Linux 6.17-rc6
[linux-2.6-block.git] / drivers / base / regmap / regmap.c
CommitLineData
37613fa5
GKH
1// SPDX-License-Identifier: GPL-2.0
2//
3// Register map access API
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
b83a313b 8
f5d6eba7 9#include <linux/device.h>
b83a313b 10#include <linux/slab.h>
19694b5e 11#include <linux/export.h>
b83a313b
MB
12#include <linux/mutex.h>
13#include <linux/err.h>
c916d6ef 14#include <linux/property.h>
6863ca62 15#include <linux/rbtree.h>
30b2a553 16#include <linux/sched.h>
2de9d600 17#include <linux/delay.h>
ca747be2 18#include <linux/log2.h>
8698b936 19#include <linux/hwspinlock.h>
5f60d5f6 20#include <linux/unaligned.h>
b83a313b 21
fb2736bb 22#define CREATE_TRACE_POINTS
f58078da 23#include "trace.h"
fb2736bb 24
93de9124 25#include "internal.h"
b83a313b 26
1044c180
MB
27/*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33#undef LOG_DEVICE
34
95093762
BD
35#ifdef LOG_DEVICE
36static inline bool regmap_should_log(struct regmap *map)
37{
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39}
40#else
41static inline bool regmap_should_log(struct regmap *map) { return false; }
42#endif
43
44
1044c180
MB
45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
7ff0589c 47 bool *change, bool force_write);
1044c180 48
3ac17037
BB
49static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
ad278406
AS
51static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
07c320dc
AS
53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
3ac17037
BB
55static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
07c320dc
AS
57static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
ad278406 59
76aad392
DC
60bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63{
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71}
72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
154881e5
MB
74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76aad392
DC
76{
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87}
154881e5 88EXPORT_SYMBOL_GPL(regmap_check_range_table);
76aad392 89
8de2f081
MB
90bool regmap_writeable(struct regmap *map, unsigned int reg)
91{
0ec74ad3 92 if (map->max_register_is_set && reg > map->max_register)
8de2f081
MB
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
76aad392 98 if (map->wr_table)
154881e5 99 return regmap_check_range_table(map, reg, map->wr_table);
76aad392 100
8de2f081
MB
101 return true;
102}
103
1ea975cf
CB
104bool regmap_cached(struct regmap *map, unsigned int reg)
105{
106 int ret;
107 unsigned int val;
108
71df1793 109 if (map->cache_type == REGCACHE_NONE)
1ea975cf
CB
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
0ec74ad3 115 if (map->max_register_is_set && reg > map->max_register)
1ea975cf
CB
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125}
126
8de2f081
MB
127bool regmap_readable(struct regmap *map, unsigned int reg)
128{
04dc91ce
LPC
129 if (!map->reg_read)
130 return false;
131
0ec74ad3 132 if (map->max_register_is_set && reg > map->max_register)
8de2f081
MB
133 return false;
134
4191f197
WS
135 if (map->format.format_write)
136 return false;
137
8de2f081
MB
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
76aad392 141 if (map->rd_table)
154881e5 142 return regmap_check_range_table(map, reg, map->rd_table);
76aad392 143
8de2f081
MB
144 return true;
145}
146
147bool regmap_volatile(struct regmap *map, unsigned int reg)
148{
5844a8b9 149 if (!map->format.format_write && !regmap_readable(map, reg))
8de2f081
MB
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
76aad392 155 if (map->volatile_table)
154881e5 156 return regmap_check_range_table(map, reg, map->volatile_table);
76aad392 157
b92be6fe
MB
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
8de2f081
MB
162}
163
164bool regmap_precious(struct regmap *map, unsigned int reg)
165{
4191f197 166 if (!regmap_readable(map, reg))
8de2f081
MB
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
76aad392 172 if (map->precious_table)
154881e5 173 return regmap_check_range_table(map, reg, map->precious_table);
76aad392 174
8de2f081
MB
175 return false;
176}
177
cdf6b11d
BW
178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179{
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187}
188
74fe7b55
CDL
189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190{
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198}
199
82cd9965 200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
a8f28cfa 201 size_t num)
82cd9965
LPC
202{
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
b8f9a03b 206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
82cd9965
LPC
207 return false;
208
209 return true;
210}
211
0c2191c3
RR
212static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214{
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221}
222
223
9aa50750
WS
224static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226{
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230}
231
b83a313b
MB
232static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234{
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237}
238
239static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241{
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244}
245
b24412af
AM
246static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248{
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = val >> 8;
253 out[0] = (val >> 16) | (reg << 1);
254}
255
7e5ec63e
LPC
256static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
258{
259 u8 *out = map->work_buf;
260
261 out[2] = val;
262 out[1] = (val >> 8) | (reg << 6);
263 out[0] = reg >> 2;
264}
265
d939fb9a 266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
b83a313b
MB
267{
268 u8 *b = buf;
269
d939fb9a 270 b[0] = val << shift;
b83a313b
MB
271}
272
141eba2e 273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
b83a313b 274{
53d86095 275 put_unaligned_be16(val << shift, buf);
b83a313b
MB
276}
277
4aa8c069
XL
278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279{
53d86095 280 put_unaligned_le16(val << shift, buf);
4aa8c069
XL
281}
282
141eba2e
SW
283static void regmap_format_16_native(void *buf, unsigned int val,
284 unsigned int shift)
285{
53d86095
JTT
286 u16 v = val << shift;
287
288 memcpy(buf, &v, sizeof(v));
141eba2e
SW
289}
290
06000443 291static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
ea279fc5 292{
06000443 293 put_unaligned_be24(val << shift, buf);
ea279fc5
MR
294}
295
141eba2e 296static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
7d5e525b 297{
53d86095 298 put_unaligned_be32(val << shift, buf);
7d5e525b
MB
299}
300
4aa8c069
XL
301static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302{
53d86095 303 put_unaligned_le32(val << shift, buf);
4aa8c069
XL
304}
305
141eba2e
SW
306static void regmap_format_32_native(void *buf, unsigned int val,
307 unsigned int shift)
308{
53d86095
JTT
309 u32 v = val << shift;
310
311 memcpy(buf, &v, sizeof(v));
141eba2e
SW
312}
313
8a819ff8 314static void regmap_parse_inplace_noop(void *buf)
b83a313b 315{
8a819ff8
MB
316}
317
318static unsigned int regmap_parse_8(const void *buf)
319{
320 const u8 *b = buf;
b83a313b
MB
321
322 return b[0];
323}
324
8a819ff8
MB
325static unsigned int regmap_parse_16_be(const void *buf)
326{
53d86095 327 return get_unaligned_be16(buf);
8a819ff8
MB
328}
329
4aa8c069
XL
330static unsigned int regmap_parse_16_le(const void *buf)
331{
53d86095 332 return get_unaligned_le16(buf);
4aa8c069
XL
333}
334
8a819ff8 335static void regmap_parse_16_be_inplace(void *buf)
b83a313b 336{
53d86095 337 u16 v = get_unaligned_be16(buf);
b83a313b 338
53d86095 339 memcpy(buf, &v, sizeof(v));
b83a313b
MB
340}
341
4aa8c069
XL
342static void regmap_parse_16_le_inplace(void *buf)
343{
53d86095 344 u16 v = get_unaligned_le16(buf);
4aa8c069 345
53d86095 346 memcpy(buf, &v, sizeof(v));
4aa8c069
XL
347}
348
8a819ff8 349static unsigned int regmap_parse_16_native(const void *buf)
141eba2e 350{
53d86095
JTT
351 u16 v;
352
353 memcpy(&v, buf, sizeof(v));
354 return v;
141eba2e
SW
355}
356
06000443 357static unsigned int regmap_parse_24_be(const void *buf)
ea279fc5 358{
06000443 359 return get_unaligned_be24(buf);
ea279fc5
MR
360}
361
8a819ff8
MB
362static unsigned int regmap_parse_32_be(const void *buf)
363{
53d86095 364 return get_unaligned_be32(buf);
8a819ff8
MB
365}
366
4aa8c069
XL
367static unsigned int regmap_parse_32_le(const void *buf)
368{
53d86095 369 return get_unaligned_le32(buf);
4aa8c069
XL
370}
371
8a819ff8 372static void regmap_parse_32_be_inplace(void *buf)
7d5e525b 373{
53d86095 374 u32 v = get_unaligned_be32(buf);
7d5e525b 375
53d86095 376 memcpy(buf, &v, sizeof(v));
7d5e525b
MB
377}
378
4aa8c069
XL
379static void regmap_parse_32_le_inplace(void *buf)
380{
53d86095 381 u32 v = get_unaligned_le32(buf);
4aa8c069 382
53d86095 383 memcpy(buf, &v, sizeof(v));
4aa8c069
XL
384}
385
8a819ff8 386static unsigned int regmap_parse_32_native(const void *buf)
141eba2e 387{
53d86095
JTT
388 u32 v;
389
390 memcpy(&v, buf, sizeof(v));
391 return v;
141eba2e
SW
392}
393
8698b936
BW
394static void regmap_lock_hwlock(void *__map)
395{
396 struct regmap *map = __map;
397
398 hwspin_lock_timeout(map->hwlock, UINT_MAX);
399}
400
401static void regmap_lock_hwlock_irq(void *__map)
402{
403 struct regmap *map = __map;
404
405 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
406}
407
408static void regmap_lock_hwlock_irqsave(void *__map)
409{
410 struct regmap *map = __map;
411
412 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
413 &map->spinlock_flags);
414}
415
416static void regmap_unlock_hwlock(void *__map)
417{
418 struct regmap *map = __map;
419
420 hwspin_unlock(map->hwlock);
421}
422
423static void regmap_unlock_hwlock_irq(void *__map)
424{
425 struct regmap *map = __map;
426
427 hwspin_unlock_irq(map->hwlock);
428}
429
430static void regmap_unlock_hwlock_irqrestore(void *__map)
431{
432 struct regmap *map = __map;
433
434 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
435}
436
81e30b18 437static void regmap_lock_unlock_none(void *__map)
c9b41fcf
BG
438{
439
440}
8698b936 441
0d4529c5 442static void regmap_lock_mutex(void *__map)
bacdbe07 443{
0d4529c5 444 struct regmap *map = __map;
bacdbe07
SW
445 mutex_lock(&map->mutex);
446}
447
0d4529c5 448static void regmap_unlock_mutex(void *__map)
bacdbe07 449{
0d4529c5 450 struct regmap *map = __map;
bacdbe07
SW
451 mutex_unlock(&map->mutex);
452}
453
0d4529c5 454static void regmap_lock_spinlock(void *__map)
b4519c71 455__acquires(&map->spinlock)
bacdbe07 456{
0d4529c5 457 struct regmap *map = __map;
92ab1aab
LPC
458 unsigned long flags;
459
460 spin_lock_irqsave(&map->spinlock, flags);
461 map->spinlock_flags = flags;
bacdbe07
SW
462}
463
0d4529c5 464static void regmap_unlock_spinlock(void *__map)
b4519c71 465__releases(&map->spinlock)
bacdbe07 466{
0d4529c5 467 struct regmap *map = __map;
92ab1aab 468 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
bacdbe07
SW
469}
470
67021f25
VO
471static void regmap_lock_raw_spinlock(void *__map)
472__acquires(&map->raw_spinlock)
473{
474 struct regmap *map = __map;
475 unsigned long flags;
476
477 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
478 map->raw_spinlock_flags = flags;
479}
480
481static void regmap_unlock_raw_spinlock(void *__map)
482__releases(&map->raw_spinlock)
483{
484 struct regmap *map = __map;
485 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
486}
487
72b39f6f
MB
488static void dev_get_regmap_release(struct device *dev, void *res)
489{
490 /*
491 * We don't actually have anything to do here; the goal here
492 * is not to manage the regmap but to provide a simple way to
493 * get the regmap back given a struct device.
