Merge tag 'arm-fixes-6.11-3' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-block.git] / drivers / base / regmap / regmap.c
CommitLineData
37613fa5
GKH
1// SPDX-License-Identifier: GPL-2.0
2//
3// Register map access API
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
b83a313b 8
f5d6eba7 9#include <linux/device.h>
b83a313b 10#include <linux/slab.h>
19694b5e 11#include <linux/export.h>
b83a313b
MB
12#include <linux/mutex.h>
13#include <linux/err.h>
c916d6ef 14#include <linux/property.h>
6863ca62 15#include <linux/rbtree.h>
30b2a553 16#include <linux/sched.h>
2de9d600 17#include <linux/delay.h>
ca747be2 18#include <linux/log2.h>
8698b936 19#include <linux/hwspinlock.h>
53d86095 20#include <asm/unaligned.h>
b83a313b 21
fb2736bb 22#define CREATE_TRACE_POINTS
f58078da 23#include "trace.h"
fb2736bb 24
93de9124 25#include "internal.h"
b83a313b 26
1044c180
MB
27/*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33#undef LOG_DEVICE
34
95093762
BD
35#ifdef LOG_DEVICE
36static inline bool regmap_should_log(struct regmap *map)
37{
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39}
40#else
41static inline bool regmap_should_log(struct regmap *map) { return false; }
42#endif
43
44
1044c180
MB
45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
7ff0589c 47 bool *change, bool force_write);
1044c180 48
3ac17037
BB
49static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
ad278406
AS
51static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
07c320dc
AS
53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
3ac17037
BB
55static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
07c320dc
AS
57static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
ad278406 59
76aad392
DC
60bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63{
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71}
72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
154881e5
MB
74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76aad392
DC
76{
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87}
154881e5 88EXPORT_SYMBOL_GPL(regmap_check_range_table);
76aad392 89
8de2f081
MB
90bool regmap_writeable(struct regmap *map, unsigned int reg)
91{
0ec74ad3 92 if (map->max_register_is_set && reg > map->max_register)
8de2f081
MB
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
76aad392 98 if (map->wr_table)
154881e5 99 return regmap_check_range_table(map, reg, map->wr_table);
76aad392 100
8de2f081
MB
101 return true;
102}
103
1ea975cf
CB
104bool regmap_cached(struct regmap *map, unsigned int reg)
105{
106 int ret;
107 unsigned int val;
108
71df1793 109 if (map->cache_type == REGCACHE_NONE)
1ea975cf
CB
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
0ec74ad3 115 if (map->max_register_is_set && reg > map->max_register)
1ea975cf
CB
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125}
126
8de2f081
MB
127bool regmap_readable(struct regmap *map, unsigned int reg)
128{
04dc91ce
LPC
129 if (!map->reg_read)
130 return false;
131
0ec74ad3 132 if (map->max_register_is_set && reg > map->max_register)
8de2f081
MB
133 return false;
134
4191f197
WS
135 if (map->format.format_write)
136 return false;
137
8de2f081
MB
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
76aad392 141 if (map->rd_table)
154881e5 142 return regmap_check_range_table(map, reg, map->rd_table);
76aad392 143
8de2f081
MB
144 return true;
145}
146
147bool regmap_volatile(struct regmap *map, unsigned int reg)
148{
5844a8b9 149 if (!map->format.format_write && !regmap_readable(map, reg))
8de2f081
MB
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
76aad392 155 if (map->volatile_table)
154881e5 156 return regmap_check_range_table(map, reg, map->volatile_table);
76aad392 157
b92be6fe
MB
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
8de2f081
MB
162}
163
164bool regmap_precious(struct regmap *map, unsigned int reg)
165{
4191f197 166 if (!regmap_readable(map, reg))
8de2f081
MB
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
76aad392 172 if (map->precious_table)
154881e5 173 return regmap_check_range_table(map, reg, map->precious_table);
76aad392 174
8de2f081
MB
175 return false;
176}
177
cdf6b11d
BW
178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179{
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187}
188
74fe7b55
CDL
189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190{
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198}
199
82cd9965 200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
a8f28cfa 201 size_t num)
82cd9965
LPC
202{
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
b8f9a03b 206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
82cd9965
LPC
207 return false;
208
209 return true;
210}
211
0c2191c3
RR
212static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214{
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221}
222
223
9aa50750
WS
224static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226{
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230}
231
b83a313b
MB
232static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234{
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237}
238
239static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241{
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244}
245
b24412af
AM
246static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248{
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = val >> 8;
253 out[0] = (val >> 16) | (reg << 1);
254}
255
7e5ec63e
LPC
256static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
258{
259 u8 *out = map->work_buf;
260
261 out[2] = val;
262 out[1] = (val >> 8) | (reg << 6);
263 out[0] = reg >> 2;
264}
265
d939fb9a 266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
b83a313b
MB
267{
268 u8 *b = buf;
269
d939fb9a 270 b[0] = val << shift;
b83a313b
MB
271}
272
141eba2e 273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
b83a313b 274{
53d86095 275 put_unaligned_be16(val << shift, buf);
b83a313b
MB
276}
277
4aa8c069
XL
278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279{
53d86095 280 put_unaligned_le16(val << shift, buf);
4aa8c069
XL
281}
282
141eba2e
SW
283static void regmap_format_16_native(void *buf, unsigned int val,
284 unsigned int shift)
285{
53d86095
JTT
286 u16 v = val << shift;
287
288 memcpy(buf, &v, sizeof(v));
141eba2e
SW
289}
290
06000443 291static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
ea279fc5 292{
06000443 293 put_unaligned_be24(val << shift, buf);
ea279fc5
MR
294}
295
141eba2e 296static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
7d5e525b 297{
53d86095 298 put_unaligned_be32(val << shift, buf);
7d5e525b
MB
299}
300
4aa8c069
XL
301static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302{
53d86095 303 put_unaligned_le32(val << shift, buf);
4aa8c069
XL
304}
305
141eba2e
SW
306static void regmap_format_32_native(void *buf, unsigned int val,
307 unsigned int shift)
308{
53d86095
JTT
309 u32 v = val << shift;
310
311 memcpy(buf, &v, sizeof(v));
141eba2e
SW
312}
313
8a819ff8 314static void regmap_parse_inplace_noop(void *buf)
b83a313b 315{
8a819ff8
MB
316}
317
318static unsigned int regmap_parse_8(const void *buf)
319{
320 const u8 *b = buf;
b83a313b
MB
321
322 return b[0];
323}
324
8a819ff8
MB
325static unsigned int regmap_parse_16_be(const void *buf)
326{
53d86095 327 return get_unaligned_be16(buf);
8a819ff8
MB
328}
329
4aa8c069
XL
330static unsigned int regmap_parse_16_le(const void *buf)
331{
53d86095 332 return get_unaligned_le16(buf);
4aa8c069
XL
333}
334
8a819ff8 335static void regmap_parse_16_be_inplace(void *buf)
b83a313b 336{
53d86095 337 u16 v = get_unaligned_be16(buf);
b83a313b 338
53d86095 339 memcpy(buf, &v, sizeof(v));
b83a313b
MB
340}
341
4aa8c069
XL
342static void regmap_parse_16_le_inplace(void *buf)
343{
53d86095 344 u16 v = get_unaligned_le16(buf);
4aa8c069 345
53d86095 346 memcpy(buf, &v, sizeof(v));
4aa8c069
XL
347}
348
8a819ff8 349static unsigned int regmap_parse_16_native(const void *buf)
141eba2e 350{
53d86095
JTT
351 u16 v;
352
353 memcpy(&v, buf, sizeof(v));
354 return v;
141eba2e
SW
355}
356
06000443 357static unsigned int regmap_parse_24_be(const void *buf)
ea279fc5 358{
06000443 359 return get_unaligned_be24(buf);
ea279fc5
MR
360}
361
8a819ff8
MB
362static unsigned int regmap_parse_32_be(const void *buf)
363{
53d86095 364 return get_unaligned_be32(buf);
8a819ff8
MB
365}
366
4aa8c069
XL
367static unsigned int regmap_parse_32_le(const void *buf)
368{
53d86095 369 return get_unaligned_le32(buf);
4aa8c069
XL
370}
371
8a819ff8 372static void regmap_parse_32_be_inplace(void *buf)
7d5e525b 373{
53d86095 374 u32 v = get_unaligned_be32(buf);
7d5e525b 375
53d86095 376 memcpy(buf, &v, sizeof(v));
7d5e525b
MB
377}
378
4aa8c069
XL
379static void regmap_parse_32_le_inplace(void *buf)
380{
53d86095 381 u32 v = get_unaligned_le32(buf);
4aa8c069 382
53d86095 383 memcpy(buf, &v, sizeof(v));
4aa8c069
XL
384}
385
8a819ff8 386static unsigned int regmap_parse_32_native(const void *buf)
141eba2e 387{
53d86095
JTT
388 u32 v;
389
390 memcpy(&v, buf, sizeof(v));
391 return v;
141eba2e
SW
392}
393
8698b936
BW
394static void regmap_lock_hwlock(void *__map)
395{
396 struct regmap *map = __map;
397
398 hwspin_lock_timeout(map->hwlock, UINT_MAX);
399}
400
401static void regmap_lock_hwlock_irq(void *__map)
402{
403 struct regmap *map = __map;
404
405 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
406}
407
408static void regmap_lock_hwlock_irqsave(void *__map)
409{
410 struct regmap *map = __map;
411
412 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
413 &map->spinlock_flags);
414}
415
416static void regmap_unlock_hwlock(void *__map)
417{
418 struct regmap *map = __map;
419
420 hwspin_unlock(map->hwlock);
421}
422
423static void regmap_unlock_hwlock_irq(void *__map)
424{
425 struct regmap *map = __map;
426
427 hwspin_unlock_irq(map->hwlock);
428}
429
430static void regmap_unlock_hwlock_irqrestore(void *__map)
431{
432 struct regmap *map = __map;
433
434 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
435}
436
81e30b18 437static void regmap_lock_unlock_none(void *__map)
c9b41fcf
BG
438{
439
440}
8698b936 441
0d4529c5 442static void regmap_lock_mutex(void *__map)
bacdbe07 443{
0d4529c5 444 struct regmap *map = __map;
bacdbe07
SW
445 mutex_lock(&map->mutex);
446}
447
0d4529c5 448static void regmap_unlock_mutex(void *__map)
bacdbe07 449{
0d4529c5 450 struct regmap *map = __map;
bacdbe07
SW
451 mutex_unlock(&map->mutex);
452}
453
0d4529c5 454static void regmap_lock_spinlock(void *__map)
b4519c71 455__acquires(&map->spinlock)
bacdbe07 456{
0d4529c5 457 struct regmap *map = __map;
92ab1aab
LPC
458 unsigned long flags;
459
460 spin_lock_irqsave(&map->spinlock, flags);
461 map->spinlock_flags = flags;
bacdbe07
SW
462}
463
0d4529c5 464static void regmap_unlock_spinlock(void *__map)
b4519c71 465__releases(&map->spinlock)
bacdbe07 466{
0d4529c5 467 struct regmap *map = __map;
92ab1aab 468 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
bacdbe07
SW
469}
470
67021f25
VO
471static void regmap_lock_raw_spinlock(void *__map)
472__acquires(&map->raw_spinlock)
473{
474 struct regmap *map = __map;
475 unsigned long flags;
476
477 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
478 map->raw_spinlock_flags = flags;
479}
480
481static void regmap_unlock_raw_spinlock(void *__map)
482__releases(&map->raw_spinlock)
483{
484 struct regmap *map = __map;
485 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
486}
487
72b39f6f
MB
488static void dev_get_regmap_release(struct device *dev, void *res)
489{
490 /*
491 * We don't actually have anything to do here; the goal here
492 * is not to manage the regmap but to provide a simple way to
493 * get the regmap back given a struct device.
