ata: Kconfig: fix sata gemini compile test condition
[linux-2.6-block.git] / drivers / ata / pata_octeon_cf.c
CommitLineData
3c929c6f
DD
1/*
2 * Driver for the Octeon bootbus compact flash.
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
43f01da0 8 * Copyright (C) 2005 - 2012 Cavium Inc.
3c929c6f
DD
9 * Copyright (C) 2008 Wind River Systems
10 */
11
12#include <linux/kernel.h>
13#include <linux/module.h>
14#include <linux/libata.h>
43f01da0 15#include <linux/hrtimer.h>
5a0e3ad6 16#include <linux/slab.h>
43f01da0
DD
17#include <linux/irq.h>
18#include <linux/of.h>
19#include <linux/of_platform.h>
3c929c6f 20#include <linux/platform_device.h>
3c929c6f 21#include <scsi/scsi_host.h>
c206a389 22#include <trace/events/libata.h>
1007c4bc 23#include <asm/byteorder.h>
3c929c6f
DD
24#include <asm/octeon/octeon.h>
25
26/*
27 * The Octeon bootbus compact flash interface is connected in at least
28 * 3 different configurations on various evaluation boards:
29 *
30 * -- 8 bits no irq, no DMA
31 * -- 16 bits no irq, no DMA
32 * -- 16 bits True IDE mode with DMA, but no irq.
33 *
34 * In the last case the DMA engine can generate an interrupt when the
35 * transfer is complete. For the first two cases only PIO is supported.
36 *
37 */
38
39#define DRV_NAME "pata_octeon_cf"
43f01da0
DD
40#define DRV_VERSION "2.2"
41
42/* Poll interval in nS. */
43#define OCTEON_CF_BUSY_POLL_INTERVAL 500000
3c929c6f 44
43f01da0
DD
45#define DMA_CFG 0
46#define DMA_TIM 0x20
47#define DMA_INT 0x38
48#define DMA_INT_EN 0x50
3c929c6f
DD
49
50struct octeon_cf_port {
43f01da0 51 struct hrtimer delayed_finish;
3c929c6f
DD
52 struct ata_port *ap;
53 int dma_finished;
43f01da0
DD
54 void *c0;
55 unsigned int cs0;
56 unsigned int cs1;
57 bool is_true_ide;
58 u64 dma_base;
3c929c6f
DD
59};
60
61static struct scsi_host_template octeon_cf_sht = {
62 ATA_PIO_SHT(DRV_NAME),
63};
64
43f01da0
DD
65static int enable_dma;
66module_param(enable_dma, int, 0444);
67MODULE_PARM_DESC(enable_dma,
68 "Enable use of DMA on interfaces that support it (0=no dma [default], 1=use dma)");
69
3c929c6f
DD
70/**
71 * Convert nanosecond based time to setting used in the
72 * boot bus timing register, based on timing multiple
73 */
74static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
75{
3c929c6f
DD
76 /*
77 * Compute # of eclock periods to get desired duration in
78 * nanoseconds.
79 */
9c2fd3fb 80 return DIV_ROUND_UP(nsecs * (octeon_get_io_clock_rate() / 1000000),
3c929c6f 81 1000 * tim_mult);
3c929c6f
DD
82}
83
43f01da0 84static void octeon_cf_set_boot_reg_cfg(int cs, unsigned int multiplier)
3c929c6f
DD
85{
86 union cvmx_mio_boot_reg_cfgx reg_cfg;
43f01da0
DD
87 unsigned int tim_mult;
88
89 switch (multiplier) {
90 case 8:
91 tim_mult = 3;
92 break;
93 case 4:
94 tim_mult = 0;
95 break;
96 case 2:
97 tim_mult = 2;
98 break;
99 default:
100 tim_mult = 1;
101 break;
102 }
103
3c929c6f
DD
104 reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
105 reg_cfg.s.dmack = 0; /* Don't assert DMACK on access */
43f01da0 106 reg_cfg.s.tim_mult = tim_mult; /* Timing mutiplier */
3c929c6f
DD
107 reg_cfg.s.rd_dly = 0; /* Sample on falling edge of BOOT_OE */
108 reg_cfg.s.sam = 0; /* Don't combine write and output enable */
109 reg_cfg.s.we_ext = 0; /* No write enable extension */
110 reg_cfg.s.oe_ext = 0; /* No read enable extension */
111 reg_cfg.s.en = 1; /* Enable this region */
112 reg_cfg.s.orbit = 0; /* Don't combine with previous region */
113 reg_cfg.s.ale = 0; /* Don't do address multiplexing */
114 cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
115}
116
117/**
118 * Called after libata determines the needed PIO mode. This
119 * function programs the Octeon bootbus regions to support the
120 * timing requirements of the PIO mode.
