NVMe: Remove "process_cq did something" message
[linux-2.6-block.git] / drivers / block / nvme-core.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
8de05535 21#include <linux/bitops.h>
b60503ba 22#include <linux/blkdev.h>
fd63e9ce 23#include <linux/delay.h>
b60503ba
MW
24#include <linux/errno.h>
25#include <linux/fs.h>
26#include <linux/genhd.h>
5aff9382 27#include <linux/idr.h>
b60503ba
MW
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/io.h>
31#include <linux/kdev_t.h>
1fa6aead 32#include <linux/kthread.h>
b60503ba
MW
33#include <linux/kernel.h>
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/moduleparam.h>
37#include <linux/pci.h>
be7b6275 38#include <linux/poison.h>
b60503ba
MW
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
5d0f6131 42#include <scsi/sg.h>
797a796a
HM
43#include <asm-generic/io-64-nonatomic-lo-hi.h>
44
b60503ba
MW
45#define NVME_Q_DEPTH 1024
46#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
47#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
48#define NVME_MINORS 64
e85248e5 49#define ADMIN_TIMEOUT (60 * HZ)
b60503ba
MW
50
51static int nvme_major;
52module_param(nvme_major, int, 0);
53
58ffacb5
MW
54static int use_threaded_interrupts;
55module_param(use_threaded_interrupts, int, 0);
56
1fa6aead
MW
57static DEFINE_SPINLOCK(dev_list_lock);
58static LIST_HEAD(dev_list);
59static struct task_struct *nvme_thread;
60
b60503ba
MW
61/*
62 * An NVM Express queue. Each device has at least two (one for admin
63 * commands and one for I/O commands).
64 */
65struct nvme_queue {
66 struct device *q_dmadev;
091b6092 67 struct nvme_dev *dev;
b60503ba
MW
68 spinlock_t q_lock;
69 struct nvme_command *sq_cmds;
70 volatile struct nvme_completion *cqes;
71 dma_addr_t sq_dma_addr;
72 dma_addr_t cq_dma_addr;
73 wait_queue_head_t sq_full;
1fa6aead 74 wait_queue_t sq_cong_wait;
b60503ba
MW
75 struct bio_list sq_cong;
76 u32 __iomem *q_db;
77 u16 q_depth;
78 u16 cq_vector;
79 u16 sq_head;
80 u16 sq_tail;
81 u16 cq_head;
e9539f47
MW
82 u8 cq_phase;
83 u8 cqe_seen;
b60503ba
MW
84 unsigned long cmdid_data[];
85};
86
87/*
88 * Check we didin't inadvertently grow the command struct
89 */
90static inline void _nvme_check_size(void)
91{
92 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
93 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
94 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
95 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
96 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 97 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
b60503ba
MW
98 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
99 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
100 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
101 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 102 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
103}
104
5c1281a3 105typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
c2f5b650
MW
106 struct nvme_completion *);
107
e85248e5 108struct nvme_cmd_info {
c2f5b650
MW
109 nvme_completion_fn fn;
110 void *ctx;
e85248e5
MW
111 unsigned long timeout;
112};
113
114static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
115{
116 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
117}
118
b60503ba 119/**
714a7a22
MW
120 * alloc_cmdid() - Allocate a Command ID
121 * @nvmeq: The queue that will be used for this command
122 * @ctx: A pointer that will be passed to the handler
c2f5b650 123 * @handler: The function to call on completion
b60503ba
MW
124 *
125 * Allocate a Command ID for a queue. The data passed in will
126 * be passed to the completion handler. This is implemented by using
127 * the bottom two bits of the ctx pointer to store the handler ID.
128 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
129 * We can change this if it becomes a problem.
184d2944
MW
130 *
131 * May be called with local interrupts disabled and the q_lock held,
132 * or with interrupts enabled and no locks held.
b60503ba 133 */
c2f5b650
MW
134static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
135 nvme_completion_fn handler, unsigned timeout)
b60503ba 136{
e6d15f79 137 int depth = nvmeq->q_depth - 1;
e85248e5 138 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba
MW
139 int cmdid;
140
b60503ba
MW
141 do {
142 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
143 if (cmdid >= depth)
144 return -EBUSY;
145 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
146
c2f5b650
MW
147 info[cmdid].fn = handler;
148 info[cmdid].ctx = ctx;
e85248e5 149 info[cmdid].timeout = jiffies + timeout;
b60503ba
MW
150 return cmdid;
151}
152
153static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
c2f5b650 154 nvme_completion_fn handler, unsigned timeout)
b60503ba
MW
155{
156 int cmdid;
157 wait_event_killable(nvmeq->sq_full,
e85248e5 158 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
b60503ba
MW
159 return (cmdid < 0) ? -EINTR : cmdid;
160}
161
c2f5b650
MW
162/* Special values must be less than 0x1000 */
163#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
d2d87034
MW
164#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
165#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
166#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
00df5cb4 167#define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
be7b6275 168
5c1281a3 169static void special_completion(struct nvme_dev *dev, void *ctx,
c2f5b650
MW
170 struct nvme_completion *cqe)
171{
172 if (ctx == CMD_CTX_CANCELLED)
173 return;
174 if (ctx == CMD_CTX_FLUSH)
175 return;
176 if (ctx == CMD_CTX_COMPLETED) {
5c1281a3 177 dev_warn(&dev->pci_dev->dev,
c2f5b650
MW
178 "completed id %d twice on queue %d\n",
179 cqe->command_id, le16_to_cpup(&cqe->sq_id));
180 return;
181 }
182 if (ctx == CMD_CTX_INVALID) {
5c1281a3 183 dev_warn(&dev->pci_dev->dev,
c2f5b650
MW
184 "invalid id %d completed on queue %d\n",
185 cqe->command_id, le16_to_cpup(&cqe->sq_id));
186 return;
187 }
188
5c1281a3 189 dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
c2f5b650
MW
190}
191
184d2944
MW
192/*
193 * Called with local interrupts disabled and the q_lock held. May not sleep.
194 */
c2f5b650
MW
195static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
196 nvme_completion_fn *fn)
b60503ba 197{
c2f5b650 198 void *ctx;
e85248e5 199 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba 200
c2f5b650
MW
201 if (cmdid >= nvmeq->q_depth) {
202 *fn = special_completion;
48e3d398 203 return CMD_CTX_INVALID;
c2f5b650 204 }
859361a2
KB
205 if (fn)
206 *fn = info[cmdid].fn;
c2f5b650
MW
207 ctx = info[cmdid].ctx;
208 info[cmdid].fn = special_completion;
e85248e5 209 info[cmdid].ctx = CMD_CTX_COMPLETED;
b60503ba
MW
210 clear_bit(cmdid, nvmeq->cmdid_data);
211 wake_up(&nvmeq->sq_full);
c2f5b650 212 return ctx;
b60503ba
MW
213}
214
c2f5b650
MW
215static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
216 nvme_completion_fn *fn)
3c0cf138 217{
c2f5b650 218 void *ctx;
e85248e5 219 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
c2f5b650
MW
220 if (fn)
221 *fn = info[cmdid].fn;
222 ctx = info[cmdid].ctx;
223 info[cmdid].fn = special_completion;
e85248e5 224 info[cmdid].ctx = CMD_CTX_CANCELLED;
c2f5b650 225 return ctx;
3c0cf138
MW
226}
227
5d0f6131 228struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
b60503ba 229{
040a93b5 230 return dev->queues[get_cpu() + 1];
b60503ba
MW
231}
232
5d0f6131 233void put_nvmeq(struct nvme_queue *nvmeq)
b60503ba 234{
1b23484b 235 put_cpu();
b60503ba
MW
236}
237
238/**
714a7a22 239 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
240 * @nvmeq: The queue to use
241 * @cmd: The command to send
242 *
243 * Safe to use from interrupt context
244 */
245static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
246{
247 unsigned long flags;
248 u16 tail;
b60503ba
MW
249 spin_lock_irqsave(&nvmeq->q_lock, flags);
250 tail = nvmeq->sq_tail;
251 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
b60503ba
MW
252 if (++tail == nvmeq->q_depth)
253 tail = 0;
7547881d 254 writel(tail, nvmeq->q_db);
b60503ba
MW
255 nvmeq->sq_tail = tail;
256 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
257
258 return 0;
259}
260
eca18b23 261static __le64 **iod_list(struct nvme_iod *iod)
e025344c 262{
eca18b23 263 return ((void *)iod) + iod->offset;
e025344c
SMM
264}
265
eca18b23
MW
266/*
267 * Will slightly overestimate the number of pages needed. This is OK
268 * as it only leads to a small amount of wasted memory for the lifetime of
269 * the I/O.
