libata: unify mechanism to request follow-up SRST
[linux-block.git] / drivers / ata / libata-sff.c
CommitLineData
1fdffbce 1/*
f3a03b09 2 * libata-sff.c - helper library for PCI IDE BMDMA
1fdffbce
JG
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
1fdffbce
JG
35#include <linux/kernel.h>
36#include <linux/pci.h>
37#include <linux/libata.h>
624d5c51 38#include <linux/highmem.h>
1fdffbce
JG
39
40#include "libata.h"
41
624d5c51
TH
42const struct ata_port_operations ata_sff_port_ops = {
43 .inherits = &ata_base_port_ops,
44
9363c382
TH
45 .qc_prep = ata_sff_qc_prep,
46 .qc_issue = ata_sff_qc_issue,
47
48 .freeze = ata_sff_freeze,
49 .thaw = ata_sff_thaw,
0aa1113d 50 .prereset = ata_sff_prereset,
9363c382 51 .softreset = ata_sff_softreset,
57c9efdf 52 .hardreset = sata_sff_hardreset,
203c75b8 53 .postreset = ata_sff_postreset,
9363c382
TH
54 .error_handler = ata_sff_error_handler,
55 .post_internal_cmd = ata_sff_post_internal_cmd,
56
5682ed33
TH
57 .sff_dev_select = ata_sff_dev_select,
58 .sff_check_status = ata_sff_check_status,
59 .sff_tf_load = ata_sff_tf_load,
60 .sff_tf_read = ata_sff_tf_read,
61 .sff_exec_command = ata_sff_exec_command,
62 .sff_data_xfer = ata_sff_data_xfer,
63 .sff_irq_on = ata_sff_irq_on,
288623a0 64 .sff_irq_clear = ata_sff_irq_clear,
624d5c51
TH
65
66 .port_start = ata_sff_port_start,
67};
68
69const struct ata_port_operations ata_bmdma_port_ops = {
70 .inherits = &ata_sff_port_ops,
71
9363c382 72 .mode_filter = ata_bmdma_mode_filter,
624d5c51
TH
73
74 .bmdma_setup = ata_bmdma_setup,
75 .bmdma_start = ata_bmdma_start,
76 .bmdma_stop = ata_bmdma_stop,
77 .bmdma_status = ata_bmdma_status,
624d5c51
TH
78};
79
80/**
81 * ata_fill_sg - Fill PCI IDE PRD table
82 * @qc: Metadata associated with taskfile to be transferred
83 *
84 * Fill PCI IDE PRD (scatter-gather) table with segments
85 * associated with the current disk command.
86 *
87 * LOCKING:
88 * spin_lock_irqsave(host lock)
89 *
90 */
91static void ata_fill_sg(struct ata_queued_cmd *qc)
92{
93 struct ata_port *ap = qc->ap;
94 struct scatterlist *sg;
95 unsigned int si, pi;
96
97 pi = 0;
98 for_each_sg(qc->sg, sg, qc->n_elem, si) {
99 u32 addr, offset;
100 u32 sg_len, len;
101
102 /* determine if physical DMA addr spans 64K boundary.
103 * Note h/w doesn't support 64-bit, so we unconditionally
104 * truncate dma_addr_t to u32.
105 */
106 addr = (u32) sg_dma_address(sg);
107 sg_len = sg_dma_len(sg);
108
109 while (sg_len) {
110 offset = addr & 0xffff;
111 len = sg_len;
112 if ((offset + sg_len) > 0x10000)
113 len = 0x10000 - offset;
114
115 ap->prd[pi].addr = cpu_to_le32(addr);
116 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
117 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
118
119 pi++;
120 sg_len -= len;
121 addr += len;
122 }
123 }
124
125 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
126}
127
128/**
129 * ata_fill_sg_dumb - Fill PCI IDE PRD table
130 * @qc: Metadata associated with taskfile to be transferred
131 *
132 * Fill PCI IDE PRD (scatter-gather) table with segments
133 * associated with the current disk command. Perform the fill
134 * so that we avoid writing any length 64K records for
135 * controllers that don't follow the spec.
136 *
137 * LOCKING:
138 * spin_lock_irqsave(host lock)
139 *
140 */
141static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
142{
143 struct ata_port *ap = qc->ap;
144 struct scatterlist *sg;
145 unsigned int si, pi;
146
147 pi = 0;
148 for_each_sg(qc->sg, sg, qc->n_elem, si) {
149 u32 addr, offset;
150 u32 sg_len, len, blen;
151
152 /* determine if physical DMA addr spans 64K boundary.
153 * Note h/w doesn't support 64-bit, so we unconditionally
154 * truncate dma_addr_t to u32.
155 */
156 addr = (u32) sg_dma_address(sg);
157 sg_len = sg_dma_len(sg);
158
159 while (sg_len) {
160 offset = addr & 0xffff;
161 len = sg_len;
162 if ((offset + sg_len) > 0x10000)
163 len = 0x10000 - offset;
164
165 blen = len & 0xffff;
166 ap->prd[pi].addr = cpu_to_le32(addr);
167 if (blen == 0) {
168 /* Some PATA chipsets like the CS5530 can't
169 cope with 0x0000 meaning 64K as the spec says */
170 ap->prd[pi].flags_len = cpu_to_le32(0x8000);
171 blen = 0x8000;
172 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
173 }
174 ap->prd[pi].flags_len = cpu_to_le32(blen);
175 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
176
177 pi++;
178 sg_len -= len;
179 addr += len;
180 }
181 }
182
183 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
184}
185
186/**
9363c382 187 * ata_sff_qc_prep - Prepare taskfile for submission
624d5c51
TH
188 * @qc: Metadata associated with taskfile to be prepared
189 *
190 * Prepare ATA taskfile for submission.
191 *
192 * LOCKING:
193 * spin_lock_irqsave(host lock)
194 */
9363c382 195void ata_sff_qc_prep(struct ata_queued_cmd *qc)
624d5c51
TH
196{
197 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
198 return;
199
200 ata_fill_sg(qc);
201}
202
203/**
9363c382 204 * ata_sff_dumb_qc_prep - Prepare taskfile for submission
624d5c51
TH
205 * @qc: Metadata associated with taskfile to be prepared
206 *
207 * Prepare ATA taskfile for submission.
208 *
209 * LOCKING:
210 * spin_lock_irqsave(host lock)
211 */
9363c382 212void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc)
624d5c51
TH
213{
214 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
215 return;
216
217 ata_fill_sg_dumb(qc);
218}
219
272f7884 220/**
9363c382 221 * ata_sff_check_status - Read device status reg & clear interrupt
272f7884
TH
222 * @ap: port where the device is
223 *
224 * Reads ATA taskfile status register for currently-selected device
225 * and return its value. This also clears pending interrupts
226 * from this device
227 *
228 * LOCKING:
229 * Inherited from caller.
230 */
9363c382 231u8 ata_sff_check_status(struct ata_port *ap)
272f7884
TH
232{
233 return ioread8(ap->ioaddr.status_addr);
234}
235
236/**
9363c382 237 * ata_sff_altstatus - Read device alternate status reg
272f7884
TH
238 * @ap: port where the device is
239 *
240 * Reads ATA taskfile alternate status register for
241 * currently-selected device and return its value.
242 *
243 * Note: may NOT be used as the check_altstatus() entry in
244 * ata_port_operations.
245 *
246 * LOCKING:
247 * Inherited from caller.
248 */
9363c382 249u8 ata_sff_altstatus(struct ata_port *ap)
624d5c51 250{
5682ed33
TH
251 if (ap->ops->sff_check_altstatus)
252 return ap->ops->sff_check_altstatus(ap);
624d5c51
TH
253
254 return ioread8(ap->ioaddr.altstatus_addr);
255}
256
257/**
9363c382 258 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
624d5c51
TH
259 * @ap: port containing status register to be polled
260 * @tmout_pat: impatience timeout
261 * @tmout: overall timeout
262 *
263 * Sleep until ATA Status register bit BSY clears,
264 * or a timeout occurs.
265 *
266 * LOCKING:
267 * Kernel thread context (may sleep).
268 *
269 * RETURNS:
270 * 0 on success, -errno otherwise.
271 */
9363c382
TH
272int ata_sff_busy_sleep(struct ata_port *ap,
273 unsigned long tmout_pat, unsigned long tmout)
624d5c51
TH
274{
275 unsigned long timer_start, timeout;
276 u8 status;
277
9363c382 278 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
624d5c51
TH
279 timer_start = jiffies;
280 timeout = timer_start + tmout_pat;
281 while (status != 0xff && (status & ATA_BUSY) &&
282 time_before(jiffies, timeout)) {
283 msleep(50);
9363c382 284 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
624d5c51
TH
285 }
286
287 if (status != 0xff && (status & ATA_BUSY))
288 ata_port_printk(ap, KERN_WARNING,
289 "port is slow to respond, please be patient "
290 "(Status 0x%x)\n", status);
291
292 timeout = timer_start + tmout;
293 while (status != 0xff && (status & ATA_BUSY) &&
294 time_before(jiffies, timeout)) {
295 msleep(50);
5682ed33 296 status = ap->ops->sff_check_status(ap);
624d5c51
TH
297 }
298
299 if (status == 0xff)
300 return -ENODEV;
301
302 if (status & ATA_BUSY) {
303 ata_port_printk(ap, KERN_ERR, "port failed to respond "
304 "(%lu secs, Status 0x%x)\n",
305 tmout / HZ, status);
306 return -EBUSY;
307 }
308
309 return 0;
310}
311
aa2731ad
TH
312static int ata_sff_check_ready(struct ata_link *link)
313{
314 u8 status = link->ap->ops->sff_check_status(link->ap);
315
316 if (!(status & ATA_BUSY))
317 return 1;
318 if (status == 0xff)
319 return -ENODEV;
320 return 0;
321}
322
624d5c51 323/**
9363c382 324 * ata_sff_wait_ready - sleep until BSY clears, or timeout
705e76be 325 * @link: SFF link to wait ready status for
624d5c51
TH
326 * @deadline: deadline jiffies for the operation
327 *
328 * Sleep until ATA Status register bit BSY clears, or timeout
329 * occurs.
330 *
331 * LOCKING:
332 * Kernel thread context (may sleep).
333 *
334 * RETURNS:
335 * 0 on success, -errno otherwise.
336 */
705e76be 337int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
624d5c51 338{
aa2731ad 339 return ata_wait_ready(link, deadline, ata_sff_check_ready);
624d5c51
TH
340}
341
342/**
9363c382 343 * ata_sff_dev_select - Select device 0/1 on ATA bus
624d5c51
TH
344 * @ap: ATA channel to manipulate
345 * @device: ATA device (numbered from zero) to select
346 *
347 * Use the method defined in the ATA specification to
348 * make either device 0, or device 1, active on the
349 * ATA channel. Works with both PIO and MMIO.
350 *
351 * May be used as the dev_select() entry in ata_port_operations.
352 *
353 * LOCKING:
354 * caller.
355 */
9363c382 356void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
624d5c51
TH
357{
358 u8 tmp;
359
360 if (device == 0)
361 tmp = ATA_DEVICE_OBS;
362 else
363 tmp = ATA_DEVICE_OBS | ATA_DEV1;
364
365 iowrite8(tmp, ap->ioaddr.device_addr);
9363c382 366 ata_sff_pause(ap); /* needed; also flushes, for mmio */
624d5c51
TH
367}
368
369/**
370 * ata_dev_select - Select device 0/1 on ATA bus
371 * @ap: ATA channel to manipulate
372 * @device: ATA device (numbered from zero) to select
373 * @wait: non-zero to wait for Status register BSY bit to clear
374 * @can_sleep: non-zero if context allows sleeping
375 *
376 * Use the method defined in the ATA specification to
377 * make either device 0, or device 1, active on the
378 * ATA channel.
379 *
9363c382
TH
380 * This is a high-level version of ata_sff_dev_select(), which
381 * additionally provides the services of inserting the proper
382 * pauses and status polling, where needed.
