Merge tag 'vfs-6.9.ntfs' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[linux-2.6-block.git] / drivers / base / arch_topology.c
CommitLineData
6ee97d35 1// SPDX-License-Identifier: GPL-2.0
2ef7a295
JL
2/*
3 * Arch specific cpu topology information
4 *
5 * Copyright (C) 2016, ARM Ltd.
6 * Written by: Juri Lelli, ARM Ltd.
2ef7a295
JL
7 */
8
9#include <linux/acpi.h>
38db9b95 10#include <linux/cacheinfo.h>
2ef7a295
JL
11#include <linux/cpu.h>
12#include <linux/cpufreq.h>
13#include <linux/device.h>
14#include <linux/of.h>
15#include <linux/slab.h>
2ef7a295 16#include <linux/sched/topology.h>
bb1fbdd3 17#include <linux/cpuset.h>
60c1b220
AP
18#include <linux/cpumask.h>
19#include <linux/init.h>
83150f5d 20#include <linux/rcupdate.h>
60c1b220 21#include <linux/sched.h>
9942cb22 22#include <linux/units.h>
2ef7a295 23
c3d438ee
LL
24#define CREATE_TRACE_POINTS
25#include <trace/events/thermal_pressure.h>
26
83150f5d 27static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
01e055c1
VK
28static struct cpumask scale_freq_counters_mask;
29static bool scale_freq_invariant;
9942cb22
VG
30DEFINE_PER_CPU(unsigned long, capacity_freq_ref) = 1;
31EXPORT_PER_CPU_SYMBOL_GPL(capacity_freq_ref);
01e055c1
VK
32
33static bool supports_scale_freq_counters(const struct cpumask *cpus)
34{
35 return cpumask_subset(cpus, &scale_freq_counters_mask);
36}
37
15e5d5b4
VS
38bool topology_scale_freq_invariant(void)
39{
40 return cpufreq_supports_freq_invariance() ||
01e055c1
VK
41 supports_scale_freq_counters(cpu_online_mask);
42}
43
44static void update_scale_freq_invariant(bool status)
45{
46 if (scale_freq_invariant == status)
47 return;
48
49 /*
50 * Task scheduler behavior depends on frequency invariance support,
51 * either cpufreq or counter driven. If the support status changes as
52 * a result of counter initialisation and use, retrigger the build of
53 * scheduling domains to ensure the information is propagated properly.
54 */
55 if (topology_scale_freq_invariant() == status) {
56 scale_freq_invariant = status;
57 rebuild_sched_domains_energy();
58 }
59}
60
61void topology_set_scale_freq_source(struct scale_freq_data *data,
62 const struct cpumask *cpus)
63{
64 struct scale_freq_data *sfd;
65 int cpu;
66
67 /*
68 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
69 * supported by cpufreq.
70 */
71 if (cpumask_empty(&scale_freq_counters_mask))
72 scale_freq_invariant = topology_scale_freq_invariant();
73
83150f5d
VK
74 rcu_read_lock();
75
01e055c1 76 for_each_cpu(cpu, cpus) {
83150f5d 77 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
01e055c1
VK
78
79 /* Use ARCH provided counters whenever possible */
80 if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
83150f5d 81 rcu_assign_pointer(per_cpu(sft_data, cpu), data);
01e055c1
VK
82 cpumask_set_cpu(cpu, &scale_freq_counters_mask);
83 }
84 }
85
83150f5d
VK
86 rcu_read_unlock();
87
01e055c1 88 update_scale_freq_invariant(true);
15e5d5b4 89}
2f533958 90EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
15e5d5b4 91
01e055c1
VK
92void topology_clear_scale_freq_source(enum scale_freq_source source,
93 const struct cpumask *cpus)
cd0ed03a 94{
01e055c1
VK
95 struct scale_freq_data *sfd;
96 int cpu;
97
83150f5d
VK
98 rcu_read_lock();
99
01e055c1 100 for_each_cpu(cpu, cpus) {
83150f5d 101 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
01e055c1
VK
102
103 if (sfd && sfd->source == source) {
83150f5d 104 rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
01e055c1
VK
105 cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
106 }
107 }
108
83150f5d
VK
109 rcu_read_unlock();
110
111 /*
112 * Make sure all references to previous sft_data are dropped to avoid
113 * use-after-free races.
