libata: quickly trigger SATA SPD down after debouncing failed
[linux-block.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
8bc3fc47 62#define DRV_VERSION "2.21" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 74static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 75
f3187195 76unsigned int ata_print_id = 1;
1da177e4
LT
77static struct workqueue_struct *ata_wq;
78
453b07ac
TH
79struct workqueue_struct *ata_aux_wq;
80
418dc1f5 81int atapi_enabled = 1;
1623c81e
JG
82module_param(atapi_enabled, int, 0444);
83MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
95de719a
AL
85int atapi_dmadir = 0;
86module_param(atapi_dmadir, int, 0444);
87MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
c3c013a2
JG
89int libata_fua = 0;
90module_param_named(fua, libata_fua, int, 0444);
91MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92
1e999736
AC
93static int ata_ignore_hpa = 0;
94module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
95MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96
a8601e5f
AM
97static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
98module_param(ata_probe_timeout, int, 0444);
99MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
100
d7d0dad6
JG
101int libata_noacpi = 1;
102module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
103MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
104
1da177e4
LT
105MODULE_AUTHOR("Jeff Garzik");
106MODULE_DESCRIPTION("Library module for ATA devices");
107MODULE_LICENSE("GPL");
108MODULE_VERSION(DRV_VERSION);
109
0baab86b 110
1da177e4
LT
111/**
112 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
113 * @tf: Taskfile to convert
1da177e4 114 * @pmp: Port multiplier port
9977126c
TH
115 * @is_cmd: This FIS is for command
116 * @fis: Buffer into which data will output
1da177e4
LT
117 *
118 * Converts a standard ATA taskfile to a Serial ATA
119 * FIS structure (Register - Host to Device).
120 *
121 * LOCKING:
122 * Inherited from caller.
123 */
9977126c 124void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 125{
9977126c
TH
126 fis[0] = 0x27; /* Register - Host to Device FIS */
127 fis[1] = pmp & 0xf; /* Port multiplier number*/
128 if (is_cmd)
129 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
130
1da177e4
LT
131 fis[2] = tf->command;
132 fis[3] = tf->feature;
133
134 fis[4] = tf->lbal;
135 fis[5] = tf->lbam;
136 fis[6] = tf->lbah;
137 fis[7] = tf->device;
138
139 fis[8] = tf->hob_lbal;
140 fis[9] = tf->hob_lbam;
141 fis[10] = tf->hob_lbah;
142 fis[11] = tf->hob_feature;
143
144 fis[12] = tf->nsect;
145 fis[13] = tf->hob_nsect;
146 fis[14] = 0;
147 fis[15] = tf->ctl;
148
149 fis[16] = 0;
150 fis[17] = 0;
151 fis[18] = 0;
152 fis[19] = 0;
153}
154
155/**
156 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
157 * @fis: Buffer from which data will be input
158 * @tf: Taskfile to output
159 *
e12a1be6 160 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
161 *
162 * LOCKING:
163 * Inherited from caller.
164 */
165
057ace5e 166void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
167{
168 tf->command = fis[2]; /* status */
169 tf->feature = fis[3]; /* error */
170
171 tf->lbal = fis[4];
172 tf->lbam = fis[5];
173 tf->lbah = fis[6];
174 tf->device = fis[7];
175
176 tf->hob_lbal = fis[8];
177 tf->hob_lbam = fis[9];
178 tf->hob_lbah = fis[10];
179
180 tf->nsect = fis[12];
181 tf->hob_nsect = fis[13];
182}
183
8cbd6df1
AL
184static const u8 ata_rw_cmds[] = {
185 /* pio multi */
186 ATA_CMD_READ_MULTI,
187 ATA_CMD_WRITE_MULTI,
188 ATA_CMD_READ_MULTI_EXT,
189 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
190 0,
191 0,
192 0,
193 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
194 /* pio */
195 ATA_CMD_PIO_READ,
196 ATA_CMD_PIO_WRITE,
197 ATA_CMD_PIO_READ_EXT,
198 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
199 0,
200 0,
201 0,
202 0,
8cbd6df1
AL
203 /* dma */
204 ATA_CMD_READ,
205 ATA_CMD_WRITE,
206 ATA_CMD_READ_EXT,
9a3dccc4
TH
207 ATA_CMD_WRITE_EXT,
208 0,
209 0,
210 0,
211 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 212};
1da177e4
LT
213
214/**
8cbd6df1 215 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
216 * @tf: command to examine and configure
217 * @dev: device tf belongs to
1da177e4 218 *
2e9edbf8 219 * Examine the device configuration and tf->flags to calculate
8cbd6df1 220 * the proper read/write commands and protocol to use.
1da177e4
LT
221 *
222 * LOCKING:
223 * caller.
224 */
bd056d7e 225static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 226{
9a3dccc4 227 u8 cmd;
1da177e4 228
9a3dccc4 229 int index, fua, lba48, write;
2e9edbf8 230
9a3dccc4 231 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
232 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
233 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 234
8cbd6df1
AL
235 if (dev->flags & ATA_DFLAG_PIO) {
236 tf->protocol = ATA_PROT_PIO;
9a3dccc4 237 index = dev->multi_count ? 0 : 8;
bd056d7e 238 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
239 /* Unable to use DMA due to host limitation */
240 tf->protocol = ATA_PROT_PIO;
0565c26d 241 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
242 } else {
243 tf->protocol = ATA_PROT_DMA;
9a3dccc4 244 index = 16;
8cbd6df1 245 }
1da177e4 246
9a3dccc4
TH
247 cmd = ata_rw_cmds[index + fua + lba48 + write];
248 if (cmd) {
249 tf->command = cmd;
250 return 0;
251 }
252 return -1;
1da177e4
LT
253}
254
35b649fe
TH
255/**
256 * ata_tf_read_block - Read block address from ATA taskfile
257 * @tf: ATA taskfile of interest
258 * @dev: ATA device @tf belongs to
259 *
260 * LOCKING:
261 * None.
262 *
263 * Read block address from @tf. This function can handle all
264 * three address formats - LBA, LBA48 and CHS. tf->protocol and
265 * flags select the address format to use.
266 *
267 * RETURNS:
268 * Block address read from @tf.
269 */
270u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
271{
272 u64 block = 0;
273
274 if (tf->flags & ATA_TFLAG_LBA) {
275 if (tf->flags & ATA_TFLAG_LBA48) {
276 block |= (u64)tf->hob_lbah << 40;
277 block |= (u64)tf->hob_lbam << 32;
278 block |= tf->hob_lbal << 24;
279 } else
280 block |= (tf->device & 0xf) << 24;
281
282 block |= tf->lbah << 16;
283 block |= tf->lbam << 8;
284 block |= tf->lbal;
285 } else {
286 u32 cyl, head, sect;
287
288 cyl = tf->lbam | (tf->lbah << 8);
289 head = tf->device & 0xf;
290 sect = tf->lbal;
291
292 block = (cyl * dev->heads + head) * dev->sectors + sect;
293 }
294
295 return block;
296}
297
bd056d7e
TH
298/**
299 * ata_build_rw_tf - Build ATA taskfile for given read/write request
300 * @tf: Target ATA taskfile
301 * @dev: ATA device @tf belongs to
302 * @block: Block address
303 * @n_block: Number of blocks
304 * @tf_flags: RW/FUA etc...
305 * @tag: tag
306 *
307 * LOCKING:
308 * None.
309 *
310 * Build ATA taskfile @tf for read/write request described by
311 * @block, @n_block, @tf_flags and @tag on @dev.
312 *
313 * RETURNS:
314 *
315 * 0 on success, -ERANGE if the request is too large for @dev,
316 * -EINVAL if the request is invalid.
317 */
318int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
319 u64 block, u32 n_block, unsigned int tf_flags,
320 unsigned int tag)
321{
322 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
323 tf->flags |= tf_flags;
324
6d1245bf 325 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
326 /* yay, NCQ */
327 if (!lba_48_ok(block, n_block))
328 return -ERANGE;
329
330 tf->protocol = ATA_PROT_NCQ;
331 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
332
333 if (tf->flags & ATA_TFLAG_WRITE)
334 tf->command = ATA_CMD_FPDMA_WRITE;
335 else
336 tf->command = ATA_CMD_FPDMA_READ;
337
338 tf->nsect = tag << 3;
339 tf->hob_feature = (n_block >> 8) & 0xff;
340 tf->feature = n_block & 0xff;
341
342 tf->hob_lbah = (block >> 40) & 0xff;
343 tf->hob_lbam = (block >> 32) & 0xff;
344 tf->hob_lbal = (block >> 24) & 0xff;
345 tf->lbah = (block >> 16) & 0xff;
346 tf->lbam = (block >> 8) & 0xff;
347 tf->lbal = block & 0xff;
348
349 tf->device = 1 << 6;
350 if (tf->flags & ATA_TFLAG_FUA)
351 tf->device |= 1 << 7;
352 } else if (dev->flags & ATA_DFLAG_LBA) {
353 tf->flags |= ATA_TFLAG_LBA;
354
355 if (lba_28_ok(block, n_block)) {
356 /* use LBA28 */
357 tf->device |= (block >> 24) & 0xf;
358 } else if (lba_48_ok(block, n_block)) {
359 if (!(dev->flags & ATA_DFLAG_LBA48))
360 return -ERANGE;
361
362 /* use LBA48 */
363 tf->flags |= ATA_TFLAG_LBA48;
364
365 tf->hob_nsect = (n_block >> 8) & 0xff;
366
367 tf->hob_lbah = (block >> 40) & 0xff;
368 tf->hob_lbam = (block >> 32) & 0xff;
369 tf->hob_lbal = (block >> 24) & 0xff;
370 } else
371 /* request too large even for LBA48 */
372 return -ERANGE;
373
374 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
375 return -EINVAL;
376
377 tf->nsect = n_block & 0xff;
378
379 tf->lbah = (block >> 16) & 0xff;
380 tf->lbam = (block >> 8) & 0xff;
381 tf->lbal = block & 0xff;
382
383 tf->device |= ATA_LBA;
384 } else {
385 /* CHS */
386 u32 sect, head, cyl, track;
387
388 /* The request -may- be too large for CHS addressing. */
389 if (!lba_28_ok(block, n_block))
390 return -ERANGE;
391
392 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
393 return -EINVAL;
394
395 /* Convert LBA to CHS */
396 track = (u32)block / dev->sectors;
397 cyl = track / dev->heads;
398 head = track % dev->heads;
399 sect = (u32)block % dev->sectors + 1;
400
401 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
402 (u32)block, track, cyl, head, sect);
403
404 /* Check whether the converted CHS can fit.
