arch_topology: Do not set llc_sibling if llc_id is invalid
[linux-block.git] / drivers / base / arch_topology.c
CommitLineData
6ee97d35 1// SPDX-License-Identifier: GPL-2.0
2ef7a295
JL
2/*
3 * Arch specific cpu topology information
4 *
5 * Copyright (C) 2016, ARM Ltd.
6 * Written by: Juri Lelli, ARM Ltd.
2ef7a295
JL
7 */
8
9#include <linux/acpi.h>
10#include <linux/cpu.h>
11#include <linux/cpufreq.h>
12#include <linux/device.h>
13#include <linux/of.h>
14#include <linux/slab.h>
2ef7a295 15#include <linux/sched/topology.h>
bb1fbdd3 16#include <linux/cpuset.h>
60c1b220
AP
17#include <linux/cpumask.h>
18#include <linux/init.h>
83150f5d 19#include <linux/rcupdate.h>
60c1b220 20#include <linux/sched.h>
2ef7a295 21
83150f5d 22static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
01e055c1
VK
23static struct cpumask scale_freq_counters_mask;
24static bool scale_freq_invariant;
c214f124 25static DEFINE_PER_CPU(u32, freq_factor) = 1;
01e055c1
VK
26
27static bool supports_scale_freq_counters(const struct cpumask *cpus)
28{
29 return cpumask_subset(cpus, &scale_freq_counters_mask);
30}
31
15e5d5b4
VS
32bool topology_scale_freq_invariant(void)
33{
34 return cpufreq_supports_freq_invariance() ||
01e055c1
VK
35 supports_scale_freq_counters(cpu_online_mask);
36}
37
38static void update_scale_freq_invariant(bool status)
39{
40 if (scale_freq_invariant == status)
41 return;
42
43 /*
44 * Task scheduler behavior depends on frequency invariance support,
45 * either cpufreq or counter driven. If the support status changes as
46 * a result of counter initialisation and use, retrigger the build of
47 * scheduling domains to ensure the information is propagated properly.
48 */
49 if (topology_scale_freq_invariant() == status) {
50 scale_freq_invariant = status;
51 rebuild_sched_domains_energy();
52 }
53}
54
55void topology_set_scale_freq_source(struct scale_freq_data *data,
56 const struct cpumask *cpus)
57{
58 struct scale_freq_data *sfd;
59 int cpu;
60
61 /*
62 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
63 * supported by cpufreq.
64 */
65 if (cpumask_empty(&scale_freq_counters_mask))
66 scale_freq_invariant = topology_scale_freq_invariant();
67
83150f5d
VK
68 rcu_read_lock();
69
01e055c1 70 for_each_cpu(cpu, cpus) {
83150f5d 71 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
01e055c1
VK
72
73 /* Use ARCH provided counters whenever possible */
74 if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
83150f5d 75 rcu_assign_pointer(per_cpu(sft_data, cpu), data);
01e055c1
VK
76 cpumask_set_cpu(cpu, &scale_freq_counters_mask);
77 }
78 }
79
83150f5d
VK
80 rcu_read_unlock();
81
01e055c1 82 update_scale_freq_invariant(true);
15e5d5b4 83}
2f533958 84EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
15e5d5b4 85
01e055c1
VK
86void topology_clear_scale_freq_source(enum scale_freq_source source,
87 const struct cpumask *cpus)
cd0ed03a 88{
01e055c1
VK
89 struct scale_freq_data *sfd;
90 int cpu;
91
83150f5d
VK
92 rcu_read_lock();
93
01e055c1 94 for_each_cpu(cpu, cpus) {
83150f5d 95 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
01e055c1
VK
96
97 if (sfd && sfd->source == source) {
83150f5d 98 rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
01e055c1
VK
99 cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
100 }
101 }
102
83150f5d
VK
103 rcu_read_unlock();
104
105 /*
106 * Make sure all references to previous sft_data are dropped to avoid
107 * use-after-free races.