114 */
115 synchronize_rcu();
116
01e055c1 117 update_scale_freq_invariant(false);
cd0ed03a 118}
2f533958 119EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
01e055c1
VK
120
121void topology_scale_freq_tick(void)
122{
83150f5d 123 struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
01e055c1
VK
124
125 if (sfd)
126 sfd->set_freq_scale();
127}
128
eec73529 129DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2f533958 130EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
2ef7a295 131
a20b7053
IV
132void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
133 unsigned long max_freq)
2ef7a295 134{
0e27c567
DE
135 unsigned long scale;
136 int i;
137
0a10d3fe
IV
138 if (WARN_ON_ONCE(!cur_freq || !max_freq))
139 return;
140
cd0ed03a
IV
141 /*
142 * If the use of counters for FIE is enabled, just return as we don't
143 * want to update the scale factor with information from CPUFREQ.
144 * Instead the scale factor will be updated from arch_scale_freq_tick.
145 */
01e055c1 146 if (supports_scale_freq_counters(cpus))
cd0ed03a
IV
147 return;
148
0e27c567
DE
149 scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
150
151 for_each_cpu(i, cpus)
eec73529 152 per_cpu(arch_freq_scale, i) = scale;
2ef7a295
JL
153}
154
8216f588 155DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
275157b3 156EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
2ef7a295 157
4ca4f26a 158void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
2ef7a295
JL
159{
160 per_cpu(cpu_scale, cpu) = capacity;
161}
162
25980c7a
VS
163DEFINE_PER_CPU(unsigned long, thermal_pressure);
164
c214f124
LL
165/**
166 * topology_update_thermal_pressure() - Update thermal pressure for CPUs
167 * @cpus : The related CPUs for which capacity has been reduced
168 * @capped_freq : The maximum allowed frequency that CPUs can run at
169 *
170 * Update the value of thermal pressure for all @cpus in the mask. The
171 * cpumask should include all (online+offline) affected CPUs, to avoid
172 * operating on stale data when hot-plug is used for some CPUs. The
173 * @capped_freq reflects the currently allowed max CPUs frequency due to
174 * thermal capping. It might be also a boost frequency value, which is bigger
9942cb22
VG
175 * than the internal 'capacity_freq_ref' max frequency. In such case the
176 * pressure value should simply be removed, since this is an indication that
177 * there is no thermal throttling. The @capped_freq must be provided in kHz.
c214f124
LL
178 */
179void topology_update_thermal_pressure(const struct cpumask *cpus,
180 unsigned long capped_freq)
181{
7e97b3dc 182 unsigned long max_capacity, capacity, th_pressure;
c214f124
LL
183 u32 max_freq;
184 int cpu;
185
186 cpu = cpumask_first(cpus);
187 max_capacity = arch_scale_cpu_capacity(cpu);
9942cb22 188 max_freq = arch_scale_freq_ref(cpu);
c214f124
LL
189
190 /*
191 * Handle properly the boost frequencies, which should simply clean
192 * the thermal pressure value.