270 */
271static int nvme_npages(unsigned size)
272{
273 unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
274 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
275}
b60503ba 276
eca18b23
MW
277static struct nvme_iod *
278nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
b60503ba 279{
eca18b23
MW
280 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
281 sizeof(__le64 *) * nvme_npages(nbytes) +
282 sizeof(struct scatterlist) * nseg, gfp);
283
284 if (iod) {
285 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
286 iod->npages = -1;
287 iod->length = nbytes;
2b196034 288 iod->nents = 0;
6198221f 289 iod->start_time = jiffies;
eca18b23
MW
290 }
291
292 return iod;
b60503ba
MW
293}
294
5d0f6131 295void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
b60503ba 296{
eca18b23
MW
297 const int last_prp = PAGE_SIZE / 8 - 1;
298 int i;
299 __le64 **list = iod_list(iod);
300 dma_addr_t prp_dma = iod->first_dma;
301
302 if (iod->npages == 0)
303 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
304 for (i = 0; i < iod->npages; i++) {
305 __le64 *prp_list = list[i];
306 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
307 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
308 prp_dma = next_prp_dma;
309 }
310 kfree(iod);
b60503ba
MW
311}
312
6198221f
KB
313static void nvme_start_io_acct(struct bio *bio)
314{
315 struct gendisk *disk = bio->bi_bdev->bd_disk;
316 const int rw = bio_data_dir(bio);
317 int cpu = part_stat_lock();
318 part_round_stats(cpu, &disk->part0);
319 part_stat_inc(cpu, &disk->part0, ios[rw]);
320 part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
321 part_inc_in_flight(&disk->part0, rw);
322 part_stat_unlock();
323}
324
325static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
326{
327 struct gendisk *disk = bio->bi_bdev->bd_disk;
328 const int rw = bio_data_dir(bio);
329 unsigned long duration = jiffies - start_time;
330 int cpu = part_stat_lock();
331 part_stat_add(cpu, &disk->part0, ticks[rw], duration);
332 part_round_stats(cpu, &disk->part0);
333 part_dec_in_flight(&disk->part0, rw);
334 part_stat_unlock();
335}
336
5c1281a3 337static void bio_completion(struct nvme_dev *dev, void *ctx,
b60503ba
MW
338 struct nvme_completion *cqe)
339{
eca18b23
MW
340 struct nvme_iod *iod = ctx;
341 struct bio *bio = iod->private;
b60503ba
MW
342 u16 status = le16_to_cpup(&cqe->status) >> 1;
343
2b196034
KB
344 if (iod->nents)
345 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
b60503ba 346 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
6198221f
KB
347
348 nvme_end_io_acct(bio, iod->start_time);
eca18b23 349 nvme_free_iod(dev, iod);
427e9708 350 if (status)
1ad2f893 351 bio_endio(bio, -EIO);
427e9708 352 else
1ad2f893 353 bio_endio(bio, 0);
b60503ba
MW
354}
355
184d2944 356/* length is in bytes. gfp flags indicates whether we may sleep. */
5d0f6131
VV
357int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
358 struct nvme_iod *iod, int total_len, gfp_t gfp)
ff22b54f 359{
99802a7a 360 struct dma_pool *pool;
eca18b23
MW
361 int length = total_len;
362 struct scatterlist *sg = iod->sg;
ff22b54f
MW
363 int dma_len = sg_dma_len(sg);
364 u64 dma_addr = sg_dma_address(sg);
365 int offset = offset_in_page(dma_addr);
e025344c 366 __le64 *prp_list;
eca18b23 367 __le64 **list = iod_list(iod);
e025344c 368 dma_addr_t prp_dma;
eca18b23 369 int nprps, i;
ff22b54f
MW
370
371 cmd->prp1 = cpu_to_le64(dma_addr);
372 length -= (PAGE_SIZE - offset);
373 if (length <= 0)
eca18b23 374 return total_len;
ff22b54f
MW
375
376 dma_len -= (PAGE_SIZE - offset);
377 if (dma_len) {
378 dma_addr += (PAGE_SIZE - offset);
379 } else {
380 sg = sg_next(sg);
381 dma_addr = sg_dma_address(sg);
382 dma_len = sg_dma_len(sg);
383 }
384
385 if (length <= PAGE_SIZE) {
386 cmd->prp2 = cpu_to_le64(dma_addr);
eca18b23 387 return total_len;
e025344c
SMM
388 }
389
390 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
99802a7a
MW
391 if (nprps <= (256 / 8)) {
392 pool = dev->prp_small_pool;
eca18b23 393 iod->npages = 0;
99802a7a
MW
394 } else {
395 pool = dev->prp_page_pool;
eca18b23 396 iod->npages = 1;
99802a7a
MW
397 }
398
b77954cb
MW
399 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
400 if (!prp_list) {
401 cmd->prp2 = cpu_to_le64(dma_addr);
eca18b23
MW
402 iod->npages = -1;
403 return (total_len - length) + PAGE_SIZE;
b77954cb 404 }
eca18b23
MW
405 list[0] = prp_list;
406 iod->first_dma = prp_dma;
e025344c
SMM
407 cmd->prp2 = cpu_to_le64(prp_dma);
408 i = 0;
409 for (;;) {
7523d834 410 if (i == PAGE_SIZE / 8) {
e025344c 411 __le64 *old_prp_list = prp_list;
b77954cb 412 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
eca18b23
MW
413 if (!prp_list)
414 return total_len - length;
415 list[iod->npages++] = prp_list;
7523d834
MW
416 prp_list[0] = old_prp_list[i - 1];
417 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
418 i = 1;
e025344c
SMM
419 }
420 prp_list[i++] = cpu_to_le64(dma_addr);
421 dma_len -= PAGE_SIZE;
422 dma_addr += PAGE_SIZE;
423 length -= PAGE_SIZE;
424 if (length <= 0)
425 break;
426 if (dma_len > 0)
427 continue;
428 BUG_ON(dma_len < 0);
429 sg = sg_next(sg);
430 dma_addr = sg_dma_address(sg);
431 dma_len = sg_dma_len(sg);
ff22b54f
MW
432 }
433
eca18b23 434 return total_len;
ff22b54f
MW
435}
436
427e9708
KB
437struct nvme_bio_pair {
438 struct bio b1, b2, *parent;
439 struct bio_vec *bv1, *bv2;
440 int err;
441 atomic_t cnt;
442};
443
444static void nvme_bio_pair_endio(struct bio *bio, int err)
445{
446 struct nvme_bio_pair *bp = bio->bi_private;
447
448 if (err)
449 bp->err = err;
450
451 if (atomic_dec_and_test(&bp->cnt)) {
452 bio_endio(bp->parent, bp->err);
453 if (bp->bv1)
454 kfree(bp->bv1);
455 if (bp->bv2)
456 kfree(bp->bv2);
457 kfree(bp);
458 }
459}
460
461static struct nvme_bio_pair *nvme_bio_split(struct bio *bio, int idx,
462 int len, int offset)
463{
464 struct nvme_bio_pair *bp;
465
466 BUG_ON(len > bio->bi_size);
467 BUG_ON(idx > bio->bi_vcnt);
468
469 bp = kmalloc(sizeof(*bp), GFP_ATOMIC);
470 if (!bp)
471 return NULL;
472 bp->err = 0;
473
474 bp->b1 = *bio;
475 bp->b2 = *bio;
476
477 bp->b1.bi_size = len;
478 bp->b2.bi_size -= len;
479 bp->b1.bi_vcnt = idx;
480 bp->b2.bi_idx = idx;
481 bp->b2.bi_sector += len >> 9;
482
483 if (offset) {
484 bp->bv1 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
485 GFP_ATOMIC);
486 if (!bp->bv1)
487 goto split_fail_1;
488
489 bp->bv2 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
490 GFP_ATOMIC);
491 if (!bp->bv2)
492 goto split_fail_2;
493
494 memcpy(bp->bv1, bio->bi_io_vec,
495 bio->bi_max_vecs * sizeof(struct bio_vec));
496 memcpy(bp->bv2, bio->bi_io_vec,
497 bio->bi_max_vecs * sizeof(struct bio_vec));
498
499 bp->b1.bi_io_vec = bp->bv1;
500 bp->b2.bi_io_vec = bp->bv2;
501 bp->b2.bi_io_vec[idx].bv_offset += offset;
502 bp->b2.bi_io_vec[idx].bv_len -= offset;
503 bp->b1.bi_io_vec[idx].bv_len = offset;
504 bp->b1.bi_vcnt++;
505 } else
506 bp->bv1 = bp->bv2 = NULL;
507
508 bp->b1.bi_private = bp;
509 bp->b2.bi_private = bp;
510
511 bp->b1.bi_end_io = nvme_bio_pair_endio;
512 bp->b2.bi_end_io = nvme_bio_pair_endio;
513
514 bp->parent = bio;
515 atomic_set(&bp->cnt, 2);
516
517 return bp;
518
519 split_fail_2:
520 kfree(bp->bv1);
521 split_fail_1:
522 kfree(bp);
523 return NULL;
524}
525
526static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
527 int idx, int len, int offset)
528{
529 struct nvme_bio_pair *bp = nvme_bio_split(bio, idx, len, offset);
530 if (!bp)
531 return -ENOMEM;
532
533 if (bio_list_empty(&nvmeq->sq_cong))
534 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
535 bio_list_add(&nvmeq->sq_cong, &bp->b1);
536 bio_list_add(&nvmeq->sq_cong, &bp->b2);
537
538 return 0;
539}
540
1ad2f893
MW
541/* NVMe scatterlists require no holes in the virtual address */
542#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
543 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
544
427e9708 545static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
b60503ba
MW
546 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
547{
76830840
MW
548 struct bio_vec *bvec, *bvprv = NULL;
549 struct scatterlist *sg = NULL;
159b67d7
KB
550 int i, length = 0, nsegs = 0, split_len = bio->bi_size;
551
552 if (nvmeq->dev->stripe_size)
553 split_len = nvmeq->dev->stripe_size -
554 ((bio->bi_sector << 9) & (nvmeq->dev->stripe_size - 1));
b60503ba 555
eca18b23 556 sg_init_table(iod->sg, psegs);
b60503ba 557 bio_for_each_segment(bvec, bio, i) {
76830840
MW
558 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
559 sg->length += bvec->bv_len;
560 } else {
1ad2f893 561 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
427e9708
KB
562 return nvme_split_and_submit(bio, nvmeq, i,
563 length, 0);
564
eca18b23 565 sg = sg ? sg + 1 : iod->sg;
76830840
MW
566 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
567 bvec->bv_offset);
568 nsegs++;
569 }
159b67d7
KB
570
571 if (split_len - length < bvec->bv_len)
572 return nvme_split_and_submit(bio, nvmeq, i, split_len,
573 split_len - length);
1ad2f893 574 length += bvec->bv_len;
76830840 575 bvprv = bvec;
b60503ba 576 }
eca18b23 577 iod->nents = nsegs;
76830840 578 sg_mark_end(sg);
427e9708 579 if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
1ad2f893 580 return -ENOMEM;
427e9708 581
159b67d7 582 BUG_ON(length != bio->bi_size);
1ad2f893 583 return length;
b60503ba
MW
584}
585
0e5e4f0e
KB
586/*
587 * We reuse the small pool to allocate the 16-byte range here as it is not
588 * worth having a special pool for these or additional cases to handle freeing
589 * the iod.