108 */
109 synchronize_rcu();
110
01e055c1 111 update_scale_freq_invariant(false);
cd0ed03a 112}
2f533958 113EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
01e055c1
VK
114
115void topology_scale_freq_tick(void)
116{
83150f5d 117 struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
01e055c1
VK
118
119 if (sfd)
120 sfd->set_freq_scale();
121}
122
eec73529 123DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2f533958 124EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
2ef7a295 125
a20b7053
IV
126void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
127 unsigned long max_freq)
2ef7a295 128{
0e27c567
DE
129 unsigned long scale;
130 int i;
131
0a10d3fe
IV
132 if (WARN_ON_ONCE(!cur_freq || !max_freq))
133 return;
134
cd0ed03a
IV
135 /*
136 * If the use of counters for FIE is enabled, just return as we don't
137 * want to update the scale factor with information from CPUFREQ.
138 * Instead the scale factor will be updated from arch_scale_freq_tick.
139 */
01e055c1 140 if (supports_scale_freq_counters(cpus))
cd0ed03a
IV
141 return;
142
0e27c567
DE
143 scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
144
145 for_each_cpu(i, cpus)
eec73529 146 per_cpu(arch_freq_scale, i) = scale;
2ef7a295
JL
147}
148
8216f588 149DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
275157b3 150EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
2ef7a295 151
4ca4f26a 152void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
2ef7a295
JL
153{
154 per_cpu(cpu_scale, cpu) = capacity;
155}
156
25980c7a
VS
157DEFINE_PER_CPU(unsigned long, thermal_pressure);
158
c214f124
LL
159/**
160 * topology_update_thermal_pressure() - Update thermal pressure for CPUs
161 * @cpus : The related CPUs for which capacity has been reduced
162 * @capped_freq : The maximum allowed frequency that CPUs can run at
163 *
164 * Update the value of thermal pressure for all @cpus in the mask. The
165 * cpumask should include all (online+offline) affected CPUs, to avoid
166 * operating on stale data when hot-plug is used for some CPUs. The
167 * @capped_freq reflects the currently allowed max CPUs frequency due to
168 * thermal capping. It might be also a boost frequency value, which is bigger
169 * than the internal 'freq_factor' max frequency. In such case the pressure
170 * value should simply be removed, since this is an indication that there is
171 * no thermal throttling. The @capped_freq must be provided in kHz.
172 */
173void topology_update_thermal_pressure(const struct cpumask *cpus,
174 unsigned long capped_freq)
175{
7e97b3dc 176 unsigned long max_capacity, capacity, th_pressure;
c214f124
LL
177 u32 max_freq;
178 int cpu;
179
180 cpu = cpumask_first(cpus);
181 max_capacity = arch_scale_cpu_capacity(cpu);
182 max_freq = per_cpu(freq_factor, cpu);
183
184 /* Convert to MHz scale which is used in 'freq_factor' */
185 capped_freq /= 1000;
186
187 /*
188 * Handle properly the boost frequencies, which should simply clean
189 * the thermal pressure value.
190 */
191 if (max_freq <= capped_freq)
192 capacity = max_capacity;
193 else
194 capacity = mult_frac(max_capacity, capped_freq, max_freq);
195
7e97b3dc
LL
196 th_pressure = max_capacity - capacity;
197
198 for_each_cpu(cpu, cpus)
199 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
c214f124
LL
200}
201EXPORT_SYMBOL_GPL(topology_update_thermal_pressure);
202
2ef7a295
JL
203static ssize_t cpu_capacity_show(struct device *dev,
204 struct device_attribute *attr,
205 char *buf)
206{
207 struct cpu *cpu = container_of(dev, struct cpu, dev);
208
aa838896 209 return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
2ef7a295
JL
210}
211
bb1fbdd3
MR
212static void update_topology_flags_workfn(struct work_struct *work);
213static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
214
5d777b18 215static DEVICE_ATTR_RO(cpu_capacity);
2ef7a295
JL
216
217static int register_cpu_capacity_sysctl(void)
218{
219 int i;
220 struct device *cpu;
221
222 for_each_possible_cpu(i) {
223 cpu = get_cpu_device(i);
224 if (!cpu) {
225 pr_err("%s: too early to get CPU%d device!\n",
226 __func__, i);
227 continue;
228 }
229 device_create_file(cpu, &dev_attr_cpu_capacity);
230 }
231
232 return 0;
233}
234subsys_initcall(register_cpu_capacity_sysctl);
235
bb1fbdd3
MR
236static int update_topology;
237
238int topology_update_cpu_topology(void)
239{
240 return update_topology;
241}
242
243/*
244 * Updating the sched_domains can't be done directly from cpufreq callbacks
245 * due to locking, so queue the work for later.