193 */
194 if (max_freq <= capped_freq)
195 capacity = max_capacity;
196 else
197 capacity = mult_frac(max_capacity, capped_freq, max_freq);
198
7e97b3dc
LL
199 th_pressure = max_capacity - capacity;
200
c3d438ee
LL
201 trace_thermal_pressure_update(cpu, th_pressure);
202
7e97b3dc
LL
203 for_each_cpu(cpu, cpus)
204 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
c214f124
LL
205}
206EXPORT_SYMBOL_GPL(topology_update_thermal_pressure);
207
2ef7a295
JL
208static ssize_t cpu_capacity_show(struct device *dev,
209 struct device_attribute *attr,
210 char *buf)
211{
212 struct cpu *cpu = container_of(dev, struct cpu, dev);
213
aa838896 214 return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
2ef7a295
JL
215}
216
bb1fbdd3
MR
217static void update_topology_flags_workfn(struct work_struct *work);
218static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
219
5d777b18 220static DEVICE_ATTR_RO(cpu_capacity);
2ef7a295 221
c72bbf20
JM
222static int cpu_capacity_sysctl_add(unsigned int cpu)
223{
224 struct device *cpu_dev = get_cpu_device(cpu);
225
226 if (!cpu_dev)
227 return -ENOENT;
228
229 device_create_file(cpu_dev, &dev_attr_cpu_capacity);
230
231 return 0;
232}
233
234static int cpu_capacity_sysctl_remove(unsigned int cpu)
235{
236 struct device *cpu_dev = get_cpu_device(cpu);
237
238 if (!cpu_dev)
239 return -ENOENT;
240
241 device_remove_file(cpu_dev, &dev_attr_cpu_capacity);
242
243 return 0;
244}
245
2ef7a295
JL
246static int register_cpu_capacity_sysctl(void)
247{
c72bbf20
JM
248 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "topology/cpu-capacity",
249 cpu_capacity_sysctl_add, cpu_capacity_sysctl_remove);
2ef7a295
JL
250
251 return 0;
252}
253subsys_initcall(register_cpu_capacity_sysctl);
254
bb1fbdd3
MR
255static int update_topology;
256
257int topology_update_cpu_topology(void)
258{
259 return update_topology;
260}
261
262/*
263 * Updating the sched_domains can't be done directly from cpufreq callbacks
264 * due to locking, so queue the work for later.
265 */
266static void update_topology_flags_workfn(struct work_struct *work)
267{
268 update_topology = 1;
269 rebuild_sched_domains();
270 pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
271 update_topology = 0;
272}
273
2ef7a295 274static u32 *raw_capacity;
62de1161 275
82d8ba71 276static int free_raw_capacity(void)
62de1161
VK
277{
278 kfree(raw_capacity);
279 raw_capacity = NULL;
280
281 return 0;
282}
2ef7a295 283
4ca4f26a 284void topology_normalize_cpu_scale(void)
2ef7a295
JL
285{
286 u64 capacity;
b8fe128d 287 u64 capacity_scale;
2ef7a295
JL
288 int cpu;
289
62de1161 290 if (!raw_capacity)
2ef7a295
JL
291 return;
292
b8fe128d 293 capacity_scale = 1;
2ef7a295 294 for_each_possible_cpu(cpu) {
9942cb22 295 capacity = raw_capacity[cpu] * per_cpu(capacity_freq_ref, cpu);
b8fe128d
JC
296 capacity_scale = max(capacity, capacity_scale);
297 }
298
299 pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
300 for_each_possible_cpu(cpu) {
9942cb22 301 capacity = raw_capacity[cpu] * per_cpu(capacity_freq_ref, cpu);
b8fe128d
JC
302 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
303 capacity_scale);
4ca4f26a 304 topology_set_cpu_scale(cpu, capacity);
2ef7a295 305 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
8ec59c0f 306 cpu, topology_get_cpu_scale(cpu));
2ef7a295 307 }
2ef7a295
JL
308}
309
805df296 310bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
2ef7a295 311{
b8fe128d 312 struct clk *cpu_clk;
62de1161 313 static bool cap_parsing_failed;
805df296 314 int ret;
2ef7a295
JL
315 u32 cpu_capacity;
316
317 if (cap_parsing_failed)
805df296 318 return false;
2ef7a295 319
3eeba1a2 320 ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
2ef7a295
JL
321 &cpu_capacity);
322 if (!ret) {
323 if (!raw_capacity) {
324 raw_capacity = kcalloc(num_possible_cpus(),
325 sizeof(*raw_capacity),
326 GFP_KERNEL);
327 if (!raw_capacity) {
2ef7a295 328 cap_parsing_failed = true;
805df296 329 return false;
2ef7a295
JL
330 }
331 }
2ef7a295 332 raw_capacity[cpu] = cpu_capacity;
6ef2541f
RH
333 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
334 cpu_node, raw_capacity[cpu]);
b8fe128d
JC
335
336 /*
9942cb22 337 * Update capacity_freq_ref for calculating early boot CPU capacities.