624d5c51
TH
383 *
384 * LOCKING:
385 * caller.
386 */
387void ata_dev_select(struct ata_port *ap, unsigned int device,
388 unsigned int wait, unsigned int can_sleep)
389{
390 if (ata_msg_probe(ap))
391 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
392 "device %u, wait %u\n", device, wait);
393
394 if (wait)
395 ata_wait_idle(ap);
396
5682ed33 397 ap->ops->sff_dev_select(ap, device);
624d5c51
TH
398
399 if (wait) {
400 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
401 msleep(150);
402 ata_wait_idle(ap);
403 }
404}
405
406/**
9363c382 407 * ata_sff_irq_on - Enable interrupts on a port.
624d5c51
TH
408 * @ap: Port on which interrupts are enabled.
409 *
410 * Enable interrupts on a legacy IDE device using MMIO or PIO,
411 * wait for idle, clear any pending interrupts.
412 *
413 * LOCKING:
414 * Inherited from caller.
415 */
9363c382 416u8 ata_sff_irq_on(struct ata_port *ap)
624d5c51
TH
417{
418 struct ata_ioports *ioaddr = &ap->ioaddr;
419 u8 tmp;
420
421 ap->ctl &= ~ATA_NIEN;
422 ap->last_ctl = ap->ctl;
423
424 if (ioaddr->ctl_addr)
425 iowrite8(ap->ctl, ioaddr->ctl_addr);
426 tmp = ata_wait_idle(ap);
427
5682ed33 428 ap->ops->sff_irq_clear(ap);
624d5c51
TH
429
430 return tmp;
431}
432
433/**
9363c382 434 * ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt.
624d5c51
TH
435 * @ap: Port associated with this ATA transaction.
436 *
437 * Clear interrupt and error flags in DMA status register.
438 *
439 * May be used as the irq_clear() entry in ata_port_operations.
440 *
441 * LOCKING:
442 * spin_lock_irqsave(host lock)
443 */
9363c382 444void ata_sff_irq_clear(struct ata_port *ap)
624d5c51
TH
445{
446 void __iomem *mmio = ap->ioaddr.bmdma_addr;
447
448 if (!mmio)
449 return;
450
451 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
452}
453
454/**
9363c382 455 * ata_sff_tf_load - send taskfile registers to host controller
624d5c51
TH
456 * @ap: Port to which output is sent
457 * @tf: ATA taskfile register set
458 *
459 * Outputs ATA taskfile to standard ATA host controller.
460 *
461 * LOCKING:
462 * Inherited from caller.
463 */
9363c382 464void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
624d5c51
TH
465{
466 struct ata_ioports *ioaddr = &ap->ioaddr;
467 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
468
469 if (tf->ctl != ap->last_ctl) {
470 if (ioaddr->ctl_addr)
471 iowrite8(tf->ctl, ioaddr->ctl_addr);
472 ap->last_ctl = tf->ctl;
473 ata_wait_idle(ap);
474 }
475
476 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
477 WARN_ON(!ioaddr->ctl_addr);
478 iowrite8(tf->hob_feature, ioaddr->feature_addr);
479 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
480 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
481 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
482 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
483 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
484 tf->hob_feature,
485 tf->hob_nsect,
486 tf->hob_lbal,
487 tf->hob_lbam,
488 tf->hob_lbah);
489 }
490
491 if (is_addr) {
492 iowrite8(tf->feature, ioaddr->feature_addr);
493 iowrite8(tf->nsect, ioaddr->nsect_addr);
494 iowrite8(tf->lbal, ioaddr->lbal_addr);
495 iowrite8(tf->lbam, ioaddr->lbam_addr);
496 iowrite8(tf->lbah, ioaddr->lbah_addr);
497 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
498 tf->feature,
499 tf->nsect,
500 tf->lbal,
501 tf->lbam,
502 tf->lbah);
503 }
504
505 if (tf->flags & ATA_TFLAG_DEVICE) {
506 iowrite8(tf->device, ioaddr->device_addr);
507 VPRINTK("device 0x%X\n", tf->device);
508 }
509
510 ata_wait_idle(ap);
511}
512
513/**
9363c382 514 * ata_sff_tf_read - input device's ATA taskfile shadow registers
624d5c51
TH
515 * @ap: Port from which input is read
516 * @tf: ATA taskfile register set for storing input
517 *
518 * Reads ATA taskfile registers for currently-selected device
519 * into @tf. Assumes the device has a fully SFF compliant task file
520 * layout and behaviour. If you device does not (eg has a different
521 * status method) then you will need to provide a replacement tf_read
522 *
523 * LOCKING:
524 * Inherited from caller.
525 */
9363c382 526void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
624d5c51
TH
527{
528 struct ata_ioports *ioaddr = &ap->ioaddr;
529
9363c382 530 tf->command = ata_sff_check_status(ap);
624d5c51
TH
531 tf->feature = ioread8(ioaddr->error_addr);
532 tf->nsect = ioread8(ioaddr->nsect_addr);
533 tf->lbal = ioread8(ioaddr->lbal_addr);
534 tf->lbam = ioread8(ioaddr->lbam_addr);
535 tf->lbah = ioread8(ioaddr->lbah_addr);
536 tf->device = ioread8(ioaddr->device_addr);
537
538 if (tf->flags & ATA_TFLAG_LBA48) {
539 if (likely(ioaddr->ctl_addr)) {
540 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
541 tf->hob_feature = ioread8(ioaddr->error_addr);
542 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
543 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
544 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
545 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
546 iowrite8(tf->ctl, ioaddr->ctl_addr);
547 ap->last_ctl = tf->ctl;
548 } else
549 WARN_ON(1);
550 }
551}
552
553/**
9363c382 554 * ata_sff_exec_command - issue ATA command to host controller
624d5c51
TH
555 * @ap: port to which command is being issued
556 * @tf: ATA taskfile register set
557 *
558 * Issues ATA command, with proper synchronization with interrupt
559 * handler / other threads.
560 *
561 * LOCKING:
562 * spin_lock_irqsave(host lock)
563 */
9363c382 564void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
624d5c51
TH
565{
566 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
567
568 iowrite8(tf->command, ap->ioaddr.command_addr);
9363c382 569 ata_sff_pause(ap);
624d5c51
TH
570}
571
572/**
573 * ata_tf_to_host - issue ATA taskfile to host controller
574 * @ap: port to which command is being issued
575 * @tf: ATA taskfile register set
576 *
577 * Issues ATA taskfile register set to ATA host controller,
578 * with proper synchronization with interrupt handler and
579 * other threads.
580 *
581 * LOCKING:
582 * spin_lock_irqsave(host lock)
583 */
584static inline void ata_tf_to_host(struct ata_port *ap,
585 const struct ata_taskfile *tf)
586{
5682ed33
TH
587 ap->ops->sff_tf_load(ap, tf);
588 ap->ops->sff_exec_command(ap, tf);
624d5c51
TH
589}
590
591/**
9363c382 592 * ata_sff_data_xfer - Transfer data by PIO
624d5c51
TH
593 * @dev: device to target
594 * @buf: data buffer
595 * @buflen: buffer length
596 * @rw: read/write
597 *
598 * Transfer data from/to the device data register by PIO.
599 *
600 * LOCKING:
601 * Inherited from caller.
602 *
603 * RETURNS:
604 * Bytes consumed.
605 */
9363c382
TH
606unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
607 unsigned int buflen, int rw)
624d5c51
TH
608{
609 struct ata_port *ap = dev->link->ap;
610 void __iomem *data_addr = ap->ioaddr.data_addr;
611 unsigned int words = buflen >> 1;
612
613 /* Transfer multiple of 2 bytes */
614 if (rw == READ)
615 ioread16_rep(data_addr, buf, words);
616 else
617 iowrite16_rep(data_addr, buf, words);
618
619 /* Transfer trailing 1 byte, if any. */
620 if (unlikely(buflen & 0x01)) {
621 __le16 align_buf[1] = { 0 };
622 unsigned char *trailing_buf = buf + buflen - 1;
623
624 if (rw == READ) {
625 align_buf[0] = cpu_to_le16(ioread16(data_addr));
626 memcpy(trailing_buf, align_buf, 1);
627 } else {
628 memcpy(align_buf, trailing_buf, 1);
629 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
630 }
631 words++;
632 }
633
634 return words << 1;
635}
636
637/**
9363c382 638 * ata_sff_data_xfer_noirq - Transfer data by PIO
624d5c51
TH
639 * @dev: device to target
640 * @buf: data buffer
641 * @buflen: buffer length
642 * @rw: read/write
643 *
644 * Transfer data from/to the device data register by PIO. Do the
645 * transfer with interrupts disabled.
646 *
647 * LOCKING:
648 * Inherited from caller.
649 *
650 * RETURNS:
651 * Bytes consumed.
652 */
9363c382
TH
653unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
654 unsigned int buflen, int rw)
624d5c51
TH
655{
656 unsigned long flags;
657 unsigned int consumed;
658
659 local_irq_save(flags);
9363c382 660 consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
624d5c51
TH
661 local_irq_restore(flags);
662
663 return consumed;
664}
665
666/**
667 * ata_pio_sector - Transfer a sector of data.
668 * @qc: Command on going
669 *
670 * Transfer qc->sect_size bytes of data from/to the ATA device.
671 *
672 * LOCKING:
673 * Inherited from caller.
674 */
675static void ata_pio_sector(struct ata_queued_cmd *qc)
676{
677 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
678 struct ata_port *ap = qc->ap;
679 struct page *page;
680 unsigned int offset;
681 unsigned char *buf;
682
683 if (qc->curbytes == qc->nbytes - qc->sect_size)
684 ap->hsm_task_state = HSM_ST_LAST;
685
686 page = sg_page(qc->cursg);
687 offset = qc->cursg->offset + qc->cursg_ofs;
688
689 /* get the current page and offset */
690 page = nth_page(page, (offset >> PAGE_SHIFT));
691 offset %= PAGE_SIZE;
692
693 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
694
695 if (PageHighMem(page)) {
696 unsigned long flags;
697
698 /* FIXME: use a bounce buffer */
699 local_irq_save(flags);
700 buf = kmap_atomic(page, KM_IRQ0);
701
702 /* do the actual data transfer */
5682ed33
TH
703 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
704 do_write);
624d5c51
TH
705
706 kunmap_atomic(buf, KM_IRQ0);
707 local_irq_restore(flags);
708 } else {
709 buf = page_address(page);
5682ed33
TH
710 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
711 do_write);
624d5c51
TH
712 }
713
714 qc->curbytes += qc->sect_size;
715 qc->cursg_ofs += qc->sect_size;
716
717 if (qc->cursg_ofs == qc->cursg->length) {
718 qc->cursg = sg_next(qc->cursg);
719 qc->cursg_ofs = 0;
720 }
721}
722
723/**
724 * ata_pio_sectors - Transfer one or many sectors.
725 * @qc: Command on going
726 *
727 * Transfer one or many sectors of data from/to the
728 * ATA device for the DRQ request.
729 *
730 * LOCKING:
731 * Inherited from caller.
732 */
733static void ata_pio_sectors(struct ata_queued_cmd *qc)
734{
735 if (is_multi_taskfile(&qc->tf)) {
736 /* READ/WRITE MULTIPLE */
737 unsigned int nsect;
738
739 WARN_ON(qc->dev->multi_count == 0);
740
741 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
742 qc->dev->multi_count);
743 while (nsect--)
744 ata_pio_sector(qc);
745 } else
746 ata_pio_sector(qc);
747
9363c382 748 ata_sff_altstatus(qc->ap); /* flush */
624d5c51
TH
749}
750
751/**
752 * atapi_send_cdb - Write CDB bytes to hardware
753 * @ap: Port to which ATAPI device is attached.
754 * @qc: Taskfile currently active
755 *
756 * When device has indicated its readiness to accept
757 * a CDB, this function is called. Send the CDB.