405 Cylinder: 0-65535
406 Head: 0-15
407 Sector: 1-255*/
408 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
409 return -ERANGE;
410
411 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
412 tf->lbal = sect;
413 tf->lbam = cyl;
414 tf->lbah = cyl >> 8;
415 tf->device |= head;
416 }
417
418 return 0;
419}
420
cb95d562
TH
421/**
422 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
423 * @pio_mask: pio_mask
424 * @mwdma_mask: mwdma_mask
425 * @udma_mask: udma_mask
426 *
427 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
428 * unsigned int xfer_mask.
429 *
430 * LOCKING:
431 * None.
432 *
433 * RETURNS:
434 * Packed xfer_mask.
435 */
436static unsigned int ata_pack_xfermask(unsigned int pio_mask,
437 unsigned int mwdma_mask,
438 unsigned int udma_mask)
439{
440 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
441 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
442 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
443}
444
c0489e4e
TH
445/**
446 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
447 * @xfer_mask: xfer_mask to unpack
448 * @pio_mask: resulting pio_mask
449 * @mwdma_mask: resulting mwdma_mask
450 * @udma_mask: resulting udma_mask
451 *
452 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
453 * Any NULL distination masks will be ignored.
454 */
455static void ata_unpack_xfermask(unsigned int xfer_mask,
456 unsigned int *pio_mask,
457 unsigned int *mwdma_mask,
458 unsigned int *udma_mask)
459{
460 if (pio_mask)
461 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
462 if (mwdma_mask)
463 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
464 if (udma_mask)
465 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
466}
467
cb95d562 468static const struct ata_xfer_ent {
be9a50c8 469 int shift, bits;
cb95d562
TH
470 u8 base;
471} ata_xfer_tbl[] = {
472 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
473 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
474 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
475 { -1, },
476};
477
478/**
479 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
480 * @xfer_mask: xfer_mask of interest
481 *
482 * Return matching XFER_* value for @xfer_mask. Only the highest
483 * bit of @xfer_mask is considered.
484 *
485 * LOCKING:
486 * None.
487 *
488 * RETURNS:
489 * Matching XFER_* value, 0 if no match found.
490 */
491static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
492{
493 int highbit = fls(xfer_mask) - 1;
494 const struct ata_xfer_ent *ent;
495
496 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
497 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
498 return ent->base + highbit - ent->shift;
499 return 0;
500}
501
502/**
503 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
504 * @xfer_mode: XFER_* of interest
505 *
506 * Return matching xfer_mask for @xfer_mode.
507 *
508 * LOCKING:
509 * None.
510 *
511 * RETURNS:
512 * Matching xfer_mask, 0 if no match found.
513 */
514static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
515{
516 const struct ata_xfer_ent *ent;
517
518 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
519 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
520 return 1 << (ent->shift + xfer_mode - ent->base);
521 return 0;
522}
523
524/**
525 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
526 * @xfer_mode: XFER_* of interest
527 *
528 * Return matching xfer_shift for @xfer_mode.
529 *
530 * LOCKING:
531 * None.
532 *
533 * RETURNS:
534 * Matching xfer_shift, -1 if no match found.
535 */
536static int ata_xfer_mode2shift(unsigned int xfer_mode)
537{
538 const struct ata_xfer_ent *ent;
539
540 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
541 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
542 return ent->shift;
543 return -1;
544}
545
1da177e4 546/**
1da7b0d0
TH
547 * ata_mode_string - convert xfer_mask to string
548 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
549 *
550 * Determine string which represents the highest speed
1da7b0d0 551 * (highest bit in @modemask).
1da177e4
LT
552 *
553 * LOCKING:
554 * None.
555 *
556 * RETURNS:
557 * Constant C string representing highest speed listed in
1da7b0d0 558 * @mode_mask, or the constant C string "<n/a>".
1da177e4 559 */
1da7b0d0 560static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 561{
75f554bc
TH
562 static const char * const xfer_mode_str[] = {
563 "PIO0",
564 "PIO1",
565 "PIO2",
566 "PIO3",
567 "PIO4",
b352e57d
AC
568 "PIO5",
569 "PIO6",
75f554bc
TH
570 "MWDMA0",
571 "MWDMA1",
572 "MWDMA2",
b352e57d
AC
573 "MWDMA3",
574 "MWDMA4",
75f554bc
TH
575 "UDMA/16",
576 "UDMA/25",
577 "UDMA/33",
578 "UDMA/44",
579 "UDMA/66",
580 "UDMA/100",
581 "UDMA/133",
582 "UDMA7",
583 };
1da7b0d0 584 int highbit;
1da177e4 585
1da7b0d0
TH
586 highbit = fls(xfer_mask) - 1;
587 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
588 return xfer_mode_str[highbit];
1da177e4 589 return "<n/a>";
1da177e4
LT
590}
591
4c360c81
TH
592static const char *sata_spd_string(unsigned int spd)
593{
594 static const char * const spd_str[] = {
595 "1.5 Gbps",
596 "3.0 Gbps",
597 };
598
599 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
600 return "<unknown>";
601 return spd_str[spd - 1];
602}
603
3373efd8 604void ata_dev_disable(struct ata_device *dev)
0b8efb0a 605{
09d7f9b0
TH
606 if (ata_dev_enabled(dev)) {
607 if (ata_msg_drv(dev->ap))
608 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
609 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
610 ATA_DNXFER_QUIET);
0b8efb0a
TH
611 dev->class++;
612 }
613}
614
1da177e4 615/**
0d5ff566 616 * ata_devchk - PATA device presence detection
1da177e4
LT
617 * @ap: ATA channel to examine
618 * @device: Device to examine (starting at zero)
619 *
620 * This technique was originally described in
621 * Hale Landis's ATADRVR (www.ata-atapi.com), and
622 * later found its way into the ATA/ATAPI spec.
623 *
624 * Write a pattern to the ATA shadow registers,
625 * and if a device is present, it will respond by
626 * correctly storing and echoing back the
627 * ATA shadow register contents.
628 *
629 * LOCKING:
630 * caller.
631 */
632
0d5ff566 633static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
634{
635 struct ata_ioports *ioaddr = &ap->ioaddr;
636 u8 nsect, lbal;
637
638 ap->ops->dev_select(ap, device);
639
0d5ff566
TH
640 iowrite8(0x55, ioaddr->nsect_addr);
641 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 642
0d5ff566
TH
643 iowrite8(0xaa, ioaddr->nsect_addr);
644 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 645
0d5ff566
TH
646 iowrite8(0x55, ioaddr->nsect_addr);
647 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 648
0d5ff566
TH
649 nsect = ioread8(ioaddr->nsect_addr);
650 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
651
652 if ((nsect == 0x55) && (lbal == 0xaa))
653 return 1; /* we found a device */
654
655 return 0; /* nothing found */
656}
657
1da177e4
LT
658/**
659 * ata_dev_classify - determine device type based on ATA-spec signature
660 * @tf: ATA taskfile register set for device to be identified
661 *
662 * Determine from taskfile register contents whether a device is
663 * ATA or ATAPI, as per "Signature and persistence" section
664 * of ATA/PI spec (volume 1, sect 5.14).
665 *
666 * LOCKING:
667 * None.
668 *
669 * RETURNS:
670 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
671 * the event of failure.
672 */
673
057ace5e 674unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
675{
676 /* Apple's open source Darwin code hints that some devices only
677 * put a proper signature into the LBA mid/high registers,
678 * So, we only check those. It's sufficient for uniqueness.
679 */
680
681 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
682 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
683 DPRINTK("found ATA device by sig\n");
684 return ATA_DEV_ATA;
685 }
686
687 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
688 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
689 DPRINTK("found ATAPI device by sig\n");
690 return ATA_DEV_ATAPI;
691 }
692
693 DPRINTK("unknown device\n");
694 return ATA_DEV_UNKNOWN;
695}
696
697/**
698 * ata_dev_try_classify - Parse returned ATA device signature
699 * @ap: ATA channel to examine
700 * @device: Device to examine (starting at zero)
b4dc7623 701 * @r_err: Value of error register on completion
1da177e4
LT
702 *
703 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
704 * an ATA/ATAPI-defined set of values is placed in the ATA
705 * shadow registers, indicating the results of device detection
706 * and diagnostics.
707 *
708 * Select the ATA device, and read the values from the ATA shadow
709 * registers. Then parse according to the Error register value,
710 * and the spec-defined values examined by ata_dev_classify().
711 *
712 * LOCKING:
713 * caller.
b4dc7623
TH
714 *
715 * RETURNS:
716 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
717 */
718
a619f981 719unsigned int
b4dc7623 720ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 721{
1da177e4
LT
722 struct ata_taskfile tf;
723 unsigned int class;
724 u8 err;
725
726 ap->ops->dev_select(ap, device);
727
728 memset(&tf, 0, sizeof(tf));
729
1da177e4 730 ap->ops->tf_read(ap, &tf);
0169e284 731 err = tf.feature;
b4dc7623
TH
732 if (r_err)
733 *r_err = err;
1da177e4 734
93590859
AC
735 /* see if device passed diags: if master then continue and warn later */
736 if (err == 0 && device == 0)
737 /* diagnostic fail : do nothing _YET_ */
738 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
739 else if (err == 1)
1da177e4
LT
740 /* do nothing */ ;
741 else if ((device == 0) && (err == 0x81))
742 /* do nothing */ ;
743 else
b4dc7623 744 return ATA_DEV_NONE;
1da177e4 745
b4dc7623 746 /* determine if device is ATA or ATAPI */
1da177e4 747 class = ata_dev_classify(&tf);
b4dc7623 748
1da177e4 749 if (class == ATA_DEV_UNKNOWN)
b4dc7623 750 return ATA_DEV_NONE;
1da177e4 751 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
752 return ATA_DEV_NONE;
753 return class;
1da177e4
LT
754}
755
756/**
6a62a04d 757 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
758 * @id: IDENTIFY DEVICE results we will examine
759 * @s: string into which data is output
760 * @ofs: offset into identify device page
761 * @len: length of string to return. must be an even number.
762 *
763 * The strings in the IDENTIFY DEVICE page are broken up into
764 * 16-bit chunks. Run through the string, and output each
765 * 8-bit chunk linearly, regardless of platform.