494 */
495}
496
6863ca62
KG
497static bool _regmap_range_add(struct regmap *map,
498 struct regmap_range_node *data)
499{
500 struct rb_root *root = &map->range_tree;
501 struct rb_node **new = &(root->rb_node), *parent = NULL;
502
503 while (*new) {
504 struct regmap_range_node *this =
671a911b 505 rb_entry(*new, struct regmap_range_node, node);
6863ca62
KG
506
507 parent = *new;
508 if (data->range_max < this->range_min)
509 new = &((*new)->rb_left);
510 else if (data->range_min > this->range_max)
511 new = &((*new)->rb_right);
512 else
513 return false;
514 }
515
516 rb_link_node(&data->node, parent, new);
517 rb_insert_color(&data->node, root);
518
519 return true;
520}
521
522static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
523 unsigned int reg)
524{
525 struct rb_node *node = map->range_tree.rb_node;
526
527 while (node) {
528 struct regmap_range_node *this =
671a911b 529 rb_entry(node, struct regmap_range_node, node);
6863ca62
KG
530
531 if (reg < this->range_min)
532 node = node->rb_left;
533 else if (reg > this->range_max)
534 node = node->rb_right;
535 else
536 return this;
537 }
538
539 return NULL;
540}
541
542static void regmap_range_exit(struct regmap *map)
543{
544 struct rb_node *next;
545 struct regmap_range_node *range_node;
546
547 next = rb_first(&map->range_tree);
548 while (next) {
549 range_node = rb_entry(next, struct regmap_range_node, node);
550 next = rb_next(&range_node->node);
551 rb_erase(&range_node->node, &map->range_tree);
552 kfree(range_node);
553 }
554
555 kfree(map->selector_work_buf);
556}
557
94cc89eb
CK
558static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
559{
560 if (config->name) {
561 const char *name = kstrdup_const(config->name, GFP_KERNEL);
562
563 if (!name)
564 return -ENOMEM;
565
566 kfree_const(map->name);
567 map->name = name;
568 }
569
570 return 0;
571}
572
6cfec04b
MS
573int regmap_attach_dev(struct device *dev, struct regmap *map,
574 const struct regmap_config *config)
575{
576 struct regmap **m;
94cc89eb 577 int ret;
6cfec04b
MS
578
579 map->dev = dev;
580
94cc89eb
CK
581 ret = regmap_set_name(map, config);
582 if (ret)
583 return ret;
584
530792ef 585 regmap_debugfs_exit(map);
94cc89eb 586 regmap_debugfs_init(map);
6cfec04b
MS
587
588 /* Add a devres resource for dev_get_regmap() */
589 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
590 if (!m) {
591 regmap_debugfs_exit(map);
592 return -ENOMEM;
593 }
594 *m = map;
595 devres_add(dev, m);
596
597 return 0;
598}
599EXPORT_SYMBOL_GPL(regmap_attach_dev);
600
cf673fbc
GU
601static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
602 const struct regmap_config *config)
603{
604 enum regmap_endian endian;
605
606 /* Retrieve the endianness specification from the regmap config */
607 endian = config->reg_format_endian;
608
609 /* If the regmap config specified a non-default value, use that */
610 if (endian != REGMAP_ENDIAN_DEFAULT)
611 return endian;
612
613 /* Retrieve the endianness specification from the bus config */
614 if (bus && bus->reg_format_endian_default)
615 endian = bus->reg_format_endian_default;
d647c199 616
cf673fbc
GU
617 /* If the bus specified a non-default value, use that */
618 if (endian != REGMAP_ENDIAN_DEFAULT)
619 return endian;
620
621 /* Use this if no other value was found */
622 return REGMAP_ENDIAN_BIG;
623}
624
3c174d29
GR
625enum regmap_endian regmap_get_val_endian(struct device *dev,
626 const struct regmap_bus *bus,
627 const struct regmap_config *config)
d647c199 628{
c916d6ef 629 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
cf673fbc 630 enum regmap_endian endian;
d647c199 631
45e1a279 632 /* Retrieve the endianness specification from the regmap config */
cf673fbc 633 endian = config->val_format_endian;
d647c199 634
45e1a279 635 /* If the regmap config specified a non-default value, use that */
cf673fbc
GU
636 if (endian != REGMAP_ENDIAN_DEFAULT)
637 return endian;
d647c199 638
c916d6ef
AS
639 /* If the firmware node exist try to get endianness from it */
640 if (fwnode_property_read_bool(fwnode, "big-endian"))
641 endian = REGMAP_ENDIAN_BIG;
642 else if (fwnode_property_read_bool(fwnode, "little-endian"))
643 endian = REGMAP_ENDIAN_LITTLE;
644 else if (fwnode_property_read_bool(fwnode, "native-endian"))
645 endian = REGMAP_ENDIAN_NATIVE;
646
647 /* If the endianness was specified in fwnode, use that */
648 if (endian != REGMAP_ENDIAN_DEFAULT)
649 return endian;
45e1a279
SW
650
651 /* Retrieve the endianness specification from the bus config */
cf673fbc
GU
652 if (bus && bus->val_format_endian_default)
653 endian = bus->val_format_endian_default;
d647c199 654
45e1a279 655 /* If the bus specified a non-default value, use that */
cf673fbc
GU
656 if (endian != REGMAP_ENDIAN_DEFAULT)
657 return endian;
45e1a279
SW
658
659 /* Use this if no other value was found */
cf673fbc 660 return REGMAP_ENDIAN_BIG;
d647c199 661}
3c174d29 662EXPORT_SYMBOL_GPL(regmap_get_val_endian);
d647c199 663
3cfe7a74
NB
664struct regmap *__regmap_init(struct device *dev,
665 const struct regmap_bus *bus,
666 void *bus_context,
667 const struct regmap_config *config,
668 struct lock_class_key *lock_key,
669 const char *lock_name)
b83a313b 670{
6cfec04b 671 struct regmap *map;
d36cb020 672 int ret = -EINVAL;
141eba2e 673 enum regmap_endian reg_endian, val_endian;
6863ca62 674 int i, j;
b83a313b 675
d2a5884a 676 if (!config)
abbb18fb 677 goto err;
b83a313b
MB
678
679 map = kzalloc(sizeof(*map), GFP_KERNEL);
680 if (map == NULL) {
681 ret = -ENOMEM;
682 goto err;
683 }
684
94cc89eb
CK
685 ret = regmap_set_name(map, config);
686 if (ret)
687 goto err_map;
8253bb3f 688
1d512ee8
CK
689 ret = -EINVAL; /* Later error paths rely on this */
690
c9b41fcf 691 if (config->disable_locking) {
81e30b18 692 map->lock = map->unlock = regmap_lock_unlock_none;
21f8e482 693 map->can_sleep = config->can_sleep;
72465736 694 regmap_debugfs_disable(map);
c9b41fcf 695 } else if (config->lock && config->unlock) {
0d4529c5
DC
696 map->lock = config->lock;
697 map->unlock = config->unlock;
698 map->lock_arg = config->lock_arg;
21f8e482 699 map->can_sleep = config->can_sleep;
a4887813 700 } else if (config->use_hwlock) {
8698b936
BW
701 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
702 if (!map->hwlock) {
703 ret = -ENXIO;
8253bb3f 704 goto err_name;
8698b936
BW
705 }
706
707 switch (config->hwlock_mode) {
708 case HWLOCK_IRQSTATE:
709 map->lock = regmap_lock_hwlock_irqsave;
710 map->unlock = regmap_unlock_hwlock_irqrestore;
711 break;
712 case HWLOCK_IRQ:
713 map->lock = regmap_lock_hwlock_irq;
714 map->unlock = regmap_unlock_hwlock_irq;
715 break;
716 default:
717 map->lock = regmap_lock_hwlock;
718 map->unlock = regmap_unlock_hwlock;
719 break;
720 }
721
722 map->lock_arg = map;
bacdbe07 723 } else {
d2a5884a
AS
724 if ((bus && bus->fast_io) ||
725 config->fast_io) {
67021f25
VO
726 if (config->use_raw_spinlock) {
727 raw_spin_lock_init(&map->raw_spinlock);
728 map->lock = regmap_lock_raw_spinlock;
729 map->unlock = regmap_unlock_raw_spinlock;
730 lockdep_set_class_and_name(&map->raw_spinlock,
731 lock_key, lock_name);
732 } else {
733 spin_lock_init(&map->spinlock);
734 map->lock = regmap_lock_spinlock;
735 map->unlock = regmap_unlock_spinlock;
736 lockdep_set_class_and_name(&map->spinlock,
737 lock_key, lock_name);
738 }
0d4529c5
DC
739 } else {
740 mutex_init(&map->mutex);
741 map->lock = regmap_lock_mutex;
742 map->unlock = regmap_unlock_mutex;
21f8e482 743 map->can_sleep = true;
3cfe7a74
NB
744 lockdep_set_class_and_name(&map->mutex,
745 lock_key, lock_name);
0d4529c5
DC
746 }
747 map->lock_arg = map;
bacdbe07 748 }
b4a21fc2
SB
749
750 /*
751 * When we write in fast-paths with regmap_bulk_write() don't allocate
752 * scratch buffers with sleeping allocations.
753 */
754 if ((bus && bus->fast_io) || config->fast_io)
755 map->alloc_flags = GFP_ATOMIC;
756 else
757 map->alloc_flags = GFP_KERNEL;
758
0074f3f2
CF
759 map->reg_base = config->reg_base;
760
c212accc 761 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
82159ba8 762 map->format.pad_bytes = config->pad_bits / 8;
4a670ac3 763 map->format.reg_shift = config->reg_shift;
c212accc 764 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
5494a98f
FE
765 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
766 config->val_bits + config->pad_bits, 8);
d939fb9a 767 map->reg_shift = config->pad_bits % 8;
f01ee60f
SW
768 if (config->reg_stride)
769 map->reg_stride = config->reg_stride;
770 else
771 map->reg_stride = 1;
ca747be2
XL
772 if (is_power_of_2(map->reg_stride))
773 map->reg_stride_order = ilog2(map->reg_stride);
774 else
775 map->reg_stride_order = -1;
d77e7456
MV
776 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
777 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
778 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
17649c90
SS
779 if (bus) {
780 map->max_raw_read = bus->max_raw_read;
781 map->max_raw_write = bus->max_raw_write;
d77e7456
MV
782 } else if (config->max_raw_read && config->max_raw_write) {
783 map->max_raw_read = config->max_raw_read;
784 map->max_raw_write = config->max_raw_write;
17649c90 785 }
b83a313b
MB
786 map->dev = dev;
787 map->bus = bus;
0135bbcc 788 map->bus_context = bus_context;
2e2ae66d 789 map->max_register = config->max_register;
0ec74ad3 790 map->max_register_is_set = map->max_register ?: config->max_register_is_0;
76aad392
DC
791 map->wr_table = config->wr_table;
792 map->rd_table = config->rd_table;
793 map->volatile_table = config->volatile_table;
794 map->precious_table = config->precious_table;
cdf6b11d 795 map->wr_noinc_table = config->wr_noinc_table;
74fe7b55 796 map->rd_noinc_table = config->rd_noinc_table;
2e2ae66d
MB
797 map->writeable_reg = config->writeable_reg;
798 map->readable_reg = config->readable_reg;
799 map->volatile_reg = config->volatile_reg;
2efe1642 800 map->precious_reg = config->precious_reg;
cdf6b11d 801 map->writeable_noinc_reg = config->writeable_noinc_reg;
74fe7b55 802 map->readable_noinc_reg = config->readable_noinc_reg;
5d1729e7 803 map->cache_type = config->cache_type;
b83a313b 804
0d509f2b
MB
805 spin_lock_init(&map->async_lock);
806 INIT_LIST_HEAD(&map->async_list);
7e09a979 807 INIT_LIST_HEAD(&map->async_free);
0d509f2b
MB
808 init_waitqueue_head(&map->async_waitq);
809
9bf485c9
AD
810 if (config->read_flag_mask ||
811 config->write_flag_mask ||
812 config->zero_flag_mask) {
6f306441
LPC
813 map->read_flag_mask = config->read_flag_mask;
814 map->write_flag_mask = config->write_flag_mask;
d2a5884a 815 } else if (bus) {
6f306441
LPC
816 map->read_flag_mask = bus->read_flag_mask;
817 }
818
d77e7456
MV
819 if (config && config->read && config->write) {
820 map->reg_read = _regmap_bus_read;
739f872e
CM
821 if (config->reg_update_bits)
822 map->reg_update_bits = config->reg_update_bits;
d77e7456
MV
823
824 /* Bulk read/write */
825 map->read = config->read;
826 map->write = config->write;
827
828 reg_endian = REGMAP_ENDIAN_NATIVE;
829 val_endian = REGMAP_ENDIAN_NATIVE;
830 } else if (!bus) {
d2a5884a
AS
831 map->reg_read = config->reg_read;
832 map->reg_write = config->reg_write;
02d6fdec 833 map->reg_update_bits = config->reg_update_bits;
d2a5884a 834
3ac17037
BB
835 map->defer_caching = false;
836 goto skip_format_initialization;
837 } else if (!bus->read || !bus->write) {
838 map->reg_read = _regmap_bus_reg_read;
839 map->reg_write = _regmap_bus_reg_write;
80215f13 840 map->reg_update_bits = bus->reg_update_bits;
3ac17037 841
d2a5884a
AS
842 map->defer_caching = false;
843 goto skip_format_initialization;
844 } else {
845 map->reg_read = _regmap_bus_read;
77792b11 846 map->reg_update_bits = bus->reg_update_bits;
d77e7456
MV
847 /* Bulk read/write */
848 map->read = bus->read;
849 map->write = bus->write;
ad278406 850
d77e7456
MV
851 reg_endian = regmap_get_reg_endian(bus, config);
852 val_endian = regmap_get_val_endian(dev, bus, config);
853 }
141eba2e 854
d939fb9a 855 switch (config->reg_bits + map->reg_shift) {
9aa50750
WS
856 case 2:
857 switch (config->val_bits) {
858 case 6:
859 map->format.format_write = regmap_format_2_6_write;
860 break;
861 default:
8698b936 862 goto err_hwlock;
9aa50750
WS
863 }
864 break;
865
b83a313b
MB
866 case 4:
867 switch (config->val_bits) {
868 case 12:
869 map->format.format_write = regmap_format_4_12_write;
870 break;
871 default:
8698b936 872 goto err_hwlock;
b83a313b
MB
873 }
874 break;
875
876 case 7:
877 switch (config->val_bits) {
878 case 9:
879 map->format.format_write = regmap_format_7_9_write;
880 break;
b24412af
AM
881 case 17:
882 map->format.format_write = regmap_format_7_17_write;
883 break;
b83a313b 884 default:
8698b936 885 goto err_hwlock;
b83a313b
MB
886 }
887 break;
888
7e5ec63e
LPC
889 case 10:
890 switch (config->val_bits) {
891 case 14:
892 map->format.format_write = regmap_format_10_14_write;
893 break;
894 default:
8698b936 895 goto err_hwlock;
7e5ec63e
LPC
896 }
897 break;
898
0c2191c3
RR
899 case 12:
900 switch (config->val_bits) {
901 case 20:
902 map->format.format_write = regmap_format_12_20_write;
903 break;
904 default:
905 goto err_hwlock;
906 }
907 break;
908
b83a313b
MB
909 case 8:
910 map->format.format_reg = regmap_format_8;
911 break;
912
913 case 16:
141eba2e
SW
914 switch (reg_endian) {
915 case REGMAP_ENDIAN_BIG:
916 map->format.format_reg = regmap_format_16_be;
917 break;
55562449
TL
918 case REGMAP_ENDIAN_LITTLE:
919 map->format.format_reg = regmap_format_16_le;
920 break;
141eba2e
SW
921 case REGMAP_ENDIAN_NATIVE:
922 map->format.format_reg = regmap_format_16_native;
923 break;
924 default:
8698b936 925 goto err_hwlock;
141eba2e 926 }
b83a313b
MB
927 break;
928
237019e7 929 case 24:
06000443
AS
930 switch (reg_endian) {
931 case REGMAP_ENDIAN_BIG:
932 map->format.format_reg = regmap_format_24_be;
933 break;
934 default:
8698b936 935 goto err_hwlock;
06000443 936 }
237019e7
LPC
937 break;
938
7d5e525b 939 case 32:
141eba2e
SW
940 switch (reg_endian) {
941 case REGMAP_ENDIAN_BIG:
942 map->format.format_reg = regmap_format_32_be;
943 break;
55562449
TL
944 case REGMAP_ENDIAN_LITTLE:
945 map->format.format_reg = regmap_format_32_le;
946 break;
141eba2e
SW
947 case REGMAP_ENDIAN_NATIVE:
948 map->format.format_reg = regmap_format_32_native;
949 break;
950 default:
8698b936 951 goto err_hwlock;
141eba2e 952 }
7d5e525b
MB
953 break;
