libata: introduce sff_set_devctl() method
[linux-block.git] / drivers / ata / libata-sff.c
CommitLineData
1fdffbce 1/*
f3a03b09 2 * libata-sff.c - helper library for PCI IDE BMDMA
1fdffbce
JG
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
1fdffbce 35#include <linux/kernel.h>
5a0e3ad6 36#include <linux/gfp.h>
1fdffbce
JG
37#include <linux/pci.h>
38#include <linux/libata.h>
624d5c51 39#include <linux/highmem.h>
1fdffbce
JG
40
41#include "libata.h"
42
624d5c51
TH
43const struct ata_port_operations ata_sff_port_ops = {
44 .inherits = &ata_base_port_ops,
45
9363c382
TH
46 .qc_prep = ata_sff_qc_prep,
47 .qc_issue = ata_sff_qc_issue,
4c9bf4e7 48 .qc_fill_rtf = ata_sff_qc_fill_rtf,
9363c382
TH
49
50 .freeze = ata_sff_freeze,
51 .thaw = ata_sff_thaw,
0aa1113d 52 .prereset = ata_sff_prereset,
9363c382 53 .softreset = ata_sff_softreset,
57c9efdf 54 .hardreset = sata_sff_hardreset,
203c75b8 55 .postreset = ata_sff_postreset,
3d47aa8e 56 .drain_fifo = ata_sff_drain_fifo,
9363c382
TH
57 .error_handler = ata_sff_error_handler,
58 .post_internal_cmd = ata_sff_post_internal_cmd,
59
5682ed33
TH
60 .sff_dev_select = ata_sff_dev_select,
61 .sff_check_status = ata_sff_check_status,
62 .sff_tf_load = ata_sff_tf_load,
63 .sff_tf_read = ata_sff_tf_read,
64 .sff_exec_command = ata_sff_exec_command,
65 .sff_data_xfer = ata_sff_data_xfer,
66 .sff_irq_on = ata_sff_irq_on,
288623a0 67 .sff_irq_clear = ata_sff_irq_clear,
624d5c51 68
c96f1732
AC
69 .lost_interrupt = ata_sff_lost_interrupt,
70
624d5c51
TH
71 .port_start = ata_sff_port_start,
72};
0fe40ff8 73EXPORT_SYMBOL_GPL(ata_sff_port_ops);
624d5c51
TH
74
75const struct ata_port_operations ata_bmdma_port_ops = {
76 .inherits = &ata_sff_port_ops,
77
9363c382 78 .mode_filter = ata_bmdma_mode_filter,
624d5c51
TH
79
80 .bmdma_setup = ata_bmdma_setup,
81 .bmdma_start = ata_bmdma_start,
82 .bmdma_stop = ata_bmdma_stop,
83 .bmdma_status = ata_bmdma_status,
624d5c51 84};
0fe40ff8 85EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
624d5c51 86
871af121
AC
87const struct ata_port_operations ata_bmdma32_port_ops = {
88 .inherits = &ata_bmdma_port_ops,
89
90 .sff_data_xfer = ata_sff_data_xfer32,
e3cf95dd 91 .port_start = ata_sff_port_start32,
871af121
AC
92};
93EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
94
624d5c51
TH
95/**
96 * ata_fill_sg - Fill PCI IDE PRD table
97 * @qc: Metadata associated with taskfile to be transferred
98 *
99 * Fill PCI IDE PRD (scatter-gather) table with segments
100 * associated with the current disk command.
101 *
102 * LOCKING:
103 * spin_lock_irqsave(host lock)
104 *
105 */
106static void ata_fill_sg(struct ata_queued_cmd *qc)
107{
108 struct ata_port *ap = qc->ap;
109 struct scatterlist *sg;
110 unsigned int si, pi;
111
112 pi = 0;
113 for_each_sg(qc->sg, sg, qc->n_elem, si) {
114 u32 addr, offset;
115 u32 sg_len, len;
116
117 /* determine if physical DMA addr spans 64K boundary.
118 * Note h/w doesn't support 64-bit, so we unconditionally
119 * truncate dma_addr_t to u32.
120 */
121 addr = (u32) sg_dma_address(sg);
122 sg_len = sg_dma_len(sg);
123
124 while (sg_len) {
125 offset = addr & 0xffff;
126 len = sg_len;
127 if ((offset + sg_len) > 0x10000)
128 len = 0x10000 - offset;
129
130 ap->prd[pi].addr = cpu_to_le32(addr);
131 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
132 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
133
134 pi++;
135 sg_len -= len;
136 addr += len;
137 }
138 }
139
140 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
141}
142
143/**
144 * ata_fill_sg_dumb - Fill PCI IDE PRD table
145 * @qc: Metadata associated with taskfile to be transferred
146 *
147 * Fill PCI IDE PRD (scatter-gather) table with segments
148 * associated with the current disk command. Perform the fill
149 * so that we avoid writing any length 64K records for
150 * controllers that don't follow the spec.
151 *
152 * LOCKING:
153 * spin_lock_irqsave(host lock)
154 *
155 */
156static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
157{
158 struct ata_port *ap = qc->ap;
159 struct scatterlist *sg;
160 unsigned int si, pi;
161
162 pi = 0;
163 for_each_sg(qc->sg, sg, qc->n_elem, si) {
164 u32 addr, offset;
165 u32 sg_len, len, blen;
166
167 /* determine if physical DMA addr spans 64K boundary.
168 * Note h/w doesn't support 64-bit, so we unconditionally
169 * truncate dma_addr_t to u32.
170 */
171 addr = (u32) sg_dma_address(sg);
172 sg_len = sg_dma_len(sg);
173
174 while (sg_len) {
175 offset = addr & 0xffff;
176 len = sg_len;
177 if ((offset + sg_len) > 0x10000)
178 len = 0x10000 - offset;
179
180 blen = len & 0xffff;
181 ap->prd[pi].addr = cpu_to_le32(addr);
182 if (blen == 0) {
0fe40ff8
AC
183 /* Some PATA chipsets like the CS5530 can't
184 cope with 0x0000 meaning 64K as the spec
185 says */
624d5c51
TH
186 ap->prd[pi].flags_len = cpu_to_le32(0x8000);
187 blen = 0x8000;
188 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
189 }
190 ap->prd[pi].flags_len = cpu_to_le32(blen);
191 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
192
193 pi++;
194 sg_len -= len;
195 addr += len;
196 }
197 }
198
199 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
200}
201
202/**
9363c382 203 * ata_sff_qc_prep - Prepare taskfile for submission
624d5c51
TH
204 * @qc: Metadata associated with taskfile to be prepared
205 *
206 * Prepare ATA taskfile for submission.
207 *
208 * LOCKING:
209 * spin_lock_irqsave(host lock)
210 */
9363c382 211void ata_sff_qc_prep(struct ata_queued_cmd *qc)
624d5c51
TH
212{
213 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
214 return;
215
216 ata_fill_sg(qc);
217}
0fe40ff8 218EXPORT_SYMBOL_GPL(ata_sff_qc_prep);
624d5c51
TH
219
220/**
9363c382 221 * ata_sff_dumb_qc_prep - Prepare taskfile for submission
624d5c51
TH
222 * @qc: Metadata associated with taskfile to be prepared
223 *
224 * Prepare ATA taskfile for submission.
225 *
226 * LOCKING:
227 * spin_lock_irqsave(host lock)
228 */
9363c382 229void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc)
624d5c51
TH
230{
231 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
232 return;
233
234 ata_fill_sg_dumb(qc);
235}
0fe40ff8 236EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep);
624d5c51 237
272f7884 238/**
9363c382 239 * ata_sff_check_status - Read device status reg & clear interrupt
272f7884
TH
240 * @ap: port where the device is
241 *
242 * Reads ATA taskfile status register for currently-selected device
243 * and return its value. This also clears pending interrupts
244 * from this device
245 *
246 * LOCKING:
247 * Inherited from caller.
248 */
9363c382 249u8 ata_sff_check_status(struct ata_port *ap)
272f7884
TH
250{
251 return ioread8(ap->ioaddr.status_addr);
252}
0fe40ff8 253EXPORT_SYMBOL_GPL(ata_sff_check_status);
272f7884
TH
254
255/**
9363c382 256 * ata_sff_altstatus - Read device alternate status reg
272f7884
TH
257 * @ap: port where the device is
258 *
259 * Reads ATA taskfile alternate status register for
260 * currently-selected device and return its value.
261 *
262 * Note: may NOT be used as the check_altstatus() entry in
263 * ata_port_operations.
264 *
265 * LOCKING:
266 * Inherited from caller.
267 */
a57c1bad 268static u8 ata_sff_altstatus(struct ata_port *ap)
624d5c51 269{
5682ed33
TH
270 if (ap->ops->sff_check_altstatus)
271 return ap->ops->sff_check_altstatus(ap);
624d5c51
TH
272
273 return ioread8(ap->ioaddr.altstatus_addr);
274}
275
a57c1bad
AC
276/**
277 * ata_sff_irq_status - Check if the device is busy
278 * @ap: port where the device is
279 *
280 * Determine if the port is currently busy. Uses altstatus
281 * if available in order to avoid clearing shared IRQ status
282 * when finding an IRQ source. Non ctl capable devices don't
283 * share interrupt lines fortunately for us.
284 *
285 * LOCKING:
286 * Inherited from caller.
287 */
288static u8 ata_sff_irq_status(struct ata_port *ap)
289{
290 u8 status;
291
292 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
293 status = ata_sff_altstatus(ap);
294 /* Not us: We are busy */
295 if (status & ATA_BUSY)
0fe40ff8 296 return status;
a57c1bad
AC
297 }
298 /* Clear INTRQ latch */
6311c90a 299 status = ap->ops->sff_check_status(ap);
a57c1bad
AC
300 return status;
301}
302
303/**
304 * ata_sff_sync - Flush writes
305 * @ap: Port to wait for.
306 *
307 * CAUTION:
308 * If we have an mmio device with no ctl and no altstatus
309 * method this will fail. No such devices are known to exist.
310 *
311 * LOCKING:
312 * Inherited from caller.
313 */
314
315static void ata_sff_sync(struct ata_port *ap)
316{
317 if (ap->ops->sff_check_altstatus)
318 ap->ops->sff_check_altstatus(ap);
319 else if (ap->ioaddr.altstatus_addr)
320 ioread8(ap->ioaddr.altstatus_addr);
321}
322
323/**
324 * ata_sff_pause - Flush writes and wait 400nS
325 * @ap: Port to pause for.
326 *
327 * CAUTION:
328 * If we have an mmio device with no ctl and no altstatus
329 * method this will fail. No such devices are known to exist.
330 *
331 * LOCKING:
332 * Inherited from caller.
333 */
334
335void ata_sff_pause(struct ata_port *ap)
336{
337 ata_sff_sync(ap);
338 ndelay(400);
339}
0fe40ff8 340EXPORT_SYMBOL_GPL(ata_sff_pause);
a57c1bad
AC
341
342/**
343 * ata_sff_dma_pause - Pause before commencing DMA
344 * @ap: Port to pause for.
345 *
346 * Perform I/O fencing and ensure sufficient cycle delays occur
347 * for the HDMA1:0 transition
348 */
0fe40ff8 349
a57c1bad
AC
350void ata_sff_dma_pause(struct ata_port *ap)
351{
352 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
353 /* An altstatus read will cause the needed delay without
354 messing up the IRQ status */
355 ata_sff_altstatus(ap);
356 return;
357 }
358 /* There are no DMA controllers without ctl. BUG here to ensure
359 we never violate the HDMA1:0 transition timing and risk
360 corruption. */
361 BUG();
362}
0fe40ff8 363EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
a57c1bad 364
624d5c51 365/**
9363c382 366 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
624d5c51 367 * @ap: port containing status register to be polled
341c2c95
TH
368 * @tmout_pat: impatience timeout in msecs
369 * @tmout: overall timeout in msecs
624d5c51
TH
370 *
371 * Sleep until ATA Status register bit BSY clears,
372 * or a timeout occurs.
373 *
374 * LOCKING:
375 * Kernel thread context (may sleep).
376 *
377 * RETURNS:
378 * 0 on success, -errno otherwise.
379 */
9363c382
TH
380int ata_sff_busy_sleep(struct ata_port *ap,
381 unsigned long tmout_pat, unsigned long tmout)
624d5c51
TH
382{
383 unsigned long timer_start, timeout;
384 u8 status;
385
9363c382 386 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
624d5c51 387 timer_start = jiffies;
341c2c95 388 timeout = ata_deadline(timer_start, tmout_pat);
624d5c51
TH
389 while (status != 0xff && (status & ATA_BUSY) &&
390 time_before(jiffies, timeout)) {
391 msleep(50);
9363c382 392 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
624d5c51
TH
393 }
394
395 if (status != 0xff && (status & ATA_BUSY))
396 ata_port_printk(ap, KERN_WARNING,
397 "port is slow to respond, please be patient "
398 "(Status 0x%x)\n", status);
399
341c2c95 400 timeout = ata_deadline(timer_start, tmout);
624d5c51
TH
401 while (status != 0xff && (status & ATA_BUSY) &&
402 time_before(jiffies, timeout)) {
403 msleep(50);
5682ed33 404 status = ap->ops->sff_check_status(ap);
624d5c51
TH
405 }
406
407 if (status == 0xff)
408 return -ENODEV;
409
410 if (status & ATA_BUSY) {
411 ata_port_printk(ap, KERN_ERR, "port failed to respond "
412 "(%lu secs, Status 0x%x)\n",
341c2c95 413 DIV_ROUND_UP(tmout, 1000), status);
624d5c51
TH
414 return -EBUSY;
415 }
416
417 return 0;
418}
0fe40ff8 419EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
624d5c51 420
aa2731ad
TH
421static int ata_sff_check_ready(struct ata_link *link)
422{
423 u8 status = link->ap->ops->sff_check_status(link->ap);
424
78ab88f0 425 return ata_check_ready(status);
aa2731ad
TH
426}
427
624d5c51 428/**
9363c382 429 * ata_sff_wait_ready - sleep until BSY clears, or timeout
705e76be 430 * @link: SFF link to wait ready status for
624d5c51
TH
431 * @deadline: deadline jiffies for the operation
432 *
433 * Sleep until ATA Status register bit BSY clears, or timeout
434 * occurs.