590 */
591static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
592 struct bio *bio, struct nvme_iod *iod, int cmdid)
593{
594 struct nvme_dsm_range *range;
595 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
596
597 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
598 &iod->first_dma);
599 if (!range)
600 return -ENOMEM;
601
602 iod_list(iod)[0] = (__le64 *)range;
603 iod->npages = 0;
604
605 range->cattr = cpu_to_le32(0);
606 range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift);
063cc6d5 607 range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
0e5e4f0e
KB
608
609 memset(cmnd, 0, sizeof(*cmnd));
610 cmnd->dsm.opcode = nvme_cmd_dsm;
611 cmnd->dsm.command_id = cmdid;
612 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
613 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
614 cmnd->dsm.nr = 0;
615 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
616
617 if (++nvmeq->sq_tail == nvmeq->q_depth)
618 nvmeq->sq_tail = 0;
619 writel(nvmeq->sq_tail, nvmeq->q_db);
620
621 return 0;
622}
623
00df5cb4
MW
624static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
625 int cmdid)
626{
627 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
628
629 memset(cmnd, 0, sizeof(*cmnd));
630 cmnd->common.opcode = nvme_cmd_flush;
631 cmnd->common.command_id = cmdid;
632 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
633
634 if (++nvmeq->sq_tail == nvmeq->q_depth)
635 nvmeq->sq_tail = 0;
636 writel(nvmeq->sq_tail, nvmeq->q_db);
637
638 return 0;
639}
640
5d0f6131 641int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
00df5cb4
MW
642{
643 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
ff976d72 644 special_completion, NVME_IO_TIMEOUT);
00df5cb4
MW
645 if (unlikely(cmdid < 0))
646 return cmdid;
647
648 return nvme_submit_flush(nvmeq, ns, cmdid);
649}
650
184d2944
MW
651/*
652 * Called with local interrupts disabled and the q_lock held. May not sleep.
653 */
b60503ba
MW
654static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
655 struct bio *bio)
656{
ff22b54f 657 struct nvme_command *cmnd;
eca18b23 658 struct nvme_iod *iod;
b60503ba 659 enum dma_data_direction dma_dir;
1287dabd 660 int cmdid, length, result;
b60503ba
MW
661 u16 control;
662 u32 dsmgmt;
b60503ba
MW
663 int psegs = bio_phys_segments(ns->queue, bio);
664
00df5cb4
MW
665 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
666 result = nvme_submit_flush_data(nvmeq, ns);
667 if (result)
668 return result;
669 }
670
1287dabd 671 result = -ENOMEM;
eca18b23
MW
672 iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
673 if (!iod)
eeee3226 674 goto nomem;
eca18b23 675 iod->private = bio;
b60503ba 676
eeee3226 677 result = -EBUSY;
ff976d72 678 cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
b60503ba 679 if (unlikely(cmdid < 0))
eca18b23 680 goto free_iod;
b60503ba 681
0e5e4f0e
KB
682 if (bio->bi_rw & REQ_DISCARD) {
683 result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
684 if (result)
685 goto free_cmdid;
686 return result;
687 }
00df5cb4
MW
688 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
689 return nvme_submit_flush(nvmeq, ns, cmdid);
690
b60503ba
MW
691 control = 0;
692 if (bio->bi_rw & REQ_FUA)
693 control |= NVME_RW_FUA;
694 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
695 control |= NVME_RW_LR;
696
697 dsmgmt = 0;
698 if (bio->bi_rw & REQ_RAHEAD)
699 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
700
ff22b54f 701 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
b60503ba 702
b8deb62c 703 memset(cmnd, 0, sizeof(*cmnd));
b60503ba 704 if (bio_data_dir(bio)) {
ff22b54f 705 cmnd->rw.opcode = nvme_cmd_write;
b60503ba
MW
706 dma_dir = DMA_TO_DEVICE;
707 } else {
ff22b54f 708 cmnd->rw.opcode = nvme_cmd_read;
b60503ba
MW
709 dma_dir = DMA_FROM_DEVICE;
710 }
711
427e9708
KB
712 result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs);
713 if (result <= 0)
859361a2 714 goto free_cmdid;
1ad2f893 715 length = result;
b60503ba 716
ff22b54f
MW
717 cmnd->rw.command_id = cmdid;
718 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
eca18b23
MW
719 length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
720 GFP_ATOMIC);
063cc6d5 721 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
1ad2f893 722 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
ff22b54f
MW
723 cmnd->rw.control = cpu_to_le16(control);
724 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba 725
6198221f 726 nvme_start_io_acct(bio);
b60503ba
MW
727 if (++nvmeq->sq_tail == nvmeq->q_depth)
728 nvmeq->sq_tail = 0;
7547881d 729 writel(nvmeq->sq_tail, nvmeq->q_db);
b60503ba 730
1974b1ae
MW
731 return 0;
732
859361a2
KB
733 free_cmdid:
734 free_cmdid(nvmeq, cmdid, NULL);
eca18b23
MW
735 free_iod:
736 nvme_free_iod(nvmeq->dev, iod);
eeee3226
MW
737 nomem:
738 return result;
b60503ba
MW
739}
740
93c3d65b 741static void nvme_make_request(struct request_queue *q, struct bio *bio)
b60503ba
MW
742{
743 struct nvme_ns *ns = q->queuedata;
040a93b5 744 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
eeee3226
MW
745 int result = -EBUSY;
746
747 spin_lock_irq(&nvmeq->q_lock);
748 if (bio_list_empty(&nvmeq->sq_cong))
749 result = nvme_submit_bio_queue(nvmeq, ns, bio);
750 if (unlikely(result)) {
751 if (bio_list_empty(&nvmeq->sq_cong))
752 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
b60503ba
MW
753 bio_list_add(&nvmeq->sq_cong, bio);
754 }
eeee3226
MW
755
756 spin_unlock_irq(&nvmeq->q_lock);
b60503ba 757 put_nvmeq(nvmeq);
b60503ba
MW
758}
759
e9539f47 760static int nvme_process_cq(struct nvme_queue *nvmeq)
b60503ba 761{
82123460 762 u16 head, phase;
b60503ba 763
b60503ba 764 head = nvmeq->cq_head;
82123460 765 phase = nvmeq->cq_phase;
b60503ba
MW
766
767 for (;;) {
c2f5b650
MW
768 void *ctx;
769 nvme_completion_fn fn;
b60503ba 770 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 771 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
772 break;
773 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
774 if (++head == nvmeq->q_depth) {
775 head = 0;
82123460 776 phase = !phase;
b60503ba
MW
777 }
778
c2f5b650 779 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
5c1281a3 780 fn(nvmeq->dev, ctx, &cqe);
b60503ba
MW
781 }
782
783 /* If the controller ignores the cq head doorbell and continuously
784 * writes to the queue, it is theoretically possible to wrap around
785 * the queue twice and mistakenly return IRQ_NONE. Linux only
786 * requires that 0.1% of your interrupts are handled, so this isn't
787 * a big problem.
