 0);
4d115420
KB
2374 return;
2375 }
2376 }
2377 set_current_state(TASK_RUNNING);
2378}
2379
2380static void nvme_put_dq(struct nvme_delq_ctx *dq)
2381{
2382 atomic_dec(&dq->refcount);
2383 if (dq->waiter)
2384 wake_up_process(dq->waiter);
2385}
2386
2387static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2388{
2389 atomic_inc(&dq->refcount);
2390 return dq;
2391}
2392
2393static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2394{
2395 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
4d115420
KB
2396 nvme_put_dq(dq);
2397}
2398
2399static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2400 kthread_work_func_t fn)
2401{
2402 struct nvme_command c;
2403
2404 memset(&c, 0, sizeof(c));
2405 c.delete_queue.opcode = opcode;
2406 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2407
2408 init_kthread_work(&nvmeq->cmdinfo.work, fn);
a4aea562
MB
2409 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2410 ADMIN_TIMEOUT);
4d115420
KB
2411}
2412
2413static void nvme_del_cq_work_handler(struct kthread_work *work)
2414{
2415 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2416 cmdinfo.work);
2417 nvme_del_queue_end(nvmeq);
2418}
2419
2420static int nvme_delete_cq(struct nvme_queue *nvmeq)
2421{
2422 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2423 nvme_del_cq_work_handler);
2424}
2425
2426static void nvme_del_sq_work_handler(struct kthread_work *work)
2427{
2428 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2429 cmdinfo.work);
2430 int status = nvmeq->cmdinfo.status;
2431
2432 if (!status)
2433 status = nvme_delete_cq(nvmeq);
2434 if (status)
2435 nvme_del_queue_end(nvmeq);
2436}
2437
2438static int nvme_delete_sq(struct nvme_queue *nvmeq)
2439{
2440 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2441 nvme_del_sq_work_handler);
2442}
2443
2444static void nvme_del_queue_start(struct kthread_work *work)
2445{
2446 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2447 cmdinfo.work);
4d115420
KB
2448 if (nvme_delete_sq(nvmeq))
2449 nvme_del_queue_end(nvmeq);
2450}
2451
2452static void nvme_disable_io_queues(struct nvme_dev *dev)
2453{
2454 int i;
2455 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2456 struct nvme_delq_ctx dq;
2457 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2458 &worker, "nvme%d", dev->instance);
2459
2460 if (IS_ERR(kworker_task)) {
e75ec752 2461 dev_err(dev->dev,
4d115420
KB
2462 "Failed to create queue del task\n");
2463 for (i = dev->queue_count - 1; i > 0; i--)
2464 nvme_disable_queue(dev, i);
2465 return;
2466 }
2467
2468 dq.waiter = NULL;
2469 atomic_set(&dq.refcount, 0);
2470 dq.worker = &worker;
2471 for (i = dev->queue_count - 1; i > 0; i--) {
a4aea562 2472 struct nvme_queue *nvmeq = dev->queues[i];
4d115420
KB
2473
2474 if (nvme_suspend_queue(nvmeq))
2475 continue;
2476 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2477 nvmeq->cmdinfo.worker = dq.worker;
2478 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2479 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2480 }
2481 nvme_wait_dq(&dq, dev);
2482 kthread_stop(kworker_task);
2483}
2484
b9afca3e
DM
2485/*
2486* Remove the node from the device list and check
2487* for whether or not we need to stop the nvme_thread.