758 *
759 * LOCKING:
760 * caller.
761 */
762static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
763{
764 /* send SCSI cdb */
765 DPRINTK("send cdb\n");
766 WARN_ON(qc->dev->cdb_len < 12);
767
5682ed33 768 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
9363c382 769 ata_sff_altstatus(ap); /* flush */
624d5c51
TH
770
771 switch (qc->tf.protocol) {
772 case ATAPI_PROT_PIO:
773 ap->hsm_task_state = HSM_ST;
774 break;
775 case ATAPI_PROT_NODATA:
776 ap->hsm_task_state = HSM_ST_LAST;
777 break;
778 case ATAPI_PROT_DMA:
779 ap->hsm_task_state = HSM_ST_LAST;
780 /* initiate bmdma */
781 ap->ops->bmdma_start(qc);
782 break;
783 }
784}
785
786/**
787 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
788 * @qc: Command on going
789 * @bytes: number of bytes
790 *
791 * Transfer Transfer data from/to the ATAPI device.
792 *
793 * LOCKING:
794 * Inherited from caller.
795 *
796 */
797static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
798{
799 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
800 struct ata_port *ap = qc->ap;
801 struct ata_device *dev = qc->dev;
802 struct ata_eh_info *ehi = &dev->link->eh_info;
803 struct scatterlist *sg;
804 struct page *page;
805 unsigned char *buf;
806 unsigned int offset, count, consumed;
807
808next_sg:
809 sg = qc->cursg;
810 if (unlikely(!sg)) {
811 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
812 "buf=%u cur=%u bytes=%u",
813 qc->nbytes, qc->curbytes, bytes);
814 return -1;
815 }
816
817 page = sg_page(sg);
818 offset = sg->offset + qc->cursg_ofs;
819
820 /* get the current page and offset */
821 page = nth_page(page, (offset >> PAGE_SHIFT));
822 offset %= PAGE_SIZE;
823
824 /* don't overrun current sg */
825 count = min(sg->length - qc->cursg_ofs, bytes);
826
827 /* don't cross page boundaries */
828 count = min(count, (unsigned int)PAGE_SIZE - offset);
829
830 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
831
832 if (PageHighMem(page)) {
833 unsigned long flags;
834
835 /* FIXME: use bounce buffer */
836 local_irq_save(flags);
837 buf = kmap_atomic(page, KM_IRQ0);
838
839 /* do the actual data transfer */
5682ed33 840 consumed = ap->ops->sff_data_xfer(dev, buf + offset, count, rw);
624d5c51
TH
841
842 kunmap_atomic(buf, KM_IRQ0);
843 local_irq_restore(flags);
844 } else {
845 buf = page_address(page);
5682ed33 846 consumed = ap->ops->sff_data_xfer(dev, buf + offset, count, rw);
624d5c51
TH
847 }
848
849 bytes -= min(bytes, consumed);
850 qc->curbytes += count;
851 qc->cursg_ofs += count;
852
853 if (qc->cursg_ofs == sg->length) {
854 qc->cursg = sg_next(qc->cursg);
855 qc->cursg_ofs = 0;
856 }
857
858 /* consumed can be larger than count only for the last transfer */
859 WARN_ON(qc->cursg && count != consumed);
860
861 if (bytes)
862 goto next_sg;
863 return 0;
864}
865
866/**
867 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
868 * @qc: Command on going
869 *
870 * Transfer Transfer data from/to the ATAPI device.
871 *
872 * LOCKING:
873 * Inherited from caller.
874 */
875static void atapi_pio_bytes(struct ata_queued_cmd *qc)
876{
877 struct ata_port *ap = qc->ap;
878 struct ata_device *dev = qc->dev;
879 struct ata_eh_info *ehi = &dev->link->eh_info;
880 unsigned int ireason, bc_lo, bc_hi, bytes;
881 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
882
883 /* Abuse qc->result_tf for temp storage of intermediate TF
884 * here to save some kernel stack usage.
885 * For normal completion, qc->result_tf is not relevant. For
886 * error, qc->result_tf is later overwritten by ata_qc_complete().
887 * So, the correctness of qc->result_tf is not affected.
888 */
5682ed33 889 ap->ops->sff_tf_read(ap, &qc->result_tf);
624d5c51
TH
890 ireason = qc->result_tf.nsect;
891 bc_lo = qc->result_tf.lbam;
892 bc_hi = qc->result_tf.lbah;
893 bytes = (bc_hi << 8) | bc_lo;
894
895 /* shall be cleared to zero, indicating xfer of data */
896 if (unlikely(ireason & (1 << 0)))
897 goto atapi_check;
898
899 /* make sure transfer direction matches expected */
900 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
901 if (unlikely(do_write != i_write))
902 goto atapi_check;
903
904 if (unlikely(!bytes))
905 goto atapi_check;
906
907 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
908
909 if (unlikely(__atapi_pio_bytes(qc, bytes)))
910 goto err_out;
9363c382 911 ata_sff_altstatus(ap); /* flush */
624d5c51
TH
912
913 return;
914
915 atapi_check:
916 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
917 ireason, bytes);
918 err_out:
919 qc->err_mask |= AC_ERR_HSM;
920 ap->hsm_task_state = HSM_ST_ERR;
921}
922
923/**
924 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
925 * @ap: the target ata_port
926 * @qc: qc on going
927 *
928 * RETURNS:
929 * 1 if ok in workqueue, 0 otherwise.
930 */
931static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
932{
933 if (qc->tf.flags & ATA_TFLAG_POLLING)
934 return 1;
935
936 if (ap->hsm_task_state == HSM_ST_FIRST) {
937 if (qc->tf.protocol == ATA_PROT_PIO &&
938 (qc->tf.flags & ATA_TFLAG_WRITE))
939 return 1;
940
941 if (ata_is_atapi(qc->tf.protocol) &&
942 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
943 return 1;
944 }
945
946 return 0;
947}
948
949/**
950 * ata_hsm_qc_complete - finish a qc running on standard HSM
951 * @qc: Command to complete
952 * @in_wq: 1 if called from workqueue, 0 otherwise
953 *
954 * Finish @qc which is running on standard HSM.
955 *
956 * LOCKING:
957 * If @in_wq is zero, spin_lock_irqsave(host lock).
958 * Otherwise, none on entry and grabs host lock.
959 */
960static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
961{
962 struct ata_port *ap = qc->ap;
963 unsigned long flags;
964
965 if (ap->ops->error_handler) {
966 if (in_wq) {
967 spin_lock_irqsave(ap->lock, flags);
968
969 /* EH might have kicked in while host lock is
970 * released.
971 */
972 qc = ata_qc_from_tag(ap, qc->tag);
973 if (qc) {
974 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5682ed33 975 ap->ops->sff_irq_on(ap);
624d5c51
TH
976 ata_qc_complete(qc);
977 } else
978 ata_port_freeze(ap);
979 }
980
981 spin_unlock_irqrestore(ap->lock, flags);
982 } else {
983 if (likely(!(qc->err_mask & AC_ERR_HSM)))
984 ata_qc_complete(qc);
985 else
986 ata_port_freeze(ap);
987 }
988 } else {
989 if (in_wq) {
990 spin_lock_irqsave(ap->lock, flags);
5682ed33 991 ap->ops->sff_irq_on(ap);
624d5c51
TH
992 ata_qc_complete(qc);
993 spin_unlock_irqrestore(ap->lock, flags);
994 } else
995 ata_qc_complete(qc);
996 }
997}
998
999/**
9363c382 1000 * ata_sff_hsm_move - move the HSM to the next state.
624d5c51
TH
1001 * @ap: the target ata_port
1002 * @qc: qc on going
1003 * @status: current device status
1004 * @in_wq: 1 if called from workqueue, 0 otherwise
1005 *
1006 * RETURNS:
1007 * 1 when poll next status needed, 0 otherwise.
1008 */
9363c382
TH
1009int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1010 u8 status, int in_wq)
624d5c51
TH
1011{
1012 unsigned long flags = 0;
1013 int poll_next;
1014
1015 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1016
9363c382 1017 /* Make sure ata_sff_qc_issue() does not throw things
624d5c51
TH
1018 * like DMA polling into the workqueue. Notice that
1019 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1020 */
1021 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
1022
1023fsm_start:
1024 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1025 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1026
1027 switch (ap->hsm_task_state) {
1028 case HSM_ST_FIRST:
1029 /* Send first data block or PACKET CDB */
1030
1031 /* If polling, we will stay in the work queue after
1032 * sending the data. Otherwise, interrupt handler
1033 * takes over after sending the data.
1034 */
1035 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1036
1037 /* check device status */
1038 if (unlikely((status & ATA_DRQ) == 0)) {
1039 /* handle BSY=0, DRQ=0 as error */
1040 if (likely(status & (ATA_ERR | ATA_DF)))
1041 /* device stops HSM for abort/error */
1042 qc->err_mask |= AC_ERR_DEV;
1043 else
1044 /* HSM violation. Let EH handle this */
1045 qc->err_mask |= AC_ERR_HSM;
1046
1047 ap->hsm_task_state = HSM_ST_ERR;
1048 goto fsm_start;
1049 }
1050
1051 /* Device should not ask for data transfer (DRQ=1)
1052 * when it finds something wrong.
1053 * We ignore DRQ here and stop the HSM by
1054 * changing hsm_task_state to HSM_ST_ERR and
1055 * let the EH abort the command or reset the device.
1056 */
1057 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1058 /* Some ATAPI tape drives forget to clear the ERR bit
1059 * when doing the next command (mostly request sense).
1060 * We ignore ERR here to workaround and proceed sending
1061 * the CDB.
1062 */
1063 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1064 ata_port_printk(ap, KERN_WARNING,
1065 "DRQ=1 with device error, "
1066 "dev_stat 0x%X\n", status);
1067 qc->err_mask |= AC_ERR_HSM;
1068 ap->hsm_task_state = HSM_ST_ERR;
1069 goto fsm_start;
1070 }
1071 }
1072
1073 /* Send the CDB (atapi) or the first data block (ata pio out).
1074 * During the state transition, interrupt handler shouldn't
1075 * be invoked before the data transfer is complete and
1076 * hsm_task_state is changed. Hence, the following locking.
1077 */
1078 if (in_wq)
1079 spin_lock_irqsave(ap->lock, flags);
1080
1081 if (qc->tf.protocol == ATA_PROT_PIO) {
1082 /* PIO data out protocol.
1083 * send first data block.
1084 */
1085
1086 /* ata_pio_sectors() might change the state
1087 * to HSM_ST_LAST. so, the state is changed here
1088 * before ata_pio_sectors().
1089 */
1090 ap->hsm_task_state = HSM_ST;
1091 ata_pio_sectors(qc);
1092 } else
1093 /* send CDB */
1094 atapi_send_cdb(ap, qc);
1095
1096 if (in_wq)
1097 spin_unlock_irqrestore(ap->lock, flags);
1098
1099 /* if polling, ata_pio_task() handles the rest.
1100 * otherwise, interrupt handler takes over from here.
1101 */
1102 break;
1103
1104 case HSM_ST:
1105 /* complete command or read/write the data register */
1106 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1107 /* ATAPI PIO protocol */
1108 if ((status & ATA_DRQ) == 0) {
1109 /* No more data to transfer or device error.
1110 * Device error will be tagged in HSM_ST_LAST.
1111 */
1112 ap->hsm_task_state = HSM_ST_LAST;
1113 goto fsm_start;
1114 }
1115
1116 /* Device should not ask for data transfer (DRQ=1)
1117 * when it finds something wrong.
1118 * We ignore DRQ here and stop the HSM by
1119 * changing hsm_task_state to HSM_ST_ERR and
1120 * let the EH abort the command or reset the device.