788 */
82123460 789 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
e9539f47 790 return 0;
b60503ba 791
f1938f6e 792 writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
b60503ba 793 nvmeq->cq_head = head;
82123460 794 nvmeq->cq_phase = phase;
b60503ba 795
e9539f47
MW
796 nvmeq->cqe_seen = 1;
797 return 1;
b60503ba
MW
798}
799
800static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
801{
802 irqreturn_t result;
803 struct nvme_queue *nvmeq = data;
804 spin_lock(&nvmeq->q_lock);
e9539f47
MW
805 nvme_process_cq(nvmeq);
806 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
807 nvmeq->cqe_seen = 0;
58ffacb5
MW
808 spin_unlock(&nvmeq->q_lock);
809 return result;
810}
811
812static irqreturn_t nvme_irq_check(int irq, void *data)
813{
814 struct nvme_queue *nvmeq = data;
815 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
816 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
817 return IRQ_NONE;
818 return IRQ_WAKE_THREAD;
819}
820
3c0cf138
MW
821static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
822{
823 spin_lock_irq(&nvmeq->q_lock);
c2f5b650 824 cancel_cmdid(nvmeq, cmdid, NULL);
3c0cf138
MW
825 spin_unlock_irq(&nvmeq->q_lock);
826}
827
c2f5b650
MW
828struct sync_cmd_info {
829 struct task_struct *task;
830 u32 result;
831 int status;
832};
833
5c1281a3 834static void sync_completion(struct nvme_dev *dev, void *ctx,
c2f5b650
MW
835 struct nvme_completion *cqe)
836{
837 struct sync_cmd_info *cmdinfo = ctx;
838 cmdinfo->result = le32_to_cpup(&cqe->result);
839 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
840 wake_up_process(cmdinfo->task);
841}
842
b60503ba
MW
843/*
844 * Returns 0 on success. If the result is negative, it's a Linux error code;
845 * if the result is positive, it's an NVM Express status code
846 */
5d0f6131
VV
847int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
848 u32 *result, unsigned timeout)
b60503ba
MW
849{
850 int cmdid;
851 struct sync_cmd_info cmdinfo;
852
853 cmdinfo.task = current;
854 cmdinfo.status = -EINTR;
855
c2f5b650 856 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
e85248e5 857 timeout);
b60503ba
MW
858 if (cmdid < 0)
859 return cmdid;
860 cmd->common.command_id = cmdid;
861
3c0cf138
MW
862 set_current_state(TASK_KILLABLE);
863 nvme_submit_cmd(nvmeq, cmd);
78f8d257 864 schedule_timeout(timeout);
b60503ba 865
3c0cf138
MW
866 if (cmdinfo.status == -EINTR) {
867 nvme_abort_command(nvmeq, cmdid);
868 return -EINTR;
869 }
870
b60503ba
MW
871 if (result)
872 *result = cmdinfo.result;
873
874 return cmdinfo.status;
875}
876
5d0f6131 877int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
b60503ba
MW
878 u32 *result)
879{
e85248e5 880 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
b60503ba
MW
881}
882
883static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
884{
885 int status;
886 struct nvme_command c;
887
888 memset(&c, 0, sizeof(c));
889 c.delete_queue.opcode = opcode;
890 c.delete_queue.qid = cpu_to_le16(id);
891
892 status = nvme_submit_admin_cmd(dev, &c, NULL);
893 if (status)
894 return -EIO;
895 return 0;
896}
897
898static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
899 struct nvme_queue *nvmeq)
900{
901 int status;
902 struct nvme_command c;
903 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
904
905 memset(&c, 0, sizeof(c));
906 c.create_cq.opcode = nvme_admin_create_cq;
907 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
908 c.create_cq.cqid = cpu_to_le16(qid);
909 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
910 c.create_cq.cq_flags = cpu_to_le16(flags);
911 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
912
913 status = nvme_submit_admin_cmd(dev, &c, NULL);
914 if (status)
915 return -EIO;
916 return 0;
917}
918
919static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
920 struct nvme_queue *nvmeq)
921{
922 int status;
923 struct nvme_command c;
924 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
925
926 memset(&c, 0, sizeof(c));
927 c.create_sq.opcode = nvme_admin_create_sq;
928 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
929 c.create_sq.sqid = cpu_to_le16(qid);
930 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
931 c.create_sq.sq_flags = cpu_to_le16(flags);
932 c.create_sq.cqid = cpu_to_le16(qid);
933
934 status = nvme_submit_admin_cmd(dev, &c, NULL);
935 if (status)
936 return -EIO;
937 return 0;
938}
939
940static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
941{
942 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
943}
944
945static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
946{
947 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
948}
949
5d0f6131 950int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
bc5fc7e4
MW
951 dma_addr_t dma_addr)
952{
953 struct nvme_command c;
954
955 memset(&c, 0, sizeof(c));
956 c.identify.opcode = nvme_admin_identify;
957 c.identify.nsid = cpu_to_le32(nsid);
958 c.identify.prp1 = cpu_to_le64(dma_addr);
959 c.identify.cns = cpu_to_le32(cns);
960
961 return nvme_submit_admin_cmd(dev, &c, NULL);
962}
963
5d0f6131 964int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
08df1e05 965 dma_addr_t dma_addr, u32 *result)
bc5fc7e4
MW
966{
967 struct nvme_command c;
968
969 memset(&c, 0, sizeof(c));
970 c.features.opcode = nvme_admin_get_features;
a42cecce 971 c.features.nsid = cpu_to_le32(nsid);
bc5fc7e4
MW
972 c.features.prp1 = cpu_to_le64(dma_addr);
973 c.features.fid = cpu_to_le32(fid);
bc5fc7e4 974
08df1e05 975 return nvme_submit_admin_cmd(dev, &c, result);
df348139
MW
976}
977
5d0f6131
VV
978int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
979 dma_addr_t dma_addr, u32 *result)
df348139
MW
980{
981 struct nvme_command c;
982
983 memset(&c, 0, sizeof(c));
984 c.features.opcode = nvme_admin_set_features;
985 c.features.prp1 = cpu_to_le64(dma_addr);
986 c.features.fid = cpu_to_le32(fid);
987 c.features.dword11 = cpu_to_le32(dword11);
988
bc5fc7e4
MW
989 return nvme_submit_admin_cmd(dev, &c, result);
990}
991
a09115b2
MW
992/**
993 * nvme_cancel_ios - Cancel outstanding I/Os
994 * @queue: The queue to cancel I/Os on
995 * @timeout: True to only cancel I/Os which have timed out
996 */
997static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
998{
999 int depth = nvmeq->q_depth - 1;
1000 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1001 unsigned long now = jiffies;
1002 int cmdid;
1003
1004 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1005 void *ctx;
1006 nvme_completion_fn fn;
1007 static struct nvme_completion cqe = {
af2d9ca7 1008 .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
a09115b2
MW
1009 };
1010
1011 if (timeout && !time_after(now, info[cmdid].timeout))
1012 continue;
053ab702
KB
1013 if (info[cmdid].ctx == CMD_CTX_CANCELLED)
1014 continue;
a09115b2
MW
1015 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
1016 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1017 fn(nvmeq->dev, ctx, &cqe);
1018 }
1019}
1020
9e866774
MW
1021static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
1022{
1023 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1024 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1025 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1026 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1027 kfree(nvmeq);
1028}
1029
b60503ba
MW
1030static void nvme_free_queue(struct nvme_dev *dev, int qid)
1031{
1032 struct nvme_queue *nvmeq = dev->queues[qid];
aba2080f 1033 int vector = dev->entry[nvmeq->cq_vector].vector;
b60503ba 1034
a09115b2
MW
1035 spin_lock_irq(&nvmeq->q_lock);
1036 nvme_cancel_ios(nvmeq, false);
3295874b
KB
1037 while (bio_list_peek(&nvmeq->sq_cong)) {
1038 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1039 bio_endio(bio, -EIO);
1040 }
a09115b2
MW
1041 spin_unlock_irq(&nvmeq->q_lock);
1042
aba2080f
MW
1043 irq_set_affinity_hint(vector, NULL);
1044 free_irq(vector, nvmeq);
b60503ba
MW
1045
1046 /* Don't tell the adapter to delete the admin queue */
1047 if (qid) {
1048 adapter_delete_sq(dev, qid);
1049 adapter_delete_cq(dev, qid);
1050 }
1051
9e866774 1052 nvme_free_queue_mem(nvmeq);
b60503ba
MW
1053}
1054
1055static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1056 int depth, int vector)
1057{
1058 struct device *dmadev = &dev->pci_dev->dev;
a0cadb85
KB
1059 unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
1060 sizeof(struct nvme_cmd_info));
b60503ba
MW
1061 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1062 if (!nvmeq)
1063 return NULL;
1064
1065 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1066 &nvmeq->cq_dma_addr, GFP_KERNEL);
1067 if (!nvmeq->cqes)
1068 goto free_nvmeq;
1069 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1070
1071 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1072 &nvmeq->sq_dma_addr, GFP_KERNEL);
1073 if (!nvmeq->sq_cmds)
1074 goto free_cqdma;
1075
1076 nvmeq->q_dmadev = dmadev;
091b6092 1077 nvmeq->dev = dev;
b60503ba
MW
1078 spin_lock_init(&nvmeq->q_lock);
1079 nvmeq->cq_head = 0;
82123460 1080 nvmeq->cq_phase = 1;
b60503ba 1081 init_waitqueue_head(&nvmeq->sq_full);
1fa6aead 1082 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
b60503ba 1083 bio_list_init(&nvmeq->sq_cong);
f1938f6e 1084 nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
b60503ba
MW
1085 nvmeq->q_depth = depth;
1086 nvmeq->cq_vector = vector;
1087
1088 return nvmeq;
1089
1090 free_cqdma:
68b8eca5 1091 dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1092 nvmeq->cq_dma_addr);
1093 free_nvmeq:
1094 kfree(nvmeq);
1095 return NULL;
1096}
1097
3001082c
MW
1098static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1099 const char *name)
1100{
58ffacb5
MW
1101 if (use_threaded_interrupts)
1102 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
ec6ce618 1103 nvme_irq_check, nvme_irq,
58ffacb5
MW
1104 IRQF_DISABLED | IRQF_SHARED,
1105 name, nvmeq);
3001082c
MW
1106 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1107 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
1108}
1109
8d85fce7
GKH
1110static struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, int qid,
1111 int cq_size, int vector)
b60503ba
MW
1112{
1113 int result;
1114 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
1115
3f85d50b 1116 if (!nvmeq)
6f0f5449 1117 return ERR_PTR(-ENOMEM);
3f85d50b 1118
b60503ba
MW
1119 result = adapter_alloc_cq(dev, qid, nvmeq);
1120 if (result < 0)
1121 goto free_nvmeq;
1122
1123 result = adapter_alloc_sq(dev, qid, nvmeq);
1124 if (result < 0)
1125 goto release_cq;
1126
3001082c 1127 result = queue_request_irq(dev, nvmeq, "nvme");
b60503ba
MW
1128 if (result < 0)
1129 goto release_sq;
1130
1131 return nvmeq;
1132
1133 release_sq:
1134 adapter_delete_sq(dev, qid);
1135 release_cq:
1136 adapter_delete_cq(dev, qid);
1137 free_nvmeq:
1138 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1139 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1140 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1141 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1142 kfree(nvmeq);
6f0f5449 1143 return ERR_PTR(result);
b60503ba
MW
1144}
1145
ba47e386
MW
1146static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1147{
1148 unsigned long timeout;
1149 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1150
1151 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1152
1153 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1154 msleep(100);
1155 if (fatal_signal_pending(current))
1156 return -EINTR;
1157 if (time_after(jiffies, timeout)) {
1158 dev_err(&dev->pci_dev->dev,
1159 "Device not ready; aborting initialisation\n");
1160 return -ENODEV;
1161 }
1162 }
1163
1164 return 0;
1165}
1166
1167/*
1168 * If the device has been passed off to us in an enabled state, just clear
1169 * the enabled bit. The spec says we should set the 'shutdown notification
1170 * bits', but doing so may cause the device to complete commands to the
1171 * admin queue ... and we don't know what memory that might be pointing at!
