NVMe: Simplify device resume on io queue failure
[linux-2.6-block.git] / drivers / block / nvme-core.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
15#include <linux/nvme.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
42f61420 19#include <linux/cpu.h>
fd63e9ce 20#include <linux/delay.h>
b60503ba
MW
21#include <linux/errno.h>
22#include <linux/fs.h>
23#include <linux/genhd.h>
4cc09e2d 24#include <linux/hdreg.h>
5aff9382 25#include <linux/idr.h>
b60503ba
MW
26#include <linux/init.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/kdev_t.h>
1fa6aead 30#include <linux/kthread.h>
b60503ba 31#include <linux/kernel.h>
a5768aa8 32#include <linux/list_sort.h>
b60503ba
MW
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/moduleparam.h>
36#include <linux/pci.h>
be7b6275 37#include <linux/poison.h>
c3bfe717 38#include <linux/ptrace.h>
b60503ba
MW
39#include <linux/sched.h>
40#include <linux/slab.h>
e1e5e564 41#include <linux/t10-pi.h>
b60503ba 42#include <linux/types.h>
5d0f6131 43#include <scsi/sg.h>
797a796a
HM
44#include <asm-generic/io-64-nonatomic-lo-hi.h>
45
b3fffdef 46#define NVME_MINORS (1U << MINORBITS)
9d43cf64 47#define NVME_Q_DEPTH 1024
d31af0a3 48#define NVME_AQ_DEPTH 256
b60503ba
MW
49#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
50#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
9d43cf64 51#define ADMIN_TIMEOUT (admin_timeout * HZ)
2484f407 52#define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
9d43cf64
KB
53
54static unsigned char admin_timeout = 60;
55module_param(admin_timeout, byte, 0644);
56MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
b60503ba 57
bd67608a
MW
58unsigned char nvme_io_timeout = 30;
59module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
b355084a 60MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
b60503ba 61
2484f407
DM
62static unsigned char shutdown_timeout = 5;
63module_param(shutdown_timeout, byte, 0644);
64MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
65
b60503ba
MW
66static int nvme_major;
67module_param(nvme_major, int, 0);
68
b3fffdef
KB
69static int nvme_char_major;
70module_param(nvme_char_major, int, 0);
71
58ffacb5
MW
72static int use_threaded_interrupts;
73module_param(use_threaded_interrupts, int, 0);
74
8ffaadf7
JD
75static bool use_cmb_sqes = true;
76module_param(use_cmb_sqes, bool, 0644);
77MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
78
1fa6aead
MW
79static DEFINE_SPINLOCK(dev_list_lock);
80static LIST_HEAD(dev_list);
81static struct task_struct *nvme_thread;
9a6b9458 82static struct workqueue_struct *nvme_workq;
b9afca3e 83static wait_queue_head_t nvme_kthread_wait;
1fa6aead 84
b3fffdef
KB
85static struct class *nvme_class;
86
d4b4ff8e 87static void nvme_reset_failed_dev(struct work_struct *ws);
4cc06521 88static int nvme_reset(struct nvme_dev *dev);
a4aea562 89static int nvme_process_cq(struct nvme_queue *nvmeq);
d4b4ff8e 90
4d115420
KB
91struct async_cmd_info {
92 struct kthread_work work;
93 struct kthread_worker *worker;
a4aea562 94 struct request *req;
4d115420
KB
95 u32 result;
96 int status;
97 void *ctx;
98};
1fa6aead 99
b60503ba
MW
100/*
101 * An NVM Express queue. Each device has at least two (one for admin
102 * commands and one for I/O commands).
103 */
104struct nvme_queue {
105 struct device *q_dmadev;
091b6092 106 struct nvme_dev *dev;
3193f07b 107 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
108 spinlock_t q_lock;
109 struct nvme_command *sq_cmds;
8ffaadf7 110 struct nvme_command __iomem *sq_cmds_io;
b60503ba 111 volatile struct nvme_completion *cqes;
42483228 112 struct blk_mq_tags **tags;
b60503ba
MW
113 dma_addr_t sq_dma_addr;
114 dma_addr_t cq_dma_addr;
b60503ba
MW
115 u32 __iomem *q_db;
116 u16 q_depth;
6222d172 117 s16 cq_vector;
b60503ba
MW
118 u16 sq_head;
119 u16 sq_tail;
120 u16 cq_head;
c30341dc 121 u16 qid;
e9539f47
MW
122 u8 cq_phase;
123 u8 cqe_seen;
4d115420 124 struct async_cmd_info cmdinfo;
b60503ba
MW
125};
126
127/*
128 * Check we didin't inadvertently grow the command struct
129 */
130static inline void _nvme_check_size(void)
131{
132 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
134 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
135 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
136 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 137 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 138 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
139 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
140 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
141 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
142 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 143 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
144}
145
edd10d33 146typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
c2f5b650
MW
147 struct nvme_completion *);
148
e85248e5 149struct nvme_cmd_info {
c2f5b650
MW
150 nvme_completion_fn fn;
151 void *ctx;
c30341dc 152 int aborted;
a4aea562 153 struct nvme_queue *nvmeq;
ac3dd5bd 154 struct nvme_iod iod[0];
e85248e5
MW
155};
156
ac3dd5bd
JA
157/*
158 * Max size of iod being embedded in the request payload
159 */
160#define NVME_INT_PAGES 2
161#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size)
fda631ff 162#define NVME_INT_MASK 0x01
ac3dd5bd
JA
163
164/*
165 * Will slightly overestimate the number of pages needed. This is OK
166 * as it only leads to a small amount of wasted memory for the lifetime of
167 * the I/O.
168 */
169static int nvme_npages(unsigned size, struct nvme_dev *dev)
170{
171 unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
172 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
173}
174
175static unsigned int nvme_cmd_size(struct nvme_dev *dev)
176{
177 unsigned int ret = sizeof(struct nvme_cmd_info);
178
179 ret += sizeof(struct nvme_iod);
180 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
181 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
182
183 return ret;
184}
185
a4aea562
MB
186static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
187 unsigned int hctx_idx)
e85248e5 188{
a4aea562
MB
189 struct nvme_dev *dev = data;
190 struct nvme_queue *nvmeq = dev->queues[0];
191
42483228
KB
192 WARN_ON(hctx_idx != 0);
193 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
194 WARN_ON(nvmeq->tags);
195
a4aea562 196 hctx->driver_data = nvmeq;
42483228 197 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 198 return 0;
e85248e5
MW
199}
200
4af0e21c
KB
201static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
202{
203 struct nvme_queue *nvmeq = hctx->driver_data;
204
205 nvmeq->tags = NULL;
206}
207
a4aea562
MB
208static int nvme_admin_init_request(void *data, struct request *req,
209 unsigned int hctx_idx, unsigned int rq_idx,
210 unsigned int numa_node)
22404274 211{
a4aea562
MB
212 struct nvme_dev *dev = data;
213 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
214 struct nvme_queue *nvmeq = dev->queues[0];
215
216 BUG_ON(!nvmeq);
217 cmd->nvmeq = nvmeq;
218 return 0;
22404274
KB
219}
220
a4aea562
MB
221static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
222 unsigned int hctx_idx)
b60503ba 223{
a4aea562 224 struct nvme_dev *dev = data;
42483228 225 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 226
42483228
KB
227 if (!nvmeq->tags)
228 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 229
42483228 230 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
231 hctx->driver_data = nvmeq;
232 return 0;
b60503ba
MW
233}
234
a4aea562
MB
235static int nvme_init_request(void *data, struct request *req,
236 unsigned int hctx_idx, unsigned int rq_idx,
237 unsigned int numa_node)
b60503ba 238{
a4aea562
MB
239 struct nvme_dev *dev = data;
240 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
241 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
242
243 BUG_ON(!nvmeq);
244 cmd->nvmeq = nvmeq;
245 return 0;
246}
247
248static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
249 nvme_completion_fn handler)
250{
251 cmd->fn = handler;
252 cmd->ctx = ctx;
253 cmd->aborted = 0;
c917dfe5 254 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
b60503ba
MW
255}
256
ac3dd5bd
JA
257static void *iod_get_private(struct nvme_iod *iod)
258{
259 return (void *) (iod->private & ~0x1UL);
260}
261
262/*
263 * If bit 0 is set, the iod is embedded in the request payload.
264 */
265static bool iod_should_kfree(struct nvme_iod *iod)
266{
fda631ff 267 return (iod->private & NVME_INT_MASK) == 0;
ac3dd5bd
JA
268}
269
c2f5b650
MW
270/* Special values must be less than 0x1000 */
271#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
d2d87034
MW
272#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
273#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
274#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
be7b6275 275
edd10d33 276static void special_completion(struct nvme_queue *nvmeq, void *ctx,
c2f5b650
MW
277 struct nvme_completion *cqe)
278{
279 if (ctx == CMD_CTX_CANCELLED)
280 return;
c2f5b650 281 if (ctx == CMD_CTX_COMPLETED) {
edd10d33 282 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
283 "completed id %d twice on queue %d\n",
284 cqe->command_id, le16_to_cpup(&cqe->sq_id));
285 return;
286 }
287 if (ctx == CMD_CTX_INVALID) {
edd10d33 288 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
289 "invalid id %d completed on queue %d\n",
290 cqe->command_id, le16_to_cpup(&cqe->sq_id));
291 return;
292 }
edd10d33 293 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
c2f5b650
MW
294}
295
a4aea562 296static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
b60503ba 297{
c2f5b650 298 void *ctx;
b60503ba 299
859361a2 300 if (fn)
a4aea562
MB
301 *fn = cmd->fn;
302 ctx = cmd->ctx;
303 cmd->fn = special_completion;
304 cmd->ctx = CMD_CTX_CANCELLED;
c2f5b650 305 return ctx;
b60503ba
MW
306}
307
a4aea562
MB
308static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
309 struct nvme_completion *cqe)
3c0cf138 310{
a4aea562
MB
311 u32 result = le32_to_cpup(&cqe->result);
312 u16 status = le16_to_cpup(&cqe->status) >> 1;
313
314 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
315 ++nvmeq->dev->event_limit;
a5768aa8
KB
316 if (status != NVME_SC_SUCCESS)
317 return;
318
319 switch (result & 0xff07) {
320 case NVME_AER_NOTICE_NS_CHANGED:
321 dev_info(nvmeq->q_dmadev, "rescanning\n");
322 schedule_work(&nvmeq->dev->scan_work);
323 default:
324 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
325 }
b60503ba
MW
326}
327
a4aea562
MB
328static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
329 struct nvme_completion *cqe)
5a92e700 330{
a4aea562
MB
331 struct request *req = ctx;
332
333 u16 status = le16_to_cpup(&cqe->status) >> 1;
334 u32 result = le32_to_cpup(&cqe->result);
a51afb54 335
42483228 336 blk_mq_free_request(req);
a51afb54 337
a4aea562
MB
338 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
339 ++nvmeq->dev->abort_limit;
5a92e700
KB
340}
341
a4aea562
MB
342static void async_completion(struct nvme_queue *nvmeq, void *ctx,
343 struct nvme_completion *cqe)
b60503ba 344{
a4aea562
MB
345 struct async_cmd_info *cmdinfo = ctx;
346 cmdinfo->result = le32_to_cpup(&cqe->result);
347 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
348 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
42483228 349 blk_mq_free_request(cmdinfo->req);
b60503ba
MW
350}
351
a4aea562
MB
352static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
353 unsigned int tag)
b60503ba 354{
42483228 355 struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
a51afb54 356
a4aea562 357 return blk_mq_rq_to_pdu(req);
4f5099af
KB
358}
359
a4aea562
MB
360/*
361 * Called with local interrupts disabled and the q_lock held. May not sleep.
362 */
363static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
364 nvme_completion_fn *fn)
4f5099af 365{
a4aea562
MB
366 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
367 void *ctx;
368 if (tag >= nvmeq->q_depth) {
369 *fn = special_completion;
370 return CMD_CTX_INVALID;
371 }
372 if (fn)
373 *fn = cmd->fn;
374 ctx = cmd->ctx;
375 cmd->fn = special_completion;
376 cmd->ctx = CMD_CTX_COMPLETED;
377 return ctx;
b60503ba
MW
378}
379
380/**
714a7a22 381 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
382 * @nvmeq: The queue to use
383 * @cmd: The command to send
384 *
385 * Safe to use from interrupt context
386 */
e3f879bf
SB
387static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
388 struct nvme_command *cmd)
b60503ba 389{
a4aea562
MB
390 u16 tail = nvmeq->sq_tail;
391
8ffaadf7
JD
392 if (nvmeq->sq_cmds_io)
393 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
394 else
395 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
396
b60503ba
MW
397 if (++tail == nvmeq->q_depth)
398 tail = 0;
7547881d 399 writel(tail, nvmeq->q_db);
b60503ba 400 nvmeq->sq_tail = tail;
b60503ba
MW
401}
402
e3f879bf 403static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
a4aea562
MB
404{
405 unsigned long flags;
a4aea562 406 spin_lock_irqsave(&nvmeq->q_lock, flags);
e3f879bf 407 __nvme_submit_cmd(nvmeq, cmd);
a4aea562 408 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a4aea562
MB
409}
410
eca18b23 411static __le64 **iod_list(struct nvme_iod *iod)
e025344c 412{
eca18b23 413 return ((void *)iod) + iod->offset;
e025344c
SMM
414}
415
ac3dd5bd
JA
416static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
417 unsigned nseg, unsigned long private)
eca18b23 418{
ac3dd5bd
JA
419 iod->private = private;
420 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
421 iod->npages = -1;
422 iod->length = nbytes;
423 iod->nents = 0;
eca18b23 424}
b60503ba 425
eca18b23 426static struct nvme_iod *
ac3dd5bd
JA
427__nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
428 unsigned long priv, gfp_t gfp)
b60503ba 429{
eca18b23 430 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
ac3dd5bd 431 sizeof(__le64 *) * nvme_npages(bytes, dev) +
eca18b23
MW
432 sizeof(struct scatterlist) * nseg, gfp);
433
ac3dd5bd
JA
434 if (iod)
435 iod_init(iod, bytes, nseg, priv);
eca18b23
MW
436
437 return iod;
b60503ba
MW
438}
439
ac3dd5bd
JA
440static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
441 gfp_t gfp)
442{
443 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
444 sizeof(struct nvme_dsm_range);
ac3dd5bd
JA
445 struct nvme_iod *iod;
446
447 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
448 size <= NVME_INT_BYTES(dev)) {
449 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
450
451 iod = cmd->iod;
ac3dd5bd 452 iod_init(iod, size, rq->nr_phys_segments,
fda631ff 453 (unsigned long) rq | NVME_INT_MASK);
ac3dd5bd
JA
454 return iod;
455 }
456
457 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
458 (unsigned long) rq, gfp);
459}
460
d29ec824 461static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
b60503ba 462{
1d090624 463 const int last_prp = dev->page_size / 8 - 1;
eca18b23
MW
464 int i;
465 __le64 **list = iod_list(iod);
466 dma_addr_t prp_dma = iod->first_dma;
467
468 if (iod->npages == 0)
469 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
470 for (i = 0; i < iod->npages; i++) {
471 __le64 *prp_list = list[i];
472 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
473 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
474 prp_dma = next_prp_dma;
475 }
ac3dd5bd
JA
476
477 if (iod_should_kfree(iod))
478 kfree(iod);
b60503ba
MW
479}
480
b4ff9c8d
KB
481static int nvme_error_status(u16 status)
482{
483 switch (status & 0x7ff) {
484 case NVME_SC_SUCCESS:
485 return 0;
486 case NVME_SC_CAP_EXCEEDED:
487 return -ENOSPC;
488 default:
489 return -EIO;
490 }
491}
492
52b68d7e 493#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
494static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
495{
496 if (be32_to_cpu(pi->ref_tag) == v)
497 pi->ref_tag = cpu_to_be32(p);
498}
499
500static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
501{
502 if (be32_to_cpu(pi->ref_tag) == p)
503 pi->ref_tag = cpu_to_be32(v);
504}
505
506/**
507 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
508 *
509 * The virtual start sector is the one that was originally submitted by the
510 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
511 * start sector may be different. Remap protection information to match the
512 * physical LBA on writes, and back to the original seed on reads.