246 */
247static void update_topology_flags_workfn(struct work_struct *work)
248{
249 update_topology = 1;
250 rebuild_sched_domains();
251 pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
252 update_topology = 0;
253}
254
2ef7a295 255static u32 *raw_capacity;
62de1161 256
82d8ba71 257static int free_raw_capacity(void)
62de1161
VK
258{
259 kfree(raw_capacity);
260 raw_capacity = NULL;
261
262 return 0;
263}
2ef7a295 264
4ca4f26a 265void topology_normalize_cpu_scale(void)
2ef7a295
JL
266{
267 u64 capacity;
b8fe128d 268 u64 capacity_scale;
2ef7a295
JL
269 int cpu;
270
62de1161 271 if (!raw_capacity)
2ef7a295
JL
272 return;
273
b8fe128d 274 capacity_scale = 1;
2ef7a295 275 for_each_possible_cpu(cpu) {
b8fe128d
JC
276 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
277 capacity_scale = max(capacity, capacity_scale);
278 }
279
280 pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
281 for_each_possible_cpu(cpu) {
282 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
283 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
284 capacity_scale);
4ca4f26a 285 topology_set_cpu_scale(cpu, capacity);
2ef7a295 286 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
8ec59c0f 287 cpu, topology_get_cpu_scale(cpu));
2ef7a295 288 }
2ef7a295
JL
289}
290
805df296 291bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
2ef7a295 292{
b8fe128d 293 struct clk *cpu_clk;
62de1161 294 static bool cap_parsing_failed;
805df296 295 int ret;
2ef7a295
JL
296 u32 cpu_capacity;
297
298 if (cap_parsing_failed)
805df296 299 return false;
2ef7a295 300
3eeba1a2 301 ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
2ef7a295
JL
302 &cpu_capacity);
303 if (!ret) {
304 if (!raw_capacity) {
305 raw_capacity = kcalloc(num_possible_cpus(),
306 sizeof(*raw_capacity),
307 GFP_KERNEL);
308 if (!raw_capacity) {
2ef7a295 309 cap_parsing_failed = true;
805df296 310 return false;
2ef7a295
JL
311 }
312 }
2ef7a295 313 raw_capacity[cpu] = cpu_capacity;
6ef2541f
RH
314 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
315 cpu_node, raw_capacity[cpu]);
b8fe128d
JC
316
317 /*
318 * Update freq_factor for calculating early boot cpu capacities.
319 * For non-clk CPU DVFS mechanism, there's no way to get the
320 * frequency value now, assuming they are running at the same
321 * frequency (by keeping the initial freq_factor value).
322 */
323 cpu_clk = of_clk_get(cpu_node, 0);
4dfff3d5 324 if (!PTR_ERR_OR_ZERO(cpu_clk)) {
b8fe128d
JC
325 per_cpu(freq_factor, cpu) =
326 clk_get_rate(cpu_clk) / 1000;
4dfff3d5
JC
327 clk_put(cpu_clk);
328 }
2ef7a295
JL
329 } else {
330 if (raw_capacity) {
6ef2541f
RH
331 pr_err("cpu_capacity: missing %pOF raw capacity\n",
332 cpu_node);
2ef7a295
JL
333 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
334 }
335 cap_parsing_failed = true;
62de1161 336 free_raw_capacity();
2ef7a295
JL
337 }
338
339 return !ret;
340}
341
9924fbb5
IV
342#ifdef CONFIG_ACPI_CPPC_LIB
343#include <acpi/cppc_acpi.h>
344
345void topology_init_cpu_capacity_cppc(void)
346{
347 struct cppc_perf_caps perf_caps;
348 int cpu;
349
350 if (likely(acpi_disabled || !acpi_cpc_valid()))
351 return;
352
353 raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity),
354 GFP_KERNEL);
355 if (!raw_capacity)
356 return;
357
358 for_each_possible_cpu(cpu) {
359 if (!cppc_get_perf_caps(cpu, &perf_caps) &&
360 (perf_caps.highest_perf >= perf_caps.nominal_perf) &&
361 (perf_caps.highest_perf >= perf_caps.lowest_perf)) {