121 *
122 * @ap: ATA port information
123 * @dev: ATA device
124 */
125static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
126{
43f01da0 127 struct octeon_cf_port *cf_port = ap->private_data;
3c929c6f 128 union cvmx_mio_boot_reg_timx reg_tim;
3c929c6f
DD
129 int T;
130 struct ata_timing timing;
131
43f01da0 132 unsigned int div;
3c929c6f
DD
133 int use_iordy;
134 int trh;
135 int pause;
136 /* These names are timing parameters from the ATA spec */
3c929c6f 137 int t2;
3c929c6f 138
43f01da0
DD
139 /*
140 * A divisor value of four will overflow the timing fields at
141 * clock rates greater than 800MHz
142 */
143 if (octeon_get_io_clock_rate() <= 800000000)
144 div = 4;
145 else
146 div = 8;
147 T = (int)((1000000000000LL * div) / octeon_get_io_clock_rate());
3c929c6f 148
02d9d3cb 149 BUG_ON(ata_timing_compute(dev, dev->pio_mode, &timing, T, T));
3c929c6f 150
3c929c6f
DD
151 t2 = timing.active;
152 if (t2)
153 t2--;
3c929c6f 154
43f01da0 155 trh = ns_to_tim_reg(div, 20);
3c929c6f
DD
156 if (trh)
157 trh--;
158
43f01da0
DD
159 pause = (int)timing.cycle - (int)timing.active -
160 (int)timing.setup - trh;
161 if (pause < 0)
162 pause = 0;
3c929c6f
DD
163 if (pause)
164 pause--;
165
43f01da0
DD
166 octeon_cf_set_boot_reg_cfg(cf_port->cs0, div);
167 if (cf_port->is_true_ide)
3c929c6f 168 /* True IDE mode, program both chip selects. */
43f01da0 169 octeon_cf_set_boot_reg_cfg(cf_port->cs1, div);
3c929c6f
DD
170
171
172 use_iordy = ata_pio_need_iordy(dev);
173
43f01da0 174 reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0));
3c929c6f
DD
175 /* Disable page mode */
176 reg_tim.s.pagem = 0;
177 /* Enable dynamic timing */
178 reg_tim.s.waitm = use_iordy;
179 /* Pages are disabled */
180 reg_tim.s.pages = 0;
181 /* We don't use multiplexed address mode */
182 reg_tim.s.ale = 0;
183 /* Not used */
184 reg_tim.s.page = 0;
185 /* Time after IORDY to coninue to assert the data */
186 reg_tim.s.wait = 0;
187 /* Time to wait to complete the cycle. */
188 reg_tim.s.pause = pause;
189 /* How long to hold after a write to de-assert CE. */
190 reg_tim.s.wr_hld = trh;
191 /* How long to wait after a read to de-assert CE. */
192 reg_tim.s.rd_hld = trh;
193 /* How long write enable is asserted */
194 reg_tim.s.we = t2;
195 /* How long read enable is asserted */
196 reg_tim.s.oe = t2;
197 /* Time after CE that read/write starts */
43f01da0 198 reg_tim.s.ce = ns_to_tim_reg(div, 5);
3c929c6f
DD
199 /* Time before CE that address is valid */
200 reg_tim.s.adr = 0;
201
202 /* Program the bootbus region timing for the data port chip select. */
43f01da0
DD
203 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0), reg_tim.u64);
204 if (cf_port->is_true_ide)
3c929c6f 205 /* True IDE mode, program both chip selects. */
43f01da0
DD
206 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs1),
207 reg_tim.u64);
3c929c6f
DD
208}
209
210static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
211{
43f01da0
DD
212 struct octeon_cf_port *cf_port = ap->private_data;
213 union cvmx_mio_boot_pin_defs pin_defs;
3c929c6f
DD
214 union cvmx_mio_boot_dma_timx dma_tim;
215 unsigned int oe_a;
216 unsigned int oe_n;
217 unsigned int dma_ackh;
218 unsigned int dma_arq;
219 unsigned int pause;
220 unsigned int T0, Tkr, Td;
221 unsigned int tim_mult;
43f01da0 222 int c;
3c929c6f
DD
223
224 const struct ata_timing *timing;
225
226 timing = ata_timing_find_mode(dev->dma_mode);
227 T0 = timing->cycle;
228 Td = timing->active;
229 Tkr = timing->recover;
230 dma_ackh = timing->dmack_hold;
231
232 dma_tim.u64 = 0;
233 /* dma_tim.s.tim_mult = 0 --> 4x */
234 tim_mult = 4;
235
236 /* not spec'ed, value in eclocks, not affected by tim_mult */
237 dma_arq = 8;
238 pause = 25 - dma_arq * 1000 /
43f01da0 239 (octeon_get_io_clock_rate() / 1000000); /* Tz */
3c929c6f
DD
240
241 oe_a = Td;
242 /* Tkr from cf spec, lengthened to meet T0 */
243 oe_n = max(T0 - oe_a, Tkr);
244
43f01da0
DD
245 pin_defs.u64 = cvmx_read_csr(CVMX_MIO_BOOT_PIN_DEFS);
246
247 /* DMA channel number. */
248 c = (cf_port->dma_base & 8) >> 3;
249
250 /* Invert the polarity if the default is 0*/
251 dma_tim.s.dmack_pi = (pin_defs.u64 & (1ull << (11 + c))) ? 0 : 1;
3c929c6f
DD
252
253 dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
254 dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
255
256 /*
257 * This is tI, C.F. spec. says 0, but Sony CF card requires
258 * more, we use 20 nS.