513 *
514 * Type 0 and 3 do not have a ref tag, so no remapping required.
515 */
516static void nvme_dif_remap(struct request *req,
517 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
518{
519 struct nvme_ns *ns = req->rq_disk->private_data;
520 struct bio_integrity_payload *bip;
521 struct t10_pi_tuple *pi;
522 void *p, *pmap;
523 u32 i, nlb, ts, phys, virt;
524
525 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
526 return;
527
528 bip = bio_integrity(req->bio);
529 if (!bip)
530 return;
531
532 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
533
534 p = pmap;
535 virt = bip_get_seed(bip);
536 phys = nvme_block_nr(ns, blk_rq_pos(req));
537 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
538 ts = ns->disk->integrity->tuple_size;
539
540 for (i = 0; i < nlb; i++, virt++, phys++) {
541 pi = (struct t10_pi_tuple *)p;
542 dif_swap(phys, virt, pi);
543 p += ts;
544 }
545 kunmap_atomic(pmap);
546}
547
52b68d7e
KB
548static int nvme_noop_verify(struct blk_integrity_iter *iter)
549{
550 return 0;
551}
552
553static int nvme_noop_generate(struct blk_integrity_iter *iter)
554{
555 return 0;
556}
557
558struct blk_integrity nvme_meta_noop = {
559 .name = "NVME_META_NOOP",
560 .generate_fn = nvme_noop_generate,
561 .verify_fn = nvme_noop_verify,
562};
563
564static void nvme_init_integrity(struct nvme_ns *ns)
565{
566 struct blk_integrity integrity;
567
568 switch (ns->pi_type) {
569 case NVME_NS_DPS_PI_TYPE3:
570 integrity = t10_pi_type3_crc;
571 break;
572 case NVME_NS_DPS_PI_TYPE1:
573 case NVME_NS_DPS_PI_TYPE2:
574 integrity = t10_pi_type1_crc;
575 break;
576 default:
577 integrity = nvme_meta_noop;
578 break;
579 }
580 integrity.tuple_size = ns->ms;
581 blk_integrity_register(ns->disk, &integrity);
582 blk_queue_max_integrity_segments(ns->queue, 1);
583}
584#else /* CONFIG_BLK_DEV_INTEGRITY */
585static void nvme_dif_remap(struct request *req,
586 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
587{
588}
589static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
590{
591}
592static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
593{
594}
595static void nvme_init_integrity(struct nvme_ns *ns)
596{
597}
598#endif
599
a4aea562 600static void req_completion(struct nvme_queue *nvmeq, void *ctx,
b60503ba
MW
601 struct nvme_completion *cqe)
602{
eca18b23 603 struct nvme_iod *iod = ctx;
ac3dd5bd 604 struct request *req = iod_get_private(iod);
a4aea562
MB
605 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
606
b60503ba
MW
607 u16 status = le16_to_cpup(&cqe->status) >> 1;
608
edd10d33 609 if (unlikely(status)) {
a4aea562
MB
610 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
611 && (jiffies - req->start_time) < req->timeout) {
c9d3bf88
KB
612 unsigned long flags;
613
a4aea562 614 blk_mq_requeue_request(req);
c9d3bf88
KB
615 spin_lock_irqsave(req->q->queue_lock, flags);
616 if (!blk_queue_stopped(req->q))
617 blk_mq_kick_requeue_list(req->q);
618 spin_unlock_irqrestore(req->q->queue_lock, flags);
edd10d33
KB
619 return;
620 }
f4829a9b 621
d29ec824 622 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
17188bb4 623 if (cmd_rq->ctx == CMD_CTX_CANCELLED)
f4829a9b 624 status = -EINTR;
d29ec824 625 } else {
f4829a9b 626 status = nvme_error_status(status);
d29ec824 627 }
f4829a9b
CH
628 }
629
a0a931d6
KB
630 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
631 u32 result = le32_to_cpup(&cqe->result);
632 req->special = (void *)(uintptr_t)result;
633 }
a4aea562
MB
634
635 if (cmd_rq->aborted)
e75ec752 636 dev_warn(nvmeq->dev->dev,
a4aea562
MB
637 "completing aborted command with status:%04x\n",
638 status);
639
e1e5e564 640 if (iod->nents) {
e75ec752 641 dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
a4aea562 642 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
e1e5e564
KB
643 if (blk_integrity_rq(req)) {
644 if (!rq_data_dir(req))
645 nvme_dif_remap(req, nvme_dif_complete);
e75ec752 646 dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
e1e5e564
KB
647 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
648 }
649 }
edd10d33 650 nvme_free_iod(nvmeq->dev, iod);
3291fa57 651
f4829a9b 652 blk_mq_complete_request(req, status);
b60503ba
MW
653}
654
184d2944 655/* length is in bytes. gfp flags indicates whether we may sleep. */
d29ec824
CH
656static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
657 int total_len, gfp_t gfp)
ff22b54f 658{
99802a7a 659 struct dma_pool *pool;
eca18b23
MW
660 int length = total_len;
661 struct scatterlist *sg = iod->sg;
ff22b54f
MW
662 int dma_len = sg_dma_len(sg);
663 u64 dma_addr = sg_dma_address(sg);
f137e0f1
MI
664 u32 page_size = dev->page_size;
665 int offset = dma_addr & (page_size - 1);
e025344c 666 __le64 *prp_list;
eca18b23 667 __le64 **list = iod_list(iod);
e025344c 668 dma_addr_t prp_dma;
eca18b23 669 int nprps, i;
ff22b54f 670
1d090624 671 length -= (page_size - offset);
ff22b54f 672 if (length <= 0)
eca18b23 673 return total_len;
ff22b54f 674
1d090624 675 dma_len -= (page_size - offset);
ff22b54f 676 if (dma_len) {
1d090624 677 dma_addr += (page_size - offset);
ff22b54f
MW
678 } else {
679 sg = sg_next(sg);
680 dma_addr = sg_dma_address(sg);
681 dma_len = sg_dma_len(sg);
682 }
683
1d090624 684 if (length <= page_size) {
edd10d33 685 iod->first_dma = dma_addr;
eca18b23 686 return total_len;
e025344c
SMM
687 }
688
1d090624 689 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
690 if (nprps <= (256 / 8)) {
691 pool = dev->prp_small_pool;
eca18b23 692 iod->npages = 0;
99802a7a
MW
693 } else {
694 pool = dev->prp_page_pool;
eca18b23 695 iod->npages = 1;
99802a7a
MW
696 }
697
b77954cb
MW
698 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
699 if (!prp_list) {
edd10d33 700 iod->first_dma = dma_addr;
eca18b23 701 iod->npages = -1;
1d090624 702 return (total_len - length) + page_size;
b77954cb 703 }
eca18b23
MW
704 list[0] = prp_list;
705 iod->first_dma = prp_dma;
e025344c
SMM
706 i = 0;
707 for (;;) {
1d090624 708 if (i == page_size >> 3) {
e025344c 709 __le64 *old_prp_list = prp_list;
b77954cb 710 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
eca18b23
MW
711 if (!prp_list)
712 return total_len - length;
713 list[iod->npages++] = prp_list;
7523d834
MW
714 prp_list[0] = old_prp_list[i - 1];
715 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
716 i = 1;
e025344c
SMM
717 }
718 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
719 dma_len -= page_size;
720 dma_addr += page_size;
721 length -= page_size;
e025344c
SMM
722 if (length <= 0)
723 break;
724 if (dma_len > 0)
725 continue;
726 BUG_ON(dma_len < 0);
727 sg = sg_next(sg);
728 dma_addr = sg_dma_address(sg);
729 dma_len = sg_dma_len(sg);
ff22b54f
MW
730 }
731
eca18b23 732 return total_len;
ff22b54f
MW
733}
734
d29ec824
CH
735static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
736 struct nvme_iod *iod)
737{
498c4394 738 struct nvme_command cmnd;
d29ec824 739
498c4394
JD
740 memcpy(&cmnd, req->cmd, sizeof(cmnd));
741 cmnd.rw.command_id = req->tag;
d29ec824 742 if (req->nr_phys_segments) {
498c4394
JD
743 cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
744 cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
d29ec824
CH
745 }
746
498c4394 747 __nvme_submit_cmd(nvmeq, &cmnd);
d29ec824
CH
748}
749
a4aea562
MB
750/*
751 * We reuse the small pool to allocate the 16-byte range here as it is not
752 * worth having a special pool for these or additional cases to handle freeing
753 * the iod.
754 */
755static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
756 struct request *req, struct nvme_iod *iod)
0e5e4f0e 757{
edd10d33
KB
758 struct nvme_dsm_range *range =
759 (struct nvme_dsm_range *)iod_list(iod)[0];
498c4394 760 struct nvme_command cmnd;
0e5e4f0e 761
0e5e4f0e 762 range->cattr = cpu_to_le32(0);
a4aea562
MB
763 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
764 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
0e5e4f0e 765
498c4394
JD
766 memset(&cmnd, 0, sizeof(cmnd));
767 cmnd.dsm.opcode = nvme_cmd_dsm;
768 cmnd.dsm.command_id = req->tag;
769 cmnd.dsm.nsid = cpu_to_le32(ns->ns_id);
770 cmnd.dsm.prp1 = cpu_to_le64(iod->first_dma);
771 cmnd.dsm.nr = 0;
772 cmnd.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
0e5e4f0e 773
498c4394 774 __nvme_submit_cmd(nvmeq, &cmnd);
0e5e4f0e
KB
775}
776
a4aea562 777static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
00df5cb4
MW
778 int cmdid)
779{
498c4394 780 struct nvme_command cmnd;
00df5cb4 781
498c4394
JD
782 memset(&cmnd, 0, sizeof(cmnd));
783 cmnd.common.opcode = nvme_cmd_flush;
784 cmnd.common.command_id = cmdid;
785 cmnd.common.nsid = cpu_to_le32(ns->ns_id);
00df5cb4 786
498c4394 787 __nvme_submit_cmd(nvmeq, &cmnd);
00df5cb4
MW
788}
789
a4aea562
MB
790static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
791 struct nvme_ns *ns)
b60503ba 792{
ac3dd5bd 793 struct request *req = iod_get_private(iod);
498c4394 794 struct nvme_command cmnd;
a4aea562
MB
795 u16 control = 0;
796 u32 dsmgmt = 0;
00df5cb4 797
a4aea562 798 if (req->cmd_flags & REQ_FUA)
b60503ba 799 control |= NVME_RW_FUA;
a4aea562 800 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
b60503ba
MW
801 control |= NVME_RW_LR;
802
a4aea562 803 if (req->cmd_flags & REQ_RAHEAD)
b60503ba
MW
804 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
805
498c4394
JD
806 memset(&cmnd, 0, sizeof(cmnd));
807 cmnd.rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
808 cmnd.rw.command_id = req->tag;
809 cmnd.rw.nsid = cpu_to_le32(ns->ns_id);
810 cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
811 cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
812 cmnd.rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
813 cmnd.rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
b60503ba 814
e19b127f 815 if (ns->ms) {
e1e5e564
KB
816 switch (ns->pi_type) {
817 case NVME_NS_DPS_PI_TYPE3:
818 control |= NVME_RW_PRINFO_PRCHK_GUARD;
819 break;
820 case NVME_NS_DPS_PI_TYPE1:
821 case NVME_NS_DPS_PI_TYPE2:
822 control |= NVME_RW_PRINFO_PRCHK_GUARD |
823 NVME_RW_PRINFO_PRCHK_REF;
498c4394 824 cmnd.rw.reftag = cpu_to_le32(
e1e5e564
KB
825 nvme_block_nr(ns, blk_rq_pos(req)));
826 break;
827 }
e19b127f
AP
828 if (blk_integrity_rq(req))
829 cmnd.rw.metadata =
830 cpu_to_le64(sg_dma_address(iod->meta_sg));
831 else
832 control |= NVME_RW_PRINFO_PRACT;
833 }
e1e5e564 834
498c4394
JD
835 cmnd.rw.control = cpu_to_le16(control);
836 cmnd.rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba 837
498c4394 838 __nvme_submit_cmd(nvmeq, &cmnd);
b60503ba 839
1974b1ae 840 return 0;
edd10d33
KB
841}
842
d29ec824
CH
843/*
844 * NOTE: ns is NULL when called on the admin queue.
845 */
a4aea562
MB
846static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
847 const struct blk_mq_queue_data *bd)
edd10d33 848{
a4aea562
MB
849 struct nvme_ns *ns = hctx->queue->queuedata;
850 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 851 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
852 struct request *req = bd->rq;
853 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
edd10d33 854 struct nvme_iod *iod;
a4aea562 855 enum dma_data_direction dma_dir;
edd10d33 856
e1e5e564
KB
857 /*
858 * If formated with metadata, require the block layer provide a buffer
859 * unless this namespace is formated such that the metadata can be
860 * stripped/generated by the controller with PRACT=1.
861 */
d29ec824 862 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364
KB
863 if (!(ns->pi_type && ns->ms == 8) &&
864 req->cmd_type != REQ_TYPE_DRV_PRIV) {
f4829a9b 865 blk_mq_complete_request(req, -EFAULT);
e1e5e564
KB
866 return BLK_MQ_RQ_QUEUE_OK;
867 }
868 }
869
d29ec824 870 iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
edd10d33 871 if (!iod)
fe54303e 872 return BLK_MQ_RQ_QUEUE_BUSY;
a4aea562 873
a4aea562 874 if (req->cmd_flags & REQ_DISCARD) {
edd10d33
KB
875 void *range;
876 /*
877 * We reuse the small pool to allocate the 16-byte range here
878 * as it is not worth having a special pool for these or
879 * additional cases to handle freeing the iod.