766 *
767 * LOCKING:
768 * caller.
769 */
770
6a62a04d
TH
771void ata_id_string(const u16 *id, unsigned char *s,
772 unsigned int ofs, unsigned int len)
1da177e4
LT
773{
774 unsigned int c;
775
776 while (len > 0) {
777 c = id[ofs] >> 8;
778 *s = c;
779 s++;
780
781 c = id[ofs] & 0xff;
782 *s = c;
783 s++;
784
785 ofs++;
786 len -= 2;
787 }
788}
789
0e949ff3 790/**
6a62a04d 791 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
792 * @id: IDENTIFY DEVICE results we will examine
793 * @s: string into which data is output
794 * @ofs: offset into identify device page
795 * @len: length of string to return. must be an odd number.
796 *
6a62a04d 797 * This function is identical to ata_id_string except that it
0e949ff3
TH
798 * trims trailing spaces and terminates the resulting string with
799 * null. @len must be actual maximum length (even number) + 1.
800 *
801 * LOCKING:
802 * caller.
803 */
6a62a04d
TH
804void ata_id_c_string(const u16 *id, unsigned char *s,
805 unsigned int ofs, unsigned int len)
0e949ff3
TH
806{
807 unsigned char *p;
808
809 WARN_ON(!(len & 1));
810
6a62a04d 811 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
812
813 p = s + strnlen(s, len - 1);
814 while (p > s && p[-1] == ' ')
815 p--;
816 *p = '\0';
817}
0baab86b 818
1e999736
AC
819static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
820{
821 u64 sectors = 0;
822
823 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
824 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
825 sectors |= (tf->hob_lbal & 0xff) << 24;
826 sectors |= (tf->lbah & 0xff) << 16;
827 sectors |= (tf->lbam & 0xff) << 8;
828 sectors |= (tf->lbal & 0xff);
829
830 return ++sectors;
831}
832
833static u64 ata_tf_to_lba(struct ata_taskfile *tf)
834{
835 u64 sectors = 0;
836
837 sectors |= (tf->device & 0x0f) << 24;
838 sectors |= (tf->lbah & 0xff) << 16;
839 sectors |= (tf->lbam & 0xff) << 8;
840 sectors |= (tf->lbal & 0xff);
841
842 return ++sectors;
843}
844
845/**
846 * ata_read_native_max_address_ext - LBA48 native max query
847 * @dev: Device to query
848 *
849 * Perform an LBA48 size query upon the device in question. Return the
850 * actual LBA48 size or zero if the command fails.
851 */
852
853static u64 ata_read_native_max_address_ext(struct ata_device *dev)
854{
855 unsigned int err;
856 struct ata_taskfile tf;
857
858 ata_tf_init(dev, &tf);
859
860 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
861 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
862 tf.protocol |= ATA_PROT_NODATA;
863 tf.device |= 0x40;
864
865 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
866 if (err)
867 return 0;
868
869 return ata_tf_to_lba48(&tf);
870}
871
872/**
873 * ata_read_native_max_address - LBA28 native max query
874 * @dev: Device to query
875 *
876 * Performa an LBA28 size query upon the device in question. Return the
877 * actual LBA28 size or zero if the command fails.
878 */
879
880static u64 ata_read_native_max_address(struct ata_device *dev)
881{
882 unsigned int err;
883 struct ata_taskfile tf;
884
885 ata_tf_init(dev, &tf);
886
887 tf.command = ATA_CMD_READ_NATIVE_MAX;
888 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
889 tf.protocol |= ATA_PROT_NODATA;
890 tf.device |= 0x40;
891
892 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
893 if (err)
894 return 0;
895
896 return ata_tf_to_lba(&tf);
897}
898
899/**
900 * ata_set_native_max_address_ext - LBA48 native max set
901 * @dev: Device to query
6b38d1d1 902 * @new_sectors: new max sectors value to set for the device
1e999736
AC
903 *
904 * Perform an LBA48 size set max upon the device in question. Return the
905 * actual LBA48 size or zero if the command fails.
906 */
907
908static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
909{
910 unsigned int err;
911 struct ata_taskfile tf;
912
913 new_sectors--;
914
915 ata_tf_init(dev, &tf);
916
917 tf.command = ATA_CMD_SET_MAX_EXT;
918 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
919 tf.protocol |= ATA_PROT_NODATA;
920 tf.device |= 0x40;
921
922 tf.lbal = (new_sectors >> 0) & 0xff;
923 tf.lbam = (new_sectors >> 8) & 0xff;
924 tf.lbah = (new_sectors >> 16) & 0xff;
925
926 tf.hob_lbal = (new_sectors >> 24) & 0xff;
927 tf.hob_lbam = (new_sectors >> 32) & 0xff;
928 tf.hob_lbah = (new_sectors >> 40) & 0xff;
929
930 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
931 if (err)
932 return 0;
933
934 return ata_tf_to_lba48(&tf);
935}
936
937/**
938 * ata_set_native_max_address - LBA28 native max set
939 * @dev: Device to query
6b38d1d1 940 * @new_sectors: new max sectors value to set for the device
1e999736
AC
941 *
942 * Perform an LBA28 size set max upon the device in question. Return the
943 * actual LBA28 size or zero if the command fails.
944 */
945
946static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
947{
948 unsigned int err;
949 struct ata_taskfile tf;
950
951 new_sectors--;
952
953 ata_tf_init(dev, &tf);
954
955 tf.command = ATA_CMD_SET_MAX;
956 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
957 tf.protocol |= ATA_PROT_NODATA;
958
959 tf.lbal = (new_sectors >> 0) & 0xff;
960 tf.lbam = (new_sectors >> 8) & 0xff;
961 tf.lbah = (new_sectors >> 16) & 0xff;
962 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
963
964 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
965 if (err)
966 return 0;
967
968 return ata_tf_to_lba(&tf);
969}
970
971/**
972 * ata_hpa_resize - Resize a device with an HPA set
973 * @dev: Device to resize
974 *
975 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
976 * it if required to the full size of the media. The caller must check
977 * the drive has the HPA feature set enabled.
978 */
979
980static u64 ata_hpa_resize(struct ata_device *dev)
981{
982 u64 sectors = dev->n_sectors;
983 u64 hpa_sectors;
a617c09f 984
1e999736
AC
985 if (ata_id_has_lba48(dev->id))
986 hpa_sectors = ata_read_native_max_address_ext(dev);
987 else
988 hpa_sectors = ata_read_native_max_address(dev);
989
1e999736
AC
990 if (hpa_sectors > sectors) {
991 ata_dev_printk(dev, KERN_INFO,
992 "Host Protected Area detected:\n"
993 "\tcurrent size: %lld sectors\n"
994 "\tnative size: %lld sectors\n",
bd1d5ec6 995 (long long)sectors, (long long)hpa_sectors);
1e999736
AC
996
997 if (ata_ignore_hpa) {
998 if (ata_id_has_lba48(dev->id))
999 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1000 else
bd1d5ec6
AM
1001 hpa_sectors = ata_set_native_max_address(dev,
1002 hpa_sectors);
1e999736
AC
1003
1004 if (hpa_sectors) {
bd1d5ec6
AM
1005 ata_dev_printk(dev, KERN_INFO, "native size "
1006 "increased to %lld sectors\n",
1007 (long long)hpa_sectors);
1e999736
AC
1008 return hpa_sectors;
1009 }
1010 }
37301a55
TH
1011 } else if (hpa_sectors < sectors)
1012 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1013 "is smaller than sectors (%lld)\n", __FUNCTION__,
1014 (long long)hpa_sectors, (long long)sectors);
1015
1e999736
AC
1016 return sectors;
1017}
1018
2940740b
TH
1019static u64 ata_id_n_sectors(const u16 *id)
1020{
1021 if (ata_id_has_lba(id)) {
1022 if (ata_id_has_lba48(id))
1023 return ata_id_u64(id, 100);
1024 else
1025 return ata_id_u32(id, 60);
1026 } else {
1027 if (ata_id_current_chs_valid(id))
1028 return ata_id_u32(id, 57);
1029 else
1030 return id[1] * id[3] * id[6];
1031 }
1032}
1033
10305f0f
A
1034/**
1035 * ata_id_to_dma_mode - Identify DMA mode from id block
1036 * @dev: device to identify
cc261267 1037 * @unknown: mode to assume if we cannot tell
10305f0f
A
1038 *
1039 * Set up the timing values for the device based upon the identify
1040 * reported values for the DMA mode. This function is used by drivers
1041 * which rely upon firmware configured modes, but wish to report the
1042 * mode correctly when possible.
1043 *
1044 * In addition we emit similarly formatted messages to the default
1045 * ata_dev_set_mode handler, in order to provide consistency of
1046 * presentation.
1047 */
1048
1049void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1050{
1051 unsigned int mask;
1052 u8 mode;
1053
1054 /* Pack the DMA modes */
1055 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1056 if (dev->id[53] & 0x04)
1057 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1058
1059 /* Select the mode in use */
1060 mode = ata_xfer_mask2mode(mask);
1061
1062 if (mode != 0) {
1063 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1064 ata_mode_string(mask));
1065 } else {
1066 /* SWDMA perhaps ? */
1067 mode = unknown;
1068 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1069 }
1070
1071 /* Configure the device reporting */
1072 dev->xfer_mode = mode;
1073 dev->xfer_shift = ata_xfer_mode2shift(mode);
1074}
1075
0baab86b
EF
1076/**
1077 * ata_noop_dev_select - Select device 0/1 on ATA bus
1078 * @ap: ATA channel to manipulate
1079 * @device: ATA device (numbered from zero) to select
1080 *
1081 * This function performs no actual function.
1082 *
1083 * May be used as the dev_select() entry in ata_port_operations.
1084 *
1085 * LOCKING:
1086 * caller.
1087 */
1da177e4
LT
1088void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1089{
1090}
1091
0baab86b 1092
1da177e4
LT
1093/**
1094 * ata_std_dev_select - Select device 0/1 on ATA bus
1095 * @ap: ATA channel to manipulate
1096 * @device: ATA device (numbered from zero) to select
1097 *
1098 * Use the method defined in the ATA specification to
1099 * make either device 0, or device 1, active on the
0baab86b
EF
1100 * ATA channel. Works with both PIO and MMIO.
1101 *
1102 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1103 *
1104 * LOCKING:
1105 * caller.