954
b83a313b 955 default:
8698b936 956 goto err_hwlock;
b83a313b
MB
957 }
958
8a819ff8
MB
959 if (val_endian == REGMAP_ENDIAN_NATIVE)
960 map->format.parse_inplace = regmap_parse_inplace_noop;
961
b83a313b
MB
962 switch (config->val_bits) {
963 case 8:
964 map->format.format_val = regmap_format_8;
965 map->format.parse_val = regmap_parse_8;
8a819ff8 966 map->format.parse_inplace = regmap_parse_inplace_noop;
b83a313b
MB
967 break;
968 case 16:
141eba2e
SW
969 switch (val_endian) {
970 case REGMAP_ENDIAN_BIG:
971 map->format.format_val = regmap_format_16_be;
972 map->format.parse_val = regmap_parse_16_be;
8a819ff8 973 map->format.parse_inplace = regmap_parse_16_be_inplace;
141eba2e 974 break;
4aa8c069
XL
975 case REGMAP_ENDIAN_LITTLE:
976 map->format.format_val = regmap_format_16_le;
977 map->format.parse_val = regmap_parse_16_le;
978 map->format.parse_inplace = regmap_parse_16_le_inplace;
979 break;
141eba2e
SW
980 case REGMAP_ENDIAN_NATIVE:
981 map->format.format_val = regmap_format_16_native;
982 map->format.parse_val = regmap_parse_16_native;
983 break;
984 default:
8698b936 985 goto err_hwlock;
141eba2e 986 }
b83a313b 987 break;
ea279fc5 988 case 24:
06000443
AS
989 switch (val_endian) {
990 case REGMAP_ENDIAN_BIG:
991 map->format.format_val = regmap_format_24_be;
992 map->format.parse_val = regmap_parse_24_be;
993 break;
994 default:
8698b936 995 goto err_hwlock;
06000443 996 }
ea279fc5 997 break;
7d5e525b 998 case 32:
141eba2e
SW
999 switch (val_endian) {
1000 case REGMAP_ENDIAN_BIG:
1001 map->format.format_val = regmap_format_32_be;
1002 map->format.parse_val = regmap_parse_32_be;
8a819ff8 1003 map->format.parse_inplace = regmap_parse_32_be_inplace;
141eba2e 1004 break;
4aa8c069
XL
1005 case REGMAP_ENDIAN_LITTLE:
1006 map->format.format_val = regmap_format_32_le;
1007 map->format.parse_val = regmap_parse_32_le;
1008 map->format.parse_inplace = regmap_parse_32_le_inplace;
1009 break;
141eba2e
SW
1010 case REGMAP_ENDIAN_NATIVE:
1011 map->format.format_val = regmap_format_32_native;
1012 map->format.parse_val = regmap_parse_32_native;
1013 break;
1014 default:
8698b936 1015 goto err_hwlock;
141eba2e 1016 }
7d5e525b 1017 break;
b83a313b
MB
1018 }
1019
141eba2e
SW
1020 if (map->format.format_write) {
1021 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1022 (val_endian != REGMAP_ENDIAN_BIG))
8698b936 1023 goto err_hwlock;
67921a1a 1024 map->use_single_write = true;
141eba2e 1025 }
7a647614 1026
b83a313b
MB
1027 if (!map->format.format_write &&
1028 !(map->format.format_reg && map->format.format_val))
8698b936 1029 goto err_hwlock;
b83a313b 1030
82159ba8 1031 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
b83a313b
MB
1032 if (map->work_buf == NULL) {
1033 ret = -ENOMEM;
8698b936 1034 goto err_hwlock;
b83a313b
MB
1035 }
1036
d2a5884a
AS
1037 if (map->format.format_write) {
1038 map->defer_caching = false;
07c320dc 1039 map->reg_write = _regmap_bus_formatted_write;
d2a5884a
AS
1040 } else if (map->format.format_val) {
1041 map->defer_caching = true;
07c320dc 1042 map->reg_write = _regmap_bus_raw_write;
d2a5884a
AS
1043 }
1044
1045skip_format_initialization:
07c320dc 1046
6863ca62 1047 map->range_tree = RB_ROOT;
e3549cd0 1048 for (i = 0; i < config->num_ranges; i++) {
6863ca62
KG
1049 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1050 struct regmap_range_node *new;
1051
1052 /* Sanity check */
061adc06
MB
1053 if (range_cfg->range_max < range_cfg->range_min) {
1054 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1055 range_cfg->range_max, range_cfg->range_min);
6863ca62 1056 goto err_range;
061adc06
MB
1057 }
1058
1059 if (range_cfg->range_max > map->max_register) {
1060 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1061 range_cfg->range_max, map->max_register);
1062 goto err_range;
1063 }
1064
1065 if (range_cfg->selector_reg > map->max_register) {
1066 dev_err(map->dev,
1067 "Invalid range %d: selector out of map\n", i);
1068 goto err_range;
1069 }
1070
1071 if (range_cfg->window_len == 0) {
1072 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1073 i);
1074 goto err_range;
1075 }
6863ca62
KG
1076
1077 /* Make sure, that this register range has no selector
1078 or data window within its boundary */
e3549cd0 1079 for (j = 0; j < config->num_ranges; j++) {
d63aa09f
JW
1080 unsigned int sel_reg = config->ranges[j].selector_reg;
1081 unsigned int win_min = config->ranges[j].window_start;
1082 unsigned int win_max = win_min +
1083 config->ranges[j].window_len - 1;
6863ca62 1084
f161d220
PZ
1085 /* Allow data window inside its own virtual range */
1086 if (j == i)
1087 continue;
1088
6863ca62
KG
1089 if (range_cfg->range_min <= sel_reg &&
1090 sel_reg <= range_cfg->range_max) {
061adc06
MB
1091 dev_err(map->dev,
1092 "Range %d: selector for %d in window\n",
1093 i, j);
6863ca62
KG
1094 goto err_range;
1095 }
1096
1097 if (!(win_max < range_cfg->range_min ||
1098 win_min > range_cfg->range_max)) {
061adc06
MB
1099 dev_err(map->dev,
1100 "Range %d: window for %d in window\n",
1101 i, j);
6863ca62
KG
1102 goto err_range;
1103 }
1104 }
1105
1106 new = kzalloc(sizeof(*new), GFP_KERNEL);
1107 if (new == NULL) {
1108 ret = -ENOMEM;
1109 goto err_range;
1110 }
1111
4b020b3f 1112 new->map = map;
d058bb49 1113 new->name = range_cfg->name;
6863ca62
KG
1114 new->range_min = range_cfg->range_min;
1115 new->range_max = range_cfg->range_max;
1116 new->selector_reg = range_cfg->selector_reg;
1117 new->selector_mask = range_cfg->selector_mask;
1118 new->selector_shift = range_cfg->selector_shift;
1119 new->window_start = range_cfg->window_start;
1120 new->window_len = range_cfg->window_len;
1121
53e87f88 1122 if (!_regmap_range_add(map, new)) {
061adc06 1123 dev_err(map->dev, "Failed to add range %d\n", i);
6863ca62
KG
1124 kfree(new);
1125 goto err_range;
1126 }
1127
1128 if (map->selector_work_buf == NULL) {
1129 map->selector_work_buf =
1130 kzalloc(map->format.buf_size, GFP_KERNEL);
1131 if (map->selector_work_buf == NULL) {
1132 ret = -ENOMEM;
1133 goto err_range;
1134 }
1135 }
1136 }
052d2cd1 1137
e5e3b8ab 1138 ret = regcache_init(map, config);
0ff3e62f 1139 if (ret != 0)
6863ca62
KG
1140 goto err_range;
1141
a7a037c8 1142 if (dev) {
6cfec04b
MS
1143 ret = regmap_attach_dev(dev, map, config);
1144 if (ret != 0)
1145 goto err_regcache;
9b947a13 1146 } else {
94cc89eb 1147 regmap_debugfs_init(map);
a7a037c8 1148 }
72b39f6f 1149
b83a313b
MB
1150 return map;
1151
6cfec04b 1152err_regcache:
72b39f6f 1153 regcache_exit(map);
6863ca62
KG
1154err_range:
1155 regmap_range_exit(map);
58072cbf 1156 kfree(map->work_buf);
8698b936 1157err_hwlock:
a1a68fca 1158 if (map->hwlock)
267f3e4f 1159 hwspin_lock_free(map->hwlock);
8253bb3f
BG
1160err_name:
1161 kfree_const(map->name);
b83a313b
MB
1162err_map:
1163 kfree(map);
1164err:
1165 return ERR_PTR(ret);
1166}
3cfe7a74 1167EXPORT_SYMBOL_GPL(__regmap_init);
b83a313b 1168
c0eb4676
MB
1169static void devm_regmap_release(struct device *dev, void *res)
1170{
1171 regmap_exit(*(struct regmap **)res);
1172}
1173
3cfe7a74
NB
1174struct regmap *__devm_regmap_init(struct device *dev,
1175 const struct regmap_bus *bus,
1176 void *bus_context,
1177 const struct regmap_config *config,
1178 struct lock_class_key *lock_key,
1179 const char *lock_name)
c0eb4676
MB
1180{
1181 struct regmap **ptr, *regmap;
1182
1183 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1184 if (!ptr)
1185 return ERR_PTR(-ENOMEM);
1186
3cfe7a74
NB
1187 regmap = __regmap_init(dev, bus, bus_context, config,
1188 lock_key, lock_name);
c0eb4676
MB
1189 if (!IS_ERR(regmap)) {
1190 *ptr = regmap;
1191 devres_add(dev, ptr);
1192 } else {
1193 devres_free(ptr);
1194 }
1195
1196 return regmap;
1197}
3cfe7a74 1198EXPORT_SYMBOL_GPL(__devm_regmap_init);
c0eb4676 1199
67252287
SK
1200static void regmap_field_init(struct regmap_field *rm_field,
1201 struct regmap *regmap, struct reg_field reg_field)
1202{
67252287
SK
1203 rm_field->regmap = regmap;
1204 rm_field->reg = reg_field.reg;
1205 rm_field->shift = reg_field.lsb;
921cc294 1206 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
cf39ed2e
MR
1207
1208 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1209
a0102375
KM
1210 rm_field->id_size = reg_field.id_size;
1211 rm_field->id_offset = reg_field.id_offset;
67252287
SK
1212}
1213
1214/**
2cf8e2df 1215 * devm_regmap_field_alloc() - Allocate and initialise a register field.
67252287
SK
1216 *
1217 * @dev: Device that will be interacted with
1218 * @regmap: regmap bank in which this register field is located.
1219 * @reg_field: Register field with in the bank.
1220 *
1221 * The return value will be an ERR_PTR() on error or a valid pointer
1222 * to a struct regmap_field. The regmap_field will be automatically freed
1223 * by the device management code.
1224 */
1225struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1226 struct regmap *regmap, struct reg_field reg_field)
1227{
1228 struct regmap_field *rm_field = devm_kzalloc(dev,
1229 sizeof(*rm_field), GFP_KERNEL);
1230 if (!rm_field)
1231 return ERR_PTR(-ENOMEM);
1232
1233 regmap_field_init(rm_field, regmap, reg_field);
1234
1235 return rm_field;
1236
1237}
1238EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1239
ea470b82
SK
1240
1241/**
1242 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1243 *
1244 * @regmap: regmap bank in which this register field is located.
1245 * @rm_field: regmap register fields within the bank.
1246 * @reg_field: Register fields within the bank.
1247 * @num_fields: Number of register fields.
1248 *
1249 * The return value will be an -ENOMEM on error or zero for success.
1250 * Newly allocated regmap_fields should be freed by calling
1251 * regmap_field_bulk_free()
1252 */
1253int regmap_field_bulk_alloc(struct regmap *regmap,
1254 struct regmap_field **rm_field,
29c34975 1255 const struct reg_field *reg_field,
ea470b82
SK
1256 int num_fields)
1257{
1258 struct regmap_field *rf;
1259 int i;
1260
1261 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1262 if (!rf)
1263 return -ENOMEM;
1264
1265 for (i = 0; i < num_fields; i++) {
1266 regmap_field_init(&rf[i], regmap, reg_field[i]);
1267 rm_field[i] = &rf[i];
1268 }
1269
1270 return 0;
1271}
1272EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1273
1274/**
1275 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1276 * fields.
1277 *
1278 * @dev: Device that will be interacted with
1279 * @regmap: regmap bank in which this register field is located.
1280 * @rm_field: regmap register fields within the bank.
1281 * @reg_field: Register fields within the bank.
1282 * @num_fields: Number of register fields.
1283 *
1284 * The return value will be an -ENOMEM on error or zero for success.
1285 * Newly allocated regmap_fields will be automatically freed by the
1286 * device management code.
1287 */
1288int devm_regmap_field_bulk_alloc(struct device *dev,
1289 struct regmap *regmap,
1290 struct regmap_field **rm_field,
29c34975 1291 const struct reg_field *reg_field,
ea470b82
SK
1292 int num_fields)
1293{
1294 struct regmap_field *rf;
1295 int i;
1296
1297 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1298 if (!rf)
1299 return -ENOMEM;
1300
1301 for (i = 0; i < num_fields; i++) {
1302 regmap_field_init(&rf[i], regmap, reg_field[i]);
1303 rm_field[i] = &rf[i];
1304 }
1305
1306 return 0;
1307}
1308EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1309
1310/**
1311 * regmap_field_bulk_free() - Free register field allocated using
1312 * regmap_field_bulk_alloc.
1313 *
1314 * @field: regmap fields which should be freed.
1315 */
1316void regmap_field_bulk_free(struct regmap_field *field)
1317{
1318 kfree(field);
1319}
1320EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1321
1322/**
1323 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1324 * devm_regmap_field_bulk_alloc.
1325 *
1326 * @dev: Device that will be interacted with
1327 * @field: regmap field which should be freed.
1328 *
1329 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1330 * drivers need not call this function, as the memory allocated via devm
1331 * will be freed as per device-driver life-cycle.
1332 */
1333void devm_regmap_field_bulk_free(struct device *dev,
1334 struct regmap_field *field)
1335{
1336 devm_kfree(dev, field);
1337}
1338EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1339
67252287 1340/**
2cf8e2df
CK
1341 * devm_regmap_field_free() - Free a register field allocated using
1342 * devm_regmap_field_alloc.
67252287
SK
1343 *
1344 * @dev: Device that will be interacted with
1345 * @field: regmap field which should be freed.
2cf8e2df
CK
1346 *
1347 * Free register field allocated using devm_regmap_field_alloc(). Usually
1348 * drivers need not call this function, as the memory allocated via devm
1349 * will be freed as per device-driver life-cyle.
67252287
SK
1350 */
1351void devm_regmap_field_free(struct device *dev,
1352 struct regmap_field *field)
1353{
1354 devm_kfree(dev, field);
1355}
1356EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1357
1358/**
2cf8e2df 1359 * regmap_field_alloc() - Allocate and initialise a register field.
67252287
SK
1360 *
1361 * @regmap: regmap bank in which this register field is located.
1362 * @reg_field: Register field with in the bank.
1363 *
1364 * The return value will be an ERR_PTR() on error or a valid pointer
1365 * to a struct regmap_field. The regmap_field should be freed by the
1366 * user once its finished working with it using regmap_field_free().
1367 */
1368struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1369 struct reg_field reg_field)
1370{
1371 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1372
1373 if (!rm_field)
1374 return ERR_PTR(-ENOMEM);
1375
1376 regmap_field_init(rm_field, regmap, reg_field);
1377
1378 return rm_field;
1379}
1380EXPORT_SYMBOL_GPL(regmap_field_alloc);
1381
1382/**
2cf8e2df
CK
1383 * regmap_field_free() - Free register field allocated using
1384 * regmap_field_alloc.
67252287
SK
1385 *
1386 * @field: regmap field which should be freed.
1387 */
1388void regmap_field_free(struct regmap_field *field)
1389{
1390 kfree(field);
1391}
1392EXPORT_SYMBOL_GPL(regmap_field_free);
1393
bf315173 1394/**
2cf8e2df 1395 * regmap_reinit_cache() - Reinitialise the current register cache
bf315173
MB
1396 *
1397 * @map: Register map to operate on.