880 */
d29ec824 881 range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
edd10d33 882 &iod->first_dma);
a4aea562 883 if (!range)
fe54303e 884 goto retry_cmd;
edd10d33
KB
885 iod_list(iod)[0] = (__le64 *)range;
886 iod->npages = 0;
ac3dd5bd 887 } else if (req->nr_phys_segments) {
a4aea562
MB
888 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
889
ac3dd5bd 890 sg_init_table(iod->sg, req->nr_phys_segments);
a4aea562 891 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
fe54303e
JA
892 if (!iod->nents)
893 goto error_cmd;
a4aea562
MB
894
895 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
fe54303e 896 goto retry_cmd;
a4aea562 897
fe54303e 898 if (blk_rq_bytes(req) !=
d29ec824
CH
899 nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
900 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
fe54303e
JA
901 goto retry_cmd;
902 }
e1e5e564
KB
903 if (blk_integrity_rq(req)) {
904 if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
905 goto error_cmd;
906
907 sg_init_table(iod->meta_sg, 1);
908 if (blk_rq_map_integrity_sg(
909 req->q, req->bio, iod->meta_sg) != 1)
910 goto error_cmd;
911
912 if (rq_data_dir(req))
913 nvme_dif_remap(req, nvme_dif_prep);
914
915 if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
916 goto error_cmd;
917 }
edd10d33 918 }
1974b1ae 919
9af8785a 920 nvme_set_info(cmd, iod, req_completion);
a4aea562 921 spin_lock_irq(&nvmeq->q_lock);
d29ec824
CH
922 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
923 nvme_submit_priv(nvmeq, req, iod);
924 else if (req->cmd_flags & REQ_DISCARD)
a4aea562
MB
925 nvme_submit_discard(nvmeq, ns, req, iod);
926 else if (req->cmd_flags & REQ_FLUSH)
927 nvme_submit_flush(nvmeq, ns, req->tag);
928 else
929 nvme_submit_iod(nvmeq, iod, ns);
930
931 nvme_process_cq(nvmeq);
932 spin_unlock_irq(&nvmeq->q_lock);
933 return BLK_MQ_RQ_QUEUE_OK;
934
fe54303e 935 error_cmd:
d29ec824 936 nvme_free_iod(dev, iod);
fe54303e
JA
937 return BLK_MQ_RQ_QUEUE_ERROR;
938 retry_cmd:
d29ec824 939 nvme_free_iod(dev, iod);
fe54303e 940 return BLK_MQ_RQ_QUEUE_BUSY;
b60503ba
MW
941}
942
e9539f47 943static int nvme_process_cq(struct nvme_queue *nvmeq)
b60503ba 944{
82123460 945 u16 head, phase;
b60503ba 946
b60503ba 947 head = nvmeq->cq_head;
82123460 948 phase = nvmeq->cq_phase;
b60503ba
MW
949
950 for (;;) {
c2f5b650
MW
951 void *ctx;
952 nvme_completion_fn fn;
b60503ba 953 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 954 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
955 break;
956 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
957 if (++head == nvmeq->q_depth) {
958 head = 0;
82123460 959 phase = !phase;
b60503ba 960 }
a4aea562 961 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
edd10d33 962 fn(nvmeq, ctx, &cqe);
b60503ba
MW
963 }
964
965 /* If the controller ignores the cq head doorbell and continuously
966 * writes to the queue, it is theoretically possible to wrap around
967 * the queue twice and mistakenly return IRQ_NONE. Linux only
968 * requires that 0.1% of your interrupts are handled, so this isn't
969 * a big problem.
970 */
82123460 971 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
e9539f47 972 return 0;
b60503ba 973
b80d5ccc 974 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 975 nvmeq->cq_head = head;
82123460 976 nvmeq->cq_phase = phase;
b60503ba 977
e9539f47
MW
978 nvmeq->cqe_seen = 1;
979 return 1;
b60503ba
MW
980}
981
982static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
983{
984 irqreturn_t result;
985 struct nvme_queue *nvmeq = data;
986 spin_lock(&nvmeq->q_lock);
e9539f47
MW
987 nvme_process_cq(nvmeq);
988 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
989 nvmeq->cqe_seen = 0;
58ffacb5
MW
990 spin_unlock(&nvmeq->q_lock);
991 return result;
992}
993
994static irqreturn_t nvme_irq_check(int irq, void *data)
995{
996 struct nvme_queue *nvmeq = data;
997 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
998 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
999 return IRQ_NONE;
1000 return IRQ_WAKE_THREAD;
1001}
1002
b60503ba
MW
1003/*
1004 * Returns 0 on success. If the result is negative, it's a Linux error code;
1005 * if the result is positive, it's an NVM Express status code
1006 */
d29ec824
CH
1007int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1008 void *buffer, void __user *ubuffer, unsigned bufflen,
1009 u32 *result, unsigned timeout)
b60503ba 1010{
d29ec824
CH
1011 bool write = cmd->common.opcode & 1;
1012 struct bio *bio = NULL;
f705f837 1013 struct request *req;
d29ec824 1014 int ret;
b60503ba 1015
d29ec824 1016 req = blk_mq_alloc_request(q, write, GFP_KERNEL, false);
f705f837
CH
1017 if (IS_ERR(req))
1018 return PTR_ERR(req);
b60503ba 1019
d29ec824 1020 req->cmd_type = REQ_TYPE_DRV_PRIV;
e112af0d 1021 req->cmd_flags |= REQ_FAILFAST_DRIVER;
d29ec824
CH
1022 req->__data_len = 0;
1023 req->__sector = (sector_t) -1;
1024 req->bio = req->biotail = NULL;
b60503ba 1025
f4ff414a 1026 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
a4aea562 1027
d29ec824
CH
1028 req->cmd = (unsigned char *)cmd;
1029 req->cmd_len = sizeof(struct nvme_command);
a0a931d6 1030 req->special = (void *)0;
b60503ba 1031
d29ec824
CH
1032 if (buffer && bufflen) {
1033 ret = blk_rq_map_kern(q, req, buffer, bufflen, __GFP_WAIT);
1034 if (ret)
1035 goto out;
1036 } else if (ubuffer && bufflen) {
1037 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, __GFP_WAIT);
1038 if (ret)
1039 goto out;
1040 bio = req->bio;
1041 }
3c0cf138 1042
d29ec824
CH
1043 blk_execute_rq(req->q, NULL, req, 0);
1044 if (bio)
1045 blk_rq_unmap_user(bio);
b60503ba 1046 if (result)
a0a931d6 1047 *result = (u32)(uintptr_t)req->special;
d29ec824
CH
1048 ret = req->errors;
1049 out:
f705f837 1050 blk_mq_free_request(req);
d29ec824 1051 return ret;
f705f837
CH
1052}
1053
d29ec824
CH
1054int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1055 void *buffer, unsigned bufflen)
f705f837 1056{
d29ec824 1057 return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
b60503ba
MW
1058}
1059
a4aea562
MB
1060static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1061{
1062 struct nvme_queue *nvmeq = dev->queues[0];
1063 struct nvme_command c;
1064 struct nvme_cmd_info *cmd_info;
1065 struct request *req;
1066
1efccc9d 1067 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
9f173b33
DC
1068 if (IS_ERR(req))
1069 return PTR_ERR(req);
a4aea562 1070
c917dfe5 1071 req->cmd_flags |= REQ_NO_TIMEOUT;
a4aea562 1072 cmd_info = blk_mq_rq_to_pdu(req);
1efccc9d 1073 nvme_set_info(cmd_info, NULL, async_req_completion);
a4aea562
MB
1074
1075 memset(&c, 0, sizeof(c));
1076 c.common.opcode = nvme_admin_async_event;
1077 c.common.command_id = req->tag;
1078
42483228 1079 blk_mq_free_request(req);
e3f879bf
SB
1080 __nvme_submit_cmd(nvmeq, &c);
1081 return 0;
a4aea562
MB
1082}
1083
1084static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
4d115420
KB
1085 struct nvme_command *cmd,
1086 struct async_cmd_info *cmdinfo, unsigned timeout)
1087{
a4aea562
MB
1088 struct nvme_queue *nvmeq = dev->queues[0];
1089 struct request *req;
1090 struct nvme_cmd_info *cmd_rq;
4d115420 1091
a4aea562 1092 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
9f173b33
DC
1093 if (IS_ERR(req))
1094 return PTR_ERR(req);
a4aea562
MB
1095
1096 req->timeout = timeout;
1097 cmd_rq = blk_mq_rq_to_pdu(req);
1098 cmdinfo->req = req;
1099 nvme_set_info(cmd_rq, cmdinfo, async_completion);
4d115420 1100 cmdinfo->status = -EINTR;
a4aea562
MB
1101
1102 cmd->common.command_id = req->tag;
1103
e3f879bf
SB
1104 nvme_submit_cmd(nvmeq, cmd);
1105 return 0;
4d115420
KB
1106}
1107
b60503ba
MW
1108static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1109{
b60503ba
MW
1110 struct nvme_command c;
1111
1112 memset(&c, 0, sizeof(c));
1113 c.delete_queue.opcode = opcode;
1114 c.delete_queue.qid = cpu_to_le16(id);
1115
d29ec824 1116 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
b60503ba
MW
1117}
1118
1119static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1120 struct nvme_queue *nvmeq)
1121{
b60503ba
MW
1122 struct nvme_command c;
1123 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1124
d29ec824
CH
1125 /*
1126 * Note: we (ab)use the fact the the prp fields survive if no data
1127 * is attached to the request.
1128 */
b60503ba
MW
1129 memset(&c, 0, sizeof(c));
1130 c.create_cq.opcode = nvme_admin_create_cq;
1131 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1132 c.create_cq.cqid = cpu_to_le16(qid);
1133 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1134 c.create_cq.cq_flags = cpu_to_le16(flags);
1135 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1136
d29ec824 1137 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
b60503ba
MW
1138}
1139
1140static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1141 struct nvme_queue *nvmeq)
1142{
b60503ba
MW
1143 struct nvme_command c;
1144 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1145
d29ec824
CH
1146 /*
1147 * Note: we (ab)use the fact the the prp fields survive if no data
1148 * is attached to the request.
1149 */
b60503ba
MW
1150 memset(&c, 0, sizeof(c));
1151 c.create_sq.opcode = nvme_admin_create_sq;
1152 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1153 c.create_sq.sqid = cpu_to_le16(qid);
1154 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1155 c.create_sq.sq_flags = cpu_to_le16(flags);
1156 c.create_sq.cqid = cpu_to_le16(qid);
1157
d29ec824 1158 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
b60503ba
MW
1159}
1160
1161static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1162{
1163 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1164}
1165
1166static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1167{
1168 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1169}
1170
d29ec824 1171int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
bc5fc7e4 1172{
e44ac588 1173 struct nvme_command c = { };
d29ec824 1174 int error;
bc5fc7e4 1175
e44ac588
AM
1176 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1177 c.identify.opcode = nvme_admin_identify;
1178 c.identify.cns = cpu_to_le32(1);
1179
d29ec824
CH
1180 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1181 if (!*id)
1182 return -ENOMEM;
bc5fc7e4 1183
d29ec824
CH
1184 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1185 sizeof(struct nvme_id_ctrl));
1186 if (error)
1187 kfree(*id);
1188 return error;
1189}
1190
1191int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
1192 struct nvme_id_ns **id)
1193{
e44ac588 1194 struct nvme_command c = { };
d29ec824 1195 int error;
bc5fc7e4 1196
e44ac588
AM
1197 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1198 c.identify.opcode = nvme_admin_identify,
1199 c.identify.nsid = cpu_to_le32(nsid),
1200
d29ec824
CH
1201 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
1202 if (!*id)
1203 return -ENOMEM;
1204
1205 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1206 sizeof(struct nvme_id_ns));
1207 if (error)
1208 kfree(*id);
1209 return error;
bc5fc7e4
MW
1210}
1211
5d0f6131 1212int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
08df1e05 1213 dma_addr_t dma_addr, u32 *result)
bc5fc7e4
MW
1214{
1215 struct nvme_command c;
1216
1217 memset(&c, 0, sizeof(c));
1218 c.features.opcode = nvme_admin_get_features;
a42cecce 1219 c.features.nsid = cpu_to_le32(nsid);
bc5fc7e4
MW
1220 c.features.prp1 = cpu_to_le64(dma_addr);
1221 c.features.fid = cpu_to_le32(fid);
bc5fc7e4 1222
d29ec824
CH
1223 return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1224 result, 0);
df348139
MW
1225}
1226
5d0f6131
VV
1227int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1228 dma_addr_t dma_addr, u32 *result)
df348139
MW
1229{
1230 struct nvme_command c;
1231
1232 memset(&c, 0, sizeof(c));
1233 c.features.opcode = nvme_admin_set_features;
1234 c.features.prp1 = cpu_to_le64(dma_addr);
1235 c.features.fid = cpu_to_le32(fid);
1236 c.features.dword11 = cpu_to_le32(dword11);
1237
d29ec824
CH
1238 return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1239 result, 0);
1240}
1241
1242int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
1243{
e44ac588
AM
1244 struct nvme_command c = { };
1245 int error;
1246
1247 c.common.opcode = nvme_admin_get_log_page,
1248 c.common.nsid = cpu_to_le32(0xFFFFFFFF),
1249 c.common.cdw10[0] = cpu_to_le32(
d29ec824
CH
1250 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
1251 NVME_LOG_SMART),
d29ec824
CH
1252
1253 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
1254 if (!*log)
1255 return -ENOMEM;
1256
1257 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
1258 sizeof(struct nvme_smart_log));
1259 if (error)
1260 kfree(*log);
1261 return error;
bc5fc7e4
MW
1262}
1263
c30341dc 1264/**
a4aea562 1265 * nvme_abort_req - Attempt aborting a request
c30341dc
KB
1266 *
1267 * Schedule controller reset if the command was already aborted once before and
1268 * still hasn't been returned to the driver, or if this is the admin queue.