435 *
436 * LOCKING:
437 * Kernel thread context (may sleep).
438 *
439 * RETURNS:
440 * 0 on success, -errno otherwise.
441 */
705e76be 442int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
624d5c51 443{
aa2731ad 444 return ata_wait_ready(link, deadline, ata_sff_check_ready);
624d5c51 445}
0fe40ff8 446EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
624d5c51 447
41dec29b
SS
448/**
449 * ata_sff_set_devctl - Write device control reg
450 * @ap: port where the device is
451 * @ctl: value to write
452 *
453 * Writes ATA taskfile device control register.
454 *
455 * Note: may NOT be used as the sff_set_devctl() entry in
456 * ata_port_operations.
457 *
458 * LOCKING:
459 * Inherited from caller.
460 */
461static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
462{
463 if (ap->ops->sff_set_devctl)
464 ap->ops->sff_set_devctl(ap, ctl);
465 else
466 iowrite8(ctl, ap->ioaddr.ctl_addr);
467}
468
624d5c51 469/**
9363c382 470 * ata_sff_dev_select - Select device 0/1 on ATA bus
624d5c51
TH
471 * @ap: ATA channel to manipulate
472 * @device: ATA device (numbered from zero) to select
473 *
474 * Use the method defined in the ATA specification to
475 * make either device 0, or device 1, active on the
476 * ATA channel. Works with both PIO and MMIO.
477 *
478 * May be used as the dev_select() entry in ata_port_operations.
479 *
480 * LOCKING:
481 * caller.
482 */
9363c382 483void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
624d5c51
TH
484{
485 u8 tmp;
486
487 if (device == 0)
488 tmp = ATA_DEVICE_OBS;
489 else
490 tmp = ATA_DEVICE_OBS | ATA_DEV1;
491
492 iowrite8(tmp, ap->ioaddr.device_addr);
9363c382 493 ata_sff_pause(ap); /* needed; also flushes, for mmio */
624d5c51 494}
0fe40ff8 495EXPORT_SYMBOL_GPL(ata_sff_dev_select);
624d5c51
TH
496
497/**
498 * ata_dev_select - Select device 0/1 on ATA bus
499 * @ap: ATA channel to manipulate
500 * @device: ATA device (numbered from zero) to select
501 * @wait: non-zero to wait for Status register BSY bit to clear
502 * @can_sleep: non-zero if context allows sleeping
503 *
504 * Use the method defined in the ATA specification to
505 * make either device 0, or device 1, active on the
506 * ATA channel.
507 *
9363c382
TH
508 * This is a high-level version of ata_sff_dev_select(), which
509 * additionally provides the services of inserting the proper
510 * pauses and status polling, where needed.
624d5c51
TH
511 *
512 * LOCKING:
513 * caller.
514 */
515void ata_dev_select(struct ata_port *ap, unsigned int device,
516 unsigned int wait, unsigned int can_sleep)
517{
518 if (ata_msg_probe(ap))
519 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
520 "device %u, wait %u\n", device, wait);
521
522 if (wait)
523 ata_wait_idle(ap);
524
5682ed33 525 ap->ops->sff_dev_select(ap, device);
624d5c51
TH
526
527 if (wait) {
528 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
529 msleep(150);
530 ata_wait_idle(ap);
531 }
532}
533
534/**
9363c382 535 * ata_sff_irq_on - Enable interrupts on a port.
624d5c51
TH
536 * @ap: Port on which interrupts are enabled.
537 *
538 * Enable interrupts on a legacy IDE device using MMIO or PIO,
539 * wait for idle, clear any pending interrupts.
540 *
541 * LOCKING:
542 * Inherited from caller.
543 */
9363c382 544u8 ata_sff_irq_on(struct ata_port *ap)
624d5c51
TH
545{
546 struct ata_ioports *ioaddr = &ap->ioaddr;
547 u8 tmp;
548
549 ap->ctl &= ~ATA_NIEN;
550 ap->last_ctl = ap->ctl;
551
552 if (ioaddr->ctl_addr)
553 iowrite8(ap->ctl, ioaddr->ctl_addr);
554 tmp = ata_wait_idle(ap);
555
5682ed33 556 ap->ops->sff_irq_clear(ap);
624d5c51
TH
557
558 return tmp;
559}
0fe40ff8 560EXPORT_SYMBOL_GPL(ata_sff_irq_on);
624d5c51
TH
561
562/**
9363c382 563 * ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt.
624d5c51
TH
564 * @ap: Port associated with this ATA transaction.
565 *
566 * Clear interrupt and error flags in DMA status register.
567 *
568 * May be used as the irq_clear() entry in ata_port_operations.
569 *
570 * LOCKING:
571 * spin_lock_irqsave(host lock)
572 */
9363c382 573void ata_sff_irq_clear(struct ata_port *ap)
624d5c51
TH
574{
575 void __iomem *mmio = ap->ioaddr.bmdma_addr;
576
577 if (!mmio)
578 return;
579
580 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
581}
0fe40ff8 582EXPORT_SYMBOL_GPL(ata_sff_irq_clear);
624d5c51
TH
583
584/**
9363c382 585 * ata_sff_tf_load - send taskfile registers to host controller
624d5c51
TH
586 * @ap: Port to which output is sent
587 * @tf: ATA taskfile register set
588 *
589 * Outputs ATA taskfile to standard ATA host controller.
590 *
591 * LOCKING:
592 * Inherited from caller.
593 */
9363c382 594void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
624d5c51
TH
595{
596 struct ata_ioports *ioaddr = &ap->ioaddr;
597 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
598
599 if (tf->ctl != ap->last_ctl) {
600 if (ioaddr->ctl_addr)
601 iowrite8(tf->ctl, ioaddr->ctl_addr);
602 ap->last_ctl = tf->ctl;
603 ata_wait_idle(ap);
604 }
605
606 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
efcb3cf7 607 WARN_ON_ONCE(!ioaddr->ctl_addr);
624d5c51
TH
608 iowrite8(tf->hob_feature, ioaddr->feature_addr);
609 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
610 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
611 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
612 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
613 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
614 tf->hob_feature,
615 tf->hob_nsect,
616 tf->hob_lbal,
617 tf->hob_lbam,
618 tf->hob_lbah);
619 }
620
621 if (is_addr) {
622 iowrite8(tf->feature, ioaddr->feature_addr);
623 iowrite8(tf->nsect, ioaddr->nsect_addr);
624 iowrite8(tf->lbal, ioaddr->lbal_addr);
625 iowrite8(tf->lbam, ioaddr->lbam_addr);
626 iowrite8(tf->lbah, ioaddr->lbah_addr);
627 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
628 tf->feature,
629 tf->nsect,
630 tf->lbal,
631 tf->lbam,
632 tf->lbah);
633 }
634
635 if (tf->flags & ATA_TFLAG_DEVICE) {
636 iowrite8(tf->device, ioaddr->device_addr);
637 VPRINTK("device 0x%X\n", tf->device);
638 }
639
640 ata_wait_idle(ap);
641}
0fe40ff8 642EXPORT_SYMBOL_GPL(ata_sff_tf_load);
624d5c51
TH
643
644/**
9363c382 645 * ata_sff_tf_read - input device's ATA taskfile shadow registers
624d5c51
TH
646 * @ap: Port from which input is read
647 * @tf: ATA taskfile register set for storing input
648 *
649 * Reads ATA taskfile registers for currently-selected device
650 * into @tf. Assumes the device has a fully SFF compliant task file
651 * layout and behaviour. If you device does not (eg has a different
652 * status method) then you will need to provide a replacement tf_read
653 *
654 * LOCKING:
655 * Inherited from caller.
656 */
9363c382 657void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
624d5c51
TH
658{
659 struct ata_ioports *ioaddr = &ap->ioaddr;
660
9363c382 661 tf->command = ata_sff_check_status(ap);
624d5c51
TH
662 tf->feature = ioread8(ioaddr->error_addr);
663 tf->nsect = ioread8(ioaddr->nsect_addr);
664 tf->lbal = ioread8(ioaddr->lbal_addr);
665 tf->lbam = ioread8(ioaddr->lbam_addr);
666 tf->lbah = ioread8(ioaddr->lbah_addr);
667 tf->device = ioread8(ioaddr->device_addr);
668
669 if (tf->flags & ATA_TFLAG_LBA48) {
670 if (likely(ioaddr->ctl_addr)) {
671 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
672 tf->hob_feature = ioread8(ioaddr->error_addr);
673 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
674 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
675 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
676 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
677 iowrite8(tf->ctl, ioaddr->ctl_addr);
678 ap->last_ctl = tf->ctl;
679 } else
efcb3cf7 680 WARN_ON_ONCE(1);
624d5c51
TH
681 }
682}
0fe40ff8 683EXPORT_SYMBOL_GPL(ata_sff_tf_read);
624d5c51
TH
684
685/**
9363c382 686 * ata_sff_exec_command - issue ATA command to host controller
624d5c51
TH
687 * @ap: port to which command is being issued
688 * @tf: ATA taskfile register set
689 *
690 * Issues ATA command, with proper synchronization with interrupt
691 * handler / other threads.
692 *
693 * LOCKING:
694 * spin_lock_irqsave(host lock)
695 */
9363c382 696void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
624d5c51
TH
697{
698 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
699
700 iowrite8(tf->command, ap->ioaddr.command_addr);
9363c382 701 ata_sff_pause(ap);
624d5c51 702}
0fe40ff8 703EXPORT_SYMBOL_GPL(ata_sff_exec_command);
624d5c51
TH
704
705/**
706 * ata_tf_to_host - issue ATA taskfile to host controller
707 * @ap: port to which command is being issued
708 * @tf: ATA taskfile register set
709 *
710 * Issues ATA taskfile register set to ATA host controller,
711 * with proper synchronization with interrupt handler and
712 * other threads.
713 *
714 * LOCKING:
715 * spin_lock_irqsave(host lock)
716 */
717static inline void ata_tf_to_host(struct ata_port *ap,
718 const struct ata_taskfile *tf)
719{
5682ed33
TH
720 ap->ops->sff_tf_load(ap, tf);
721 ap->ops->sff_exec_command(ap, tf);
624d5c51
TH
722}
723
724/**
9363c382 725 * ata_sff_data_xfer - Transfer data by PIO
624d5c51
TH
726 * @dev: device to target
727 * @buf: data buffer
728 * @buflen: buffer length
729 * @rw: read/write
730 *
731 * Transfer data from/to the device data register by PIO.
732 *
733 * LOCKING:
734 * Inherited from caller.
735 *
736 * RETURNS:
737 * Bytes consumed.
738 */
9363c382
TH
739unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
740 unsigned int buflen, int rw)
624d5c51
TH
741{
742 struct ata_port *ap = dev->link->ap;
743 void __iomem *data_addr = ap->ioaddr.data_addr;
744 unsigned int words = buflen >> 1;
745
746 /* Transfer multiple of 2 bytes */
747 if (rw == READ)
748 ioread16_rep(data_addr, buf, words);
749 else
750 iowrite16_rep(data_addr, buf, words);
751
2102d749 752 /* Transfer trailing byte, if any. */
624d5c51 753 if (unlikely(buflen & 0x01)) {
2102d749 754 unsigned char pad[2];
624d5c51 755
2102d749
SS
756 /* Point buf to the tail of buffer */
757 buf += buflen - 1;
758
759 /*
760 * Use io*16_rep() accessors here as well to avoid pointlessly
972b94ff 761 * swapping bytes to and from on the big endian machines...
2102d749 762 */
624d5c51 763 if (rw == READ) {
2102d749
SS
764 ioread16_rep(data_addr, pad, 1);
765 *buf = pad[0];
624d5c51 766 } else {
2102d749
SS
767 pad[0] = *buf;
768 iowrite16_rep(data_addr, pad, 1);
624d5c51
TH
769 }
770 words++;
771 }
772
773 return words << 1;
774}
0fe40ff8 775EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
624d5c51 776
871af121
AC
777/**
778 * ata_sff_data_xfer32 - Transfer data by PIO
779 * @dev: device to target
780 * @buf: data buffer
781 * @buflen: buffer length
782 * @rw: read/write
783 *
784 * Transfer data from/to the device data register by PIO using 32bit
785 * I/O operations.
786 *
787 * LOCKING:
788 * Inherited from caller.
789 *
790 * RETURNS:
791 * Bytes consumed.