494 */
495}
496
6863ca62
KG
497static bool _regmap_range_add(struct regmap *map,
498 struct regmap_range_node *data)
499{
500 struct rb_root *root = &map->range_tree;
501 struct rb_node **new = &(root->rb_node), *parent = NULL;
502
503 while (*new) {
504 struct regmap_range_node *this =
671a911b 505 rb_entry(*new, struct regmap_range_node, node);
6863ca62
KG
506
507 parent = *new;
508 if (data->range_max < this->range_min)
509 new = &((*new)->rb_left);
510 else if (data->range_min > this->range_max)
511 new = &((*new)->rb_right);
512 else
513 return false;
514 }
515
516 rb_link_node(&data->node, parent, new);
517 rb_insert_color(&data->node, root);
518
519 return true;
520}
521
522static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
523 unsigned int reg)
524{
525 struct rb_node *node = map->range_tree.rb_node;
526
527 while (node) {
528 struct regmap_range_node *this =
671a911b 529 rb_entry(node, struct regmap_range_node, node);
6863ca62
KG
530
531 if (reg < this->range_min)
532 node = node->rb_left;
533 else if (reg > this->range_max)
534 node = node->rb_right;
535 else
536 return this;
537 }
538
539 return NULL;
540}
541
542static void regmap_range_exit(struct regmap *map)
543{
544 struct rb_node *next;
545 struct regmap_range_node *range_node;
546
547 next = rb_first(&map->range_tree);
548 while (next) {
549 range_node = rb_entry(next, struct regmap_range_node, node);
550 next = rb_next(&range_node->node);
551 rb_erase(&range_node->node, &map->range_tree);
552 kfree(range_node);
553 }
554
555 kfree(map->selector_work_buf);
556}
557
94cc89eb
CK
558static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
559{
560 if (config->name) {
561 const char *name = kstrdup_const(config->name, GFP_KERNEL);
562
563 if (!name)
564 return -ENOMEM;
565
566 kfree_const(map->name);
567 map->name = name;
568 }
569
570 return 0;
571}
572
6cfec04b
MS
573int regmap_attach_dev(struct device *dev, struct regmap *map,
574 const struct regmap_config *config)
575{
576 struct regmap **m;
94cc89eb 577 int ret;
6cfec04b
MS
578
579 map->dev = dev;
580
94cc89eb
CK
581 ret = regmap_set_name(map, config);
582 if (ret)
583 return ret;
584
530792ef 585 regmap_debugfs_exit(map);
94cc89eb 586 regmap_debugfs_init(map);
6cfec04b
MS
587
588 /* Add a devres resource for dev_get_regmap() */
589 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
590 if (!m) {
591 regmap_debugfs_exit(map);
592 return -ENOMEM;
593 }
594 *m = map;
595 devres_add(dev, m);
596
597 return 0;
598}
599EXPORT_SYMBOL_GPL(regmap_attach_dev);
600
3061e170
CT
601static int dev_get_regmap_match(struct device *dev, void *res, void *data);
602
603static int regmap_detach_dev(struct device *dev, struct regmap *map)
604{
605 if (!dev)
606 return 0;
607
608 return devres_release(dev, dev_get_regmap_release,
609 dev_get_regmap_match, (void *)map->name);
610}
611
cf673fbc
GU
612static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
613 const struct regmap_config *config)
614{
615 enum regmap_endian endian;
616
617 /* Retrieve the endianness specification from the regmap config */
618 endian = config->reg_format_endian;
619
620 /* If the regmap config specified a non-default value, use that */
621 if (endian != REGMAP_ENDIAN_DEFAULT)
622 return endian;
623
624 /* Retrieve the endianness specification from the bus config */
625 if (bus && bus->reg_format_endian_default)
626 endian = bus->reg_format_endian_default;
d647c199 627
cf673fbc
GU
628 /* If the bus specified a non-default value, use that */
629 if (endian != REGMAP_ENDIAN_DEFAULT)
630 return endian;
631
632 /* Use this if no other value was found */
633 return REGMAP_ENDIAN_BIG;
634}
635
3c174d29
GR
636enum regmap_endian regmap_get_val_endian(struct device *dev,
637 const struct regmap_bus *bus,
638 const struct regmap_config *config)
d647c199 639{
c916d6ef 640 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
cf673fbc 641 enum regmap_endian endian;
d647c199 642
45e1a279 643 /* Retrieve the endianness specification from the regmap config */
cf673fbc 644 endian = config->val_format_endian;
d647c199 645
45e1a279 646 /* If the regmap config specified a non-default value, use that */
cf673fbc
GU
647 if (endian != REGMAP_ENDIAN_DEFAULT)
648 return endian;
d647c199 649
c916d6ef
AS
650 /* If the firmware node exist try to get endianness from it */
651 if (fwnode_property_read_bool(fwnode, "big-endian"))
652 endian = REGMAP_ENDIAN_BIG;
653 else if (fwnode_property_read_bool(fwnode, "little-endian"))
654 endian = REGMAP_ENDIAN_LITTLE;
655 else if (fwnode_property_read_bool(fwnode, "native-endian"))
656 endian = REGMAP_ENDIAN_NATIVE;
657
658 /* If the endianness was specified in fwnode, use that */
659 if (endian != REGMAP_ENDIAN_DEFAULT)
660 return endian;
45e1a279
SW
661
662 /* Retrieve the endianness specification from the bus config */
cf673fbc
GU
663 if (bus && bus->val_format_endian_default)
664 endian = bus->val_format_endian_default;
d647c199 665
45e1a279 666 /* If the bus specified a non-default value, use that */
cf673fbc
GU
667 if (endian != REGMAP_ENDIAN_DEFAULT)
668 return endian;
45e1a279
SW
669
670 /* Use this if no other value was found */
cf673fbc 671 return REGMAP_ENDIAN_BIG;
d647c199 672}
3c174d29 673EXPORT_SYMBOL_GPL(regmap_get_val_endian);
d647c199 674
3cfe7a74
NB
675struct regmap *__regmap_init(struct device *dev,
676 const struct regmap_bus *bus,
677 void *bus_context,
678 const struct regmap_config *config,
679 struct lock_class_key *lock_key,
680 const char *lock_name)
b83a313b 681{
6cfec04b 682 struct regmap *map;
d36cb020 683 int ret = -EINVAL;
141eba2e 684 enum regmap_endian reg_endian, val_endian;
6863ca62 685 int i, j;
b83a313b 686
d2a5884a 687 if (!config)
abbb18fb 688 goto err;
b83a313b
MB
689
690 map = kzalloc(sizeof(*map), GFP_KERNEL);
691 if (map == NULL) {
692 ret = -ENOMEM;
693 goto err;
694 }
695
94cc89eb
CK
696 ret = regmap_set_name(map, config);
697 if (ret)
698 goto err_map;
8253bb3f 699
1d512ee8
CK
700 ret = -EINVAL; /* Later error paths rely on this */
701
c9b41fcf 702 if (config->disable_locking) {
81e30b18 703 map->lock = map->unlock = regmap_lock_unlock_none;
21f8e482 704 map->can_sleep = config->can_sleep;
72465736 705 regmap_debugfs_disable(map);
c9b41fcf 706 } else if (config->lock && config->unlock) {
0d4529c5
DC
707 map->lock = config->lock;
708 map->unlock = config->unlock;
709 map->lock_arg = config->lock_arg;
21f8e482 710 map->can_sleep = config->can_sleep;
a4887813 711 } else if (config->use_hwlock) {
8698b936
BW
712 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
713 if (!map->hwlock) {
714 ret = -ENXIO;
8253bb3f 715 goto err_name;
8698b936
BW
716 }
717
718 switch (config->hwlock_mode) {
719 case HWLOCK_IRQSTATE:
720 map->lock = regmap_lock_hwlock_irqsave;
721 map->unlock = regmap_unlock_hwlock_irqrestore;
722 break;
723 case HWLOCK_IRQ:
724 map->lock = regmap_lock_hwlock_irq;
725 map->unlock = regmap_unlock_hwlock_irq;
726 break;
727 default:
728 map->lock = regmap_lock_hwlock;
729 map->unlock = regmap_unlock_hwlock;
730 break;
731 }
732
733 map->lock_arg = map;
bacdbe07 734 } else {
d2a5884a
AS
735 if ((bus && bus->fast_io) ||
736 config->fast_io) {
67021f25
VO
737 if (config->use_raw_spinlock) {
738 raw_spin_lock_init(&map->raw_spinlock);
739 map->lock = regmap_lock_raw_spinlock;
740 map->unlock = regmap_unlock_raw_spinlock;
741 lockdep_set_class_and_name(&map->raw_spinlock,
742 lock_key, lock_name);
743 } else {
744 spin_lock_init(&map->spinlock);
745 map->lock = regmap_lock_spinlock;
746 map->unlock = regmap_unlock_spinlock;
747 lockdep_set_class_and_name(&map->spinlock,
748 lock_key, lock_name);
749 }
0d4529c5
DC
750 } else {
751 mutex_init(&map->mutex);
752 map->lock = regmap_lock_mutex;
753 map->unlock = regmap_unlock_mutex;
21f8e482 754 map->can_sleep = true;
3cfe7a74
NB
755 lockdep_set_class_and_name(&map->mutex,
756 lock_key, lock_name);
0d4529c5
DC
757 }
758 map->lock_arg = map;
1ed9b927 759 map->lock_key = lock_key;
bacdbe07 760 }
b4a21fc2
SB
761
762 /*
763 * When we write in fast-paths with regmap_bulk_write() don't allocate
764 * scratch buffers with sleeping allocations.
765 */
766 if ((bus && bus->fast_io) || config->fast_io)
767 map->alloc_flags = GFP_ATOMIC;
768 else
769 map->alloc_flags = GFP_KERNEL;
770
0074f3f2 771 map->reg_base = config->reg_base;
9b3cd5c7 772 map->reg_shift = config->pad_bits % 8;
0074f3f2 773
82159ba8 774 map->format.pad_bytes = config->pad_bits / 8;
4a670ac3 775 map->format.reg_shift = config->reg_shift;
9b3cd5c7 776 map->format.reg_bytes = BITS_TO_BYTES(config->reg_bits);
a4a7d86b
AS
777 map->format.val_bytes = BITS_TO_BYTES(config->val_bits);
778 map->format.buf_size = BITS_TO_BYTES(config->reg_bits + config->val_bits + config->pad_bits);
f01ee60f
SW
779 if (config->reg_stride)
780 map->reg_stride = config->reg_stride;
781 else
782 map->reg_stride = 1;
ca747be2
XL
783 if (is_power_of_2(map->reg_stride))
784 map->reg_stride_order = ilog2(map->reg_stride);
785 else
786 map->reg_stride_order = -1;
d77e7456
MV
787 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
788 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
789 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
17649c90
SS
790 if (bus) {
791 map->max_raw_read = bus->max_raw_read;
792 map->max_raw_write = bus->max_raw_write;
d77e7456
MV
793 } else if (config->max_raw_read && config->max_raw_write) {
794 map->max_raw_read = config->max_raw_read;
795 map->max_raw_write = config->max_raw_write;
17649c90 796 }
b83a313b
MB
797 map->dev = dev;
798 map->bus = bus;
0135bbcc 799 map->bus_context = bus_context;
2e2ae66d 800 map->max_register = config->max_register;
0ec74ad3 801 map->max_register_is_set = map->max_register ?: config->max_register_is_0;
76aad392
DC
802 map->wr_table = config->wr_table;
803 map->rd_table = config->rd_table;
804 map->volatile_table = config->volatile_table;
805 map->precious_table = config->precious_table;
cdf6b11d 806 map->wr_noinc_table = config->wr_noinc_table;
74fe7b55 807 map->rd_noinc_table = config->rd_noinc_table;
2e2ae66d
MB
808 map->writeable_reg = config->writeable_reg;
809 map->readable_reg = config->readable_reg;
810 map->volatile_reg = config->volatile_reg;
2efe1642 811 map->precious_reg = config->precious_reg;
cdf6b11d 812 map->writeable_noinc_reg = config->writeable_noinc_reg;
74fe7b55 813 map->readable_noinc_reg = config->readable_noinc_reg;
5d1729e7 814 map->cache_type = config->cache_type;
b83a313b 815
0d509f2b
MB
816 spin_lock_init(&map->async_lock);
817 INIT_LIST_HEAD(&map->async_list);
7e09a979 818 INIT_LIST_HEAD(&map->async_free);
0d509f2b
MB
819 init_waitqueue_head(&map->async_waitq);
820
9bf485c9
AD
821 if (config->read_flag_mask ||
822 config->write_flag_mask ||
823 config->zero_flag_mask) {
6f306441
LPC
824 map->read_flag_mask = config->read_flag_mask;
825 map->write_flag_mask = config->write_flag_mask;
d2a5884a 826 } else if (bus) {
6f306441
LPC
827 map->read_flag_mask = bus->read_flag_mask;
828 }
829
d77e7456
MV
830 if (config && config->read && config->write) {
831 map->reg_read = _regmap_bus_read;
739f872e
CM
832 if (config->reg_update_bits)
833 map->reg_update_bits = config->reg_update_bits;
d77e7456
MV
834
835 /* Bulk read/write */
836 map->read = config->read;
837 map->write = config->write;
838
839 reg_endian = REGMAP_ENDIAN_NATIVE;
840 val_endian = REGMAP_ENDIAN_NATIVE;
841 } else if (!bus) {
d2a5884a
AS
842 map->reg_read = config->reg_read;
843 map->reg_write = config->reg_write;
02d6fdec 844 map->reg_update_bits = config->reg_update_bits;
d2a5884a 845
3ac17037
BB
846 map->defer_caching = false;
847 goto skip_format_initialization;
848 } else if (!bus->read || !bus->write) {
849 map->reg_read = _regmap_bus_reg_read;
850 map->reg_write = _regmap_bus_reg_write;
80215f13 851 map->reg_update_bits = bus->reg_update_bits;
3ac17037 852
d2a5884a
AS
853 map->defer_caching = false;
854 goto skip_format_initialization;
855 } else {
856 map->reg_read = _regmap_bus_read;
77792b11 857 map->reg_update_bits = bus->reg_update_bits;
d77e7456
MV
858 /* Bulk read/write */
859 map->read = bus->read;
860 map->write = bus->write;
ad278406 861
d77e7456
MV
862 reg_endian = regmap_get_reg_endian(bus, config);
863 val_endian = regmap_get_val_endian(dev, bus, config);
864 }
141eba2e 865
d939fb9a 866 switch (config->reg_bits + map->reg_shift) {
9aa50750
WS
867 case 2:
868 switch (config->val_bits) {
869 case 6:
870 map->format.format_write = regmap_format_2_6_write;
871 break;
872 default:
8698b936 873 goto err_hwlock;
9aa50750
WS
874 }
875 break;
876
b83a313b
MB
877 case 4:
878 switch (config->val_bits) {
879 case 12:
880 map->format.format_write = regmap_format_4_12_write;
881 break;
882 default:
8698b936 883 goto err_hwlock;
b83a313b
MB
884 }
885 break;
886
887 case 7:
888 switch (config->val_bits) {
889 case 9:
890 map->format.format_write = regmap_format_7_9_write;
891 break;
b24412af
AM
892 case 17:
893 map->format.format_write = regmap_format_7_17_write;
894 break;
b83a313b 895 default:
8698b936 896 goto err_hwlock;
b83a313b
MB
897 }
898 break;
899
7e5ec63e
LPC
900 case 10:
901 switch (config->val_bits) {
902 case 14:
903 map->format.format_write = regmap_format_10_14_write;
904 break;
905 default:
8698b936 906 goto err_hwlock;
7e5ec63e
LPC
907 }
908 break;
909
0c2191c3
RR
910 case 12:
911 switch (config->val_bits) {
912 case 20:
913 map->format.format_write = regmap_format_12_20_write;
914 break;
915 default:
916 goto err_hwlock;
917 }
918 break;
919
b83a313b
MB
920 case 8:
921 map->format.format_reg = regmap_format_8;
922 break;
923
924 case 16:
141eba2e
SW
925 switch (reg_endian) {
926 case REGMAP_ENDIAN_BIG:
927 map->format.format_reg = regmap_format_16_be;
928 break;
55562449
TL
929 case REGMAP_ENDIAN_LITTLE:
930 map->format.format_reg = regmap_format_16_le;
931 break;
141eba2e
SW
932 case REGMAP_ENDIAN_NATIVE:
933 map->format.format_reg = regmap_format_16_native;
934 break;
935 default:
8698b936 936 goto err_hwlock;
141eba2e 937 }
b83a313b
MB
938 break;
939
237019e7 940 case 24:
06000443
AS
941 switch (reg_endian) {
942 case REGMAP_ENDIAN_BIG:
943 map->format.format_reg = regmap_format_24_be;
944 break;
945 default:
8698b936 946 goto err_hwlock;
06000443 947 }
237019e7
LPC
948 break;
949
7d5e525b 950 case 32:
141eba2e
SW
951 switch (reg_endian) {
952 case REGMAP_ENDIAN_BIG:
953 map->format.format_reg = regmap_format_32_be;