2488*/
2489static void nvme_dev_list_remove(struct nvme_dev *dev)
2490{
2491 struct task_struct *tmp = NULL;
2492
2493 spin_lock(&dev_list_lock);
2494 list_del_init(&dev->node);
2495 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2496 tmp = nvme_thread;
2497 nvme_thread = NULL;
2498 }
2499 spin_unlock(&dev_list_lock);
2500
2501 if (tmp)
2502 kthread_stop(tmp);
2503}
2504
c9d3bf88
KB
2505static void nvme_freeze_queues(struct nvme_dev *dev)
2506{
2507 struct nvme_ns *ns;
2508
2509 list_for_each_entry(ns, &dev->namespaces, list) {
2510 blk_mq_freeze_queue_start(ns->queue);
2511
cddcd72b 2512 spin_lock_irq(ns->queue->queue_lock);
c9d3bf88 2513 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
cddcd72b 2514 spin_unlock_irq(ns->queue->queue_lock);
c9d3bf88
KB
2515
2516 blk_mq_cancel_requeue_work(ns->queue);
2517 blk_mq_stop_hw_queues(ns->queue);
2518 }
2519}
2520
2521static void nvme_unfreeze_queues(struct nvme_dev *dev)
2522{
2523 struct nvme_ns *ns;
2524
2525 list_for_each_entry(ns, &dev->namespaces, list) {
2526 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2527 blk_mq_unfreeze_queue(ns->queue);
2528 blk_mq_start_stopped_hw_queues(ns->queue, true);
2529 blk_mq_kick_requeue_list(ns->queue);
2530 }
2531}
2532
f0b50732 2533static void nvme_dev_shutdown(struct nvme_dev *dev)
b60503ba 2534{
22404274 2535 int i;
7c1b2450 2536 u32 csts = -1;
22404274 2537
b9afca3e 2538 nvme_dev_list_remove(dev);
1fa6aead 2539
c9d3bf88
KB
2540 if (dev->bar) {
2541 nvme_freeze_queues(dev);
7c1b2450 2542 csts = readl(&dev->bar->csts);
c9d3bf88 2543 }
7c1b2450 2544 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
4d115420 2545 for (i = dev->queue_count - 1; i >= 0; i--) {
a4aea562 2546 struct nvme_queue *nvmeq = dev->queues[i];
4d115420 2547 nvme_suspend_queue(nvmeq);
4d115420
KB
2548 }
2549 } else {
2550 nvme_disable_io_queues(dev);
1894d8f1 2551 nvme_shutdown_ctrl(dev);
4d115420
KB
2552 nvme_disable_queue(dev, 0);
2553 }
f0b50732 2554 nvme_dev_unmap(dev);
07836e65
KB
2555
2556 for (i = dev->queue_count - 1; i >= 0; i--)
2557 nvme_clear_queue(dev->queues[i]);
f0b50732
KB
2558}
2559
2560static void nvme_dev_remove(struct nvme_dev *dev)
2561{
9ac27090 2562 struct nvme_ns *ns;
f0b50732 2563
9ac27090 2564 list_for_each_entry(ns, &dev->namespaces, list) {
e1e5e564 2565 if (ns->disk->flags & GENHD_FL_UP) {
52b68d7e 2566 if (blk_get_integrity(ns->disk))
e1e5e564 2567 blk_integrity_unregister(ns->disk);
9ac27090 2568 del_gendisk(ns->disk);
e1e5e564 2569 }
cef6a948
KB
2570 if (!blk_queue_dying(ns->queue)) {
2571 blk_mq_abort_requeue_list(ns->queue);
9ac27090 2572 blk_cleanup_queue(ns->queue);
cef6a948 2573 }
b60503ba 2574 }
b60503ba
MW
2575}
2576
091b6092
MW
2577static int nvme_setup_prp_pools(struct nvme_dev *dev)
2578{
e75ec752 2579 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2580 PAGE_SIZE, PAGE_SIZE, 0);
2581 if (!dev->prp_page_pool)
2582 return -ENOMEM;
2583
99802a7a 2584 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2585 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2586 256, 256, 0);
2587 if (!dev->prp_small_pool) {
2588 dma_pool_destroy(dev->prp_page_pool);
2589 return -ENOMEM;
2590 }
091b6092
MW
2591 return 0;
2592}
2593
2594static void nvme_release_prp_pools(struct nvme_dev *dev)
2595{
2596 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2597 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2598}
2599
cd58ad7d
QSA
2600static DEFINE_IDA(nvme_instance_ida);
2601
2602static int nvme_set_instance(struct nvme_dev *dev)
b60503ba 2603{
cd58ad7d
QSA
2604 int instance, error;
2605
2606 do {
2607 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2608 return -ENODEV;