792 */
793
794unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
795 unsigned int buflen, int rw)
796{
797 struct ata_port *ap = dev->link->ap;
798 void __iomem *data_addr = ap->ioaddr.data_addr;
799 unsigned int words = buflen >> 2;
800 int slop = buflen & 3;
972b94ff 801
e3cf95dd
AC
802 if (!(ap->pflags & ATA_PFLAG_PIO32))
803 return ata_sff_data_xfer(dev, buf, buflen, rw);
871af121
AC
804
805 /* Transfer multiple of 4 bytes */
806 if (rw == READ)
807 ioread32_rep(data_addr, buf, words);
808 else
809 iowrite32_rep(data_addr, buf, words);
810
d1b3525b 811 /* Transfer trailing bytes, if any */
871af121 812 if (unlikely(slop)) {
d1b3525b
SS
813 unsigned char pad[4];
814
815 /* Point buf to the tail of buffer */
816 buf += buflen - slop;
817
818 /*
819 * Use io*_rep() accessors here as well to avoid pointlessly
972b94ff 820 * swapping bytes to and from on the big endian machines...
d1b3525b 821 */
871af121 822 if (rw == READ) {
d1b3525b
SS
823 if (slop < 3)
824 ioread16_rep(data_addr, pad, 1);
825 else
826 ioread32_rep(data_addr, pad, 1);
827 memcpy(buf, pad, slop);
871af121 828 } else {
d1b3525b
SS
829 memcpy(pad, buf, slop);
830 if (slop < 3)
831 iowrite16_rep(data_addr, pad, 1);
832 else
833 iowrite32_rep(data_addr, pad, 1);
871af121 834 }
871af121 835 }
d1b3525b 836 return (buflen + 1) & ~1;
871af121
AC
837}
838EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
839
624d5c51 840/**
9363c382 841 * ata_sff_data_xfer_noirq - Transfer data by PIO
624d5c51
TH
842 * @dev: device to target
843 * @buf: data buffer
844 * @buflen: buffer length
845 * @rw: read/write
846 *
847 * Transfer data from/to the device data register by PIO. Do the
848 * transfer with interrupts disabled.
849 *
850 * LOCKING:
851 * Inherited from caller.
852 *
853 * RETURNS:
854 * Bytes consumed.
855 */
9363c382
TH
856unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
857 unsigned int buflen, int rw)
624d5c51
TH
858{
859 unsigned long flags;
860 unsigned int consumed;
861
862 local_irq_save(flags);
9363c382 863 consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
624d5c51
TH
864 local_irq_restore(flags);
865
866 return consumed;
867}
0fe40ff8 868EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
624d5c51
TH
869
870/**
871 * ata_pio_sector - Transfer a sector of data.
872 * @qc: Command on going
873 *
874 * Transfer qc->sect_size bytes of data from/to the ATA device.
875 *
876 * LOCKING:
877 * Inherited from caller.
878 */
879static void ata_pio_sector(struct ata_queued_cmd *qc)
880{
881 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
882 struct ata_port *ap = qc->ap;
883 struct page *page;
884 unsigned int offset;
885 unsigned char *buf;
886
887 if (qc->curbytes == qc->nbytes - qc->sect_size)
888 ap->hsm_task_state = HSM_ST_LAST;
889
890 page = sg_page(qc->cursg);
891 offset = qc->cursg->offset + qc->cursg_ofs;
892
893 /* get the current page and offset */
894 page = nth_page(page, (offset >> PAGE_SHIFT));
895 offset %= PAGE_SIZE;
896
897 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
898
899 if (PageHighMem(page)) {
900 unsigned long flags;
901
902 /* FIXME: use a bounce buffer */
903 local_irq_save(flags);
904 buf = kmap_atomic(page, KM_IRQ0);
905
906 /* do the actual data transfer */
5682ed33
TH
907 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
908 do_write);
624d5c51
TH
909
910 kunmap_atomic(buf, KM_IRQ0);
911 local_irq_restore(flags);
912 } else {
913 buf = page_address(page);
5682ed33
TH
914 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
915 do_write);
624d5c51
TH
916 }
917
2d68b7fe
CM
918 if (!do_write)
919 flush_dcache_page(page);
920
624d5c51
TH
921 qc->curbytes += qc->sect_size;
922 qc->cursg_ofs += qc->sect_size;
923
924 if (qc->cursg_ofs == qc->cursg->length) {
925 qc->cursg = sg_next(qc->cursg);
926 qc->cursg_ofs = 0;
927 }
928}
929
930/**
931 * ata_pio_sectors - Transfer one or many sectors.
932 * @qc: Command on going
933 *
934 * Transfer one or many sectors of data from/to the
935 * ATA device for the DRQ request.
936 *
937 * LOCKING:
938 * Inherited from caller.
939 */
940static void ata_pio_sectors(struct ata_queued_cmd *qc)
941{
942 if (is_multi_taskfile(&qc->tf)) {
943 /* READ/WRITE MULTIPLE */
944 unsigned int nsect;
945
efcb3cf7 946 WARN_ON_ONCE(qc->dev->multi_count == 0);
624d5c51
TH
947
948 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
949 qc->dev->multi_count);
950 while (nsect--)
951 ata_pio_sector(qc);
952 } else
953 ata_pio_sector(qc);
954
a57c1bad 955 ata_sff_sync(qc->ap); /* flush */
624d5c51
TH
956}
957
958/**
959 * atapi_send_cdb - Write CDB bytes to hardware
960 * @ap: Port to which ATAPI device is attached.
961 * @qc: Taskfile currently active
962 *
963 * When device has indicated its readiness to accept
964 * a CDB, this function is called. Send the CDB.
965 *
966 * LOCKING:
967 * caller.
968 */
969static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
970{
971 /* send SCSI cdb */
972 DPRINTK("send cdb\n");
efcb3cf7 973 WARN_ON_ONCE(qc->dev->cdb_len < 12);
624d5c51 974
5682ed33 975 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
a57c1bad
AC
976 ata_sff_sync(ap);
977 /* FIXME: If the CDB is for DMA do we need to do the transition delay
978 or is bmdma_start guaranteed to do it ? */
624d5c51
TH
979 switch (qc->tf.protocol) {
980 case ATAPI_PROT_PIO:
981 ap->hsm_task_state = HSM_ST;
982 break;
983 case ATAPI_PROT_NODATA:
984 ap->hsm_task_state = HSM_ST_LAST;
985 break;
986 case ATAPI_PROT_DMA:
987 ap->hsm_task_state = HSM_ST_LAST;
988 /* initiate bmdma */
989 ap->ops->bmdma_start(qc);
990 break;
991 }
992}
993
994/**
995 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
996 * @qc: Command on going
997 * @bytes: number of bytes
998 *
999 * Transfer Transfer data from/to the ATAPI device.
1000 *
1001 * LOCKING:
1002 * Inherited from caller.
1003 *
1004 */
1005static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
1006{
1007 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
1008 struct ata_port *ap = qc->ap;
1009 struct ata_device *dev = qc->dev;
1010 struct ata_eh_info *ehi = &dev->link->eh_info;
1011 struct scatterlist *sg;
1012 struct page *page;
1013 unsigned char *buf;
1014 unsigned int offset, count, consumed;
1015
1016next_sg:
1017 sg = qc->cursg;
1018 if (unlikely(!sg)) {
1019 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
1020 "buf=%u cur=%u bytes=%u",
1021 qc->nbytes, qc->curbytes, bytes);
1022 return -1;
1023 }
1024
1025 page = sg_page(sg);
1026 offset = sg->offset + qc->cursg_ofs;
1027
1028 /* get the current page and offset */
1029 page = nth_page(page, (offset >> PAGE_SHIFT));
1030 offset %= PAGE_SIZE;
1031
1032 /* don't overrun current sg */
1033 count = min(sg->length - qc->cursg_ofs, bytes);
1034
1035 /* don't cross page boundaries */
1036 count = min(count, (unsigned int)PAGE_SIZE - offset);
1037
1038 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
1039
1040 if (PageHighMem(page)) {
1041 unsigned long flags;
1042
1043 /* FIXME: use bounce buffer */
1044 local_irq_save(flags);
1045 buf = kmap_atomic(page, KM_IRQ0);
1046
1047 /* do the actual data transfer */
0fe40ff8
AC
1048 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
1049 count, rw);
624d5c51
TH
1050
1051 kunmap_atomic(buf, KM_IRQ0);
1052 local_irq_restore(flags);
1053 } else {
1054 buf = page_address(page);
0fe40ff8
AC
1055 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
1056 count, rw);
624d5c51
TH
1057 }
1058
1059 bytes -= min(bytes, consumed);
1060 qc->curbytes += count;
1061 qc->cursg_ofs += count;
1062
1063 if (qc->cursg_ofs == sg->length) {
1064 qc->cursg = sg_next(qc->cursg);
1065 qc->cursg_ofs = 0;
1066 }
1067
a0f79f7a
CB
1068 /*
1069 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
1070 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
1071 * check correctly as it doesn't know if it is the last request being
1072 * made. Somebody should implement a proper sanity check.
1073 */
624d5c51
TH
1074 if (bytes)
1075 goto next_sg;
1076 return 0;
1077}
1078
1079/**
1080 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
1081 * @qc: Command on going
1082 *
1083 * Transfer Transfer data from/to the ATAPI device.
1084 *
1085 * LOCKING:
1086 * Inherited from caller.
1087 */
1088static void atapi_pio_bytes(struct ata_queued_cmd *qc)
1089{
1090 struct ata_port *ap = qc->ap;
1091 struct ata_device *dev = qc->dev;
1092 struct ata_eh_info *ehi = &dev->link->eh_info;
1093 unsigned int ireason, bc_lo, bc_hi, bytes;
1094 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
1095
1096 /* Abuse qc->result_tf for temp storage of intermediate TF
1097 * here to save some kernel stack usage.
1098 * For normal completion, qc->result_tf is not relevant. For
1099 * error, qc->result_tf is later overwritten by ata_qc_complete().
1100 * So, the correctness of qc->result_tf is not affected.
1101 */
5682ed33 1102 ap->ops->sff_tf_read(ap, &qc->result_tf);
624d5c51
TH
1103 ireason = qc->result_tf.nsect;
1104 bc_lo = qc->result_tf.lbam;
1105 bc_hi = qc->result_tf.lbah;
1106 bytes = (bc_hi << 8) | bc_lo;
1107
1108 /* shall be cleared to zero, indicating xfer of data */
1109 if (unlikely(ireason & (1 << 0)))
1110 goto atapi_check;
1111
1112 /* make sure transfer direction matches expected */
1113 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
1114 if (unlikely(do_write != i_write))
1115 goto atapi_check;
1116
1117 if (unlikely(!bytes))
1118 goto atapi_check;
1119
1120 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
1121
1122 if (unlikely(__atapi_pio_bytes(qc, bytes)))
1123 goto err_out;
a57c1bad 1124 ata_sff_sync(ap); /* flush */
624d5c51
TH
1125
1126 return;
1127
1128 atapi_check:
1129 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
1130 ireason, bytes);
1131 err_out:
1132 qc->err_mask |= AC_ERR_HSM;
1133 ap->hsm_task_state = HSM_ST_ERR;
1134}
1135
1136/**
1137 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
1138 * @ap: the target ata_port
1139 * @qc: qc on going
1140 *
1141 * RETURNS:
1142 * 1 if ok in workqueue, 0 otherwise.
1143 */
0fe40ff8
AC
1144static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
1145 struct ata_queued_cmd *qc)
624d5c51
TH
1146{
1147 if (qc->tf.flags & ATA_TFLAG_POLLING)
1148 return 1;
1149
1150 if (ap->hsm_task_state == HSM_ST_FIRST) {
1151 if (qc->tf.protocol == ATA_PROT_PIO &&
0fe40ff8 1152 (qc->tf.flags & ATA_TFLAG_WRITE))
624d5c51
TH
1153 return 1;
1154
1155 if (ata_is_atapi(qc->tf.protocol) &&
0fe40ff8 1156 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
624d5c51
TH
1157 return 1;
1158 }
1159
1160 return 0;
1161}
1162
1163/**
1164 * ata_hsm_qc_complete - finish a qc running on standard HSM
1165 * @qc: Command to complete
1166 * @in_wq: 1 if called from workqueue, 0 otherwise
1167 *
1168 * Finish @qc which is running on standard HSM.
1169 *
1170 * LOCKING:
1171 * If @in_wq is zero, spin_lock_irqsave(host lock).
1172 * Otherwise, none on entry and grabs host lock.
1173 */
1174static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
1175{
1176 struct ata_port *ap = qc->ap;
1177 unsigned long flags;
1178
1179 if (ap->ops->error_handler) {
1180 if (in_wq) {
1181 spin_lock_irqsave(ap->lock, flags);
1182
1183 /* EH might have kicked in while host lock is
1184 * released.
1185 */
1186 qc = ata_qc_from_tag(ap, qc->tag);
1187 if (qc) {
1188 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5682ed33 1189 ap->ops->sff_irq_on(ap);
624d5c51
TH
1190 ata_qc_complete(qc);
1191 } else
1192 ata_port_freeze(ap);
1193 }
1194
1195 spin_unlock_irqrestore(ap->lock, flags);
1196 } else {
1197 if (likely(!(qc->err_mask & AC_ERR_HSM)))
1198 ata_qc_complete(qc);
1199 else
1200 ata_port_freeze(ap);
1201 }
1202 } else {
1203 if (in_wq) {
1204 spin_lock_irqsave(ap->lock, flags);
5682ed33 1205 ap->ops->sff_irq_on(ap);
624d5c51
TH
1206 ata_qc_complete(qc);
1207 spin_unlock_irqrestore(ap->lock, flags);
1208 } else
1209 ata_qc_complete(qc);
1210 }
1211}
1212
1213/**
9363c382 1214 * ata_sff_hsm_move - move the HSM to the next state.
624d5c51
TH
1215 * @ap: the target ata_port
1216 * @qc: qc on going
1217 * @status: current device status
1218 * @in_wq: 1 if called from workqueue, 0 otherwise
1219 *
1220 * RETURNS:
1221 * 1 when poll next status needed, 0 otherwise.