1121 */
1122 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1123 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
1124 "device error, dev_stat 0x%X\n",
1125 status);
1126 qc->err_mask |= AC_ERR_HSM;
1127 ap->hsm_task_state = HSM_ST_ERR;
1128 goto fsm_start;
1129 }
1130
1131 atapi_pio_bytes(qc);
1132
1133 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1134 /* bad ireason reported by device */
1135 goto fsm_start;
1136
1137 } else {
1138 /* ATA PIO protocol */
1139 if (unlikely((status & ATA_DRQ) == 0)) {
1140 /* handle BSY=0, DRQ=0 as error */
1141 if (likely(status & (ATA_ERR | ATA_DF)))
1142 /* device stops HSM for abort/error */
1143 qc->err_mask |= AC_ERR_DEV;
1144 else
1145 /* HSM violation. Let EH handle this.
1146 * Phantom devices also trigger this
1147 * condition. Mark hint.
1148 */
1149 qc->err_mask |= AC_ERR_HSM |
1150 AC_ERR_NODEV_HINT;
1151
1152 ap->hsm_task_state = HSM_ST_ERR;
1153 goto fsm_start;
1154 }
1155
1156 /* For PIO reads, some devices may ask for
1157 * data transfer (DRQ=1) alone with ERR=1.
1158 * We respect DRQ here and transfer one
1159 * block of junk data before changing the
1160 * hsm_task_state to HSM_ST_ERR.
1161 *
1162 * For PIO writes, ERR=1 DRQ=1 doesn't make
1163 * sense since the data block has been
1164 * transferred to the device.
1165 */
1166 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1167 /* data might be corrputed */
1168 qc->err_mask |= AC_ERR_DEV;
1169
1170 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1171 ata_pio_sectors(qc);
1172 status = ata_wait_idle(ap);
1173 }
1174
1175 if (status & (ATA_BUSY | ATA_DRQ))
1176 qc->err_mask |= AC_ERR_HSM;
1177
1178 /* ata_pio_sectors() might change the
1179 * state to HSM_ST_LAST. so, the state
1180 * is changed after ata_pio_sectors().
1181 */
1182 ap->hsm_task_state = HSM_ST_ERR;
1183 goto fsm_start;
1184 }
1185
1186 ata_pio_sectors(qc);
1187
1188 if (ap->hsm_task_state == HSM_ST_LAST &&
1189 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1190 /* all data read */
1191 status = ata_wait_idle(ap);
1192 goto fsm_start;
1193 }
1194 }
1195
1196 poll_next = 1;
1197 break;
1198
1199 case HSM_ST_LAST:
1200 if (unlikely(!ata_ok(status))) {
1201 qc->err_mask |= __ac_err_mask(status);
1202 ap->hsm_task_state = HSM_ST_ERR;
1203 goto fsm_start;
1204 }
1205
1206 /* no more data to transfer */
1207 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1208 ap->print_id, qc->dev->devno, status);
1209
1210 WARN_ON(qc->err_mask);
1211
1212 ap->hsm_task_state = HSM_ST_IDLE;
1213
1214 /* complete taskfile transaction */
1215 ata_hsm_qc_complete(qc, in_wq);
1216
1217 poll_next = 0;
1218 break;
1219
1220 case HSM_ST_ERR:
1221 /* make sure qc->err_mask is available to
1222 * know what's wrong and recover
1223 */
1224 WARN_ON(qc->err_mask == 0);
1225
1226 ap->hsm_task_state = HSM_ST_IDLE;
1227
1228 /* complete taskfile transaction */
1229 ata_hsm_qc_complete(qc, in_wq);
1230
1231 poll_next = 0;
1232 break;
1233 default:
1234 poll_next = 0;
1235 BUG();
1236 }
1237
1238 return poll_next;
1239}
1240
1241void ata_pio_task(struct work_struct *work)
1242{
1243 struct ata_port *ap =
1244 container_of(work, struct ata_port, port_task.work);
1245 struct ata_queued_cmd *qc = ap->port_task_data;
1246 u8 status;
1247 int poll_next;
1248
1249fsm_start:
1250 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
1251
1252 /*
1253 * This is purely heuristic. This is a fast path.
1254 * Sometimes when we enter, BSY will be cleared in
1255 * a chk-status or two. If not, the drive is probably seeking
1256 * or something. Snooze for a couple msecs, then
1257 * chk-status again. If still busy, queue delayed work.
1258 */
9363c382 1259 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
624d5c51
TH
1260 if (status & ATA_BUSY) {
1261 msleep(2);
9363c382 1262 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
624d5c51
TH
1263 if (status & ATA_BUSY) {
1264 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
1265 return;
1266 }
1267 }
1268
1269 /* move the HSM */
9363c382 1270 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
624d5c51
TH
1271
1272 /* another command or interrupt handler
1273 * may be running at this point.
1274 */
1275 if (poll_next)
1276 goto fsm_start;
1277}
1278
1279/**
9363c382 1280 * ata_sff_qc_issue - issue taskfile to device in proto-dependent manner
624d5c51
TH
1281 * @qc: command to issue to device
1282 *
1283 * Using various libata functions and hooks, this function
1284 * starts an ATA command. ATA commands are grouped into
1285 * classes called "protocols", and issuing each type of protocol
1286 * is slightly different.
1287 *
1288 * May be used as the qc_issue() entry in ata_port_operations.
1289 *
1290 * LOCKING:
1291 * spin_lock_irqsave(host lock)
1292 *
1293 * RETURNS:
1294 * Zero on success, AC_ERR_* mask on failure
1295 */
9363c382 1296unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
624d5c51
TH
1297{
1298 struct ata_port *ap = qc->ap;
1299
1300 /* Use polling pio if the LLD doesn't handle
1301 * interrupt driven pio and atapi CDB interrupt.
1302 */
1303 if (ap->flags & ATA_FLAG_PIO_POLLING) {
1304 switch (qc->tf.protocol) {
1305 case ATA_PROT_PIO:
1306 case ATA_PROT_NODATA:
1307 case ATAPI_PROT_PIO:
1308 case ATAPI_PROT_NODATA:
1309 qc->tf.flags |= ATA_TFLAG_POLLING;
1310 break;
1311 case ATAPI_PROT_DMA:
1312 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
1313 /* see ata_dma_blacklisted() */
1314 BUG();
1315 break;
1316 default:
1317 break;
1318 }
1319 }
1320
1321 /* select the device */
1322 ata_dev_select(ap, qc->dev->devno, 1, 0);
1323
1324 /* start the command */
1325 switch (qc->tf.protocol) {
1326 case ATA_PROT_NODATA:
1327 if (qc->tf.flags & ATA_TFLAG_POLLING)
1328 ata_qc_set_polling(qc);
1329
1330 ata_tf_to_host(ap, &qc->tf);
1331 ap->hsm_task_state = HSM_ST_LAST;
1332
1333 if (qc->tf.flags & ATA_TFLAG_POLLING)
1334 ata_pio_queue_task(ap, qc, 0);
1335
1336 break;
1337
1338 case ATA_PROT_DMA:
1339 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
1340
5682ed33 1341 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
624d5c51
TH
1342 ap->ops->bmdma_setup(qc); /* set up bmdma */
1343 ap->ops->bmdma_start(qc); /* initiate bmdma */
1344 ap->hsm_task_state = HSM_ST_LAST;
1345 break;
1346
1347 case ATA_PROT_PIO:
1348 if (qc->tf.flags & ATA_TFLAG_POLLING)
1349 ata_qc_set_polling(qc);
1350
1351 ata_tf_to_host(ap, &qc->tf);
1352
1353 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1354 /* PIO data out protocol */
1355 ap->hsm_task_state = HSM_ST_FIRST;
1356 ata_pio_queue_task(ap, qc, 0);
1357
1358 /* always send first data block using
1359 * the ata_pio_task() codepath.
1360 */
1361 } else {
1362 /* PIO data in protocol */
1363 ap->hsm_task_state = HSM_ST;
1364
1365 if (qc->tf.flags & ATA_TFLAG_POLLING)
1366 ata_pio_queue_task(ap, qc, 0);
1367
1368 /* if polling, ata_pio_task() handles the rest.
1369 * otherwise, interrupt handler takes over from here.
1370 */
1371 }
1372
1373 break;
1374
1375 case ATAPI_PROT_PIO:
1376 case ATAPI_PROT_NODATA:
1377 if (qc->tf.flags & ATA_TFLAG_POLLING)
1378 ata_qc_set_polling(qc);
1379
1380 ata_tf_to_host(ap, &qc->tf);
1381
1382 ap->hsm_task_state = HSM_ST_FIRST;
1383
1384 /* send cdb by polling if no cdb interrupt */
1385 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1386 (qc->tf.flags & ATA_TFLAG_POLLING))
1387 ata_pio_queue_task(ap, qc, 0);
1388 break;
1389
1390 case ATAPI_PROT_DMA:
1391 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
1392
5682ed33 1393 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
624d5c51
TH
1394 ap->ops->bmdma_setup(qc); /* set up bmdma */
1395 ap->hsm_task_state = HSM_ST_FIRST;
1396
1397 /* send cdb by polling if no cdb interrupt */
1398 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1399 ata_pio_queue_task(ap, qc, 0);
1400 break;
1401
1402 default:
1403 WARN_ON(1);
1404 return AC_ERR_SYSTEM;
1405 }
1406
1407 return 0;
1408}
1409
1410/**
9363c382 1411 * ata_sff_host_intr - Handle host interrupt for given (port, task)
624d5c51
TH
1412 * @ap: Port on which interrupt arrived (possibly...)
1413 * @qc: Taskfile currently active in engine
1414 *
1415 * Handle host interrupt for given queued command. Currently,
1416 * only DMA interrupts are handled. All other commands are
1417 * handled via polling with interrupts disabled (nIEN bit).
1418 *
1419 * LOCKING:
1420 * spin_lock_irqsave(host lock)
1421 *
1422 * RETURNS:
1423 * One if interrupt was handled, zero if not (shared irq).
1424 */
9363c382
TH
1425inline unsigned int ata_sff_host_intr(struct ata_port *ap,
1426 struct ata_queued_cmd *qc)
624d5c51
TH
1427{
1428 struct ata_eh_info *ehi = &ap->link.eh_info;
1429 u8 status, host_stat = 0;
1430
1431 VPRINTK("ata%u: protocol %d task_state %d\n",
1432 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1433
1434 /* Check whether we are expecting interrupt in this state */
1435 switch (ap->hsm_task_state) {
1436 case HSM_ST_FIRST:
1437 /* Some pre-ATAPI-4 devices assert INTRQ
1438 * at this state when ready to receive CDB.
1439 */
1440
1441 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1442 * The flag was turned on only for atapi devices. No
1443 * need to check ata_is_atapi(qc->tf.protocol) again.