b8fe128d
JC
338 * For non-clk CPU DVFS mechanism, there's no way to get the
339 * frequency value now, assuming they are running at the same
9942cb22 340 * frequency (by keeping the initial capacity_freq_ref value).
b8fe128d
JC
341 */
342 cpu_clk = of_clk_get(cpu_node, 0);
4dfff3d5 343 if (!PTR_ERR_OR_ZERO(cpu_clk)) {
9942cb22
VG
344 per_cpu(capacity_freq_ref, cpu) =
345 clk_get_rate(cpu_clk) / HZ_PER_KHZ;
4dfff3d5
JC
346 clk_put(cpu_clk);
347 }
2ef7a295
JL
348 } else {
349 if (raw_capacity) {
6ef2541f
RH
350 pr_err("cpu_capacity: missing %pOF raw capacity\n",
351 cpu_node);
2ef7a295
JL
352 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
353 }
354 cap_parsing_failed = true;
62de1161 355 free_raw_capacity();
2ef7a295
JL
356 }
357
358 return !ret;
359}
360
1f023007
VG
361void __weak freq_inv_set_max_ratio(int cpu, u64 max_rate)
362{
363}
364
9924fbb5
IV
365#ifdef CONFIG_ACPI_CPPC_LIB
366#include <acpi/cppc_acpi.h>
367
368void topology_init_cpu_capacity_cppc(void)
369{
5477fa24 370 u64 capacity, capacity_scale = 0;
9924fbb5
IV
371 struct cppc_perf_caps perf_caps;
372 int cpu;
373
a2a9d185 374 if (likely(!acpi_cpc_valid()))
9924fbb5
IV
375 return;
376
377 raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity),
378 GFP_KERNEL);
379 if (!raw_capacity)
380 return;
381
382 for_each_possible_cpu(cpu) {
383 if (!cppc_get_perf_caps(cpu, &perf_caps) &&
384 (perf_caps.highest_perf >= perf_caps.nominal_perf) &&
385 (perf_caps.highest_perf >= perf_caps.lowest_perf)) {
386 raw_capacity[cpu] = perf_caps.highest_perf;
5477fa24
VG
387 capacity_scale = max_t(u64, capacity_scale, raw_capacity[cpu]);
388
389 per_cpu(capacity_freq_ref, cpu) = cppc_perf_to_khz(&perf_caps, raw_capacity[cpu]);
390
9924fbb5
IV
391 pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n",
392 cpu, raw_capacity[cpu]);
393 continue;
394 }
395
396 pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu);
397 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
398 goto exit;
399 }
400
5477fa24 401 for_each_possible_cpu(cpu) {
1f023007
VG
402 freq_inv_set_max_ratio(cpu,
403 per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
404
5477fa24
VG
405 capacity = raw_capacity[cpu];
406 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
407 capacity_scale);
408 topology_set_cpu_scale(cpu, capacity);
409 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
410 cpu, topology_get_cpu_scale(cpu));
411 }
412
9924fbb5
IV
413 schedule_work(&update_topology_flags_work);
414 pr_debug("cpu_capacity: cpu_capacity initialization done\n");
415
416exit:
417 free_raw_capacity();
418}
419#endif
420
2ef7a295 421#ifdef CONFIG_CPU_FREQ
9de9a449
GI
422static cpumask_var_t cpus_to_visit;
423static void parsing_done_workfn(struct work_struct *work);
424static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