1222 */
9363c382
TH
1223int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1224 u8 status, int in_wq)
624d5c51 1225{
a836d3e8 1226 struct ata_eh_info *ehi = &ap->link.eh_info;
624d5c51
TH
1227 unsigned long flags = 0;
1228 int poll_next;
1229
efcb3cf7 1230 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
624d5c51 1231
9363c382 1232 /* Make sure ata_sff_qc_issue() does not throw things
624d5c51
TH
1233 * like DMA polling into the workqueue. Notice that
1234 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1235 */
efcb3cf7 1236 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
624d5c51
TH
1237
1238fsm_start:
1239 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1240 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1241
1242 switch (ap->hsm_task_state) {
1243 case HSM_ST_FIRST:
1244 /* Send first data block or PACKET CDB */
1245
1246 /* If polling, we will stay in the work queue after
1247 * sending the data. Otherwise, interrupt handler
1248 * takes over after sending the data.
1249 */
1250 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1251
1252 /* check device status */
1253 if (unlikely((status & ATA_DRQ) == 0)) {
1254 /* handle BSY=0, DRQ=0 as error */
1255 if (likely(status & (ATA_ERR | ATA_DF)))
1256 /* device stops HSM for abort/error */
1257 qc->err_mask |= AC_ERR_DEV;
a836d3e8 1258 else {
624d5c51 1259 /* HSM violation. Let EH handle this */
a836d3e8
TH
1260 ata_ehi_push_desc(ehi,
1261 "ST_FIRST: !(DRQ|ERR|DF)");
624d5c51 1262 qc->err_mask |= AC_ERR_HSM;
a836d3e8 1263 }
624d5c51
TH
1264
1265 ap->hsm_task_state = HSM_ST_ERR;
1266 goto fsm_start;
1267 }
1268
1269 /* Device should not ask for data transfer (DRQ=1)
1270 * when it finds something wrong.
1271 * We ignore DRQ here and stop the HSM by
1272 * changing hsm_task_state to HSM_ST_ERR and
1273 * let the EH abort the command or reset the device.
1274 */
1275 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1276 /* Some ATAPI tape drives forget to clear the ERR bit
1277 * when doing the next command (mostly request sense).
1278 * We ignore ERR here to workaround and proceed sending
1279 * the CDB.
1280 */
1281 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
a836d3e8
TH
1282 ata_ehi_push_desc(ehi, "ST_FIRST: "
1283 "DRQ=1 with device error, "
1284 "dev_stat 0x%X", status);
624d5c51
TH
1285 qc->err_mask |= AC_ERR_HSM;
1286 ap->hsm_task_state = HSM_ST_ERR;
1287 goto fsm_start;
1288 }
1289 }
1290
1291 /* Send the CDB (atapi) or the first data block (ata pio out).
1292 * During the state transition, interrupt handler shouldn't
1293 * be invoked before the data transfer is complete and
1294 * hsm_task_state is changed. Hence, the following locking.
1295 */
1296 if (in_wq)
1297 spin_lock_irqsave(ap->lock, flags);
1298
1299 if (qc->tf.protocol == ATA_PROT_PIO) {
1300 /* PIO data out protocol.
1301 * send first data block.
1302 */
1303
1304 /* ata_pio_sectors() might change the state
1305 * to HSM_ST_LAST. so, the state is changed here
1306 * before ata_pio_sectors().
1307 */
1308 ap->hsm_task_state = HSM_ST;
1309 ata_pio_sectors(qc);
1310 } else
1311 /* send CDB */
1312 atapi_send_cdb(ap, qc);
1313
1314 if (in_wq)
1315 spin_unlock_irqrestore(ap->lock, flags);
1316
1317 /* if polling, ata_pio_task() handles the rest.
1318 * otherwise, interrupt handler takes over from here.
1319 */
1320 break;
1321
1322 case HSM_ST:
1323 /* complete command or read/write the data register */
1324 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1325 /* ATAPI PIO protocol */
1326 if ((status & ATA_DRQ) == 0) {
1327 /* No more data to transfer or device error.
1328 * Device error will be tagged in HSM_ST_LAST.
1329 */
1330 ap->hsm_task_state = HSM_ST_LAST;
1331 goto fsm_start;
1332 }
1333
1334 /* Device should not ask for data transfer (DRQ=1)
1335 * when it finds something wrong.
1336 * We ignore DRQ here and stop the HSM by
1337 * changing hsm_task_state to HSM_ST_ERR and
1338 * let the EH abort the command or reset the device.
1339 */
1340 if (unlikely(status & (ATA_ERR | ATA_DF))) {
a836d3e8
TH
1341 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1342 "DRQ=1 with device error, "
1343 "dev_stat 0x%X", status);
624d5c51
TH
1344 qc->err_mask |= AC_ERR_HSM;
1345 ap->hsm_task_state = HSM_ST_ERR;
1346 goto fsm_start;
1347 }
1348
1349 atapi_pio_bytes(qc);
1350
1351 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1352 /* bad ireason reported by device */
1353 goto fsm_start;
1354
1355 } else {
1356 /* ATA PIO protocol */
1357 if (unlikely((status & ATA_DRQ) == 0)) {
1358 /* handle BSY=0, DRQ=0 as error */
6a6b97d3 1359 if (likely(status & (ATA_ERR | ATA_DF))) {
624d5c51
TH
1360 /* device stops HSM for abort/error */
1361 qc->err_mask |= AC_ERR_DEV;
6a6b97d3
TH
1362
1363 /* If diagnostic failed and this is
1364 * IDENTIFY, it's likely a phantom
1365 * device. Mark hint.
1366 */
1367 if (qc->dev->horkage &
1368 ATA_HORKAGE_DIAGNOSTIC)
1369 qc->err_mask |=
1370 AC_ERR_NODEV_HINT;
1371 } else {
624d5c51
TH
1372 /* HSM violation. Let EH handle this.
1373 * Phantom devices also trigger this
1374 * condition. Mark hint.
1375 */
a836d3e8 1376 ata_ehi_push_desc(ehi, "ST-ATA: "
80ee6f54 1377 "DRQ=0 without device error, "
a836d3e8 1378 "dev_stat 0x%X", status);
624d5c51
TH
1379 qc->err_mask |= AC_ERR_HSM |
1380 AC_ERR_NODEV_HINT;
a836d3e8 1381 }
624d5c51
TH
1382
1383 ap->hsm_task_state = HSM_ST_ERR;
1384 goto fsm_start;
1385 }
1386
1387 /* For PIO reads, some devices may ask for
1388 * data transfer (DRQ=1) alone with ERR=1.
1389 * We respect DRQ here and transfer one
1390 * block of junk data before changing the
1391 * hsm_task_state to HSM_ST_ERR.
1392 *
1393 * For PIO writes, ERR=1 DRQ=1 doesn't make
1394 * sense since the data block has been
1395 * transferred to the device.
1396 */
1397 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1398 /* data might be corrputed */
1399 qc->err_mask |= AC_ERR_DEV;
1400
1401 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1402 ata_pio_sectors(qc);
1403 status = ata_wait_idle(ap);
1404 }
1405
a836d3e8
TH
1406 if (status & (ATA_BUSY | ATA_DRQ)) {
1407 ata_ehi_push_desc(ehi, "ST-ATA: "
1408 "BUSY|DRQ persists on ERR|DF, "
1409 "dev_stat 0x%X", status);
624d5c51 1410 qc->err_mask |= AC_ERR_HSM;
a836d3e8 1411 }
624d5c51 1412
b919930c
TH
1413 /* There are oddball controllers with
1414 * status register stuck at 0x7f and
1415 * lbal/m/h at zero which makes it
1416 * pass all other presence detection
1417 * mechanisms we have. Set NODEV_HINT
1418 * for it. Kernel bz#7241.
1419 */
1420 if (status == 0x7f)
1421 qc->err_mask |= AC_ERR_NODEV_HINT;
1422
624d5c51
TH
1423 /* ata_pio_sectors() might change the
1424 * state to HSM_ST_LAST. so, the state
1425 * is changed after ata_pio_sectors().
1426 */
1427 ap->hsm_task_state = HSM_ST_ERR;
1428 goto fsm_start;
1429 }
1430
1431 ata_pio_sectors(qc);
1432
1433 if (ap->hsm_task_state == HSM_ST_LAST &&
1434 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1435 /* all data read */
1436 status = ata_wait_idle(ap);
1437 goto fsm_start;
1438 }
1439 }
1440
1441 poll_next = 1;
1442 break;
1443
1444 case HSM_ST_LAST:
1445 if (unlikely(!ata_ok(status))) {
1446 qc->err_mask |= __ac_err_mask(status);
1447 ap->hsm_task_state = HSM_ST_ERR;
1448 goto fsm_start;
1449 }
1450
1451 /* no more data to transfer */
1452 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1453 ap->print_id, qc->dev->devno, status);
1454
efcb3cf7 1455 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
624d5c51
TH
1456
1457 ap->hsm_task_state = HSM_ST_IDLE;
1458
1459 /* complete taskfile transaction */
1460 ata_hsm_qc_complete(qc, in_wq);
1461
1462 poll_next = 0;
1463 break;
1464
1465 case HSM_ST_ERR:
624d5c51
TH
1466 ap->hsm_task_state = HSM_ST_IDLE;
1467
1468 /* complete taskfile transaction */
1469 ata_hsm_qc_complete(qc, in_wq);
1470
1471 poll_next = 0;
1472 break;
1473 default:
1474 poll_next = 0;
1475 BUG();
1476 }
1477
1478 return poll_next;
1479}
0fe40ff8 1480EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
624d5c51
TH
1481
1482void ata_pio_task(struct work_struct *work)
1483{
1484 struct ata_port *ap =
1485 container_of(work, struct ata_port, port_task.work);
1486 struct ata_queued_cmd *qc = ap->port_task_data;
1487 u8 status;
1488 int poll_next;
1489
1490fsm_start:
efcb3cf7 1491 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
624d5c51
TH
1492
1493 /*
1494 * This is purely heuristic. This is a fast path.
1495 * Sometimes when we enter, BSY will be cleared in
1496 * a chk-status or two. If not, the drive is probably seeking
1497 * or something. Snooze for a couple msecs, then
1498 * chk-status again. If still busy, queue delayed work.
1499 */
9363c382 1500 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
624d5c51
TH
1501 if (status & ATA_BUSY) {
1502 msleep(2);
9363c382 1503 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
624d5c51
TH
1504 if (status & ATA_BUSY) {
1505 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
1506 return;
1507 }
1508 }
1509
1510 /* move the HSM */
9363c382 1511 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
624d5c51
TH
1512
1513 /* another command or interrupt handler
1514 * may be running at this point.
1515 */
1516 if (poll_next)
1517 goto fsm_start;
1518}
1519
1520/**
9363c382 1521 * ata_sff_qc_issue - issue taskfile to device in proto-dependent manner
624d5c51
TH
1522 * @qc: command to issue to device
1523 *
1524 * Using various libata functions and hooks, this function
1525 * starts an ATA command. ATA commands are grouped into
1526 * classes called "protocols", and issuing each type of protocol
1527 * is slightly different.
1528 *
1529 * May be used as the qc_issue() entry in ata_port_operations.
1530 *
1531 * LOCKING:
1532 * spin_lock_irqsave(host lock)
1533 *
1534 * RETURNS:
1535 * Zero on success, AC_ERR_* mask on failure
1536 */
9363c382 1537unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
624d5c51
TH
1538{
1539 struct ata_port *ap = qc->ap;
1540
1541 /* Use polling pio if the LLD doesn't handle
1542 * interrupt driven pio and atapi CDB interrupt.
1543 */
1544 if (ap->flags & ATA_FLAG_PIO_POLLING) {
1545 switch (qc->tf.protocol) {
1546 case ATA_PROT_PIO:
1547 case ATA_PROT_NODATA:
1548 case ATAPI_PROT_PIO:
1549 case ATAPI_PROT_NODATA:
1550 qc->tf.flags |= ATA_TFLAG_POLLING;
1551 break;
1552 case ATAPI_PROT_DMA:
1553 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
1554 /* see ata_dma_blacklisted() */
1555 BUG();
1556 break;
1557 default:
1558 break;
1559 }
1560 }
1561
1562 /* select the device */
1563 ata_dev_select(ap, qc->dev->devno, 1, 0);
1564
1565 /* start the command */
1566 switch (qc->tf.protocol) {
1567 case ATA_PROT_NODATA:
1568 if (qc->tf.flags & ATA_TFLAG_POLLING)
1569 ata_qc_set_polling(qc);
1570
1571 ata_tf_to_host(ap, &qc->tf);
1572 ap->hsm_task_state = HSM_ST_LAST;
1573
1574 if (qc->tf.flags & ATA_TFLAG_POLLING)
1575 ata_pio_queue_task(ap, qc, 0);
1576
1577 break;
1578
1579 case ATA_PROT_DMA:
efcb3cf7 1580 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
624d5c51 1581
5682ed33 1582 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
624d5c51
TH
1583 ap->ops->bmdma_setup(qc); /* set up bmdma */
1584 ap->ops->bmdma_start(qc); /* initiate bmdma */
1585 ap->hsm_task_state = HSM_ST_LAST;
1586 break;
1587
1588 case ATA_PROT_PIO:
1589 if (qc->tf.flags & ATA_TFLAG_POLLING)
1590 ata_qc_set_polling(qc);
1591
1592 ata_tf_to_host(ap, &qc->tf);
1593
1594 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1595 /* PIO data out protocol */
1596 ap->hsm_task_state = HSM_ST_FIRST;
1597 ata_pio_queue_task(ap, qc, 0);
1598
1599 /* always send first data block using
1600 * the ata_pio_task() codepath.
1601 */
1602 } else {
1603 /* PIO data in protocol */
1604 ap->hsm_task_state = HSM_ST;
1605
1606 if (qc->tf.flags & ATA_TFLAG_POLLING)
1607 ata_pio_queue_task(ap, qc, 0);
1608
1609 /* if polling, ata_pio_task() handles the rest.
1610 * otherwise, interrupt handler takes over from here.