1172 */
1173static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1174{
44af146a
MW
1175 u32 cc = readl(&dev->bar->cc);
1176
1177 if (cc & NVME_CC_ENABLE)
1178 writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
ba47e386
MW
1179 return nvme_wait_ready(dev, cap, false);
1180}
1181
1182static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1183{
1184 return nvme_wait_ready(dev, cap, true);
1185}
1186
8d85fce7 1187static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1188{
ba47e386 1189 int result;
b60503ba 1190 u32 aqa;
ba47e386 1191 u64 cap = readq(&dev->bar->cap);
b60503ba
MW
1192 struct nvme_queue *nvmeq;
1193
1194 dev->dbs = ((void __iomem *)dev->bar) + 4096;
ba47e386
MW
1195 dev->db_stride = NVME_CAP_STRIDE(cap);
1196
1197 result = nvme_disable_ctrl(dev, cap);
1198 if (result < 0)
1199 return result;
b60503ba
MW
1200
1201 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
3f85d50b
MW
1202 if (!nvmeq)
1203 return -ENOMEM;
b60503ba
MW
1204
1205 aqa = nvmeq->q_depth - 1;
1206 aqa |= aqa << 16;
1207
1208 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1209 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1210 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
7f53f9d2 1211 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
b60503ba
MW
1212
1213 writel(aqa, &dev->bar->aqa);
1214 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1215 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1216 writel(dev->ctrl_config, &dev->bar->cc);
1217
ba47e386 1218 result = nvme_enable_ctrl(dev, cap);
025c557a
KB
1219 if (result)
1220 goto free_q;
9e866774 1221
3001082c 1222 result = queue_request_irq(dev, nvmeq, "nvme admin");
025c557a
KB
1223 if (result)
1224 goto free_q;
1225
b60503ba
MW
1226 dev->queues[0] = nvmeq;
1227 return result;
025c557a
KB
1228
1229 free_q:
1230 nvme_free_queue_mem(nvmeq);
1231 return result;
b60503ba
MW
1232}
1233
5d0f6131 1234struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
eca18b23 1235 unsigned long addr, unsigned length)
b60503ba 1236{
36c14ed9 1237 int i, err, count, nents, offset;
7fc3cdab
MW
1238 struct scatterlist *sg;
1239 struct page **pages;
eca18b23 1240 struct nvme_iod *iod;
36c14ed9
MW
1241
1242 if (addr & 3)
eca18b23 1243 return ERR_PTR(-EINVAL);
5460fc03 1244 if (!length || length > INT_MAX - PAGE_SIZE)
eca18b23 1245 return ERR_PTR(-EINVAL);
7fc3cdab 1246
36c14ed9 1247 offset = offset_in_page(addr);
7fc3cdab
MW
1248 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1249 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
22fff826
DC
1250 if (!pages)
1251 return ERR_PTR(-ENOMEM);
36c14ed9
MW
1252
1253 err = get_user_pages_fast(addr, count, 1, pages);
1254 if (err < count) {
1255 count = err;
1256 err = -EFAULT;
1257 goto put_pages;
1258 }
7fc3cdab 1259
eca18b23
MW
1260 iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1261 sg = iod->sg;
36c14ed9 1262 sg_init_table(sg, count);
d0ba1e49
MW
1263 for (i = 0; i < count; i++) {
1264 sg_set_page(&sg[i], pages[i],
5460fc03
DC
1265 min_t(unsigned, length, PAGE_SIZE - offset),
1266 offset);
d0ba1e49
MW
1267 length -= (PAGE_SIZE - offset);
1268 offset = 0;
7fc3cdab 1269 }
fe304c43 1270 sg_mark_end(&sg[i - 1]);
1c2ad9fa 1271 iod->nents = count;
7fc3cdab
MW
1272
1273 err = -ENOMEM;
1274 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1275 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
36c14ed9 1276 if (!nents)
eca18b23 1277 goto free_iod;
b60503ba 1278
7fc3cdab 1279 kfree(pages);
eca18b23 1280 return iod;
b60503ba 1281
eca18b23
MW
1282 free_iod:
1283 kfree(iod);
7fc3cdab
MW
1284 put_pages:
1285 for (i = 0; i < count; i++)
1286 put_page(pages[i]);
1287 kfree(pages);
eca18b23 1288 return ERR_PTR(err);
7fc3cdab 1289}
b60503ba 1290
5d0f6131 1291void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1c2ad9fa 1292 struct nvme_iod *iod)
7fc3cdab 1293{
1c2ad9fa 1294 int i;
b60503ba 1295
1c2ad9fa
MW
1296 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1297 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
7fc3cdab 1298
1c2ad9fa
MW
1299 for (i = 0; i < iod->nents; i++)
1300 put_page(sg_page(&iod->sg[i]));
7fc3cdab 1301}
b60503ba 1302
a53295b6
MW
1303static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1304{
1305 struct nvme_dev *dev = ns->dev;
1306 struct nvme_queue *nvmeq;
1307 struct nvme_user_io io;
1308 struct nvme_command c;
f410c680
KB
1309 unsigned length, meta_len;
1310 int status, i;
1311 struct nvme_iod *iod, *meta_iod = NULL;
1312 dma_addr_t meta_dma_addr;
1313 void *meta, *uninitialized_var(meta_mem);
a53295b6
MW
1314
1315 if (copy_from_user(&io, uio, sizeof(io)))
1316 return -EFAULT;
6c7d4945 1317 length = (io.nblocks + 1) << ns->lba_shift;
f410c680
KB
1318 meta_len = (io.nblocks + 1) * ns->ms;
1319
1320 if (meta_len && ((io.metadata & 3) || !io.metadata))
1321 return -EINVAL;
6c7d4945
MW
1322
1323 switch (io.opcode) {
1324 case nvme_cmd_write:
1325 case nvme_cmd_read:
6bbf1acd 1326 case nvme_cmd_compare:
eca18b23 1327 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
6413214c 1328 break;
6c7d4945 1329 default:
6bbf1acd 1330 return -EINVAL;
6c7d4945
MW
1331 }
1332
eca18b23
MW
1333 if (IS_ERR(iod))
1334 return PTR_ERR(iod);
a53295b6
MW
1335
1336 memset(&c, 0, sizeof(c));
1337 c.rw.opcode = io.opcode;
1338 c.rw.flags = io.flags;
6c7d4945 1339 c.rw.nsid = cpu_to_le32(ns->ns_id);
a53295b6 1340 c.rw.slba = cpu_to_le64(io.slba);
6c7d4945 1341 c.rw.length = cpu_to_le16(io.nblocks);
a53295b6 1342 c.rw.control = cpu_to_le16(io.control);
1c9b5265
MW
1343 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1344 c.rw.reftag = cpu_to_le32(io.reftag);
1345 c.rw.apptag = cpu_to_le16(io.apptag);
1346 c.rw.appmask = cpu_to_le16(io.appmask);
f410c680
KB
1347
1348 if (meta_len) {
1349 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata, meta_len);
1350 if (IS_ERR(meta_iod)) {
1351 status = PTR_ERR(meta_iod);
1352 meta_iod = NULL;
1353 goto unmap;
1354 }
1355
1356 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1357 &meta_dma_addr, GFP_KERNEL);
1358 if (!meta_mem) {
1359 status = -ENOMEM;
1360 goto unmap;
1361 }
1362
1363 if (io.opcode & 1) {
1364 int meta_offset = 0;
1365
1366 for (i = 0; i < meta_iod->nents; i++) {
1367 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1368 meta_iod->sg[i].offset;
1369 memcpy(meta_mem + meta_offset, meta,
1370 meta_iod->sg[i].length);
1371 kunmap_atomic(meta);
1372 meta_offset += meta_iod->sg[i].length;
1373 }
1374 }
1375
1376 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1377 }
1378
eca18b23 1379 length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
a53295b6 1380
040a93b5 1381 nvmeq = get_nvmeq(dev);
fa922821
MW
1382 /*
1383 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
b1ad37ef
MW
1384 * disabled. We may be preempted at any point, and be rescheduled
1385 * to a different CPU. That will cause cacheline bouncing, but no
1386 * additional races since q_lock already protects against other CPUs.