1444 */
1445 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1446 goto idle_irq;
1447 break;
1448 case HSM_ST_LAST:
1449 if (qc->tf.protocol == ATA_PROT_DMA ||
1450 qc->tf.protocol == ATAPI_PROT_DMA) {
1451 /* check status of DMA engine */
1452 host_stat = ap->ops->bmdma_status(ap);
1453 VPRINTK("ata%u: host_stat 0x%X\n",
1454 ap->print_id, host_stat);
1455
1456 /* if it's not our irq... */
1457 if (!(host_stat & ATA_DMA_INTR))
1458 goto idle_irq;
1459
1460 /* before we do anything else, clear DMA-Start bit */
1461 ap->ops->bmdma_stop(qc);
1462
1463 if (unlikely(host_stat & ATA_DMA_ERR)) {
1464 /* error when transfering data to/from memory */
1465 qc->err_mask |= AC_ERR_HOST_BUS;
1466 ap->hsm_task_state = HSM_ST_ERR;
1467 }
1468 }
1469 break;
1470 case HSM_ST:
1471 break;
1472 default:
1473 goto idle_irq;
1474 }
1475
1476 /* check altstatus */
9363c382 1477 status = ata_sff_altstatus(ap);
624d5c51
TH
1478 if (status & ATA_BUSY)
1479 goto idle_irq;
1480
1481 /* check main status, clearing INTRQ */
5682ed33 1482 status = ap->ops->sff_check_status(ap);
624d5c51
TH
1483 if (unlikely(status & ATA_BUSY))
1484 goto idle_irq;
1485
1486 /* ack bmdma irq events */
5682ed33 1487 ap->ops->sff_irq_clear(ap);
624d5c51 1488
9363c382 1489 ata_sff_hsm_move(ap, qc, status, 0);
624d5c51
TH
1490
1491 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
1492 qc->tf.protocol == ATAPI_PROT_DMA))
1493 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
1494
1495 return 1; /* irq handled */
1496
1497idle_irq:
1498 ap->stats.idle_irq++;
1499
1500#ifdef ATA_IRQ_TRAP
1501 if ((ap->stats.idle_irq % 1000) == 0) {
5682ed33
TH
1502 ap->ops->sff_check_status(ap);
1503 ap->ops->sff_irq_clear(ap);
624d5c51
TH
1504 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1505 return 1;
1506 }
1507#endif
1508 return 0; /* irq not handled */
1509}
1510
1511/**
9363c382 1512 * ata_sff_interrupt - Default ATA host interrupt handler
624d5c51
TH
1513 * @irq: irq line (unused)
1514 * @dev_instance: pointer to our ata_host information structure
1515 *
1516 * Default interrupt handler for PCI IDE devices. Calls
9363c382 1517 * ata_sff_host_intr() for each port that is not disabled.
624d5c51
TH
1518 *
1519 * LOCKING:
1520 * Obtains host lock during operation.
1521 *
1522 * RETURNS:
1523 * IRQ_NONE or IRQ_HANDLED.
1524 */
9363c382 1525irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
624d5c51
TH
1526{
1527 struct ata_host *host = dev_instance;
1528 unsigned int i;
1529 unsigned int handled = 0;
1530 unsigned long flags;
1531
1532 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1533 spin_lock_irqsave(&host->lock, flags);
1534
1535 for (i = 0; i < host->n_ports; i++) {
1536 struct ata_port *ap;
1537
1538 ap = host->ports[i];
1539 if (ap &&
1540 !(ap->flags & ATA_FLAG_DISABLED)) {
1541 struct ata_queued_cmd *qc;
1542
1543 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1544 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
1545 (qc->flags & ATA_QCFLAG_ACTIVE))
9363c382 1546 handled |= ata_sff_host_intr(ap, qc);
624d5c51
TH
1547 }
1548 }
1549
1550 spin_unlock_irqrestore(&host->lock, flags);
1551
1552 return IRQ_RETVAL(handled);
1553}
1554
1555/**
9363c382 1556 * ata_sff_freeze - Freeze SFF controller port
624d5c51
TH
1557 * @ap: port to freeze
1558 *
1559 * Freeze BMDMA controller port.
1560 *
1561 * LOCKING:
1562 * Inherited from caller.
1563 */
9363c382 1564void ata_sff_freeze(struct ata_port *ap)
624d5c51
TH
1565{
1566 struct ata_ioports *ioaddr = &ap->ioaddr;
1567
1568 ap->ctl |= ATA_NIEN;
1569 ap->last_ctl = ap->ctl;
1570
1571 if (ioaddr->ctl_addr)
1572 iowrite8(ap->ctl, ioaddr->ctl_addr);
1573
1574 /* Under certain circumstances, some controllers raise IRQ on
1575 * ATA_NIEN manipulation. Also, many controllers fail to mask
1576 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1577 */
5682ed33 1578 ap->ops->sff_check_status(ap);
624d5c51 1579
5682ed33 1580 ap->ops->sff_irq_clear(ap);
624d5c51
TH
1581}
1582
1583/**
9363c382 1584 * ata_sff_thaw - Thaw SFF controller port
624d5c51
TH
1585 * @ap: port to thaw
1586 *
9363c382 1587 * Thaw SFF controller port.
624d5c51
TH
1588 *
1589 * LOCKING:
1590 * Inherited from caller.
1591 */
9363c382 1592void ata_sff_thaw(struct ata_port *ap)
272f7884 1593{
624d5c51 1594 /* clear & re-enable interrupts */
5682ed33
TH
1595 ap->ops->sff_check_status(ap);
1596 ap->ops->sff_irq_clear(ap);
1597 ap->ops->sff_irq_on(ap);
272f7884
TH
1598}
1599
0aa1113d
TH
1600/**
1601 * ata_sff_prereset - prepare SFF link for reset
1602 * @link: SFF link to be reset
1603 * @deadline: deadline jiffies for the operation
1604 *
1605 * SFF link @link is about to be reset. Initialize it. It first
1606 * calls ata_std_prereset() and wait for !BSY if the port is
1607 * being softreset.
1608 *
1609 * LOCKING:
1610 * Kernel thread context (may sleep)
1611 *
1612 * RETURNS:
1613 * 0 on success, -errno otherwise.
1614 */
1615int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1616{
0aa1113d
TH
1617 struct ata_eh_context *ehc = &link->eh_context;
1618 int rc;
1619
1620 rc = ata_std_prereset(link, deadline);
1621 if (rc)
1622 return rc;
1623
1624 /* if we're about to do hardreset, nothing more to do */
1625 if (ehc->i.action & ATA_EH_HARDRESET)
1626 return 0;
1627
1628 /* wait for !BSY if we don't know that no device is attached */
1629 if (!ata_link_offline(link)) {
705e76be 1630 rc = ata_sff_wait_ready(link, deadline);
0aa1113d
TH
1631 if (rc && rc != -ENODEV) {
1632 ata_link_printk(link, KERN_WARNING, "device not ready "
1633 "(errno=%d), forcing hardreset\n", rc);
1634 ehc->i.action |= ATA_EH_HARDRESET;
1635 }
1636 }
1637
1638 return 0;
1639}
1640
90088bb4 1641/**
624d5c51
TH
1642 * ata_devchk - PATA device presence detection
1643 * @ap: ATA channel to examine
1644 * @device: Device to examine (starting at zero)
90088bb4 1645 *
624d5c51
TH
1646 * This technique was originally described in
1647 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1648 * later found its way into the ATA/ATAPI spec.
1649 *
1650 * Write a pattern to the ATA shadow registers,
1651 * and if a device is present, it will respond by
1652 * correctly storing and echoing back the
1653 * ATA shadow register contents.
90088bb4
TH
1654 *
1655 * LOCKING:
624d5c51 1656 * caller.
90088bb4 1657 */
624d5c51 1658static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
90088bb4
TH
1659{
1660 struct ata_ioports *ioaddr = &ap->ioaddr;
624d5c51 1661 u8 nsect, lbal;
90088bb4 1662
5682ed33 1663 ap->ops->sff_dev_select(ap, device);
90088bb4 1664
624d5c51
TH
1665 iowrite8(0x55, ioaddr->nsect_addr);
1666 iowrite8(0xaa, ioaddr->lbal_addr);
90088bb4 1667
624d5c51
TH
1668 iowrite8(0xaa, ioaddr->nsect_addr);
1669 iowrite8(0x55, ioaddr->lbal_addr);
90088bb4 1670
624d5c51
TH
1671 iowrite8(0x55, ioaddr->nsect_addr);
1672 iowrite8(0xaa, ioaddr->lbal_addr);
1673
1674 nsect = ioread8(ioaddr->nsect_addr);
1675 lbal = ioread8(ioaddr->lbal_addr);
1676
1677 if ((nsect == 0x55) && (lbal == 0xaa))
1678 return 1; /* we found a device */
1679
1680 return 0; /* nothing found */
90088bb4
TH
1681}
1682
272f7884 1683/**
9363c382 1684 * ata_sff_dev_classify - Parse returned ATA device signature
624d5c51
TH
1685 * @dev: ATA device to classify (starting at zero)
1686 * @present: device seems present
1687 * @r_err: Value of error register on completion
272f7884 1688 *
624d5c51
TH
1689 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1690 * an ATA/ATAPI-defined set of values is placed in the ATA
1691 * shadow registers, indicating the results of device detection
1692 * and diagnostics.
272f7884 1693 *
624d5c51
TH
1694 * Select the ATA device, and read the values from the ATA shadow
1695 * registers. Then parse according to the Error register value,
1696 * and the spec-defined values examined by ata_dev_classify().
272f7884
TH
1697 *
1698 * LOCKING:
624d5c51
TH
1699 * caller.
1700 *
1701 * RETURNS:
1702 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
272f7884 1703 */
9363c382 1704unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
624d5c51 1705 u8 *r_err)
272f7884 1706{
624d5c51
TH
1707 struct ata_port *ap = dev->link->ap;
1708 struct ata_taskfile tf;
1709 unsigned int class;
1710 u8 err;
1711
5682ed33 1712 ap->ops->sff_dev_select(ap, dev->devno);
624d5c51
TH
1713
1714 memset(&tf, 0, sizeof(tf));
1715
5682ed33 1716 ap->ops->sff_tf_read(ap, &tf);
624d5c51
TH
1717 err = tf.feature;
1718 if (r_err)
1719 *r_err = err;
1720
1721 /* see if device passed diags: continue and warn later */
1722 if (err == 0)
1723 /* diagnostic fail : do nothing _YET_ */
1724 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1725 else if (err == 1)
1726 /* do nothing */ ;
1727 else if ((dev->devno == 0) && (err == 0x81))
1728 /* do nothing */ ;
1729 else
1730 return ATA_DEV_NONE;
272f7884 1731
624d5c51
TH
1732 /* determine if device is ATA or ATAPI */
1733 class = ata_dev_classify(&tf);
272f7884 1734
624d5c51
TH
1735 if (class == ATA_DEV_UNKNOWN) {
1736 /* If the device failed diagnostic, it's likely to
1737 * have reported incorrect device signature too.
1738 * Assume ATA device if the device seems present but
1739 * device signature is invalid with diagnostic
1740 * failure.
1741 */
1742 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1743 class = ATA_DEV_ATA;
1744 else
1745 class = ATA_DEV_NONE;
5682ed33
TH
1746 } else if ((class == ATA_DEV_ATA) &&
1747 (ap->ops->sff_check_status(ap) == 0))
624d5c51
TH
1748 class = ATA_DEV_NONE;
1749
1750 return class;
272f7884
TH
1751}
1752
705e76be
TH
1753/**
1754 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1755 * @link: SFF link which is just reset
1756 * @devmask: mask of present devices
1757 * @deadline: deadline jiffies for the operation
1758 *
1759 * Wait devices attached to SFF @link to become ready after
1760 * reset. It contains preceding 150ms wait to avoid accessing TF
1761 * status register too early.
1762 *
1763 * LOCKING:
1764 * Kernel thread context (may sleep).
1765 *
1766 * RETURNS:
1767 * 0 on success, -ENODEV if some or all of devices in @devmask
1768 * don't seem to exist. -errno on other errors.
1769 */
1770int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1771 unsigned long deadline)
1fdffbce 1772{
705e76be 1773 struct ata_port *ap = link->ap;
1fdffbce 1774 struct ata_ioports *ioaddr = &ap->ioaddr;
624d5c51
TH
1775 unsigned int dev0 = devmask & (1 << 0);
1776 unsigned int dev1 = devmask & (1 << 1);
1777 int rc, ret = 0;
1fdffbce 1778
705e76be
TH
1779 msleep(ATA_WAIT_AFTER_RESET_MSECS);
1780
1781 /* always check readiness of the master device */
1782 rc = ata_sff_wait_ready(link, deadline);
1783 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1784 * and TF status is 0xff, bail out on it too.
624d5c51 1785 */
705e76be
TH
1786 if (rc)
1787 return rc;
1fdffbce 1788
624d5c51
TH
1789 /* if device 1 was found in ata_devchk, wait for register
1790 * access briefly, then wait for BSY to clear.