1398 * @config: New configuration. Only the cache data will be used.
1399 *
1400 * Discard any existing register cache for the map and initialize a
1401 * new cache. This can be used to restore the cache to defaults or to
1402 * update the cache configuration to reflect runtime discovery of the
1403 * hardware.
4d879514
DP
1404 *
1405 * No explicit locking is done here, the user needs to ensure that
1406 * this function will not race with other calls to regmap.
bf315173
MB
1407 */
1408int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1409{
94cc89eb
CK
1410 int ret;
1411
bf315173 1412 regcache_exit(map);
a24f64a6 1413 regmap_debugfs_exit(map);
bf315173
MB
1414
1415 map->max_register = config->max_register;
0ec74ad3 1416 map->max_register_is_set = map->max_register ?: config->max_register_is_0;
bf315173
MB
1417 map->writeable_reg = config->writeable_reg;
1418 map->readable_reg = config->readable_reg;
1419 map->volatile_reg = config->volatile_reg;
1420 map->precious_reg = config->precious_reg;
cdf6b11d 1421 map->writeable_noinc_reg = config->writeable_noinc_reg;
74fe7b55 1422 map->readable_noinc_reg = config->readable_noinc_reg;
bf315173
MB
1423 map->cache_type = config->cache_type;
1424
94cc89eb
CK
1425 ret = regmap_set_name(map, config);
1426 if (ret)
1427 return ret;
1428
1429 regmap_debugfs_init(map);
a24f64a6 1430
421e8d2d
MB
1431 map->cache_bypass = false;
1432 map->cache_only = false;
1433
4d879514 1434 return regcache_init(map, config);
bf315173 1435}
752a6a5f 1436EXPORT_SYMBOL_GPL(regmap_reinit_cache);
bf315173 1437
b83a313b 1438/**
2cf8e2df
CK
1439 * regmap_exit() - Free a previously allocated register map
1440 *
1441 * @map: Register map to operate on.
b83a313b
MB
1442 */
1443void regmap_exit(struct regmap *map)
1444{
7e09a979
MB
1445 struct regmap_async *async;
1446
5d1729e7 1447 regcache_exit(map);
31244e39 1448 regmap_debugfs_exit(map);
6863ca62 1449 regmap_range_exit(map);
d2a5884a 1450 if (map->bus && map->bus->free_context)
0135bbcc 1451 map->bus->free_context(map->bus_context);
b83a313b 1452 kfree(map->work_buf);
7e09a979
MB
1453 while (!list_empty(&map->async_free)) {
1454 async = list_first_entry_or_null(&map->async_free,
1455 struct regmap_async,
1456 list);
1457 list_del(&async->list);
1458 kfree(async->work_buf);
1459 kfree(async);
1460 }
a1a68fca 1461 if (map->hwlock)
e8419c40 1462 hwspin_lock_free(map->hwlock);
f74d63b8
BG
1463 if (map->lock == regmap_lock_mutex)
1464 mutex_destroy(&map->mutex);
8253bb3f 1465 kfree_const(map->name);
95b2c3ec 1466 kfree(map->patch);
ea030ca6
LT
1467 if (map->bus && map->bus->free_on_exit)
1468 kfree(map->bus);
b83a313b
MB
1469 kfree(map);
1470}
1471EXPORT_SYMBOL_GPL(regmap_exit);
1472
72b39f6f
MB
1473static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1474{
1475 struct regmap **r = res;
1476 if (!r || !*r) {
1477 WARN_ON(!r || !*r);
1478 return 0;
1479 }
1480
1481 /* If the user didn't specify a name match any */
1482 if (data)
c6df8433 1483 return (*r)->name && !strcmp((*r)->name, data);
72b39f6f
MB
1484 else
1485 return 1;
1486}
1487
1488/**
2cf8e2df 1489 * dev_get_regmap() - Obtain the regmap (if any) for a device
72b39f6f
MB
1490 *
1491 * @dev: Device to retrieve the map for
1492 * @name: Optional name for the register map, usually NULL.
1493 *
1494 * Returns the regmap for the device if one is present, or NULL. If
1495 * name is specified then it must match the name specified when
1496 * registering the device, if it is NULL then the first regmap found
1497 * will be used. Devices with multiple register maps are very rare,
1498 * generic code should normally not need to specify a name.
1499 */
1500struct regmap *dev_get_regmap(struct device *dev, const char *name)
1501{
1502 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1503 dev_get_regmap_match, (void *)name);
1504
1505 if (!r)
1506 return NULL;
1507 return *r;
1508}
1509EXPORT_SYMBOL_GPL(dev_get_regmap);
1510
8d7d3972 1511/**
2cf8e2df 1512 * regmap_get_device() - Obtain the device from a regmap
8d7d3972
TT
1513 *
1514 * @map: Register map to operate on.
1515 *
1516 * Returns the underlying device that the regmap has been created for.
1517 */
1518struct device *regmap_get_device(struct regmap *map)
1519{
1520 return map->dev;
1521}
fa2fbe4a 1522EXPORT_SYMBOL_GPL(regmap_get_device);
8d7d3972 1523
6863ca62 1524static int _regmap_select_page(struct regmap *map, unsigned int *reg,
98bc7dfd 1525 struct regmap_range_node *range,
6863ca62
KG
1526 unsigned int val_num)
1527{
6863ca62
KG
1528 void *orig_work_buf;
1529 unsigned int win_offset;
1530 unsigned int win_page;
1531 bool page_chg;
1532 int ret;
1533
98bc7dfd
MB
1534 win_offset = (*reg - range->range_min) % range->window_len;
1535 win_page = (*reg - range->range_min) / range->window_len;
6863ca62 1536
98bc7dfd
MB
1537 if (val_num > 1) {
1538 /* Bulk write shouldn't cross range boundary */
1539 if (*reg + val_num - 1 > range->range_max)
1540 return -EINVAL;
6863ca62 1541
98bc7dfd
MB
1542 /* ... or single page boundary */
1543 if (val_num > range->window_len - win_offset)
1544 return -EINVAL;
1545 }
6863ca62 1546
98bc7dfd
MB
1547 /* It is possible to have selector register inside data window.
1548 In that case, selector register is located on every page and
1549 it needs no page switching, when accessed alone. */
1550 if (val_num > 1 ||
1551 range->window_start + win_offset != range->selector_reg) {
1552 /* Use separate work_buf during page switching */
1553 orig_work_buf = map->work_buf;
1554 map->work_buf = map->selector_work_buf;
6863ca62 1555
98bc7dfd
MB
1556 ret = _regmap_update_bits(map, range->selector_reg,
1557 range->selector_mask,
1558 win_page << range->selector_shift,
7ff0589c 1559 &page_chg, false);
632a5b01 1560
98bc7dfd 1561 map->work_buf = orig_work_buf;
6863ca62 1562
0ff3e62f 1563 if (ret != 0)
98bc7dfd 1564 return ret;
6863ca62
KG
1565 }
1566
98bc7dfd
MB
1567 *reg = range->window_start + win_offset;
1568
6863ca62
KG
1569 return 0;
1570}
1571
f50e38c9
TL
1572static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1573 unsigned long mask)
1574{
1575 u8 *buf;
1576 int i;
1577
1578 if (!mask || !map->work_buf)
1579 return;
1580
1581 buf = map->work_buf;
1582
1583 for (i = 0; i < max_bytes; i++)
1584 buf[i] |= (mask >> (8 * i)) & 0xff;
1585}
1586
3f58f6dc
MC
1587static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1588{
1589 reg += map->reg_base;
4a670ac3
MC
1590
1591 if (map->format.reg_shift > 0)
1592 reg >>= map->format.reg_shift;
1593 else if (map->format.reg_shift < 0)
1594 reg <<= -(map->format.reg_shift);
1595
1596 return reg;
3f58f6dc
MC
1597}
1598
7ef2c6b8 1599static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
05669b63 1600 const void *val, size_t val_len, bool noinc)
b83a313b 1601{
98bc7dfd 1602 struct regmap_range_node *range;
0d509f2b 1603 unsigned long flags;
0d509f2b
MB
1604 void *work_val = map->work_buf + map->format.reg_bytes +
1605 map->format.pad_bytes;
b83a313b
MB
1606 void *buf;
1607 int ret = -ENOTSUPP;
1608 size_t len;
73304781
MB
1609 int i;
1610
2e31aab0
BW
1611 /* Check for unwritable or noinc registers in range
1612 * before we start
1613 */
1614 if (!regmap_writeable_noinc(map, reg)) {
1615 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1616 unsigned int element =
1617 reg + regmap_get_offset(map, i);
1618 if (!regmap_writeable(map, element) ||
1619 regmap_writeable_noinc(map, element))
1620 return -EINVAL;
1621 }
1622 }
b83a313b 1623
c9157198 1624 if (!map->cache_bypass && map->format.parse_val) {
984a4afd 1625 unsigned int ival, offset;
c9157198 1626 int val_bytes = map->format.val_bytes;
984a4afd
BW
1627
1628 /* Cache the last written value for noinc writes */
1629 i = noinc ? val_len - val_bytes : 0;
1630 for (; i < val_len; i += val_bytes) {
1631 ival = map->format.parse_val(val + i);
1632 offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1633 ret = regcache_write(map, reg + offset, ival);
c9157198
LD
1634 if (ret) {
1635 dev_err(map->dev,
6d04b8ac 1636 "Error in caching of register: %x ret: %d\n",
984a4afd 1637 reg + offset, ret);
c9157198
LD
1638 return ret;
1639 }
1640 }
1641 if (map->cache_only) {
1642 map->cache_dirty = true;
1643 return 0;
1644 }
1645 }
1646
98bc7dfd
MB
1647 range = _regmap_range_lookup(map, reg);
1648 if (range) {
8a2ceac6
MB
1649 int val_num = val_len / map->format.val_bytes;
1650 int win_offset = (reg - range->range_min) % range->window_len;
1651 int win_residue = range->window_len - win_offset;
1652
1653 /* If the write goes beyond the end of the window split it */
1654 while (val_num > win_residue) {
1a61cfe3 1655 dev_dbg(map->dev, "Writing window %d/%zu\n",
8a2ceac6 1656 win_residue, val_len / map->format.val_bytes);
7ef2c6b8
CK
1657 ret = _regmap_raw_write_impl(map, reg, val,
1658 win_residue *
05669b63 1659 map->format.val_bytes, noinc);
8a2ceac6
MB
1660 if (ret != 0)
1661 return ret;
1662
1663 reg += win_residue;
1664 val_num -= win_residue;
1665 val += win_residue * map->format.val_bytes;
1666 val_len -= win_residue * map->format.val_bytes;
1667
1668 win_offset = (reg - range->range_min) %
1669 range->window_len;
1670 win_residue = range->window_len - win_offset;
1671 }
1672
05669b63 1673 ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
0ff3e62f 1674 if (ret != 0)
98bc7dfd
MB
1675 return ret;
1676 }
6863ca62 1677
3f58f6dc 1678 reg = regmap_reg_addr(map, reg);
d939fb9a 1679 map->format.format_reg(map->work_buf, reg, map->reg_shift);
f50e38c9
TL
1680 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1681 map->write_flag_mask);
6f306441 1682
651e013e
MB
1683 /*
1684 * Essentially all I/O mechanisms will be faster with a single
1685 * buffer to write. Since register syncs often generate raw
1686 * writes of single registers optimise that case.
1687 */
1688 if (val != work_val && val_len == map->format.val_bytes) {
1689 memcpy(work_val, val, map->format.val_bytes);
1690 val = work_val;
1691 }
1692
d77e7456 1693 if (map->async && map->bus && map->bus->async_write) {
7e09a979 1694 struct regmap_async *async;
0d509f2b 1695
c6b570d9 1696 trace_regmap_async_write_start(map, reg, val_len);
fe7d4ccd 1697
7e09a979
MB
1698 spin_lock_irqsave(&map->async_lock, flags);
1699 async = list_first_entry_or_null(&map->async_free,
1700 struct regmap_async,
1701 list);
1702 if (async)
1703 list_del(&async->list);
1704 spin_unlock_irqrestore(&map->async_lock, flags);
1705
1706 if (!async) {
1707 async = map->bus->async_alloc();
1708 if (!async)
1709 return -ENOMEM;
1710
1711 async->work_buf = kzalloc(map->format.buf_size,
1712 GFP_KERNEL | GFP_DMA);
1713 if (!async->work_buf) {
1714 kfree(async);
1715 return -ENOMEM;
1716 }
0d509f2b
MB
1717 }
1718
0d509f2b
MB
1719 async->map = map;
1720
1721 /* If the caller supplied the value we can use it safely. */
1722 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1723 map->format.reg_bytes + map->format.val_bytes);
0d509f2b
MB
1724
1725 spin_lock_irqsave(&map->async_lock, flags);
1726 list_add_tail(&async->list, &map->async_list);
1727 spin_unlock_irqrestore(&map->async_lock, flags);
1728
04c50ccf
MB
1729 if (val != work_val)
1730 ret = map->bus->async_write(map->bus_context,
1731 async->work_buf,
1732 map->format.reg_bytes +
1733 map->format.pad_bytes,
1734 val, val_len, async);
1735 else
1736 ret = map->bus->async_write(map->bus_context,
1737 async->work_buf,
1738 map->format.reg_bytes +
1739 map->format.pad_bytes +
1740 val_len, NULL, 0, async);
0d509f2b
MB
1741
1742 if (ret != 0) {
1743 dev_err(map->dev, "Failed to schedule write: %d\n",
1744 ret);
1745
1746 spin_lock_irqsave(&map->async_lock, flags);
7e09a979 1747 list_move(&async->list, &map->async_free);
0d509f2b 1748 spin_unlock_irqrestore(&map->async_lock, flags);
0d509f2b 1749 }
f951b658
MB
1750
1751 return ret;
0d509f2b
MB
1752 }
1753
c6b570d9 1754 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
fb2736bb 1755
2547e201
MB
1756 /* If we're doing a single register write we can probably just
1757 * send the work_buf directly, otherwise try to do a gather
1758 * write.