2609
2610 spin_lock(&dev_list_lock);
2611 error = ida_get_new(&nvme_instance_ida, &instance);
2612 spin_unlock(&dev_list_lock);
2613 } while (error == -EAGAIN);
2614
2615 if (error)
2616 return -ENODEV;
2617
2618 dev->instance = instance;
2619 return 0;
b60503ba
MW
2620}
2621
2622static void nvme_release_instance(struct nvme_dev *dev)
2623{
cd58ad7d
QSA
2624 spin_lock(&dev_list_lock);
2625 ida_remove(&nvme_instance_ida, dev->instance);
2626 spin_unlock(&dev_list_lock);
b60503ba
MW
2627}
2628
9ac27090
KB
2629static void nvme_free_namespaces(struct nvme_dev *dev)
2630{
2631 struct nvme_ns *ns, *next;
2632
2633 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2634 list_del(&ns->list);
9e60352c
KB
2635
2636 spin_lock(&dev_list_lock);
2637 ns->disk->private_data = NULL;
2638 spin_unlock(&dev_list_lock);
2639
9ac27090
KB
2640 put_disk(ns->disk);
2641 kfree(ns);
2642 }
2643}
2644
5e82e952
KB
2645static void nvme_free_dev(struct kref *kref)
2646{
2647 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
9ac27090 2648
e75ec752 2649 put_device(dev->dev);
b3fffdef 2650 put_device(dev->device);
9ac27090 2651 nvme_free_namespaces(dev);
285dffc9 2652 nvme_release_instance(dev);
a4aea562 2653 blk_mq_free_tag_set(&dev->tagset);
ea191d2f 2654 blk_put_queue(dev->admin_q);
5e82e952
KB
2655 kfree(dev->queues);
2656 kfree(dev->entry);
2657 kfree(dev);
2658}
2659
2660static int nvme_dev_open(struct inode *inode, struct file *f)
2661{
b3fffdef
KB
2662 struct nvme_dev *dev;
2663 int instance = iminor(inode);
2664 int ret = -ENODEV;
2665
2666 spin_lock(&dev_list_lock);
2667 list_for_each_entry(dev, &dev_list, node) {
2668 if (dev->instance == instance) {
2e1d8448
KB
2669 if (!dev->admin_q) {
2670 ret = -EWOULDBLOCK;
2671 break;
2672 }
b3fffdef
KB
2673 if (!kref_get_unless_zero(&dev->kref))
2674 break;
2675 f->private_data = dev;
2676 ret = 0;
2677 break;
2678 }
2679 }
2680 spin_unlock(&dev_list_lock);
2681
2682 return ret;
5e82e952
KB
2683}
2684
2685static int nvme_dev_release(struct inode *inode, struct file *f)
2686{
2687 struct nvme_dev *dev = f->private_data;
2688 kref_put(&dev->kref, nvme_free_dev);
2689 return 0;
2690}
2691
2692static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2693{
2694 struct nvme_dev *dev = f->private_data;
a4aea562
MB
2695 struct nvme_ns *ns;
2696
5e82e952
KB
2697 switch (cmd) {
2698 case NVME_IOCTL_ADMIN_CMD:
a4aea562 2699 return nvme_user_cmd(dev, NULL, (void __user *)arg);
7963e521 2700 case NVME_IOCTL_IO_CMD:
a4aea562
MB
2701 if (list_empty(&dev->namespaces))
2702 return -ENOTTY;
2703 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2704 return nvme_user_cmd(dev, ns, (void __user *)arg);
5e82e952
KB
2705 default:
2706 return -ENOTTY;
2707 }
2708}
2709
2710static const struct file_operations nvme_dev_fops = {
2711 .owner = THIS_MODULE,
2712 .open = nvme_dev_open,
2713 .release = nvme_dev_release,
2714 .unlocked_ioctl = nvme_dev_ioctl,
2715 .compat_ioctl = nvme_dev_ioctl,
2716};
2717
a4aea562
MB
2718static void nvme_set_irq_hints(struct nvme_dev *dev)
2719{
2720 struct nvme_queue *nvmeq;
2721 int i;
2722
2723 for (i = 0; i < dev->online_queues; i++) {
2724 nvmeq = dev->queues[i];
2725
2726 if (!nvmeq->hctx)
2727 continue;
2728
2729 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2730 nvmeq->hctx->cpumask);
2731 }
2732}
2733
f0b50732
KB
2734static int nvme_dev_start(struct nvme_dev *dev)
2735{
2736 int result;
b9afca3e 2737 bool start_thread = false;
f0b50732
KB
2738
2739 result = nvme_dev_map(dev);
2740 if (result)
2741 return result;
2742
2743 result = nvme_configure_admin_queue(dev);
2744 if (result)
2745 goto unmap;
2746