1269 */
a4aea562 1270static void nvme_abort_req(struct request *req)
c30341dc 1271{
a4aea562
MB
1272 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1273 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
c30341dc 1274 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
1275 struct request *abort_req;
1276 struct nvme_cmd_info *abort_cmd;
1277 struct nvme_command cmd;
c30341dc 1278
a4aea562 1279 if (!nvmeq->qid || cmd_rq->aborted) {
7a509a6b
KB
1280 unsigned long flags;
1281
1282 spin_lock_irqsave(&dev_list_lock, flags);
c30341dc 1283 if (work_busy(&dev->reset_work))
7a509a6b 1284 goto out;
c30341dc 1285 list_del_init(&dev->node);
e75ec752 1286 dev_warn(dev->dev, "I/O %d QID %d timeout, reset controller\n",
a4aea562 1287 req->tag, nvmeq->qid);
c30341dc 1288 queue_work(nvme_workq, &dev->reset_work);
7a509a6b
KB
1289 out:
1290 spin_unlock_irqrestore(&dev_list_lock, flags);
c30341dc
KB
1291 return;
1292 }
1293
1294 if (!dev->abort_limit)
1295 return;
1296
a4aea562
MB
1297 abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1298 false);
9f173b33 1299 if (IS_ERR(abort_req))
c30341dc
KB
1300 return;
1301
a4aea562
MB
1302 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1303 nvme_set_info(abort_cmd, abort_req, abort_completion);
1304
c30341dc
KB
1305 memset(&cmd, 0, sizeof(cmd));
1306 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1307 cmd.abort.cid = req->tag;
c30341dc 1308 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
a4aea562 1309 cmd.abort.command_id = abort_req->tag;
c30341dc
KB
1310
1311 --dev->abort_limit;
a4aea562 1312 cmd_rq->aborted = 1;
c30341dc 1313
a4aea562 1314 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
c30341dc 1315 nvmeq->qid);
e3f879bf 1316 nvme_submit_cmd(dev->queues[0], &cmd);
c30341dc
KB
1317}
1318
42483228 1319static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
a09115b2 1320{
a4aea562
MB
1321 struct nvme_queue *nvmeq = data;
1322 void *ctx;
1323 nvme_completion_fn fn;
1324 struct nvme_cmd_info *cmd;
cef6a948
KB
1325 struct nvme_completion cqe;
1326
1327 if (!blk_mq_request_started(req))
1328 return;
a09115b2 1329
a4aea562 1330 cmd = blk_mq_rq_to_pdu(req);
a09115b2 1331
a4aea562
MB
1332 if (cmd->ctx == CMD_CTX_CANCELLED)
1333 return;
1334
cef6a948
KB
1335 if (blk_queue_dying(req->q))
1336 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1337 else
1338 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1339
1340
a4aea562
MB
1341 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1342 req->tag, nvmeq->qid);
1343 ctx = cancel_cmd_info(cmd, &fn);
1344 fn(nvmeq, ctx, &cqe);
a09115b2
MW
1345}
1346
a4aea562 1347static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
9e866774 1348{
a4aea562
MB
1349 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1350 struct nvme_queue *nvmeq = cmd->nvmeq;
1351
1352 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1353 nvmeq->qid);
7a509a6b 1354 spin_lock_irq(&nvmeq->q_lock);
07836e65 1355 nvme_abort_req(req);
7a509a6b 1356 spin_unlock_irq(&nvmeq->q_lock);
a4aea562 1357
07836e65
KB
1358 /*
1359 * The aborted req will be completed on receiving the abort req.
1360 * We enable the timer again. If hit twice, it'll cause a device reset,
1361 * as the device then is in a faulty state.
1362 */
1363 return BLK_EH_RESET_TIMER;
a4aea562 1364}
22404274 1365
a4aea562
MB
1366static void nvme_free_queue(struct nvme_queue *nvmeq)
1367{
9e866774
MW
1368 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1369 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1370 if (nvmeq->sq_cmds)
1371 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1372 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1373 kfree(nvmeq);
1374}
1375
a1a5ef99 1376static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1377{
1378 int i;
1379
a1a5ef99 1380 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1381 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1382 dev->queue_count--;
a4aea562 1383 dev->queues[i] = NULL;
f435c282 1384 nvme_free_queue(nvmeq);
121c7ad4 1385 }
22404274
KB
1386}
1387
4d115420
KB
1388/**
1389 * nvme_suspend_queue - put queue into suspended state
1390 * @nvmeq - queue to suspend
4d115420
KB
1391 */
1392static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1393{
2b25d981 1394 int vector;
b60503ba 1395
a09115b2 1396 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1397 if (nvmeq->cq_vector == -1) {
1398 spin_unlock_irq(&nvmeq->q_lock);
1399 return 1;
1400 }
1401 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
42f61420 1402 nvmeq->dev->online_queues--;
2b25d981 1403 nvmeq->cq_vector = -1;
a09115b2
MW
1404 spin_unlock_irq(&nvmeq->q_lock);
1405
6df3dbc8
KB
1406 if (!nvmeq->qid && nvmeq->dev->admin_q)
1407 blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1408
aba2080f
MW
1409 irq_set_affinity_hint(vector, NULL);
1410 free_irq(vector, nvmeq);
b60503ba 1411
4d115420
KB
1412 return 0;
1413}
b60503ba 1414
4d115420
KB
1415static void nvme_clear_queue(struct nvme_queue *nvmeq)
1416{
22404274 1417 spin_lock_irq(&nvmeq->q_lock);
42483228
KB
1418 if (nvmeq->tags && *nvmeq->tags)
1419 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
22404274 1420 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1421}
1422
4d115420
KB
1423static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1424{
a4aea562 1425 struct nvme_queue *nvmeq = dev->queues[qid];
4d115420
KB
1426
1427 if (!nvmeq)
1428 return;
1429 if (nvme_suspend_queue(nvmeq))
1430 return;
1431
0e53d180
KB
1432 /* Don't tell the adapter to delete the admin queue.
1433 * Don't tell a removed adapter to delete IO queues. */
1434 if (qid && readl(&dev->bar->csts) != -1) {
b60503ba
MW
1435 adapter_delete_sq(dev, qid);
1436 adapter_delete_cq(dev, qid);
1437 }
07836e65
KB
1438
1439 spin_lock_irq(&nvmeq->q_lock);
1440 nvme_process_cq(nvmeq);
1441 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1442}
1443
8ffaadf7
JD
1444static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1445 int entry_size)
1446{
1447 int q_depth = dev->q_depth;
1448 unsigned q_size_aligned = roundup(q_depth * entry_size, dev->page_size);
1449
1450 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99
JD
1451 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1452 mem_per_q = round_down(mem_per_q, dev->page_size);
1453 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1454
1455 /*
1456 * Ensure the reduced q_depth is above some threshold where it
1457 * would be better to map queues in system memory with the
1458 * original depth
1459 */
1460 if (q_depth < 64)
1461 return -ENOMEM;
1462 }
1463
1464 return q_depth;
1465}
1466
1467static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1468 int qid, int depth)
1469{
1470 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1471 unsigned offset = (qid - 1) *
1472 roundup(SQ_SIZE(depth), dev->page_size);
1473 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1474 nvmeq->sq_cmds_io = dev->cmb + offset;
1475 } else {
1476 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1477 &nvmeq->sq_dma_addr, GFP_KERNEL);
1478 if (!nvmeq->sq_cmds)
1479 return -ENOMEM;
1480 }
1481
1482 return 0;
1483}
1484
b60503ba 1485static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1486 int depth)
b60503ba 1487{
a4aea562 1488 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1489 if (!nvmeq)
1490 return NULL;
1491
e75ec752 1492 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1493 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1494 if (!nvmeq->cqes)
1495 goto free_nvmeq;
b60503ba 1496
8ffaadf7 1497 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1498 goto free_cqdma;
1499
e75ec752 1500 nvmeq->q_dmadev = dev->dev;
091b6092 1501 nvmeq->dev = dev;
3193f07b
MW
1502 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1503 dev->instance, qid);
b60503ba
MW
1504 spin_lock_init(&nvmeq->q_lock);
1505 nvmeq->cq_head = 0;
82123460 1506 nvmeq->cq_phase = 1;
b80d5ccc 1507 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1508 nvmeq->q_depth = depth;
c30341dc 1509 nvmeq->qid = qid;
758dd7fd 1510 nvmeq->cq_vector = -1;
a4aea562 1511 dev->queues[qid] = nvmeq;
b60503ba 1512
36a7e993
JD
1513 /* make sure queue descriptor is set before queue count, for kthread */
1514 mb();
1515 dev->queue_count++;
1516
b60503ba
MW
1517 return nvmeq;
1518
1519 free_cqdma:
e75ec752 1520 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1521 nvmeq->cq_dma_addr);
1522 free_nvmeq:
1523 kfree(nvmeq);
1524 return NULL;
1525}
1526
3001082c
MW
1527static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1528 const char *name)
1529{
58ffacb5
MW
1530 if (use_threaded_interrupts)
1531 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
481e5bad 1532 nvme_irq_check, nvme_irq, IRQF_SHARED,
58ffacb5 1533 name, nvmeq);
3001082c 1534 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
481e5bad 1535 IRQF_SHARED, name, nvmeq);
3001082c
MW
1536}
1537
22404274 1538static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1539{
22404274 1540 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1541
7be50e93 1542 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1543 nvmeq->sq_tail = 0;
1544 nvmeq->cq_head = 0;
1545 nvmeq->cq_phase = 1;
b80d5ccc 1546 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1547 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1548 dev->online_queues++;
7be50e93 1549 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1550}
1551
1552static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1553{
1554 struct nvme_dev *dev = nvmeq->dev;
1555 int result;
3f85d50b 1556
2b25d981 1557 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1558 result = adapter_alloc_cq(dev, qid, nvmeq);
1559 if (result < 0)
22404274 1560 return result;
b60503ba
MW
1561
1562 result = adapter_alloc_sq(dev, qid, nvmeq);
1563 if (result < 0)
1564 goto release_cq;
1565
3193f07b 1566 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
b60503ba
MW
1567 if (result < 0)
1568 goto release_sq;
1569
22404274 1570 nvme_init_queue(nvmeq, qid);
22404274 1571 return result;
b60503ba
MW
1572
1573 release_sq:
1574 adapter_delete_sq(dev, qid);
1575 release_cq:
1576 adapter_delete_cq(dev, qid);
22404274 1577 return result;
b60503ba
MW
1578}
1579
ba47e386
MW
1580static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1581{
1582 unsigned long timeout;
1583 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1584
1585 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1586
1587 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1588 msleep(100);
1589 if (fatal_signal_pending(current))
1590 return -EINTR;
1591 if (time_after(jiffies, timeout)) {
e75ec752 1592 dev_err(dev->dev,
27e8166c
MW
1593 "Device not ready; aborting %s\n", enabled ?
1594 "initialisation" : "reset");
ba47e386
MW
1595 return -ENODEV;
1596 }
1597 }
1598
1599 return 0;
1600}
1601
1602/*
1603 * If the device has been passed off to us in an enabled state, just clear
1604 * the enabled bit. The spec says we should set the 'shutdown notification
1605 * bits', but doing so may cause the device to complete commands to the
1606 * admin queue ... and we don't know what memory that might be pointing at!
1607 */
1608static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1609{
01079522
DM
1610 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1611 dev->ctrl_config &= ~NVME_CC_ENABLE;
1612 writel(dev->ctrl_config, &dev->bar->cc);
44af146a 1613
ba47e386
MW
1614 return nvme_wait_ready(dev, cap, false);
1615}
1616
1617static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1618{
01079522
DM
1619 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1620 dev->ctrl_config |= NVME_CC_ENABLE;
1621 writel(dev->ctrl_config, &dev->bar->cc);
1622
ba47e386
MW
1623 return nvme_wait_ready(dev, cap, true);
1624}
1625
1894d8f1
KB
1626static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1627{
1628 unsigned long timeout;
1894d8f1 1629
01079522
DM
1630 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1631 dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1632
1633 writel(dev->ctrl_config, &dev->bar->cc);
1894d8f1 1634
2484f407 1635 timeout = SHUTDOWN_TIMEOUT + jiffies;
1894d8f1
KB
1636 while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1637 NVME_CSTS_SHST_CMPLT) {
1638 msleep(100);
1639 if (fatal_signal_pending(current))
1640 return -EINTR;
1641 if (time_after(jiffies, timeout)) {
e75ec752 1642 dev_err(dev->dev,
1894d8f1
KB
1643 "Device shutdown incomplete; abort shutdown\n");
1644 return -ENODEV;
1645 }
1646 }
1647
1648 return 0;
1649}
1650
a4aea562 1651static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1652 .queue_rq = nvme_queue_rq,
a4aea562
MB
1653 .map_queue = blk_mq_map_queue,
1654 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1655 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1656 .init_request = nvme_admin_init_request,
1657 .timeout = nvme_timeout,
1658};
1659
1660static struct blk_mq_ops nvme_mq_ops = {
1661 .queue_rq = nvme_queue_rq,
1662 .map_queue = blk_mq_map_queue,
1663 .init_hctx = nvme_init_hctx,
1664 .init_request = nvme_init_request,
1665 .timeout = nvme_timeout,
1666};
1667
ea191d2f
KB
1668static void nvme_dev_remove_admin(struct nvme_dev *dev)
1669{
1670 if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1671 blk_cleanup_queue(dev->admin_q);
1672 blk_mq_free_tag_set(&dev->admin_tagset);
1673 }
1674}
1675
a4aea562
MB
1676static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1677{
1678 if (!dev->admin_q) {
1679 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1680 dev->admin_tagset.nr_hw_queues = 1;
1681 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1efccc9d 1682 dev->admin_tagset.reserved_tags = 1;
a4aea562 1683 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1684 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1685 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1686 dev->admin_tagset.driver_data = dev;
1687
1688 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1689 return -ENOMEM;
1690
1691 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
35b489d3 1692 if (IS_ERR(dev->admin_q)) {
a4aea562
MB
1693 blk_mq_free_tag_set(&dev->admin_tagset);
1694 return -ENOMEM;
1695 }
ea191d2f
KB
1696 if (!blk_get_queue(dev->admin_q)) {
1697 nvme_dev_remove_admin(dev);
4af0e21c 1698 dev->admin_q = NULL;
ea191d2f
KB
1699 return -ENODEV;
1700 }
0fb59cbc
KB
1701 } else
1702 blk_mq_unfreeze_queue(dev->admin_q);
a4aea562
MB
1703
1704 return 0;
1705}
1706
8d85fce7 1707static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1708{
ba47e386 1709 int result;
b60503ba 1710 u32 aqa;
ba47e386 1711 u64 cap = readq(&dev->bar->cap);
b60503ba 1712 struct nvme_queue *nvmeq;
1d090624
KB
1713 unsigned page_shift = PAGE_SHIFT;
1714 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1715 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1716
1717 if (page_shift < dev_page_min) {
e75ec752 1718 dev_err(dev->dev,
1d090624
KB
1719 "Minimum device page size (%u) too large for "
1720 "host (%u)\n", 1 << dev_page_min,
1721 1 << page_shift);
1722 return -ENODEV;
1723 }
1724 if (page_shift > dev_page_max) {
e75ec752 1725 dev_info(dev->dev,
1d090624
KB
1726 "Device maximum page size (%u) smaller than "
1727 "host (%u); enabling work-around\n",
1728 1 << dev_page_max, 1 << page_shift);
1729 page_shift = dev_page_max;
1730 }
b60503ba 1731
dfbac8c7
KB
1732 dev->subsystem = readl(&dev->bar->vs) >= NVME_VS(1, 1) ?