954 break;
55562449
TL
955 case REGMAP_ENDIAN_LITTLE:
956 map->format.format_reg = regmap_format_32_le;
957 break;
141eba2e
SW
958 case REGMAP_ENDIAN_NATIVE:
959 map->format.format_reg = regmap_format_32_native;
960 break;
961 default:
8698b936 962 goto err_hwlock;
141eba2e 963 }
7d5e525b
MB
964 break;
965
b83a313b 966 default:
8698b936 967 goto err_hwlock;
b83a313b
MB
968 }
969
8a819ff8
MB
970 if (val_endian == REGMAP_ENDIAN_NATIVE)
971 map->format.parse_inplace = regmap_parse_inplace_noop;
972
b83a313b
MB
973 switch (config->val_bits) {
974 case 8:
975 map->format.format_val = regmap_format_8;
976 map->format.parse_val = regmap_parse_8;
8a819ff8 977 map->format.parse_inplace = regmap_parse_inplace_noop;
b83a313b
MB
978 break;
979 case 16:
141eba2e
SW
980 switch (val_endian) {
981 case REGMAP_ENDIAN_BIG:
982 map->format.format_val = regmap_format_16_be;
983 map->format.parse_val = regmap_parse_16_be;
8a819ff8 984 map->format.parse_inplace = regmap_parse_16_be_inplace;
141eba2e 985 break;
4aa8c069
XL
986 case REGMAP_ENDIAN_LITTLE:
987 map->format.format_val = regmap_format_16_le;
988 map->format.parse_val = regmap_parse_16_le;
989 map->format.parse_inplace = regmap_parse_16_le_inplace;
990 break;
141eba2e
SW
991 case REGMAP_ENDIAN_NATIVE:
992 map->format.format_val = regmap_format_16_native;
993 map->format.parse_val = regmap_parse_16_native;
994 break;
995 default:
8698b936 996 goto err_hwlock;
141eba2e 997 }
b83a313b 998 break;
ea279fc5 999 case 24:
06000443
AS
1000 switch (val_endian) {
1001 case REGMAP_ENDIAN_BIG:
1002 map->format.format_val = regmap_format_24_be;
1003 map->format.parse_val = regmap_parse_24_be;
1004 break;
1005 default:
8698b936 1006 goto err_hwlock;
06000443 1007 }
ea279fc5 1008 break;
7d5e525b 1009 case 32:
141eba2e
SW
1010 switch (val_endian) {
1011 case REGMAP_ENDIAN_BIG:
1012 map->format.format_val = regmap_format_32_be;
1013 map->format.parse_val = regmap_parse_32_be;
8a819ff8 1014 map->format.parse_inplace = regmap_parse_32_be_inplace;
141eba2e 1015 break;
4aa8c069
XL
1016 case REGMAP_ENDIAN_LITTLE:
1017 map->format.format_val = regmap_format_32_le;
1018 map->format.parse_val = regmap_parse_32_le;
1019 map->format.parse_inplace = regmap_parse_32_le_inplace;
1020 break;
141eba2e
SW
1021 case REGMAP_ENDIAN_NATIVE:
1022 map->format.format_val = regmap_format_32_native;
1023 map->format.parse_val = regmap_parse_32_native;
1024 break;
1025 default:
8698b936 1026 goto err_hwlock;
141eba2e 1027 }
7d5e525b 1028 break;
b83a313b
MB
1029 }
1030
141eba2e
SW
1031 if (map->format.format_write) {
1032 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1033 (val_endian != REGMAP_ENDIAN_BIG))
8698b936 1034 goto err_hwlock;
67921a1a 1035 map->use_single_write = true;
141eba2e 1036 }
7a647614 1037
b83a313b
MB
1038 if (!map->format.format_write &&
1039 !(map->format.format_reg && map->format.format_val))
8698b936 1040 goto err_hwlock;
b83a313b 1041
82159ba8 1042 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
b83a313b
MB
1043 if (map->work_buf == NULL) {
1044 ret = -ENOMEM;
8698b936 1045 goto err_hwlock;
b83a313b
MB
1046 }
1047
d2a5884a
AS
1048 if (map->format.format_write) {
1049 map->defer_caching = false;
07c320dc 1050 map->reg_write = _regmap_bus_formatted_write;
d2a5884a
AS
1051 } else if (map->format.format_val) {
1052 map->defer_caching = true;
07c320dc 1053 map->reg_write = _regmap_bus_raw_write;
d2a5884a
AS
1054 }
1055
1056skip_format_initialization:
07c320dc 1057
6863ca62 1058 map->range_tree = RB_ROOT;
e3549cd0 1059 for (i = 0; i < config->num_ranges; i++) {
6863ca62
KG
1060 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1061 struct regmap_range_node *new;
1062
1063 /* Sanity check */
061adc06 1064 if (range_cfg->range_max < range_cfg->range_min) {
3f1aa0c5 1065 dev_err(map->dev, "Invalid range %d: %u < %u\n", i,
061adc06 1066 range_cfg->range_max, range_cfg->range_min);
6863ca62 1067 goto err_range;
061adc06
MB
1068 }
1069
1070 if (range_cfg->range_max > map->max_register) {
3f1aa0c5 1071 dev_err(map->dev, "Invalid range %d: %u > %u\n", i,
061adc06
MB
1072 range_cfg->range_max, map->max_register);
1073 goto err_range;
1074 }
1075
1076 if (range_cfg->selector_reg > map->max_register) {
1077 dev_err(map->dev,
1078 "Invalid range %d: selector out of map\n", i);
1079 goto err_range;
1080 }
1081
1082 if (range_cfg->window_len == 0) {
1083 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1084 i);
1085 goto err_range;
1086 }
6863ca62
KG
1087
1088 /* Make sure, that this register range has no selector
1089 or data window within its boundary */
e3549cd0 1090 for (j = 0; j < config->num_ranges; j++) {
d63aa09f
JW
1091 unsigned int sel_reg = config->ranges[j].selector_reg;
1092 unsigned int win_min = config->ranges[j].window_start;
1093 unsigned int win_max = win_min +
1094 config->ranges[j].window_len - 1;
6863ca62 1095
f161d220
PZ
1096 /* Allow data window inside its own virtual range */
1097 if (j == i)
1098 continue;
1099
6863ca62
KG
1100 if (range_cfg->range_min <= sel_reg &&
1101 sel_reg <= range_cfg->range_max) {
061adc06
MB
1102 dev_err(map->dev,
1103 "Range %d: selector for %d in window\n",
1104 i, j);
6863ca62
KG
1105 goto err_range;
1106 }
1107
1108 if (!(win_max < range_cfg->range_min ||
1109 win_min > range_cfg->range_max)) {
061adc06
MB
1110 dev_err(map->dev,
1111 "Range %d: window for %d in window\n",
1112 i, j);
6863ca62
KG
1113 goto err_range;
1114 }
1115 }
1116
1117 new = kzalloc(sizeof(*new), GFP_KERNEL);
1118 if (new == NULL) {
1119 ret = -ENOMEM;
1120 goto err_range;
1121 }
1122
4b020b3f 1123 new->map = map;
d058bb49 1124 new->name = range_cfg->name;
6863ca62
KG
1125 new->range_min = range_cfg->range_min;
1126 new->range_max = range_cfg->range_max;
1127 new->selector_reg = range_cfg->selector_reg;
1128 new->selector_mask = range_cfg->selector_mask;
1129 new->selector_shift = range_cfg->selector_shift;
1130 new->window_start = range_cfg->window_start;
1131 new->window_len = range_cfg->window_len;
1132
53e87f88 1133 if (!_regmap_range_add(map, new)) {
061adc06 1134 dev_err(map->dev, "Failed to add range %d\n", i);
6863ca62
KG
1135 kfree(new);
1136 goto err_range;
1137 }
1138
1139 if (map->selector_work_buf == NULL) {
1140 map->selector_work_buf =
1141 kzalloc(map->format.buf_size, GFP_KERNEL);
1142 if (map->selector_work_buf == NULL) {
1143 ret = -ENOMEM;
1144 goto err_range;
1145 }
1146 }
1147 }
052d2cd1 1148
e5e3b8ab 1149 ret = regcache_init(map, config);
0ff3e62f 1150 if (ret != 0)
6863ca62
KG
1151 goto err_range;
1152
a7a037c8 1153 if (dev) {
6cfec04b
MS
1154 ret = regmap_attach_dev(dev, map, config);
1155 if (ret != 0)
1156 goto err_regcache;
9b947a13 1157 } else {
94cc89eb 1158 regmap_debugfs_init(map);
a7a037c8 1159 }
72b39f6f 1160
b83a313b
MB
1161 return map;
1162
6cfec04b 1163err_regcache:
72b39f6f 1164 regcache_exit(map);
6863ca62
KG
1165err_range:
1166 regmap_range_exit(map);
58072cbf 1167 kfree(map->work_buf);
8698b936 1168err_hwlock:
a1a68fca 1169 if (map->hwlock)
267f3e4f 1170 hwspin_lock_free(map->hwlock);
8253bb3f
BG
1171err_name:
1172 kfree_const(map->name);
b83a313b
MB
1173err_map:
1174 kfree(map);
1175err:
c871c199
AN
1176 if (bus && bus->free_on_exit)
1177 kfree(bus);
b83a313b
MB
1178 return ERR_PTR(ret);
1179}
3cfe7a74 1180EXPORT_SYMBOL_GPL(__regmap_init);
b83a313b 1181
c0eb4676
MB
1182static void devm_regmap_release(struct device *dev, void *res)
1183{
1184 regmap_exit(*(struct regmap **)res);
1185}
1186
3cfe7a74
NB
1187struct regmap *__devm_regmap_init(struct device *dev,
1188 const struct regmap_bus *bus,
1189 void *bus_context,
1190 const struct regmap_config *config,
1191 struct lock_class_key *lock_key,
1192 const char *lock_name)
c0eb4676
MB
1193{
1194 struct regmap **ptr, *regmap;
1195
1196 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1197 if (!ptr)
1198 return ERR_PTR(-ENOMEM);
1199
3cfe7a74
NB
1200 regmap = __regmap_init(dev, bus, bus_context, config,
1201 lock_key, lock_name);
c0eb4676
MB
1202 if (!IS_ERR(regmap)) {
1203 *ptr = regmap;
1204 devres_add(dev, ptr);
1205 } else {
1206 devres_free(ptr);
1207 }
1208
1209 return regmap;
1210}
3cfe7a74 1211EXPORT_SYMBOL_GPL(__devm_regmap_init);
c0eb4676 1212
67252287
SK
1213static void regmap_field_init(struct regmap_field *rm_field,
1214 struct regmap *regmap, struct reg_field reg_field)
1215{
67252287
SK
1216 rm_field->regmap = regmap;
1217 rm_field->reg = reg_field.reg;
1218 rm_field->shift = reg_field.lsb;
921cc294 1219 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
cf39ed2e
MR
1220
1221 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1222
a0102375
KM
1223 rm_field->id_size = reg_field.id_size;
1224 rm_field->id_offset = reg_field.id_offset;
67252287
SK
1225}
1226
1227/**
2cf8e2df 1228 * devm_regmap_field_alloc() - Allocate and initialise a register field.
67252287
SK
1229 *
1230 * @dev: Device that will be interacted with
1231 * @regmap: regmap bank in which this register field is located.
1232 * @reg_field: Register field with in the bank.
1233 *
1234 * The return value will be an ERR_PTR() on error or a valid pointer
1235 * to a struct regmap_field. The regmap_field will be automatically freed
1236 * by the device management code.
1237 */
1238struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1239 struct regmap *regmap, struct reg_field reg_field)
1240{
1241 struct regmap_field *rm_field = devm_kzalloc(dev,
1242 sizeof(*rm_field), GFP_KERNEL);
1243 if (!rm_field)
1244 return ERR_PTR(-ENOMEM);
1245
1246 regmap_field_init(rm_field, regmap, reg_field);
1247
1248 return rm_field;
1249
1250}
1251EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1252
ea470b82
SK
1253
1254/**
1255 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1256 *
1257 * @regmap: regmap bank in which this register field is located.
1258 * @rm_field: regmap register fields within the bank.
1259 * @reg_field: Register fields within the bank.
1260 * @num_fields: Number of register fields.
1261 *
1262 * The return value will be an -ENOMEM on error or zero for success.
1263 * Newly allocated regmap_fields should be freed by calling
1264 * regmap_field_bulk_free()
1265 */
1266int regmap_field_bulk_alloc(struct regmap *regmap,
1267 struct regmap_field **rm_field,
29c34975 1268 const struct reg_field *reg_field,
ea470b82
SK
1269 int num_fields)
1270{
1271 struct regmap_field *rf;
1272 int i;
1273
1274 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1275 if (!rf)
1276 return -ENOMEM;
1277
1278 for (i = 0; i < num_fields; i++) {
1279 regmap_field_init(&rf[i], regmap, reg_field[i]);
1280 rm_field[i] = &rf[i];
1281 }
1282
1283 return 0;
1284}
1285EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1286
1287/**
1288 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1289 * fields.
1290 *
1291 * @dev: Device that will be interacted with
1292 * @regmap: regmap bank in which this register field is located.
1293 * @rm_field: regmap register fields within the bank.
1294 * @reg_field: Register fields within the bank.
1295 * @num_fields: Number of register fields.
1296 *
1297 * The return value will be an -ENOMEM on error or zero for success.
1298 * Newly allocated regmap_fields will be automatically freed by the
1299 * device management code.
1300 */
1301int devm_regmap_field_bulk_alloc(struct device *dev,
1302 struct regmap *regmap,
1303 struct regmap_field **rm_field,
29c34975 1304 const struct reg_field *reg_field,
ea470b82
SK
1305 int num_fields)
1306{
1307 struct regmap_field *rf;
1308 int i;
1309
1310 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1311 if (!rf)
1312 return -ENOMEM;
1313
1314 for (i = 0; i < num_fields; i++) {
1315 regmap_field_init(&rf[i], regmap, reg_field[i]);
1316 rm_field[i] = &rf[i];
1317 }
1318
1319 return 0;
1320}
1321EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1322
1323/**
1324 * regmap_field_bulk_free() - Free register field allocated using
1325 * regmap_field_bulk_alloc.
1326 *
1327 * @field: regmap fields which should be freed.
1328 */
1329void regmap_field_bulk_free(struct regmap_field *field)
1330{
1331 kfree(field);
1332}
1333EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1334
1335/**
1336 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1337 * devm_regmap_field_bulk_alloc.
1338 *
1339 * @dev: Device that will be interacted with
1340 * @field: regmap field which should be freed.
1341 *
1342 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1343 * drivers need not call this function, as the memory allocated via devm
1344 * will be freed as per device-driver life-cycle.
1345 */
1346void devm_regmap_field_bulk_free(struct device *dev,
1347 struct regmap_field *field)
1348{
1349 devm_kfree(dev, field);
1350}
1351EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1352
67252287 1353/**
2cf8e2df
CK
1354 * devm_regmap_field_free() - Free a register field allocated using
1355 * devm_regmap_field_alloc.
67252287
SK
1356 *
1357 * @dev: Device that will be interacted with
1358 * @field: regmap field which should be freed.
2cf8e2df
CK
1359 *
1360 * Free register field allocated using devm_regmap_field_alloc(). Usually
1361 * drivers need not call this function, as the memory allocated via devm
1362 * will be freed as per device-driver life-cyle.
67252287
SK
1363 */
1364void devm_regmap_field_free(struct device *dev,
1365 struct regmap_field *field)
1366{
1367 devm_kfree(dev, field);
1368}
1369EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1370
1371/**
2cf8e2df 1372 * regmap_field_alloc() - Allocate and initialise a register field.
67252287
SK
1373 *
1374 * @regmap: regmap bank in which this register field is located.
1375 * @reg_field: Register field with in the bank.
1376 *
1377 * The return value will be an ERR_PTR() on error or a valid pointer
1378 * to a struct regmap_field. The regmap_field should be freed by the
1379 * user once its finished working with it using regmap_field_free().
1380 */
1381struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1382 struct reg_field reg_field)
1383{
1384 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1385
1386 if (!rm_field)
1387 return ERR_PTR(-ENOMEM);
1388
1389 regmap_field_init(rm_field, regmap, reg_field);
1390
1391 return rm_field;
1392}
1393EXPORT_SYMBOL_GPL(regmap_field_alloc);
1394
1395/**
2cf8e2df
CK
1396 * regmap_field_free() - Free register field allocated using
1397 * regmap_field_alloc.