1106 */
1107
1108void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1109{
1110 u8 tmp;
1111
1112 if (device == 0)
1113 tmp = ATA_DEVICE_OBS;
1114 else
1115 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1116
0d5ff566 1117 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1118 ata_pause(ap); /* needed; also flushes, for mmio */
1119}
1120
1121/**
1122 * ata_dev_select - Select device 0/1 on ATA bus
1123 * @ap: ATA channel to manipulate
1124 * @device: ATA device (numbered from zero) to select
1125 * @wait: non-zero to wait for Status register BSY bit to clear
1126 * @can_sleep: non-zero if context allows sleeping
1127 *
1128 * Use the method defined in the ATA specification to
1129 * make either device 0, or device 1, active on the
1130 * ATA channel.
1131 *
1132 * This is a high-level version of ata_std_dev_select(),
1133 * which additionally provides the services of inserting
1134 * the proper pauses and status polling, where needed.
1135 *
1136 * LOCKING:
1137 * caller.
1138 */
1139
1140void ata_dev_select(struct ata_port *ap, unsigned int device,
1141 unsigned int wait, unsigned int can_sleep)
1142{
88574551 1143 if (ata_msg_probe(ap))
44877b4e
TH
1144 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1145 "device %u, wait %u\n", device, wait);
1da177e4
LT
1146
1147 if (wait)
1148 ata_wait_idle(ap);
1149
1150 ap->ops->dev_select(ap, device);
1151
1152 if (wait) {
1153 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1154 msleep(150);
1155 ata_wait_idle(ap);
1156 }
1157}
1158
1159/**
1160 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1161 * @id: IDENTIFY DEVICE page to dump
1da177e4 1162 *
0bd3300a
TH
1163 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1164 * page.
1da177e4
LT
1165 *
1166 * LOCKING:
1167 * caller.
1168 */
1169
0bd3300a 1170static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1171{
1172 DPRINTK("49==0x%04x "
1173 "53==0x%04x "
1174 "63==0x%04x "
1175 "64==0x%04x "
1176 "75==0x%04x \n",
0bd3300a
TH
1177 id[49],
1178 id[53],
1179 id[63],
1180 id[64],
1181 id[75]);
1da177e4
LT
1182 DPRINTK("80==0x%04x "
1183 "81==0x%04x "
1184 "82==0x%04x "
1185 "83==0x%04x "
1186 "84==0x%04x \n",
0bd3300a
TH
1187 id[80],
1188 id[81],
1189 id[82],
1190 id[83],
1191 id[84]);
1da177e4
LT
1192 DPRINTK("88==0x%04x "
1193 "93==0x%04x\n",
0bd3300a
TH
1194 id[88],
1195 id[93]);
1da177e4
LT
1196}
1197
cb95d562
TH
1198/**
1199 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1200 * @id: IDENTIFY data to compute xfer mask from
1201 *
1202 * Compute the xfermask for this device. This is not as trivial
1203 * as it seems if we must consider early devices correctly.
1204 *
1205 * FIXME: pre IDE drive timing (do we care ?).
1206 *
1207 * LOCKING:
1208 * None.
1209 *
1210 * RETURNS:
1211 * Computed xfermask
1212 */
1213static unsigned int ata_id_xfermask(const u16 *id)
1214{
1215 unsigned int pio_mask, mwdma_mask, udma_mask;
1216
1217 /* Usual case. Word 53 indicates word 64 is valid */
1218 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1219 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1220 pio_mask <<= 3;
1221 pio_mask |= 0x7;
1222 } else {
1223 /* If word 64 isn't valid then Word 51 high byte holds
1224 * the PIO timing number for the maximum. Turn it into
1225 * a mask.
1226 */
7a0f1c8a 1227 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1228 if (mode < 5) /* Valid PIO range */
1229 pio_mask = (2 << mode) - 1;
1230 else
1231 pio_mask = 1;
cb95d562
TH
1232
1233 /* But wait.. there's more. Design your standards by
1234 * committee and you too can get a free iordy field to
1235 * process. However its the speeds not the modes that
1236 * are supported... Note drivers using the timing API
1237 * will get this right anyway
1238 */
1239 }
1240
1241 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1242
b352e57d
AC
1243 if (ata_id_is_cfa(id)) {
1244 /*
1245 * Process compact flash extended modes
1246 */
1247 int pio = id[163] & 0x7;
1248 int dma = (id[163] >> 3) & 7;
1249
1250 if (pio)
1251 pio_mask |= (1 << 5);
1252 if (pio > 1)
1253 pio_mask |= (1 << 6);
1254 if (dma)
1255 mwdma_mask |= (1 << 3);
1256 if (dma > 1)
1257 mwdma_mask |= (1 << 4);
1258 }
1259
fb21f0d0
TH
1260 udma_mask = 0;
1261 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1262 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1263
1264 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1265}
1266
86e45b6b
TH
1267/**
1268 * ata_port_queue_task - Queue port_task
1269 * @ap: The ata_port to queue port_task for
e2a7f77a 1270 * @fn: workqueue function to be scheduled
65f27f38 1271 * @data: data for @fn to use
e2a7f77a 1272 * @delay: delay time for workqueue function
86e45b6b
TH
1273 *
1274 * Schedule @fn(@data) for execution after @delay jiffies using
1275 * port_task. There is one port_task per port and it's the
1276 * user(low level driver)'s responsibility to make sure that only
1277 * one task is active at any given time.
1278 *
1279 * libata core layer takes care of synchronization between
1280 * port_task and EH. ata_port_queue_task() may be ignored for EH
1281 * synchronization.
1282 *
1283 * LOCKING:
1284 * Inherited from caller.
1285 */
65f27f38 1286void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1287 unsigned long delay)
1288{
65f27f38
DH
1289 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1290 ap->port_task_data = data;
86e45b6b 1291
45a66c1c
ON
1292 /* may fail if ata_port_flush_task() in progress */
1293 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1294}
1295
1296/**
1297 * ata_port_flush_task - Flush port_task
1298 * @ap: The ata_port to flush port_task for
1299 *
1300 * After this function completes, port_task is guranteed not to
1301 * be running or scheduled.
1302 *
1303 * LOCKING:
1304 * Kernel thread context (may sleep)
1305 */
1306void ata_port_flush_task(struct ata_port *ap)
1307{
86e45b6b
TH
1308 DPRINTK("ENTER\n");
1309
45a66c1c 1310 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1311
0dd4b21f
BP
1312 if (ata_msg_ctl(ap))
1313 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1314}
1315
7102d230 1316static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1317{
77853bf2 1318 struct completion *waiting = qc->private_data;
a2a7a662 1319
a2a7a662 1320 complete(waiting);
a2a7a662
TH
1321}
1322
1323/**
2432697b 1324 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1325 * @dev: Device to which the command is sent
1326 * @tf: Taskfile registers for the command and the result
d69cf37d 1327 * @cdb: CDB for packet command
a2a7a662 1328 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1329 * @sg: sg list for the data buffer of the command
1330 * @n_elem: Number of sg entries
a2a7a662
TH
1331 *
1332 * Executes libata internal command with timeout. @tf contains
1333 * command on entry and result on return. Timeout and error
1334 * conditions are reported via return value. No recovery action
1335 * is taken after a command times out. It's caller's duty to
1336 * clean up after timeout.
1337 *
1338 * LOCKING:
1339 * None. Should be called with kernel context, might sleep.
551e8889
TH
1340 *
1341 * RETURNS:
1342 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1343 */
2432697b
TH
1344unsigned ata_exec_internal_sg(struct ata_device *dev,
1345 struct ata_taskfile *tf, const u8 *cdb,
1346 int dma_dir, struct scatterlist *sg,
1347 unsigned int n_elem)
a2a7a662 1348{
3373efd8 1349 struct ata_port *ap = dev->ap;
a2a7a662
TH
1350 u8 command = tf->command;
1351 struct ata_queued_cmd *qc;
2ab7db1f 1352 unsigned int tag, preempted_tag;
dedaf2b0 1353 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1354 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1355 unsigned long flags;
77853bf2 1356 unsigned int err_mask;
d95a717f 1357 int rc;
a2a7a662 1358
ba6a1308 1359 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1360
e3180499 1361 /* no internal command while frozen */
b51e9e5d 1362 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1363 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1364 return AC_ERR_SYSTEM;
1365 }
1366
2ab7db1f 1367 /* initialize internal qc */
a2a7a662 1368
2ab7db1f
TH
1369 /* XXX: Tag 0 is used for drivers with legacy EH as some
1370 * drivers choke if any other tag is given. This breaks
1371 * ata_tag_internal() test for those drivers. Don't use new
1372 * EH stuff without converting to it.
1373 */
1374 if (ap->ops->error_handler)
1375 tag = ATA_TAG_INTERNAL;
1376 else
1377 tag = 0;
1378
6cec4a39 1379 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1380 BUG();
f69499f4 1381 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1382
1383 qc->tag = tag;
1384 qc->scsicmd = NULL;
1385 qc->ap = ap;
1386 qc->dev = dev;
1387 ata_qc_reinit(qc);
1388
1389 preempted_tag = ap->active_tag;
dedaf2b0
TH
1390 preempted_sactive = ap->sactive;
1391 preempted_qc_active = ap->qc_active;
2ab7db1f 1392 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1393 ap->sactive = 0;
1394 ap->qc_active = 0;
2ab7db1f
TH
1395
1396 /* prepare & issue qc */
a2a7a662 1397 qc->tf = *tf;
d69cf37d
TH
1398 if (cdb)
1399 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1400 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1401 qc->dma_dir = dma_dir;
1402 if (dma_dir != DMA_NONE) {
2432697b
TH
1403 unsigned int i, buflen = 0;
1404
1405 for (i = 0; i < n_elem; i++)
1406 buflen += sg[i].length;
1407
1408 ata_sg_init(qc, sg, n_elem);
49c80429 1409 qc->nbytes = buflen;
a2a7a662
TH
1410 }
1411
77853bf2 1412 qc->private_data = &wait;
a2a7a662
TH
1413 qc->complete_fn = ata_qc_complete_internal;
1414
8e0e694a 1415 ata_qc_issue(qc);
a2a7a662 1416
ba6a1308 1417 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1418
a8601e5f 1419 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1420
1421 ata_port_flush_task(ap);
41ade50c 1422
d95a717f 1423 if (!rc) {
ba6a1308 1424 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1425
1426 /* We're racing with irq here. If we lose, the
1427 * following test prevents us from completing the qc
d95a717f
TH
1428 * twice. If we win, the port is frozen and will be
1429 * cleaned up by ->post_internal_cmd().