1733 NVME_CAP_NSSRC(cap) : 0;
1734
1735 if (dev->subsystem && (readl(&dev->bar->csts) & NVME_CSTS_NSSRO))
1736 writel(NVME_CSTS_NSSRO, &dev->bar->csts);
1737
ba47e386
MW
1738 result = nvme_disable_ctrl(dev, cap);
1739 if (result < 0)
1740 return result;
b60503ba 1741
a4aea562 1742 nvmeq = dev->queues[0];
cd638946 1743 if (!nvmeq) {
2b25d981 1744 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1745 if (!nvmeq)
1746 return -ENOMEM;
cd638946 1747 }
b60503ba
MW
1748
1749 aqa = nvmeq->q_depth - 1;
1750 aqa |= aqa << 16;
1751
1d090624
KB
1752 dev->page_size = 1 << page_shift;
1753
01079522 1754 dev->ctrl_config = NVME_CC_CSS_NVM;
1d090624 1755 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
b60503ba 1756 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
7f53f9d2 1757 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
b60503ba
MW
1758
1759 writel(aqa, &dev->bar->aqa);
1760 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1761 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
b60503ba 1762
ba47e386 1763 result = nvme_enable_ctrl(dev, cap);
025c557a 1764 if (result)
a4aea562
MB
1765 goto free_nvmeq;
1766
2b25d981 1767 nvmeq->cq_vector = 0;
3193f07b 1768 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
758dd7fd
JD
1769 if (result) {
1770 nvmeq->cq_vector = -1;
0fb59cbc 1771 goto free_nvmeq;
758dd7fd 1772 }
025c557a 1773
b60503ba 1774 return result;
a4aea562 1775
a4aea562
MB
1776 free_nvmeq:
1777 nvme_free_queues(dev, 0);
1778 return result;
b60503ba
MW
1779}
1780
a53295b6
MW
1781static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1782{
1783 struct nvme_dev *dev = ns->dev;
a53295b6
MW
1784 struct nvme_user_io io;
1785 struct nvme_command c;
d29ec824 1786 unsigned length, meta_len;
a67a9513 1787 int status, write;
a67a9513
KB
1788 dma_addr_t meta_dma = 0;
1789 void *meta = NULL;
fec558b5 1790 void __user *metadata;
a53295b6
MW
1791
1792 if (copy_from_user(&io, uio, sizeof(io)))
1793 return -EFAULT;
6c7d4945
MW
1794
1795 switch (io.opcode) {
1796 case nvme_cmd_write:
1797 case nvme_cmd_read:
6bbf1acd 1798 case nvme_cmd_compare:
6413214c 1799 break;
6c7d4945 1800 default:
6bbf1acd 1801 return -EINVAL;
6c7d4945
MW
1802 }
1803
d29ec824
CH
1804 length = (io.nblocks + 1) << ns->lba_shift;
1805 meta_len = (io.nblocks + 1) * ns->ms;
6a398a3e 1806 metadata = (void __user *)(unsigned long)io.metadata;
d29ec824 1807 write = io.opcode & 1;
a53295b6 1808
71feb364
KB
1809 if (ns->ext) {
1810 length += meta_len;
1811 meta_len = 0;
a67a9513
KB
1812 }
1813 if (meta_len) {
d29ec824
CH
1814 if (((io.metadata & 3) || !io.metadata) && !ns->ext)
1815 return -EINVAL;
1816
e75ec752 1817 meta = dma_alloc_coherent(dev->dev, meta_len,
a67a9513 1818 &meta_dma, GFP_KERNEL);
fec558b5 1819
a67a9513
KB
1820 if (!meta) {
1821 status = -ENOMEM;
1822 goto unmap;
1823 }
1824 if (write) {
fec558b5 1825 if (copy_from_user(meta, metadata, meta_len)) {
a67a9513
KB
1826 status = -EFAULT;
1827 goto unmap;
1828 }
1829 }
1830 }
1831
a53295b6
MW
1832 memset(&c, 0, sizeof(c));
1833 c.rw.opcode = io.opcode;
1834 c.rw.flags = io.flags;
6c7d4945 1835 c.rw.nsid = cpu_to_le32(ns->ns_id);
a53295b6 1836 c.rw.slba = cpu_to_le64(io.slba);
6c7d4945 1837 c.rw.length = cpu_to_le16(io.nblocks);
a53295b6 1838 c.rw.control = cpu_to_le16(io.control);
1c9b5265
MW
1839 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1840 c.rw.reftag = cpu_to_le32(io.reftag);
1841 c.rw.apptag = cpu_to_le16(io.apptag);
1842 c.rw.appmask = cpu_to_le16(io.appmask);
a67a9513 1843 c.rw.metadata = cpu_to_le64(meta_dma);
d29ec824
CH
1844
1845 status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
1846 (void __user *)io.addr, length, NULL, 0);
f410c680 1847 unmap:
a67a9513
KB
1848 if (meta) {
1849 if (status == NVME_SC_SUCCESS && !write) {
fec558b5 1850 if (copy_to_user(metadata, meta, meta_len))
a67a9513
KB
1851 status = -EFAULT;
1852 }
e75ec752 1853 dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
f410c680 1854 }
a53295b6
MW
1855 return status;
1856}
1857
a4aea562
MB
1858static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1859 struct nvme_passthru_cmd __user *ucmd)
6ee44cdc 1860{
7963e521 1861 struct nvme_passthru_cmd cmd;
6ee44cdc 1862 struct nvme_command c;
d29ec824
CH
1863 unsigned timeout = 0;
1864 int status;
6ee44cdc 1865
6bbf1acd
MW
1866 if (!capable(CAP_SYS_ADMIN))
1867 return -EACCES;
1868 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
6ee44cdc 1869 return -EFAULT;
6ee44cdc
MW
1870
1871 memset(&c, 0, sizeof(c));
6bbf1acd
MW
1872 c.common.opcode = cmd.opcode;
1873 c.common.flags = cmd.flags;
1874 c.common.nsid = cpu_to_le32(cmd.nsid);
1875 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1876 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1877 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1878 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1879 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1880 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1881 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1882 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1883
d29ec824
CH
1884 if (cmd.timeout_ms)
1885 timeout = msecs_to_jiffies(cmd.timeout_ms);
eca18b23 1886
f705f837 1887 status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
d29ec824
CH
1888 NULL, (void __user *)cmd.addr, cmd.data_len,
1889 &cmd.result, timeout);
1890 if (status >= 0) {
1891 if (put_user(cmd.result, &ucmd->result))
1892 return -EFAULT;
6bbf1acd 1893 }
f4f117f6 1894
6ee44cdc
MW
1895 return status;
1896}
1897
81f03fed
JD
1898static int nvme_subsys_reset(struct nvme_dev *dev)
1899{
1900 if (!dev->subsystem)
1901 return -ENOTTY;
1902
1903 writel(0x4E564D65, &dev->bar->nssr); /* "NVMe" */
1904 return 0;
1905}
1906
b60503ba
MW
1907static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1908 unsigned long arg)
1909{
1910 struct nvme_ns *ns = bdev->bd_disk->private_data;
1911
1912 switch (cmd) {
6bbf1acd 1913 case NVME_IOCTL_ID:
c3bfe717 1914 force_successful_syscall_return();
6bbf1acd
MW
1915 return ns->ns_id;
1916 case NVME_IOCTL_ADMIN_CMD:
a4aea562 1917 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
7963e521 1918 case NVME_IOCTL_IO_CMD:
a4aea562 1919 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
a53295b6
MW
1920 case NVME_IOCTL_SUBMIT_IO:
1921 return nvme_submit_io(ns, (void __user *)arg);
5d0f6131
VV
1922 case SG_GET_VERSION_NUM:
1923 return nvme_sg_get_version_num((void __user *)arg);
1924 case SG_IO:
1925 return nvme_sg_io(ns, (void __user *)arg);
b60503ba
MW
1926 default:
1927 return -ENOTTY;
1928 }
1929}
1930
320a3827
KB
1931#ifdef CONFIG_COMPAT
1932static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1933 unsigned int cmd, unsigned long arg)
1934{
320a3827
KB
1935 switch (cmd) {
1936 case SG_IO:
e179729a 1937 return -ENOIOCTLCMD;
320a3827
KB
1938 }
1939 return nvme_ioctl(bdev, mode, cmd, arg);
1940}
1941#else
1942#define nvme_compat_ioctl NULL
1943#endif
1944
5105aa55 1945static void nvme_free_dev(struct kref *kref);
188c3568
KB
1946static void nvme_free_ns(struct kref *kref)
1947{
1948 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
1949
1950 spin_lock(&dev_list_lock);
1951 ns->disk->private_data = NULL;
1952 spin_unlock(&dev_list_lock);
1953
5105aa55 1954 kref_put(&ns->dev->kref, nvme_free_dev);
188c3568
KB
1955 put_disk(ns->disk);
1956 kfree(ns);
1957}
1958
9ac27090
KB
1959static int nvme_open(struct block_device *bdev, fmode_t mode)
1960{
9e60352c
KB
1961 int ret = 0;
1962 struct nvme_ns *ns;
9ac27090 1963
9e60352c
KB
1964 spin_lock(&dev_list_lock);
1965 ns = bdev->bd_disk->private_data;
1966 if (!ns)
1967 ret = -ENXIO;
188c3568 1968 else if (!kref_get_unless_zero(&ns->kref))
9e60352c
KB
1969 ret = -ENXIO;
1970 spin_unlock(&dev_list_lock);
1971
1972 return ret;
9ac27090
KB
1973}
1974
9ac27090
KB
1975static void nvme_release(struct gendisk *disk, fmode_t mode)
1976{
1977 struct nvme_ns *ns = disk->private_data;
188c3568 1978 kref_put(&ns->kref, nvme_free_ns);
9ac27090
KB
1979}
1980
4cc09e2d
KB
1981static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1982{
1983 /* some standard values */
1984 geo->heads = 1 << 6;
1985 geo->sectors = 1 << 5;
1986 geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1987 return 0;
1988}
1989
e1e5e564
KB
1990static void nvme_config_discard(struct nvme_ns *ns)
1991{
1992 u32 logical_block_size = queue_logical_block_size(ns->queue);
1993 ns->queue->limits.discard_zeroes_data = 0;
1994 ns->queue->limits.discard_alignment = logical_block_size;
1995 ns->queue->limits.discard_granularity = logical_block_size;
2bb4cd5c 1996 blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
e1e5e564
KB
1997 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1998}
1999
1b9dbf7f
KB
2000static int nvme_revalidate_disk(struct gendisk *disk)
2001{
2002 struct nvme_ns *ns = disk->private_data;
2003 struct nvme_dev *dev = ns->dev;
2004 struct nvme_id_ns *id;
a67a9513
KB
2005 u8 lbaf, pi_type;
2006 u16 old_ms;
e1e5e564 2007 unsigned short bs;
1b9dbf7f 2008
d29ec824 2009 if (nvme_identify_ns(dev, ns->ns_id, &id)) {
a5768aa8
KB
2010 dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
2011 dev->instance, ns->ns_id);
2012 return -ENODEV;
1b9dbf7f 2013 }
a5768aa8
KB
2014 if (id->ncap == 0) {
2015 kfree(id);
2016 return -ENODEV;
e1e5e564 2017 }
1b9dbf7f 2018
e1e5e564
KB
2019 old_ms = ns->ms;
2020 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1b9dbf7f 2021 ns->lba_shift = id->lbaf[lbaf].ds;
e1e5e564 2022 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
a67a9513 2023 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
e1e5e564
KB
2024
2025 /*
2026 * If identify namespace failed, use default 512 byte block size so
2027 * block layer can use before failing read/write for 0 capacity.
2028 */
2029 if (ns->lba_shift == 0)
2030 ns->lba_shift = 9;
2031 bs = 1 << ns->lba_shift;
2032
2033 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
2034 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2035 id->dps & NVME_NS_DPS_PI_MASK : 0;
2036
52b68d7e
KB
2037 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
2038 ns->ms != old_ms ||
e1e5e564 2039 bs != queue_logical_block_size(disk->queue) ||
a67a9513 2040 (ns->ms && ns->ext)))
e1e5e564
KB
2041 blk_integrity_unregister(disk);
2042
2043 ns->pi_type = pi_type;
2044 blk_queue_logical_block_size(ns->queue, bs);
2045
52b68d7e 2046 if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
a67a9513 2047 !ns->ext)
e1e5e564
KB
2048 nvme_init_integrity(ns);
2049
e19b127f 2050 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
e1e5e564
KB
2051 set_capacity(disk, 0);
2052 else
2053 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2054
2055 if (dev->oncs & NVME_CTRL_ONCS_DSM)
2056 nvme_config_discard(ns);
1b9dbf7f 2057
d29ec824 2058 kfree(id);
1b9dbf7f
KB
2059 return 0;
2060}
2061
b60503ba
MW
2062static const struct block_device_operations nvme_fops = {
2063 .owner = THIS_MODULE,
2064 .ioctl = nvme_ioctl,
320a3827 2065 .compat_ioctl = nvme_compat_ioctl,
9ac27090
KB
2066 .open = nvme_open,
2067 .release = nvme_release,
4cc09e2d 2068 .getgeo = nvme_getgeo,
1b9dbf7f 2069 .revalidate_disk= nvme_revalidate_disk,
b60503ba
MW
2070};
2071
1fa6aead
MW
2072static int nvme_kthread(void *data)
2073{
d4b4ff8e 2074 struct nvme_dev *dev, *next;
1fa6aead
MW
2075
2076 while (!kthread_should_stop()) {
564a232c 2077 set_current_state(TASK_INTERRUPTIBLE);
1fa6aead 2078 spin_lock(&dev_list_lock);
d4b4ff8e 2079 list_for_each_entry_safe(dev, next, &dev_list, node) {
1fa6aead 2080 int i;
dfbac8c7
KB
2081 u32 csts = readl(&dev->bar->csts);
2082
2083 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
2084 csts & NVME_CSTS_CFS) {
d4b4ff8e
KB
2085 if (work_busy(&dev->reset_work))
2086 continue;
2087 list_del_init(&dev->node);
e75ec752 2088 dev_warn(dev->dev,
a4aea562
MB
2089 "Failed status: %x, reset controller\n",
2090 readl(&dev->bar->csts));
d4b4ff8e
KB
2091 queue_work(nvme_workq, &dev->reset_work);
2092 continue;
2093 }
1fa6aead 2094 for (i = 0; i < dev->queue_count; i++) {
a4aea562 2095 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
2096 if (!nvmeq)
2097 continue;
1fa6aead 2098 spin_lock_irq(&nvmeq->q_lock);
bc57a0f7 2099 nvme_process_cq(nvmeq);
6fccf938
KB
2100
2101 while ((i == 0) && (dev->event_limit > 0)) {
a4aea562 2102 if (nvme_submit_async_admin_req(dev))
6fccf938
KB
2103 break;
2104 dev->event_limit--;
2105 }
1fa6aead
MW
2106 spin_unlock_irq(&nvmeq->q_lock);
2107 }
2108 }
2109 spin_unlock(&dev_list_lock);
acb7aa0d 2110 schedule_timeout(round_jiffies_relative(HZ));
1fa6aead
MW
2111 }
2112 return 0;
2113}
2114
e1e5e564 2115static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
b60503ba
MW
2116{
2117 struct nvme_ns *ns;
2118 struct gendisk *disk;
e75ec752 2119 int node = dev_to_node(dev->dev);
b60503ba 2120
a4aea562 2121 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
b60503ba 2122 if (!ns)
e1e5e564
KB
2123 return;
2124
a4aea562 2125 ns->queue = blk_mq_init_queue(&dev->tagset);
9f173b33 2126 if (IS_ERR(ns->queue))
b60503ba 2127 goto out_free_ns;
4eeb9215
MW
2128 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2129 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
b60503ba
MW
2130 ns->dev = dev;
2131 ns->queue->queuedata = ns;
2132
a4aea562 2133 disk = alloc_disk_node(0, node);
b60503ba
MW
2134 if (!disk)
2135 goto out_free_queue;
a4aea562 2136
188c3568 2137 kref_init(&ns->kref);
5aff9382 2138 ns->ns_id = nsid;
b60503ba 2139 ns->disk = disk;
e1e5e564
KB
2140 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2141 list_add_tail(&ns->list, &dev->namespaces);
2142
e9ef4636 2143 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
e824410f 2144 if (dev->max_hw_sectors) {
8fc23e03 2145 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
e824410f
KB
2146 blk_queue_max_segments(ns->queue,
2147 ((dev->max_hw_sectors << 9) / dev->page_size) + 1);
2148 }
a4aea562
MB
2149 if (dev->stripe_size)
2150 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
a7d2ce28
KB
2151 if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2152 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
03100aad 2153 blk_queue_virt_boundary(ns->queue, dev->page_size - 1);
b60503ba
MW
2154
2155 disk->major = nvme_major;
469071a3 2156 disk->first_minor = 0;
b60503ba
MW
2157 disk->fops = &nvme_fops;
2158 disk->private_data = ns;
2159 disk->queue = ns->queue;
b3fffdef 2160 disk->driverfs_dev = dev->device;
469071a3 2161 disk->flags = GENHD_FL_EXT_DEVT;
5aff9382 2162 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
b60503ba 2163
e1e5e564
KB
2164 /*
2165 * Initialize capacity to 0 until we establish the namespace format and
2166 * setup integrity extentions if necessary. The revalidate_disk after
2167 * add_disk allows the driver to register with integrity if the format
2168 * requires it.