67252287
SK
1398 *
1399 * @field: regmap field which should be freed.
1400 */
1401void regmap_field_free(struct regmap_field *field)
1402{
1403 kfree(field);
1404}
1405EXPORT_SYMBOL_GPL(regmap_field_free);
1406
bf315173 1407/**
2cf8e2df 1408 * regmap_reinit_cache() - Reinitialise the current register cache
bf315173
MB
1409 *
1410 * @map: Register map to operate on.
1411 * @config: New configuration. Only the cache data will be used.
1412 *
1413 * Discard any existing register cache for the map and initialize a
1414 * new cache. This can be used to restore the cache to defaults or to
1415 * update the cache configuration to reflect runtime discovery of the
1416 * hardware.
4d879514
DP
1417 *
1418 * No explicit locking is done here, the user needs to ensure that
1419 * this function will not race with other calls to regmap.
bf315173
MB
1420 */
1421int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1422{
94cc89eb
CK
1423 int ret;
1424
bf315173 1425 regcache_exit(map);
a24f64a6 1426 regmap_debugfs_exit(map);
bf315173
MB
1427
1428 map->max_register = config->max_register;
0ec74ad3 1429 map->max_register_is_set = map->max_register ?: config->max_register_is_0;
bf315173
MB
1430 map->writeable_reg = config->writeable_reg;
1431 map->readable_reg = config->readable_reg;
1432 map->volatile_reg = config->volatile_reg;
1433 map->precious_reg = config->precious_reg;
cdf6b11d 1434 map->writeable_noinc_reg = config->writeable_noinc_reg;
74fe7b55 1435 map->readable_noinc_reg = config->readable_noinc_reg;
bf315173
MB
1436 map->cache_type = config->cache_type;
1437
94cc89eb
CK
1438 ret = regmap_set_name(map, config);
1439 if (ret)
1440 return ret;
1441
1442 regmap_debugfs_init(map);
a24f64a6 1443
421e8d2d
MB
1444 map->cache_bypass = false;
1445 map->cache_only = false;
1446
4d879514 1447 return regcache_init(map, config);
bf315173 1448}
752a6a5f 1449EXPORT_SYMBOL_GPL(regmap_reinit_cache);
bf315173 1450
b83a313b 1451/**
2cf8e2df
CK
1452 * regmap_exit() - Free a previously allocated register map
1453 *
1454 * @map: Register map to operate on.
b83a313b
MB
1455 */
1456void regmap_exit(struct regmap *map)
1457{
7e09a979
MB
1458 struct regmap_async *async;
1459
3061e170 1460 regmap_detach_dev(map->dev, map);
5d1729e7 1461 regcache_exit(map);
fd4ebc07 1462
31244e39 1463 regmap_debugfs_exit(map);
6863ca62 1464 regmap_range_exit(map);
d2a5884a 1465 if (map->bus && map->bus->free_context)
0135bbcc 1466 map->bus->free_context(map->bus_context);
b83a313b 1467 kfree(map->work_buf);
7e09a979
MB
1468 while (!list_empty(&map->async_free)) {
1469 async = list_first_entry_or_null(&map->async_free,
1470 struct regmap_async,
1471 list);
1472 list_del(&async->list);
1473 kfree(async->work_buf);
1474 kfree(async);
1475 }
a1a68fca 1476 if (map->hwlock)
e8419c40 1477 hwspin_lock_free(map->hwlock);
f74d63b8
BG
1478 if (map->lock == regmap_lock_mutex)
1479 mutex_destroy(&map->mutex);
8253bb3f 1480 kfree_const(map->name);
95b2c3ec 1481 kfree(map->patch);
ea030ca6
LT
1482 if (map->bus && map->bus->free_on_exit)
1483 kfree(map->bus);
b83a313b
MB
1484 kfree(map);
1485}
1486EXPORT_SYMBOL_GPL(regmap_exit);
1487
72b39f6f
MB
1488static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1489{
1490 struct regmap **r = res;
1491 if (!r || !*r) {
1492 WARN_ON(!r || !*r);
1493 return 0;
1494 }
1495
1496 /* If the user didn't specify a name match any */
1497 if (data)
c6df8433 1498 return (*r)->name && !strcmp((*r)->name, data);
72b39f6f
MB
1499 else
1500 return 1;
1501}
1502
1503/**
2cf8e2df 1504 * dev_get_regmap() - Obtain the regmap (if any) for a device
72b39f6f
MB
1505 *
1506 * @dev: Device to retrieve the map for
1507 * @name: Optional name for the register map, usually NULL.
1508 *
1509 * Returns the regmap for the device if one is present, or NULL. If
1510 * name is specified then it must match the name specified when
1511 * registering the device, if it is NULL then the first regmap found
1512 * will be used. Devices with multiple register maps are very rare,
1513 * generic code should normally not need to specify a name.
1514 */
1515struct regmap *dev_get_regmap(struct device *dev, const char *name)
1516{
1517 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1518 dev_get_regmap_match, (void *)name);
1519
1520 if (!r)
1521 return NULL;
1522 return *r;
1523}
1524EXPORT_SYMBOL_GPL(dev_get_regmap);
1525
8d7d3972 1526/**
2cf8e2df 1527 * regmap_get_device() - Obtain the device from a regmap
8d7d3972
TT
1528 *
1529 * @map: Register map to operate on.
1530 *
1531 * Returns the underlying device that the regmap has been created for.
1532 */
1533struct device *regmap_get_device(struct regmap *map)
1534{
1535 return map->dev;
1536}
fa2fbe4a 1537EXPORT_SYMBOL_GPL(regmap_get_device);
8d7d3972 1538
6863ca62 1539static int _regmap_select_page(struct regmap *map, unsigned int *reg,
98bc7dfd 1540 struct regmap_range_node *range,
6863ca62
KG
1541 unsigned int val_num)
1542{
6863ca62
KG
1543 void *orig_work_buf;
1544 unsigned int win_offset;
1545 unsigned int win_page;
1546 bool page_chg;
1547 int ret;
1548
98bc7dfd
MB
1549 win_offset = (*reg - range->range_min) % range->window_len;
1550 win_page = (*reg - range->range_min) / range->window_len;
6863ca62 1551
98bc7dfd
MB
1552 if (val_num > 1) {
1553 /* Bulk write shouldn't cross range boundary */
1554 if (*reg + val_num - 1 > range->range_max)
1555 return -EINVAL;
6863ca62 1556
98bc7dfd
MB
1557 /* ... or single page boundary */
1558 if (val_num > range->window_len - win_offset)
1559 return -EINVAL;
1560 }
6863ca62 1561
98bc7dfd
MB
1562 /* It is possible to have selector register inside data window.
1563 In that case, selector register is located on every page and
1564 it needs no page switching, when accessed alone. */
1565 if (val_num > 1 ||
1566 range->window_start + win_offset != range->selector_reg) {
1567 /* Use separate work_buf during page switching */
1568 orig_work_buf = map->work_buf;
1569 map->work_buf = map->selector_work_buf;
6863ca62 1570
98bc7dfd
MB
1571 ret = _regmap_update_bits(map, range->selector_reg,
1572 range->selector_mask,
1573 win_page << range->selector_shift,
7ff0589c 1574 &page_chg, false);
632a5b01 1575
98bc7dfd 1576 map->work_buf = orig_work_buf;
6863ca62 1577
0ff3e62f 1578 if (ret != 0)
98bc7dfd 1579 return ret;
6863ca62
KG
1580 }
1581
98bc7dfd
MB
1582 *reg = range->window_start + win_offset;
1583
6863ca62
KG
1584 return 0;
1585}
1586
f50e38c9
TL
1587static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1588 unsigned long mask)
1589{
1590 u8 *buf;
1591 int i;
1592
1593 if (!mask || !map->work_buf)
1594 return;
1595
1596 buf = map->work_buf;
1597
1598 for (i = 0; i < max_bytes; i++)
1599 buf[i] |= (mask >> (8 * i)) & 0xff;
1600}
1601
3f58f6dc
MC
1602static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1603{
1604 reg += map->reg_base;
4a670ac3
MC
1605
1606 if (map->format.reg_shift > 0)
1607 reg >>= map->format.reg_shift;
1608 else if (map->format.reg_shift < 0)
1609 reg <<= -(map->format.reg_shift);
1610
1611 return reg;
3f58f6dc
MC
1612}
1613
7ef2c6b8 1614static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
05669b63 1615 const void *val, size_t val_len, bool noinc)
b83a313b 1616{
98bc7dfd 1617 struct regmap_range_node *range;
0d509f2b 1618 unsigned long flags;
0d509f2b
MB
1619 void *work_val = map->work_buf + map->format.reg_bytes +
1620 map->format.pad_bytes;
b83a313b
MB
1621 void *buf;
1622 int ret = -ENOTSUPP;
1623 size_t len;
73304781
MB
1624 int i;
1625
2e31aab0
BW
1626 /* Check for unwritable or noinc registers in range
1627 * before we start
1628 */
1629 if (!regmap_writeable_noinc(map, reg)) {
1630 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1631 unsigned int element =
1632 reg + regmap_get_offset(map, i);
1633 if (!regmap_writeable(map, element) ||
1634 regmap_writeable_noinc(map, element))
1635 return -EINVAL;
1636 }
1637 }
b83a313b 1638
c9157198 1639 if (!map->cache_bypass && map->format.parse_val) {
984a4afd 1640 unsigned int ival, offset;
c9157198 1641 int val_bytes = map->format.val_bytes;
984a4afd
BW
1642
1643 /* Cache the last written value for noinc writes */
1644 i = noinc ? val_len - val_bytes : 0;
1645 for (; i < val_len; i += val_bytes) {
1646 ival = map->format.parse_val(val + i);
1647 offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1648 ret = regcache_write(map, reg + offset, ival);
c9157198
LD
1649 if (ret) {
1650 dev_err(map->dev,
6d04b8ac 1651 "Error in caching of register: %x ret: %d\n",
984a4afd 1652 reg + offset, ret);
c9157198
LD
1653 return ret;
1654 }
1655 }
1656 if (map->cache_only) {
1657 map->cache_dirty = true;
1658 return 0;
1659 }
1660 }
1661
98bc7dfd
MB
1662 range = _regmap_range_lookup(map, reg);
1663 if (range) {
8a2ceac6
MB
1664 int val_num = val_len / map->format.val_bytes;
1665 int win_offset = (reg - range->range_min) % range->window_len;
1666 int win_residue = range->window_len - win_offset;
1667
1668 /* If the write goes beyond the end of the window split it */
1669 while (val_num > win_residue) {
1a61cfe3 1670 dev_dbg(map->dev, "Writing window %d/%zu\n",
8a2ceac6 1671 win_residue, val_len / map->format.val_bytes);
7ef2c6b8
CK
1672 ret = _regmap_raw_write_impl(map, reg, val,
1673 win_residue *
05669b63 1674 map->format.val_bytes, noinc);
8a2ceac6
MB
1675 if (ret != 0)
1676 return ret;
1677
1678 reg += win_residue;
1679 val_num -= win_residue;
1680 val += win_residue * map->format.val_bytes;
1681 val_len -= win_residue * map->format.val_bytes;
1682
1683 win_offset = (reg - range->range_min) %
1684 range->window_len;
1685 win_residue = range->window_len - win_offset;
1686 }
1687
05669b63 1688 ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
0ff3e62f 1689 if (ret != 0)
98bc7dfd
MB
1690 return ret;
1691 }
6863ca62 1692
3f58f6dc 1693 reg = regmap_reg_addr(map, reg);
d939fb9a 1694 map->format.format_reg(map->work_buf, reg, map->reg_shift);
f50e38c9
TL
1695 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1696 map->write_flag_mask);
6f306441 1697
651e013e
MB
1698 /*
1699 * Essentially all I/O mechanisms will be faster with a single
1700 * buffer to write. Since register syncs often generate raw
1701 * writes of single registers optimise that case.
1702 */
1703 if (val != work_val && val_len == map->format.val_bytes) {
1704 memcpy(work_val, val, map->format.val_bytes);
1705 val = work_val;
1706 }
1707
d77e7456 1708 if (map->async && map->bus && map->bus->async_write) {
7e09a979 1709 struct regmap_async *async;
0d509f2b 1710
c6b570d9 1711 trace_regmap_async_write_start(map, reg, val_len);
fe7d4ccd 1712
7e09a979
MB
1713 spin_lock_irqsave(&map->async_lock, flags);
1714 async = list_first_entry_or_null(&map->async_free,
1715 struct regmap_async,
1716 list);
1717 if (async)
1718 list_del(&async->list);
1719 spin_unlock_irqrestore(&map->async_lock, flags);
1720
1721 if (!async) {
1722 async = map->bus->async_alloc();
1723 if (!async)
1724 return -ENOMEM;
1725
1726 async->work_buf = kzalloc(map->format.buf_size,
1727 GFP_KERNEL | GFP_DMA);
1728 if (!async->work_buf) {
1729 kfree(async);
1730 return -ENOMEM;
1731 }
0d509f2b
MB
1732 }
1733
0d509f2b
MB
1734 async->map = map;
1735
1736 /* If the caller supplied the value we can use it safely. */
1737 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1738 map->format.reg_bytes + map->format.val_bytes);
0d509f2b
MB
1739
1740 spin_lock_irqsave(&map->async_lock, flags);
1741 list_add_tail(&async->list, &map->async_list);
1742 spin_unlock_irqrestore(&map->async_lock, flags);
1743
04c50ccf
MB
1744 if (val != work_val)
1745 ret = map->bus->async_write(map->bus_context,
1746 async->work_buf,
1747 map->format.reg_bytes +
1748 map->format.pad_bytes,
1749 val, val_len, async);
1750 else
1751 ret = map->bus->async_write(map->bus_context,
1752 async->work_buf,
1753 map->format.reg_bytes +
1754 map->format.pad_bytes +
1755 val_len, NULL, 0, async);
0d509f2b
MB
1756
1757 if (ret != 0) {
1758 dev_err(map->dev, "Failed to schedule write: %d\n",
1759 ret);
1760
1761 spin_lock_irqsave(&map->async_lock, flags);
7e09a979 1762 list_move(&async->list, &map->async_free);
0d509f2b 1763 spin_unlock_irqrestore(&map->async_lock, flags);
0d509f2b 1764 }
f951b658
MB
1765
1766 return ret;
0d509f2b
MB
1767 }
1768
c6b570d9 1769 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
fb2736bb 1770
2547e201
MB
1771 /* If we're doing a single register write we can probably just
1772 * send the work_buf directly, otherwise try to do a gather
1773 * write.