362 raw_capacity[cpu] = perf_caps.highest_perf;
363 pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n",
364 cpu, raw_capacity[cpu]);
365 continue;
366 }
367
368 pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu);
369 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
370 goto exit;
371 }
372
373 topology_normalize_cpu_scale();
374 schedule_work(&update_topology_flags_work);
375 pr_debug("cpu_capacity: cpu_capacity initialization done\n");
376
377exit:
378 free_raw_capacity();
379}
380#endif
381
2ef7a295 382#ifdef CONFIG_CPU_FREQ
9de9a449
GI
383static cpumask_var_t cpus_to_visit;
384static void parsing_done_workfn(struct work_struct *work);
385static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
2ef7a295 386
9de9a449 387static int
2ef7a295
JL
388init_cpu_capacity_callback(struct notifier_block *nb,
389 unsigned long val,
390 void *data)
391{
392 struct cpufreq_policy *policy = data;
393 int cpu;
394
d8bcf4db 395 if (!raw_capacity)
2ef7a295
JL
396 return 0;
397
40f0fc2a 398 if (val != CPUFREQ_CREATE_POLICY)
93a57081
VK
399 return 0;
400
401 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
402 cpumask_pr_args(policy->related_cpus),
403 cpumask_pr_args(cpus_to_visit));
404
405 cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
406
b8fe128d
JC
407 for_each_cpu(cpu, policy->related_cpus)
408 per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
93a57081
VK
409
410 if (cpumask_empty(cpus_to_visit)) {
411 topology_normalize_cpu_scale();
bb1fbdd3 412 schedule_work(&update_topology_flags_work);
62de1161 413 free_raw_capacity();
93a57081 414 pr_debug("cpu_capacity: parsing done\n");
93a57081
VK
415 schedule_work(&parsing_done_work);
416 }
417
2ef7a295
JL
418 return 0;
419}
420
9de9a449 421static struct notifier_block init_cpu_capacity_notifier = {
2ef7a295
JL
422 .notifier_call = init_cpu_capacity_callback,
423};
424
425static int __init register_cpufreq_notifier(void)
426{
5408211a
DE
427 int ret;
428
2ef7a295 429 /*
9924fbb5
IV
430 * On ACPI-based systems skip registering cpufreq notifier as cpufreq
431 * information is not needed for cpu capacity initialization.
2ef7a295 432 */
c105aa31 433 if (!acpi_disabled || !raw_capacity)
2ef7a295
JL
434 return -EINVAL;
435
0fd33116 436 if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
2ef7a295 437 return -ENOMEM;
2ef7a295
JL
438
439 cpumask_copy(cpus_to_visit, cpu_possible_mask);
440
5408211a
DE
441 ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
442 CPUFREQ_POLICY_NOTIFIER);
443
444 if (ret)
445 free_cpumask_var(cpus_to_visit);
446
447 return ret;
2ef7a295
JL
448}
449core_initcall(register_cpufreq_notifier);
450
9de9a449 451static void parsing_done_workfn(struct work_struct *work)
2ef7a295
JL
452{
453 cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
454 CPUFREQ_POLICY_NOTIFIER);
5408211a 455 free_cpumask_var(cpus_to_visit);
2ef7a295
JL
456}
457
458#else
2ef7a295
JL
459core_initcall(free_raw_capacity);
460#endif
60c1b220
AP
461
462#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
f3c19481
ZT
463/*
464 * This function returns the logic cpu number of the node.
465 * There are basically three kinds of return values:
466 * (1) logic cpu number which is > 0.
467 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
468 * there is no possible logical CPU in the kernel to match. This happens
469 * when CONFIG_NR_CPUS is configure to be smaller than the number of
470 * CPU nodes in DT. We need to just ignore this case.