1611 */
1612 }
1613
1614 break;
1615
1616 case ATAPI_PROT_PIO:
1617 case ATAPI_PROT_NODATA:
1618 if (qc->tf.flags & ATA_TFLAG_POLLING)
1619 ata_qc_set_polling(qc);
1620
1621 ata_tf_to_host(ap, &qc->tf);
1622
1623 ap->hsm_task_state = HSM_ST_FIRST;
1624
1625 /* send cdb by polling if no cdb interrupt */
1626 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1627 (qc->tf.flags & ATA_TFLAG_POLLING))
1628 ata_pio_queue_task(ap, qc, 0);
1629 break;
1630
1631 case ATAPI_PROT_DMA:
efcb3cf7 1632 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
624d5c51 1633
5682ed33 1634 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
624d5c51
TH
1635 ap->ops->bmdma_setup(qc); /* set up bmdma */
1636 ap->hsm_task_state = HSM_ST_FIRST;
1637
1638 /* send cdb by polling if no cdb interrupt */
1639 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1640 ata_pio_queue_task(ap, qc, 0);
1641 break;
1642
1643 default:
efcb3cf7 1644 WARN_ON_ONCE(1);
624d5c51
TH
1645 return AC_ERR_SYSTEM;
1646 }
1647
1648 return 0;
1649}
0fe40ff8 1650EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
624d5c51 1651
22183bf5
TH
1652/**
1653 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1654 * @qc: qc to fill result TF for
1655 *
1656 * @qc is finished and result TF needs to be filled. Fill it
1657 * using ->sff_tf_read.
1658 *
1659 * LOCKING:
1660 * spin_lock_irqsave(host lock)
1661 *
1662 * RETURNS:
1663 * true indicating that result TF is successfully filled.
1664 */
1665bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1666{
1667 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1668 return true;
1669}
0fe40ff8 1670EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
22183bf5 1671
624d5c51 1672/**
9363c382 1673 * ata_sff_host_intr - Handle host interrupt for given (port, task)
624d5c51
TH
1674 * @ap: Port on which interrupt arrived (possibly...)
1675 * @qc: Taskfile currently active in engine
1676 *
1677 * Handle host interrupt for given queued command. Currently,
1678 * only DMA interrupts are handled. All other commands are
1679 * handled via polling with interrupts disabled (nIEN bit).
1680 *
1681 * LOCKING:
1682 * spin_lock_irqsave(host lock)
1683 *
1684 * RETURNS:
1685 * One if interrupt was handled, zero if not (shared irq).
1686 */
c96f1732 1687unsigned int ata_sff_host_intr(struct ata_port *ap,
9363c382 1688 struct ata_queued_cmd *qc)
624d5c51
TH
1689{
1690 struct ata_eh_info *ehi = &ap->link.eh_info;
1691 u8 status, host_stat = 0;
332ac7ff 1692 bool bmdma_stopped = false;
624d5c51
TH
1693
1694 VPRINTK("ata%u: protocol %d task_state %d\n",
1695 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1696
1697 /* Check whether we are expecting interrupt in this state */
1698 switch (ap->hsm_task_state) {
1699 case HSM_ST_FIRST:
1700 /* Some pre-ATAPI-4 devices assert INTRQ
1701 * at this state when ready to receive CDB.
1702 */
1703
1704 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1705 * The flag was turned on only for atapi devices. No
1706 * need to check ata_is_atapi(qc->tf.protocol) again.
1707 */
1708 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1709 goto idle_irq;
1710 break;
1711 case HSM_ST_LAST:
1712 if (qc->tf.protocol == ATA_PROT_DMA ||
1713 qc->tf.protocol == ATAPI_PROT_DMA) {
1714 /* check status of DMA engine */
1715 host_stat = ap->ops->bmdma_status(ap);
1716 VPRINTK("ata%u: host_stat 0x%X\n",
1717 ap->print_id, host_stat);
1718
1719 /* if it's not our irq... */
1720 if (!(host_stat & ATA_DMA_INTR))
1721 goto idle_irq;
1722
1723 /* before we do anything else, clear DMA-Start bit */
1724 ap->ops->bmdma_stop(qc);
332ac7ff 1725 bmdma_stopped = true;
624d5c51
TH
1726
1727 if (unlikely(host_stat & ATA_DMA_ERR)) {
1728 /* error when transfering data to/from memory */
1729 qc->err_mask |= AC_ERR_HOST_BUS;
1730 ap->hsm_task_state = HSM_ST_ERR;
1731 }
1732 }
1733 break;
1734 case HSM_ST:
1735 break;
1736 default:
1737 goto idle_irq;
1738 }
1739
624d5c51 1740
a57c1bad
AC
1741 /* check main status, clearing INTRQ if needed */
1742 status = ata_sff_irq_status(ap);
332ac7ff
TH
1743 if (status & ATA_BUSY) {
1744 if (bmdma_stopped) {
1745 /* BMDMA engine is already stopped, we're screwed */
1746 qc->err_mask |= AC_ERR_HSM;
1747 ap->hsm_task_state = HSM_ST_ERR;
1748 } else
1749 goto idle_irq;
1750 }
624d5c51
TH
1751
1752 /* ack bmdma irq events */
5682ed33 1753 ap->ops->sff_irq_clear(ap);
624d5c51 1754
9363c382 1755 ata_sff_hsm_move(ap, qc, status, 0);
624d5c51
TH
1756
1757 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
1758 qc->tf.protocol == ATAPI_PROT_DMA))
1759 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
1760
1761 return 1; /* irq handled */
1762
1763idle_irq:
1764 ap->stats.idle_irq++;
1765
1766#ifdef ATA_IRQ_TRAP
1767 if ((ap->stats.idle_irq % 1000) == 0) {
5682ed33
TH
1768 ap->ops->sff_check_status(ap);
1769 ap->ops->sff_irq_clear(ap);
624d5c51
TH
1770 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1771 return 1;
1772 }
1773#endif
1774 return 0; /* irq not handled */
1775}
0fe40ff8 1776EXPORT_SYMBOL_GPL(ata_sff_host_intr);
624d5c51
TH
1777
1778/**
9363c382 1779 * ata_sff_interrupt - Default ATA host interrupt handler
624d5c51
TH
1780 * @irq: irq line (unused)
1781 * @dev_instance: pointer to our ata_host information structure
1782 *
1783 * Default interrupt handler for PCI IDE devices. Calls
9363c382 1784 * ata_sff_host_intr() for each port that is not disabled.
624d5c51
TH
1785 *
1786 * LOCKING:
1787 * Obtains host lock during operation.
1788 *
1789 * RETURNS:
1790 * IRQ_NONE or IRQ_HANDLED.
1791 */
9363c382 1792irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
624d5c51
TH
1793{
1794 struct ata_host *host = dev_instance;
332ac7ff 1795 bool retried = false;
624d5c51 1796 unsigned int i;
332ac7ff 1797 unsigned int handled, idle, polling;
624d5c51
TH
1798 unsigned long flags;
1799
1800 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1801 spin_lock_irqsave(&host->lock, flags);
1802
332ac7ff
TH
1803retry:
1804 handled = idle = polling = 0;
624d5c51 1805 for (i = 0; i < host->n_ports; i++) {
d88ec2e5
TH
1806 struct ata_port *ap = host->ports[i];
1807 struct ata_queued_cmd *qc;
624d5c51 1808
d88ec2e5
TH
1809 if (unlikely(ap->flags & ATA_FLAG_DISABLED))
1810 continue;
624d5c51 1811
d88ec2e5 1812 qc = ata_qc_from_tag(ap, ap->link.active_tag);
27943620
TH
1813 if (qc) {
1814 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1815 handled |= ata_sff_host_intr(ap, qc);
1816 else
1817 polling |= 1 << i;
332ac7ff
TH
1818 } else
1819 idle |= 1 << i;
27943620
TH
1820 }
1821
1822 /*
1823 * If no port was expecting IRQ but the controller is actually
1824 * asserting IRQ line, nobody cared will ensue. Check IRQ
1825 * pending status if available and clear spurious IRQ.
1826 */
332ac7ff
TH
1827 if (!handled && !retried) {
1828 bool retry = false;
1829
27943620
TH
1830 for (i = 0; i < host->n_ports; i++) {
1831 struct ata_port *ap = host->ports[i];
1832
1833 if (polling & (1 << i))
1834 continue;
1835
1836 if (!ap->ops->sff_irq_check ||
1837 !ap->ops->sff_irq_check(ap))
1838 continue;
1839
332ac7ff
TH
1840 if (idle & (1 << i)) {
1841 ap->ops->sff_check_status(ap);
1842 ap->ops->sff_irq_clear(ap);
1843 } else {
1844 /* clear INTRQ and check if BUSY cleared */
1845 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1846 retry |= true;
1847 /*
1848 * With command in flight, we can't do
1849 * sff_irq_clear() w/o racing with completion.
1850 */
1851 }
1852 }
1853
1854 if (retry) {
1855 retried = true;
1856 goto retry;
27943620 1857 }
624d5c51
TH
1858 }
1859
1860 spin_unlock_irqrestore(&host->lock, flags);
1861
1862 return IRQ_RETVAL(handled);
1863}
0fe40ff8 1864EXPORT_SYMBOL_GPL(ata_sff_interrupt);
624d5c51 1865
c96f1732
AC
1866/**
1867 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1868 * @ap: port that appears to have timed out
1869 *
1870 * Called from the libata error handlers when the core code suspects
1871 * an interrupt has been lost. If it has complete anything we can and
1872 * then return. Interface must support altstatus for this faster
1873 * recovery to occur.
1874 *
1875 * Locking:
1876 * Caller holds host lock
1877 */
1878
1879void ata_sff_lost_interrupt(struct ata_port *ap)
1880{
1881 u8 status;
1882 struct ata_queued_cmd *qc;
1883
1884 /* Only one outstanding command per SFF channel */
1885 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1886 /* Check we have a live one.. */
1887 if (qc == NULL || !(qc->flags & ATA_QCFLAG_ACTIVE))
1888 return;
1889 /* We cannot lose an interrupt on a polled command */
1890 if (qc->tf.flags & ATA_TFLAG_POLLING)
1891 return;
1892 /* See if the controller thinks it is still busy - if so the command
1893 isn't a lost IRQ but is still in progress */
1894 status = ata_sff_altstatus(ap);
1895 if (status & ATA_BUSY)
1896 return;
1897
1898 /* There was a command running, we are no longer busy and we have
1899 no interrupt. */
1900 ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n",
1901 status);
1902 /* Run the host interrupt logic as if the interrupt had not been
1903 lost */
1904 ata_sff_host_intr(ap, qc);
1905}
1906EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1907
624d5c51 1908/**
9363c382 1909 * ata_sff_freeze - Freeze SFF controller port
624d5c51
TH
1910 * @ap: port to freeze
1911 *
1912 * Freeze BMDMA controller port.
1913 *
1914 * LOCKING:
1915 * Inherited from caller.
1916 */
9363c382 1917void ata_sff_freeze(struct ata_port *ap)
624d5c51 1918{
624d5c51
TH
1919 ap->ctl |= ATA_NIEN;
1920 ap->last_ctl = ap->ctl;
1921
41dec29b
SS
1922 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1923 ata_sff_set_devctl(ap, ap->ctl);
624d5c51
TH
1924
1925 /* Under certain circumstances, some controllers raise IRQ on
1926 * ATA_NIEN manipulation. Also, many controllers fail to mask
1927 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1928 */
5682ed33 1929 ap->ops->sff_check_status(ap);
624d5c51 1930
5682ed33 1931 ap->ops->sff_irq_clear(ap);
624d5c51 1932}
0fe40ff8 1933EXPORT_SYMBOL_GPL(ata_sff_freeze);
624d5c51
TH
1934
1935/**
9363c382 1936 * ata_sff_thaw - Thaw SFF controller port
624d5c51
TH
1937 * @ap: port to thaw
1938 *
9363c382 1939 * Thaw SFF controller port.
624d5c51
TH
1940 *
1941 * LOCKING:
1942 * Inherited from caller.
1943 */
9363c382 1944void ata_sff_thaw(struct ata_port *ap)
272f7884 1945{
624d5c51 1946 /* clear & re-enable interrupts */
5682ed33
TH
1947 ap->ops->sff_check_status(ap);
1948 ap->ops->sff_irq_clear(ap);
1949 ap->ops->sff_irq_on(ap);
272f7884 1950}
0fe40ff8 1951EXPORT_SYMBOL_GPL(ata_sff_thaw);
272f7884 1952
0aa1113d
TH
1953/**
1954 * ata_sff_prereset - prepare SFF link for reset
1955 * @link: SFF link to be reset
1956 * @deadline: deadline jiffies for the operation
1957 *
1958 * SFF link @link is about to be reset. Initialize it. It first
1959 * calls ata_std_prereset() and wait for !BSY if the port is
1960 * being softreset.
1961 *
1962 * LOCKING:
1963 * Kernel thread context (may sleep)
1964 *
1965 * RETURNS:
1966 * 0 on success, -errno otherwise.
1967 */
1968int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1969{
0aa1113d
TH
1970 struct ata_eh_context *ehc = &link->eh_context;
1971 int rc;
1972
1973 rc = ata_std_prereset(link, deadline);
1974 if (rc)
1975 return rc;
1976
1977 /* if we're about to do hardreset, nothing more to do */
1978 if (ehc->i.action & ATA_EH_HARDRESET)
1979 return 0;
1980
1981 /* wait for !BSY if we don't know that no device is attached */
1982 if (!ata_link_offline(link)) {
705e76be 1983 rc = ata_sff_wait_ready(link, deadline);
0aa1113d
TH
1984 if (rc && rc != -ENODEV) {
1985 ata_link_printk(link, KERN_WARNING, "device not ready "
1986 "(errno=%d), forcing hardreset\n", rc);
1987 ehc->i.action |= ATA_EH_HARDRESET;
1988 }
1989 }
1990
1991 return 0;
1992}
0fe40ff8 1993EXPORT_SYMBOL_GPL(ata_sff_prereset);
0aa1113d 1994
90088bb4 1995/**
624d5c51
TH
1996 * ata_devchk - PATA device presence detection
1997 * @ap: ATA channel to examine
1998 * @device: Device to examine (starting at zero)
90088bb4 1999 *
624d5c51
TH
2000 * This technique was originally described in
2001 * Hale Landis's ATADRVR (www.ata-atapi.com), and
2002 * later found its way into the ATA/ATAPI spec.