1791 */
1792 if (dev1) {
1793 int i;
1fdffbce 1794
5682ed33 1795 ap->ops->sff_dev_select(ap, 1);
1fdffbce 1796
624d5c51
TH
1797 /* Wait for register access. Some ATAPI devices fail
1798 * to set nsect/lbal after reset, so don't waste too
1799 * much time on it. We're gonna wait for !BSY anyway.
1800 */
1801 for (i = 0; i < 2; i++) {
1802 u8 nsect, lbal;
1803
1804 nsect = ioread8(ioaddr->nsect_addr);
1805 lbal = ioread8(ioaddr->lbal_addr);
1806 if ((nsect == 1) && (lbal == 1))
1807 break;
1808 msleep(50); /* give drive a breather */
1809 }
1810
705e76be 1811 rc = ata_sff_wait_ready(link, deadline);
624d5c51
TH
1812 if (rc) {
1813 if (rc != -ENODEV)
1814 return rc;
1815 ret = rc;
1816 }
1fdffbce
JG
1817 }
1818
624d5c51 1819 /* is all this really necessary? */
5682ed33 1820 ap->ops->sff_dev_select(ap, 0);
624d5c51 1821 if (dev1)
5682ed33 1822 ap->ops->sff_dev_select(ap, 1);
624d5c51 1823 if (dev0)
5682ed33 1824 ap->ops->sff_dev_select(ap, 0);
624d5c51
TH
1825
1826 return ret;
1fdffbce
JG
1827}
1828
624d5c51
TH
1829static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1830 unsigned long deadline)
2cc432ee 1831{
624d5c51 1832 struct ata_ioports *ioaddr = &ap->ioaddr;
2cc432ee 1833
624d5c51
TH
1834 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1835
1836 /* software reset. causes dev0 to be selected */
1837 iowrite8(ap->ctl, ioaddr->ctl_addr);
1838 udelay(20); /* FIXME: flush */
1839 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1840 udelay(20); /* FIXME: flush */
1841 iowrite8(ap->ctl, ioaddr->ctl_addr);
1842
705e76be
TH
1843 /* wait the port to become ready */
1844 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2cc432ee
JG
1845}
1846
6d97dbd7 1847/**
9363c382 1848 * ata_sff_softreset - reset host port via ATA SRST
624d5c51
TH
1849 * @link: ATA link to reset
1850 * @classes: resulting classes of attached devices
1851 * @deadline: deadline jiffies for the operation
6d97dbd7 1852 *
624d5c51 1853 * Reset host port using ATA SRST.
6d97dbd7
TH
1854 *
1855 * LOCKING:
624d5c51
TH
1856 * Kernel thread context (may sleep)
1857 *
1858 * RETURNS:
1859 * 0 on success, -errno otherwise.
6d97dbd7 1860 */
9363c382 1861int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
624d5c51 1862 unsigned long deadline)
6d97dbd7 1863{
624d5c51
TH
1864 struct ata_port *ap = link->ap;
1865 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1866 unsigned int devmask = 0;
1867 int rc;
1868 u8 err;
6d97dbd7 1869
624d5c51 1870 DPRINTK("ENTER\n");
6d97dbd7 1871
624d5c51
TH
1872 if (ata_link_offline(link)) {
1873 classes[0] = ATA_DEV_NONE;
1874 goto out;
1875 }
0f0a3ad3 1876
624d5c51
TH
1877 /* determine if device 0/1 are present */
1878 if (ata_devchk(ap, 0))
1879 devmask |= (1 << 0);
1880 if (slave_possible && ata_devchk(ap, 1))
1881 devmask |= (1 << 1);
1882
1883 /* select device 0 again */
5682ed33 1884 ap->ops->sff_dev_select(ap, 0);
624d5c51
TH
1885
1886 /* issue bus reset */
1887 DPRINTK("about to softreset, devmask=%x\n", devmask);
1888 rc = ata_bus_softreset(ap, devmask, deadline);
1889 /* if link is occupied, -ENODEV too is an error */
1890 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1891 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
1892 return rc;
1893 }
0f0a3ad3 1894
624d5c51 1895 /* determine by signature whether we have ATA or ATAPI devices */
9363c382 1896 classes[0] = ata_sff_dev_classify(&link->device[0],
624d5c51
TH
1897 devmask & (1 << 0), &err);
1898 if (slave_possible && err != 0x81)
9363c382 1899 classes[1] = ata_sff_dev_classify(&link->device[1],
624d5c51
TH
1900 devmask & (1 << 1), &err);
1901
1902 out:
1903 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
1904 return 0;
6d97dbd7
TH
1905}
1906
1907/**
9363c382 1908 * sata_sff_hardreset - reset host port via SATA phy reset
624d5c51
TH
1909 * @link: link to reset
1910 * @class: resulting class of attached device
1911 * @deadline: deadline jiffies for the operation
6d97dbd7 1912 *
624d5c51
TH
1913 * SATA phy-reset host port using DET bits of SControl register,
1914 * wait for !BSY and classify the attached device.
6d97dbd7
TH
1915 *
1916 * LOCKING:
624d5c51
TH
1917 * Kernel thread context (may sleep)
1918 *
1919 * RETURNS:
1920 * 0 on success, -errno otherwise.
6d97dbd7 1921 */
9363c382 1922int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
624d5c51 1923 unsigned long deadline)
6d97dbd7 1924{
9dadd45b
TH
1925 struct ata_eh_context *ehc = &link->eh_context;
1926 const unsigned long *timing = sata_ehc_deb_timing(ehc);
1927 bool online;
624d5c51
TH
1928 int rc;
1929
9dadd45b
TH
1930 rc = sata_link_hardreset(link, timing, deadline, &online,
1931 ata_sff_check_ready);
9dadd45b
TH
1932 if (online)
1933 *class = ata_sff_dev_classify(link->device, 1, NULL);
624d5c51
TH
1934
1935 DPRINTK("EXIT, class=%u\n", *class);
9dadd45b 1936 return rc;
6d97dbd7
TH
1937}
1938
203c75b8
TH
1939/**
1940 * ata_sff_postreset - SFF postreset callback
1941 * @link: the target SFF ata_link
1942 * @classes: classes of attached devices
1943 *
1944 * This function is invoked after a successful reset. It first
1945 * calls ata_std_postreset() and performs SFF specific postreset
1946 * processing.
1947 *
1948 * LOCKING:
1949 * Kernel thread context (may sleep)
1950 */
1951void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
1952{
1953 struct ata_port *ap = link->ap;
1954
1955 ata_std_postreset(link, classes);
1956
1957 /* is double-select really necessary? */
1958 if (classes[0] != ATA_DEV_NONE)
1959 ap->ops->sff_dev_select(ap, 1);
1960 if (classes[1] != ATA_DEV_NONE)
1961 ap->ops->sff_dev_select(ap, 0);
1962
1963 /* bail out if no device is present */
1964 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
1965 DPRINTK("EXIT, no device\n");
1966 return;
1967 }
1968
1969 /* set up device control */
1970 if (ap->ioaddr.ctl_addr)
1971 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
1972}
1973
6d97dbd7 1974/**
9363c382 1975 * ata_sff_error_handler - Stock error handler for BMDMA controller
6d97dbd7 1976 * @ap: port to handle error for
6d97dbd7 1977 *
9363c382 1978 * Stock error handler for SFF controller. It can handle both
6d97dbd7
TH
1979 * PATA and SATA controllers. Many controllers should be able to
1980 * use this EH as-is or with some added handling before and
1981 * after.
1982 *
6d97dbd7
TH
1983 * LOCKING:
1984 * Kernel thread context (may sleep)
1985 */
9363c382 1986void ata_sff_error_handler(struct ata_port *ap)
6d97dbd7 1987{
a1efdaba
TH
1988 ata_reset_fn_t softreset = ap->ops->softreset;
1989 ata_reset_fn_t hardreset = ap->ops->hardreset;
6d97dbd7
TH
1990 struct ata_queued_cmd *qc;
1991 unsigned long flags;
1992 int thaw = 0;
1993
9af5c9c9 1994 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
6d97dbd7
TH
1995 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
1996 qc = NULL;
1997
1998 /* reset PIO HSM and stop DMA engine */
ba6a1308 1999 spin_lock_irqsave(ap->lock, flags);
6d97dbd7 2000
6d97dbd7
TH
2001 ap->hsm_task_state = HSM_ST_IDLE;
2002
ed82f964
TH
2003 if (ap->ioaddr.bmdma_addr &&
2004 qc && (qc->tf.protocol == ATA_PROT_DMA ||
0dc36888 2005 qc->tf.protocol == ATAPI_PROT_DMA)) {
6d97dbd7
TH
2006 u8 host_stat;
2007
fbbb262d 2008 host_stat = ap->ops->bmdma_status(ap);
6d97dbd7 2009
6d97dbd7
TH
2010 /* BMDMA controllers indicate host bus error by
2011 * setting DMA_ERR bit and timing out. As it wasn't
2012 * really a timeout event, adjust error mask and
2013 * cancel frozen state.
2014 */
18d90deb 2015 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
6d97dbd7
TH
2016 qc->err_mask = AC_ERR_HOST_BUS;
2017 thaw = 1;
2018 }
2019
2020 ap->ops->bmdma_stop(qc);
2021 }
2022
9363c382 2023 ata_sff_altstatus(ap);
5682ed33
TH
2024 ap->ops->sff_check_status(ap);
2025 ap->ops->sff_irq_clear(ap);
6d97dbd7 2026
ba6a1308 2027 spin_unlock_irqrestore(ap->lock, flags);
6d97dbd7
TH
2028
2029 if (thaw)
2030 ata_eh_thaw_port(ap);
2031
2032 /* PIO and DMA engines have been stopped, perform recovery */
6d97dbd7 2033
57c9efdf
TH
2034 /* Ignore ata_sff_softreset if ctl isn't accessible and
2035 * built-in hardresets if SCR access isn't available.
a1efdaba 2036 */
9363c382 2037 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
a1efdaba 2038 softreset = NULL;
57c9efdf 2039 if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link))
a1efdaba 2040 hardreset = NULL;
6d97dbd7 2041
a1efdaba
TH
2042 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2043 ap->ops->postreset);
6d97dbd7
TH
2044}
2045
2046/**
9363c382 2047 * ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller
6d97dbd7
TH
2048 * @qc: internal command to clean up
2049 *
2050 * LOCKING:
2051 * Kernel thread context (may sleep)
2052 */
9363c382 2053void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc)
6d97dbd7 2054{
61dd08c6
A
2055 if (qc->ap->ioaddr.bmdma_addr)
2056 ata_bmdma_stop(qc);
6d97dbd7
TH
2057}
2058
d92e74d3
AC
2059/**
2060 * ata_sff_port_start - Set port up for dma.
2061 * @ap: Port to initialize
2062 *
2063 * Called just after data structures for each port are
2064 * initialized. Allocates space for PRD table if the device
2065 * is DMA capable SFF.
2066 *
2067 * May be used as the port_start() entry in ata_port_operations.
2068 *
2069 * LOCKING:
2070 * Inherited from caller.
2071 */
d92e74d3
AC
2072int ata_sff_port_start(struct ata_port *ap)
2073{
2074 if (ap->ioaddr.bmdma_addr)
2075 return ata_port_start(ap);
2076 return 0;
2077}
2078
624d5c51 2079/**
9363c382 2080 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
624d5c51
TH
2081 * @ioaddr: IO address structure to be initialized
2082 *
2083 * Utility function which initializes data_addr, error_addr,
2084 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2085 * device_addr, status_addr, and command_addr to standard offsets
2086 * relative to cmd_addr.