1387 */
a53295b6 1388 put_nvmeq(nvmeq);
b77954cb
MW
1389 if (length != (io.nblocks + 1) << ns->lba_shift)
1390 status = -ENOMEM;
1391 else
ff976d72 1392 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
a53295b6 1393
f410c680
KB
1394 if (meta_len) {
1395 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1396 int meta_offset = 0;
1397
1398 for (i = 0; i < meta_iod->nents; i++) {
1399 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1400 meta_iod->sg[i].offset;
1401 memcpy(meta, meta_mem + meta_offset,
1402 meta_iod->sg[i].length);
1403 kunmap_atomic(meta);
1404 meta_offset += meta_iod->sg[i].length;
1405 }
1406 }
1407
1408 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1409 meta_dma_addr);
1410 }
1411
1412 unmap:
1c2ad9fa 1413 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
eca18b23 1414 nvme_free_iod(dev, iod);
f410c680
KB
1415
1416 if (meta_iod) {
1417 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1418 nvme_free_iod(dev, meta_iod);
1419 }
1420
a53295b6
MW
1421 return status;
1422}
1423
50af8bae 1424static int nvme_user_admin_cmd(struct nvme_dev *dev,
6bbf1acd 1425 struct nvme_admin_cmd __user *ucmd)
6ee44cdc 1426{
6bbf1acd 1427 struct nvme_admin_cmd cmd;
6ee44cdc 1428 struct nvme_command c;
eca18b23 1429 int status, length;
c7d36ab8 1430 struct nvme_iod *uninitialized_var(iod);
94f370ca 1431 unsigned timeout;
6ee44cdc 1432
6bbf1acd
MW
1433 if (!capable(CAP_SYS_ADMIN))
1434 return -EACCES;
1435 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
6ee44cdc 1436 return -EFAULT;
6ee44cdc
MW
1437
1438 memset(&c, 0, sizeof(c));
6bbf1acd
MW
1439 c.common.opcode = cmd.opcode;
1440 c.common.flags = cmd.flags;
1441 c.common.nsid = cpu_to_le32(cmd.nsid);
1442 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1443 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1444 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1445 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1446 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1447 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1448 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1449 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1450
1451 length = cmd.data_len;
1452 if (cmd.data_len) {
49742188
MW
1453 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1454 length);
eca18b23
MW
1455 if (IS_ERR(iod))
1456 return PTR_ERR(iod);
1457 length = nvme_setup_prps(dev, &c.common, iod, length,
1458 GFP_KERNEL);
6bbf1acd
MW
1459 }
1460
94f370ca
KB
1461 timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1462 ADMIN_TIMEOUT;
6bbf1acd 1463 if (length != cmd.data_len)
b77954cb
MW
1464 status = -ENOMEM;
1465 else
94f370ca
KB
1466 status = nvme_submit_sync_cmd(dev->queues[0], &c, &cmd.result,
1467 timeout);
eca18b23 1468
6bbf1acd 1469 if (cmd.data_len) {
1c2ad9fa 1470 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
eca18b23 1471 nvme_free_iod(dev, iod);
6bbf1acd 1472 }
f4f117f6 1473
cf90bc48 1474 if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
f4f117f6
KB
1475 sizeof(cmd.result)))
1476 status = -EFAULT;
1477
6ee44cdc
MW
1478 return status;
1479}
1480
b60503ba
MW
1481static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1482 unsigned long arg)
1483{
1484 struct nvme_ns *ns = bdev->bd_disk->private_data;
1485
1486 switch (cmd) {
6bbf1acd
MW
1487 case NVME_IOCTL_ID:
1488 return ns->ns_id;
1489 case NVME_IOCTL_ADMIN_CMD:
50af8bae 1490 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
a53295b6
MW
1491 case NVME_IOCTL_SUBMIT_IO:
1492 return nvme_submit_io(ns, (void __user *)arg);
5d0f6131
VV
1493 case SG_GET_VERSION_NUM:
1494 return nvme_sg_get_version_num((void __user *)arg);
1495 case SG_IO:
1496 return nvme_sg_io(ns, (void __user *)arg);
b60503ba
MW
1497 default:
1498 return -ENOTTY;
1499 }
1500}
1501
1502static const struct block_device_operations nvme_fops = {
1503 .owner = THIS_MODULE,
1504 .ioctl = nvme_ioctl,
49481682 1505 .compat_ioctl = nvme_ioctl,
b60503ba
MW
1506};
1507
1fa6aead
MW
1508static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1509{
1510 while (bio_list_peek(&nvmeq->sq_cong)) {
1511 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1512 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
427e9708
KB
1513
1514 if (bio_list_empty(&nvmeq->sq_cong))
1515 remove_wait_queue(&nvmeq->sq_full,
1516 &nvmeq->sq_cong_wait);
1fa6aead 1517 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
427e9708
KB
1518 if (bio_list_empty(&nvmeq->sq_cong))
1519 add_wait_queue(&nvmeq->sq_full,
1520 &nvmeq->sq_cong_wait);
1fa6aead
MW
1521 bio_list_add_head(&nvmeq->sq_cong, bio);
1522 break;
1523 }
1524 }
1525}
1526
1527static int nvme_kthread(void *data)
1528{
1529 struct nvme_dev *dev;
1530
1531 while (!kthread_should_stop()) {
564a232c 1532 set_current_state(TASK_INTERRUPTIBLE);
1fa6aead
MW
1533 spin_lock(&dev_list_lock);
1534 list_for_each_entry(dev, &dev_list, node) {
1535 int i;
1536 for (i = 0; i < dev->queue_count; i++) {
1537 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
1538 if (!nvmeq)
1539 continue;
1fa6aead 1540 spin_lock_irq(&nvmeq->q_lock);
bc57a0f7 1541 nvme_process_cq(nvmeq);
a09115b2 1542 nvme_cancel_ios(nvmeq, true);
1fa6aead
MW
1543 nvme_resubmit_bios(nvmeq);
1544 spin_unlock_irq(&nvmeq->q_lock);
1545 }
1546 }
1547 spin_unlock(&dev_list_lock);
acb7aa0d 1548 schedule_timeout(round_jiffies_relative(HZ));
1fa6aead
MW
1549 }
1550 return 0;
1551}
1552
5aff9382
MW
1553static DEFINE_IDA(nvme_index_ida);
1554
1555static int nvme_get_ns_idx(void)
1556{
1557 int index, error;
1558
1559 do {
1560 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1561 return -1;
1562
1563 spin_lock(&dev_list_lock);
1564 error = ida_get_new(&nvme_index_ida, &index);
1565 spin_unlock(&dev_list_lock);
1566 } while (error == -EAGAIN);
1567
1568 if (error)
1569 index = -1;
1570 return index;
1571}
1572
1573static void nvme_put_ns_idx(int index)
1574{
1575 spin_lock(&dev_list_lock);
1576 ida_remove(&nvme_index_ida, index);
1577 spin_unlock(&dev_list_lock);
1578}
1579
0e5e4f0e
KB
1580static void nvme_config_discard(struct nvme_ns *ns)
1581{
1582 u32 logical_block_size = queue_logical_block_size(ns->queue);
1583 ns->queue->limits.discard_zeroes_data = 0;
1584 ns->queue->limits.discard_alignment = logical_block_size;
1585 ns->queue->limits.discard_granularity = logical_block_size;
1586 ns->queue->limits.max_discard_sectors = 0xffffffff;
1587 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1588}
1589
5aff9382 1590static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
b60503ba
MW
1591 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1592{
1593 struct nvme_ns *ns;
1594 struct gendisk *disk;
1595 int lbaf;
1596
1597 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1598 return NULL;
1599
1600 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1601 if (!ns)
1602 return NULL;
1603 ns->queue = blk_alloc_queue(GFP_KERNEL);
1604 if (!ns->queue)
1605 goto out_free_ns;
4eeb9215
MW
1606 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1607 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1608 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
b60503ba
MW
1609 blk_queue_make_request(ns->queue, nvme_make_request);
1610 ns->dev = dev;
1611 ns->queue->queuedata = ns;
1612
1613 disk = alloc_disk(NVME_MINORS);
1614 if (!disk)
1615 goto out_free_queue;
5aff9382 1616 ns->ns_id = nsid;
b60503ba
MW
1617 ns->disk = disk;
1618 lbaf = id->flbas & 0xf;
1619 ns->lba_shift = id->lbaf[lbaf].ds;
f410c680 1620 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
e9ef4636 1621 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
8fc23e03
KB
1622 if (dev->max_hw_sectors)
1623 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
b60503ba
MW
1624
1625 disk->major = nvme_major;
1626 disk->minors = NVME_MINORS;
5aff9382 1627 disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
b60503ba
MW