2003 *
2004 * Write a pattern to the ATA shadow registers,
2005 * and if a device is present, it will respond by
2006 * correctly storing and echoing back the
2007 * ATA shadow register contents.
90088bb4
TH
2008 *
2009 * LOCKING:
624d5c51 2010 * caller.
90088bb4 2011 */
624d5c51 2012static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
90088bb4
TH
2013{
2014 struct ata_ioports *ioaddr = &ap->ioaddr;
624d5c51 2015 u8 nsect, lbal;
90088bb4 2016
5682ed33 2017 ap->ops->sff_dev_select(ap, device);
90088bb4 2018
624d5c51
TH
2019 iowrite8(0x55, ioaddr->nsect_addr);
2020 iowrite8(0xaa, ioaddr->lbal_addr);
90088bb4 2021
624d5c51
TH
2022 iowrite8(0xaa, ioaddr->nsect_addr);
2023 iowrite8(0x55, ioaddr->lbal_addr);
90088bb4 2024
624d5c51
TH
2025 iowrite8(0x55, ioaddr->nsect_addr);
2026 iowrite8(0xaa, ioaddr->lbal_addr);
2027
2028 nsect = ioread8(ioaddr->nsect_addr);
2029 lbal = ioread8(ioaddr->lbal_addr);
2030
2031 if ((nsect == 0x55) && (lbal == 0xaa))
2032 return 1; /* we found a device */
2033
2034 return 0; /* nothing found */
90088bb4
TH
2035}
2036
272f7884 2037/**
9363c382 2038 * ata_sff_dev_classify - Parse returned ATA device signature
624d5c51
TH
2039 * @dev: ATA device to classify (starting at zero)
2040 * @present: device seems present
2041 * @r_err: Value of error register on completion
272f7884 2042 *
624d5c51
TH
2043 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
2044 * an ATA/ATAPI-defined set of values is placed in the ATA
2045 * shadow registers, indicating the results of device detection
2046 * and diagnostics.
272f7884 2047 *
624d5c51
TH
2048 * Select the ATA device, and read the values from the ATA shadow
2049 * registers. Then parse according to the Error register value,
2050 * and the spec-defined values examined by ata_dev_classify().
272f7884
TH
2051 *
2052 * LOCKING:
624d5c51
TH
2053 * caller.
2054 *
2055 * RETURNS:
2056 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
272f7884 2057 */
9363c382 2058unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
624d5c51 2059 u8 *r_err)
272f7884 2060{
624d5c51
TH
2061 struct ata_port *ap = dev->link->ap;
2062 struct ata_taskfile tf;
2063 unsigned int class;
2064 u8 err;
2065
5682ed33 2066 ap->ops->sff_dev_select(ap, dev->devno);
624d5c51
TH
2067
2068 memset(&tf, 0, sizeof(tf));
2069
5682ed33 2070 ap->ops->sff_tf_read(ap, &tf);
624d5c51
TH
2071 err = tf.feature;
2072 if (r_err)
2073 *r_err = err;
2074
2075 /* see if device passed diags: continue and warn later */
2076 if (err == 0)
2077 /* diagnostic fail : do nothing _YET_ */
2078 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
2079 else if (err == 1)
2080 /* do nothing */ ;
2081 else if ((dev->devno == 0) && (err == 0x81))
2082 /* do nothing */ ;
2083 else
2084 return ATA_DEV_NONE;
272f7884 2085
624d5c51
TH
2086 /* determine if device is ATA or ATAPI */
2087 class = ata_dev_classify(&tf);
272f7884 2088
624d5c51
TH
2089 if (class == ATA_DEV_UNKNOWN) {
2090 /* If the device failed diagnostic, it's likely to
2091 * have reported incorrect device signature too.
2092 * Assume ATA device if the device seems present but
2093 * device signature is invalid with diagnostic
2094 * failure.
2095 */
2096 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
2097 class = ATA_DEV_ATA;
2098 else
2099 class = ATA_DEV_NONE;
5682ed33
TH
2100 } else if ((class == ATA_DEV_ATA) &&
2101 (ap->ops->sff_check_status(ap) == 0))
624d5c51
TH
2102 class = ATA_DEV_NONE;
2103
2104 return class;
272f7884 2105}
0fe40ff8 2106EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
272f7884 2107
705e76be
TH
2108/**
2109 * ata_sff_wait_after_reset - wait for devices to become ready after reset
2110 * @link: SFF link which is just reset
2111 * @devmask: mask of present devices
2112 * @deadline: deadline jiffies for the operation
2113 *
2114 * Wait devices attached to SFF @link to become ready after
2115 * reset. It contains preceding 150ms wait to avoid accessing TF
2116 * status register too early.
2117 *
2118 * LOCKING:
2119 * Kernel thread context (may sleep).
2120 *
2121 * RETURNS:
2122 * 0 on success, -ENODEV if some or all of devices in @devmask
2123 * don't seem to exist. -errno on other errors.
2124 */
2125int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
2126 unsigned long deadline)
1fdffbce 2127{
705e76be 2128 struct ata_port *ap = link->ap;
1fdffbce 2129 struct ata_ioports *ioaddr = &ap->ioaddr;
624d5c51
TH
2130 unsigned int dev0 = devmask & (1 << 0);
2131 unsigned int dev1 = devmask & (1 << 1);
2132 int rc, ret = 0;
1fdffbce 2133
341c2c95 2134 msleep(ATA_WAIT_AFTER_RESET);
705e76be
TH
2135
2136 /* always check readiness of the master device */
2137 rc = ata_sff_wait_ready(link, deadline);
2138 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
2139 * and TF status is 0xff, bail out on it too.
624d5c51 2140 */
705e76be
TH
2141 if (rc)
2142 return rc;
1fdffbce 2143
624d5c51
TH
2144 /* if device 1 was found in ata_devchk, wait for register
2145 * access briefly, then wait for BSY to clear.
2146 */
2147 if (dev1) {
2148 int i;
1fdffbce 2149
5682ed33 2150 ap->ops->sff_dev_select(ap, 1);
1fdffbce 2151
624d5c51
TH
2152 /* Wait for register access. Some ATAPI devices fail
2153 * to set nsect/lbal after reset, so don't waste too
2154 * much time on it. We're gonna wait for !BSY anyway.
2155 */
2156 for (i = 0; i < 2; i++) {
2157 u8 nsect, lbal;
2158
2159 nsect = ioread8(ioaddr->nsect_addr);
2160 lbal = ioread8(ioaddr->lbal_addr);
2161 if ((nsect == 1) && (lbal == 1))
2162 break;
2163 msleep(50); /* give drive a breather */
2164 }
2165
705e76be 2166 rc = ata_sff_wait_ready(link, deadline);
624d5c51
TH
2167 if (rc) {
2168 if (rc != -ENODEV)
2169 return rc;
2170 ret = rc;
2171 }
1fdffbce
JG
2172 }
2173
624d5c51 2174 /* is all this really necessary? */
5682ed33 2175 ap->ops->sff_dev_select(ap, 0);
624d5c51 2176 if (dev1)
5682ed33 2177 ap->ops->sff_dev_select(ap, 1);
624d5c51 2178 if (dev0)
5682ed33 2179 ap->ops->sff_dev_select(ap, 0);
624d5c51
TH
2180
2181 return ret;
1fdffbce 2182}
0fe40ff8 2183EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1fdffbce 2184
624d5c51
TH
2185static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2186 unsigned long deadline)
2cc432ee 2187{
624d5c51 2188 struct ata_ioports *ioaddr = &ap->ioaddr;
2cc432ee 2189
624d5c51
TH
2190 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2191
2192 /* software reset. causes dev0 to be selected */
2193 iowrite8(ap->ctl, ioaddr->ctl_addr);
2194 udelay(20); /* FIXME: flush */
2195 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2196 udelay(20); /* FIXME: flush */
2197 iowrite8(ap->ctl, ioaddr->ctl_addr);
e3e4385f 2198 ap->last_ctl = ap->ctl;
624d5c51 2199
705e76be
TH
2200 /* wait the port to become ready */
2201 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2cc432ee
JG
2202}
2203
6d97dbd7 2204/**
9363c382 2205 * ata_sff_softreset - reset host port via ATA SRST
624d5c51
TH
2206 * @link: ATA link to reset
2207 * @classes: resulting classes of attached devices
2208 * @deadline: deadline jiffies for the operation
6d97dbd7 2209 *
624d5c51 2210 * Reset host port using ATA SRST.
6d97dbd7
TH
2211 *
2212 * LOCKING:
624d5c51
TH
2213 * Kernel thread context (may sleep)
2214 *
2215 * RETURNS:
2216 * 0 on success, -errno otherwise.
6d97dbd7 2217 */
9363c382 2218int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
624d5c51 2219 unsigned long deadline)
6d97dbd7 2220{
624d5c51
TH
2221 struct ata_port *ap = link->ap;
2222 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2223 unsigned int devmask = 0;
2224 int rc;
2225 u8 err;
6d97dbd7 2226
624d5c51 2227 DPRINTK("ENTER\n");
6d97dbd7 2228
624d5c51
TH
2229 /* determine if device 0/1 are present */
2230 if (ata_devchk(ap, 0))
2231 devmask |= (1 << 0);
2232 if (slave_possible && ata_devchk(ap, 1))
2233 devmask |= (1 << 1);
2234
2235 /* select device 0 again */
5682ed33 2236 ap->ops->sff_dev_select(ap, 0);
624d5c51
TH
2237
2238 /* issue bus reset */
2239 DPRINTK("about to softreset, devmask=%x\n", devmask);
2240 rc = ata_bus_softreset(ap, devmask, deadline);
2241 /* if link is occupied, -ENODEV too is an error */
2242 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2243 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
2244 return rc;
2245 }
0f0a3ad3 2246
624d5c51 2247 /* determine by signature whether we have ATA or ATAPI devices */
9363c382 2248 classes[0] = ata_sff_dev_classify(&link->device[0],
624d5c51
TH
2249 devmask & (1 << 0), &err);
2250 if (slave_possible && err != 0x81)
9363c382 2251 classes[1] = ata_sff_dev_classify(&link->device[1],
624d5c51
TH
2252 devmask & (1 << 1), &err);
2253
624d5c51
TH
2254 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2255 return 0;
6d97dbd7 2256}
0fe40ff8 2257EXPORT_SYMBOL_GPL(ata_sff_softreset);
6d97dbd7
TH
2258
2259/**
9363c382 2260 * sata_sff_hardreset - reset host port via SATA phy reset
624d5c51
TH
2261 * @link: link to reset
2262 * @class: resulting class of attached device
2263 * @deadline: deadline jiffies for the operation
6d97dbd7 2264 *
624d5c51
TH
2265 * SATA phy-reset host port using DET bits of SControl register,
2266 * wait for !BSY and classify the attached device.
6d97dbd7
TH
2267 *
2268 * LOCKING:
624d5c51
TH
2269 * Kernel thread context (may sleep)
2270 *
2271 * RETURNS:
2272 * 0 on success, -errno otherwise.
6d97dbd7 2273 */
9363c382 2274int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
624d5c51 2275 unsigned long deadline)
6d97dbd7 2276{
9dadd45b
TH
2277 struct ata_eh_context *ehc = &link->eh_context;
2278 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2279 bool online;
624d5c51
TH
2280 int rc;
2281
9dadd45b
TH
2282 rc = sata_link_hardreset(link, timing, deadline, &online,
2283 ata_sff_check_ready);
9dadd45b
TH
2284 if (online)
2285 *class = ata_sff_dev_classify(link->device, 1, NULL);
624d5c51
TH
2286
2287 DPRINTK("EXIT, class=%u\n", *class);
9dadd45b 2288 return rc;
6d97dbd7 2289}
0fe40ff8 2290EXPORT_SYMBOL_GPL(sata_sff_hardreset);
6d97dbd7 2291
203c75b8
TH
2292/**
2293 * ata_sff_postreset - SFF postreset callback
2294 * @link: the target SFF ata_link
2295 * @classes: classes of attached devices
2296 *
2297 * This function is invoked after a successful reset. It first
2298 * calls ata_std_postreset() and performs SFF specific postreset
2299 * processing.
2300 *
2301 * LOCKING:
2302 * Kernel thread context (may sleep)
2303 */
2304void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2305{
2306 struct ata_port *ap = link->ap;
2307
2308 ata_std_postreset(link, classes);
2309
2310 /* is double-select really necessary? */
2311 if (classes[0] != ATA_DEV_NONE)
2312 ap->ops->sff_dev_select(ap, 1);
2313 if (classes[1] != ATA_DEV_NONE)
2314 ap->ops->sff_dev_select(ap, 0);
2315
2316 /* bail out if no device is present */
2317 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2318 DPRINTK("EXIT, no device\n");
2319 return;
2320 }
2321
2322 /* set up device control */
41dec29b
SS
2323 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2324 ata_sff_set_devctl(ap, ap->ctl);
e3e4385f
SM
2325 ap->last_ctl = ap->ctl;
2326 }
203c75b8 2327}
0fe40ff8 2328EXPORT_SYMBOL_GPL(ata_sff_postreset);
203c75b8 2329
3d47aa8e
AC
2330/**
2331 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2332 * @qc: command
2333 *
2334 * Drain the FIFO and device of any stuck data following a command
3ad2f3fb 2335 * failing to complete. In some cases this is necessary before a
3d47aa8e
AC
2336 * reset will recover the device.