2ef7a295 425
9de9a449 426static int
2ef7a295
JL
427init_cpu_capacity_callback(struct notifier_block *nb,
428 unsigned long val,
429 void *data)
430{
431 struct cpufreq_policy *policy = data;
432 int cpu;
433
40f0fc2a 434 if (val != CPUFREQ_CREATE_POLICY)
93a57081
VK
435 return 0;
436
437 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
438 cpumask_pr_args(policy->related_cpus),
439 cpumask_pr_args(cpus_to_visit));
440
441 cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
442
1f023007 443 for_each_cpu(cpu, policy->related_cpus) {
9942cb22 444 per_cpu(capacity_freq_ref, cpu) = policy->cpuinfo.max_freq;
1f023007
VG
445 freq_inv_set_max_ratio(cpu,
446 per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
447 }
93a57081
VK
448
449 if (cpumask_empty(cpus_to_visit)) {
98323e9d
VG
450 if (raw_capacity) {
451 topology_normalize_cpu_scale();
452 schedule_work(&update_topology_flags_work);
453 free_raw_capacity();
454 }
93a57081 455 pr_debug("cpu_capacity: parsing done\n");
93a57081
VK
456 schedule_work(&parsing_done_work);
457 }
458
2ef7a295
JL
459 return 0;
460}
461
9de9a449 462static struct notifier_block init_cpu_capacity_notifier = {
2ef7a295
JL
463 .notifier_call = init_cpu_capacity_callback,
464};
465
466static int __init register_cpufreq_notifier(void)
467{
5408211a
DE
468 int ret;
469
2ef7a295 470 /*
9924fbb5
IV
471 * On ACPI-based systems skip registering cpufreq notifier as cpufreq
472 * information is not needed for cpu capacity initialization.
2ef7a295 473 */
98323e9d 474 if (!acpi_disabled)
2ef7a295
JL
475 return -EINVAL;
476
0fd33116 477 if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
2ef7a295 478 return -ENOMEM;
2ef7a295
JL
479
480 cpumask_copy(cpus_to_visit, cpu_possible_mask);
481
5408211a
DE
482 ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
483 CPUFREQ_POLICY_NOTIFIER);
484
485 if (ret)
486 free_cpumask_var(cpus_to_visit);
487
488 return ret;
2ef7a295
JL
489}
490core_initcall(register_cpufreq_notifier);
491
9de9a449 492static void parsing_done_workfn(struct work_struct *work)
2ef7a295
JL
493{
494 cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
495 CPUFREQ_POLICY_NOTIFIER);
5408211a 496 free_cpumask_var(cpus_to_visit);
2ef7a295
JL
497}
498
499#else
2ef7a295
JL
500core_initcall(free_raw_capacity);
501#endif
60c1b220
AP
502
503#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
f3c19481
ZT
504/*
505 * This function returns the logic cpu number of the node.
506 * There are basically three kinds of return values:
507 * (1) logic cpu number which is > 0.
508 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
509 * there is no possible logical CPU in the kernel to match. This happens
510 * when CONFIG_NR_CPUS is configure to be smaller than the number of
511 * CPU nodes in DT. We need to just ignore this case.