2747 spin_lock(&dev_list_lock);
b9afca3e
DM
2748 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2749 start_thread = true;
2750 nvme_thread = NULL;
2751 }
f0b50732
KB
2752 list_add(&dev->node, &dev_list);
2753 spin_unlock(&dev_list_lock);
2754
b9afca3e
DM
2755 if (start_thread) {
2756 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
387caa5a 2757 wake_up_all(&nvme_kthread_wait);
b9afca3e
DM
2758 } else
2759 wait_event_killable(nvme_kthread_wait, nvme_thread);
2760
2761 if (IS_ERR_OR_NULL(nvme_thread)) {
2762 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2763 goto disable;
2764 }
a4aea562
MB
2765
2766 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
2767 result = nvme_alloc_admin_tags(dev);
2768 if (result)
2769 goto disable;
b9afca3e 2770
f0b50732 2771 result = nvme_setup_io_queues(dev);
badc34d4 2772 if (result)
0fb59cbc 2773 goto free_tags;
f0b50732 2774
a4aea562
MB
2775 nvme_set_irq_hints(dev);
2776
1efccc9d 2777 dev->event_limit = 1;
d82e8bfd 2778 return result;
f0b50732 2779
0fb59cbc
KB
2780 free_tags:
2781 nvme_dev_remove_admin(dev);
f0b50732 2782 disable:
a1a5ef99 2783 nvme_disable_queue(dev, 0);
b9afca3e 2784 nvme_dev_list_remove(dev);
f0b50732
KB
2785 unmap:
2786 nvme_dev_unmap(dev);
2787 return result;
2788}
2789
9a6b9458
KB
2790static int nvme_remove_dead_ctrl(void *arg)
2791{
2792 struct nvme_dev *dev = (struct nvme_dev *)arg;
e75ec752 2793 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458
KB
2794
2795 if (pci_get_drvdata(pdev))
c81f4975 2796 pci_stop_and_remove_bus_device_locked(pdev);
9a6b9458
KB
2797 kref_put(&dev->kref, nvme_free_dev);
2798 return 0;
2799}
2800
2801static void nvme_remove_disks(struct work_struct *ws)
2802{
9a6b9458
KB
2803 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2804
5a92e700 2805 nvme_free_queues(dev, 1);
302c6727 2806 nvme_dev_remove(dev);
9a6b9458
KB
2807}
2808
2809static int nvme_dev_resume(struct nvme_dev *dev)
2810{
2811 int ret;
2812
2813 ret = nvme_dev_start(dev);
badc34d4 2814 if (ret)
9a6b9458 2815 return ret;
badc34d4 2816 if (dev->online_queues < 2) {
9a6b9458 2817 spin_lock(&dev_list_lock);
9ca97374 2818 dev->reset_workfn = nvme_remove_disks;
9a6b9458
KB
2819 queue_work(nvme_workq, &dev->reset_work);
2820 spin_unlock(&dev_list_lock);
c9d3bf88
KB
2821 } else {
2822 nvme_unfreeze_queues(dev);
2823 nvme_set_irq_hints(dev);
9a6b9458
KB
2824 }
2825 return 0;
2826}
2827
2828static void nvme_dev_reset(struct nvme_dev *dev)
2829{
2830 nvme_dev_shutdown(dev);
2831 if (nvme_dev_resume(dev)) {
e75ec752 2832 dev_warn(dev->dev, "Device failed to resume\n");
9a6b9458
KB
2833 kref_get(&dev->kref);
2834 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2835 dev->instance))) {
e75ec752 2836 dev_err(dev->dev,
9a6b9458
KB
2837 "Failed to start controller remove task\n");
2838 kref_put(&dev->kref, nvme_free_dev);
2839 }
2840 }
2841}
2842
2843static void nvme_reset_failed_dev(struct work_struct *ws)
2844{
2845 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2846 nvme_dev_reset(dev);
2847}
2848
9ca97374
TH
2849static void nvme_reset_workfn(struct work_struct *work)
2850{
2851 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2852 dev->reset_workfn(work);
2853}
2854
2e1d8448 2855static void nvme_async_probe(struct work_struct *work);
8d85fce7 2856static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2857{
a4aea562 2858 int node, result = -ENOMEM;
b60503ba
MW
2859 struct nvme_dev *dev;
2860
a4aea562
MB
2861 node = dev_to_node(&pdev->dev);
2862 if (node == NUMA_NO_NODE)
2863 set_dev_node(&pdev->dev, 0);
2864
2865 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2866 if (!dev)
2867 return -ENOMEM;