259 */
87c8b22b 260 dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);
3c929c6f
DD
261 dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
262
263 dma_tim.s.dmarq = dma_arq;
264 dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
265
266 dma_tim.s.rd_dly = 0; /* Sample right on edge */
267
268 /* writes only */
269 dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
270 dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
271
cb3f48fc 272 ata_dev_dbg(dev, "ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
3c929c6f 273 ns_to_tim_reg(tim_mult, 60));
cb3f48fc 274 ata_dev_dbg(dev, "oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: %d, dmarq: %d, pause: %d\n",
3c929c6f
DD
275 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
276 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
277
43f01da0 278 cvmx_write_csr(cf_port->dma_base + DMA_TIM, dma_tim.u64);
3c929c6f
DD
279}
280
281/**
282 * Handle an 8 bit I/O request.
283 *
989e0aac 284 * @qc: Queued command
3c929c6f
DD
285 * @buffer: Data buffer
286 * @buflen: Length of the buffer.
287 * @rw: True to write.
288 */
989e0aac 289static unsigned int octeon_cf_data_xfer8(struct ata_queued_cmd *qc,
3c929c6f
DD
290 unsigned char *buffer,
291 unsigned int buflen,
292 int rw)
293{
989e0aac 294 struct ata_port *ap = qc->dev->link->ap;
3c929c6f
DD
295 void __iomem *data_addr = ap->ioaddr.data_addr;
296 unsigned long words;
297 int count;
298
299 words = buflen;
300 if (rw) {
301 count = 16;
302 while (words--) {
303 iowrite8(*buffer, data_addr);
304 buffer++;
305 /*
306 * Every 16 writes do a read so the bootbus
307 * FIFO doesn't fill up.
308 */
309 if (--count == 0) {
310 ioread8(ap->ioaddr.altstatus_addr);
311 count = 16;
312 }
313 }
314 } else {
315 ioread8_rep(data_addr, buffer, words);
316 }
317 return buflen;
318}
319
320/**
321 * Handle a 16 bit I/O request.
322 *
989e0aac 323 * @qc: Queued command
3c929c6f
DD
324 * @buffer: Data buffer
325 * @buflen: Length of the buffer.
326 * @rw: True to write.
327 */
989e0aac 328static unsigned int octeon_cf_data_xfer16(struct ata_queued_cmd *qc,
3c929c6f
DD
329 unsigned char *buffer,
330 unsigned int buflen,
331 int rw)
332{
989e0aac 333 struct ata_port *ap = qc->dev->link->ap;
3c929c6f
DD
334 void __iomem *data_addr = ap->ioaddr.data_addr;
335 unsigned long words;
336 int count;
337
338 words = buflen / 2;
339 if (rw) {
340 count = 16;
341 while (words--) {
342 iowrite16(*(uint16_t *)buffer, data_addr);
343 buffer += sizeof(uint16_t);
344 /*
345 * Every 16 writes do a read so the bootbus
346 * FIFO doesn't fill up.
347 */
348 if (--count == 0) {
349 ioread8(ap->ioaddr.altstatus_addr);
350 count = 16;
351 }
352 }
353 } else {
354 while (words--) {
355 *(uint16_t *)buffer = ioread16(data_addr);
356 buffer += sizeof(uint16_t);
357 }
358 }
359 /* Transfer trailing 1 byte, if any. */
360 if (unlikely(buflen & 0x01)) {
361 __le16 align_buf[1] = { 0 };
362
363 if (rw == READ) {
364 align_buf[0] = cpu_to_le16(ioread16(data_addr));
365 memcpy(buffer, align_buf, 1);
366 } else {
367 memcpy(align_buf, buffer, 1);
368 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
369 }
370 words++;
371 }
372 return buflen;
373}
374
375/**
376 * Read the taskfile for 16bit non-True IDE only.