1759 */
0d509f2b 1760 if (val == work_val)
d77e7456
MV
1761 ret = map->write(map->bus_context, map->work_buf,
1762 map->format.reg_bytes +
1763 map->format.pad_bytes +
1764 val_len);
5c422f0b 1765 else if (map->bus && map->bus->gather_write)
0135bbcc 1766 ret = map->bus->gather_write(map->bus_context, map->work_buf,
82159ba8
MB
1767 map->format.reg_bytes +
1768 map->format.pad_bytes,
b83a313b 1769 val, val_len);
db057679
SK
1770 else
1771 ret = -ENOTSUPP;
b83a313b 1772
2547e201 1773 /* If that didn't work fall back on linearising by hand. */
b83a313b 1774 if (ret == -ENOTSUPP) {
82159ba8
MB
1775 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1776 buf = kzalloc(len, GFP_KERNEL);
b83a313b
MB
1777 if (!buf)
1778 return -ENOMEM;
1779
1780 memcpy(buf, map->work_buf, map->format.reg_bytes);
82159ba8
MB
1781 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1782 val, val_len);
d77e7456 1783 ret = map->write(map->bus_context, buf, len);
b83a313b
MB
1784
1785 kfree(buf);
815806e3 1786 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
f0aa1ce6
NY
1787 /* regcache_drop_region() takes lock that we already have,
1788 * thus call map->cache_ops->drop() directly
1789 */
1790 if (map->cache_ops && map->cache_ops->drop)
1791 map->cache_ops->drop(map, reg, reg + 1);
b83a313b
MB
1792 }
1793
c6b570d9 1794 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
fb2736bb 1795
b83a313b
MB
1796 return ret;
1797}
1798
221ad7f2
MB
1799/**
1800 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1801 *
1802 * @map: Map to check.
1803 */
1804bool regmap_can_raw_write(struct regmap *map)
1805{
2a166929 1806 return map->write && map->format.format_val && map->format.format_reg;
221ad7f2
MB
1807}
1808EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1809
f50c9eb4
MP
1810/**
1811 * regmap_get_raw_read_max - Get the maximum size we can read
1812 *
1813 * @map: Map to check.
1814 */
1815size_t regmap_get_raw_read_max(struct regmap *map)
1816{
1817 return map->max_raw_read;
1818}
1819EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1820
1821/**
1822 * regmap_get_raw_write_max - Get the maximum size we can read
1823 *
1824 * @map: Map to check.
1825 */
1826size_t regmap_get_raw_write_max(struct regmap *map)
1827{
1828 return map->max_raw_write;
1829}
1830EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1831
07c320dc
AS
1832static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1833 unsigned int val)
1834{
1835 int ret;
1836 struct regmap_range_node *range;
1837 struct regmap *map = context;
1838
d77e7456 1839 WARN_ON(!map->format.format_write);
07c320dc
AS
1840
1841 range = _regmap_range_lookup(map, reg);
1842 if (range) {
1843 ret = _regmap_select_page(map, &reg, range, 1);
1844 if (ret != 0)
1845 return ret;
1846 }
1847
3f58f6dc 1848 reg = regmap_reg_addr(map, reg);
07c320dc
AS
1849 map->format.format_write(map, reg, val);
1850
c6b570d9 1851 trace_regmap_hw_write_start(map, reg, 1);
07c320dc 1852
d77e7456 1853 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
07c320dc 1854
c6b570d9 1855 trace_regmap_hw_write_done(map, reg, 1);
07c320dc
AS
1856
1857 return ret;
1858}
1859
3ac17037
BB
1860static int _regmap_bus_reg_write(void *context, unsigned int reg,
1861 unsigned int val)
1862{
1863 struct regmap *map = context;
f18ee501
MB
1864 struct regmap_range_node *range;
1865 int ret;
1866
1867 range = _regmap_range_lookup(map, reg);
1868 if (range) {
1869 ret = _regmap_select_page(map, &reg, range, 1);
1870 if (ret != 0)
1871 return ret;
1872 }
3ac17037 1873
3f58f6dc 1874 reg = regmap_reg_addr(map, reg);
3ac17037
BB
1875 return map->bus->reg_write(map->bus_context, reg, val);
1876}
1877
07c320dc
AS
1878static int _regmap_bus_raw_write(void *context, unsigned int reg,
1879 unsigned int val)
1880{
1881 struct regmap *map = context;
1882
d77e7456 1883 WARN_ON(!map->format.format_val);
07c320dc
AS
1884
1885 map->format.format_val(map->work_buf + map->format.reg_bytes
1886 + map->format.pad_bytes, val, 0);
7ef2c6b8
CK
1887 return _regmap_raw_write_impl(map, reg,
1888 map->work_buf +
1889 map->format.reg_bytes +
1890 map->format.pad_bytes,
05669b63
DB
1891 map->format.val_bytes,
1892 false);
07c320dc
AS
1893}
1894
d2a5884a
AS
1895static inline void *_regmap_map_get_context(struct regmap *map)
1896{
d77e7456 1897 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
d2a5884a
AS
1898}
1899
4d2dc095
DP
1900int _regmap_write(struct regmap *map, unsigned int reg,
1901 unsigned int val)
b83a313b 1902{
fb2736bb 1903 int ret;
d2a5884a 1904 void *context = _regmap_map_get_context(map);
b83a313b 1905
515f2261
IN
1906 if (!regmap_writeable(map, reg))
1907 return -EIO;
1908
d2a5884a 1909 if (!map->cache_bypass && !map->defer_caching) {
5d1729e7
DP
1910 ret = regcache_write(map, reg, val);
1911 if (ret != 0)
1912 return ret;
8ae0d7e8
MB
1913 if (map->cache_only) {
1914 map->cache_dirty = true;
5d1729e7 1915 return 0;
8ae0d7e8 1916 }
5d1729e7
DP
1917 }
1918
f7d01359
LT
1919 ret = map->reg_write(context, reg, val);
1920 if (ret == 0) {
1921 if (regmap_should_log(map))
1922 dev_info(map->dev, "%x <= %x\n", reg, val);
1044c180 1923
f7d01359
LT
1924 trace_regmap_reg_write(map, reg, val);
1925 }
fb2736bb 1926
f7d01359 1927 return ret;
b83a313b
MB
1928}
1929
1930/**
2cf8e2df 1931 * regmap_write() - Write a value to a single register
b83a313b
MB
1932 *
1933 * @map: Register map to write to
1934 * @reg: Register to write to
1935 * @val: Value to be written
1936 *
1937 * A value of zero will be returned on success, a negative errno will
1938 * be returned in error cases.
1939 */
1940int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1941{
1942 int ret;
1943
fcac0233 1944 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f
SW
1945 return -EINVAL;
1946
0d4529c5 1947 map->lock(map->lock_arg);
b83a313b
MB
1948
1949 ret = _regmap_write(map, reg, val);
1950
0d4529c5 1951 map->unlock(map->lock_arg);
b83a313b
MB
1952
1953 return ret;
1954}
1955EXPORT_SYMBOL_GPL(regmap_write);
1956
915f441b 1957/**
2cf8e2df 1958 * regmap_write_async() - Write a value to a single register asynchronously
915f441b
MB
1959 *
1960 * @map: Register map to write to
1961 * @reg: Register to write to
1962 * @val: Value to be written
1963 *
1964 * A value of zero will be returned on success, a negative errno will
1965 * be returned in error cases.
1966 */
1967int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1968{
1969 int ret;
1970
fcac0233 1971 if (!IS_ALIGNED(reg, map->reg_stride))
915f441b
MB
1972 return -EINVAL;
1973
1974 map->lock(map->lock_arg);
1975
1976 map->async = true;
1977
1978 ret = _regmap_write(map, reg, val);
1979
1980 map->async = false;
1981
1982 map->unlock(map->lock_arg);
1983
1984 return ret;
1985}
1986EXPORT_SYMBOL_GPL(regmap_write_async);
1987
7ef2c6b8 1988int _regmap_raw_write(struct regmap *map, unsigned int reg,
05669b63 1989 const void *val, size_t val_len, bool noinc)
7ef2c6b8
CK
1990{
1991 size_t val_bytes = map->format.val_bytes;
1992 size_t val_count = val_len / val_bytes;
364e378b
CK
1993 size_t chunk_count, chunk_bytes;
1994 size_t chunk_regs = val_count;
7ef2c6b8
CK
1995 int ret, i;
1996
1997 if (!val_count)
1998 return -EINVAL;
1999
364e378b
CK
2000 if (map->use_single_write)
2001 chunk_regs = 1;
bc647348
MB
2002 else if (map->max_raw_write && val_len > map->max_raw_write)
2003 chunk_regs = map->max_raw_write / val_bytes;
364e378b
CK
2004
2005 chunk_count = val_count / chunk_regs;
2006 chunk_bytes = chunk_regs * val_bytes;
7ef2c6b8
CK
2007
2008 /* Write as many bytes as possible with chunk_size */
2009 for (i = 0; i < chunk_count; i++) {
05669b63 2010 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
7ef2c6b8
CK
2011 if (ret)
2012 return ret;
364e378b
CK
2013
2014 reg += regmap_get_offset(map, chunk_regs);
2015 val += chunk_bytes;
2016 val_len -= chunk_bytes;
7ef2c6b8
CK
2017 }
2018
2019 /* Write remaining bytes */
364e378b 2020 if (val_len)
05669b63 2021 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
7ef2c6b8
CK
2022
2023 return ret;
2024}
2025
b83a313b 2026/**
2cf8e2df 2027 * regmap_raw_write() - Write raw values to one or more registers
b83a313b
MB
2028 *
2029 * @map: Register map to write to
2030 * @reg: Initial register to write to
2031 * @val: Block of data to be written, laid out for direct transmission to the
2032 * device
2033 * @val_len: Length of data pointed to by val.
2034 *
2035 * This function is intended to be used for things like firmware
2036 * download where a large block of data needs to be transferred to the
2037 * device. No formatting will be done on the data provided.
2038 *
2039 * A value of zero will be returned on success, a negative errno will
2040 * be returned in error cases.
2041 */
2042int regmap_raw_write(struct regmap *map, unsigned int reg,
2043 const void *val, size_t val_len)
2044{
2045 int ret;
2046
221ad7f2 2047 if (!regmap_can_raw_write(map))
d2a5884a 2048 return -EINVAL;
851960ba
SW
2049 if (val_len % map->format.val_bytes)
2050 return -EINVAL;
2051
0d4529c5 2052 map->lock(map->lock_arg);
b83a313b 2053
05669b63 2054 ret = _regmap_raw_write(map, reg, val, val_len, false);
b83a313b 2055
0d4529c5 2056 map->unlock(map->lock_arg);
b83a313b
MB
2057
2058 return ret;
2059}
2060EXPORT_SYMBOL_GPL(regmap_raw_write);
2061
c20cc099
LW
2062static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2063 void *val, unsigned int val_len, bool write)
2064{
2065 size_t val_bytes = map->format.val_bytes;
2066 size_t val_count = val_len / val_bytes;
2067 unsigned int lastval;
2068 u8 *u8p;
2069 u16 *u16p;
2070 u32 *u32p;
c20cc099
LW
2071 int ret;
2072 int i;
2073
2074 switch (val_bytes) {
2075 case 1:
2076 u8p = val;
2077 if (write)
2078 lastval = (unsigned int)u8p[val_count - 1];
2079 break;
2080 case 2:
2081 u16p = val;
2082 if (write)
2083 lastval = (unsigned int)u16p[val_count - 1];
2084 break;
2085 case 4:
2086 u32p = val;
2087 if (write)
2088 lastval = (unsigned int)u32p[val_count - 1];
2089 break;
c20cc099
LW
2090 default:
2091 return -EINVAL;
2092 }
2093
2094 /*
2095 * Update the cache with the last value we write, the rest is just
2096 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2097 * sure a single read from the cache will work.
2098 */
2099 if (write) {
2100 if (!map->cache_bypass && !map->defer_caching) {
2101 ret = regcache_write(map, reg, lastval);
2102 if (ret != 0)
2103 return ret;
2104 if (map->cache_only) {
2105 map->cache_dirty = true;
2106 return 0;
2107 }
2108 }
2109 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2110 } else {
2111 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2112 }
2113
2114 if (!ret && regmap_should_log(map)) {
2115 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
b7059927 2116 for (i = 0; i < val_count; i++) {
c20cc099
LW
2117 switch (val_bytes) {
2118 case 1:
2119 pr_cont("%x", u8p[i]);
2120 break;
2121 case 2:
2122 pr_cont("%x", u16p[i]);
2123 break;
2124 case 4:
2125 pr_cont("%x", u32p[i]);
2126 break;
c20cc099
LW
2127 default:
2128 break;
2129 }
b7059927 2130 if (i == (val_count - 1))
c20cc099
LW
2131 pr_cont("]\n");
2132 else
2133 pr_cont(",");
2134 }
2135 }
2136
2137 return 0;
2138}
2139
cdf6b11d 2140/**
1957b92a 2141 * regmap_noinc_write(): Write data to a register without incrementing the
cdf6b11d
BW
2142 * register number
2143 *
2144 * @map: Register map to write to
2145 * @reg: Register to write to
2146 * @val: Pointer to data buffer
2147 * @val_len: Length of output buffer in bytes.
2148 *
2149 * The regmap API usually assumes that bulk bus write operations will write a
2150 * range of registers. Some devices have certain registers for which a write
2151 * operation can write to an internal FIFO.
2152 *
2153 * The target register must be volatile but registers after it can be
2154 * completely unrelated cacheable registers.
2155 *
2156 * This will attempt multiple writes as required to write val_len bytes.
2157 *
2158 * A value of zero will be returned on success, a negative errno will be
2159 * returned in error cases.
2160 */
2161int regmap_noinc_write(struct regmap *map, unsigned int reg,
2162 const void *val, size_t val_len)
2163{
2164 size_t write_len;
2165 int ret;
2166
c20cc099
LW
2167 if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2168 return -EINVAL;
cdf6b11d
BW
2169 if (val_len % map->format.val_bytes)
2170 return -EINVAL;
2171 if (!IS_ALIGNED(reg, map->reg_stride))
2172 return -EINVAL;
2173 if (val_len == 0)
2174 return -EINVAL;
2175
2176 map->lock(map->lock_arg);
2177
2178 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2179 ret = -EINVAL;
2180 goto out_unlock;
2181 }
2182
c20cc099
LW
2183 /*
2184 * Use the accelerated operation if we can. The val drops the const
2185 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2186 */
2187 if (map->bus->reg_noinc_write) {
2188 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2189 goto out_unlock;
2190 }
2191
cdf6b11d
BW
2192 while (val_len) {
2193 if (map->max_raw_write && map->max_raw_write < val_len)
2194 write_len = map->max_raw_write;
2195 else
2196 write_len = val_len;
05669b63 2197 ret = _regmap_raw_write(map, reg, val, write_len, true);
cdf6b11d
BW
2198 if (ret)
2199 goto out_unlock;
2200 val = ((u8 *)val) + write_len;
2201 val_len -= write_len;
2202 }
2203
2204out_unlock:
2205 map->unlock(map->lock_arg);
2206 return ret;
2207}
2208EXPORT_SYMBOL_GPL(regmap_noinc_write);
2209
67252287 2210/**
2cf8e2df
CK
2211 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2212 * register field.
fdf20029
KM
2213 *
2214 * @field: Register field to write to
2215 * @mask: Bitmask to change
2216 * @val: Value to be written
28972eaa
KM
2217 * @change: Boolean indicating if a write was done
2218 * @async: Boolean indicating asynchronously
2219 * @force: Boolean indicating use force update
fdf20029 2220 *
2cf8e2df
CK
2221 * Perform a read/modify/write cycle on the register field with change,
2222 * async, force option.