a2a7a662 1430 */
77853bf2 1431 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1432 qc->err_mask |= AC_ERR_TIMEOUT;
1433
1434 if (ap->ops->error_handler)
1435 ata_port_freeze(ap);
1436 else
1437 ata_qc_complete(qc);
f15a1daf 1438
0dd4b21f
BP
1439 if (ata_msg_warn(ap))
1440 ata_dev_printk(dev, KERN_WARNING,
88574551 1441 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1442 }
1443
ba6a1308 1444 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1445 }
1446
d95a717f
TH
1447 /* do post_internal_cmd */
1448 if (ap->ops->post_internal_cmd)
1449 ap->ops->post_internal_cmd(qc);
1450
a51d644a
TH
1451 /* perform minimal error analysis */
1452 if (qc->flags & ATA_QCFLAG_FAILED) {
1453 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1454 qc->err_mask |= AC_ERR_DEV;
1455
1456 if (!qc->err_mask)
1457 qc->err_mask |= AC_ERR_OTHER;
1458
1459 if (qc->err_mask & ~AC_ERR_OTHER)
1460 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1461 }
1462
15869303 1463 /* finish up */
ba6a1308 1464 spin_lock_irqsave(ap->lock, flags);
15869303 1465
e61e0672 1466 *tf = qc->result_tf;
77853bf2
TH
1467 err_mask = qc->err_mask;
1468
1469 ata_qc_free(qc);
2ab7db1f 1470 ap->active_tag = preempted_tag;
dedaf2b0
TH
1471 ap->sactive = preempted_sactive;
1472 ap->qc_active = preempted_qc_active;
77853bf2 1473
1f7dd3e9
TH
1474 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1475 * Until those drivers are fixed, we detect the condition
1476 * here, fail the command with AC_ERR_SYSTEM and reenable the
1477 * port.
1478 *
1479 * Note that this doesn't change any behavior as internal
1480 * command failure results in disabling the device in the
1481 * higher layer for LLDDs without new reset/EH callbacks.
1482 *
1483 * Kill the following code as soon as those drivers are fixed.
1484 */
198e0fed 1485 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1486 err_mask |= AC_ERR_SYSTEM;
1487 ata_port_probe(ap);
1488 }
1489
ba6a1308 1490 spin_unlock_irqrestore(ap->lock, flags);
15869303 1491
77853bf2 1492 return err_mask;
a2a7a662
TH
1493}
1494
2432697b 1495/**
33480a0e 1496 * ata_exec_internal - execute libata internal command
2432697b
TH
1497 * @dev: Device to which the command is sent
1498 * @tf: Taskfile registers for the command and the result
1499 * @cdb: CDB for packet command
1500 * @dma_dir: Data tranfer direction of the command
1501 * @buf: Data buffer of the command
1502 * @buflen: Length of data buffer
1503 *
1504 * Wrapper around ata_exec_internal_sg() which takes simple
1505 * buffer instead of sg list.
1506 *
1507 * LOCKING:
1508 * None. Should be called with kernel context, might sleep.
1509 *
1510 * RETURNS:
1511 * Zero on success, AC_ERR_* mask on failure
1512 */
1513unsigned ata_exec_internal(struct ata_device *dev,
1514 struct ata_taskfile *tf, const u8 *cdb,
1515 int dma_dir, void *buf, unsigned int buflen)
1516{
33480a0e
TH
1517 struct scatterlist *psg = NULL, sg;
1518 unsigned int n_elem = 0;
2432697b 1519
33480a0e
TH
1520 if (dma_dir != DMA_NONE) {
1521 WARN_ON(!buf);
1522 sg_init_one(&sg, buf, buflen);
1523 psg = &sg;
1524 n_elem++;
1525 }
2432697b 1526
33480a0e 1527 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1528}
1529
977e6b9f
TH
1530/**
1531 * ata_do_simple_cmd - execute simple internal command
1532 * @dev: Device to which the command is sent
1533 * @cmd: Opcode to execute
1534 *
1535 * Execute a 'simple' command, that only consists of the opcode
1536 * 'cmd' itself, without filling any other registers
1537 *
1538 * LOCKING:
1539 * Kernel thread context (may sleep).
1540 *
1541 * RETURNS:
1542 * Zero on success, AC_ERR_* mask on failure
e58eb583 1543 */
77b08fb5 1544unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1545{
1546 struct ata_taskfile tf;
e58eb583
TH
1547
1548 ata_tf_init(dev, &tf);
1549
1550 tf.command = cmd;
1551 tf.flags |= ATA_TFLAG_DEVICE;
1552 tf.protocol = ATA_PROT_NODATA;
1553
977e6b9f 1554 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1555}
1556
1bc4ccff
AC
1557/**
1558 * ata_pio_need_iordy - check if iordy needed
1559 * @adev: ATA device
1560 *
1561 * Check if the current speed of the device requires IORDY. Used
1562 * by various controllers for chip configuration.
1563 */
a617c09f 1564
1bc4ccff
AC
1565unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1566{
432729f0
AC
1567 /* Controller doesn't support IORDY. Probably a pointless check
1568 as the caller should know this */
1569 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1570 return 0;
432729f0
AC
1571 /* PIO3 and higher it is mandatory */
1572 if (adev->pio_mode > XFER_PIO_2)
1573 return 1;
1574 /* We turn it on when possible */
1575 if (ata_id_has_iordy(adev->id))
1bc4ccff 1576 return 1;
432729f0
AC
1577 return 0;
1578}
2e9edbf8 1579
432729f0
AC
1580/**
1581 * ata_pio_mask_no_iordy - Return the non IORDY mask
1582 * @adev: ATA device
1583 *
1584 * Compute the highest mode possible if we are not using iordy. Return
1585 * -1 if no iordy mode is available.
1586 */
a617c09f 1587
432729f0
AC
1588static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1589{
1bc4ccff 1590 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1591 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1592 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1593 /* Is the speed faster than the drive allows non IORDY ? */
1594 if (pio) {
1595 /* This is cycle times not frequency - watch the logic! */
1596 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1597 return 3 << ATA_SHIFT_PIO;
1598 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1599 }
1600 }
432729f0 1601 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1602}
1603
1da177e4 1604/**
49016aca 1605 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1606 * @dev: target device
1607 * @p_class: pointer to class of the target device (may be changed)
bff04647 1608 * @flags: ATA_READID_* flags
fe635c7e 1609 * @id: buffer to read IDENTIFY data into
1da177e4 1610 *
49016aca
TH
1611 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1612 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1613 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1614 * for pre-ATA4 drives.
1da177e4
LT
1615 *
1616 * LOCKING:
49016aca
TH
1617 * Kernel thread context (may sleep)
1618 *
1619 * RETURNS:
1620 * 0 on success, -errno otherwise.
1da177e4 1621 */
a9beec95 1622int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1623 unsigned int flags, u16 *id)
1da177e4 1624{
3373efd8 1625 struct ata_port *ap = dev->ap;
49016aca 1626 unsigned int class = *p_class;
a0123703 1627 struct ata_taskfile tf;
49016aca
TH
1628 unsigned int err_mask = 0;
1629 const char *reason;
54936f8b 1630 int may_fallback = 1, tried_spinup = 0;
49016aca 1631 int rc;
1da177e4 1632
0dd4b21f 1633 if (ata_msg_ctl(ap))
44877b4e 1634 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1635
49016aca 1636 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1637 retry:
3373efd8 1638 ata_tf_init(dev, &tf);
a0123703 1639
49016aca
TH
1640 switch (class) {
1641 case ATA_DEV_ATA:
a0123703 1642 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1643 break;
1644 case ATA_DEV_ATAPI:
a0123703 1645 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1646 break;
1647 default:
1648 rc = -ENODEV;
1649 reason = "unsupported class";
1650 goto err_out;
1da177e4
LT
1651 }
1652
a0123703 1653 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1654
1655 /* Some devices choke if TF registers contain garbage. Make
1656 * sure those are properly initialized.
1657 */
1658 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1659
1660 /* Device presence detection is unreliable on some
1661 * controllers. Always poll IDENTIFY if available.
1662 */
1663 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1664
3373efd8 1665 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1666 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1667 if (err_mask) {
800b3996 1668 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1669 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1670 ap->print_id, dev->devno);
55a8e2c8
TH
1671 return -ENOENT;
1672 }
1673
54936f8b
TH
1674 /* Device or controller might have reported the wrong
1675 * device class. Give a shot at the other IDENTIFY if
1676 * the current one is aborted by the device.
1677 */
1678 if (may_fallback &&
1679 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1680 may_fallback = 0;
1681
1682 if (class == ATA_DEV_ATA)
1683 class = ATA_DEV_ATAPI;
1684 else
1685 class = ATA_DEV_ATA;
1686 goto retry;
1687 }
1688
49016aca
TH
1689 rc = -EIO;
1690 reason = "I/O error";
1da177e4
LT
1691 goto err_out;
1692 }
1693
54936f8b
TH
1694 /* Falling back doesn't make sense if ID data was read
1695 * successfully at least once.
1696 */
1697 may_fallback = 0;
1698
49016aca 1699 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1700
49016aca 1701 /* sanity check */
a4f5749b 1702 rc = -EINVAL;
6070068b 1703 reason = "device reports invalid type";
a4f5749b
TH
1704
1705 if (class == ATA_DEV_ATA) {
1706 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1707 goto err_out;
1708 } else {
1709 if (ata_id_is_ata(id))
1710 goto err_out;
49016aca
TH
1711 }
1712
169439c2
ML
1713 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1714 tried_spinup = 1;
1715 /*
1716 * Drive powered-up in standby mode, and requires a specific
1717 * SET_FEATURES spin-up subcommand before it will accept
1718 * anything other than the original IDENTIFY command.
1719 */
1720 ata_tf_init(dev, &tf);
1721 tf.command = ATA_CMD_SET_FEATURES;
1722 tf.feature = SETFEATURES_SPINUP;
1723 tf.protocol = ATA_PROT_NODATA;
1724 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1725 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1726 if (err_mask) {
1727 rc = -EIO;
1728 reason = "SPINUP failed";
1729 goto err_out;
1730 }
1731 /*
1732 * If the drive initially returned incomplete IDENTIFY info,
1733 * we now must reissue the IDENTIFY command.