1628 disk->fops = &nvme_fops;
1629 disk->private_data = ns;
1630 disk->queue = ns->queue;
388f037f 1631 disk->driverfs_dev = &dev->pci_dev->dev;
5aff9382 1632 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
b60503ba
MW
1633 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1634
0e5e4f0e
KB
1635 if (dev->oncs & NVME_CTRL_ONCS_DSM)
1636 nvme_config_discard(ns);
1637
b60503ba
MW
1638 return ns;
1639
1640 out_free_queue:
1641 blk_cleanup_queue(ns->queue);
1642 out_free_ns:
1643 kfree(ns);
1644 return NULL;
1645}
1646
1647static void nvme_ns_free(struct nvme_ns *ns)
1648{
5aff9382 1649 int index = ns->disk->first_minor / NVME_MINORS;
b60503ba 1650 put_disk(ns->disk);
5aff9382 1651 nvme_put_ns_idx(index);
b60503ba
MW
1652 blk_cleanup_queue(ns->queue);
1653 kfree(ns);
1654}
1655
b3b06812 1656static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
1657{
1658 int status;
1659 u32 result;
b3b06812 1660 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba 1661
df348139 1662 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
bc5fc7e4 1663 &result);
b60503ba
MW
1664 if (status)
1665 return -EIO;
1666 return min(result & 0xffff, result >> 16) + 1;
1667}
1668
8d85fce7 1669static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1670{
fa08a396 1671 struct pci_dev *pdev = dev->pci_dev;
063a8096 1672 int result, cpu, i, vecs, nr_io_queues, db_bar_size, q_depth;
b60503ba 1673
b348b7d5
MW
1674 nr_io_queues = num_online_cpus();
1675 result = set_queue_count(dev, nr_io_queues);
1b23484b
MW
1676 if (result < 0)
1677 return result;
b348b7d5
MW
1678 if (result < nr_io_queues)
1679 nr_io_queues = result;
b60503ba 1680
1b23484b
MW
1681 /* Deregister the admin queue's interrupt */
1682 free_irq(dev->entry[0].vector, dev->queues[0]);
1683
f1938f6e
MW
1684 db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1685 if (db_bar_size > 8192) {
1686 iounmap(dev->bar);
fa08a396 1687 dev->bar = ioremap(pci_resource_start(pdev, 0), db_bar_size);
f1938f6e
MW
1688 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1689 dev->queues[0]->q_db = dev->dbs;
1690 }
1691
063a8096
MW
1692 vecs = nr_io_queues;
1693 for (i = 0; i < vecs; i++)
1b23484b
MW
1694 dev->entry[i].entry = i;
1695 for (;;) {
063a8096
MW
1696 result = pci_enable_msix(pdev, dev->entry, vecs);
1697 if (result <= 0)
1b23484b 1698 break;
063a8096 1699 vecs = result;
1b23484b
MW
1700 }
1701
063a8096
MW
1702 if (result < 0) {
1703 vecs = nr_io_queues;
1704 if (vecs > 32)
1705 vecs = 32;
fa08a396 1706 for (;;) {
063a8096 1707 result = pci_enable_msi_block(pdev, vecs);
fa08a396 1708 if (result == 0) {
063a8096 1709 for (i = 0; i < vecs; i++)
fa08a396
RRG
1710 dev->entry[i].vector = i + pdev->irq;
1711 break;
063a8096
MW
1712 } else if (result < 0) {
1713 vecs = 1;
fa08a396
RRG
1714 break;
1715 }
063a8096 1716 vecs = result;
fa08a396
RRG
1717 }
1718 }
1719
063a8096
MW
1720 /*
1721 * Should investigate if there's a performance win from allocating
1722 * more queues than interrupt vectors; it might allow the submission
1723 * path to scale better, even if the receive path is limited by the
1724 * number of interrupts.
1725 */
1726 nr_io_queues = vecs;
1727
1b23484b
MW
1728 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1729 /* XXX: handle failure here */
1730
1731 cpu = cpumask_first(cpu_online_mask);
b348b7d5 1732 for (i = 0; i < nr_io_queues; i++) {
1b23484b
MW
1733 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1734 cpu = cpumask_next(cpu, cpu_online_mask);
1735 }
1736
a0cadb85
KB
1737 q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
1738 NVME_Q_DEPTH);
b348b7d5 1739 for (i = 0; i < nr_io_queues; i++) {
a0cadb85 1740 dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
6f0f5449
MW
1741 if (IS_ERR(dev->queues[i + 1]))
1742 return PTR_ERR(dev->queues[i + 1]);
1b23484b
MW
1743 dev->queue_count++;
1744 }
b60503ba 1745
9ecdc946
MW
1746 for (; i < num_possible_cpus(); i++) {
1747 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1748 dev->queues[i + 1] = dev->queues[target + 1];
1749 }
1750
b60503ba
MW
1751 return 0;
1752}
1753
1754static void nvme_free_queues(struct nvme_dev *dev)
1755{
1756 int i;
1757
1758 for (i = dev->queue_count - 1; i >= 0; i--)
1759 nvme_free_queue(dev, i);
1760}
1761
422ef0c7
MW
1762/*
1763 * Return: error value if an error occurred setting up the queues or calling
1764 * Identify Device. 0 if these succeeded, even if adding some of the
1765 * namespaces failed. At the moment, these failures are silent. TBD which
1766 * failures should be reported.
1767 */
8d85fce7 1768static int nvme_dev_add(struct nvme_dev *dev)
b60503ba
MW
1769{
1770 int res, nn, i;
cbb6218f 1771 struct nvme_ns *ns;
51814232 1772 struct nvme_id_ctrl *ctrl;
bc5fc7e4
MW
1773 struct nvme_id_ns *id_ns;
1774 void *mem;
b60503ba 1775 dma_addr_t dma_addr;
159b67d7 1776 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
b60503ba
MW
1777
1778 res = nvme_setup_io_queues(dev);
1779 if (res)
1780 return res;
1781
bc5fc7e4 1782 mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
b60503ba 1783 GFP_KERNEL);
a9ef4343
KB
1784 if (!mem)
1785 return -ENOMEM;
b60503ba 1786
bc5fc7e4 1787 res = nvme_identify(dev, 0, 1, dma_addr);
b60503ba
MW
1788 if (res) {
1789 res = -EIO;
cbb6218f 1790 goto out;
b60503ba
MW
1791 }
1792
bc5fc7e4 1793 ctrl = mem;
51814232 1794 nn = le32_to_cpup(&ctrl->nn);
0e5e4f0e 1795 dev->oncs = le16_to_cpup(&ctrl->oncs);
51814232
MW
1796 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1797 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1798 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
159b67d7 1799 if (ctrl->mdts)
8fc23e03 1800 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
159b67d7
KB
1801 if ((dev->pci_dev->vendor == PCI_VENDOR_ID_INTEL) &&
1802 (dev->pci_dev->device == 0x0953) && ctrl->vs[3])
1803 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
b60503ba 1804
bc5fc7e4 1805 id_ns = mem;
2b2c1896 1806 for (i = 1; i <= nn; i++) {
bc5fc7e4 1807 res = nvme_identify(dev, i, 0, dma_addr);
b60503ba
MW
1808 if (res)
1809 continue;
1810
bc5fc7e4 1811 if (id_ns->ncap == 0)
b60503ba
MW
1812 continue;
1813
bc5fc7e4 1814 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
08df1e05 1815 dma_addr + 4096, NULL);
b60503ba 1816 if (res)
12209036 1817 memset(mem + 4096, 0, 4096);
b60503ba 1818
bc5fc7e4 1819 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
b60503ba
MW
1820 if (ns)
1821 list_add_tail(&ns->list, &dev->namespaces);
1822 }
1823 list_for_each_entry(ns, &dev->namespaces, list)
1824 add_disk(ns->disk);
422ef0c7 1825 res = 0;
b60503ba 1826
bc5fc7e4 1827 out:
684f5c20 1828 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
b60503ba
MW
1829 return res;
1830}
1831
1832static int nvme_dev_remove(struct nvme_dev *dev)
1833{
1834 struct nvme_ns *ns, *next;
1835
1fa6aead
MW
1836 spin_lock(&dev_list_lock);
1837 list_del(&dev->node);
1838 spin_unlock(&dev_list_lock);
1839
b60503ba
MW
1840 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1841 list_del(&ns->list);
1842 del_gendisk(ns->disk);
1843 nvme_ns_free(ns);
1844 }
1845
1846 nvme_free_queues(dev);
1847
1848 return 0;
1849}
1850
091b6092
MW
1851static int nvme_setup_prp_pools(struct nvme_dev *dev)
1852{
1853 struct device *dmadev = &dev->pci_dev->dev;
1854 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1855 PAGE_SIZE, PAGE_SIZE, 0);
1856 if (!dev->prp_page_pool)
1857 return -ENOMEM;
1858
99802a7a
MW
1859 /* Optimisation for I/Os between 4k and 128k */
1860 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1861 256, 256, 0);
1862 if (!dev->prp_small_pool) {
1863 dma_pool_destroy(dev->prp_page_pool);
1864 return -ENOMEM;
1865 }
091b6092
MW
1866 return 0;
1867}
1868
1869static void nvme_release_prp_pools(struct nvme_dev *dev)
1870{
1871 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1872 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1873}
1874
cd58ad7d
QSA