1774 */
0d509f2b 1775 if (val == work_val)
d77e7456
MV
1776 ret = map->write(map->bus_context, map->work_buf,
1777 map->format.reg_bytes +
1778 map->format.pad_bytes +
1779 val_len);
5c422f0b 1780 else if (map->bus && map->bus->gather_write)
0135bbcc 1781 ret = map->bus->gather_write(map->bus_context, map->work_buf,
82159ba8
MB
1782 map->format.reg_bytes +
1783 map->format.pad_bytes,
b83a313b 1784 val, val_len);
db057679
SK
1785 else
1786 ret = -ENOTSUPP;
b83a313b 1787
2547e201 1788 /* If that didn't work fall back on linearising by hand. */
b83a313b 1789 if (ret == -ENOTSUPP) {
82159ba8
MB
1790 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1791 buf = kzalloc(len, GFP_KERNEL);
b83a313b
MB
1792 if (!buf)
1793 return -ENOMEM;
1794
1795 memcpy(buf, map->work_buf, map->format.reg_bytes);
82159ba8
MB
1796 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1797 val, val_len);
d77e7456 1798 ret = map->write(map->bus_context, buf, len);
b83a313b
MB
1799
1800 kfree(buf);
815806e3 1801 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
f0aa1ce6
NY
1802 /* regcache_drop_region() takes lock that we already have,
1803 * thus call map->cache_ops->drop() directly
1804 */
1805 if (map->cache_ops && map->cache_ops->drop)
1806 map->cache_ops->drop(map, reg, reg + 1);
b83a313b
MB
1807 }
1808
c6b570d9 1809 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
fb2736bb 1810
b83a313b
MB
1811 return ret;
1812}
1813
221ad7f2
MB
1814/**
1815 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1816 *
1817 * @map: Map to check.
1818 */
1819bool regmap_can_raw_write(struct regmap *map)
1820{
2a166929 1821 return map->write && map->format.format_val && map->format.format_reg;
221ad7f2
MB
1822}
1823EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1824
f50c9eb4
MP
1825/**
1826 * regmap_get_raw_read_max - Get the maximum size we can read
1827 *
1828 * @map: Map to check.
1829 */
1830size_t regmap_get_raw_read_max(struct regmap *map)
1831{
1832 return map->max_raw_read;
1833}
1834EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1835
1836/**
1837 * regmap_get_raw_write_max - Get the maximum size we can read
1838 *
1839 * @map: Map to check.
1840 */
1841size_t regmap_get_raw_write_max(struct regmap *map)
1842{
1843 return map->max_raw_write;
1844}
1845EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1846
07c320dc
AS
1847static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1848 unsigned int val)
1849{
1850 int ret;
1851 struct regmap_range_node *range;
1852 struct regmap *map = context;
1853
d77e7456 1854 WARN_ON(!map->format.format_write);
07c320dc
AS
1855
1856 range = _regmap_range_lookup(map, reg);
1857 if (range) {
1858 ret = _regmap_select_page(map, &reg, range, 1);
1859 if (ret != 0)
1860 return ret;
1861 }
1862
3f58f6dc 1863 reg = regmap_reg_addr(map, reg);
07c320dc
AS
1864 map->format.format_write(map, reg, val);
1865
c6b570d9 1866 trace_regmap_hw_write_start(map, reg, 1);
07c320dc 1867
d77e7456 1868 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
07c320dc 1869
c6b570d9 1870 trace_regmap_hw_write_done(map, reg, 1);
07c320dc
AS
1871
1872 return ret;
1873}
1874
3ac17037
BB
1875static int _regmap_bus_reg_write(void *context, unsigned int reg,
1876 unsigned int val)
1877{
1878 struct regmap *map = context;
f18ee501
MB
1879 struct regmap_range_node *range;
1880 int ret;
1881
1882 range = _regmap_range_lookup(map, reg);
1883 if (range) {
1884 ret = _regmap_select_page(map, &reg, range, 1);
1885 if (ret != 0)
1886 return ret;
1887 }
3ac17037 1888
3f58f6dc 1889 reg = regmap_reg_addr(map, reg);
3ac17037
BB
1890 return map->bus->reg_write(map->bus_context, reg, val);
1891}
1892
07c320dc
AS
1893static int _regmap_bus_raw_write(void *context, unsigned int reg,
1894 unsigned int val)
1895{
1896 struct regmap *map = context;
1897
d77e7456 1898 WARN_ON(!map->format.format_val);
07c320dc
AS
1899
1900 map->format.format_val(map->work_buf + map->format.reg_bytes
1901 + map->format.pad_bytes, val, 0);
7ef2c6b8
CK
1902 return _regmap_raw_write_impl(map, reg,
1903 map->work_buf +
1904 map->format.reg_bytes +
1905 map->format.pad_bytes,
05669b63
DB
1906 map->format.val_bytes,
1907 false);
07c320dc
AS
1908}
1909
d2a5884a
AS
1910static inline void *_regmap_map_get_context(struct regmap *map)
1911{
d77e7456 1912 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
d2a5884a
AS
1913}
1914
4d2dc095
DP
1915int _regmap_write(struct regmap *map, unsigned int reg,
1916 unsigned int val)
b83a313b 1917{
fb2736bb 1918 int ret;
d2a5884a 1919 void *context = _regmap_map_get_context(map);
b83a313b 1920
515f2261
IN
1921 if (!regmap_writeable(map, reg))
1922 return -EIO;
1923
d2a5884a 1924 if (!map->cache_bypass && !map->defer_caching) {
5d1729e7
DP
1925 ret = regcache_write(map, reg, val);
1926 if (ret != 0)
1927 return ret;
8ae0d7e8
MB
1928 if (map->cache_only) {
1929 map->cache_dirty = true;
5d1729e7 1930 return 0;
8ae0d7e8 1931 }
5d1729e7
DP
1932 }
1933
f7d01359
LT
1934 ret = map->reg_write(context, reg, val);
1935 if (ret == 0) {
1936 if (regmap_should_log(map))
1937 dev_info(map->dev, "%x <= %x\n", reg, val);
1044c180 1938
f7d01359
LT
1939 trace_regmap_reg_write(map, reg, val);
1940 }
fb2736bb 1941
f7d01359 1942 return ret;
b83a313b
MB
1943}
1944
1945/**
2cf8e2df 1946 * regmap_write() - Write a value to a single register
b83a313b
MB
1947 *
1948 * @map: Register map to write to
1949 * @reg: Register to write to
1950 * @val: Value to be written
1951 *
1952 * A value of zero will be returned on success, a negative errno will
1953 * be returned in error cases.
1954 */
1955int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1956{
1957 int ret;
1958
fcac0233 1959 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f
SW
1960 return -EINVAL;
1961
0d4529c5 1962 map->lock(map->lock_arg);
b83a313b
MB
1963
1964 ret = _regmap_write(map, reg, val);
1965
0d4529c5 1966 map->unlock(map->lock_arg);
b83a313b
MB
1967
1968 return ret;
1969}
1970EXPORT_SYMBOL_GPL(regmap_write);
1971
915f441b 1972/**
2cf8e2df 1973 * regmap_write_async() - Write a value to a single register asynchronously
915f441b
MB
1974 *
1975 * @map: Register map to write to
1976 * @reg: Register to write to
1977 * @val: Value to be written
1978 *
1979 * A value of zero will be returned on success, a negative errno will
1980 * be returned in error cases.
1981 */
1982int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1983{
1984 int ret;
1985
fcac0233 1986 if (!IS_ALIGNED(reg, map->reg_stride))
915f441b
MB
1987 return -EINVAL;
1988
1989 map->lock(map->lock_arg);
1990
1991 map->async = true;
1992
1993 ret = _regmap_write(map, reg, val);
1994
1995 map->async = false;
1996
1997 map->unlock(map->lock_arg);
1998
1999 return ret;
2000}
2001EXPORT_SYMBOL_GPL(regmap_write_async);
2002
7ef2c6b8 2003int _regmap_raw_write(struct regmap *map, unsigned int reg,
05669b63 2004 const void *val, size_t val_len, bool noinc)
7ef2c6b8
CK
2005{
2006 size_t val_bytes = map->format.val_bytes;
2007 size_t val_count = val_len / val_bytes;
364e378b
CK
2008 size_t chunk_count, chunk_bytes;
2009 size_t chunk_regs = val_count;
7ef2c6b8
CK
2010 int ret, i;
2011
2012 if (!val_count)
2013 return -EINVAL;
2014
364e378b
CK
2015 if (map->use_single_write)
2016 chunk_regs = 1;
bc647348
MB
2017 else if (map->max_raw_write && val_len > map->max_raw_write)
2018 chunk_regs = map->max_raw_write / val_bytes;
364e378b
CK
2019
2020 chunk_count = val_count / chunk_regs;
2021 chunk_bytes = chunk_regs * val_bytes;
7ef2c6b8
CK
2022
2023 /* Write as many bytes as possible with chunk_size */
2024 for (i = 0; i < chunk_count; i++) {
05669b63 2025 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
7ef2c6b8
CK
2026 if (ret)
2027 return ret;
364e378b
CK
2028
2029 reg += regmap_get_offset(map, chunk_regs);
2030 val += chunk_bytes;
2031 val_len -= chunk_bytes;
7ef2c6b8
CK
2032 }
2033
2034 /* Write remaining bytes */
364e378b 2035 if (val_len)
05669b63 2036 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
7ef2c6b8
CK
2037
2038 return ret;
2039}
2040
b83a313b 2041/**
2cf8e2df 2042 * regmap_raw_write() - Write raw values to one or more registers
b83a313b
MB
2043 *
2044 * @map: Register map to write to
2045 * @reg: Initial register to write to
2046 * @val: Block of data to be written, laid out for direct transmission to the
2047 * device
2048 * @val_len: Length of data pointed to by val.
2049 *
2050 * This function is intended to be used for things like firmware
2051 * download where a large block of data needs to be transferred to the
2052 * device. No formatting will be done on the data provided.
2053 *
2054 * A value of zero will be returned on success, a negative errno will
2055 * be returned in error cases.
2056 */
2057int regmap_raw_write(struct regmap *map, unsigned int reg,
2058 const void *val, size_t val_len)
2059{
2060 int ret;
2061
221ad7f2 2062 if (!regmap_can_raw_write(map))
d2a5884a 2063 return -EINVAL;
851960ba
SW
2064 if (val_len % map->format.val_bytes)
2065 return -EINVAL;
2066
0d4529c5 2067 map->lock(map->lock_arg);
b83a313b 2068
05669b63 2069 ret = _regmap_raw_write(map, reg, val, val_len, false);
b83a313b 2070
0d4529c5 2071 map->unlock(map->lock_arg);
b83a313b
MB
2072
2073 return ret;
2074}
2075EXPORT_SYMBOL_GPL(regmap_raw_write);
2076
c20cc099
LW
2077static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2078 void *val, unsigned int val_len, bool write)
2079{
2080 size_t val_bytes = map->format.val_bytes;
2081 size_t val_count = val_len / val_bytes;
2082 unsigned int lastval;
2083 u8 *u8p;
2084 u16 *u16p;
2085 u32 *u32p;
c20cc099
LW
2086 int ret;
2087 int i;
2088
2089 switch (val_bytes) {
2090 case 1:
2091 u8p = val;
2092 if (write)
2093 lastval = (unsigned int)u8p[val_count - 1];
2094 break;
2095 case 2:
2096 u16p = val;
2097 if (write)
2098 lastval = (unsigned int)u16p[val_count - 1];
2099 break;
2100 case 4:
2101 u32p = val;
2102 if (write)
2103 lastval = (unsigned int)u32p[val_count - 1];
2104 break;
c20cc099
LW
2105 default:
2106 return -EINVAL;
2107 }
2108
2109 /*
2110 * Update the cache with the last value we write, the rest is just
2111 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2112 * sure a single read from the cache will work.
2113 */
2114 if (write) {
2115 if (!map->cache_bypass && !map->defer_caching) {
2116 ret = regcache_write(map, reg, lastval);
2117 if (ret != 0)
2118 return ret;
2119 if (map->cache_only) {
2120 map->cache_dirty = true;
2121 return 0;
2122 }
2123 }
2124 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2125 } else {
2126 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2127 }
2128
2129 if (!ret && regmap_should_log(map)) {
2130 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
b7059927 2131 for (i = 0; i < val_count; i++) {
c20cc099
LW
2132 switch (val_bytes) {
2133 case 1:
2134 pr_cont("%x", u8p[i]);
2135 break;
2136 case 2:
2137 pr_cont("%x", u16p[i]);
2138 break;
2139 case 4:
2140 pr_cont("%x", u32p[i]);
2141 break;
c20cc099
LW
2142 default:
2143 break;
2144 }
b7059927 2145 if (i == (val_count - 1))
c20cc099
LW
2146 pr_cont("]\n");
2147 else
2148 pr_cont(",");
2149 }
2150 }
2151
2152 return 0;
2153}
2154
cdf6b11d 2155/**
1957b92a 2156 * regmap_noinc_write(): Write data to a register without incrementing the
cdf6b11d
BW
2157 * register number
2158 *
2159 * @map: Register map to write to
2160 * @reg: Register to write to
2161 * @val: Pointer to data buffer
2162 * @val_len: Length of output buffer in bytes.
2163 *
2164 * The regmap API usually assumes that bulk bus write operations will write a
2165 * range of registers. Some devices have certain registers for which a write
2166 * operation can write to an internal FIFO.
2167 *
2168 * The target register must be volatile but registers after it can be
2169 * completely unrelated cacheable registers.
2170 *
2171 * This will attempt multiple writes as required to write val_len bytes.
2172 *
2173 * A value of zero will be returned on success, a negative errno will be
2174 * returned in error cases.
2175 */
2176int regmap_noinc_write(struct regmap *map, unsigned int reg,
2177 const void *val, size_t val_len)
2178{
2179 size_t write_len;
2180 int ret;
2181
c20cc099
LW
2182 if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2183 return -EINVAL;
cdf6b11d
BW
2184 if (val_len % map->format.val_bytes)
2185 return -EINVAL;
2186 if (!IS_ALIGNED(reg, map->reg_stride))
2187 return -EINVAL;
2188 if (val_len == 0)
2189 return -EINVAL;
2190
2191 map->lock(map->lock_arg);
2192
2193 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2194 ret = -EINVAL;
2195 goto out_unlock;
2196 }
2197
c20cc099
LW
2198 /*
2199 * Use the accelerated operation if we can. The val drops the const
2200 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2201 */
2202 if (map->bus->reg_noinc_write) {
2203 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2204 goto out_unlock;
2205 }
2206
cdf6b11d
BW
2207 while (val_len) {
2208 if (map->max_raw_write && map->max_raw_write < val_len)
2209 write_len = map->max_raw_write;
2210 else
2211 write_len = val_len;
05669b63 2212 ret = _regmap_raw_write(map, reg, val, write_len, true);
cdf6b11d
BW
2213 if (ret)
2214 goto out_unlock;
2215 val = ((u8 *)val) + write_len;
2216 val_len -= write_len;
2217 }
2218
2219out_unlock:
2220 map->unlock(map->lock_arg);
2221 return ret;
2222}
2223EXPORT_SYMBOL_GPL(regmap_noinc_write);
2224
67252287 2225/**
2cf8e2df
CK
2226 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2227 * register field.
fdf20029
KM
2228 *
2229 * @field: Register field to write to
2230 * @mask: Bitmask to change
2231 * @val: Value to be written
28972eaa
KM
2232 * @change: Boolean indicating if a write was done
2233 * @async: Boolean indicating asynchronously
2234 * @force: Boolean indicating use force update
fdf20029 2235 *
2cf8e2df
CK
2236 * Perform a read/modify/write cycle on the register field with change,
2237 * async, force option.