2169 */
2170 set_capacity(disk, 0);
a5768aa8
KB
2171 if (nvme_revalidate_disk(ns->disk))
2172 goto out_free_disk;
2173
5105aa55 2174 kref_get(&dev->kref);
e1e5e564 2175 add_disk(ns->disk);
7bee6074
KB
2176 if (ns->ms) {
2177 struct block_device *bd = bdget_disk(ns->disk, 0);
2178 if (!bd)
2179 return;
2180 if (blkdev_get(bd, FMODE_READ, NULL)) {
2181 bdput(bd);
2182 return;
2183 }
2184 blkdev_reread_part(bd);
2185 blkdev_put(bd, FMODE_READ);
2186 }
e1e5e564 2187 return;
a5768aa8
KB
2188 out_free_disk:
2189 kfree(disk);
2190 list_del(&ns->list);
b60503ba
MW
2191 out_free_queue:
2192 blk_cleanup_queue(ns->queue);
2193 out_free_ns:
2194 kfree(ns);
b60503ba
MW
2195}
2196
42f61420
KB
2197static void nvme_create_io_queues(struct nvme_dev *dev)
2198{
a4aea562 2199 unsigned i;
42f61420 2200
a4aea562 2201 for (i = dev->queue_count; i <= dev->max_qid; i++)
2b25d981 2202 if (!nvme_alloc_queue(dev, i, dev->q_depth))
42f61420
KB
2203 break;
2204
a4aea562
MB
2205 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2206 if (nvme_create_queue(dev->queues[i], i))
42f61420
KB
2207 break;
2208}
2209
b3b06812 2210static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
2211{
2212 int status;
2213 u32 result;
b3b06812 2214 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba 2215
df348139 2216 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
bc5fc7e4 2217 &result);
27e8166c
MW
2218 if (status < 0)
2219 return status;
2220 if (status > 0) {
e75ec752 2221 dev_err(dev->dev, "Could not set queue count (%d)\n", status);
badc34d4 2222 return 0;
27e8166c 2223 }
b60503ba
MW
2224 return min(result & 0xffff, result >> 16) + 1;
2225}
2226
8ffaadf7
JD
2227static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
2228{
2229 u64 szu, size, offset;
2230 u32 cmbloc;
2231 resource_size_t bar_size;
2232 struct pci_dev *pdev = to_pci_dev(dev->dev);
2233 void __iomem *cmb;
2234 dma_addr_t dma_addr;
2235
2236 if (!use_cmb_sqes)
2237 return NULL;
2238
2239 dev->cmbsz = readl(&dev->bar->cmbsz);
2240 if (!(NVME_CMB_SZ(dev->cmbsz)))
2241 return NULL;
2242
2243 cmbloc = readl(&dev->bar->cmbloc);
2244
2245 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
2246 size = szu * NVME_CMB_SZ(dev->cmbsz);
2247 offset = szu * NVME_CMB_OFST(cmbloc);
2248 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
2249
2250 if (offset > bar_size)
2251 return NULL;
2252
2253 /*
2254 * Controllers may support a CMB size larger than their BAR,
2255 * for example, due to being behind a bridge. Reduce the CMB to
2256 * the reported size of the BAR
2257 */
2258 if (size > bar_size - offset)
2259 size = bar_size - offset;
2260
2261 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
2262 cmb = ioremap_wc(dma_addr, size);
2263 if (!cmb)
2264 return NULL;
2265
2266 dev->cmb_dma_addr = dma_addr;
2267 dev->cmb_size = size;
2268 return cmb;
2269}
2270
2271static inline void nvme_release_cmb(struct nvme_dev *dev)
2272{
2273 if (dev->cmb) {
2274 iounmap(dev->cmb);
2275 dev->cmb = NULL;
2276 }
2277}
2278
9d713c2b
KB
2279static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2280{
b80d5ccc 2281 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
2282}
2283
8d85fce7 2284static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 2285{
a4aea562 2286 struct nvme_queue *adminq = dev->queues[0];
e75ec752 2287 struct pci_dev *pdev = to_pci_dev(dev->dev);
42f61420 2288 int result, i, vecs, nr_io_queues, size;
b60503ba 2289
42f61420 2290 nr_io_queues = num_possible_cpus();
b348b7d5 2291 result = set_queue_count(dev, nr_io_queues);
badc34d4 2292 if (result <= 0)
1b23484b 2293 return result;
b348b7d5
MW
2294 if (result < nr_io_queues)
2295 nr_io_queues = result;
b60503ba 2296
8ffaadf7
JD
2297 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
2298 result = nvme_cmb_qdepth(dev, nr_io_queues,
2299 sizeof(struct nvme_command));
2300 if (result > 0)
2301 dev->q_depth = result;
2302 else
2303 nvme_release_cmb(dev);
2304 }
2305
9d713c2b
KB
2306 size = db_bar_size(dev, nr_io_queues);
2307 if (size > 8192) {
f1938f6e 2308 iounmap(dev->bar);
9d713c2b
KB
2309 do {
2310 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2311 if (dev->bar)
2312 break;
2313 if (!--nr_io_queues)
2314 return -ENOMEM;
2315 size = db_bar_size(dev, nr_io_queues);
2316 } while (1);
f1938f6e 2317 dev->dbs = ((void __iomem *)dev->bar) + 4096;
5a92e700 2318 adminq->q_db = dev->dbs;
f1938f6e
MW
2319 }
2320
9d713c2b 2321 /* Deregister the admin queue's interrupt */
3193f07b 2322 free_irq(dev->entry[0].vector, adminq);
9d713c2b 2323
e32efbfc
JA
2324 /*
2325 * If we enable msix early due to not intx, disable it again before
2326 * setting up the full range we need.
2327 */
2328 if (!pdev->irq)
2329 pci_disable_msix(pdev);
2330
be577fab 2331 for (i = 0; i < nr_io_queues; i++)
1b23484b 2332 dev->entry[i].entry = i;
be577fab
AG
2333 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2334 if (vecs < 0) {
2335 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2336 if (vecs < 0) {
2337 vecs = 1;
2338 } else {
2339 for (i = 0; i < vecs; i++)
2340 dev->entry[i].vector = i + pdev->irq;
fa08a396
RRG
2341 }
2342 }
2343
063a8096
MW
2344 /*
2345 * Should investigate if there's a performance win from allocating
2346 * more queues than interrupt vectors; it might allow the submission
2347 * path to scale better, even if the receive path is limited by the
2348 * number of interrupts.
2349 */
2350 nr_io_queues = vecs;
42f61420 2351 dev->max_qid = nr_io_queues;
063a8096 2352
3193f07b 2353 result = queue_request_irq(dev, adminq, adminq->irqname);
758dd7fd
JD
2354 if (result) {
2355 adminq->cq_vector = -1;
22404274 2356 goto free_queues;
758dd7fd 2357 }
1b23484b 2358
cd638946 2359 /* Free previously allocated queues that are no longer usable */
42f61420 2360 nvme_free_queues(dev, nr_io_queues + 1);
a4aea562 2361 nvme_create_io_queues(dev);
9ecdc946 2362
22404274 2363 return 0;
b60503ba 2364
22404274 2365 free_queues:
a1a5ef99 2366 nvme_free_queues(dev, 1);
22404274 2367 return result;
b60503ba
MW
2368}
2369
a5768aa8
KB
2370static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2371{
2372 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2373 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2374
2375 return nsa->ns_id - nsb->ns_id;
2376}
2377
2378static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
2379{
2380 struct nvme_ns *ns;
2381
2382 list_for_each_entry(ns, &dev->namespaces, list) {
2383 if (ns->ns_id == nsid)
2384 return ns;
2385 if (ns->ns_id > nsid)
2386 break;
2387 }
2388 return NULL;
2389}
2390
2391static inline bool nvme_io_incapable(struct nvme_dev *dev)
2392{
2393 return (!dev->bar || readl(&dev->bar->csts) & NVME_CSTS_CFS ||
2394 dev->online_queues < 2);
2395}
2396
2397static void nvme_ns_remove(struct nvme_ns *ns)
2398{
2399 bool kill = nvme_io_incapable(ns->dev) && !blk_queue_dying(ns->queue);
2400
2401 if (kill)
2402 blk_set_queue_dying(ns->queue);
2403 if (ns->disk->flags & GENHD_FL_UP) {
2404 if (blk_get_integrity(ns->disk))
2405 blk_integrity_unregister(ns->disk);
2406 del_gendisk(ns->disk);
2407 }
2408 if (kill || !blk_queue_dying(ns->queue)) {
2409 blk_mq_abort_requeue_list(ns->queue);
2410 blk_cleanup_queue(ns->queue);
5105aa55
KB
2411 }
2412 list_del_init(&ns->list);
2413 kref_put(&ns->kref, nvme_free_ns);
a5768aa8
KB
2414}
2415
2416static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
2417{
2418 struct nvme_ns *ns, *next;
2419 unsigned i;
2420
2421 for (i = 1; i <= nn; i++) {
2422 ns = nvme_find_ns(dev, i);
2423 if (ns) {
5105aa55 2424 if (revalidate_disk(ns->disk))
a5768aa8 2425 nvme_ns_remove(ns);
a5768aa8
KB
2426 } else
2427 nvme_alloc_ns(dev, i);
2428 }
2429 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
5105aa55 2430 if (ns->ns_id > nn)
a5768aa8 2431 nvme_ns_remove(ns);
a5768aa8
KB
2432 }
2433 list_sort(NULL, &dev->namespaces, ns_cmp);
2434}
2435
bda4e0fb
KB
2436static void nvme_set_irq_hints(struct nvme_dev *dev)
2437{
2438 struct nvme_queue *nvmeq;
2439 int i;
2440
2441 for (i = 0; i < dev->online_queues; i++) {
2442 nvmeq = dev->queues[i];
2443
2444 if (!nvmeq->tags || !(*nvmeq->tags))
2445 continue;
2446
2447 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2448 blk_mq_tags_cpumask(*nvmeq->tags));
2449 }
2450}
2451
a5768aa8
KB
2452static void nvme_dev_scan(struct work_struct *work)
2453{
2454 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
2455 struct nvme_id_ctrl *ctrl;
2456
2457 if (!dev->tagset.tags)
2458 return;
2459 if (nvme_identify_ctrl(dev, &ctrl))
2460 return;
2461 nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
2462 kfree(ctrl);
bda4e0fb 2463 nvme_set_irq_hints(dev);
a5768aa8
KB
2464}
2465
422ef0c7
MW
2466/*
2467 * Return: error value if an error occurred setting up the queues or calling
2468 * Identify Device. 0 if these succeeded, even if adding some of the
2469 * namespaces failed. At the moment, these failures are silent. TBD which
2470 * failures should be reported.
2471 */
8d85fce7 2472static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 2473{
e75ec752 2474 struct pci_dev *pdev = to_pci_dev(dev->dev);
c3bfe717 2475 int res;
51814232 2476 struct nvme_id_ctrl *ctrl;
159b67d7 2477 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
b60503ba 2478
d29ec824 2479 res = nvme_identify_ctrl(dev, &ctrl);
b60503ba 2480 if (res) {
e75ec752 2481 dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
e1e5e564 2482 return -EIO;
b60503ba
MW
2483 }
2484
0e5e4f0e 2485 dev->oncs = le16_to_cpup(&ctrl->oncs);
c30341dc 2486 dev->abort_limit = ctrl->acl + 1;
a7d2ce28 2487 dev->vwc = ctrl->vwc;
51814232
MW
2488 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2489 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2490 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
159b67d7 2491 if (ctrl->mdts)
8fc23e03 2492 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
68608c26 2493 if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
a4aea562
MB
2494 (pdev->device == 0x0953) && ctrl->vs[3]) {
2495 unsigned int max_hw_sectors;
2496
159b67d7 2497 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
a4aea562
MB
2498 max_hw_sectors = dev->stripe_size >> (shift - 9);
2499 if (dev->max_hw_sectors) {
2500 dev->max_hw_sectors = min(max_hw_sectors,
2501 dev->max_hw_sectors);
2502 } else
2503 dev->max_hw_sectors = max_hw_sectors;
2504 }
d29ec824 2505 kfree(ctrl);
a4aea562 2506
ffe7704d
KB
2507 if (!dev->tagset.tags) {
2508 dev->tagset.ops = &nvme_mq_ops;
2509 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2510 dev->tagset.timeout = NVME_IO_TIMEOUT;
2511 dev->tagset.numa_node = dev_to_node(dev->dev);
2512 dev->tagset.queue_depth =
a4aea562 2513 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
2514 dev->tagset.cmd_size = nvme_cmd_size(dev);
2515 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2516 dev->tagset.driver_data = dev;
b60503ba 2517
ffe7704d
KB
2518 if (blk_mq_alloc_tag_set(&dev->tagset))
2519 return 0;
2520 }
a5768aa8 2521 schedule_work(&dev->scan_work);
e1e5e564 2522 return 0;
b60503ba
MW
2523}
2524
0877cb0d
KB
2525static int nvme_dev_map(struct nvme_dev *dev)
2526{
42f61420 2527 u64 cap;
0877cb0d 2528 int bars, result = -ENOMEM;
e75ec752 2529 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
2530
2531 if (pci_enable_device_mem(pdev))
2532 return result;
2533
2534 dev->entry[0].vector = pdev->irq;
2535 pci_set_master(pdev);
2536 bars = pci_select_bars(pdev, IORESOURCE_MEM);
be7837e8
JA
2537 if (!bars)
2538 goto disable_pci;
2539
0877cb0d
KB
2540 if (pci_request_selected_regions(pdev, bars, "nvme"))
2541 goto disable_pci;
2542
e75ec752
CH
2543 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2544 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 2545 goto disable;
0877cb0d 2546
0877cb0d
KB
2547 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2548 if (!dev->bar)
2549 goto disable;
e32efbfc 2550
0e53d180
KB
2551 if (readl(&dev->bar->csts) == -1) {
2552 result = -ENODEV;
2553 goto unmap;
2554 }
e32efbfc
JA
2555
2556 /*
2557 * Some devices don't advertse INTx interrupts, pre-enable a single
2558 * MSIX vec for setup. We'll adjust this later.