a4aea562
MB
2868 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2869 GFP_KERNEL, node);
b60503ba
MW
2870 if (!dev->entry)
2871 goto free;
a4aea562
MB
2872 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2873 GFP_KERNEL, node);
b60503ba
MW
2874 if (!dev->queues)
2875 goto free;
2876
2877 INIT_LIST_HEAD(&dev->namespaces);
9ca97374
TH
2878 dev->reset_workfn = nvme_reset_failed_dev;
2879 INIT_WORK(&dev->reset_work, nvme_reset_workfn);
e75ec752 2880 dev->dev = get_device(&pdev->dev);
9a6b9458 2881 pci_set_drvdata(pdev, dev);
cd58ad7d
QSA
2882 result = nvme_set_instance(dev);
2883 if (result)
a96d4f5c 2884 goto put_pci;
b60503ba 2885
091b6092
MW
2886 result = nvme_setup_prp_pools(dev);
2887 if (result)
0877cb0d 2888 goto release;
091b6092 2889
fb35e914 2890 kref_init(&dev->kref);
b3fffdef
KB
2891 dev->device = device_create(nvme_class, &pdev->dev,
2892 MKDEV(nvme_char_major, dev->instance),
2893 dev, "nvme%d", dev->instance);
2894 if (IS_ERR(dev->device)) {
2895 result = PTR_ERR(dev->device);
2e1d8448 2896 goto release_pools;
b3fffdef
KB
2897 }
2898 get_device(dev->device);
740216fc 2899
e6e96d73 2900 INIT_LIST_HEAD(&dev->node);
2e1d8448
KB
2901 INIT_WORK(&dev->probe_work, nvme_async_probe);
2902 schedule_work(&dev->probe_work);
b60503ba
MW
2903 return 0;
2904
0877cb0d 2905 release_pools:
091b6092 2906 nvme_release_prp_pools(dev);
0877cb0d
KB
2907 release:
2908 nvme_release_instance(dev);
a96d4f5c 2909 put_pci:
e75ec752 2910 put_device(dev->dev);
b60503ba
MW
2911 free:
2912 kfree(dev->queues);
2913 kfree(dev->entry);
2914 kfree(dev);
2915 return result;
2916}
2917
2e1d8448
KB
2918static void nvme_async_probe(struct work_struct *work)
2919{
2920 struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
2921 int result;
2922
2923 result = nvme_dev_start(dev);
2924 if (result)
2925 goto reset;
2926
2927 if (dev->online_queues > 1)
2928 result = nvme_dev_add(dev);
2929 if (result)
2930 goto reset;
2931
2932 nvme_set_irq_hints(dev);
2e1d8448
KB
2933 return;
2934 reset:
07836e65
KB
2935 if (!work_busy(&dev->reset_work)) {
2936 dev->reset_workfn = nvme_reset_failed_dev;
2937 queue_work(nvme_workq, &dev->reset_work);
2938 }
2e1d8448
KB
2939}
2940
f0d54a54
KB
2941static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2942{
a6739479 2943 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 2944
a6739479
KB
2945 if (prepare)
2946 nvme_dev_shutdown(dev);
2947 else
2948 nvme_dev_resume(dev);
f0d54a54
KB
2949}
2950
09ece142
KB
2951static void nvme_shutdown(struct pci_dev *pdev)
2952{
2953 struct nvme_dev *dev = pci_get_drvdata(pdev);
2954 nvme_dev_shutdown(dev);
2955}
2956
8d85fce7 2957static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2958{
2959 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458
KB
2960
2961 spin_lock(&dev_list_lock);
2962 list_del_init(&dev->node);
2963 spin_unlock(&dev_list_lock);
2964
2965 pci_set_drvdata(pdev, NULL);
2e1d8448 2966 flush_work(&dev->probe_work);
9a6b9458 2967 flush_work(&dev->reset_work);
9a6b9458 2968 nvme_dev_shutdown(dev);
c9d3bf88 2969 nvme_dev_remove(dev);
a4aea562 2970 nvme_dev_remove_admin(dev);
b3fffdef 2971 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
a1a5ef99 2972 nvme_free_queues(dev, 0);
9a6b9458 2973 nvme_release_prp_pools(dev);
5e82e952 2974 kref_put(&dev->kref, nvme_free_dev);
b60503ba
MW
2975}
2976
2977/* These functions are yet to be implemented */
2978#define nvme_error_detected NULL
2979#define nvme_dump_registers NULL
2980#define nvme_link_reset NULL
2981#define nvme_slot_reset NULL
2982#define nvme_error_resume NULL
cd638946 2983
671a6018 2984#ifdef CONFIG_PM_SLEEP
cd638946
KB