2238 *
fdf20029
KM
2239 * A value of zero will be returned on success, a negative errno will
2240 * be returned in error cases.
2241 */
28972eaa
KM
2242int regmap_field_update_bits_base(struct regmap_field *field,
2243 unsigned int mask, unsigned int val,
2244 bool *change, bool async, bool force)
fdf20029
KM
2245{
2246 mask = (mask << field->shift) & field->mask;
2247
28972eaa
KM
2248 return regmap_update_bits_base(field->regmap, field->reg,
2249 mask, val << field->shift,
2250 change, async, force);
e874e6c7 2251}
28972eaa 2252EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
e874e6c7 2253
f67be8b7
LC
2254/**
2255 * regmap_field_test_bits() - Check if all specified bits are set in a
2256 * register field.
2257 *
2258 * @field: Register field to operate on
2259 * @bits: Bits to test
2260 *
2261 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2262 * tested bits is not set and 1 if all tested bits are set.
2263 */
2264int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2265{
2266 unsigned int val, ret;
2267
2268 ret = regmap_field_read(field, &val);
2269 if (ret)
2270 return ret;
2271
2272 return (val & bits) == bits;
2273}
2274EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2275
a0102375 2276/**
2cf8e2df
CK
2277 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2278 * register field with port ID
a0102375
KM
2279 *
2280 * @field: Register field to write to
2281 * @id: port ID
2282 * @mask: Bitmask to change
2283 * @val: Value to be written
e126edec
KM
2284 * @change: Boolean indicating if a write was done
2285 * @async: Boolean indicating asynchronously
2286 * @force: Boolean indicating use force update
a0102375
KM
2287 *
2288 * A value of zero will be returned on success, a negative errno will
2289 * be returned in error cases.
2290 */
9fb9b771 2291int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
e126edec
KM
2292 unsigned int mask, unsigned int val,
2293 bool *change, bool async, bool force)
a0102375
KM
2294{
2295 if (id >= field->id_size)
2296 return -EINVAL;
2297
2298 mask = (mask << field->shift) & field->mask;
2299
e126edec
KM
2300 return regmap_update_bits_base(field->regmap,
2301 field->reg + (field->id_offset * id),
2302 mask, val << field->shift,
2303 change, async, force);
a0102375 2304}
e126edec 2305EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
a0102375 2306
2cf8e2df
CK
2307/**
2308 * regmap_bulk_write() - Write multiple registers to the device
8eaeb219
LD
2309 *
2310 * @map: Register map to write to
2311 * @reg: First register to be write from
2312 * @val: Block of data to be written, in native register size for device
2313 * @val_count: Number of registers to write
2314 *
2315 * This function is intended to be used for writing a large block of
31b35e9e 2316 * data to the device either in single transfer or multiple transfer.
8eaeb219
LD
2317 *
2318 * A value of zero will be returned on success, a negative errno will
2319 * be returned in error cases.
2320 */
2321int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2322 size_t val_count)
2323{
2324 int ret = 0, i;
2325 size_t val_bytes = map->format.val_bytes;
8eaeb219 2326
fcac0233 2327 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f 2328 return -EINVAL;
8eaeb219 2329
f4298360 2330 /*
fb44f3ce
CK
2331 * Some devices don't support bulk write, for them we have a series of
2332 * single write operations.
f4298360 2333 */
2a166929 2334 if (!map->write || !map->format.parse_inplace) {
4999e962 2335 map->lock(map->lock_arg);
f4298360
SB
2336 for (i = 0; i < val_count; i++) {
2337 unsigned int ival;
2338
2339 switch (val_bytes) {
2340 case 1:
2341 ival = *(u8 *)(val + (i * val_bytes));
2342 break;
2343 case 2:
2344 ival = *(u16 *)(val + (i * val_bytes));
2345 break;
2346 case 4:
2347 ival = *(u32 *)(val + (i * val_bytes));
2348 break;
f4298360
SB
2349 default:
2350 ret = -EINVAL;
2351 goto out;
2352 }
8eaeb219 2353
ca747be2
XL
2354 ret = _regmap_write(map,
2355 reg + regmap_get_offset(map, i),
2356 ival);
f4298360
SB
2357 if (ret != 0)
2358 goto out;
2359 }
4999e962
TI
2360out:
2361 map->unlock(map->lock_arg);
8eaeb219 2362 } else {
f4298360
SB
2363 void *wval;
2364
f6841d41 2365 wval = kmemdup_array(val, val_count, val_bytes, map->alloc_flags);
b4ecfec5 2366 if (!wval)
4999e962 2367 return -ENOMEM;
b4ecfec5 2368
8eaeb219 2369 for (i = 0; i < val_count * val_bytes; i += val_bytes)
8a819ff8 2370 map->format.parse_inplace(wval + i);
f4298360 2371
7ef2c6b8 2372 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
8eaeb219 2373
8eaeb219 2374 kfree(wval);
f4298360 2375 }
026c99b5
DR
2376
2377 if (!ret)
2378 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2379
8eaeb219
LD
2380 return ret;
2381}
2382EXPORT_SYMBOL_GPL(regmap_bulk_write);
2383
e894c3f4
OAO
2384/*
2385 * _regmap_raw_multi_reg_write()
2386 *
2387 * the (register,newvalue) pairs in regs have not been formatted, but
2388 * they are all in the same page and have been changed to being page
b486afbd 2389 * relative. The page register has been written if that was necessary.
e894c3f4
OAO
2390 */
2391static int _regmap_raw_multi_reg_write(struct regmap *map,
8019ff6c 2392 const struct reg_sequence *regs,
e894c3f4
OAO
2393 size_t num_regs)
2394{
2395 int ret;
2396 void *buf;
2397 int i;
2398 u8 *u8;
2399 size_t val_bytes = map->format.val_bytes;
2400 size_t reg_bytes = map->format.reg_bytes;
2401 size_t pad_bytes = map->format.pad_bytes;
2402 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2403 size_t len = pair_size * num_regs;
2404
f5727cd3
XL
2405 if (!len)
2406 return -EINVAL;
2407
e894c3f4
OAO
2408 buf = kzalloc(len, GFP_KERNEL);
2409 if (!buf)
2410 return -ENOMEM;
2411
2412 /* We have to linearise by hand. */
2413
2414 u8 = buf;
2415
2416 for (i = 0; i < num_regs; i++) {
2f9b660b
MP
2417 unsigned int reg = regs[i].reg;
2418 unsigned int val = regs[i].def;
c6b570d9 2419 trace_regmap_hw_write_start(map, reg, 1);
3f58f6dc 2420 reg = regmap_reg_addr(map, reg);
e894c3f4
OAO
2421 map->format.format_reg(u8, reg, map->reg_shift);
2422 u8 += reg_bytes + pad_bytes;
2423 map->format.format_val(u8, val, 0);
2424 u8 += val_bytes;
2425 }
2426 u8 = buf;
2427 *u8 |= map->write_flag_mask;
2428
d77e7456 2429 ret = map->write(map->bus_context, buf, len);
e894c3f4
OAO
2430
2431 kfree(buf);
2432
2433 for (i = 0; i < num_regs; i++) {
2434 int reg = regs[i].reg;
c6b570d9 2435 trace_regmap_hw_write_done(map, reg, 1);
e894c3f4
OAO
2436 }
2437 return ret;
2438}
2439
2440static unsigned int _regmap_register_page(struct regmap *map,
2441 unsigned int reg,
2442 struct regmap_range_node *range)
2443{
2444 unsigned int win_page = (reg - range->range_min) / range->window_len;
2445
2446 return win_page;
2447}
2448
2449static int _regmap_range_multi_paged_reg_write(struct regmap *map,
8019ff6c 2450 struct reg_sequence *regs,
e894c3f4
OAO
2451 size_t num_regs)
2452{
2453 int ret;
2454 int i, n;
8019ff6c 2455 struct reg_sequence *base;
b48d1398 2456 unsigned int this_page = 0;
2de9d600 2457 unsigned int page_change = 0;
e894c3f4
OAO
2458 /*
2459 * the set of registers are not neccessarily in order, but
2460 * since the order of write must be preserved this algorithm
2de9d600
NP
2461 * chops the set each time the page changes. This also applies
2462 * if there is a delay required at any point in the sequence.
e894c3f4
OAO
2463 */
2464 base = regs;
2465 for (i = 0, n = 0; i < num_regs; i++, n++) {
2466 unsigned int reg = regs[i].reg;
2467 struct regmap_range_node *range;
2468
2469 range = _regmap_range_lookup(map, reg);
2470 if (range) {
2471 unsigned int win_page = _regmap_register_page(map, reg,
2472 range);
2473
2474 if (i == 0)
2475 this_page = win_page;
2476 if (win_page != this_page) {
2477 this_page = win_page;
2de9d600
NP
2478 page_change = 1;
2479 }
2480 }
2481
2482 /* If we have both a page change and a delay make sure to
2483 * write the regs and apply the delay before we change the
2484 * page.
2485 */
2486
2487 if (page_change || regs[i].delay_us) {
2488
2489 /* For situations where the first write requires
2490 * a delay we need to make sure we don't call
2491 * raw_multi_reg_write with n=0
2492 * This can't occur with page breaks as we
2493 * never write on the first iteration
2494 */
2495 if (regs[i].delay_us && i == 0)
2496 n = 1;
2497
e894c3f4
OAO
2498 ret = _regmap_raw_multi_reg_write(map, base, n);
2499 if (ret != 0)
2500 return ret;
2de9d600 2501
21f8e482
DO
2502 if (regs[i].delay_us) {
2503 if (map->can_sleep)
2504 fsleep(regs[i].delay_us);
2505 else
2506 udelay(regs[i].delay_us);
2507 }
2de9d600 2508
e894c3f4
OAO
2509 base += n;
2510 n = 0;
2de9d600
NP
2511
2512 if (page_change) {
2513 ret = _regmap_select_page(map,
2514 &base[n].reg,
2515 range, 1);
2516 if (ret != 0)
2517 return ret;
2518
2519 page_change = 0;
2520 }
2521
e894c3f4 2522 }
2de9d600 2523
e894c3f4
OAO
2524 }
2525 if (n > 0)
2526 return _regmap_raw_multi_reg_write(map, base, n);
2527 return 0;
2528}
2529
1d5b40bc 2530static int _regmap_multi_reg_write(struct regmap *map,
8019ff6c 2531 const struct reg_sequence *regs,
e894c3f4 2532 size_t num_regs)
1d5b40bc 2533{
e894c3f4
OAO
2534 int i;
2535 int ret;
2536
2537 if (!map->can_multi_write) {
2538 for (i = 0; i < num_regs; i++) {
2539 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2540 if (ret != 0)
2541 return ret;
2de9d600 2542
21f8e482
DO
2543 if (regs[i].delay_us) {
2544 if (map->can_sleep)
2545 fsleep(regs[i].delay_us);
2546 else
2547 udelay(regs[i].delay_us);
2548 }
e894c3f4
OAO
2549 }
2550 return 0;
2551 }
2552
2553 if (!map->format.parse_inplace)
2554 return -EINVAL;
2555
2556 if (map->writeable_reg)
2557 for (i = 0; i < num_regs; i++) {
2558 int reg = regs[i].reg;
2559 if (!map->writeable_reg(map->dev, reg))
2560 return -EINVAL;
fcac0233 2561 if (!IS_ALIGNED(reg, map->reg_stride))
e894c3f4
OAO
2562 return -EINVAL;
2563 }
2564
2565 if (!map->cache_bypass) {
2566 for (i = 0; i < num_regs; i++) {
2567 unsigned int val = regs[i].def;
2568 unsigned int reg = regs[i].reg;
2569 ret = regcache_write(map, reg, val);
2570 if (ret) {
2571 dev_err(map->dev,
2572 "Error in caching of register: %x ret: %d\n",
2573 reg, ret);
2574 return ret;
2575 }
2576 }
2577 if (map->cache_only) {
2578 map->cache_dirty = true;
2579 return 0;
2580 }
2581 }
2582
2583 WARN_ON(!map->bus);
1d5b40bc
CK
2584
2585 for (i = 0; i < num_regs; i++) {
e894c3f4
OAO
2586 unsigned int reg = regs[i].reg;
2587 struct regmap_range_node *range;
2de9d600
NP
2588
2589 /* Coalesce all the writes between a page break or a delay
2590 * in a sequence
2591 */
e894c3f4 2592 range = _regmap_range_lookup(map, reg);
2de9d600 2593 if (range || regs[i].delay_us) {
8019ff6c
NP
2594 size_t len = sizeof(struct reg_sequence)*num_regs;
2595 struct reg_sequence *base = kmemdup(regs, len,
e894c3f4
OAO
2596 GFP_KERNEL);
2597 if (!base)
2598 return -ENOMEM;
2599 ret = _regmap_range_multi_paged_reg_write(map, base,
2600 num_regs);
2601 kfree(base);
2602
1d5b40bc
CK
2603 return ret;
2604 }
2605 }
e894c3f4 2606 return _regmap_raw_multi_reg_write(map, regs, num_regs);
1d5b40bc
CK
2607}
2608
2cf8e2df
CK
2609/**
2610 * regmap_multi_reg_write() - Write multiple registers to the device
e33fabd3
AO
2611 *
2612 * @map: Register map to write to
2613 * @regs: Array of structures containing register,value to be written
2614 * @num_regs: Number of registers to write
2615 *
2cf8e2df
CK
2616 * Write multiple registers to the device where the set of register, value
2617 * pairs are supplied in any order, possibly not all in a single range.
2618 *
e894c3f4 2619 * The 'normal' block write mode will send ultimately send data on the
2cf8e2df 2620 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
e894c3f4
OAO
2621 * addressed. However, this alternative block multi write mode will send
2622 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2623 * must of course support the mode.
e33fabd3 2624 *
e894c3f4
OAO
2625 * A value of zero will be returned on success, a negative errno will be
2626 * returned in error cases.
e33fabd3 2627 */
8019ff6c 2628int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
f7e2cec0 2629 int num_regs)
e33fabd3 2630{
1d5b40bc 2631 int ret;
e33fabd3
AO
2632
2633 map->lock(map->lock_arg);
2634
1d5b40bc
CK
2635 ret = _regmap_multi_reg_write(map, regs, num_regs);
2636
e33fabd3
AO
2637 map->unlock(map->lock_arg);
2638
2639 return ret;
2640}
2641EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2642
2cf8e2df
CK
2643/**
2644 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2645 * device but not the cache
e33fabd3
AO
2646 *
2647 * @map: Register map to write to
2648 * @regs: Array of structures containing register,value to be written
2649 * @num_regs: Number of registers to write
2650 *
2cf8e2df
CK
2651 * Write multiple registers to the device but not the cache where the set
2652 * of register are supplied in any order.