2087 *
2088 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2089 */
9363c382 2090void ata_sff_std_ports(struct ata_ioports *ioaddr)
624d5c51
TH
2091{
2092 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2093 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2094 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2095 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2096 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2097 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2098 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2099 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2100 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2101 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2102}
2103
9363c382
TH
2104unsigned long ata_bmdma_mode_filter(struct ata_device *adev,
2105 unsigned long xfer_mask)
071ce34d
TH
2106{
2107 /* Filter out DMA modes if the device has been configured by
2108 the BIOS as PIO only */
2109
2110 if (adev->link->ap->ioaddr.bmdma_addr == NULL)
2111 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2112 return xfer_mask;
2113}
2114
272f7884
TH
2115/**
2116 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2117 * @qc: Info associated with this ATA transaction.
2118 *
2119 * LOCKING:
2120 * spin_lock_irqsave(host lock)
2121 */
2122void ata_bmdma_setup(struct ata_queued_cmd *qc)
2123{
2124 struct ata_port *ap = qc->ap;
2125 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2126 u8 dmactl;
2127
2128 /* load PRD table addr. */
2129 mb(); /* make sure PRD table writes are visible to controller */
2130 iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2131
2132 /* specify data direction, triple-check start bit is clear */
2133 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2134 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2135 if (!rw)
2136 dmactl |= ATA_DMA_WR;
2137 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2138
2139 /* issue r/w command */
5682ed33 2140 ap->ops->sff_exec_command(ap, &qc->tf);
272f7884
TH
2141}
2142
2143/**
2144 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2145 * @qc: Info associated with this ATA transaction.
2146 *
2147 * LOCKING:
2148 * spin_lock_irqsave(host lock)
2149 */
2150void ata_bmdma_start(struct ata_queued_cmd *qc)
2151{
2152 struct ata_port *ap = qc->ap;
2153 u8 dmactl;
2154
2155 /* start host DMA transaction */
2156 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2157 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2158
2159 /* Strictly, one may wish to issue an ioread8() here, to
2160 * flush the mmio write. However, control also passes
2161 * to the hardware at this point, and it will interrupt
2162 * us when we are to resume control. So, in effect,
2163 * we don't care when the mmio write flushes.
2164 * Further, a read of the DMA status register _immediately_
2165 * following the write may not be what certain flaky hardware
2166 * is expected, so I think it is best to not add a readb()
2167 * without first all the MMIO ATA cards/mobos.
2168 * Or maybe I'm just being paranoid.
2169 *
2170 * FIXME: The posting of this write means I/O starts are
2171 * unneccessarily delayed for MMIO
2172 */
2173}
2174
2175/**
2176 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2177 * @qc: Command we are ending DMA for
2178 *
2179 * Clears the ATA_DMA_START flag in the dma control register
2180 *
2181 * May be used as the bmdma_stop() entry in ata_port_operations.
2182 *
2183 * LOCKING:
2184 * spin_lock_irqsave(host lock)
2185 */
2186void ata_bmdma_stop(struct ata_queued_cmd *qc)
2187{
2188 struct ata_port *ap = qc->ap;
2189 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2190
2191 /* clear start/stop bit */
2192 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2193 mmio + ATA_DMA_CMD);
2194
2195 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
9363c382 2196 ata_sff_altstatus(ap); /* dummy read */
272f7884
TH
2197}
2198
2199/**
2200 * ata_bmdma_status - Read PCI IDE BMDMA status
2201 * @ap: Port associated with this ATA transaction.
2202 *
2203 * Read and return BMDMA status register.
2204 *
2205 * May be used as the bmdma_status() entry in ata_port_operations.
2206 *
2207 * LOCKING:
2208 * spin_lock_irqsave(host lock)
2209 */
2210u8 ata_bmdma_status(struct ata_port *ap)
2211{
2212 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2213}
2214
2215/**
624d5c51
TH
2216 * ata_bus_reset - reset host port and associated ATA channel
2217 * @ap: port to reset
2218 *
2219 * This is typically the first time we actually start issuing
2220 * commands to the ATA channel. We wait for BSY to clear, then
2221 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2222 * result. Determine what devices, if any, are on the channel
2223 * by looking at the device 0/1 error register. Look at the signature
2224 * stored in each device's taskfile registers, to determine if
2225 * the device is ATA or ATAPI.
2226 *
2227 * LOCKING:
2228 * PCI/etc. bus probe sem.
2229 * Obtains host lock.
2230 *
2231 * SIDE EFFECTS:
2232 * Sets ATA_FLAG_DISABLED if bus reset fails.
2233 *
2234 * DEPRECATED:
2235 * This function is only for drivers which still use old EH and
2236 * will be removed soon.
272f7884 2237 */
624d5c51 2238void ata_bus_reset(struct ata_port *ap)
272f7884 2239{
624d5c51
TH
2240 struct ata_device *device = ap->link.device;
2241 struct ata_ioports *ioaddr = &ap->ioaddr;
2242 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2243 u8 err;
2244 unsigned int dev0, dev1 = 0, devmask = 0;
2245 int rc;
2246
2247 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2248
2249 /* determine if device 0/1 are present */
2250 if (ap->flags & ATA_FLAG_SATA_RESET)
2251 dev0 = 1;
2252 else {
2253 dev0 = ata_devchk(ap, 0);
2254 if (slave_possible)
2255 dev1 = ata_devchk(ap, 1);
2256 }
2257
2258 if (dev0)
2259 devmask |= (1 << 0);
2260 if (dev1)
2261 devmask |= (1 << 1);
2262
2263 /* select device 0 again */
5682ed33 2264 ap->ops->sff_dev_select(ap, 0);
624d5c51
TH
2265
2266 /* issue bus reset */
2267 if (ap->flags & ATA_FLAG_SRST) {
2268 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
2269 if (rc && rc != -ENODEV)
2270 goto err_out;
2271 }
2272
2273 /*
2274 * determine by signature whether we have ATA or ATAPI devices
2275 */
9363c382 2276 device[0].class = ata_sff_dev_classify(&device[0], dev0, &err);
624d5c51 2277 if ((slave_possible) && (err != 0x81))
9363c382 2278 device[1].class = ata_sff_dev_classify(&device[1], dev1, &err);
624d5c51
TH
2279
2280 /* is double-select really necessary? */
2281 if (device[1].class != ATA_DEV_NONE)
5682ed33 2282 ap->ops->sff_dev_select(ap, 1);
624d5c51 2283 if (device[0].class != ATA_DEV_NONE)
5682ed33 2284 ap->ops->sff_dev_select(ap, 0);
624d5c51
TH
2285
2286 /* if no devices were detected, disable this port */
2287 if ((device[0].class == ATA_DEV_NONE) &&
2288 (device[1].class == ATA_DEV_NONE))
2289 goto err_out;
2290
2291 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2292 /* set up device control for ATA_FLAG_SATA_RESET */
2293 iowrite8(ap->ctl, ioaddr->ctl_addr);
2294 }
2295
2296 DPRINTK("EXIT\n");
2297 return;
2298
2299err_out:
2300 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2301 ata_port_disable(ap);
2302
2303 DPRINTK("EXIT\n");
272f7884
TH
2304}
2305
1fdffbce 2306#ifdef CONFIG_PCI
4112e16a 2307
272f7884 2308/**
9363c382 2309 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
272f7884
TH
2310 * @pdev: PCI device
2311 *
2312 * Some PCI ATA devices report simplex mode but in fact can be told to
2313 * enter non simplex mode. This implements the necessary logic to
2314 * perform the task on such devices. Calling it on other devices will
2315 * have -undefined- behaviour.
2316 */
9363c382 2317int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
4112e16a 2318{
272f7884
TH
2319 unsigned long bmdma = pci_resource_start(pdev, 4);
2320 u8 simplex;
a84471fe 2321
272f7884
TH
2322 if (bmdma == 0)
2323 return -ENOENT;
2324
2325 simplex = inb(bmdma + 0x02);
2326 outb(simplex & 0x60, bmdma + 0x02);
2327 simplex = inb(bmdma + 0x02);
2328 if (simplex & 0x80)
2329 return -EOPNOTSUPP;
2330 return 0;
2331}
2332
0f834de3 2333/**
9363c382 2334 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
0f834de3
TH
2335 * @host: target ATA host
2336 *
2337 * Acquire PCI BMDMA resources and initialize @host accordingly.
2338 *
2339 * LOCKING:
2340 * Inherited from calling layer (may sleep).
2341 *
2342 * RETURNS:
2343 * 0 on success, -errno otherwise.
2344 */
9363c382 2345int ata_pci_bmdma_init(struct ata_host *host)
1fdffbce 2346{
0f834de3
TH
2347 struct device *gdev = host->dev;
2348 struct pci_dev *pdev = to_pci_dev(gdev);
2349 int i, rc;
0d5ff566 2350
6fdc99a2
AC
2351 /* No BAR4 allocation: No DMA */
2352 if (pci_resource_start(pdev, 4) == 0)
2353 return 0;
2354
0f834de3
TH
2355 /* TODO: If we get no DMA mask we should fall back to PIO */
2356 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
2357 if (rc)
2358 return rc;
2359 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
2360 if (rc)
2361 return rc;
2362
2363 /* request and iomap DMA region */
35a10a80 2364 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
0f834de3
TH
2365 if (rc) {
2366 dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n");
2367 return -ENOMEM;
0d5ff566 2368 }
0f834de3 2369 host->iomap = pcim_iomap_table(pdev);
0d5ff566 2370
1626aeb8 2371 for (i = 0; i < 2; i++) {
0f834de3 2372 struct ata_port *ap = host->ports[i];
0f834de3
TH
2373 void __iomem *bmdma = host->iomap[4] + 8 * i;
2374
2375 if (ata_port_is_dummy(ap))
2376 continue;
2377
21b0ad4f 2378 ap->ioaddr.bmdma_addr = bmdma;
0f834de3
TH
2379 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
2380 (ioread8(bmdma + 2) & 0x80))
2381 host->flags |= ATA_HOST_SIMPLEX;
cbcdd875
TH
2382
2383 ata_port_desc(ap, "bmdma 0x%llx",
2384 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
0d5ff566
TH
2385 }
2386
0f834de3
TH
2387 return 0;
2388}
2ec7df04 2389
272f7884
TH
2390static int ata_resources_present(struct pci_dev *pdev, int port)
2391{
2392 int i;
2393
2394 /* Check the PCI resources for this channel are enabled */
2395 port = port * 2;
2396 for (i = 0; i < 2; i ++) {
2397 if (pci_resource_start(pdev, port + i) == 0 ||
2398 pci_resource_len(pdev, port + i) == 0)
2399 return 0;
2400 }
2401 return 1;
2402}
2403
d491b27b 2404/**
9363c382 2405 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
d491b27b 2406 * @host: target ATA host
d491b27b 2407 *
1626aeb8
TH
2408 * Acquire native PCI ATA resources for @host and initialize the
2409 * first two ports of @host accordingly. Ports marked dummy are
2410 * skipped and allocation failure makes the port dummy.
d491b27b 2411 *
d583bc18
TH
2412 * Note that native PCI resources are valid even for legacy hosts
2413 * as we fix up pdev resources array early in boot, so this
2414 * function can be used for both native and legacy SFF hosts.
2415 *
d491b27b
TH
2416 * LOCKING:
2417 * Inherited from calling layer (may sleep).
2418 *
2419 * RETURNS:
1626aeb8
TH
2420 * 0 if at least one port is initialized, -ENODEV if no port is
2421 * available.
d491b27b 2422 */
9363c382 2423int ata_pci_sff_init_host(struct ata_host *host)
d491b27b
TH
2424{
2425 struct device *gdev = host->dev;
2426 struct pci_dev *pdev = to_pci_dev(gdev);
1626aeb8 2427 unsigned int mask = 0;
d491b27b
TH
2428 int i, rc;
2429
d491b27b
TH
2430 /* request, iomap BARs and init port addresses accordingly */
2431 for (i = 0; i < 2; i++) {
2432 struct ata_port *ap = host->ports[i];
2433 int base = i * 2;
2434 void __iomem * const *iomap;
2435
1626aeb8
TH
2436 if (ata_port_is_dummy(ap))
2437 continue;
2438
2439 /* Discard disabled ports. Some controllers show
2440 * their unused channels this way. Disabled ports are
2441 * made dummy.