377 */
378static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
379{
380 u16 blob;
381 /* The base of the registers is at ioaddr.data_addr. */
382 void __iomem *base = ap->ioaddr.data_addr;
383
384 blob = __raw_readw(base + 0xc);
385 tf->feature = blob >> 8;
386
387 blob = __raw_readw(base + 2);
388 tf->nsect = blob & 0xff;
389 tf->lbal = blob >> 8;
390
391 blob = __raw_readw(base + 4);
392 tf->lbam = blob & 0xff;
393 tf->lbah = blob >> 8;
394
395 blob = __raw_readw(base + 6);
396 tf->device = blob & 0xff;
397 tf->command = blob >> 8;
398
399 if (tf->flags & ATA_TFLAG_LBA48) {
400 if (likely(ap->ioaddr.ctl_addr)) {
401 iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);
402
403 blob = __raw_readw(base + 0xc);
404 tf->hob_feature = blob >> 8;
405
406 blob = __raw_readw(base + 2);
407 tf->hob_nsect = blob & 0xff;
408 tf->hob_lbal = blob >> 8;
409
410 blob = __raw_readw(base + 4);
411 tf->hob_lbam = blob & 0xff;
412 tf->hob_lbah = blob >> 8;
413
414 iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
415 ap->last_ctl = tf->ctl;
416 } else {
417 WARN_ON(1);
418 }
419 }
420}
421
422static u8 octeon_cf_check_status16(struct ata_port *ap)
423{
424 u16 blob;
425 void __iomem *base = ap->ioaddr.data_addr;
426
427 blob = __raw_readw(base + 6);
428 return blob >> 8;
429}
430
431static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
432 unsigned long deadline)
433{
434 struct ata_port *ap = link->ap;
435 void __iomem *base = ap->ioaddr.data_addr;
436 int rc;
437 u8 err;
438
3c929c6f
DD
439 __raw_writew(ap->ctl, base + 0xe);
440 udelay(20);
441 __raw_writew(ap->ctl | ATA_SRST, base + 0xe);
442 udelay(20);
443 __raw_writew(ap->ctl, base + 0xe);
444
445 rc = ata_sff_wait_after_reset(link, 1, deadline);
446 if (rc) {
a9a79dfe 447 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
3c929c6f
DD
448 return rc;
449 }
450
451 /* determine by signature whether we have ATA or ATAPI devices */
452 classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
3c929c6f
DD
453 return 0;
454}
455
456/**
457 * Load the taskfile for 16bit non-True IDE only. The device_addr is
458 * not loaded, we do this as part of octeon_cf_exec_command16.
459 */
460static void octeon_cf_tf_load16(struct ata_port *ap,
461 const struct ata_taskfile *tf)
462{
463 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
464 /* The base of the registers is at ioaddr.data_addr. */
465 void __iomem *base = ap->ioaddr.data_addr;
466
467 if (tf->ctl != ap->last_ctl) {
468 iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
469 ap->last_ctl = tf->ctl;
470 ata_wait_idle(ap);
471 }
472 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
473 __raw_writew(tf->hob_feature << 8, base + 0xc);
474 __raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
475 __raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
3c929c6f
DD
476 }
477 if (is_addr) {
478 __raw_writew(tf->feature << 8, base + 0xc);
479 __raw_writew(tf->nsect | tf->lbal << 8, base + 2);
480 __raw_writew(tf->lbam | tf->lbah << 8, base + 4);
3c929c6f
DD
481 }
482 ata_wait_idle(ap);
483}
484
485
486static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
487{
488/* There is only one device, do nothing. */
489 return;
490}
491
492/*
493 * Issue ATA command to host controller. The device_addr is also sent
494 * as it must be written in a combined write with the command.
495 */
496static void octeon_cf_exec_command16(struct ata_port *ap,
497 const struct ata_taskfile *tf)
498{
499 /* The base of the registers is at ioaddr.data_addr. */
500 void __iomem *base = ap->ioaddr.data_addr;
c206a389 501 u16 blob = 0;
3c929c6f 502
c206a389 503 if (tf->flags & ATA_TFLAG_DEVICE)
3c929c6f 504 blob = tf->device;
3c929c6f 505
3c929c6f
DD
506 blob |= (tf->command << 8);
507 __raw_writew(blob, base + 6);
508
3c929c6f
DD
509 ata_wait_idle(ap);
510}
511
43f01da0 512static void octeon_cf_ata_port_noaction(struct ata_port *ap)
3c929c6f 513{
3c929c6f
DD
514}
515
3c929c6f
DD
516static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
517{
518 struct ata_port *ap = qc->ap;
519 struct octeon_cf_port *cf_port;
520
2d1299aa 521 cf_port = ap->private_data;
3c929c6f
DD
522 /* issue r/w command */
523 qc->cursg = qc->sg;
524 cf_port->dma_finished = 0;
525 ap->ops->sff_exec_command(ap, &qc->tf);
3c929c6f
DD
526}
527
528/**
529 * Start a DMA transfer that was already setup
530 *
531 * @qc: Information about the DMA
532 */
533static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
534{
43f01da0 535 struct octeon_cf_port *cf_port = qc->ap->private_data;
3c929c6f
DD
536 union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
537 union cvmx_mio_boot_dma_intx mio_boot_dma_int;
538 struct scatterlist *sg;
539
3c929c6f
DD
540 /* Get the scatter list entry we need to DMA into */
541 sg = qc->cursg;
542 BUG_ON(!sg);
543
544 /*
545 * Clear the DMA complete status.