471 * (3) -1 if the node does not exist in the device tree
472 */
60c1b220
AP
473static int __init get_cpu_for_node(struct device_node *node)
474{
475 struct device_node *cpu_node;
476 int cpu;
477
478 cpu_node = of_parse_phandle(node, "cpu", 0);
479 if (!cpu_node)
480 return -1;
481
482 cpu = of_cpu_node_to_id(cpu_node);
483 if (cpu >= 0)
484 topology_parse_cpu_capacity(cpu_node, cpu);
485 else
f3c19481
ZT
486 pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
487 cpu_node, cpumask_pr_args(cpu_possible_mask));
60c1b220
AP
488
489 of_node_put(cpu_node);
490 return cpu;
491}
492
493static int __init parse_core(struct device_node *core, int package_id,
494 int core_id)
495{
4a33691c 496 char name[20];
60c1b220
AP
497 bool leaf = true;
498 int i = 0;
499 int cpu;
500 struct device_node *t;
501
502 do {
503 snprintf(name, sizeof(name), "thread%d", i);
504 t = of_get_child_by_name(core, name);
505 if (t) {
506 leaf = false;
507 cpu = get_cpu_for_node(t);
508 if (cpu >= 0) {
509 cpu_topology[cpu].package_id = package_id;
510 cpu_topology[cpu].core_id = core_id;
511 cpu_topology[cpu].thread_id = i;
f3c19481
ZT
512 } else if (cpu != -ENODEV) {
513 pr_err("%pOF: Can't get CPU for thread\n", t);
60c1b220
AP
514 of_node_put(t);
515 return -EINVAL;
516 }
517 of_node_put(t);
518 }
519 i++;
520 } while (t);
521
522 cpu = get_cpu_for_node(core);
523 if (cpu >= 0) {
524 if (!leaf) {
525 pr_err("%pOF: Core has both threads and CPU\n",
526 core);
527 return -EINVAL;
528 }
529
530 cpu_topology[cpu].package_id = package_id;
531 cpu_topology[cpu].core_id = core_id;
f3c19481 532 } else if (leaf && cpu != -ENODEV) {
60c1b220
AP
533 pr_err("%pOF: Can't get CPU for leaf core\n", core);
534 return -EINVAL;
535 }
536
537 return 0;
538}
539
540static int __init parse_cluster(struct device_node *cluster, int depth)
541{
4a33691c 542 char name[20];
60c1b220
AP
543 bool leaf = true;
544 bool has_cores = false;
545 struct device_node *c;
546 static int package_id __initdata;
547 int core_id = 0;
548 int i, ret;
549
550 /*
551 * First check for child clusters; we currently ignore any
552 * information about the nesting of clusters and present the
553 * scheduler with a flat list of them.
554 */
555 i = 0;
556 do {
557 snprintf(name, sizeof(name), "cluster%d", i);
558 c = of_get_child_by_name(cluster, name);
559 if (c) {
560 leaf = false;
561 ret = parse_cluster(c, depth + 1);
562 of_node_put(c);
563 if (ret != 0)
564 return ret;
565 }
566 i++;
567 } while (c);
568
569 /* Now check for cores */
570 i = 0;
571 do {
572 snprintf(name, sizeof(name), "core%d", i);
573 c = of_get_child_by_name(cluster, name);
574 if (c) {
575 has_cores = true;
576
577 if (depth == 0) {
578 pr_err("%pOF: cpu-map children should be clusters\n",
579 c);
580 of_node_put(c);
581 return -EINVAL;
582 }
583
584 if (leaf) {
585 ret = parse_core(c, package_id, core_id++);
586 } else {
587 pr_err("%pOF: Non-leaf cluster with core %s\n",
588 cluster, name);
589 ret = -EINVAL;
590 }
591
592 of_node_put(c);
593 if (ret != 0)
594 return ret;
595 }
596 i++;
597 } while (c);
598
599 if (leaf && !has_cores)
600 pr_warn("%pOF: empty cluster\n", cluster);
601
602 if (leaf)
603 package_id++;
604
605 return 0;
606}
607
608static int __init parse_dt_topology(void)
609{
610 struct device_node *cn, *map;
611 int ret = 0;
612 int cpu;
613
614 cn = of_find_node_by_path("/cpus");
615 if (!cn) {
616 pr_err("No CPU information found in DT\n");
617 return 0;
618 }
619
620 /*
621 * When topology is provided cpu-map is essentially a root
622 * cluster with restricted subnodes.
623 */
624 map = of_get_child_by_name(cn, "cpu-map");
625 if (!map)
626 goto out;
627
628 ret = parse_cluster(map, 0);
629 if (ret != 0)
630 goto out_map;
631
632 topology_normalize_cpu_scale();
633
634 /*
635 * Check that all cores are in the topology; the SMP code will
636 * only mark cores described in the DT as possible.