1734 */
1735 if (id[2] == 0x37c8)
1736 goto retry;
1737 }
1738
bff04647 1739 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1740 /*
1741 * The exact sequence expected by certain pre-ATA4 drives is:
1742 * SRST RESET
1743 * IDENTIFY
1744 * INITIALIZE DEVICE PARAMETERS
1745 * anything else..
1746 * Some drives were very specific about that exact sequence.
1747 */
1748 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1749 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1750 if (err_mask) {
1751 rc = -EIO;
1752 reason = "INIT_DEV_PARAMS failed";
1753 goto err_out;
1754 }
1755
1756 /* current CHS translation info (id[53-58]) might be
1757 * changed. reread the identify device info.
1758 */
bff04647 1759 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1760 goto retry;
1761 }
1762 }
1763
1764 *p_class = class;
fe635c7e 1765
49016aca
TH
1766 return 0;
1767
1768 err_out:
88574551 1769 if (ata_msg_warn(ap))
0dd4b21f 1770 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1771 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1772 return rc;
1773}
1774
3373efd8 1775static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1776{
3373efd8 1777 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1778}
1779
a6e6ce8e
TH
1780static void ata_dev_config_ncq(struct ata_device *dev,
1781 char *desc, size_t desc_sz)
1782{
1783 struct ata_port *ap = dev->ap;
1784 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1785
1786 if (!ata_id_has_ncq(dev->id)) {
1787 desc[0] = '\0';
1788 return;
1789 }
75683fe7 1790 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
1791 snprintf(desc, desc_sz, "NCQ (not used)");
1792 return;
1793 }
a6e6ce8e 1794 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1795 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1796 dev->flags |= ATA_DFLAG_NCQ;
1797 }
1798
1799 if (hdepth >= ddepth)
1800 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1801 else
1802 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1803}
1804
49016aca 1805/**
ffeae418 1806 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1807 * @dev: Target device to configure
1808 *
1809 * Configure @dev according to @dev->id. Generic and low-level
1810 * driver specific fixups are also applied.
49016aca
TH
1811 *
1812 * LOCKING:
ffeae418
TH
1813 * Kernel thread context (may sleep)
1814 *
1815 * RETURNS:
1816 * 0 on success, -errno otherwise
49016aca 1817 */
efdaedc4 1818int ata_dev_configure(struct ata_device *dev)
49016aca 1819{
3373efd8 1820 struct ata_port *ap = dev->ap;
6746544c
TH
1821 struct ata_eh_context *ehc = &ap->eh_context;
1822 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1823 const u16 *id = dev->id;
ff8854b2 1824 unsigned int xfer_mask;
b352e57d 1825 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1826 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1827 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1828 int rc;
49016aca 1829
0dd4b21f 1830 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1831 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1832 __FUNCTION__);
ffeae418 1833 return 0;
49016aca
TH
1834 }
1835
0dd4b21f 1836 if (ata_msg_probe(ap))
44877b4e 1837 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1838
75683fe7
TH
1839 /* set horkage */
1840 dev->horkage |= ata_dev_blacklisted(dev);
1841
6746544c
TH
1842 /* let ACPI work its magic */
1843 rc = ata_acpi_on_devcfg(dev);
1844 if (rc)
1845 return rc;
08573a86 1846
c39f5ebe 1847 /* print device capabilities */
0dd4b21f 1848 if (ata_msg_probe(ap))
88574551
TH
1849 ata_dev_printk(dev, KERN_DEBUG,
1850 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1851 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1852 __FUNCTION__,
f15a1daf
TH
1853 id[49], id[82], id[83], id[84],
1854 id[85], id[86], id[87], id[88]);
c39f5ebe 1855
208a9933 1856 /* initialize to-be-configured parameters */
ea1dd4e1 1857 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1858 dev->max_sectors = 0;
1859 dev->cdb_len = 0;
1860 dev->n_sectors = 0;
1861 dev->cylinders = 0;
1862 dev->heads = 0;
1863 dev->sectors = 0;
1864
1da177e4
LT
1865 /*
1866 * common ATA, ATAPI feature tests
1867 */
1868
ff8854b2 1869 /* find max transfer mode; for printk only */
1148c3a7 1870 xfer_mask = ata_id_xfermask(id);
1da177e4 1871
0dd4b21f
BP
1872 if (ata_msg_probe(ap))
1873 ata_dump_id(id);
1da177e4 1874
ef143d57
AL
1875 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1876 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1877 sizeof(fwrevbuf));
1878
1879 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1880 sizeof(modelbuf));
1881
1da177e4
LT
1882 /* ATA-specific feature tests */
1883 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1884 if (ata_id_is_cfa(id)) {
1885 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1886 ata_dev_printk(dev, KERN_WARNING,
1887 "supports DRM functions and may "
1888 "not be fully accessable.\n");
b352e57d
AC
1889 snprintf(revbuf, 7, "CFA");
1890 }
1891 else
1892 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1893
1148c3a7 1894 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1895
3f64f565
EM
1896 if (dev->id[59] & 0x100)
1897 dev->multi_count = dev->id[59] & 0xff;
1898
1148c3a7 1899 if (ata_id_has_lba(id)) {
4c2d721a 1900 const char *lba_desc;
a6e6ce8e 1901 char ncq_desc[20];
8bf62ece 1902
4c2d721a
TH
1903 lba_desc = "LBA";
1904 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1905 if (ata_id_has_lba48(id)) {
8bf62ece 1906 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1907 lba_desc = "LBA48";
6fc49adb
TH
1908
1909 if (dev->n_sectors >= (1UL << 28) &&
1910 ata_id_has_flush_ext(id))
1911 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1912 }
8bf62ece 1913
1e999736
AC
1914 if (ata_id_hpa_enabled(dev->id))
1915 dev->n_sectors = ata_hpa_resize(dev);
1916
a6e6ce8e
TH
1917 /* config NCQ */
1918 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1919
8bf62ece 1920 /* print device info to dmesg */
3f64f565
EM
1921 if (ata_msg_drv(ap) && print_info) {
1922 ata_dev_printk(dev, KERN_INFO,
1923 "%s: %s, %s, max %s\n",
1924 revbuf, modelbuf, fwrevbuf,
1925 ata_mode_string(xfer_mask));
1926 ata_dev_printk(dev, KERN_INFO,
1927 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1928 (unsigned long long)dev->n_sectors,
3f64f565
EM
1929 dev->multi_count, lba_desc, ncq_desc);
1930 }
ffeae418 1931 } else {
8bf62ece
AL
1932 /* CHS */
1933
1934 /* Default translation */
1148c3a7
TH
1935 dev->cylinders = id[1];
1936 dev->heads = id[3];
1937 dev->sectors = id[6];
8bf62ece 1938
1148c3a7 1939 if (ata_id_current_chs_valid(id)) {
8bf62ece 1940 /* Current CHS translation is valid. */
1148c3a7
TH
1941 dev->cylinders = id[54];
1942 dev->heads = id[55];
1943 dev->sectors = id[56];
8bf62ece
AL
1944 }
1945
1946 /* print device info to dmesg */
3f64f565 1947 if (ata_msg_drv(ap) && print_info) {
88574551 1948 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1949 "%s: %s, %s, max %s\n",
1950 revbuf, modelbuf, fwrevbuf,
1951 ata_mode_string(xfer_mask));
a84471fe 1952 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1953 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1954 (unsigned long long)dev->n_sectors,
1955 dev->multi_count, dev->cylinders,
1956 dev->heads, dev->sectors);
1957 }
07f6f7d0
AL
1958 }
1959
6e7846e9 1960 dev->cdb_len = 16;
1da177e4
LT
1961 }
1962
1963 /* ATAPI-specific feature tests */
2c13b7ce 1964 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1965 char *cdb_intr_string = "";
1966
1148c3a7 1967 rc = atapi_cdb_len(id);
1da177e4 1968 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1969 if (ata_msg_warn(ap))
88574551
TH
1970 ata_dev_printk(dev, KERN_WARNING,
1971 "unsupported CDB len\n");
ffeae418 1972 rc = -EINVAL;
1da177e4
LT
1973 goto err_out_nosup;
1974 }
6e7846e9 1975 dev->cdb_len = (unsigned int) rc;
1da177e4 1976
08a556db 1977 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1978 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1979 cdb_intr_string = ", CDB intr";
1980 }
312f7da2 1981
1da177e4 1982 /* print device info to dmesg */
5afc8142 1983 if (ata_msg_drv(ap) && print_info)
ef143d57
AL
1984 ata_dev_printk(dev, KERN_INFO,
1985 "ATAPI: %s, %s, max %s%s\n",
1986 modelbuf, fwrevbuf,
12436c30
TH
1987 ata_mode_string(xfer_mask),
1988 cdb_intr_string);
1da177e4
LT
1989 }
1990
914ed354
TH
1991 /* determine max_sectors */
1992 dev->max_sectors = ATA_MAX_SECTORS;
1993 if (dev->flags & ATA_DFLAG_LBA48)
1994 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1995
93590859
AC
1996 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1997 /* Let the user know. We don't want to disallow opens for
1998 rescue purposes, or in case the vendor is just a blithering
1999 idiot */
2000 if (print_info) {
2001 ata_dev_printk(dev, KERN_WARNING,
2002"Drive reports diagnostics failure. This may indicate a drive\n");
2003 ata_dev_printk(dev, KERN_WARNING,
2004"fault or invalid emulation. Contact drive vendor for information.\n");
2005 }
2006 }
2007
4b2f3ede 2008 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2009 if (ata_dev_knobble(dev)) {
5afc8142 2010 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2011 ata_dev_printk(dev, KERN_INFO,
2012 "applying bridge limits\n");
5a529139 2013 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2014 dev->max_sectors = ATA_MAX_SECTORS;
2015 }
2016
75683fe7 2017 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2018 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2019 dev->max_sectors);
18d6e9d5 2020
4b2f3ede 2021 if (ap->ops->dev_config)
cd0d3bbc 2022 ap->ops->dev_config(dev);
4b2f3ede 2023
0dd4b21f
BP
2024 if (ata_msg_probe(ap))
2025 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2026 __FUNCTION__, ata_chk_status(ap));
ffeae418 2027 return 0;
1da177e4
LT
2028
2029err_out_nosup:
0dd4b21f 2030 if (ata_msg_probe(ap))
88574551
TH
2031 ata_dev_printk(dev, KERN_DEBUG,
2032 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2033 return rc;
1da177e4
LT
2034}
2035
be0d18df 2036/**
2e41e8e6 2037 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2038 * @ap: port
2039 *
2e41e8e6 2040 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2041 * detection.