546 */
547 mio_boot_dma_int.u64 = 0;
548 mio_boot_dma_int.s.done = 1;
43f01da0 549 cvmx_write_csr(cf_port->dma_base + DMA_INT, mio_boot_dma_int.u64);
3c929c6f
DD
550
551 /* Enable the interrupt. */
43f01da0 552 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, mio_boot_dma_int.u64);
3c929c6f
DD
553
554 /* Set the direction of the DMA */
555 mio_boot_dma_cfg.u64 = 0;
1007c4bc
DD
556#ifdef __LITTLE_ENDIAN
557 mio_boot_dma_cfg.s.endian = 1;
558#endif
3c929c6f
DD
559 mio_boot_dma_cfg.s.en = 1;
560 mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);
561
562 /*
563 * Don't stop the DMA if the device deasserts DMARQ. Many
564 * compact flashes deassert DMARQ for a short time between
565 * sectors. Instead of stopping and restarting the DMA, we'll
566 * let the hardware do it. If the DMA is really stopped early
567 * due to an error condition, a later timeout will force us to
568 * stop.
569 */
570 mio_boot_dma_cfg.s.clr = 0;
571
572 /* Size is specified in 16bit words and minus one notation */
573 mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;
574
575 /* We need to swap the high and low bytes of every 16 bits */
576 mio_boot_dma_cfg.s.swap8 = 1;
577
578 mio_boot_dma_cfg.s.adr = sg_dma_address(sg);
579
43f01da0 580 cvmx_write_csr(cf_port->dma_base + DMA_CFG, mio_boot_dma_cfg.u64);
3c929c6f
DD
581}
582
583/**
584 *
585 * LOCKING:
586 * spin_lock_irqsave(host lock)
587 *
588 */
589static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
590 struct ata_queued_cmd *qc)
591{
592 struct ata_eh_info *ehi = &ap->link.eh_info;
43f01da0 593 struct octeon_cf_port *cf_port = ap->private_data;
3c929c6f
DD
594 union cvmx_mio_boot_dma_cfgx dma_cfg;
595 union cvmx_mio_boot_dma_intx dma_int;
3c929c6f
DD
596 u8 status;
597
b875b39e 598 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
3c929c6f
DD
599
600 if (ap->hsm_task_state != HSM_ST_LAST)
601 return 0;
602
43f01da0 603 dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
3c929c6f
DD
604 if (dma_cfg.s.size != 0xfffff) {
605 /* Error, the transfer was not complete. */
606 qc->err_mask |= AC_ERR_HOST_BUS;
607 ap->hsm_task_state = HSM_ST_ERR;
608 }
609
610 /* Stop and clear the dma engine. */
611 dma_cfg.u64 = 0;
612 dma_cfg.s.size = -1;
43f01da0 613 cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
3c929c6f
DD
614
615 /* Disable the interrupt. */
616 dma_int.u64 = 0;
43f01da0 617 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
3c929c6f
DD
618
619 /* Clear the DMA complete status */
620 dma_int.s.done = 1;
43f01da0 621 cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
3c929c6f
DD
622
623 status = ap->ops->sff_check_status(ap);
624
625 ata_sff_hsm_move(ap, qc, status, 0);
626
627 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
628 ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);
629
630 return 1;
631}
632
633/*
634 * Check if any queued commands have more DMAs, if so start the next
635 * transfer, else do end of transfer handling.
636 */
637static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
638{
639 struct ata_host *host = dev_instance;
640 struct octeon_cf_port *cf_port;
641 int i;
642 unsigned int handled = 0;
643 unsigned long flags;
644
645 spin_lock_irqsave(&host->lock, flags);
646
3c929c6f
DD
647 for (i = 0; i < host->n_ports; i++) {
648 u8 status;
649 struct ata_port *ap;
650 struct ata_queued_cmd *qc;
651 union cvmx_mio_boot_dma_intx dma_int;
652 union cvmx_mio_boot_dma_cfgx dma_cfg;
3c929c6f
DD
653
654 ap = host->ports[i];
2d1299aa 655 cf_port = ap->private_data;
43f01da0
DD
656
657 dma_int.u64 = cvmx_read_csr(cf_port->dma_base + DMA_INT);
658 dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
3c929c6f
DD
659
660 qc = ata_qc_from_tag(ap, ap->link.active_tag);
661
43f01da0
DD
662 if (!qc || (qc->tf.flags & ATA_TFLAG_POLLING))
663 continue;
664
665 if (dma_int.s.done && !dma_cfg.s.en) {
666 if (!sg_is_last(qc->cursg)) {
667 qc->cursg = sg_next(qc->cursg);
3c929c6f 668 handled = 1;
c206a389 669 trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
43f01da0
DD
670 octeon_cf_dma_start(qc);
671 continue;
3c929c6f 672 } else {
43f01da0 673 cf_port->dma_finished = 1;
3c929c6f
DD
674 }
675 }
43f01da0
DD
676 if (!cf_port->dma_finished)
677 continue;
678 status = ioread8(ap->ioaddr.altstatus_addr);
679 if (status & (ATA_BUSY | ATA_DRQ)) {
680 /*
681 * We are busy, try to handle it later. This
682 * is the DMA finished interrupt, and it could
683 * take a little while for the card to be
684 * ready for more commands.