2653 *
e33fabd3
AO
2654 * This function is intended to be used for writing a large block of data
2655 * atomically to the device in single transfer for those I2C client devices
2656 * that implement this alternative block write mode.
2657 *
2658 * A value of zero will be returned on success, a negative errno will
2659 * be returned in error cases.
2660 */
1d5b40bc 2661int regmap_multi_reg_write_bypassed(struct regmap *map,
8019ff6c 2662 const struct reg_sequence *regs,
1d5b40bc 2663 int num_regs)
e33fabd3 2664{
1d5b40bc
CK
2665 int ret;
2666 bool bypass;
e33fabd3
AO
2667
2668 map->lock(map->lock_arg);
2669
1d5b40bc
CK
2670 bypass = map->cache_bypass;
2671 map->cache_bypass = true;
2672
2673 ret = _regmap_multi_reg_write(map, regs, num_regs);
2674
2675 map->cache_bypass = bypass;
2676
e33fabd3
AO
2677 map->unlock(map->lock_arg);
2678
2679 return ret;
2680}
1d5b40bc 2681EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
e33fabd3 2682
0d509f2b 2683/**
2cf8e2df
CK
2684 * regmap_raw_write_async() - Write raw values to one or more registers
2685 * asynchronously
0d509f2b
MB
2686 *
2687 * @map: Register map to write to
2688 * @reg: Initial register to write to
2689 * @val: Block of data to be written, laid out for direct transmission to the
2690 * device. Must be valid until regmap_async_complete() is called.
2691 * @val_len: Length of data pointed to by val.
2692 *
2693 * This function is intended to be used for things like firmware
2694 * download where a large block of data needs to be transferred to the
2695 * device. No formatting will be done on the data provided.
2696 *
2697 * If supported by the underlying bus the write will be scheduled
2698 * asynchronously, helping maximise I/O speed on higher speed buses
2699 * like SPI. regmap_async_complete() can be called to ensure that all
2700 * asynchrnous writes have been completed.
2701 *
2702 * A value of zero will be returned on success, a negative errno will
2703 * be returned in error cases.
2704 */
2705int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2706 const void *val, size_t val_len)
2707{
2708 int ret;
2709
2710 if (val_len % map->format.val_bytes)
2711 return -EINVAL;
fcac0233 2712 if (!IS_ALIGNED(reg, map->reg_stride))
0d509f2b
MB
2713 return -EINVAL;
2714
2715 map->lock(map->lock_arg);
2716
0a819809
MB
2717 map->async = true;
2718
05669b63 2719 ret = _regmap_raw_write(map, reg, val, val_len, false);
0a819809
MB
2720
2721 map->async = false;
0d509f2b
MB
2722
2723 map->unlock(map->lock_arg);
2724
2725 return ret;
2726}
2727EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2728
b83a313b 2729static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
40033248 2730 unsigned int val_len, bool noinc)
b83a313b 2731{
98bc7dfd 2732 struct regmap_range_node *range;
b83a313b
MB
2733 int ret;
2734
d77e7456 2735 if (!map->read)
bb2bb45d
MB
2736 return -EINVAL;
2737
98bc7dfd
MB
2738 range = _regmap_range_lookup(map, reg);
2739 if (range) {
2740 ret = _regmap_select_page(map, &reg, range,
40033248 2741 noinc ? 1 : val_len / map->format.val_bytes);
0ff3e62f 2742 if (ret != 0)
98bc7dfd
MB
2743 return ret;
2744 }
6863ca62 2745
3f58f6dc 2746 reg = regmap_reg_addr(map, reg);
d939fb9a 2747 map->format.format_reg(map->work_buf, reg, map->reg_shift);
f50e38c9
TL
2748 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2749 map->read_flag_mask);
c6b570d9 2750 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
fb2736bb 2751
d77e7456
MV
2752 ret = map->read(map->bus_context, map->work_buf,
2753 map->format.reg_bytes + map->format.pad_bytes,
2754 val, val_len);
b83a313b 2755
c6b570d9 2756 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
fb2736bb
MB
2757
2758 return ret;
b83a313b
MB
2759}
2760
3ac17037
BB
2761static int _regmap_bus_reg_read(void *context, unsigned int reg,
2762 unsigned int *val)
2763{
2764 struct regmap *map = context;
f18ee501
MB
2765 struct regmap_range_node *range;
2766 int ret;
2767
2768 range = _regmap_range_lookup(map, reg);
2769 if (range) {
2770 ret = _regmap_select_page(map, &reg, range, 1);
2771 if (ret != 0)
2772 return ret;
2773 }
3ac17037 2774
3f58f6dc 2775 reg = regmap_reg_addr(map, reg);
3ac17037
BB
2776 return map->bus->reg_read(map->bus_context, reg, val);
2777}
2778
ad278406
AS
2779static int _regmap_bus_read(void *context, unsigned int reg,
2780 unsigned int *val)
2781{
2782 int ret;
2783 struct regmap *map = context;
4c90f297
KA
2784 void *work_val = map->work_buf + map->format.reg_bytes +
2785 map->format.pad_bytes;
ad278406
AS
2786
2787 if (!map->format.parse_val)
2788 return -EINVAL;
2789
40033248 2790 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
ad278406 2791 if (ret == 0)
4c90f297 2792 *val = map->format.parse_val(work_val);
ad278406
AS
2793
2794 return ret;
2795}
2796
b83a313b
MB
2797static int _regmap_read(struct regmap *map, unsigned int reg,
2798 unsigned int *val)
2799{
2800 int ret;
d2a5884a
AS
2801 void *context = _regmap_map_get_context(map);
2802
5d1729e7
DP
2803 if (!map->cache_bypass) {
2804 ret = regcache_read(map, reg, val);
2805 if (ret == 0)
2806 return 0;
2807 }
2808
2809 if (map->cache_only)
2810 return -EBUSY;
2811
3e47b887
MB
2812 if (!regmap_readable(map, reg))
2813 return -EIO;
2814
d2a5884a 2815 ret = map->reg_read(context, reg, val);
fb2736bb 2816 if (ret == 0) {
95093762 2817 if (regmap_should_log(map))
1044c180 2818 dev_info(map->dev, "%x => %x\n", reg, *val);
1044c180 2819
c6b570d9 2820 trace_regmap_reg_read(map, reg, *val);
b83a313b 2821
ad278406
AS
2822 if (!map->cache_bypass)
2823 regcache_write(map, reg, *val);
2824 }
f2985367 2825
b83a313b
MB
2826 return ret;
2827}
2828
2829/**
2cf8e2df 2830 * regmap_read() - Read a value from a single register
b83a313b 2831 *
0093380c 2832 * @map: Register map to read from
b83a313b
MB
2833 * @reg: Register to be read from
2834 * @val: Pointer to store read value
2835 *
2836 * A value of zero will be returned on success, a negative errno will
2837 * be returned in error cases.
2838 */
2839int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2840{
2841 int ret;
2842
fcac0233 2843 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f
SW
2844 return -EINVAL;
2845
0d4529c5 2846 map->lock(map->lock_arg);
b83a313b
MB
2847
2848 ret = _regmap_read(map, reg, val);
2849
0d4529c5 2850 map->unlock(map->lock_arg);
b83a313b
MB
2851
2852 return ret;
2853}
2854EXPORT_SYMBOL_GPL(regmap_read);
2855
70ee853e
RF
2856/**
2857 * regmap_read_bypassed() - Read a value from a single register direct
2858 * from the device, bypassing the cache
2859 *
2860 * @map: Register map to read from
2861 * @reg: Register to be read from
2862 * @val: Pointer to store read value
2863 *
2864 * A value of zero will be returned on success, a negative errno will
2865 * be returned in error cases.
2866 */
2867int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val)
2868{
2869 int ret;
2870 bool bypass, cache_only;
2871
2872 if (!IS_ALIGNED(reg, map->reg_stride))
2873 return -EINVAL;
2874
2875 map->lock(map->lock_arg);
2876
2877 bypass = map->cache_bypass;
2878 cache_only = map->cache_only;
2879 map->cache_bypass = true;
2880 map->cache_only = false;
2881
2882 ret = _regmap_read(map, reg, val);
2883
2884 map->cache_bypass = bypass;
2885 map->cache_only = cache_only;
2886
2887 map->unlock(map->lock_arg);
2888
2889 return ret;
2890}
2891EXPORT_SYMBOL_GPL(regmap_read_bypassed);
2892
b83a313b 2893/**
2cf8e2df 2894 * regmap_raw_read() - Read raw data from the device
b83a313b 2895 *
0093380c 2896 * @map: Register map to read from
b83a313b
MB
2897 * @reg: First register to be read from
2898 * @val: Pointer to store read value
2899 * @val_len: Size of data to read
2900 *
2901 * A value of zero will be returned on success, a negative errno will
2902 * be returned in error cases.
2903 */
2904int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2905 size_t val_len)
2906{
b8fb5ab1
MB
2907 size_t val_bytes = map->format.val_bytes;
2908 size_t val_count = val_len / val_bytes;
2909 unsigned int v;
2910 int ret, i;
04e016ad 2911
851960ba
SW
2912 if (val_len % map->format.val_bytes)
2913 return -EINVAL;
fcac0233 2914 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f 2915 return -EINVAL;
fa3eec77
MB
2916 if (val_count == 0)
2917 return -EINVAL;
851960ba 2918
0d4529c5 2919 map->lock(map->lock_arg);
b83a313b 2920
b8fb5ab1
MB
2921 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2922 map->cache_type == REGCACHE_NONE) {
1b079ca2
CK
2923 size_t chunk_count, chunk_bytes;
2924 size_t chunk_regs = val_count;
0645ba43 2925
99e8dd39
CK
2926 if (!map->cache_bypass && map->cache_only) {
2927 ret = -EBUSY;
2928 goto out;
2929 }
2930
d77e7456 2931 if (!map->read) {
9a16ea90
MP
2932 ret = -ENOTSUPP;
2933 goto out;
2934 }
2935
1b079ca2
CK
2936 if (map->use_single_read)
2937 chunk_regs = 1;
2938 else if (map->max_raw_read && val_len > map->max_raw_read)
2939 chunk_regs = map->max_raw_read / val_bytes;
9a16ea90 2940
1b079ca2
CK
2941 chunk_count = val_count / chunk_regs;
2942 chunk_bytes = chunk_regs * val_bytes;
2943
2944 /* Read bytes that fit into whole chunks */
0645ba43 2945 for (i = 0; i < chunk_count; i++) {
40033248 2946 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
0645ba43 2947 if (ret != 0)
1b079ca2
CK
2948 goto out;
2949
2950 reg += regmap_get_offset(map, chunk_regs);
2951 val += chunk_bytes;
2952 val_len -= chunk_bytes;
0645ba43 2953 }
b8fb5ab1 2954
0645ba43 2955 /* Read remaining bytes */
1b079ca2 2956 if (val_len) {
40033248 2957 ret = _regmap_raw_read(map, reg, val, val_len, false);
0645ba43 2958 if (ret != 0)
1b079ca2 2959 goto out;
0645ba43 2960 }
b8fb5ab1
MB
2961 } else {
2962 /* Otherwise go word by word for the cache; should be low
2963 * cost as we expect to hit the cache.
2964 */
2965 for (i = 0; i < val_count; i++) {
ca747be2 2966 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
f01ee60f 2967 &v);
b8fb5ab1
MB
2968 if (ret != 0)
2969 goto out;
2970
d939fb9a 2971 map->format.format_val(val + (i * val_bytes), v, 0);
b8fb5ab1
MB
2972 }
2973 }
b83a313b 2974
b8fb5ab1 2975 out:
0d4529c5 2976 map->unlock(map->lock_arg);
b83a313b
MB
2977
2978 return ret;
2979}
2980EXPORT_SYMBOL_GPL(regmap_raw_read);
2981
67252287 2982/**
74fe7b55
CDL
2983 * regmap_noinc_read(): Read data from a register without incrementing the
2984 * register number
2985 *
2986 * @map: Register map to read from
2987 * @reg: Register to read from
2988 * @val: Pointer to data buffer
2989 * @val_len: Length of output buffer in bytes.
2990 *
d77e7456 2991 * The regmap API usually assumes that bulk read operations will read a
74fe7b55
CDL
2992 * range of registers. Some devices have certain registers for which a read
2993 * operation read will read from an internal FIFO.
2994 *
2995 * The target register must be volatile but registers after it can be
2996 * completely unrelated cacheable registers.
2997 *
2998 * This will attempt multiple reads as required to read val_len bytes.
2999 *
3000 * A value of zero will be returned on success, a negative errno will be
3001 * returned in error cases.
3002 */
3003int regmap_noinc_read(struct regmap *map, unsigned int reg,
3004 void *val, size_t val_len)
3005{
3006 size_t read_len;
3007 int ret;
3008
c42e99a3
JMC
3009 if (!map->read)
3010 return -ENOTSUPP;
3011
74fe7b55
CDL
3012 if (val_len % map->format.val_bytes)
3013 return -EINVAL;
3014 if (!IS_ALIGNED(reg, map->reg_stride))
3015 return -EINVAL;
3016 if (val_len == 0)
3017 return -EINVAL;
3018
3019 map->lock(map->lock_arg);
3020
3021 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3022 ret = -EINVAL;
3023 goto out_unlock;
3024 }
3025
99e8dd39
CK
3026 /*
3027 * We have not defined the FIFO semantics for cache, as the
3028 * cache is just one value deep. Should we return the last
3029 * written value? Just avoid this by always reading the FIFO
3030 * even when using cache. Cache only will not work.
3031 */
3032 if (!map->cache_bypass && map->cache_only) {
3033 ret = -EBUSY;
3034 goto out_unlock;
3035 }
3036
c20cc099
LW
3037 /* Use the accelerated operation if we can */
3038 if (map->bus->reg_noinc_read) {
c20cc099
LW
3039 ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3040 goto out_unlock;
3041 }
3042
74fe7b55
CDL
3043 while (val_len) {
3044 if (map->max_raw_read && map->max_raw_read < val_len)
3045 read_len = map->max_raw_read;
3046 else
3047 read_len = val_len;
40033248 3048 ret = _regmap_raw_read(map, reg, val, read_len, true);
74fe7b55
CDL
3049 if (ret)
3050 goto out_unlock;
3051 val = ((u8 *)val) + read_len;
3052 val_len -= read_len;
3053 }
3054
3055out_unlock:
3056 map->unlock(map->lock_arg);
3057 return ret;
3058}
3059EXPORT_SYMBOL_GPL(regmap_noinc_read);
3060
3061/**
3062 * regmap_field_read(): Read a value to a single register field
67252287
SK
3063 *
3064 * @field: Register field to read from
3065 * @val: Pointer to store read value
3066 *
3067 * A value of zero will be returned on success, a negative errno will
3068 * be returned in error cases.