2337 *
2338 */
2339
2340void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2341{
2342 int count;
2343 struct ata_port *ap;
2344
2345 /* We only need to flush incoming data when a command was running */
2346 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2347 return;
2348
2349 ap = qc->ap;
2350 /* Drain up to 64K of data before we give up this recovery method */
2351 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
9a8fd68b 2352 && count < 65536; count += 2)
3d47aa8e
AC
2353 ioread16(ap->ioaddr.data_addr);
2354
2355 /* Can become DEBUG later */
2356 if (count)
2357 ata_port_printk(ap, KERN_DEBUG,
2358 "drained %d bytes to clear DRQ.\n", count);
2359
2360}
2361EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2362
6d97dbd7 2363/**
9363c382 2364 * ata_sff_error_handler - Stock error handler for BMDMA controller
6d97dbd7 2365 * @ap: port to handle error for
6d97dbd7 2366 *
9363c382 2367 * Stock error handler for SFF controller. It can handle both
6d97dbd7
TH
2368 * PATA and SATA controllers. Many controllers should be able to
2369 * use this EH as-is or with some added handling before and
2370 * after.
2371 *
6d97dbd7
TH
2372 * LOCKING:
2373 * Kernel thread context (may sleep)
2374 */
9363c382 2375void ata_sff_error_handler(struct ata_port *ap)
6d97dbd7 2376{
a1efdaba
TH
2377 ata_reset_fn_t softreset = ap->ops->softreset;
2378 ata_reset_fn_t hardreset = ap->ops->hardreset;
6d97dbd7
TH
2379 struct ata_queued_cmd *qc;
2380 unsigned long flags;
2381 int thaw = 0;
2382
9af5c9c9 2383 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
6d97dbd7
TH
2384 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2385 qc = NULL;
2386
2387 /* reset PIO HSM and stop DMA engine */
ba6a1308 2388 spin_lock_irqsave(ap->lock, flags);
6d97dbd7 2389
6d97dbd7
TH
2390 ap->hsm_task_state = HSM_ST_IDLE;
2391
ed82f964
TH
2392 if (ap->ioaddr.bmdma_addr &&
2393 qc && (qc->tf.protocol == ATA_PROT_DMA ||
0dc36888 2394 qc->tf.protocol == ATAPI_PROT_DMA)) {
6d97dbd7
TH
2395 u8 host_stat;
2396
fbbb262d 2397 host_stat = ap->ops->bmdma_status(ap);
6d97dbd7 2398
6d97dbd7
TH
2399 /* BMDMA controllers indicate host bus error by
2400 * setting DMA_ERR bit and timing out. As it wasn't
2401 * really a timeout event, adjust error mask and
2402 * cancel frozen state.
2403 */
3d47aa8e
AC
2404 if (qc->err_mask == AC_ERR_TIMEOUT
2405 && (host_stat & ATA_DMA_ERR)) {
6d97dbd7
TH
2406 qc->err_mask = AC_ERR_HOST_BUS;
2407 thaw = 1;
2408 }
2409
2410 ap->ops->bmdma_stop(qc);
2411 }
2412
a57c1bad 2413 ata_sff_sync(ap); /* FIXME: We don't need this */
5682ed33
TH
2414 ap->ops->sff_check_status(ap);
2415 ap->ops->sff_irq_clear(ap);
3d47aa8e
AC
2416 /* We *MUST* do FIFO draining before we issue a reset as several
2417 * devices helpfully clear their internal state and will lock solid
2418 * if we touch the data port post reset. Pass qc in case anyone wants
2419 * to do different PIO/DMA recovery or has per command fixups
2420 */
2421 if (ap->ops->drain_fifo)
2422 ap->ops->drain_fifo(qc);
6d97dbd7 2423
ba6a1308 2424 spin_unlock_irqrestore(ap->lock, flags);
6d97dbd7
TH
2425
2426 if (thaw)
2427 ata_eh_thaw_port(ap);
2428
2429 /* PIO and DMA engines have been stopped, perform recovery */
6d97dbd7 2430
57c9efdf
TH
2431 /* Ignore ata_sff_softreset if ctl isn't accessible and
2432 * built-in hardresets if SCR access isn't available.
a1efdaba 2433 */
9363c382 2434 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
a1efdaba 2435 softreset = NULL;
57c9efdf 2436 if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link))
a1efdaba 2437 hardreset = NULL;
6d97dbd7 2438
a1efdaba
TH
2439 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2440 ap->ops->postreset);
6d97dbd7 2441}
0fe40ff8 2442EXPORT_SYMBOL_GPL(ata_sff_error_handler);
6d97dbd7
TH
2443
2444/**
9363c382 2445 * ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller
6d97dbd7
TH
2446 * @qc: internal command to clean up
2447 *
2448 * LOCKING:
2449 * Kernel thread context (may sleep)
2450 */
9363c382 2451void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc)
6d97dbd7 2452{
570106df
TH
2453 struct ata_port *ap = qc->ap;
2454 unsigned long flags;
2455
2456 spin_lock_irqsave(ap->lock, flags);
2457
2458 ap->hsm_task_state = HSM_ST_IDLE;
2459
2460 if (ap->ioaddr.bmdma_addr)
294264a9 2461 ap->ops->bmdma_stop(qc);
570106df
TH
2462
2463 spin_unlock_irqrestore(ap->lock, flags);
6d97dbd7 2464}
0fe40ff8 2465EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd);
6d97dbd7 2466
d92e74d3
AC
2467/**
2468 * ata_sff_port_start - Set port up for dma.
2469 * @ap: Port to initialize
2470 *
2471 * Called just after data structures for each port are
2472 * initialized. Allocates space for PRD table if the device
2473 * is DMA capable SFF.
2474 *
2475 * May be used as the port_start() entry in ata_port_operations.
2476 *
2477 * LOCKING:
2478 * Inherited from caller.
2479 */
d92e74d3
AC
2480int ata_sff_port_start(struct ata_port *ap)
2481{
2482 if (ap->ioaddr.bmdma_addr)
2483 return ata_port_start(ap);
2484 return 0;
2485}
0fe40ff8 2486EXPORT_SYMBOL_GPL(ata_sff_port_start);
d92e74d3 2487
e3cf95dd
AC
2488/**
2489 * ata_sff_port_start32 - Set port up for dma.
2490 * @ap: Port to initialize
2491 *
2492 * Called just after data structures for each port are
2493 * initialized. Allocates space for PRD table if the device
2494 * is DMA capable SFF.
2495 *
2496 * May be used as the port_start() entry in ata_port_operations for
2497 * devices that are capable of 32bit PIO.
2498 *
2499 * LOCKING:
2500 * Inherited from caller.
2501 */
2502int ata_sff_port_start32(struct ata_port *ap)
2503{
2504 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
2505 if (ap->ioaddr.bmdma_addr)
2506 return ata_port_start(ap);
2507 return 0;
2508}
2509EXPORT_SYMBOL_GPL(ata_sff_port_start32);
2510
624d5c51 2511/**
9363c382 2512 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
624d5c51
TH
2513 * @ioaddr: IO address structure to be initialized
2514 *
2515 * Utility function which initializes data_addr, error_addr,
2516 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2517 * device_addr, status_addr, and command_addr to standard offsets
2518 * relative to cmd_addr.
2519 *
2520 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2521 */
9363c382 2522void ata_sff_std_ports(struct ata_ioports *ioaddr)
624d5c51
TH
2523{
2524 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2525 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2526 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2527 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2528 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2529 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2530 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2531 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2532 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2533 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2534}
0fe40ff8 2535EXPORT_SYMBOL_GPL(ata_sff_std_ports);
624d5c51 2536
9363c382
TH
2537unsigned long ata_bmdma_mode_filter(struct ata_device *adev,
2538 unsigned long xfer_mask)
071ce34d
TH
2539{
2540 /* Filter out DMA modes if the device has been configured by
2541 the BIOS as PIO only */
2542
2543 if (adev->link->ap->ioaddr.bmdma_addr == NULL)
2544 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2545 return xfer_mask;
2546}
0fe40ff8 2547EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter);
071ce34d 2548
272f7884
TH
2549/**
2550 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2551 * @qc: Info associated with this ATA transaction.
2552 *
2553 * LOCKING:
2554 * spin_lock_irqsave(host lock)
2555 */
2556void ata_bmdma_setup(struct ata_queued_cmd *qc)
2557{
2558 struct ata_port *ap = qc->ap;
2559 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2560 u8 dmactl;
2561
2562 /* load PRD table addr. */
2563 mb(); /* make sure PRD table writes are visible to controller */
2564 iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2565
2566 /* specify data direction, triple-check start bit is clear */
2567 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2568 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2569 if (!rw)
2570 dmactl |= ATA_DMA_WR;
2571 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2572
2573 /* issue r/w command */
5682ed33 2574 ap->ops->sff_exec_command(ap, &qc->tf);
272f7884 2575}
0fe40ff8 2576EXPORT_SYMBOL_GPL(ata_bmdma_setup);
272f7884
TH
2577
2578/**
2579 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2580 * @qc: Info associated with this ATA transaction.
2581 *
2582 * LOCKING:
2583 * spin_lock_irqsave(host lock)
2584 */
2585void ata_bmdma_start(struct ata_queued_cmd *qc)
2586{
2587 struct ata_port *ap = qc->ap;
2588 u8 dmactl;
2589
2590 /* start host DMA transaction */
2591 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2592 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2593
2594 /* Strictly, one may wish to issue an ioread8() here, to
2595 * flush the mmio write. However, control also passes
2596 * to the hardware at this point, and it will interrupt
2597 * us when we are to resume control. So, in effect,
2598 * we don't care when the mmio write flushes.
2599 * Further, a read of the DMA status register _immediately_
2600 * following the write may not be what certain flaky hardware
2601 * is expected, so I think it is best to not add a readb()
2602 * without first all the MMIO ATA cards/mobos.
2603 * Or maybe I'm just being paranoid.
2604 *
2605 * FIXME: The posting of this write means I/O starts are
2606 * unneccessarily delayed for MMIO
2607 */
2608}
0fe40ff8 2609EXPORT_SYMBOL_GPL(ata_bmdma_start);
272f7884
TH
2610
2611/**
2612 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2613 * @qc: Command we are ending DMA for
2614 *
2615 * Clears the ATA_DMA_START flag in the dma control register
2616 *
2617 * May be used as the bmdma_stop() entry in ata_port_operations.
2618 *
2619 * LOCKING:
2620 * spin_lock_irqsave(host lock)
2621 */
2622void ata_bmdma_stop(struct ata_queued_cmd *qc)
2623{
2624 struct ata_port *ap = qc->ap;
2625 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2626
2627 /* clear start/stop bit */
2628 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2629 mmio + ATA_DMA_CMD);
2630
2631 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
a57c1bad 2632 ata_sff_dma_pause(ap);
272f7884 2633}
0fe40ff8 2634EXPORT_SYMBOL_GPL(ata_bmdma_stop);
272f7884
TH
2635
2636/**
2637 * ata_bmdma_status - Read PCI IDE BMDMA status
2638 * @ap: Port associated with this ATA transaction.
2639 *
2640 * Read and return BMDMA status register.
2641 *
2642 * May be used as the bmdma_status() entry in ata_port_operations.
2643 *
2644 * LOCKING:
2645 * spin_lock_irqsave(host lock)
2646 */
2647u8 ata_bmdma_status(struct ata_port *ap)
2648{
2649 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2650}
0fe40ff8 2651EXPORT_SYMBOL_GPL(ata_bmdma_status);
272f7884 2652
1fdffbce 2653#ifdef CONFIG_PCI
4112e16a 2654
272f7884 2655/**
9363c382 2656 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
272f7884
TH
2657 * @pdev: PCI device
2658 *
2659 * Some PCI ATA devices report simplex mode but in fact can be told to
2660 * enter non simplex mode. This implements the necessary logic to
2661 * perform the task on such devices. Calling it on other devices will
2662 * have -undefined- behaviour.
2663 */
9363c382 2664int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
4112e16a 2665{
272f7884
TH
2666 unsigned long bmdma = pci_resource_start(pdev, 4);
2667 u8 simplex;
a84471fe 2668
272f7884
TH
2669 if (bmdma == 0)
2670 return -ENOENT;
2671
2672 simplex = inb(bmdma + 0x02);
2673 outb(simplex & 0x60, bmdma + 0x02);
2674 simplex = inb(bmdma + 0x02);
2675 if (simplex & 0x80)
2676 return -EOPNOTSUPP;
2677 return 0;
2678}
0fe40ff8 2679EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
272f7884 2680
0f834de3 2681/**
9363c382 2682 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
0f834de3
TH
2683 * @host: target ATA host
2684 *
2685 * Acquire PCI BMDMA resources and initialize @host accordingly.
2686 *
2687 * LOCKING:
2688 * Inherited from calling layer (may sleep).
2689 *
2690 * RETURNS:
2691 * 0 on success, -errno otherwise.