2442 */
2443 if (!ata_resources_present(pdev, i)) {
2444 ap->ops = &ata_dummy_port_ops;
d491b27b 2445 continue;
1626aeb8 2446 }
d491b27b 2447
35a10a80
TH
2448 rc = pcim_iomap_regions(pdev, 0x3 << base,
2449 dev_driver_string(gdev));
d491b27b 2450 if (rc) {
1626aeb8
TH
2451 dev_printk(KERN_WARNING, gdev,
2452 "failed to request/iomap BARs for port %d "
2453 "(errno=%d)\n", i, rc);
d491b27b
TH
2454 if (rc == -EBUSY)
2455 pcim_pin_device(pdev);
1626aeb8
TH
2456 ap->ops = &ata_dummy_port_ops;
2457 continue;
d491b27b
TH
2458 }
2459 host->iomap = iomap = pcim_iomap_table(pdev);
2460
2461 ap->ioaddr.cmd_addr = iomap[base];
2462 ap->ioaddr.altstatus_addr =
2463 ap->ioaddr.ctl_addr = (void __iomem *)
2464 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
9363c382 2465 ata_sff_std_ports(&ap->ioaddr);
1626aeb8 2466
cbcdd875
TH
2467 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2468 (unsigned long long)pci_resource_start(pdev, base),
2469 (unsigned long long)pci_resource_start(pdev, base + 1));
2470
1626aeb8
TH
2471 mask |= 1 << i;
2472 }
2473
2474 if (!mask) {
2475 dev_printk(KERN_ERR, gdev, "no available native port\n");
2476 return -ENODEV;
d491b27b
TH
2477 }
2478
2479 return 0;
2480}
2481
21b0ad4f 2482/**
9363c382 2483 * ata_pci_sff_prepare_host - helper to prepare native PCI ATA host
21b0ad4f 2484 * @pdev: target PCI device
1626aeb8 2485 * @ppi: array of port_info, must be enough for two ports
21b0ad4f
TH
2486 * @r_host: out argument for the initialized ATA host
2487 *
2488 * Helper to allocate ATA host for @pdev, acquire all native PCI
2489 * resources and initialize it accordingly in one go.
2490 *
2491 * LOCKING:
2492 * Inherited from calling layer (may sleep).
2493 *
2494 * RETURNS:
2495 * 0 on success, -errno otherwise.
2496 */
9363c382 2497int ata_pci_sff_prepare_host(struct pci_dev *pdev,
d583bc18
TH
2498 const struct ata_port_info * const * ppi,
2499 struct ata_host **r_host)
21b0ad4f
TH
2500{
2501 struct ata_host *host;
21b0ad4f
TH
2502 int rc;
2503
2504 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2505 return -ENOMEM;
2506
2507 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2508 if (!host) {
2509 dev_printk(KERN_ERR, &pdev->dev,
2510 "failed to allocate ATA host\n");
2511 rc = -ENOMEM;
2512 goto err_out;
2513 }
2514
9363c382 2515 rc = ata_pci_sff_init_host(host);
21b0ad4f
TH
2516 if (rc)
2517 goto err_out;
2518
2519 /* init DMA related stuff */
9363c382 2520 rc = ata_pci_bmdma_init(host);
21b0ad4f
TH
2521 if (rc)
2522 goto err_bmdma;
2523
2524 devres_remove_group(&pdev->dev, NULL);
2525 *r_host = host;
2526 return 0;
2527
2528 err_bmdma:
2529 /* This is necessary because PCI and iomap resources are
2530 * merged and releasing the top group won't release the
2531 * acquired resources if some of those have been acquired
2532 * before entering this function.
2533 */
2534 pcim_iounmap_regions(pdev, 0xf);
2535 err_out:
2536 devres_release_group(&pdev->dev, NULL);
2537 return rc;
2538}
2539
4e6b79fa 2540/**
9363c382 2541 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
4e6b79fa
TH
2542 * @host: target SFF ATA host
2543 * @irq_handler: irq_handler used when requesting IRQ(s)
2544 * @sht: scsi_host_template to use when registering the host
2545 *
2546 * This is the counterpart of ata_host_activate() for SFF ATA
2547 * hosts. This separate helper is necessary because SFF hosts
2548 * use two separate interrupts in legacy mode.
2549 *
2550 * LOCKING:
2551 * Inherited from calling layer (may sleep).
2552 *
2553 * RETURNS:
2554 * 0 on success, -errno otherwise.
2555 */
9363c382 2556int ata_pci_sff_activate_host(struct ata_host *host,
4e6b79fa
TH
2557 irq_handler_t irq_handler,
2558 struct scsi_host_template *sht)
2559{
2560 struct device *dev = host->dev;
2561 struct pci_dev *pdev = to_pci_dev(dev);
2562 const char *drv_name = dev_driver_string(host->dev);
2563 int legacy_mode = 0, rc;
2564
2565 rc = ata_host_start(host);
2566 if (rc)
2567 return rc;
2568
2569 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2570 u8 tmp8, mask;
2571
2572 /* TODO: What if one channel is in native mode ... */
2573 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2574 mask = (1 << 2) | (1 << 0);
2575 if ((tmp8 & mask) != mask)
2576 legacy_mode = 1;
2577#if defined(CONFIG_NO_ATA_LEGACY)
2578 /* Some platforms with PCI limits cannot address compat
2579 port space. In that case we punt if their firmware has
2580 left a device in compatibility mode */
2581 if (legacy_mode) {
2582 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2583 return -EOPNOTSUPP;
2584 }
2585#endif
2586 }
2587
2588 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2589 return -ENOMEM;
2590
2591 if (!legacy_mode && pdev->irq) {
2592 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2593 IRQF_SHARED, drv_name, host);
2594 if (rc)
2595 goto out;
2596
2597 ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2598 ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2599 } else if (legacy_mode) {
2600 if (!ata_port_is_dummy(host->ports[0])) {
2601 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2602 irq_handler, IRQF_SHARED,
2603 drv_name, host);
2604 if (rc)
2605 goto out;
2606
2607 ata_port_desc(host->ports[0], "irq %d",
2608 ATA_PRIMARY_IRQ(pdev));
2609 }
2610
2611 if (!ata_port_is_dummy(host->ports[1])) {
2612 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2613 irq_handler, IRQF_SHARED,
2614 drv_name, host);
2615 if (rc)
2616 goto out;
2617
2618 ata_port_desc(host->ports[1], "irq %d",
2619 ATA_SECONDARY_IRQ(pdev));
2620 }
2621 }
2622
2623 rc = ata_host_register(host, sht);
2624 out:
2625 if (rc == 0)
2626 devres_remove_group(dev, NULL);
2627 else
2628 devres_release_group(dev, NULL);
2629
2630 return rc;
2631}
2632
1fdffbce 2633/**
9363c382 2634 * ata_pci_sff_init_one - Initialize/register PCI IDE host controller
1fdffbce 2635 * @pdev: Controller to be initialized
1626aeb8 2636 * @ppi: array of port_info, must be enough for two ports
1bd5b715 2637 * @sht: scsi_host_template to use when registering the host
887125e3 2638 * @host_priv: host private_data
1fdffbce
JG
2639 *
2640 * This is a helper function which can be called from a driver's
2641 * xxx_init_one() probe function if the hardware uses traditional
2642 * IDE taskfile registers.
2643 *
2644 * This function calls pci_enable_device(), reserves its register
2645 * regions, sets the dma mask, enables bus master mode, and calls
2646 * ata_device_add()
2647 *
2ec7df04
AC
2648 * ASSUMPTION:
2649 * Nobody makes a single channel controller that appears solely as
2650 * the secondary legacy port on PCI.
2651 *
1fdffbce
JG
2652 * LOCKING:
2653 * Inherited from PCI layer (may sleep).
2654 *
2655 * RETURNS:
2656 * Zero on success, negative on errno-based value on error.
2657 */
9363c382
TH
2658int ata_pci_sff_init_one(struct pci_dev *pdev,
2659 const struct ata_port_info * const * ppi,
2660 struct scsi_host_template *sht, void *host_priv)
1fdffbce 2661{
f0d36efd 2662 struct device *dev = &pdev->dev;
1626aeb8 2663 const struct ata_port_info *pi = NULL;
0f834de3 2664 struct ata_host *host = NULL;
1626aeb8 2665 int i, rc;
1fdffbce
JG
2666
2667 DPRINTK("ENTER\n");
2668
1626aeb8
TH
2669 /* look up the first valid port_info */
2670 for (i = 0; i < 2 && ppi[i]; i++) {
2671 if (ppi[i]->port_ops != &ata_dummy_port_ops) {
2672 pi = ppi[i];
2673 break;
2674 }
2675 }
f0d36efd 2676
1626aeb8
TH
2677 if (!pi) {
2678 dev_printk(KERN_ERR, &pdev->dev,
2679 "no valid port_info specified\n");
2680 return -EINVAL;
2681 }
c791c306 2682
1626aeb8
TH
2683 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2684 return -ENOMEM;
1fdffbce 2685
f0d36efd 2686 rc = pcim_enable_device(pdev);
1fdffbce 2687 if (rc)
4e6b79fa 2688 goto out;
1fdffbce 2689
4e6b79fa 2690 /* prepare and activate SFF host */
9363c382 2691 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
d583bc18 2692 if (rc)
4e6b79fa 2693 goto out;
887125e3 2694 host->private_data = host_priv;
d491b27b 2695
d491b27b 2696 pci_set_master(pdev);
9363c382 2697 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
4e6b79fa
TH
2698 out:
2699 if (rc == 0)
2700 devres_remove_group(&pdev->dev, NULL);
2701 else
2702 devres_release_group(&pdev->dev, NULL);
d491b27b 2703
1fdffbce
JG
2704 return rc;
2705}
2706
2707#endif /* CONFIG_PCI */
2708
624d5c51
TH
2709EXPORT_SYMBOL_GPL(ata_sff_port_ops);
2710EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
9363c382
TH
2711EXPORT_SYMBOL_GPL(ata_sff_qc_prep);
2712EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep);
2713EXPORT_SYMBOL_GPL(ata_sff_dev_select);
2714EXPORT_SYMBOL_GPL(ata_sff_check_status);
2715EXPORT_SYMBOL_GPL(ata_sff_altstatus);
2716EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
2717EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
2718EXPORT_SYMBOL_GPL(ata_sff_tf_load);
2719EXPORT_SYMBOL_GPL(ata_sff_tf_read);
2720EXPORT_SYMBOL_GPL(ata_sff_exec_command);
2721EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
2722EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
2723EXPORT_SYMBOL_GPL(ata_sff_irq_on);
2724EXPORT_SYMBOL_GPL(ata_sff_irq_clear);
2725EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
2726EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
2727EXPORT_SYMBOL_GPL(ata_sff_host_intr);
2728EXPORT_SYMBOL_GPL(ata_sff_interrupt);
2729EXPORT_SYMBOL_GPL(ata_sff_freeze);
2730EXPORT_SYMBOL_GPL(ata_sff_thaw);
2731EXPORT_SYMBOL_GPL(ata_sff_prereset);
2732EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
2733EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2734EXPORT_SYMBOL_GPL(ata_sff_softreset);
2735EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2736EXPORT_SYMBOL_GPL(ata_sff_postreset);
2737EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2738EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd);
624d5c51 2739EXPORT_SYMBOL_GPL(ata_sff_port_start);
9363c382
TH
2740EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2741EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter);
624d5c51
TH
2742EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2743EXPORT_SYMBOL_GPL(ata_bmdma_start);
2744EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2745EXPORT_SYMBOL_GPL(ata_bmdma_status);
2746EXPORT_SYMBOL_GPL(ata_bus_reset);
2747#ifdef CONFIG_PCI
9363c382
TH
2748EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
2749EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
2750EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2751EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2752EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2753EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
624d5c51 2754#endif /* CONFIG_PCI */