512 * (3) -1 if the node does not exist in the device tree
513 */
60c1b220
AP
514static int __init get_cpu_for_node(struct device_node *node)
515{
516 struct device_node *cpu_node;
517 int cpu;
518
519 cpu_node = of_parse_phandle(node, "cpu", 0);
520 if (!cpu_node)
521 return -1;
522
523 cpu = of_cpu_node_to_id(cpu_node);
524 if (cpu >= 0)
525 topology_parse_cpu_capacity(cpu_node, cpu);
526 else
f3c19481
ZT
527 pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
528 cpu_node, cpumask_pr_args(cpu_possible_mask));
60c1b220
AP
529
530 of_node_put(cpu_node);
531 return cpu;
532}
533
534static int __init parse_core(struct device_node *core, int package_id,
556c9678 535 int cluster_id, int core_id)
60c1b220 536{
4a33691c 537 char name[20];
60c1b220
AP
538 bool leaf = true;
539 int i = 0;
540 int cpu;
541 struct device_node *t;
542
543 do {
544 snprintf(name, sizeof(name), "thread%d", i);
545 t = of_get_child_by_name(core, name);
546 if (t) {
547 leaf = false;
548 cpu = get_cpu_for_node(t);
549 if (cpu >= 0) {
550 cpu_topology[cpu].package_id = package_id;
556c9678 551 cpu_topology[cpu].cluster_id = cluster_id;
60c1b220
AP
552 cpu_topology[cpu].core_id = core_id;
553 cpu_topology[cpu].thread_id = i;
f3c19481
ZT
554 } else if (cpu != -ENODEV) {
555 pr_err("%pOF: Can't get CPU for thread\n", t);
60c1b220
AP
556 of_node_put(t);
557 return -EINVAL;
558 }
559 of_node_put(t);
560 }
561 i++;
562 } while (t);
563
564 cpu = get_cpu_for_node(core);
565 if (cpu >= 0) {
566 if (!leaf) {
567 pr_err("%pOF: Core has both threads and CPU\n",
568 core);
569 return -EINVAL;
570 }
571
572 cpu_topology[cpu].package_id = package_id;
556c9678 573 cpu_topology[cpu].cluster_id = cluster_id;
60c1b220 574 cpu_topology[cpu].core_id = core_id;
f3c19481 575 } else if (leaf && cpu != -ENODEV) {
60c1b220
AP
576 pr_err("%pOF: Can't get CPU for leaf core\n", core);
577 return -EINVAL;
578 }
579
580 return 0;
581}
582
dea8c0b4
SH
583static int __init parse_cluster(struct device_node *cluster, int package_id,
584 int cluster_id, int depth)
60c1b220 585{
4a33691c 586 char name[20];
60c1b220
AP
587 bool leaf = true;
588 bool has_cores = false;
589 struct device_node *c;
60c1b220
AP
590 int core_id = 0;
591 int i, ret;
592
593 /*
594 * First check for child clusters; we currently ignore any
595 * information about the nesting of clusters and present the
596 * scheduler with a flat list of them.
597 */
598 i = 0;
599 do {
600 snprintf(name, sizeof(name), "cluster%d", i);
601 c = of_get_child_by_name(cluster, name);
602 if (c) {
603 leaf = false;
dea8c0b4 604 ret = parse_cluster(c, package_id, i, depth + 1);
00e66e37
SH
605 if (depth > 0)
606 pr_warn("Topology for clusters of clusters not yet supported\n");
60c1b220
AP
607 of_node_put(c);
608 if (ret != 0)
609 return ret;
610 }
611 i++;
612 } while (c);
613
614 /* Now check for cores */
615 i = 0;
616 do {
617 snprintf(name, sizeof(name), "core%d", i);
618 c = of_get_child_by_name(cluster, name);
619 if (c) {
620 has_cores = true;
621
622 if (depth == 0) {
623 pr_err("%pOF: cpu-map children should be clusters\n",
624 c);
625 of_node_put(c);
626 return -EINVAL;
627 }
628
629 if (leaf) {
dea8c0b4
SH
630 ret = parse_core(c, package_id, cluster_id,
631 core_id++);
60c1b220
AP
632 } else {
633 pr_err("%pOF: Non-leaf cluster with core %s\n",
634 cluster, name);
635 ret = -EINVAL;
636 }
637
638 of_node_put(c);
639 if (ret != 0)
640 return ret;
641 }
642 i++;
643 } while (c);
644
645 if (leaf && !has_cores)
646 pr_warn("%pOF: empty cluster\n", cluster);
647
60c1b220
AP
648 return 0;
649}
650
dea8c0b4
SH
651static int __init parse_socket(struct device_node *socket)
652{
653 char name[20];
654 struct device_node *c;
655 bool has_socket = false;
656 int package_id = 0, ret;
657
658 do {
659 snprintf(name, sizeof(name), "socket%d", package_id);
660 c = of_get_child_by_name(socket, name);
661 if (c) {
662 has_socket = true;
663 ret = parse_cluster(c, package_id, -1, 0);
664 of_node_put(c);
665 if (ret != 0)
666 return ret;
667 }
668 package_id++;
669 } while (c);
670
671 if (!has_socket)
672 ret = parse_cluster(socket, 0, -1, 0);
673
674 return ret;
675}
676
60c1b220
AP
677static int __init parse_dt_topology(void)
678{
679 struct device_node *cn, *map;
680 int ret = 0;
681 int cpu;
682
683 cn = of_find_node_by_path("/cpus");
684 if (!cn) {
685 pr_err("No CPU information found in DT\n");
686 return 0;
687 }
688
689 /*
690 * When topology is provided cpu-map is essentially a root
691 * cluster with restricted subnodes.