2223 *
fdf20029
KM
2224 * A value of zero will be returned on success, a negative errno will
2225 * be returned in error cases.
2226 */
28972eaa
KM
2227int regmap_field_update_bits_base(struct regmap_field *field,
2228 unsigned int mask, unsigned int val,
2229 bool *change, bool async, bool force)
fdf20029
KM
2230{
2231 mask = (mask << field->shift) & field->mask;
2232
28972eaa
KM
2233 return regmap_update_bits_base(field->regmap, field->reg,
2234 mask, val << field->shift,
2235 change, async, force);
e874e6c7 2236}
28972eaa 2237EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
e874e6c7 2238
f67be8b7
LC
2239/**
2240 * regmap_field_test_bits() - Check if all specified bits are set in a
2241 * register field.
2242 *
2243 * @field: Register field to operate on
2244 * @bits: Bits to test
2245 *
2246 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2247 * tested bits is not set and 1 if all tested bits are set.
2248 */
2249int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2250{
2251 unsigned int val, ret;
2252
2253 ret = regmap_field_read(field, &val);
2254 if (ret)
2255 return ret;
2256
2257 return (val & bits) == bits;
2258}
2259EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2260
a0102375 2261/**
2cf8e2df
CK
2262 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2263 * register field with port ID
a0102375
KM
2264 *
2265 * @field: Register field to write to
2266 * @id: port ID
2267 * @mask: Bitmask to change
2268 * @val: Value to be written
e126edec
KM
2269 * @change: Boolean indicating if a write was done
2270 * @async: Boolean indicating asynchronously
2271 * @force: Boolean indicating use force update
a0102375
KM
2272 *
2273 * A value of zero will be returned on success, a negative errno will
2274 * be returned in error cases.
2275 */
9fb9b771 2276int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
e126edec
KM
2277 unsigned int mask, unsigned int val,
2278 bool *change, bool async, bool force)
a0102375
KM
2279{
2280 if (id >= field->id_size)
2281 return -EINVAL;
2282
2283 mask = (mask << field->shift) & field->mask;
2284
e126edec
KM
2285 return regmap_update_bits_base(field->regmap,
2286 field->reg + (field->id_offset * id),
2287 mask, val << field->shift,
2288 change, async, force);
a0102375 2289}
e126edec 2290EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
a0102375 2291
2cf8e2df
CK
2292/**
2293 * regmap_bulk_write() - Write multiple registers to the device
8eaeb219
LD
2294 *
2295 * @map: Register map to write to
2296 * @reg: First register to be write from
2297 * @val: Block of data to be written, in native register size for device
2298 * @val_count: Number of registers to write
2299 *
2300 * This function is intended to be used for writing a large block of
31b35e9e 2301 * data to the device either in single transfer or multiple transfer.
8eaeb219
LD
2302 *
2303 * A value of zero will be returned on success, a negative errno will
2304 * be returned in error cases.
2305 */
2306int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2307 size_t val_count)
2308{
2309 int ret = 0, i;
2310 size_t val_bytes = map->format.val_bytes;
8eaeb219 2311
fcac0233 2312 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f 2313 return -EINVAL;
8eaeb219 2314
f4298360 2315 /*
fb44f3ce
CK
2316 * Some devices don't support bulk write, for them we have a series of
2317 * single write operations.
f4298360 2318 */
2a166929 2319 if (!map->write || !map->format.parse_inplace) {
4999e962 2320 map->lock(map->lock_arg);
f4298360
SB
2321 for (i = 0; i < val_count; i++) {
2322 unsigned int ival;
2323
2324 switch (val_bytes) {
2325 case 1:
2326 ival = *(u8 *)(val + (i * val_bytes));
2327 break;
2328 case 2:
2329 ival = *(u16 *)(val + (i * val_bytes));
2330 break;
2331 case 4:
2332 ival = *(u32 *)(val + (i * val_bytes));
2333 break;
f4298360
SB
2334 default:
2335 ret = -EINVAL;
2336 goto out;
2337 }
8eaeb219 2338
ca747be2
XL
2339 ret = _regmap_write(map,
2340 reg + regmap_get_offset(map, i),
2341 ival);
f4298360
SB
2342 if (ret != 0)
2343 goto out;
2344 }
4999e962
TI
2345out:
2346 map->unlock(map->lock_arg);
8eaeb219 2347 } else {
f4298360
SB
2348 void *wval;
2349
f6841d41 2350 wval = kmemdup_array(val, val_count, val_bytes, map->alloc_flags);
b4ecfec5 2351 if (!wval)
4999e962 2352 return -ENOMEM;
b4ecfec5 2353
8eaeb219 2354 for (i = 0; i < val_count * val_bytes; i += val_bytes)
8a819ff8 2355 map->format.parse_inplace(wval + i);
f4298360 2356
7ef2c6b8 2357 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
8eaeb219 2358
8eaeb219 2359 kfree(wval);
f4298360 2360 }
026c99b5
DR
2361
2362 if (!ret)
2363 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2364
8eaeb219
LD
2365 return ret;
2366}
2367EXPORT_SYMBOL_GPL(regmap_bulk_write);
2368
e894c3f4
OAO
2369/*
2370 * _regmap_raw_multi_reg_write()
2371 *
2372 * the (register,newvalue) pairs in regs have not been formatted, but
2373 * they are all in the same page and have been changed to being page
b486afbd 2374 * relative. The page register has been written if that was necessary.
e894c3f4
OAO
2375 */
2376static int _regmap_raw_multi_reg_write(struct regmap *map,
8019ff6c 2377 const struct reg_sequence *regs,
e894c3f4
OAO
2378 size_t num_regs)
2379{
2380 int ret;
2381 void *buf;
2382 int i;
2383 u8 *u8;
2384 size_t val_bytes = map->format.val_bytes;
2385 size_t reg_bytes = map->format.reg_bytes;
2386 size_t pad_bytes = map->format.pad_bytes;
2387 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2388 size_t len = pair_size * num_regs;
2389
f5727cd3
XL
2390 if (!len)
2391 return -EINVAL;
2392
e894c3f4
OAO
2393 buf = kzalloc(len, GFP_KERNEL);
2394 if (!buf)
2395 return -ENOMEM;
2396
2397 /* We have to linearise by hand. */
2398
2399 u8 = buf;
2400
2401 for (i = 0; i < num_regs; i++) {
2f9b660b
MP
2402 unsigned int reg = regs[i].reg;
2403 unsigned int val = regs[i].def;
c6b570d9 2404 trace_regmap_hw_write_start(map, reg, 1);
3f58f6dc 2405 reg = regmap_reg_addr(map, reg);
e894c3f4
OAO
2406 map->format.format_reg(u8, reg, map->reg_shift);
2407 u8 += reg_bytes + pad_bytes;
2408 map->format.format_val(u8, val, 0);
2409 u8 += val_bytes;
2410 }
2411 u8 = buf;
2412 *u8 |= map->write_flag_mask;
2413
d77e7456 2414 ret = map->write(map->bus_context, buf, len);
e894c3f4
OAO
2415
2416 kfree(buf);
2417
2418 for (i = 0; i < num_regs; i++) {
2419 int reg = regs[i].reg;
c6b570d9 2420 trace_regmap_hw_write_done(map, reg, 1);
e894c3f4
OAO
2421 }
2422 return ret;
2423}
2424
2425static unsigned int _regmap_register_page(struct regmap *map,
2426 unsigned int reg,
2427 struct regmap_range_node *range)
2428{
2429 unsigned int win_page = (reg - range->range_min) / range->window_len;
2430
2431 return win_page;
2432}
2433
2434static int _regmap_range_multi_paged_reg_write(struct regmap *map,
8019ff6c 2435 struct reg_sequence *regs,
e894c3f4
OAO
2436 size_t num_regs)
2437{
2438 int ret;
2439 int i, n;
8019ff6c 2440 struct reg_sequence *base;
b48d1398 2441 unsigned int this_page = 0;
2de9d600 2442 unsigned int page_change = 0;
e894c3f4
OAO
2443 /*
2444 * the set of registers are not neccessarily in order, but
2445 * since the order of write must be preserved this algorithm
2de9d600
NP
2446 * chops the set each time the page changes. This also applies
2447 * if there is a delay required at any point in the sequence.
e894c3f4
OAO
2448 */
2449 base = regs;
2450 for (i = 0, n = 0; i < num_regs; i++, n++) {
2451 unsigned int reg = regs[i].reg;
2452 struct regmap_range_node *range;
2453
2454 range = _regmap_range_lookup(map, reg);
2455 if (range) {
2456 unsigned int win_page = _regmap_register_page(map, reg,
2457 range);
2458
2459 if (i == 0)
2460 this_page = win_page;
2461 if (win_page != this_page) {
2462 this_page = win_page;
2de9d600
NP
2463 page_change = 1;
2464 }
2465 }
2466
2467 /* If we have both a page change and a delay make sure to
2468 * write the regs and apply the delay before we change the
2469 * page.
2470 */
2471
2472 if (page_change || regs[i].delay_us) {
2473
2474 /* For situations where the first write requires
2475 * a delay we need to make sure we don't call
2476 * raw_multi_reg_write with n=0
2477 * This can't occur with page breaks as we
2478 * never write on the first iteration
2479 */
2480 if (regs[i].delay_us && i == 0)
2481 n = 1;
2482
e894c3f4
OAO
2483 ret = _regmap_raw_multi_reg_write(map, base, n);
2484 if (ret != 0)
2485 return ret;
2de9d600 2486
21f8e482
DO
2487 if (regs[i].delay_us) {
2488 if (map->can_sleep)
2489 fsleep(regs[i].delay_us);
2490 else
2491 udelay(regs[i].delay_us);
2492 }
2de9d600 2493
e894c3f4
OAO
2494 base += n;
2495 n = 0;
2de9d600
NP
2496
2497 if (page_change) {
2498 ret = _regmap_select_page(map,
2499 &base[n].reg,
2500 range, 1);
2501 if (ret != 0)
2502 return ret;
2503
2504 page_change = 0;
2505 }
2506
e894c3f4 2507 }
2de9d600 2508
e894c3f4
OAO
2509 }
2510 if (n > 0)
2511 return _regmap_raw_multi_reg_write(map, base, n);
2512 return 0;
2513}
2514
1d5b40bc 2515static int _regmap_multi_reg_write(struct regmap *map,
8019ff6c 2516 const struct reg_sequence *regs,
e894c3f4 2517 size_t num_regs)
1d5b40bc 2518{
e894c3f4
OAO
2519 int i;
2520 int ret;
2521
2522 if (!map->can_multi_write) {
2523 for (i = 0; i < num_regs; i++) {
2524 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2525 if (ret != 0)
2526 return ret;
2de9d600 2527
21f8e482
DO
2528 if (regs[i].delay_us) {
2529 if (map->can_sleep)
2530 fsleep(regs[i].delay_us);
2531 else
2532 udelay(regs[i].delay_us);
2533 }
e894c3f4
OAO
2534 }
2535 return 0;
2536 }
2537
2538 if (!map->format.parse_inplace)
2539 return -EINVAL;
2540
2541 if (map->writeable_reg)
2542 for (i = 0; i < num_regs; i++) {
2543 int reg = regs[i].reg;
2544 if (!map->writeable_reg(map->dev, reg))
2545 return -EINVAL;
fcac0233 2546 if (!IS_ALIGNED(reg, map->reg_stride))
e894c3f4
OAO
2547 return -EINVAL;
2548 }
2549
2550 if (!map->cache_bypass) {
2551 for (i = 0; i < num_regs; i++) {
2552 unsigned int val = regs[i].def;
2553 unsigned int reg = regs[i].reg;
2554 ret = regcache_write(map, reg, val);
2555 if (ret) {
2556 dev_err(map->dev,
2557 "Error in caching of register: %x ret: %d\n",
2558 reg, ret);
2559 return ret;
2560 }
2561 }
2562 if (map->cache_only) {
2563 map->cache_dirty = true;
2564 return 0;
2565 }
2566 }
2567
2568 WARN_ON(!map->bus);
1d5b40bc
CK
2569
2570 for (i = 0; i < num_regs; i++) {
e894c3f4
OAO
2571 unsigned int reg = regs[i].reg;
2572 struct regmap_range_node *range;
2de9d600
NP
2573
2574 /* Coalesce all the writes between a page break or a delay
2575 * in a sequence
2576 */
e894c3f4 2577 range = _regmap_range_lookup(map, reg);
2de9d600 2578 if (range || regs[i].delay_us) {
8019ff6c
NP
2579 size_t len = sizeof(struct reg_sequence)*num_regs;
2580 struct reg_sequence *base = kmemdup(regs, len,
e894c3f4
OAO
2581 GFP_KERNEL);
2582 if (!base)
2583 return -ENOMEM;
2584 ret = _regmap_range_multi_paged_reg_write(map, base,
2585 num_regs);
2586 kfree(base);
2587
1d5b40bc
CK
2588 return ret;
2589 }
2590 }
e894c3f4 2591 return _regmap_raw_multi_reg_write(map, regs, num_regs);
1d5b40bc
CK
2592}
2593
2cf8e2df
CK
2594/**
2595 * regmap_multi_reg_write() - Write multiple registers to the device
e33fabd3
AO
2596 *
2597 * @map: Register map to write to
2598 * @regs: Array of structures containing register,value to be written
2599 * @num_regs: Number of registers to write
2600 *
2cf8e2df
CK
2601 * Write multiple registers to the device where the set of register, value
2602 * pairs are supplied in any order, possibly not all in a single range.
2603 *
e894c3f4 2604 * The 'normal' block write mode will send ultimately send data on the
2cf8e2df 2605 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
e894c3f4
OAO
2606 * addressed. However, this alternative block multi write mode will send
2607 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2608 * must of course support the mode.
e33fabd3 2609 *
e894c3f4
OAO
2610 * A value of zero will be returned on success, a negative errno will be
2611 * returned in error cases.
e33fabd3 2612 */
8019ff6c 2613int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
f7e2cec0 2614 int num_regs)
e33fabd3 2615{
1d5b40bc 2616 int ret;
e33fabd3
AO
2617
2618 map->lock(map->lock_arg);
2619
1d5b40bc
CK
2620 ret = _regmap_multi_reg_write(map, regs, num_regs);
2621
e33fabd3
AO
2622 map->unlock(map->lock_arg);
2623
2624 return ret;
2625}
2626EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2627
2cf8e2df
CK
2628/**
2629 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2630 * device but not the cache
e33fabd3
AO
2631 *
2632 * @map: Register map to write to
2633 * @regs: Array of structures containing register,value to be written
2634 * @num_regs: Number of registers to write
2635 *
2cf8e2df
CK
2636 * Write multiple registers to the device but not the cache where the set
2637 * of register are supplied in any order.
2638 *
e33fabd3
AO
2639 * This function is intended to be used for writing a large block of data
2640 * atomically to the device in single transfer for those I2C client devices
2641 * that implement this alternative block write mode.
2642 *
2643 * A value of zero will be returned on success, a negative errno will
2644 * be returned in error cases.