637 */
638 for_each_possible_cpu(cpu)
639 if (cpu_topology[cpu].package_id == -1)
640 ret = -EINVAL;
641
642out_map:
643 of_node_put(map);
644out:
645 of_node_put(cn);
646 return ret;
647}
ca74b316 648#endif
60c1b220
AP
649
650/*
651 * cpu topology table
652 */
653struct cpu_topology cpu_topology[NR_CPUS];
654EXPORT_SYMBOL_GPL(cpu_topology);
655
656const struct cpumask *cpu_coregroup_mask(int cpu)
657{
658 const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
659
660 /* Find the smaller of NUMA, core or LLC siblings */
661 if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
662 /* not numa in package, lets use the package siblings */
663 core_mask = &cpu_topology[cpu].core_sibling;
664 }
665 if (cpu_topology[cpu].llc_id != -1) {
666 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
667 core_mask = &cpu_topology[cpu].llc_sibling;
668 }
669
db1e5948
DH
670 /*
671 * For systems with no shared cpu-side LLC but with clusters defined,
672 * extend core_mask to cluster_siblings. The sched domain builder will
673 * then remove MC as redundant with CLS if SCHED_CLUSTER is enabled.
674 */
675 if (IS_ENABLED(CONFIG_SCHED_CLUSTER) &&
676 cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling))
677 core_mask = &cpu_topology[cpu].cluster_sibling;
678
60c1b220
AP
679 return core_mask;
680}
681
c5e22fef
JC
682const struct cpumask *cpu_clustergroup_mask(int cpu)
683{
684 return &cpu_topology[cpu].cluster_sibling;
685}
686
60c1b220
AP
687void update_siblings_masks(unsigned int cpuid)
688{
689 struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
690 int cpu;
691
692 /* update core and thread sibling masks */
693 for_each_online_cpu(cpu) {
694 cpu_topo = &cpu_topology[cpu];
695
1dc9f1a6 696 if (cpu_topo->llc_id != -1 && cpuid_topo->llc_id == cpu_topo->llc_id) {
60c1b220
AP
697 cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
698 cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
699 }
700
701 if (cpuid_topo->package_id != cpu_topo->package_id)
702 continue;
703
c5e22fef
JC
704 if (cpuid_topo->cluster_id == cpu_topo->cluster_id &&
705 cpuid_topo->cluster_id != -1) {
706 cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
707 cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
708 }
709
60c1b220
AP
710 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
711 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
712
713 if (cpuid_topo->core_id != cpu_topo->core_id)
714 continue;
715
716 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
717 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
718 }
719}
720
721static void clear_cpu_topology(int cpu)
722{
723 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
724
725 cpumask_clear(&cpu_topo->llc_sibling);
726 cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
727
c5e22fef
JC
728 cpumask_clear(&cpu_topo->cluster_sibling);
729 cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
730
60c1b220
AP
731 cpumask_clear(&cpu_topo->core_sibling);
732 cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
733 cpumask_clear(&cpu_topo->thread_sibling);
734 cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
735}
736
ca74b316 737void __init reset_cpu_topology(void)
60c1b220
AP
738{
739 unsigned int cpu;
740
741 for_each_possible_cpu(cpu) {
742 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
743
744 cpu_topo->thread_id = -1;
745 cpu_topo->core_id = -1;
c5e22fef 746 cpu_topo->cluster_id = -1;
60c1b220
AP
747 cpu_topo->package_id = -1;
748 cpu_topo->llc_id = -1;
749
750 clear_cpu_topology(cpu);
751 }
752}
753
754void remove_cpu_topology(unsigned int cpu)
755{
756 int sibling;
757
758 for_each_cpu(sibling, topology_core_cpumask(cpu))
759 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
760 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
761 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
4cc4cc28
WS
762 for_each_cpu(sibling, topology_cluster_cpumask(cpu))
763 cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
60c1b220
AP
764 for_each_cpu(sibling, topology_llc_cpumask(cpu))
765 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
766
767 clear_cpu_topology(cpu);
768}
769
770__weak int __init parse_acpi_topology(void)
771{
772 return 0;
773}
774
ca74b316 775#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
60c1b220
AP
776void __init init_cpu_topology(void)
777{
778 reset_cpu_topology();
779
780 /*
781 * Discard anything that was parsed if we hit an error so we
782 * don't use partial information.
783 */
784 if (parse_acpi_topology())
785 reset_cpu_topology();
786 else if (of_have_populated_dt() && parse_dt_topology())
787 reset_cpu_topology();
788}
789#endif