2559 */
2560 if (!pdev->irq) {
2561 result = pci_enable_msix(pdev, dev->entry, 1);
2562 if (result < 0)
2563 goto unmap;
2564 }
2565
42f61420
KB
2566 cap = readq(&dev->bar->cap);
2567 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2568 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
0877cb0d 2569 dev->dbs = ((void __iomem *)dev->bar) + 4096;
8ffaadf7
JD
2570 if (readl(&dev->bar->vs) >= NVME_VS(1, 2))
2571 dev->cmb = nvme_map_cmb(dev);
0877cb0d
KB
2572
2573 return 0;
2574
0e53d180
KB
2575 unmap:
2576 iounmap(dev->bar);
2577 dev->bar = NULL;
0877cb0d
KB
2578 disable:
2579 pci_release_regions(pdev);
2580 disable_pci:
2581 pci_disable_device(pdev);
2582 return result;
2583}
2584
2585static void nvme_dev_unmap(struct nvme_dev *dev)
2586{
e75ec752
CH
2587 struct pci_dev *pdev = to_pci_dev(dev->dev);
2588
2589 if (pdev->msi_enabled)
2590 pci_disable_msi(pdev);
2591 else if (pdev->msix_enabled)
2592 pci_disable_msix(pdev);
0877cb0d
KB
2593
2594 if (dev->bar) {
2595 iounmap(dev->bar);
2596 dev->bar = NULL;
e75ec752 2597 pci_release_regions(pdev);
0877cb0d
KB
2598 }
2599
e75ec752
CH
2600 if (pci_is_enabled(pdev))
2601 pci_disable_device(pdev);
0877cb0d
KB
2602}
2603
4d115420
KB
2604struct nvme_delq_ctx {
2605 struct task_struct *waiter;
2606 struct kthread_worker *worker;
2607 atomic_t refcount;
2608};
2609
2610static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2611{
2612 dq->waiter = current;
2613 mb();
2614
2615 for (;;) {
2616 set_current_state(TASK_KILLABLE);
2617 if (!atomic_read(&dq->refcount))
2618 break;
2619 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2620 fatal_signal_pending(current)) {
0fb59cbc
KB
2621 /*
2622 * Disable the controller first since we can't trust it
2623 * at this point, but leave the admin queue enabled
2624 * until all queue deletion requests are flushed.
2625 * FIXME: This may take a while if there are more h/w
2626 * queues than admin tags.
2627 */
4d115420 2628 set_current_state(TASK_RUNNING);
4d115420 2629 nvme_disable_ctrl(dev, readq(&dev->bar->cap));
0fb59cbc 2630 nvme_clear_queue(dev->queues[0]);
4d115420 2631 flush_kthread_worker(dq->worker);
0fb59cbc 2632 nvme_disable_queue(dev, 0);
4d115420
KB
2633 return;
2634 }
2635 }
2636 set_current_state(TASK_RUNNING);
2637}
2638
2639static void nvme_put_dq(struct nvme_delq_ctx *dq)
2640{
2641 atomic_dec(&dq->refcount);
2642 if (dq->waiter)
2643 wake_up_process(dq->waiter);
2644}
2645
2646static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2647{
2648 atomic_inc(&dq->refcount);
2649 return dq;
2650}
2651
2652static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2653{
2654 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
4d115420
KB
2655 nvme_put_dq(dq);
2656}
2657
2658static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2659 kthread_work_func_t fn)
2660{
2661 struct nvme_command c;
2662
2663 memset(&c, 0, sizeof(c));
2664 c.delete_queue.opcode = opcode;
2665 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2666
2667 init_kthread_work(&nvmeq->cmdinfo.work, fn);
a4aea562
MB
2668 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2669 ADMIN_TIMEOUT);
4d115420
KB
2670}
2671
2672static void nvme_del_cq_work_handler(struct kthread_work *work)
2673{
2674 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2675 cmdinfo.work);
2676 nvme_del_queue_end(nvmeq);
2677}
2678
2679static int nvme_delete_cq(struct nvme_queue *nvmeq)
2680{
2681 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2682 nvme_del_cq_work_handler);
2683}
2684
2685static void nvme_del_sq_work_handler(struct kthread_work *work)
2686{
2687 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2688 cmdinfo.work);
2689 int status = nvmeq->cmdinfo.status;
2690
2691 if (!status)
2692 status = nvme_delete_cq(nvmeq);
2693 if (status)
2694 nvme_del_queue_end(nvmeq);
2695}
2696
2697static int nvme_delete_sq(struct nvme_queue *nvmeq)
2698{
2699 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2700 nvme_del_sq_work_handler);
2701}
2702
2703static void nvme_del_queue_start(struct kthread_work *work)
2704{
2705 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2706 cmdinfo.work);
4d115420
KB
2707 if (nvme_delete_sq(nvmeq))
2708 nvme_del_queue_end(nvmeq);
2709}
2710
2711static void nvme_disable_io_queues(struct nvme_dev *dev)
2712{
2713 int i;
2714 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2715 struct nvme_delq_ctx dq;
2716 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2717 &worker, "nvme%d", dev->instance);
2718
2719 if (IS_ERR(kworker_task)) {
e75ec752 2720 dev_err(dev->dev,
4d115420
KB
2721 "Failed to create queue del task\n");
2722 for (i = dev->queue_count - 1; i > 0; i--)
2723 nvme_disable_queue(dev, i);
2724 return;
2725 }
2726
2727 dq.waiter = NULL;
2728 atomic_set(&dq.refcount, 0);
2729 dq.worker = &worker;
2730 for (i = dev->queue_count - 1; i > 0; i--) {
a4aea562 2731 struct nvme_queue *nvmeq = dev->queues[i];
4d115420
KB
2732
2733 if (nvme_suspend_queue(nvmeq))
2734 continue;
2735 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2736 nvmeq->cmdinfo.worker = dq.worker;
2737 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2738 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2739 }
2740 nvme_wait_dq(&dq, dev);
2741 kthread_stop(kworker_task);
2742}
2743
b9afca3e
DM
2744/*
2745* Remove the node from the device list and check
2746* for whether or not we need to stop the nvme_thread.
2747*/
2748static void nvme_dev_list_remove(struct nvme_dev *dev)
2749{
2750 struct task_struct *tmp = NULL;
2751
2752 spin_lock(&dev_list_lock);
2753 list_del_init(&dev->node);
2754 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2755 tmp = nvme_thread;
2756 nvme_thread = NULL;
2757 }
2758 spin_unlock(&dev_list_lock);
2759
2760 if (tmp)
2761 kthread_stop(tmp);
2762}
2763
c9d3bf88
KB
2764static void nvme_freeze_queues(struct nvme_dev *dev)
2765{
2766 struct nvme_ns *ns;
2767
2768 list_for_each_entry(ns, &dev->namespaces, list) {
2769 blk_mq_freeze_queue_start(ns->queue);
2770
cddcd72b 2771 spin_lock_irq(ns->queue->queue_lock);
c9d3bf88 2772 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
cddcd72b 2773 spin_unlock_irq(ns->queue->queue_lock);
c9d3bf88
KB
2774
2775 blk_mq_cancel_requeue_work(ns->queue);
2776 blk_mq_stop_hw_queues(ns->queue);
2777 }
2778}
2779
2780static void nvme_unfreeze_queues(struct nvme_dev *dev)
2781{
2782 struct nvme_ns *ns;
2783
2784 list_for_each_entry(ns, &dev->namespaces, list) {
2785 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2786 blk_mq_unfreeze_queue(ns->queue);
2787 blk_mq_start_stopped_hw_queues(ns->queue, true);
2788 blk_mq_kick_requeue_list(ns->queue);
2789 }
2790}
2791
f0b50732 2792static void nvme_dev_shutdown(struct nvme_dev *dev)
b60503ba 2793{
22404274 2794 int i;
7c1b2450 2795 u32 csts = -1;
22404274 2796
b9afca3e 2797 nvme_dev_list_remove(dev);
1fa6aead 2798
c9d3bf88
KB
2799 if (dev->bar) {
2800 nvme_freeze_queues(dev);
7c1b2450 2801 csts = readl(&dev->bar->csts);
c9d3bf88 2802 }
7c1b2450 2803 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
4d115420 2804 for (i = dev->queue_count - 1; i >= 0; i--) {
a4aea562 2805 struct nvme_queue *nvmeq = dev->queues[i];
4d115420 2806 nvme_suspend_queue(nvmeq);
4d115420
KB
2807 }
2808 } else {
2809 nvme_disable_io_queues(dev);
1894d8f1 2810 nvme_shutdown_ctrl(dev);
4d115420
KB
2811 nvme_disable_queue(dev, 0);
2812 }
f0b50732 2813 nvme_dev_unmap(dev);
07836e65
KB
2814
2815 for (i = dev->queue_count - 1; i >= 0; i--)
2816 nvme_clear_queue(dev->queues[i]);
f0b50732
KB
2817}
2818
2819static void nvme_dev_remove(struct nvme_dev *dev)
2820{
5105aa55 2821 struct nvme_ns *ns, *next;
f0b50732 2822
5105aa55 2823 list_for_each_entry_safe(ns, next, &dev->namespaces, list)
a5768aa8 2824 nvme_ns_remove(ns);
b60503ba
MW
2825}
2826
091b6092
MW
2827static int nvme_setup_prp_pools(struct nvme_dev *dev)
2828{
e75ec752 2829 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2830 PAGE_SIZE, PAGE_SIZE, 0);
2831 if (!dev->prp_page_pool)
2832 return -ENOMEM;
2833
99802a7a 2834 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2835 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2836 256, 256, 0);
2837 if (!dev->prp_small_pool) {
2838 dma_pool_destroy(dev->prp_page_pool);
2839 return -ENOMEM;
2840 }
091b6092
MW
2841 return 0;
2842}
2843
2844static void nvme_release_prp_pools(struct nvme_dev *dev)
2845{
2846 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2847 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2848}
2849
cd58ad7d
QSA
2850static DEFINE_IDA(nvme_instance_ida);
2851
2852static int nvme_set_instance(struct nvme_dev *dev)
b60503ba 2853{
cd58ad7d
QSA
2854 int instance, error;
2855
2856 do {
2857 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2858 return -ENODEV;
2859
2860 spin_lock(&dev_list_lock);
2861 error = ida_get_new(&nvme_instance_ida, &instance);
2862 spin_unlock(&dev_list_lock);
2863 } while (error == -EAGAIN);
2864
2865 if (error)
2866 return -ENODEV;
2867
2868 dev->instance = instance;
2869 return 0;
b60503ba
MW
2870}
2871
2872static void nvme_release_instance(struct nvme_dev *dev)
2873{
cd58ad7d
QSA
2874 spin_lock(&dev_list_lock);
2875 ida_remove(&nvme_instance_ida, dev->instance);
2876 spin_unlock(&dev_list_lock);
b60503ba
MW
2877}
2878
5e82e952
KB
2879static void nvme_free_dev(struct kref *kref)
2880{
2881 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
9ac27090 2882
e75ec752 2883 put_device(dev->dev);
b3fffdef 2884 put_device(dev->device);
285dffc9 2885 nvme_release_instance(dev);
4af0e21c
KB
2886 if (dev->tagset.tags)
2887 blk_mq_free_tag_set(&dev->tagset);
2888 if (dev->admin_q)
2889 blk_put_queue(dev->admin_q);
5e82e952
KB
2890 kfree(dev->queues);
2891 kfree(dev->entry);
2892 kfree(dev);
2893}
2894
2895static int nvme_dev_open(struct inode *inode, struct file *f)
2896{
b3fffdef
KB
2897 struct nvme_dev *dev;
2898 int instance = iminor(inode);
2899 int ret = -ENODEV;
2900
2901 spin_lock(&dev_list_lock);
2902 list_for_each_entry(dev, &dev_list, node) {
2903 if (dev->instance == instance) {
2e1d8448
KB
2904 if (!dev->admin_q) {
2905 ret = -EWOULDBLOCK;
2906 break;
2907 }
b3fffdef
KB
2908 if (!kref_get_unless_zero(&dev->kref))
2909 break;
2910 f->private_data = dev;
2911 ret = 0;
2912 break;
2913 }
2914 }
2915 spin_unlock(&dev_list_lock);
2916
2917 return ret;
5e82e952
KB
2918}
2919
2920static int nvme_dev_release(struct inode *inode, struct file *f)
2921{
2922 struct nvme_dev *dev = f->private_data;
2923 kref_put(&dev->kref, nvme_free_dev);
2924 return 0;
2925}
2926
2927static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2928{
2929 struct nvme_dev *dev = f->private_data;
a4aea562
MB
2930 struct nvme_ns *ns;
2931
5e82e952
KB
2932 switch (cmd) {
2933 case NVME_IOCTL_ADMIN_CMD:
a4aea562 2934 return nvme_user_cmd(dev, NULL, (void __user *)arg);
7963e521 2935 case NVME_IOCTL_IO_CMD:
a4aea562
MB
2936 if (list_empty(&dev->namespaces))
2937 return -ENOTTY;
2938 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2939 return nvme_user_cmd(dev, ns, (void __user *)arg);
4cc06521
KB
2940 case NVME_IOCTL_RESET:
2941 dev_warn(dev->dev, "resetting controller\n");
2942 return nvme_reset(dev);
81f03fed
JD
2943 case NVME_IOCTL_SUBSYS_RESET:
2944 return nvme_subsys_reset(dev);
5e82e952
KB
2945 default:
2946 return -ENOTTY;
2947 }
2948}
2949
2950static const struct file_operations nvme_dev_fops = {
2951 .owner = THIS_MODULE,
2952 .open = nvme_dev_open,
2953 .release = nvme_dev_release,
2954 .unlocked_ioctl = nvme_dev_ioctl,
2955 .compat_ioctl = nvme_dev_ioctl,
2956};
2957
f0b50732
KB
2958static int nvme_dev_start(struct nvme_dev *dev)
2959{
2960 int result;
b9afca3e 2961 bool start_thread = false;
f0b50732
KB
2962
2963 result = nvme_dev_map(dev);
2964 if (result)
2965 return result;
2966
2967 result = nvme_configure_admin_queue(dev);
2968 if (result)
2969 goto unmap;
2970
2971 spin_lock(&dev_list_lock);
b9afca3e
DM
2972 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2973 start_thread = true;
2974 nvme_thread = NULL;
2975 }
f0b50732