685 */
686 /* Clear DMA irq. */
687 dma_int.u64 = 0;
688 dma_int.s.done = 1;
689 cvmx_write_csr(cf_port->dma_base + DMA_INT,
690 dma_int.u64);
691 hrtimer_start_range_ns(&cf_port->delayed_finish,
692 ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL),
693 OCTEON_CF_BUSY_POLL_INTERVAL / 5,
694 HRTIMER_MODE_REL);
695 handled = 1;
696 } else {
697 handled |= octeon_cf_dma_finished(ap, qc);
698 }
3c929c6f
DD
699 }
700 spin_unlock_irqrestore(&host->lock, flags);
3c929c6f
DD
701 return IRQ_RETVAL(handled);
702}
703
43f01da0 704static enum hrtimer_restart octeon_cf_delayed_finish(struct hrtimer *hrt)
3c929c6f 705{
43f01da0 706 struct octeon_cf_port *cf_port = container_of(hrt,
3c929c6f 707 struct octeon_cf_port,
43f01da0 708 delayed_finish);
3c929c6f
DD
709 struct ata_port *ap = cf_port->ap;
710 struct ata_host *host = ap->host;
711 struct ata_queued_cmd *qc;
712 unsigned long flags;
713 u8 status;
43f01da0 714 enum hrtimer_restart rv = HRTIMER_NORESTART;
3c929c6f
DD
715
716 spin_lock_irqsave(&host->lock, flags);
717
718 /*
719 * If the port is not waiting for completion, it must have
720 * handled it previously. The hsm_task_state is
721 * protected by host->lock.
722 */
723 if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
724 goto out;
725
726 status = ioread8(ap->ioaddr.altstatus_addr);
727 if (status & (ATA_BUSY | ATA_DRQ)) {
728 /* Still busy, try again. */
43f01da0
DD
729 hrtimer_forward_now(hrt,
730 ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL));
731 rv = HRTIMER_RESTART;
3c929c6f
DD
732 goto out;
733 }
734 qc = ata_qc_from_tag(ap, ap->link.active_tag);
43f01da0 735 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)))
3c929c6f
DD
736 octeon_cf_dma_finished(ap, qc);
737out:
738 spin_unlock_irqrestore(&host->lock, flags);
43f01da0 739 return rv;
3c929c6f
DD
740}
741
742static void octeon_cf_dev_config(struct ata_device *dev)
743{
744 /*
745 * A maximum of 2^20 - 1 16 bit transfers are possible with
746 * the bootbus DMA. So we need to throttle max_sectors to
747 * (2^12 - 1 == 4095) to assure that this can never happen.
748 */
749 dev->max_sectors = min(dev->max_sectors, 4095U);
750}
751
3c929c6f
DD
752/*
753 * We don't do ATAPI DMA so return 0.
754 */
755static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
756{
757 return 0;
758}
759
760static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
761{
762 struct ata_port *ap = qc->ap;
763
764 switch (qc->tf.protocol) {
765 case ATA_PROT_DMA:
766 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
767
c206a389 768 trace_ata_tf_load(ap, &qc->tf);
3c929c6f 769 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
c206a389 770 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
3c929c6f 771 octeon_cf_dma_setup(qc); /* set up dma */
c206a389 772 trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
3c929c6f
DD
773 octeon_cf_dma_start(qc); /* initiate dma */
774 ap->hsm_task_state = HSM_ST_LAST;
775 break;
776
777 case ATAPI_PROT_DMA:
778 dev_err(ap->dev, "Error, ATAPI not supported\n");
779 BUG();
780
781 default:
782 return ata_sff_qc_issue(qc);
783 }
784
785 return 0;
786}
787
788static struct ata_port_operations octeon_cf_ops = {
789 .inherits = &ata_sff_port_ops,
790 .check_atapi_dma = octeon_cf_check_atapi_dma,
791 .qc_prep = ata_noop_qc_prep,
792 .qc_issue = octeon_cf_qc_issue,
793 .sff_dev_select = octeon_cf_dev_select,
43f01da0
DD
794 .sff_irq_on = octeon_cf_ata_port_noaction,
795 .sff_irq_clear = octeon_cf_ata_port_noaction,
3c929c6f
DD
796 .cable_detect = ata_cable_40wire,
797 .set_piomode = octeon_cf_set_piomode,
798 .set_dmamode = octeon_cf_set_dmamode,
799 .dev_config = octeon_cf_dev_config,
800};
801
0ec24914 802static int octeon_cf_probe(struct platform_device *pdev)
3c929c6f
DD
803{
804 struct resource *res_cs0, *res_cs1;
805
43f01da0
DD
806 bool is_16bit;
807 const __be32 *cs_num;