3069 */
3070int regmap_field_read(struct regmap_field *field, unsigned int *val)
3071{
3072 int ret;
3073 unsigned int reg_val;
3074 ret = regmap_read(field->regmap, field->reg, &reg_val);
3075 if (ret != 0)
3076 return ret;
3077
3078 reg_val &= field->mask;
3079 reg_val >>= field->shift;
3080 *val = reg_val;
3081
3082 return ret;
3083}
3084EXPORT_SYMBOL_GPL(regmap_field_read);
3085
a0102375 3086/**
2cf8e2df 3087 * regmap_fields_read() - Read a value to a single register field with port ID
a0102375
KM
3088 *
3089 * @field: Register field to read from
3090 * @id: port ID
3091 * @val: Pointer to store read value
3092 *
3093 * A value of zero will be returned on success, a negative errno will
3094 * be returned in error cases.
3095 */
3096int regmap_fields_read(struct regmap_field *field, unsigned int id,
3097 unsigned int *val)
3098{
3099 int ret;
3100 unsigned int reg_val;
3101
3102 if (id >= field->id_size)
3103 return -EINVAL;
3104
3105 ret = regmap_read(field->regmap,
3106 field->reg + (field->id_offset * id),
3107 &reg_val);
3108 if (ret != 0)
3109 return ret;
3110
3111 reg_val &= field->mask;
3112 reg_val >>= field->shift;
3113 *val = reg_val;
3114
3115 return ret;
3116}
3117EXPORT_SYMBOL_GPL(regmap_fields_read);
3118
3c1ff93b 3119static int _regmap_bulk_read(struct regmap *map, unsigned int reg,
eb708cd6 3120 const unsigned int *regs, void *val, size_t val_count)
3c1ff93b
GR
3121{
3122 u32 *u32 = val;
3123 u16 *u16 = val;
3124 u8 *u8 = val;
3125 int ret, i;
3126
3127 map->lock(map->lock_arg);
3128
3129 for (i = 0; i < val_count; i++) {
3130 unsigned int ival;
3131
3132 if (regs) {
3133 if (!IS_ALIGNED(regs[i], map->reg_stride)) {
3134 ret = -EINVAL;
3135 goto out;
3136 }
3137 ret = _regmap_read(map, regs[i], &ival);
3138 } else {
3139 ret = _regmap_read(map, reg + regmap_get_offset(map, i), &ival);
3140 }
3141 if (ret != 0)
3142 goto out;
3143
3144 switch (map->format.val_bytes) {
3145 case 4:
3146 u32[i] = ival;
3147 break;
3148 case 2:
3149 u16[i] = ival;
3150 break;
3151 case 1:
3152 u8[i] = ival;
3153 break;
3154 default:
3155 ret = -EINVAL;
3156 goto out;
3157 }
3158 }
3159out:
3160 map->unlock(map->lock_arg);
3161 return ret;
3162}
3163
b83a313b 3164/**
3c1ff93b 3165 * regmap_bulk_read() - Read multiple sequential registers from the device
b83a313b 3166 *
0093380c 3167 * @map: Register map to read from
b83a313b
MB
3168 * @reg: First register to be read from
3169 * @val: Pointer to store read value, in native register size for device
3170 * @val_count: Number of registers to read
3171 *
3172 * A value of zero will be returned on success, a negative errno will
3173 * be returned in error cases.
3174 */
3175int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3176 size_t val_count)
3177{
3178 int ret, i;
3179 size_t val_bytes = map->format.val_bytes;
82cd9965 3180 bool vol = regmap_volatile_range(map, reg, val_count);
5d1729e7 3181
fcac0233 3182 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f 3183 return -EINVAL;
186ba2ee
CK
3184 if (val_count == 0)
3185 return -EINVAL;
b83a313b 3186
ea50e2a1 3187 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
0645ba43
CK
3188 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3189 if (ret != 0)
3190 return ret;
de2d808f
MB
3191
3192 for (i = 0; i < val_count * val_bytes; i += val_bytes)
8a819ff8 3193 map->format.parse_inplace(val + i);
de2d808f 3194 } else {
3c1ff93b 3195 ret = _regmap_bulk_read(map, reg, NULL, val, val_count);
de2d808f 3196 }
026c99b5
DR
3197 if (!ret)
3198 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
186ba2ee 3199 return ret;
b83a313b
MB
3200}
3201EXPORT_SYMBOL_GPL(regmap_bulk_read);
3202
3c1ff93b
GR
3203/**
3204 * regmap_multi_reg_read() - Read multiple non-sequential registers from the device
3205 *
3206 * @map: Register map to read from
3207 * @regs: Array of registers to read from
3208 * @val: Pointer to store read value, in native register size for device
3209 * @val_count: Number of registers to read
3210 *
3211 * A value of zero will be returned on success, a negative errno will
3212 * be returned in error cases.
3213 */
eb708cd6 3214int regmap_multi_reg_read(struct regmap *map, const unsigned int *regs, void *val,
3c1ff93b
GR
3215 size_t val_count)
3216{
3217 if (val_count == 0)
3218 return -EINVAL;
3219
3220 return _regmap_bulk_read(map, 0, regs, val, val_count);
3221}
3222EXPORT_SYMBOL_GPL(regmap_multi_reg_read);
3223
018690d3
MB
3224static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3225 unsigned int mask, unsigned int val,
7ff0589c 3226 bool *change, bool force_write)
b83a313b
MB
3227{
3228 int ret;
d91e8db2 3229 unsigned int tmp, orig;
b83a313b 3230
77792b11
JR
3231 if (change)
3232 *change = false;
b83a313b 3233
77792b11 3234 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3f58f6dc 3235 reg = regmap_reg_addr(map, reg);
77792b11
JR
3236 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3237 if (ret == 0 && change)
e2f74dc6 3238 *change = true;
018690d3 3239 } else {
77792b11
JR
3240 ret = _regmap_read(map, reg, &orig);
3241 if (ret != 0)
3242 return ret;
3243
3244 tmp = orig & ~mask;
3245 tmp |= val & mask;
3246
b629c698 3247 if (force_write || (tmp != orig) || map->force_write_field) {
77792b11
JR
3248 ret = _regmap_write(map, reg, tmp);
3249 if (ret == 0 && change)
3250 *change = true;
3251 }
018690d3 3252 }
b83a313b 3253
b83a313b
MB
3254 return ret;
3255}
018690d3
MB
3256
3257/**
2cf8e2df 3258 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
915f441b
MB
3259 *
3260 * @map: Register map to update
3261 * @reg: Register to update
3262 * @mask: Bitmask to change
3263 * @val: New value for bitmask
3264 * @change: Boolean indicating if a write was done
91d31b9f
KM
3265 * @async: Boolean indicating asynchronously
3266 * @force: Boolean indicating use force update
915f441b 3267 *
2cf8e2df
CK
3268 * Perform a read/modify/write cycle on a register map with change, async, force
3269 * options.
3270 *
3271 * If async is true:
3272 *
3273 * With most buses the read must be done synchronously so this is most useful
3274 * for devices with a cache which do not need to interact with the hardware to
3275 * determine the current register value.
915f441b
MB
3276 *
3277 * Returns zero for success, a negative number on error.
3278 */
91d31b9f
KM
3279int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3280 unsigned int mask, unsigned int val,
3281 bool *change, bool async, bool force)
915f441b
MB
3282{
3283 int ret;
3284
3285 map->lock(map->lock_arg);
3286
91d31b9f 3287 map->async = async;
915f441b 3288
91d31b9f 3289 ret = _regmap_update_bits(map, reg, mask, val, change, force);
915f441b
MB
3290
3291 map->async = false;
3292
3293 map->unlock(map->lock_arg);
3294
3295 return ret;
3296}
91d31b9f 3297EXPORT_SYMBOL_GPL(regmap_update_bits_base);
915f441b 3298
aa2ff9db
BG
3299/**
3300 * regmap_test_bits() - Check if all specified bits are set in a register.
3301 *
3302 * @map: Register map to operate on
3303 * @reg: Register to read from
3304 * @bits: Bits to test
3305 *
e680a409
BG
3306 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3307 * bits are set and a negative error number if the underlying regmap_read()
3308 * fails.
aa2ff9db
BG
3309 */
3310int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3311{
3312 unsigned int val, ret;
3313
3314 ret = regmap_read(map, reg, &val);
3315 if (ret)
3316 return ret;
3317
3318 return (val & bits) == bits;
3319}
3320EXPORT_SYMBOL_GPL(regmap_test_bits);
3321
0d509f2b
MB
3322void regmap_async_complete_cb(struct regmap_async *async, int ret)
3323{
3324 struct regmap *map = async->map;
3325 bool wake;
3326
c6b570d9 3327 trace_regmap_async_io_complete(map);
fe7d4ccd 3328
0d509f2b 3329 spin_lock(&map->async_lock);
7e09a979 3330 list_move(&async->list, &map->async_free);
0d509f2b
MB
3331 wake = list_empty(&map->async_list);
3332
3333 if (ret != 0)
3334 map->async_ret = ret;
3335
3336 spin_unlock(&map->async_lock);
3337
0d509f2b
MB
3338 if (wake)
3339 wake_up(&map->async_waitq);
3340}
f804fb56 3341EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
0d509f2b
MB
3342
3343static int regmap_async_is_done(struct regmap *map)
3344{
3345 unsigned long flags;
3346 int ret;
3347
3348 spin_lock_irqsave(&map->async_lock, flags);
3349 ret = list_empty(&map->async_list);
3350 spin_unlock_irqrestore(&map->async_lock, flags);
3351
3352 return ret;
3353}
3354
3355/**
2cf8e2df 3356 * regmap_async_complete - Ensure all asynchronous I/O has completed.
0d509f2b
MB
3357 *
3358 * @map: Map to operate on.
3359 *
3360 * Blocks until any pending asynchronous I/O has completed. Returns
3361 * an error code for any failed I/O operations.
3362 */
3363int regmap_async_complete(struct regmap *map)
3364{
3365 unsigned long flags;
3366 int ret;
3367
3368 /* Nothing to do with no async support */
f2e055e7 3369 if (!map->bus || !map->bus->async_write)
0d509f2b
MB
3370 return 0;
3371
c6b570d9 3372 trace_regmap_async_complete_start(map);
fe7d4ccd 3373
0d509f2b
MB
3374 wait_event(map->async_waitq, regmap_async_is_done(map));
3375
3376 spin_lock_irqsave(&map->async_lock, flags);
3377 ret = map->async_ret;
3378 map->async_ret = 0;
3379 spin_unlock_irqrestore(&map->async_lock, flags);
3380
c6b570d9 3381 trace_regmap_async_complete_done(map);
fe7d4ccd 3382
0d509f2b
MB
3383 return ret;
3384}
f88948ef 3385EXPORT_SYMBOL_GPL(regmap_async_complete);
0d509f2b 3386
22f0d90a 3387/**
2cf8e2df
CK
3388 * regmap_register_patch - Register and apply register updates to be applied
3389 * on device initialistion
22f0d90a
MB
3390 *
3391 * @map: Register map to apply updates to.
3392 * @regs: Values to update.
3393 * @num_regs: Number of entries in regs.
3394 *
3395 * Register a set of register updates to be applied to the device
3396 * whenever the device registers are synchronised with the cache and
3397 * apply them immediately. Typically this is used to apply
3398 * corrections to be applied to the device defaults on startup, such
3399 * as the updates some vendors provide to undocumented registers.
56fb1c74
MB
3400 *
3401 * The caller must ensure that this function cannot be called
3402 * concurrently with either itself or regcache_sync().
22f0d90a 3403 */
8019ff6c 3404int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
22f0d90a
MB
3405 int num_regs)
3406{
8019ff6c 3407 struct reg_sequence *p;
6bf13103 3408 int ret;
22f0d90a
MB
3409 bool bypass;
3410
bd60e381
CZ
3411 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3412 num_regs))
3413 return 0;
3414
aab13ebc 3415 p = krealloc(map->patch,
8019ff6c 3416 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
aab13ebc
MB
3417 GFP_KERNEL);
3418 if (p) {
3419 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3420 map->patch = p;
3421 map->patch_regs += num_regs;
22f0d90a 3422 } else {
56fb1c74 3423 return -ENOMEM;
22f0d90a
MB
3424 }
3425
0d4529c5 3426 map->lock(map->lock_arg);
22f0d90a
MB
3427
3428 bypass = map->cache_bypass;
3429
3430 map->cache_bypass = true;
1a25f261 3431 map->async = true;
22f0d90a 3432
6bf13103 3433 ret = _regmap_multi_reg_write(map, regs, num_regs);
22f0d90a 3434
1a25f261 3435 map->async = false;
22f0d90a
MB
3436 map->cache_bypass = bypass;
3437
0d4529c5 3438 map->unlock(map->lock_arg);
22f0d90a 3439
1a25f261
MB
3440 regmap_async_complete(map);
3441
22f0d90a
MB
3442 return ret;
3443}
3444EXPORT_SYMBOL_GPL(regmap_register_patch);
3445
2cf8e2df
CK
3446/**
3447 * regmap_get_val_bytes() - Report the size of a register value
3448 *
3449 * @map: Register map to operate on.
a6539c32
MB
3450 *
3451 * Report the size of a register value, mainly intended to for use by
3452 * generic infrastructure built on top of regmap.
3453 */
3454int regmap_get_val_bytes(struct regmap *map)
3455{
3456 if (map->format.format_write)
3457 return -EINVAL;
3458
3459 return map->format.val_bytes;
3460}
3461EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3462
668abc72 3463/**
2cf8e2df
CK
3464 * regmap_get_max_register() - Report the max register value
3465 *
3466 * @map: Register map to operate on.
668abc72
SK
3467 *
3468 * Report the max register value, mainly intended to for use by
3469 * generic infrastructure built on top of regmap.
3470 */
3471int regmap_get_max_register(struct regmap *map)
3472{
0ec74ad3 3473 return map->max_register_is_set ? map->max_register : -EINVAL;
668abc72
SK
3474}
3475EXPORT_SYMBOL_GPL(regmap_get_max_register);
3476
a2f776cb 3477/**
2cf8e2df
CK
3478 * regmap_get_reg_stride() - Report the register address stride
3479 *
3480 * @map: Register map to operate on.
a2f776cb
SK
3481 *
3482 * Report the register address stride, mainly intended to for use by
3483 * generic infrastructure built on top of regmap.
3484 */
3485int regmap_get_reg_stride(struct regmap *map)
3486{
3487 return map->reg_stride;
3488}
3489EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3490
a6d99022
MW
3491/**
3492 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3493 *
3494 * @map: Register map to operate on.
3495 *
3496 * Returns true if an access to the register might sleep, else false.
3497 */
3498bool regmap_might_sleep(struct regmap *map)
3499{
3500 return map->can_sleep;
3501}
3502EXPORT_SYMBOL_GPL(regmap_might_sleep);
3503
13ff50c8
NC
3504int regmap_parse_val(struct regmap *map, const void *buf,
3505 unsigned int *val)
3506{
3507 if (!map->format.parse_val)
3508 return -EINVAL;
3509
3510 *val = map->format.parse_val(buf);
3511
3512 return 0;
3513}
3514EXPORT_SYMBOL_GPL(regmap_parse_val);
3515
31244e39
MB
3516static int __init regmap_initcall(void)
3517{
3518 regmap_debugfs_initcall();
3519
3520 return 0;
3521}
3522postcore_initcall(regmap_initcall);