2645 */
1d5b40bc 2646int regmap_multi_reg_write_bypassed(struct regmap *map,
8019ff6c 2647 const struct reg_sequence *regs,
1d5b40bc 2648 int num_regs)
e33fabd3 2649{
1d5b40bc
CK
2650 int ret;
2651 bool bypass;
e33fabd3
AO
2652
2653 map->lock(map->lock_arg);
2654
1d5b40bc
CK
2655 bypass = map->cache_bypass;
2656 map->cache_bypass = true;
2657
2658 ret = _regmap_multi_reg_write(map, regs, num_regs);
2659
2660 map->cache_bypass = bypass;
2661
e33fabd3
AO
2662 map->unlock(map->lock_arg);
2663
2664 return ret;
2665}
1d5b40bc 2666EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
e33fabd3 2667
0d509f2b 2668/**
2cf8e2df
CK
2669 * regmap_raw_write_async() - Write raw values to one or more registers
2670 * asynchronously
0d509f2b
MB
2671 *
2672 * @map: Register map to write to
2673 * @reg: Initial register to write to
2674 * @val: Block of data to be written, laid out for direct transmission to the
2675 * device. Must be valid until regmap_async_complete() is called.
2676 * @val_len: Length of data pointed to by val.
2677 *
2678 * This function is intended to be used for things like firmware
2679 * download where a large block of data needs to be transferred to the
2680 * device. No formatting will be done on the data provided.
2681 *
2682 * If supported by the underlying bus the write will be scheduled
2683 * asynchronously, helping maximise I/O speed on higher speed buses
2684 * like SPI. regmap_async_complete() can be called to ensure that all
2685 * asynchrnous writes have been completed.
2686 *
2687 * A value of zero will be returned on success, a negative errno will
2688 * be returned in error cases.
2689 */
2690int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2691 const void *val, size_t val_len)
2692{
2693 int ret;
2694
2695 if (val_len % map->format.val_bytes)
2696 return -EINVAL;
fcac0233 2697 if (!IS_ALIGNED(reg, map->reg_stride))
0d509f2b
MB
2698 return -EINVAL;
2699
2700 map->lock(map->lock_arg);
2701
0a819809
MB
2702 map->async = true;
2703
05669b63 2704 ret = _regmap_raw_write(map, reg, val, val_len, false);
0a819809
MB
2705
2706 map->async = false;
0d509f2b
MB
2707
2708 map->unlock(map->lock_arg);
2709
2710 return ret;
2711}
2712EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2713
b83a313b 2714static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
40033248 2715 unsigned int val_len, bool noinc)
b83a313b 2716{
98bc7dfd 2717 struct regmap_range_node *range;
b83a313b
MB
2718 int ret;
2719
d77e7456 2720 if (!map->read)
bb2bb45d
MB
2721 return -EINVAL;
2722
98bc7dfd
MB
2723 range = _regmap_range_lookup(map, reg);
2724 if (range) {
2725 ret = _regmap_select_page(map, &reg, range,
40033248 2726 noinc ? 1 : val_len / map->format.val_bytes);
0ff3e62f 2727 if (ret != 0)
98bc7dfd
MB
2728 return ret;
2729 }
6863ca62 2730
3f58f6dc 2731 reg = regmap_reg_addr(map, reg);
d939fb9a 2732 map->format.format_reg(map->work_buf, reg, map->reg_shift);
f50e38c9
TL
2733 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2734 map->read_flag_mask);
c6b570d9 2735 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
fb2736bb 2736
d77e7456
MV
2737 ret = map->read(map->bus_context, map->work_buf,
2738 map->format.reg_bytes + map->format.pad_bytes,
2739 val, val_len);
b83a313b 2740
c6b570d9 2741 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
fb2736bb
MB
2742
2743 return ret;
b83a313b
MB
2744}
2745
3ac17037
BB
2746static int _regmap_bus_reg_read(void *context, unsigned int reg,
2747 unsigned int *val)
2748{
2749 struct regmap *map = context;
f18ee501
MB
2750 struct regmap_range_node *range;
2751 int ret;
2752
2753 range = _regmap_range_lookup(map, reg);
2754 if (range) {
2755 ret = _regmap_select_page(map, &reg, range, 1);
2756 if (ret != 0)
2757 return ret;
2758 }
3ac17037 2759
3f58f6dc 2760 reg = regmap_reg_addr(map, reg);
3ac17037
BB
2761 return map->bus->reg_read(map->bus_context, reg, val);
2762}
2763
ad278406
AS
2764static int _regmap_bus_read(void *context, unsigned int reg,
2765 unsigned int *val)
2766{
2767 int ret;
2768 struct regmap *map = context;
4c90f297
KA
2769 void *work_val = map->work_buf + map->format.reg_bytes +
2770 map->format.pad_bytes;
ad278406
AS
2771
2772 if (!map->format.parse_val)
2773 return -EINVAL;
2774
40033248 2775 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
ad278406 2776 if (ret == 0)
4c90f297 2777 *val = map->format.parse_val(work_val);
ad278406
AS
2778
2779 return ret;
2780}
2781
b83a313b
MB
2782static int _regmap_read(struct regmap *map, unsigned int reg,
2783 unsigned int *val)
2784{
2785 int ret;
d2a5884a
AS
2786 void *context = _regmap_map_get_context(map);
2787
5d1729e7
DP
2788 if (!map->cache_bypass) {
2789 ret = regcache_read(map, reg, val);
2790 if (ret == 0)
2791 return 0;
2792 }
2793
2794 if (map->cache_only)
2795 return -EBUSY;
2796
3e47b887
MB
2797 if (!regmap_readable(map, reg))
2798 return -EIO;
2799
d2a5884a 2800 ret = map->reg_read(context, reg, val);
fb2736bb 2801 if (ret == 0) {
95093762 2802 if (regmap_should_log(map))
1044c180 2803 dev_info(map->dev, "%x => %x\n", reg, *val);
1044c180 2804
c6b570d9 2805 trace_regmap_reg_read(map, reg, *val);
b83a313b 2806
ad278406
AS
2807 if (!map->cache_bypass)
2808 regcache_write(map, reg, *val);
2809 }
f2985367 2810
b83a313b
MB
2811 return ret;
2812}
2813
2814/**
2cf8e2df 2815 * regmap_read() - Read a value from a single register
b83a313b 2816 *
0093380c 2817 * @map: Register map to read from
b83a313b
MB
2818 * @reg: Register to be read from
2819 * @val: Pointer to store read value
2820 *
2821 * A value of zero will be returned on success, a negative errno will
2822 * be returned in error cases.
2823 */
2824int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2825{
2826 int ret;
2827
fcac0233 2828 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f
SW
2829 return -EINVAL;
2830
0d4529c5 2831 map->lock(map->lock_arg);
b83a313b
MB
2832
2833 ret = _regmap_read(map, reg, val);
2834
0d4529c5 2835 map->unlock(map->lock_arg);
b83a313b
MB
2836
2837 return ret;
2838}
2839EXPORT_SYMBOL_GPL(regmap_read);
2840
70ee853e
RF
2841/**
2842 * regmap_read_bypassed() - Read a value from a single register direct
2843 * from the device, bypassing the cache
2844 *
2845 * @map: Register map to read from
2846 * @reg: Register to be read from
2847 * @val: Pointer to store read value
2848 *
2849 * A value of zero will be returned on success, a negative errno will
2850 * be returned in error cases.
2851 */
2852int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val)
2853{
2854 int ret;
2855 bool bypass, cache_only;
2856
2857 if (!IS_ALIGNED(reg, map->reg_stride))
2858 return -EINVAL;
2859
2860 map->lock(map->lock_arg);
2861
2862 bypass = map->cache_bypass;
2863 cache_only = map->cache_only;
2864 map->cache_bypass = true;
2865 map->cache_only = false;
2866
2867 ret = _regmap_read(map, reg, val);
2868
2869 map->cache_bypass = bypass;
2870 map->cache_only = cache_only;
2871
2872 map->unlock(map->lock_arg);
2873
2874 return ret;
2875}
2876EXPORT_SYMBOL_GPL(regmap_read_bypassed);
2877
b83a313b 2878/**
2cf8e2df 2879 * regmap_raw_read() - Read raw data from the device
b83a313b 2880 *
0093380c 2881 * @map: Register map to read from
b83a313b
MB
2882 * @reg: First register to be read from
2883 * @val: Pointer to store read value
2884 * @val_len: Size of data to read
2885 *
2886 * A value of zero will be returned on success, a negative errno will
2887 * be returned in error cases.
2888 */
2889int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2890 size_t val_len)
2891{
b8fb5ab1
MB
2892 size_t val_bytes = map->format.val_bytes;
2893 size_t val_count = val_len / val_bytes;
2894 unsigned int v;
2895 int ret, i;
04e016ad 2896
851960ba
SW
2897 if (val_len % map->format.val_bytes)
2898 return -EINVAL;
fcac0233 2899 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f 2900 return -EINVAL;
fa3eec77
MB
2901 if (val_count == 0)
2902 return -EINVAL;
851960ba 2903
0d4529c5 2904 map->lock(map->lock_arg);
b83a313b 2905
b8fb5ab1
MB
2906 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2907 map->cache_type == REGCACHE_NONE) {
1b079ca2
CK
2908 size_t chunk_count, chunk_bytes;
2909 size_t chunk_regs = val_count;
0645ba43 2910
99e8dd39
CK
2911 if (!map->cache_bypass && map->cache_only) {
2912 ret = -EBUSY;
2913 goto out;
2914 }
2915
d77e7456 2916 if (!map->read) {
9a16ea90
MP
2917 ret = -ENOTSUPP;
2918 goto out;
2919 }
2920
1b079ca2
CK
2921 if (map->use_single_read)
2922 chunk_regs = 1;
2923 else if (map->max_raw_read && val_len > map->max_raw_read)
2924 chunk_regs = map->max_raw_read / val_bytes;
9a16ea90 2925
1b079ca2
CK
2926 chunk_count = val_count / chunk_regs;
2927 chunk_bytes = chunk_regs * val_bytes;
2928
2929 /* Read bytes that fit into whole chunks */
0645ba43 2930 for (i = 0; i < chunk_count; i++) {
40033248 2931 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
0645ba43 2932 if (ret != 0)
1b079ca2
CK
2933 goto out;
2934
2935 reg += regmap_get_offset(map, chunk_regs);
2936 val += chunk_bytes;
2937 val_len -= chunk_bytes;
0645ba43 2938 }
b8fb5ab1 2939
0645ba43 2940 /* Read remaining bytes */
1b079ca2 2941 if (val_len) {
40033248 2942 ret = _regmap_raw_read(map, reg, val, val_len, false);
0645ba43 2943 if (ret != 0)
1b079ca2 2944 goto out;
0645ba43 2945 }
b8fb5ab1
MB
2946 } else {
2947 /* Otherwise go word by word for the cache; should be low
2948 * cost as we expect to hit the cache.
2949 */
2950 for (i = 0; i < val_count; i++) {
ca747be2 2951 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
f01ee60f 2952 &v);
b8fb5ab1
MB
2953 if (ret != 0)
2954 goto out;
2955
d939fb9a 2956 map->format.format_val(val + (i * val_bytes), v, 0);
b8fb5ab1
MB
2957 }
2958 }
b83a313b 2959
b8fb5ab1 2960 out:
0d4529c5 2961 map->unlock(map->lock_arg);
b83a313b
MB
2962
2963 return ret;
2964}
2965EXPORT_SYMBOL_GPL(regmap_raw_read);
2966
67252287 2967/**
74fe7b55
CDL
2968 * regmap_noinc_read(): Read data from a register without incrementing the
2969 * register number
2970 *
2971 * @map: Register map to read from
2972 * @reg: Register to read from
2973 * @val: Pointer to data buffer
2974 * @val_len: Length of output buffer in bytes.
2975 *
d77e7456 2976 * The regmap API usually assumes that bulk read operations will read a
74fe7b55
CDL
2977 * range of registers. Some devices have certain registers for which a read
2978 * operation read will read from an internal FIFO.
2979 *
2980 * The target register must be volatile but registers after it can be
2981 * completely unrelated cacheable registers.
2982 *
2983 * This will attempt multiple reads as required to read val_len bytes.
2984 *
2985 * A value of zero will be returned on success, a negative errno will be
2986 * returned in error cases.
2987 */
2988int regmap_noinc_read(struct regmap *map, unsigned int reg,
2989 void *val, size_t val_len)
2990{
2991 size_t read_len;
2992 int ret;
2993
c42e99a3
JMC
2994 if (!map->read)
2995 return -ENOTSUPP;
2996
74fe7b55
CDL
2997 if (val_len % map->format.val_bytes)
2998 return -EINVAL;
2999 if (!IS_ALIGNED(reg, map->reg_stride))
3000 return -EINVAL;
3001 if (val_len == 0)
3002 return -EINVAL;
3003
3004 map->lock(map->lock_arg);
3005
3006 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3007 ret = -EINVAL;
3008 goto out_unlock;
3009 }
3010
99e8dd39
CK
3011 /*
3012 * We have not defined the FIFO semantics for cache, as the
3013 * cache is just one value deep. Should we return the last
3014 * written value? Just avoid this by always reading the FIFO
3015 * even when using cache. Cache only will not work.
3016 */
3017 if (!map->cache_bypass && map->cache_only) {
3018 ret = -EBUSY;
3019 goto out_unlock;
3020 }
3021
c20cc099
LW
3022 /* Use the accelerated operation if we can */
3023 if (map->bus->reg_noinc_read) {
c20cc099
LW
3024 ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3025 goto out_unlock;
3026 }
3027
74fe7b55
CDL
3028 while (val_len) {
3029 if (map->max_raw_read && map->max_raw_read < val_len)
3030 read_len = map->max_raw_read;
3031 else
3032 read_len = val_len;
40033248 3033 ret = _regmap_raw_read(map, reg, val, read_len, true);
74fe7b55
CDL
3034 if (ret)
3035 goto out_unlock;
3036 val = ((u8 *)val) + read_len;
3037 val_len -= read_len;
3038 }
3039
3040out_unlock:
3041 map->unlock(map->lock_arg);
3042 return ret;
3043}
3044EXPORT_SYMBOL_GPL(regmap_noinc_read);
3045
3046/**
3047 * regmap_field_read(): Read a value to a single register field
67252287
SK
3048 *
3049 * @field: Register field to read from
3050 * @val: Pointer to store read value
3051 *
3052 * A value of zero will be returned on success, a negative errno will
3053 * be returned in error cases.