808 struct property *reg_prop;
809 int n_addr, n_size, reg_len;
810 struct device_node *node;
3c929c6f
DD
811 void __iomem *cs0;
812 void __iomem *cs1 = NULL;
813 struct ata_host *host;
814 struct ata_port *ap;
3c929c6f
DD
815 int irq = 0;
816 irq_handler_t irq_handler = NULL;
817 void __iomem *base;
818 struct octeon_cf_port *cf_port;
43f01da0 819 int rv = -ENOMEM;
be1dc3fb 820 u32 bus_width;
3c929c6f 821
43f01da0
DD
822 node = pdev->dev.of_node;
823 if (node == NULL)
3c929c6f
DD
824 return -EINVAL;
825
7a56c0ba 826 cf_port = devm_kzalloc(&pdev->dev, sizeof(*cf_port), GFP_KERNEL);
43f01da0
DD
827 if (!cf_port)
828 return -ENOMEM;
3c929c6f 829
be1dc3fb 830 cf_port->is_true_ide = of_property_read_bool(node, "cavium,true-ide");
3c929c6f 831
be1dc3fb
SS
832 if (of_property_read_u32(node, "cavium,bus-width", &bus_width) == 0)
833 is_16bit = (bus_width == 16);
43f01da0
DD
834 else
835 is_16bit = false;
3c929c6f 836
43f01da0
DD
837 n_addr = of_n_addr_cells(node);
838 n_size = of_n_size_cells(node);
3c929c6f 839
43f01da0 840 reg_prop = of_find_property(node, "reg", &reg_len);
7a56c0ba
BZ
841 if (!reg_prop || reg_len < sizeof(__be32))
842 return -EINVAL;
843
43f01da0
DD
844 cs_num = reg_prop->value;
845 cf_port->cs0 = be32_to_cpup(cs_num);
846
847 if (cf_port->is_true_ide) {
848 struct device_node *dma_node;
849 dma_node = of_parse_phandle(node,
850 "cavium,dma-engine-handle", 0);
851 if (dma_node) {
852 struct platform_device *dma_dev;
853 dma_dev = of_find_device_by_node(dma_node);
854 if (dma_dev) {
855 struct resource *res_dma;
856 int i;
857 res_dma = platform_get_resource(dma_dev, IORESOURCE_MEM, 0);
858 if (!res_dma) {
859 of_node_put(dma_node);
7a56c0ba 860 return -EINVAL;
43f01da0 861 }
4bdc0d67 862 cf_port->dma_base = (u64)devm_ioremap(&pdev->dev, res_dma->start,
43f01da0 863 resource_size(res_dma));
43f01da0
DD
864 if (!cf_port->dma_base) {
865 of_node_put(dma_node);
7a56c0ba 866 return -EINVAL;
43f01da0
DD
867 }
868
43f01da0 869 i = platform_get_irq(dma_dev, 0);
bfc1f378 870 if (i > 0) {
43f01da0 871 irq = i;
bfc1f378
SS
872 irq_handler = octeon_cf_interrupt;
873 }
43f01da0
DD
874 }
875 of_node_put(dma_node);
876 }
877 res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
7a56c0ba
BZ
878 if (!res_cs1)
879 return -EINVAL;
880
4bdc0d67 881 cs1 = devm_ioremap(&pdev->dev, res_cs1->start,
b1cbe7d6 882 resource_size(res_cs1));
3c929c6f 883 if (!cs1)
7a56c0ba
BZ
884 return rv;
885
886 if (reg_len < (n_addr + n_size + 1) * sizeof(__be32))
887 return -EINVAL;
43f01da0 888
43f01da0
DD
889 cs_num += n_addr + n_size;
890 cf_port->cs1 = be32_to_cpup(cs_num);
3c929c6f
DD
891 }
892
43f01da0 893 res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
7a56c0ba
BZ
894 if (!res_cs0)
895 return -EINVAL;
43f01da0 896
4bdc0d67 897 cs0 = devm_ioremap(&pdev->dev, res_cs0->start,
43f01da0 898 resource_size(res_cs0));
43f01da0 899 if (!cs0)
7a56c0ba 900 return rv;
3c929c6f
DD
901
902 /* allocate host */
903 host = ata_host_alloc(&pdev->dev, 1);
904 if (!host)
7a56c0ba 905 return rv;
3c929c6f
DD
906
907 ap = host->ports[0];
908 ap->private_data = cf_port;
43f01da0 909 pdev->dev.platform_data = cf_port;
3c929c6f
DD
910 cf_port->ap = ap;
911 ap->ops = &octeon_cf_ops;
14bdef98 912 ap->pio_mask = ATA_PIO6;
9cbe056f 913 ap->flags |= ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING;
3c929c6f 914
43f01da0
DD
915 if (!is_16bit) {
916 base = cs0 + 0x800;
3c929c6f
DD
917 ap->ioaddr.cmd_addr = base;
918 ata_sff_std_ports(&ap->ioaddr);
919
920 ap->ioaddr.altstatus_addr = base + 0xe;
921 ap->ioaddr.ctl_addr = base + 0xe;
922 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
43f01da0
DD
923 } else if (cf_port->is_true_ide) {
924 base = cs0;
3c929c6f
DD
925 ap->ioaddr.cmd_addr = base + (ATA_REG_CMD << 1) + 1;
926 ap->ioaddr.data_addr = base + (ATA_REG_DATA << 1);
927 ap->ioaddr.error_addr = base + (ATA_REG_ERR << 1) + 1;