2692 */
9363c382 2693int ata_pci_bmdma_init(struct ata_host *host)
1fdffbce 2694{
0f834de3
TH
2695 struct device *gdev = host->dev;
2696 struct pci_dev *pdev = to_pci_dev(gdev);
2697 int i, rc;
0d5ff566 2698
6fdc99a2
AC
2699 /* No BAR4 allocation: No DMA */
2700 if (pci_resource_start(pdev, 4) == 0)
2701 return 0;
2702
0f834de3
TH
2703 /* TODO: If we get no DMA mask we should fall back to PIO */
2704 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
2705 if (rc)
2706 return rc;
2707 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
2708 if (rc)
2709 return rc;
2710
2711 /* request and iomap DMA region */
35a10a80 2712 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
0f834de3
TH
2713 if (rc) {
2714 dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n");
2715 return -ENOMEM;
0d5ff566 2716 }
0f834de3 2717 host->iomap = pcim_iomap_table(pdev);
0d5ff566 2718
1626aeb8 2719 for (i = 0; i < 2; i++) {
0f834de3 2720 struct ata_port *ap = host->ports[i];
0f834de3
TH
2721 void __iomem *bmdma = host->iomap[4] + 8 * i;
2722
2723 if (ata_port_is_dummy(ap))
2724 continue;
2725
21b0ad4f 2726 ap->ioaddr.bmdma_addr = bmdma;
0f834de3
TH
2727 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
2728 (ioread8(bmdma + 2) & 0x80))
2729 host->flags |= ATA_HOST_SIMPLEX;
cbcdd875
TH
2730
2731 ata_port_desc(ap, "bmdma 0x%llx",
0fe40ff8 2732 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
0d5ff566
TH
2733 }
2734
0f834de3
TH
2735 return 0;
2736}
0fe40ff8 2737EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
2ec7df04 2738
272f7884
TH
2739static int ata_resources_present(struct pci_dev *pdev, int port)
2740{
2741 int i;
2742
2743 /* Check the PCI resources for this channel are enabled */
2744 port = port * 2;
0fe40ff8 2745 for (i = 0; i < 2; i++) {
272f7884
TH
2746 if (pci_resource_start(pdev, port + i) == 0 ||
2747 pci_resource_len(pdev, port + i) == 0)
2748 return 0;
2749 }
2750 return 1;
2751}
2752
d491b27b 2753/**
9363c382 2754 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
d491b27b 2755 * @host: target ATA host
d491b27b 2756 *
1626aeb8
TH
2757 * Acquire native PCI ATA resources for @host and initialize the
2758 * first two ports of @host accordingly. Ports marked dummy are
2759 * skipped and allocation failure makes the port dummy.
d491b27b 2760 *
d583bc18
TH
2761 * Note that native PCI resources are valid even for legacy hosts
2762 * as we fix up pdev resources array early in boot, so this
2763 * function can be used for both native and legacy SFF hosts.
2764 *
d491b27b
TH
2765 * LOCKING:
2766 * Inherited from calling layer (may sleep).
2767 *
2768 * RETURNS:
1626aeb8
TH
2769 * 0 if at least one port is initialized, -ENODEV if no port is
2770 * available.
d491b27b 2771 */
9363c382 2772int ata_pci_sff_init_host(struct ata_host *host)
d491b27b
TH
2773{
2774 struct device *gdev = host->dev;
2775 struct pci_dev *pdev = to_pci_dev(gdev);
1626aeb8 2776 unsigned int mask = 0;
d491b27b
TH
2777 int i, rc;
2778
d491b27b
TH
2779 /* request, iomap BARs and init port addresses accordingly */
2780 for (i = 0; i < 2; i++) {
2781 struct ata_port *ap = host->ports[i];
2782 int base = i * 2;
2783 void __iomem * const *iomap;
2784
1626aeb8
TH
2785 if (ata_port_is_dummy(ap))
2786 continue;
2787
2788 /* Discard disabled ports. Some controllers show
2789 * their unused channels this way. Disabled ports are
2790 * made dummy.
2791 */
2792 if (!ata_resources_present(pdev, i)) {
2793 ap->ops = &ata_dummy_port_ops;
d491b27b 2794 continue;
1626aeb8 2795 }
d491b27b 2796
35a10a80
TH
2797 rc = pcim_iomap_regions(pdev, 0x3 << base,
2798 dev_driver_string(gdev));
d491b27b 2799 if (rc) {
1626aeb8
TH
2800 dev_printk(KERN_WARNING, gdev,
2801 "failed to request/iomap BARs for port %d "
2802 "(errno=%d)\n", i, rc);
d491b27b
TH
2803 if (rc == -EBUSY)
2804 pcim_pin_device(pdev);
1626aeb8
TH
2805 ap->ops = &ata_dummy_port_ops;
2806 continue;
d491b27b
TH
2807 }
2808 host->iomap = iomap = pcim_iomap_table(pdev);
2809
2810 ap->ioaddr.cmd_addr = iomap[base];
2811 ap->ioaddr.altstatus_addr =
2812 ap->ioaddr.ctl_addr = (void __iomem *)
2813 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
9363c382 2814 ata_sff_std_ports(&ap->ioaddr);
1626aeb8 2815
cbcdd875
TH
2816 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2817 (unsigned long long)pci_resource_start(pdev, base),
2818 (unsigned long long)pci_resource_start(pdev, base + 1));
2819
1626aeb8
TH
2820 mask |= 1 << i;
2821 }
2822
2823 if (!mask) {
2824 dev_printk(KERN_ERR, gdev, "no available native port\n");
2825 return -ENODEV;
d491b27b
TH
2826 }
2827
2828 return 0;
2829}
0fe40ff8 2830EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
d491b27b 2831
21b0ad4f 2832/**
9363c382 2833 * ata_pci_sff_prepare_host - helper to prepare native PCI ATA host
21b0ad4f 2834 * @pdev: target PCI device
1626aeb8 2835 * @ppi: array of port_info, must be enough for two ports
21b0ad4f
TH
2836 * @r_host: out argument for the initialized ATA host
2837 *
2838 * Helper to allocate ATA host for @pdev, acquire all native PCI
2839 * resources and initialize it accordingly in one go.
2840 *
2841 * LOCKING:
2842 * Inherited from calling layer (may sleep).
2843 *
2844 * RETURNS:
2845 * 0 on success, -errno otherwise.
2846 */
9363c382 2847int ata_pci_sff_prepare_host(struct pci_dev *pdev,
0fe40ff8 2848 const struct ata_port_info * const *ppi,
d583bc18 2849 struct ata_host **r_host)
21b0ad4f
TH
2850{
2851 struct ata_host *host;
21b0ad4f
TH
2852 int rc;
2853
2854 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2855 return -ENOMEM;
2856
2857 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2858 if (!host) {
2859 dev_printk(KERN_ERR, &pdev->dev,
2860 "failed to allocate ATA host\n");
2861 rc = -ENOMEM;
2862 goto err_out;
2863 }
2864
9363c382 2865 rc = ata_pci_sff_init_host(host);
21b0ad4f
TH
2866 if (rc)
2867 goto err_out;
2868
2869 /* init DMA related stuff */
9363c382 2870 rc = ata_pci_bmdma_init(host);
21b0ad4f
TH
2871 if (rc)
2872 goto err_bmdma;
2873
2874 devres_remove_group(&pdev->dev, NULL);
2875 *r_host = host;
2876 return 0;
2877
0fe40ff8 2878err_bmdma:
21b0ad4f
TH
2879 /* This is necessary because PCI and iomap resources are
2880 * merged and releasing the top group won't release the
2881 * acquired resources if some of those have been acquired
2882 * before entering this function.
2883 */
2884 pcim_iounmap_regions(pdev, 0xf);
0fe40ff8 2885err_out:
21b0ad4f
TH
2886 devres_release_group(&pdev->dev, NULL);
2887 return rc;
2888}
0fe40ff8 2889EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
21b0ad4f 2890
4e6b79fa 2891/**
9363c382 2892 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
4e6b79fa
TH
2893 * @host: target SFF ATA host
2894 * @irq_handler: irq_handler used when requesting IRQ(s)
2895 * @sht: scsi_host_template to use when registering the host
2896 *
2897 * This is the counterpart of ata_host_activate() for SFF ATA
2898 * hosts. This separate helper is necessary because SFF hosts
2899 * use two separate interrupts in legacy mode.
2900 *
2901 * LOCKING:
2902 * Inherited from calling layer (may sleep).
2903 *
2904 * RETURNS:
2905 * 0 on success, -errno otherwise.
2906 */
9363c382 2907int ata_pci_sff_activate_host(struct ata_host *host,
4e6b79fa
TH
2908 irq_handler_t irq_handler,
2909 struct scsi_host_template *sht)
2910{
2911 struct device *dev = host->dev;
2912 struct pci_dev *pdev = to_pci_dev(dev);
2913 const char *drv_name = dev_driver_string(host->dev);
2914 int legacy_mode = 0, rc;
2915
2916 rc = ata_host_start(host);
2917 if (rc)
2918 return rc;
2919
2920 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2921 u8 tmp8, mask;
2922
2923 /* TODO: What if one channel is in native mode ... */
2924 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2925 mask = (1 << 2) | (1 << 0);
2926 if ((tmp8 & mask) != mask)
2927 legacy_mode = 1;
2928#if defined(CONFIG_NO_ATA_LEGACY)
2929 /* Some platforms with PCI limits cannot address compat
2930 port space. In that case we punt if their firmware has
2931 left a device in compatibility mode */
2932 if (legacy_mode) {
2933 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2934 return -EOPNOTSUPP;
2935 }
2936#endif
2937 }
2938
2939 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2940 return -ENOMEM;
2941
2942 if (!legacy_mode && pdev->irq) {
2943 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2944 IRQF_SHARED, drv_name, host);
2945 if (rc)
2946 goto out;
2947
2948 ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2949 ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2950 } else if (legacy_mode) {
2951 if (!ata_port_is_dummy(host->ports[0])) {
2952 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2953 irq_handler, IRQF_SHARED,
2954 drv_name, host);
2955 if (rc)
2956 goto out;
2957
2958 ata_port_desc(host->ports[0], "irq %d",
2959 ATA_PRIMARY_IRQ(pdev));
2960 }
2961
2962 if (!ata_port_is_dummy(host->ports[1])) {
2963 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2964 irq_handler, IRQF_SHARED,
2965 drv_name, host);
2966 if (rc)
2967 goto out;
2968
2969 ata_port_desc(host->ports[1], "irq %d",
2970 ATA_SECONDARY_IRQ(pdev));
2971 }
2972 }
2973
2974 rc = ata_host_register(host, sht);
0fe40ff8 2975out:
4e6b79fa
TH
2976 if (rc == 0)
2977 devres_remove_group(dev, NULL);
2978 else
2979 devres_release_group(dev, NULL);
2980
2981 return rc;
2982}
0fe40ff8 2983EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
4e6b79fa 2984
1fdffbce 2985/**
9363c382 2986 * ata_pci_sff_init_one - Initialize/register PCI IDE host controller
1fdffbce 2987 * @pdev: Controller to be initialized
1626aeb8 2988 * @ppi: array of port_info, must be enough for two ports
1bd5b715 2989 * @sht: scsi_host_template to use when registering the host
887125e3 2990 * @host_priv: host private_data
16ea0fc9 2991 * @hflag: host flags
1fdffbce
JG
2992 *
2993 * This is a helper function which can be called from a driver's
2994 * xxx_init_one() probe function if the hardware uses traditional
2995 * IDE taskfile registers.
2996 *
2997 * This function calls pci_enable_device(), reserves its register
2998 * regions, sets the dma mask, enables bus master mode, and calls
2999 * ata_device_add()
3000 *
2ec7df04
AC
3001 * ASSUMPTION:
3002 * Nobody makes a single channel controller that appears solely as
3003 * the secondary legacy port on PCI.
3004 *
1fdffbce
JG
3005 * LOCKING:
3006 * Inherited from PCI layer (may sleep).
3007 *
3008 * RETURNS:
3009 * Zero on success, negative on errno-based value on error.
3010 */
9363c382 3011int ata_pci_sff_init_one(struct pci_dev *pdev,
16ea0fc9
AC
3012 const struct ata_port_info * const *ppi,
3013 struct scsi_host_template *sht, void *host_priv, int hflag)
1fdffbce 3014{
f0d36efd 3015 struct device *dev = &pdev->dev;
1626aeb8 3016 const struct ata_port_info *pi = NULL;
0f834de3 3017 struct ata_host *host = NULL;
1626aeb8 3018 int i, rc;
1fdffbce
JG
3019
3020 DPRINTK("ENTER\n");
3021
1626aeb8
TH
3022 /* look up the first valid port_info */
3023 for (i = 0; i < 2 && ppi[i]; i++) {
3024 if (ppi[i]->port_ops != &ata_dummy_port_ops) {
3025 pi = ppi[i];
3026 break;
3027 }
3028 }
f0d36efd 3029
1626aeb8
TH
3030 if (!pi) {
3031 dev_printk(KERN_ERR, &pdev->dev,
3032 "no valid port_info specified\n");
3033 return -EINVAL;
3034 }
c791c306 3035
1626aeb8
TH
3036 if (!devres_open_group(dev, NULL, GFP_KERNEL))
3037 return -ENOMEM;
1fdffbce 3038
f0d36efd 3039 rc = pcim_enable_device(pdev);
1fdffbce 3040 if (rc)
4e6b79fa 3041 goto out;
1fdffbce 3042
4e6b79fa 3043 /* prepare and activate SFF host */
9363c382 3044 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
d583bc18 3045 if (rc)
4e6b79fa 3046 goto out;
887125e3 3047 host->private_data = host_priv;
16ea0fc9 3048 host->flags |= hflag;
d491b27b 3049
d491b27b 3050 pci_set_master(pdev);
9363c382 3051 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
0fe40ff8 3052out:
4e6b79fa
TH
3053 if (rc == 0)
3054 devres_remove_group(&pdev->dev, NULL);
3055 else
3056 devres_release_group(&pdev->dev, NULL);
d491b27b 3057
1fdffbce
JG
3058 return rc;
3059}
0fe40ff8 3060EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
1fdffbce
JG
3061
3062#endif /* CONFIG_PCI */