2042 */
2043
2044int ata_cable_40wire(struct ata_port *ap)
2045{
2046 return ATA_CBL_PATA40;
2047}
2048
2049/**
2e41e8e6 2050 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2051 * @ap: port
2052 *
2e41e8e6 2053 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2054 * detection.
2055 */
2056
2057int ata_cable_80wire(struct ata_port *ap)
2058{
2059 return ATA_CBL_PATA80;
2060}
2061
2062/**
2063 * ata_cable_unknown - return unknown PATA cable.
2064 * @ap: port
2065 *
2066 * Helper method for drivers which have no PATA cable detection.
2067 */
2068
2069int ata_cable_unknown(struct ata_port *ap)
2070{
2071 return ATA_CBL_PATA_UNK;
2072}
2073
2074/**
2075 * ata_cable_sata - return SATA cable type
2076 * @ap: port
2077 *
2078 * Helper method for drivers which have SATA cables
2079 */
2080
2081int ata_cable_sata(struct ata_port *ap)
2082{
2083 return ATA_CBL_SATA;
2084}
2085
1da177e4
LT
2086/**
2087 * ata_bus_probe - Reset and probe ATA bus
2088 * @ap: Bus to probe
2089 *
0cba632b
JG
2090 * Master ATA bus probing function. Initiates a hardware-dependent
2091 * bus reset, then attempts to identify any devices found on
2092 * the bus.
2093 *
1da177e4 2094 * LOCKING:
0cba632b 2095 * PCI/etc. bus probe sem.
1da177e4
LT
2096 *
2097 * RETURNS:
96072e69 2098 * Zero on success, negative errno otherwise.
1da177e4
LT
2099 */
2100
80289167 2101int ata_bus_probe(struct ata_port *ap)
1da177e4 2102{
28ca5c57 2103 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2104 int tries[ATA_MAX_DEVICES];
4ae72a1e 2105 int i, rc;
e82cbdb9 2106 struct ata_device *dev;
1da177e4 2107
28ca5c57 2108 ata_port_probe(ap);
c19ba8af 2109
14d2bac1
TH
2110 for (i = 0; i < ATA_MAX_DEVICES; i++)
2111 tries[i] = ATA_PROBE_MAX_TRIES;
2112
2113 retry:
2044470c 2114 /* reset and determine device classes */
52783c5d 2115 ap->ops->phy_reset(ap);
2061a47a 2116
52783c5d
TH
2117 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2118 dev = &ap->device[i];
c19ba8af 2119
52783c5d
TH
2120 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2121 dev->class != ATA_DEV_UNKNOWN)
2122 classes[dev->devno] = dev->class;
2123 else
2124 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2125
52783c5d 2126 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2127 }
1da177e4 2128
52783c5d 2129 ata_port_probe(ap);
2044470c 2130
b6079ca4
AC
2131 /* after the reset the device state is PIO 0 and the controller
2132 state is undefined. Record the mode */
2133
2134 for (i = 0; i < ATA_MAX_DEVICES; i++)
2135 ap->device[i].pio_mode = XFER_PIO_0;
2136
f31f0cc2
JG
2137 /* read IDENTIFY page and configure devices. We have to do the identify
2138 specific sequence bass-ackwards so that PDIAG- is released by
2139 the slave device */
2140
2141 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
e82cbdb9 2142 dev = &ap->device[i];
28ca5c57 2143
ec573755
TH
2144 if (tries[i])
2145 dev->class = classes[i];
ffeae418 2146
14d2bac1 2147 if (!ata_dev_enabled(dev))
ffeae418 2148 continue;
ffeae418 2149
bff04647
TH
2150 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2151 dev->id);
14d2bac1
TH
2152 if (rc)
2153 goto fail;
f31f0cc2
JG
2154 }
2155
be0d18df
AC
2156 /* Now ask for the cable type as PDIAG- should have been released */
2157 if (ap->ops->cable_detect)
2158 ap->cbl = ap->ops->cable_detect(ap);
2159
f31f0cc2
JG
2160 /* After the identify sequence we can now set up the devices. We do
2161 this in the normal order so that the user doesn't get confused */
2162
2163 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2164 dev = &ap->device[i];
2165 if (!ata_dev_enabled(dev))
2166 continue;
14d2bac1 2167
efdaedc4
TH
2168 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2169 rc = ata_dev_configure(dev);
2170 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2171 if (rc)
2172 goto fail;
1da177e4
LT
2173 }
2174
e82cbdb9 2175 /* configure transfer mode */
3adcebb2 2176 rc = ata_set_mode(ap, &dev);
4ae72a1e 2177 if (rc)
51713d35 2178 goto fail;
1da177e4 2179
e82cbdb9
TH
2180 for (i = 0; i < ATA_MAX_DEVICES; i++)
2181 if (ata_dev_enabled(&ap->device[i]))
2182 return 0;
1da177e4 2183
e82cbdb9
TH
2184 /* no device present, disable port */
2185 ata_port_disable(ap);
1da177e4 2186 ap->ops->port_disable(ap);
96072e69 2187 return -ENODEV;
14d2bac1
TH
2188
2189 fail:
4ae72a1e
TH
2190 tries[dev->devno]--;
2191
14d2bac1
TH
2192 switch (rc) {
2193 case -EINVAL:
4ae72a1e 2194 /* eeek, something went very wrong, give up */
14d2bac1
TH
2195 tries[dev->devno] = 0;
2196 break;
4ae72a1e
TH
2197
2198 case -ENODEV:
2199 /* give it just one more chance */
2200 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2201 case -EIO:
4ae72a1e
TH
2202 if (tries[dev->devno] == 1) {
2203 /* This is the last chance, better to slow
2204 * down than lose it.
2205 */
2206 sata_down_spd_limit(ap);
2207 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2208 }
14d2bac1
TH
2209 }
2210
4ae72a1e 2211 if (!tries[dev->devno])
3373efd8 2212 ata_dev_disable(dev);
ec573755 2213
14d2bac1 2214 goto retry;
1da177e4
LT
2215}
2216
2217/**
0cba632b
JG
2218 * ata_port_probe - Mark port as enabled
2219 * @ap: Port for which we indicate enablement
1da177e4 2220 *
0cba632b
JG
2221 * Modify @ap data structure such that the system
2222 * thinks that the entire port is enabled.
2223 *
cca3974e 2224 * LOCKING: host lock, or some other form of
0cba632b 2225 * serialization.
1da177e4
LT
2226 */
2227
2228void ata_port_probe(struct ata_port *ap)
2229{
198e0fed 2230 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2231}
2232
3be680b7
TH
2233/**
2234 * sata_print_link_status - Print SATA link status
2235 * @ap: SATA port to printk link status about
2236 *
2237 * This function prints link speed and status of a SATA link.
2238 *
2239 * LOCKING:
2240 * None.
2241 */
43727fbc 2242void sata_print_link_status(struct ata_port *ap)
3be680b7 2243{
6d5f9732 2244 u32 sstatus, scontrol, tmp;
3be680b7 2245
81952c54 2246 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 2247 return;
81952c54 2248 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 2249
81952c54 2250 if (ata_port_online(ap)) {
3be680b7 2251 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
2252 ata_port_printk(ap, KERN_INFO,
2253 "SATA link up %s (SStatus %X SControl %X)\n",
2254 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2255 } else {
f15a1daf
TH
2256 ata_port_printk(ap, KERN_INFO,
2257 "SATA link down (SStatus %X SControl %X)\n",
2258 sstatus, scontrol);
3be680b7
TH
2259 }
2260}
2261
1da177e4 2262/**
780a87f7
JG
2263 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2264 * @ap: SATA port associated with target SATA PHY.
1da177e4 2265 *
780a87f7
JG
2266 * This function issues commands to standard SATA Sxxx
2267 * PHY registers, to wake up the phy (and device), and
2268 * clear any reset condition.
1da177e4
LT
2269 *
2270 * LOCKING:
0cba632b 2271 * PCI/etc. bus probe sem.
1da177e4
LT
2272 *
2273 */
2274void __sata_phy_reset(struct ata_port *ap)
2275{
2276 u32 sstatus;
2277 unsigned long timeout = jiffies + (HZ * 5);
2278
2279 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2280 /* issue phy wake/reset */
81952c54 2281 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
2282 /* Couldn't find anything in SATA I/II specs, but
2283 * AHCI-1.1 10.4.2 says at least 1 ms. */
2284 mdelay(1);
1da177e4 2285 }
81952c54
TH
2286 /* phy wake/clear reset */
2287 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
2288
2289 /* wait for phy to become ready, if necessary */
2290 do {
2291 msleep(200);
81952c54 2292 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
2293 if ((sstatus & 0xf) != 1)
2294 break;
2295 } while (time_before(jiffies, timeout));
2296
3be680b7
TH
2297 /* print link status */
2298 sata_print_link_status(ap);
656563e3 2299
3be680b7 2300 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2301 if (!ata_port_offline(ap))
1da177e4 2302 ata_port_probe(ap);
3be680b7 2303 else
1da177e4 2304 ata_port_disable(ap);
1da177e4 2305
198e0fed 2306 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2307 return;
2308
2309 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2310 ata_port_disable(ap);
2311 return;
2312 }
2313
2314 ap->cbl = ATA_CBL_SATA;
2315}
2316
2317/**
780a87f7
JG
2318 * sata_phy_reset - Reset SATA bus.
2319 * @ap: SATA port associated with target SATA PHY.
1da177e4 2320 *
780a87f7
JG
2321 * This function resets the SATA bus, and then probes
2322 * the bus for devices.
1da177e4
LT
2323 *
2324 * LOCKING:
0cba632b 2325 * PCI/etc. bus probe sem.
1da177e4
LT
2326 *
2327 */
2328void sata_phy_reset(struct ata_port *ap)
2329{
2330 __sata_phy_reset(ap);
198e0fed 2331 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2332 return;
2333 ata_bus_reset(ap);
2334}
2335
ebdfca6e
AC
2336/**
2337 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2338 * @adev: device
2339 *
2340 * Obtain the other device on the same cable, or if none is
2341 * present NULL is returned
2342 */
2e9edbf8 2343
3373efd8 2344struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2345{
3373efd8 2346 struct ata_port *ap = adev->ap;
ebdfca6e 2347 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2348 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2349 return NULL;
2350 return pair;
2351}
2352
1da177e4 2353/**
780a87f7
JG
2354 * ata_port_disable - Disable port.