928 ap->ioaddr.feature_addr = base + (ATA_REG_FEATURE << 1) + 1;
929 ap->ioaddr.nsect_addr = base + (ATA_REG_NSECT << 1) + 1;
930 ap->ioaddr.lbal_addr = base + (ATA_REG_LBAL << 1) + 1;
931 ap->ioaddr.lbam_addr = base + (ATA_REG_LBAM << 1) + 1;
932 ap->ioaddr.lbah_addr = base + (ATA_REG_LBAH << 1) + 1;
933 ap->ioaddr.device_addr = base + (ATA_REG_DEVICE << 1) + 1;
934 ap->ioaddr.status_addr = base + (ATA_REG_STATUS << 1) + 1;
935 ap->ioaddr.command_addr = base + (ATA_REG_CMD << 1) + 1;
936 ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
937 ap->ioaddr.ctl_addr = cs1 + (6 << 1) + 1;
938 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
939
43f01da0 940 ap->mwdma_mask = enable_dma ? ATA_MWDMA4 : 0;
3c929c6f 941
43f01da0
DD
942 /* True IDE mode needs a timer to poll for not-busy. */
943 hrtimer_init(&cf_port->delayed_finish, CLOCK_MONOTONIC,
944 HRTIMER_MODE_REL);
945 cf_port->delayed_finish.function = octeon_cf_delayed_finish;
3c929c6f
DD
946 } else {
947 /* 16 bit but not True IDE */
43f01da0 948 base = cs0 + 0x800;
3c929c6f
DD
949 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
950 octeon_cf_ops.softreset = octeon_cf_softreset16;
951 octeon_cf_ops.sff_check_status = octeon_cf_check_status16;
952 octeon_cf_ops.sff_tf_read = octeon_cf_tf_read16;
953 octeon_cf_ops.sff_tf_load = octeon_cf_tf_load16;
954 octeon_cf_ops.sff_exec_command = octeon_cf_exec_command16;
955
956 ap->ioaddr.data_addr = base + ATA_REG_DATA;
957 ap->ioaddr.nsect_addr = base + ATA_REG_NSECT;
958 ap->ioaddr.lbal_addr = base + ATA_REG_LBAL;
959 ap->ioaddr.ctl_addr = base + 0xe;
960 ap->ioaddr.altstatus_addr = base + 0xe;
961 }
43f01da0
DD
962 cf_port->c0 = ap->ioaddr.ctl_addr;
963
105f4ade
RK
964 rv = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
965 if (rv)
966 return rv;
3c929c6f
DD
967
968 ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);
969
43f01da0
DD
970 dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n",
971 is_16bit ? 16 : 8,
972 cf_port->is_true_ide ? ", True IDE" : "");
3c929c6f 973
43f01da0
DD
974 return ata_host_activate(host, irq, irq_handler,
975 IRQF_SHARED, &octeon_cf_sht);
43f01da0
DD
976}
977
978static void octeon_cf_shutdown(struct device *dev)
979{
980 union cvmx_mio_boot_dma_cfgx dma_cfg;
981 union cvmx_mio_boot_dma_intx dma_int;
982
61b8c345 983 struct octeon_cf_port *cf_port = dev_get_platdata(dev);
43f01da0
DD
984
985 if (cf_port->dma_base) {
986 /* Stop and clear the dma engine. */
987 dma_cfg.u64 = 0;
988 dma_cfg.s.size = -1;
989 cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
990
991 /* Disable the interrupt. */
992 dma_int.u64 = 0;
993 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
994
995 /* Clear the DMA complete status */
996 dma_int.s.done = 1;
997 cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
998
999 __raw_writeb(0, cf_port->c0);
1000 udelay(20);
1001 __raw_writeb(ATA_SRST, cf_port->c0);
1002 udelay(20);
1003 __raw_writeb(0, cf_port->c0);
1004 mdelay(100);
1005 }
3c929c6f
DD
1006}
1007
79af3ae6 1008static const struct of_device_id octeon_cf_match[] = {
43f01da0
DD
1009 {
1010 .compatible = "cavium,ebt3000-compact-flash",
1011 },
1012 {},
1013};
4710f2fa 1014MODULE_DEVICE_TABLE(of, octeon_cf_match);
43f01da0 1015
3c929c6f
DD
1016static struct platform_driver octeon_cf_driver = {
1017 .probe = octeon_cf_probe,
1018 .driver = {
1019 .name = DRV_NAME,
43f01da0
DD
1020 .of_match_table = octeon_cf_match,
1021 .shutdown = octeon_cf_shutdown
3c929c6f
DD
1022 },
1023};
1024
1025static int __init octeon_cf_init(void)
1026{
1027 return platform_driver_register(&octeon_cf_driver);
1028}
1029
1030
1031MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
1032MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
1033MODULE_LICENSE("GPL");
1034MODULE_VERSION(DRV_VERSION);
1035MODULE_ALIAS("platform:" DRV_NAME);
1036
1037module_init(octeon_cf_init);