1875static DEFINE_IDA(nvme_instance_ida);
1876
1877static int nvme_set_instance(struct nvme_dev *dev)
b60503ba 1878{
cd58ad7d
QSA
1879 int instance, error;
1880
1881 do {
1882 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1883 return -ENODEV;
1884
1885 spin_lock(&dev_list_lock);
1886 error = ida_get_new(&nvme_instance_ida, &instance);
1887 spin_unlock(&dev_list_lock);
1888 } while (error == -EAGAIN);
1889
1890 if (error)
1891 return -ENODEV;
1892
1893 dev->instance = instance;
1894 return 0;
b60503ba
MW
1895}
1896
1897static void nvme_release_instance(struct nvme_dev *dev)
1898{
cd58ad7d
QSA
1899 spin_lock(&dev_list_lock);
1900 ida_remove(&nvme_instance_ida, dev->instance);
1901 spin_unlock(&dev_list_lock);
b60503ba
MW
1902}
1903
5e82e952
KB
1904static void nvme_free_dev(struct kref *kref)
1905{
1906 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
1907 nvme_dev_remove(dev);
fa08a396
RRG
1908 if (dev->pci_dev->msi_enabled)
1909 pci_disable_msi(dev->pci_dev);
1910 else if (dev->pci_dev->msix_enabled)
1911 pci_disable_msix(dev->pci_dev);
5e82e952
KB
1912 iounmap(dev->bar);
1913 nvme_release_instance(dev);
1914 nvme_release_prp_pools(dev);
1915 pci_disable_device(dev->pci_dev);
1916 pci_release_regions(dev->pci_dev);
1917 kfree(dev->queues);
1918 kfree(dev->entry);
1919 kfree(dev);
1920}
1921
1922static int nvme_dev_open(struct inode *inode, struct file *f)
1923{
1924 struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
1925 miscdev);
1926 kref_get(&dev->kref);
1927 f->private_data = dev;
1928 return 0;
1929}
1930
1931static int nvme_dev_release(struct inode *inode, struct file *f)
1932{
1933 struct nvme_dev *dev = f->private_data;
1934 kref_put(&dev->kref, nvme_free_dev);
1935 return 0;
1936}
1937
1938static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1939{
1940 struct nvme_dev *dev = f->private_data;
1941 switch (cmd) {
1942 case NVME_IOCTL_ADMIN_CMD:
1943 return nvme_user_admin_cmd(dev, (void __user *)arg);
1944 default:
1945 return -ENOTTY;
1946 }
1947}
1948
1949static const struct file_operations nvme_dev_fops = {
1950 .owner = THIS_MODULE,
1951 .open = nvme_dev_open,
1952 .release = nvme_dev_release,
1953 .unlocked_ioctl = nvme_dev_ioctl,
1954 .compat_ioctl = nvme_dev_ioctl,
1955};
1956
8d85fce7 1957static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 1958{
574e8b95 1959 int bars, result = -ENOMEM;
b60503ba
MW
1960 struct nvme_dev *dev;
1961
1962 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1963 if (!dev)
1964 return -ENOMEM;
1965 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1966 GFP_KERNEL);
1967 if (!dev->entry)
1968 goto free;
1b23484b
MW
1969 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1970 GFP_KERNEL);
b60503ba
MW
1971 if (!dev->queues)
1972 goto free;
1973
0ee5a7d7
SMM
1974 if (pci_enable_device_mem(pdev))
1975 goto free;
f64d3365 1976 pci_set_master(pdev);
574e8b95
MW
1977 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1978 if (pci_request_selected_regions(pdev, bars, "nvme"))
1979 goto disable;
0ee5a7d7 1980
b60503ba
MW
1981 INIT_LIST_HEAD(&dev->namespaces);
1982 dev->pci_dev = pdev;
1983 pci_set_drvdata(pdev, dev);
cf9f123b
MW
1984
1985 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)))
1986 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1987 else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))
1988 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1989 else
1990 goto disable;
1991
cd58ad7d
QSA
1992 result = nvme_set_instance(dev);
1993 if (result)
1994 goto disable;
1995
53c9577e 1996 dev->entry[0].vector = pdev->irq;
b60503ba 1997
091b6092
MW
1998 result = nvme_setup_prp_pools(dev);
1999 if (result)
2000 goto disable_msix;
2001
b60503ba
MW
2002 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2003 if (!dev->bar) {
2004 result = -ENOMEM;
574e8b95 2005 goto disable_msix;
b60503ba
MW
2006 }
2007
2008 result = nvme_configure_admin_queue(dev);
2009 if (result)
2010 goto unmap;
2011 dev->queue_count++;
2012
1fa6aead
MW
2013 spin_lock(&dev_list_lock);
2014 list_add(&dev->node, &dev_list);
2015 spin_unlock(&dev_list_lock);
2016
740216fc
MW
2017 result = nvme_dev_add(dev);
2018 if (result)
2019 goto delete;
2020
5e82e952
KB
2021 scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2022 dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2023 dev->miscdev.parent = &pdev->dev;
2024 dev->miscdev.name = dev->name;
2025 dev->miscdev.fops = &nvme_dev_fops;
2026 result = misc_register(&dev->miscdev);
2027 if (result)
2028 goto remove;
2029
2030 kref_init(&dev->kref);
b60503ba
MW
2031 return 0;
2032
5e82e952
KB
2033 remove:
2034 nvme_dev_remove(dev);
b60503ba 2035 delete:
740216fc
MW
2036 spin_lock(&dev_list_lock);
2037 list_del(&dev->node);
2038 spin_unlock(&dev_list_lock);
2039
b60503ba
MW
2040 nvme_free_queues(dev);
2041 unmap:
2042 iounmap(dev->bar);
574e8b95 2043 disable_msix:
fa08a396
RRG
2044 if (dev->pci_dev->msi_enabled)
2045 pci_disable_msi(dev->pci_dev);
2046 else if (dev->pci_dev->msix_enabled)
2047 pci_disable_msix(dev->pci_dev);
b60503ba 2048 nvme_release_instance(dev);
091b6092 2049 nvme_release_prp_pools(dev);
574e8b95 2050 disable:
0ee5a7d7 2051 pci_disable_device(pdev);
574e8b95 2052 pci_release_regions(pdev);
b60503ba
MW
2053 free:
2054 kfree(dev->queues);
2055 kfree(dev->entry);
2056 kfree(dev);
2057 return result;
2058}
2059
8d85fce7 2060static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2061{
2062 struct nvme_dev *dev = pci_get_drvdata(pdev);
5e82e952
KB
2063 misc_deregister(&dev->miscdev);
2064 kref_put(&dev->kref, nvme_free_dev);
b60503ba
MW
2065}
2066
2067/* These functions are yet to be implemented */
2068#define nvme_error_detected NULL
2069#define nvme_dump_registers NULL
2070#define nvme_link_reset NULL
2071#define nvme_slot_reset NULL
2072#define nvme_error_resume NULL
2073#define nvme_suspend NULL
2074#define nvme_resume NULL
2075
1d352035 2076static const struct pci_error_handlers nvme_err_handler = {
b60503ba
MW
2077 .error_detected = nvme_error_detected,
2078 .mmio_enabled = nvme_dump_registers,
2079 .link_reset = nvme_link_reset,
2080 .slot_reset = nvme_slot_reset,
2081 .resume = nvme_error_resume,
2082};
2083
2084/* Move to pci_ids.h later */
2085#define PCI_CLASS_STORAGE_EXPRESS 0x010802
2086
2087static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
2088 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2089 { 0, }
2090};
2091MODULE_DEVICE_TABLE(pci, nvme_id_table);
2092
2093static struct pci_driver nvme_driver = {
2094 .name = "nvme",
2095 .id_table = nvme_id_table,
2096 .probe = nvme_probe,
8d85fce7 2097 .remove = nvme_remove,
b60503ba
MW
2098 .suspend = nvme_suspend,
2099 .resume = nvme_resume,
2100 .err_handler = &nvme_err_handler,
2101};
2102
2103static int __init nvme_init(void)
2104{
0ac13140 2105 int result;
1fa6aead
MW
2106
2107 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2108 if (IS_ERR(nvme_thread))
2109 return PTR_ERR(nvme_thread);
b60503ba 2110
5c42ea16
KB
2111 result = register_blkdev(nvme_major, "nvme");
2112 if (result < 0)
1fa6aead 2113 goto kill_kthread;
5c42ea16 2114 else if (result > 0)
0ac13140 2115 nvme_major = result;
b60503ba
MW
2116
2117 result = pci_register_driver(&nvme_driver);
1fa6aead
MW
2118 if (result)
2119 goto unregister_blkdev;
2120 return 0;
b60503ba 2121
1fa6aead 2122 unregister_blkdev:
b60503ba 2123 unregister_blkdev(nvme_major, "nvme");
1fa6aead
MW
2124 kill_kthread:
2125 kthread_stop(nvme_thread);
b60503ba
MW
2126 return result;
2127}
2128
2129static void __exit nvme_exit(void)
2130{
2131 pci_unregister_driver(&nvme_driver);
2132 unregister_blkdev(nvme_major, "nvme");
1fa6aead 2133 kthread_stop(nvme_thread);
b60503ba
MW
2134}
2135
2136MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2137MODULE_LICENSE("GPL");
366e8217 2138MODULE_VERSION("0.8");
b60503ba
MW
2139module_init(nvme_init);
2140module_exit(nvme_exit);