3054 */
3055int regmap_field_read(struct regmap_field *field, unsigned int *val)
3056{
3057 int ret;
3058 unsigned int reg_val;
3059 ret = regmap_read(field->regmap, field->reg, &reg_val);
3060 if (ret != 0)
3061 return ret;
3062
3063 reg_val &= field->mask;
3064 reg_val >>= field->shift;
3065 *val = reg_val;
3066
3067 return ret;
3068}
3069EXPORT_SYMBOL_GPL(regmap_field_read);
3070
a0102375 3071/**
2cf8e2df 3072 * regmap_fields_read() - Read a value to a single register field with port ID
a0102375
KM
3073 *
3074 * @field: Register field to read from
3075 * @id: port ID
3076 * @val: Pointer to store read value
3077 *
3078 * A value of zero will be returned on success, a negative errno will
3079 * be returned in error cases.
3080 */
3081int regmap_fields_read(struct regmap_field *field, unsigned int id,
3082 unsigned int *val)
3083{
3084 int ret;
3085 unsigned int reg_val;
3086
3087 if (id >= field->id_size)
3088 return -EINVAL;
3089
3090 ret = regmap_read(field->regmap,
3091 field->reg + (field->id_offset * id),
3092 &reg_val);
3093 if (ret != 0)
3094 return ret;
3095
3096 reg_val &= field->mask;
3097 reg_val >>= field->shift;
3098 *val = reg_val;
3099
3100 return ret;
3101}
3102EXPORT_SYMBOL_GPL(regmap_fields_read);
3103
3c1ff93b
GR
3104static int _regmap_bulk_read(struct regmap *map, unsigned int reg,
3105 unsigned int *regs, void *val, size_t val_count)
3106{
3107 u32 *u32 = val;
3108 u16 *u16 = val;
3109 u8 *u8 = val;
3110 int ret, i;
3111
3112 map->lock(map->lock_arg);
3113
3114 for (i = 0; i < val_count; i++) {
3115 unsigned int ival;
3116
3117 if (regs) {
3118 if (!IS_ALIGNED(regs[i], map->reg_stride)) {
3119 ret = -EINVAL;
3120 goto out;
3121 }
3122 ret = _regmap_read(map, regs[i], &ival);
3123 } else {
3124 ret = _regmap_read(map, reg + regmap_get_offset(map, i), &ival);
3125 }
3126 if (ret != 0)
3127 goto out;
3128
3129 switch (map->format.val_bytes) {
3130 case 4:
3131 u32[i] = ival;
3132 break;
3133 case 2:
3134 u16[i] = ival;
3135 break;
3136 case 1:
3137 u8[i] = ival;
3138 break;
3139 default:
3140 ret = -EINVAL;
3141 goto out;
3142 }
3143 }
3144out:
3145 map->unlock(map->lock_arg);
3146 return ret;
3147}
3148
b83a313b 3149/**
3c1ff93b 3150 * regmap_bulk_read() - Read multiple sequential registers from the device
b83a313b 3151 *
0093380c 3152 * @map: Register map to read from
b83a313b
MB
3153 * @reg: First register to be read from
3154 * @val: Pointer to store read value, in native register size for device
3155 * @val_count: Number of registers to read
3156 *
3157 * A value of zero will be returned on success, a negative errno will
3158 * be returned in error cases.
3159 */
3160int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3161 size_t val_count)
3162{
3163 int ret, i;
3164 size_t val_bytes = map->format.val_bytes;
82cd9965 3165 bool vol = regmap_volatile_range(map, reg, val_count);
5d1729e7 3166
fcac0233 3167 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f 3168 return -EINVAL;
186ba2ee
CK
3169 if (val_count == 0)
3170 return -EINVAL;
b83a313b 3171
ea50e2a1 3172 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
0645ba43
CK
3173 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3174 if (ret != 0)
3175 return ret;
de2d808f
MB
3176
3177 for (i = 0; i < val_count * val_bytes; i += val_bytes)
8a819ff8 3178 map->format.parse_inplace(val + i);
de2d808f 3179 } else {
3c1ff93b 3180 ret = _regmap_bulk_read(map, reg, NULL, val, val_count);
de2d808f 3181 }
026c99b5
DR
3182 if (!ret)
3183 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
186ba2ee 3184 return ret;
b83a313b
MB
3185}
3186EXPORT_SYMBOL_GPL(regmap_bulk_read);
3187
3c1ff93b
GR
3188/**
3189 * regmap_multi_reg_read() - Read multiple non-sequential registers from the device
3190 *
3191 * @map: Register map to read from
3192 * @regs: Array of registers to read from
3193 * @val: Pointer to store read value, in native register size for device
3194 * @val_count: Number of registers to read
3195 *
3196 * A value of zero will be returned on success, a negative errno will
3197 * be returned in error cases.
3198 */
3199int regmap_multi_reg_read(struct regmap *map, unsigned int *regs, void *val,
3200 size_t val_count)
3201{
3202 if (val_count == 0)
3203 return -EINVAL;
3204
3205 return _regmap_bulk_read(map, 0, regs, val, val_count);
3206}
3207EXPORT_SYMBOL_GPL(regmap_multi_reg_read);
3208
018690d3
MB
3209static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3210 unsigned int mask, unsigned int val,
7ff0589c 3211 bool *change, bool force_write)
b83a313b
MB
3212{
3213 int ret;
d91e8db2 3214 unsigned int tmp, orig;
b83a313b 3215
77792b11
JR
3216 if (change)
3217 *change = false;
b83a313b 3218
77792b11 3219 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3f58f6dc 3220 reg = regmap_reg_addr(map, reg);
77792b11
JR
3221 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3222 if (ret == 0 && change)
e2f74dc6 3223 *change = true;
018690d3 3224 } else {
77792b11
JR
3225 ret = _regmap_read(map, reg, &orig);
3226 if (ret != 0)
3227 return ret;
3228
3229 tmp = orig & ~mask;
3230 tmp |= val & mask;
3231
b629c698 3232 if (force_write || (tmp != orig) || map->force_write_field) {
77792b11
JR
3233 ret = _regmap_write(map, reg, tmp);
3234 if (ret == 0 && change)
3235 *change = true;
3236 }
018690d3 3237 }
b83a313b 3238
b83a313b
MB
3239 return ret;
3240}
018690d3
MB
3241
3242/**
2cf8e2df 3243 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
915f441b
MB
3244 *
3245 * @map: Register map to update
3246 * @reg: Register to update
3247 * @mask: Bitmask to change
3248 * @val: New value for bitmask
3249 * @change: Boolean indicating if a write was done
91d31b9f
KM
3250 * @async: Boolean indicating asynchronously
3251 * @force: Boolean indicating use force update
915f441b 3252 *
2cf8e2df
CK
3253 * Perform a read/modify/write cycle on a register map with change, async, force
3254 * options.
3255 *
3256 * If async is true:
3257 *
3258 * With most buses the read must be done synchronously so this is most useful
3259 * for devices with a cache which do not need to interact with the hardware to
3260 * determine the current register value.
915f441b
MB
3261 *
3262 * Returns zero for success, a negative number on error.
3263 */
91d31b9f
KM
3264int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3265 unsigned int mask, unsigned int val,
3266 bool *change, bool async, bool force)
915f441b
MB
3267{
3268 int ret;
3269
3270 map->lock(map->lock_arg);
3271
91d31b9f 3272 map->async = async;
915f441b 3273
91d31b9f 3274 ret = _regmap_update_bits(map, reg, mask, val, change, force);
915f441b
MB
3275
3276 map->async = false;
3277
3278 map->unlock(map->lock_arg);
3279
3280 return ret;
3281}
91d31b9f 3282EXPORT_SYMBOL_GPL(regmap_update_bits_base);
915f441b 3283
aa2ff9db
BG
3284/**
3285 * regmap_test_bits() - Check if all specified bits are set in a register.
3286 *
3287 * @map: Register map to operate on
3288 * @reg: Register to read from
3289 * @bits: Bits to test
3290 *
e680a409
BG
3291 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3292 * bits are set and a negative error number if the underlying regmap_read()
3293 * fails.
aa2ff9db
BG
3294 */
3295int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3296{
3297 unsigned int val, ret;
3298
3299 ret = regmap_read(map, reg, &val);
3300 if (ret)
3301 return ret;
3302
3303 return (val & bits) == bits;
3304}
3305EXPORT_SYMBOL_GPL(regmap_test_bits);
3306
0d509f2b
MB
3307void regmap_async_complete_cb(struct regmap_async *async, int ret)
3308{
3309 struct regmap *map = async->map;
3310 bool wake;
3311
c6b570d9 3312 trace_regmap_async_io_complete(map);
fe7d4ccd 3313
0d509f2b 3314 spin_lock(&map->async_lock);
7e09a979 3315 list_move(&async->list, &map->async_free);
0d509f2b
MB
3316 wake = list_empty(&map->async_list);
3317
3318 if (ret != 0)
3319 map->async_ret = ret;
3320
3321 spin_unlock(&map->async_lock);
3322
0d509f2b
MB
3323 if (wake)
3324 wake_up(&map->async_waitq);
3325}
f804fb56 3326EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
0d509f2b
MB
3327
3328static int regmap_async_is_done(struct regmap *map)
3329{
3330 unsigned long flags;
3331 int ret;
3332
3333 spin_lock_irqsave(&map->async_lock, flags);
3334 ret = list_empty(&map->async_list);
3335 spin_unlock_irqrestore(&map->async_lock, flags);
3336
3337 return ret;
3338}
3339
3340/**
2cf8e2df 3341 * regmap_async_complete - Ensure all asynchronous I/O has completed.
0d509f2b
MB
3342 *
3343 * @map: Map to operate on.
3344 *
3345 * Blocks until any pending asynchronous I/O has completed. Returns
3346 * an error code for any failed I/O operations.
3347 */
3348int regmap_async_complete(struct regmap *map)
3349{
3350 unsigned long flags;
3351 int ret;
3352
3353 /* Nothing to do with no async support */
f2e055e7 3354 if (!map->bus || !map->bus->async_write)
0d509f2b
MB
3355 return 0;
3356
c6b570d9 3357 trace_regmap_async_complete_start(map);
fe7d4ccd 3358
0d509f2b
MB
3359 wait_event(map->async_waitq, regmap_async_is_done(map));
3360
3361 spin_lock_irqsave(&map->async_lock, flags);
3362 ret = map->async_ret;
3363 map->async_ret = 0;
3364 spin_unlock_irqrestore(&map->async_lock, flags);
3365
c6b570d9 3366 trace_regmap_async_complete_done(map);
fe7d4ccd 3367
0d509f2b
MB
3368 return ret;
3369}
f88948ef 3370EXPORT_SYMBOL_GPL(regmap_async_complete);
0d509f2b 3371
22f0d90a 3372/**
2cf8e2df
CK
3373 * regmap_register_patch - Register and apply register updates to be applied
3374 * on device initialistion
22f0d90a
MB
3375 *
3376 * @map: Register map to apply updates to.
3377 * @regs: Values to update.
3378 * @num_regs: Number of entries in regs.
3379 *
3380 * Register a set of register updates to be applied to the device
3381 * whenever the device registers are synchronised with the cache and
3382 * apply them immediately. Typically this is used to apply
3383 * corrections to be applied to the device defaults on startup, such
3384 * as the updates some vendors provide to undocumented registers.
56fb1c74
MB
3385 *
3386 * The caller must ensure that this function cannot be called
3387 * concurrently with either itself or regcache_sync().
22f0d90a 3388 */
8019ff6c 3389int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
22f0d90a
MB
3390 int num_regs)
3391{
8019ff6c 3392 struct reg_sequence *p;
6bf13103 3393 int ret;
22f0d90a
MB
3394 bool bypass;
3395
bd60e381
CZ
3396 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3397 num_regs))
3398 return 0;
3399
aab13ebc 3400 p = krealloc(map->patch,
8019ff6c 3401 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
aab13ebc
MB
3402 GFP_KERNEL);
3403 if (p) {
3404 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3405 map->patch = p;
3406 map->patch_regs += num_regs;
22f0d90a 3407 } else {
56fb1c74 3408 return -ENOMEM;
22f0d90a
MB
3409 }
3410
0d4529c5 3411 map->lock(map->lock_arg);
22f0d90a
MB
3412
3413 bypass = map->cache_bypass;
3414
3415 map->cache_bypass = true;
1a25f261 3416 map->async = true;
22f0d90a 3417
6bf13103 3418 ret = _regmap_multi_reg_write(map, regs, num_regs);
22f0d90a 3419
1a25f261 3420 map->async = false;
22f0d90a
MB
3421 map->cache_bypass = bypass;
3422
0d4529c5 3423 map->unlock(map->lock_arg);
22f0d90a 3424
1a25f261
MB
3425 regmap_async_complete(map);
3426
22f0d90a
MB
3427 return ret;
3428}
3429EXPORT_SYMBOL_GPL(regmap_register_patch);
3430
2cf8e2df
CK
3431/**
3432 * regmap_get_val_bytes() - Report the size of a register value
3433 *
3434 * @map: Register map to operate on.
a6539c32
MB
3435 *
3436 * Report the size of a register value, mainly intended to for use by
3437 * generic infrastructure built on top of regmap.
3438 */
3439int regmap_get_val_bytes(struct regmap *map)
3440{
3441 if (map->format.format_write)
3442 return -EINVAL;
3443
3444 return map->format.val_bytes;
3445}
3446EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3447
668abc72 3448/**
2cf8e2df
CK
3449 * regmap_get_max_register() - Report the max register value
3450 *
3451 * @map: Register map to operate on.
668abc72
SK
3452 *
3453 * Report the max register value, mainly intended to for use by
3454 * generic infrastructure built on top of regmap.
3455 */
3456int regmap_get_max_register(struct regmap *map)
3457{
0ec74ad3 3458 return map->max_register_is_set ? map->max_register : -EINVAL;
668abc72
SK
3459}
3460EXPORT_SYMBOL_GPL(regmap_get_max_register);
3461
a2f776cb 3462/**
2cf8e2df
CK
3463 * regmap_get_reg_stride() - Report the register address stride
3464 *
3465 * @map: Register map to operate on.
a2f776cb
SK
3466 *
3467 * Report the register address stride, mainly intended to for use by
3468 * generic infrastructure built on top of regmap.
3469 */
3470int regmap_get_reg_stride(struct regmap *map)
3471{
3472 return map->reg_stride;
3473}
3474EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3475
a6d99022
MW
3476/**
3477 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3478 *
3479 * @map: Register map to operate on.
3480 *
3481 * Returns true if an access to the register might sleep, else false.
3482 */
3483bool regmap_might_sleep(struct regmap *map)
3484{
3485 return map->can_sleep;
3486}
3487EXPORT_SYMBOL_GPL(regmap_might_sleep);
3488
13ff50c8
NC
3489int regmap_parse_val(struct regmap *map, const void *buf,
3490 unsigned int *val)
3491{
3492 if (!map->format.parse_val)
3493 return -EINVAL;
3494
3495 *val = map->format.parse_val(buf);
3496
3497 return 0;
3498}
3499EXPORT_SYMBOL_GPL(regmap_parse_val);
3500
31244e39
MB
3501static int __init regmap_initcall(void)
3502{
3503 regmap_debugfs_initcall();
3504
3505 return 0;
3506}
3507postcore_initcall(regmap_initcall);