KB
2976 list_add(&dev->node, &dev_list);
2977 spin_unlock(&dev_list_lock);
2978
b9afca3e
DM
2979 if (start_thread) {
2980 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
387caa5a 2981 wake_up_all(&nvme_kthread_wait);
b9afca3e
DM
2982 } else
2983 wait_event_killable(nvme_kthread_wait, nvme_thread);
2984
2985 if (IS_ERR_OR_NULL(nvme_thread)) {
2986 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2987 goto disable;
2988 }
a4aea562
MB
2989
2990 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
2991 result = nvme_alloc_admin_tags(dev);
2992 if (result)
2993 goto disable;
b9afca3e 2994
f0b50732 2995 result = nvme_setup_io_queues(dev);
badc34d4 2996 if (result)
0fb59cbc 2997 goto free_tags;
f0b50732 2998
1efccc9d 2999 dev->event_limit = 1;
d82e8bfd 3000 return result;
f0b50732 3001
0fb59cbc
KB
3002 free_tags:
3003 nvme_dev_remove_admin(dev);
4af0e21c
KB
3004 blk_put_queue(dev->admin_q);
3005 dev->admin_q = NULL;
3006 dev->queues[0]->tags = NULL;
f0b50732 3007 disable:
a1a5ef99 3008 nvme_disable_queue(dev, 0);
b9afca3e 3009 nvme_dev_list_remove(dev);
f0b50732
KB
3010 unmap:
3011 nvme_dev_unmap(dev);
3012 return result;
3013}
3014
9a6b9458
KB
3015static int nvme_remove_dead_ctrl(void *arg)
3016{
3017 struct nvme_dev *dev = (struct nvme_dev *)arg;
e75ec752 3018 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458
KB
3019
3020 if (pci_get_drvdata(pdev))
c81f4975 3021 pci_stop_and_remove_bus_device_locked(pdev);
9a6b9458
KB
3022 kref_put(&dev->kref, nvme_free_dev);
3023 return 0;
3024}
3025
9a6b9458
KB
3026static int nvme_dev_resume(struct nvme_dev *dev)
3027{
3028 int ret;
3029
3030 ret = nvme_dev_start(dev);
badc34d4 3031 if (ret)
9a6b9458 3032 return ret;
badc34d4 3033 if (dev->online_queues < 2) {
0a7385ad
KB
3034 dev_warn(dev->dev, "IO queues not created\n");
3035 nvme_free_queues(dev, 1);
3036 nvme_dev_remove(dev);
c9d3bf88
KB
3037 } else {
3038 nvme_unfreeze_queues(dev);
ffe7704d 3039 nvme_dev_add(dev);
9a6b9458
KB
3040 }
3041 return 0;
3042}
3043
de3eff2b
KB
3044static void nvme_dead_ctrl(struct nvme_dev *dev)
3045{
3046 dev_warn(dev->dev, "Device failed to resume\n");
3047 kref_get(&dev->kref);
3048 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
3049 dev->instance))) {
3050 dev_err(dev->dev,
3051 "Failed to start controller remove task\n");
3052 kref_put(&dev->kref, nvme_free_dev);
3053 }
3054}
3055
9a6b9458
KB
3056static void nvme_dev_reset(struct nvme_dev *dev)
3057{
ffe7704d
KB
3058 bool in_probe = work_busy(&dev->probe_work);
3059
9a6b9458 3060 nvme_dev_shutdown(dev);
ffe7704d
KB
3061
3062 /* Synchronize with device probe so that work will see failure status
3063 * and exit gracefully without trying to schedule another reset */
3064 flush_work(&dev->probe_work);
3065
3066 /* Fail this device if reset occured during probe to avoid
3067 * infinite initialization loops. */
3068 if (in_probe) {
de3eff2b 3069 nvme_dead_ctrl(dev);
ffe7704d 3070 return;
9a6b9458 3071 }
ffe7704d
KB
3072 /* Schedule device resume asynchronously so the reset work is available
3073 * to cleanup errors that may occur during reinitialization */
3074 schedule_work(&dev->probe_work);
9a6b9458
KB
3075}
3076
3077static void nvme_reset_failed_dev(struct work_struct *ws)
3078{
3079 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
3080 nvme_dev_reset(dev);
3081}
3082
4cc06521
KB
3083static int nvme_reset(struct nvme_dev *dev)
3084{
3085 int ret = -EBUSY;
3086
3087 if (!dev->admin_q || blk_queue_dying(dev->admin_q))
3088 return -ENODEV;
3089
3090 spin_lock(&dev_list_lock);
3091 if (!work_pending(&dev->reset_work)) {
4cc06521
KB
3092 queue_work(nvme_workq, &dev->reset_work);
3093 ret = 0;
3094 }
3095 spin_unlock(&dev_list_lock);
3096
3097 if (!ret) {
3098 flush_work(&dev->reset_work);
ffe7704d 3099 flush_work(&dev->probe_work);
4cc06521
KB
3100 return 0;
3101 }
3102
3103 return ret;
3104}
3105
3106static ssize_t nvme_sysfs_reset(struct device *dev,
3107 struct device_attribute *attr, const char *buf,
3108 size_t count)
3109{
3110 struct nvme_dev *ndev = dev_get_drvdata(dev);
3111 int ret;
3112
3113 ret = nvme_reset(ndev);
3114 if (ret < 0)
3115 return ret;
3116
3117 return count;
3118}
3119static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3120
2e1d8448 3121static void nvme_async_probe(struct work_struct *work);
8d85fce7 3122static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 3123{
a4aea562 3124 int node, result = -ENOMEM;
b60503ba
MW
3125 struct nvme_dev *dev;
3126
a4aea562
MB
3127 node = dev_to_node(&pdev->dev);
3128 if (node == NUMA_NO_NODE)
3129 set_dev_node(&pdev->dev, 0);
3130
3131 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
3132 if (!dev)
3133 return -ENOMEM;
a4aea562
MB
3134 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
3135 GFP_KERNEL, node);
b60503ba
MW
3136 if (!dev->entry)
3137 goto free;
a4aea562
MB
3138 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
3139 GFP_KERNEL, node);
b60503ba
MW
3140 if (!dev->queues)
3141 goto free;
3142
3143 INIT_LIST_HEAD(&dev->namespaces);
0a7385ad 3144 INIT_WORK(&dev->reset_work, nvme_reset_failed_dev);
e75ec752 3145 dev->dev = get_device(&pdev->dev);
9a6b9458 3146 pci_set_drvdata(pdev, dev);
cd58ad7d
QSA
3147 result = nvme_set_instance(dev);
3148 if (result)
a96d4f5c 3149 goto put_pci;
b60503ba 3150
091b6092
MW
3151 result = nvme_setup_prp_pools(dev);
3152 if (result)
0877cb0d 3153 goto release;
091b6092 3154
fb35e914 3155 kref_init(&dev->kref);
b3fffdef
KB
3156 dev->device = device_create(nvme_class, &pdev->dev,
3157 MKDEV(nvme_char_major, dev->instance),
3158 dev, "nvme%d", dev->instance);
3159 if (IS_ERR(dev->device)) {
3160 result = PTR_ERR(dev->device);
2e1d8448 3161 goto release_pools;
b3fffdef
KB
3162 }
3163 get_device(dev->device);
4cc06521
KB
3164 dev_set_drvdata(dev->device, dev);
3165
3166 result = device_create_file(dev->device, &dev_attr_reset_controller);
3167 if (result)
3168 goto put_dev;
740216fc 3169
e6e96d73 3170 INIT_LIST_HEAD(&dev->node);
a5768aa8 3171 INIT_WORK(&dev->scan_work, nvme_dev_scan);
2e1d8448
KB
3172 INIT_WORK(&dev->probe_work, nvme_async_probe);
3173 schedule_work(&dev->probe_work);
b60503ba
MW
3174 return 0;
3175
4cc06521
KB
3176 put_dev:
3177 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3178 put_device(dev->device);
0877cb0d 3179 release_pools:
091b6092 3180 nvme_release_prp_pools(dev);
0877cb0d
KB
3181 release:
3182 nvme_release_instance(dev);
a96d4f5c 3183 put_pci:
e75ec752 3184 put_device(dev->dev);
b60503ba
MW
3185 free:
3186 kfree(dev->queues);
3187 kfree(dev->entry);
3188 kfree(dev);
3189 return result;
3190}
3191
2e1d8448
KB
3192static void nvme_async_probe(struct work_struct *work)
3193{
3194 struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
2e1d8448 3195
de3eff2b
KB
3196 if (nvme_dev_resume(dev) && !work_busy(&dev->reset_work))
3197 nvme_dead_ctrl(dev);
2e1d8448
KB
3198}
3199
f0d54a54
KB
3200static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3201{
a6739479 3202 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 3203
a6739479
KB
3204 if (prepare)
3205 nvme_dev_shutdown(dev);
3206 else
0a7385ad 3207 schedule_work(&dev->probe_work);
f0d54a54
KB
3208}
3209
09ece142
KB
3210static void nvme_shutdown(struct pci_dev *pdev)
3211{
3212 struct nvme_dev *dev = pci_get_drvdata(pdev);
3213 nvme_dev_shutdown(dev);
3214}
3215
8d85fce7 3216static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
3217{
3218 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458
KB
3219
3220 spin_lock(&dev_list_lock);
3221 list_del_init(&dev->node);
3222 spin_unlock(&dev_list_lock);
3223
3224 pci_set_drvdata(pdev, NULL);
2e1d8448 3225 flush_work(&dev->probe_work);
9a6b9458 3226 flush_work(&dev->reset_work);
a5768aa8 3227 flush_work(&dev->scan_work);
4cc06521 3228 device_remove_file(dev->device, &dev_attr_reset_controller);
c9d3bf88 3229 nvme_dev_remove(dev);
3399a3f7 3230 nvme_dev_shutdown(dev);
a4aea562 3231 nvme_dev_remove_admin(dev);
b3fffdef 3232 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
a1a5ef99 3233 nvme_free_queues(dev, 0);
8ffaadf7 3234 nvme_release_cmb(dev);
9a6b9458 3235 nvme_release_prp_pools(dev);
5e82e952 3236 kref_put(&dev->kref, nvme_free_dev);
b60503ba
MW
3237}
3238
3239/* These functions are yet to be implemented */
3240#define nvme_error_detected NULL
3241#define nvme_dump_registers NULL
3242#define nvme_link_reset NULL
3243#define nvme_slot_reset NULL
3244#define nvme_error_resume NULL
cd638946 3245
671a6018 3246#ifdef CONFIG_PM_SLEEP
cd638946
KB
3247static int nvme_suspend(struct device *dev)
3248{
3249 struct pci_dev *pdev = to_pci_dev(dev);
3250 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3251
3252 nvme_dev_shutdown(ndev);
3253 return 0;
3254}
3255
3256static int nvme_resume(struct device *dev)
3257{
3258 struct pci_dev *pdev = to_pci_dev(dev);
3259 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 3260
0a7385ad 3261 schedule_work(&ndev->probe_work);
9a6b9458 3262 return 0;
cd638946 3263}
671a6018 3264#endif
cd638946
KB
3265
3266static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 3267
1d352035 3268static const struct pci_error_handlers nvme_err_handler = {
b60503ba
MW
3269 .error_detected = nvme_error_detected,
3270 .mmio_enabled = nvme_dump_registers,
3271 .link_reset = nvme_link_reset,
3272 .slot_reset = nvme_slot_reset,
3273 .resume = nvme_error_resume,
f0d54a54 3274 .reset_notify = nvme_reset_notify,
b60503ba
MW
3275};
3276
3277/* Move to pci_ids.h later */
3278#define PCI_CLASS_STORAGE_EXPRESS 0x010802
3279
6eb0d698 3280static const struct pci_device_id nvme_id_table[] = {
b60503ba
MW
3281 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3282 { 0, }
3283};
3284MODULE_DEVICE_TABLE(pci, nvme_id_table);
3285
3286static struct pci_driver nvme_driver = {
3287 .name = "nvme",
3288 .id_table = nvme_id_table,
3289 .probe = nvme_probe,
8d85fce7 3290 .remove = nvme_remove,
09ece142 3291 .shutdown = nvme_shutdown,
cd638946
KB
3292 .driver = {
3293 .pm = &nvme_dev_pm_ops,
3294 },
b60503ba
MW
3295 .err_handler = &nvme_err_handler,
3296};
3297
3298static int __init nvme_init(void)
3299{
0ac13140 3300 int result;
1fa6aead 3301
b9afca3e 3302 init_waitqueue_head(&nvme_kthread_wait);
b60503ba 3303
9a6b9458
KB
3304 nvme_workq = create_singlethread_workqueue("nvme");
3305 if (!nvme_workq)
b9afca3e 3306 return -ENOMEM;
9a6b9458 3307
5c42ea16
KB
3308 result = register_blkdev(nvme_major, "nvme");
3309 if (result < 0)
9a6b9458 3310 goto kill_workq;
5c42ea16 3311 else if (result > 0)
0ac13140 3312 nvme_major = result;
b60503ba 3313
b3fffdef
KB
3314 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3315 &nvme_dev_fops);
3316 if (result < 0)
3317 goto unregister_blkdev;
3318 else if (result > 0)
3319 nvme_char_major = result;
3320
3321 nvme_class = class_create(THIS_MODULE, "nvme");
c727040b
AK
3322 if (IS_ERR(nvme_class)) {
3323 result = PTR_ERR(nvme_class);
b3fffdef 3324 goto unregister_chrdev;
c727040b 3325 }
b3fffdef 3326
f3db22fe
KB
3327 result = pci_register_driver(&nvme_driver);
3328 if (result)
b3fffdef 3329 goto destroy_class;
1fa6aead 3330 return 0;
b60503ba 3331
b3fffdef
KB
3332 destroy_class:
3333 class_destroy(nvme_class);
3334 unregister_chrdev:
3335 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1fa6aead 3336 unregister_blkdev:
b60503ba 3337 unregister_blkdev(nvme_major, "nvme");
9a6b9458
KB
3338 kill_workq:
3339 destroy_workqueue(nvme_workq);
b60503ba
MW
3340 return result;
3341}
3342
3343static void __exit nvme_exit(void)
3344{
3345 pci_unregister_driver(&nvme_driver);
3346 unregister_blkdev(nvme_major, "nvme");
9a6b9458 3347 destroy_workqueue(nvme_workq);
b3fffdef
KB
3348 class_destroy(nvme_class);
3349 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
b9afca3e 3350 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
21bd78bc 3351 _nvme_check_size();
b60503ba
MW
3352}
3353
3354MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3355MODULE_LICENSE("GPL");
c78b4713 3356MODULE_VERSION("1.0");
b60503ba
MW
3357module_init(nvme_init);
3358module_exit(nvme_exit);