2985static int nvme_suspend(struct device *dev)
2986{
2987 struct pci_dev *pdev = to_pci_dev(dev);
2988 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2989
2990 nvme_dev_shutdown(ndev);
2991 return 0;
2992}
2993
2994static int nvme_resume(struct device *dev)
2995{
2996 struct pci_dev *pdev = to_pci_dev(dev);
2997 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2998
9a6b9458 2999 if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
9ca97374 3000 ndev->reset_workfn = nvme_reset_failed_dev;
9a6b9458
KB
3001 queue_work(nvme_workq, &ndev->reset_work);
3002 }
3003 return 0;
cd638946 3004}
671a6018 3005#endif
cd638946
KB
3006
3007static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 3008
1d352035 3009static const struct pci_error_handlers nvme_err_handler = {
b60503ba
MW
3010 .error_detected = nvme_error_detected,
3011 .mmio_enabled = nvme_dump_registers,
3012 .link_reset = nvme_link_reset,
3013 .slot_reset = nvme_slot_reset,
3014 .resume = nvme_error_resume,
f0d54a54 3015 .reset_notify = nvme_reset_notify,
b60503ba
MW
3016};
3017
3018/* Move to pci_ids.h later */
3019#define PCI_CLASS_STORAGE_EXPRESS 0x010802
3020
6eb0d698 3021static const struct pci_device_id nvme_id_table[] = {
b60503ba
MW
3022 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3023 { 0, }
3024};
3025MODULE_DEVICE_TABLE(pci, nvme_id_table);
3026
3027static struct pci_driver nvme_driver = {
3028 .name = "nvme",
3029 .id_table = nvme_id_table,
3030 .probe = nvme_probe,
8d85fce7 3031 .remove = nvme_remove,
09ece142 3032 .shutdown = nvme_shutdown,
cd638946
KB
3033 .driver = {
3034 .pm = &nvme_dev_pm_ops,
3035 },
b60503ba
MW
3036 .err_handler = &nvme_err_handler,
3037};
3038
3039static int __init nvme_init(void)
3040{
0ac13140 3041 int result;
1fa6aead 3042
b9afca3e 3043 init_waitqueue_head(&nvme_kthread_wait);
b60503ba 3044
9a6b9458
KB
3045 nvme_workq = create_singlethread_workqueue("nvme");
3046 if (!nvme_workq)
b9afca3e 3047 return -ENOMEM;
9a6b9458 3048
5c42ea16
KB
3049 result = register_blkdev(nvme_major, "nvme");
3050 if (result < 0)
9a6b9458 3051 goto kill_workq;
5c42ea16 3052 else if (result > 0)
0ac13140 3053 nvme_major = result;
b60503ba 3054
b3fffdef
KB
3055 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3056 &nvme_dev_fops);
3057 if (result < 0)
3058 goto unregister_blkdev;
3059 else if (result > 0)
3060 nvme_char_major = result;
3061
3062 nvme_class = class_create(THIS_MODULE, "nvme");
c727040b
AK
3063 if (IS_ERR(nvme_class)) {
3064 result = PTR_ERR(nvme_class);
b3fffdef 3065 goto unregister_chrdev;
c727040b 3066 }
b3fffdef 3067
f3db22fe
KB
3068 result = pci_register_driver(&nvme_driver);
3069 if (result)
b3fffdef 3070 goto destroy_class;
1fa6aead 3071 return 0;
b60503ba 3072
b3fffdef
KB
3073 destroy_class:
3074 class_destroy(nvme_class);
3075 unregister_chrdev:
3076 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1fa6aead 3077 unregister_blkdev:
b60503ba 3078 unregister_blkdev(nvme_major, "nvme");
9a6b9458
KB
3079 kill_workq:
3080 destroy_workqueue(nvme_workq);
b60503ba
MW
3081 return result;
3082}
3083
3084static void __exit nvme_exit(void)
3085{
3086 pci_unregister_driver(&nvme_driver);
3087 unregister_blkdev(nvme_major, "nvme");
9a6b9458 3088 destroy_workqueue(nvme_workq);
b3fffdef
KB
3089 class_destroy(nvme_class);
3090 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
b9afca3e 3091 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
21bd78bc 3092 _nvme_check_size();
b60503ba
MW
3093}
3094
3095MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3096MODULE_LICENSE("GPL");
c78b4713 3097MODULE_VERSION("1.0");
b60503ba
MW
3098module_init(nvme_init);
3099module_exit(nvme_exit);