692 */
693 map = of_get_child_by_name(cn, "cpu-map");
694 if (!map)
695 goto out;
696
dea8c0b4 697 ret = parse_socket(map);
60c1b220
AP
698 if (ret != 0)
699 goto out_map;
700
701 topology_normalize_cpu_scale();
702
703 /*
704 * Check that all cores are in the topology; the SMP code will
705 * only mark cores described in the DT as possible.
706 */
707 for_each_possible_cpu(cpu)
5a01bb8e 708 if (cpu_topology[cpu].package_id < 0) {
60c1b220 709 ret = -EINVAL;
5a01bb8e
SH
710 break;
711 }
60c1b220
AP
712
713out_map:
714 of_node_put(map);
715out:
716 of_node_put(cn);
717 return ret;
718}
ca74b316 719#endif
60c1b220
AP
720
721/*
722 * cpu topology table
723 */
724struct cpu_topology cpu_topology[NR_CPUS];
725EXPORT_SYMBOL_GPL(cpu_topology);
726
727const struct cpumask *cpu_coregroup_mask(int cpu)
728{
729 const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
730
731 /* Find the smaller of NUMA, core or LLC siblings */
732 if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
733 /* not numa in package, lets use the package siblings */
734 core_mask = &cpu_topology[cpu].core_sibling;
735 }
f027db2f
SH
736
737 if (last_level_cache_is_valid(cpu)) {
60c1b220
AP
738 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
739 core_mask = &cpu_topology[cpu].llc_sibling;
740 }
741
db1e5948
DH
742 /*
743 * For systems with no shared cpu-side LLC but with clusters defined,
744 * extend core_mask to cluster_siblings. The sched domain builder will
745 * then remove MC as redundant with CLS if SCHED_CLUSTER is enabled.
746 */
747 if (IS_ENABLED(CONFIG_SCHED_CLUSTER) &&
748 cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling))
749 core_mask = &cpu_topology[cpu].cluster_sibling;
750
60c1b220
AP
751 return core_mask;
752}
753
c5e22fef
JC
754const struct cpumask *cpu_clustergroup_mask(int cpu)
755{
bfcc4397
IV
756 /*
757 * Forbid cpu_clustergroup_mask() to span more or the same CPUs as
758 * cpu_coregroup_mask().
759 */
760 if (cpumask_subset(cpu_coregroup_mask(cpu),
761 &cpu_topology[cpu].cluster_sibling))
5ac251c8 762 return topology_sibling_cpumask(cpu);
bfcc4397 763
c5e22fef
JC
764 return &cpu_topology[cpu].cluster_sibling;
765}
766
60c1b220
AP
767void update_siblings_masks(unsigned int cpuid)
768{
769 struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
3fcbf1c7
SH
770 int cpu, ret;
771
772 ret = detect_cache_attributes(cpuid);
9b03e793 773 if (ret && ret != -ENOENT)
5944ce09 774 pr_info("Early cacheinfo allocation failed, ret = %d\n", ret);
60c1b220
AP
775
776 /* update core and thread sibling masks */
777 for_each_online_cpu(cpu) {
778 cpu_topo = &cpu_topology[cpu];
779
f027db2f 780 if (last_level_cache_is_shared(cpu, cpuid)) {
60c1b220
AP
781 cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
782 cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
783 }
784
785 if (cpuid_topo->package_id != cpu_topo->package_id)
786 continue;
787
3f828329
SH
788 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
789 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
790
791 if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
792 continue;
793
9eb5e54f 794 if (cpuid_topo->cluster_id >= 0) {
c5e22fef
JC
795 cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
796 cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
797 }
798
60c1b220
AP
799 if (cpuid_topo->core_id != cpu_topo->core_id)
800 continue;
801
802 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
803 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
804 }
805}
806
807static void clear_cpu_topology(int cpu)
808{
809 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
810
811 cpumask_clear(&cpu_topo->llc_sibling);
812 cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
813
c5e22fef
JC
814 cpumask_clear(&cpu_topo->cluster_sibling);
815 cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
816
60c1b220
AP
817 cpumask_clear(&cpu_topo->core_sibling);
818 cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
819 cpumask_clear(&cpu_topo->thread_sibling);
820 cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
821}
822
ca74b316 823void __init reset_cpu_topology(void)
60c1b220
AP
824{
825 unsigned int cpu;
826
827 for_each_possible_cpu(cpu) {
828 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
829
830 cpu_topo->thread_id = -1;
831 cpu_topo->core_id = -1;
c5e22fef 832 cpu_topo->cluster_id = -1;
60c1b220 833 cpu_topo->package_id = -1;
60c1b220
AP
834
835 clear_cpu_topology(cpu);
836 }
837}
838
839void remove_cpu_topology(unsigned int cpu)
840{
841 int sibling;
842
843 for_each_cpu(sibling, topology_core_cpumask(cpu))
844 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
845 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
846 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
4cc4cc28
WS
847 for_each_cpu(sibling, topology_cluster_cpumask(cpu))
848 cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
60c1b220
AP
849 for_each_cpu(sibling, topology_llc_cpumask(cpu))
850 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
851
852 clear_cpu_topology(cpu);
853}
854
855__weak int __init parse_acpi_topology(void)
856{
857 return 0;
858}
859
ca74b316 860#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
60c1b220
AP
861void __init init_cpu_topology(void)
862{
5944ce09 863 int cpu, ret;
38db9b95 864
60c1b220 865 reset_cpu_topology();
38db9b95
SH
866 ret = parse_acpi_topology();
867 if (!ret)
868 ret = of_have_populated_dt() && parse_dt_topology();
60c1b220 869
38db9b95
SH
870 if (ret) {
871 /*
872 * Discard anything that was parsed if we hit an error so we
e103d554
RR
873 * don't use partial information. But do not return yet to give
874 * arch-specific early cache level detection a chance to run.
38db9b95 875 */
60c1b220 876 reset_cpu_topology();
38db9b95 877 }
5944ce09
PG
878
879 for_each_possible_cpu(cpu) {
880 ret = fetch_cache_info(cpu);
35223401
PG
881 if (!ret)
882 continue;
883 else if (ret != -ENOENT)
5944ce09 884 pr_err("Early cacheinfo failed, ret = %d\n", ret);
35223401 885 return;
5944ce09 886 }
60c1b220 887}
456797da
CD
888
889void store_cpu_topology(unsigned int cpuid)
890{
891 struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
892
893 if (cpuid_topo->package_id != -1)
894 goto topology_populated;
895
896 cpuid_topo->thread_id = -1;
897 cpuid_topo->core_id = cpuid;
898 cpuid_topo->package_id = cpu_to_node(cpuid);
899
900 pr_debug("CPU%u: package %d core %d thread %d\n",
901 cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
902 cpuid_topo->thread_id);
903
904topology_populated:
905 update_siblings_masks(cpuid);
906}
60c1b220 907#endif