2355 * @ap: Port to be disabled.
1da177e4 2356 *
780a87f7
JG
2357 * Modify @ap data structure such that the system
2358 * thinks that the entire port is disabled, and should
2359 * never attempt to probe or communicate with devices
2360 * on this port.
2361 *
cca3974e 2362 * LOCKING: host lock, or some other form of
780a87f7 2363 * serialization.
1da177e4
LT
2364 */
2365
2366void ata_port_disable(struct ata_port *ap)
2367{
2368 ap->device[0].class = ATA_DEV_NONE;
2369 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2370 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2371}
2372
1c3fae4d 2373/**
3c567b7d 2374 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2375 * @ap: Port to adjust SATA spd limit for
2376 *
2377 * Adjust SATA spd limit of @ap downward. Note that this
2378 * function only adjusts the limit. The change must be applied
3c567b7d 2379 * using sata_set_spd().
1c3fae4d
TH
2380 *
2381 * LOCKING:
2382 * Inherited from caller.
2383 *
2384 * RETURNS:
2385 * 0 on success, negative errno on failure
2386 */
3c567b7d 2387int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2388{
81952c54
TH
2389 u32 sstatus, spd, mask;
2390 int rc, highbit;
1c3fae4d 2391
008a7896
TH
2392 if (!sata_scr_valid(ap))
2393 return -EOPNOTSUPP;
2394
2395 /* If SCR can be read, use it to determine the current SPD.
2396 * If not, use cached value in ap->sata_spd.
2397 */
81952c54 2398 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
008a7896
TH
2399 if (rc == 0)
2400 spd = (sstatus >> 4) & 0xf;
2401 else
2402 spd = ap->sata_spd;
1c3fae4d
TH
2403
2404 mask = ap->sata_spd_limit;
2405 if (mask <= 1)
2406 return -EINVAL;
008a7896
TH
2407
2408 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2409 highbit = fls(mask) - 1;
2410 mask &= ~(1 << highbit);
2411
008a7896
TH
2412 /* Mask off all speeds higher than or equal to the current
2413 * one. Force 1.5Gbps if current SPD is not available.
2414 */
2415 if (spd > 1)
2416 mask &= (1 << (spd - 1)) - 1;
2417 else
2418 mask &= 1;
2419
2420 /* were we already at the bottom? */
1c3fae4d
TH
2421 if (!mask)
2422 return -EINVAL;
2423
2424 ap->sata_spd_limit = mask;
2425
f15a1daf
TH
2426 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2427 sata_spd_string(fls(mask)));
1c3fae4d
TH
2428
2429 return 0;
2430}
2431
3c567b7d 2432static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2433{
2434 u32 spd, limit;
2435
2436 if (ap->sata_spd_limit == UINT_MAX)
2437 limit = 0;
2438 else
2439 limit = fls(ap->sata_spd_limit);
2440
2441 spd = (*scontrol >> 4) & 0xf;
2442 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2443
2444 return spd != limit;
2445}
2446
2447/**
3c567b7d 2448 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2449 * @ap: Port in question
2450 *
2451 * Test whether the spd limit in SControl matches
2452 * @ap->sata_spd_limit. This function is used to determine
2453 * whether hardreset is necessary to apply SATA spd
2454 * configuration.
2455 *
2456 * LOCKING:
2457 * Inherited from caller.
2458 *
2459 * RETURNS:
2460 * 1 if SATA spd configuration is needed, 0 otherwise.
2461 */
3c567b7d 2462int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2463{
2464 u32 scontrol;
2465
81952c54 2466 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2467 return 0;
2468
3c567b7d 2469 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2470}
2471
2472/**
3c567b7d 2473 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2474 * @ap: Port to set SATA spd for
2475 *
2476 * Set SATA spd of @ap according to sata_spd_limit.
2477 *
2478 * LOCKING:
2479 * Inherited from caller.
2480 *
2481 * RETURNS:
2482 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2483 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2484 */
3c567b7d 2485int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2486{
2487 u32 scontrol;
81952c54 2488 int rc;
1c3fae4d 2489
81952c54
TH
2490 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2491 return rc;
1c3fae4d 2492
3c567b7d 2493 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2494 return 0;
2495
81952c54
TH
2496 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2497 return rc;
2498
1c3fae4d
TH
2499 return 1;
2500}
2501
452503f9
AC
2502/*
2503 * This mode timing computation functionality is ported over from
2504 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2505 */
2506/*
b352e57d 2507 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2508 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2509 * for UDMA6, which is currently supported only by Maxtor drives.
2510 *
2511 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2512 */
2513
2514static const struct ata_timing ata_timing[] = {
2515
2516 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2517 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2518 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2519 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2520
b352e57d
AC
2521 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2522 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2523 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2524 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2525 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2526
2527/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2528
452503f9
AC
2529 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2530 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2531 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2532
452503f9
AC
2533 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2534 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2535 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2536
b352e57d
AC
2537 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2538 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2539 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2540 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2541
2542 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2543 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2544 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2545
2546/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2547
2548 { 0xFF }
2549};
2550
2551#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2552#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2553
2554static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2555{
2556 q->setup = EZ(t->setup * 1000, T);
2557 q->act8b = EZ(t->act8b * 1000, T);
2558 q->rec8b = EZ(t->rec8b * 1000, T);
2559 q->cyc8b = EZ(t->cyc8b * 1000, T);
2560 q->active = EZ(t->active * 1000, T);
2561 q->recover = EZ(t->recover * 1000, T);
2562 q->cycle = EZ(t->cycle * 1000, T);
2563 q->udma = EZ(t->udma * 1000, UT);
2564}
2565
2566void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2567 struct ata_timing *m, unsigned int what)
2568{
2569 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2570 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2571 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2572 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2573 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2574 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2575 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2576 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2577}
2578
2579static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2580{
2581 const struct ata_timing *t;
2582
2583 for (t = ata_timing; t->mode != speed; t++)
91190758 2584 if (t->mode == 0xFF)
452503f9 2585 return NULL;
2e9edbf8 2586 return t;
452503f9
AC
2587}
2588
2589int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2590 struct ata_timing *t, int T, int UT)
2591{
2592 const struct ata_timing *s;
2593 struct ata_timing p;
2594
2595 /*
2e9edbf8 2596 * Find the mode.
75b1f2f8 2597 */
452503f9
AC
2598
2599 if (!(s = ata_timing_find_mode(speed)))
2600 return -EINVAL;
2601
75b1f2f8
AL
2602 memcpy(t, s, sizeof(*s));
2603
452503f9
AC
2604 /*
2605 * If the drive is an EIDE drive, it can tell us it needs extended
2606 * PIO/MW_DMA cycle timing.
2607 */
2608
2609 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2610 memset(&p, 0, sizeof(p));
2611 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2612 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2613 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2614 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2615 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2616 }
2617 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2618 }
2619
2620 /*
2621 * Convert the timing to bus clock counts.
2622 */
2623
75b1f2f8 2624 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2625
2626 /*
c893a3ae
RD
2627 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2628 * S.M.A.R.T * and some other commands. We have to ensure that the
2629 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2630 */
2631
fd3367af 2632 if (speed > XFER_PIO_6) {
452503f9
AC
2633 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2634 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2635 }
2636
2637 /*
c893a3ae 2638 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2639 */
2640
2641 if (t->act8b + t->rec8b < t->cyc8b) {
2642 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2643 t->rec8b = t->cyc8b - t->act8b;
2644 }
2645
2646 if (t->active + t->recover < t->cycle) {
2647 t->active += (t->cycle - (t->active + t->recover)) / 2;
2648 t->recover = t->cycle - t->active;
2649 }
a617c09f 2650
4f701d1e
AC
2651 /* In a few cases quantisation may produce enough errors to
2652 leave t->cycle too low for the sum of active and recovery
2653 if so we must correct this */
2654 if (t->active + t->recover > t->cycle)
2655 t->cycle = t->active + t->recover;
452503f9
AC
2656
2657 return 0;
2658}
2659
cf176e1a
TH
2660/**
2661 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2662 * @dev: Device to adjust xfer masks
458337db 2663 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2664 *
2665 * Adjust xfer masks of @dev downward. Note that this function
2666 * does not apply the change. Invoking ata_set_mode() afterwards
2667 * will apply the limit.
2668 *
2669 * LOCKING:
2670 * Inherited from caller.
2671 *
2672 * RETURNS:
2673 * 0 on success, negative errno on failure
2674 */
458337db 2675int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2676{
458337db
TH
2677 char buf[32];
2678 unsigned int orig_mask, xfer_mask;
2679 unsigned int pio_mask, mwdma_mask, udma_mask;
2680 int quiet, highbit;
cf176e1a 2681
458337db
TH
2682 quiet = !!(sel & ATA_DNXFER_QUIET);
2683 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2684
458337db
TH
2685 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2686 dev->mwdma_mask,
2687 dev->udma_mask);
2688 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2689
458337db
TH
2690 switch (sel) {
2691 case ATA_DNXFER_PIO:
2692 highbit = fls(pio_mask) - 1;
2693 pio_mask &= ~(1 << highbit);
2694 break;
2695
2696 case ATA_DNXFER_DMA:
2697 if (udma_mask) {
2698 highbit = fls(udma_mask) - 1;
2699 udma_mask &= ~(1 << highbit);
2700 if (!udma_mask)
2701 return -ENOENT;
2702 } else if (mwdma_mask) {
2703 highbit = fls(mwdma_mask) - 1;
2704 mwdma_mask &= ~(1 << highbit);
2705 if (!mwdma_mask)
2706 return -ENOENT;
2707 }
2708 break;
2709
2710 case ATA_DNXFER_40C:
2711 udma_mask &= ATA_UDMA_MASK_40C;
2712 break;
2713
2714 case ATA_DNXFER_FORCE_PIO0:
2715 pio_mask &= 1;
2716 case ATA_DNXFER_FORCE_PIO:
2717 mwdma_mask = 0;
2718 udma_mask = 0;
2719 break;
2720
458337db
TH
2721 default:
2722 BUG();
2723 }
2724
2725 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2726
2727 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2728 return -ENOENT;
2729
2730 if (!quiet) {
2731 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2732 snprintf(buf, sizeof(buf), "%s:%s",
2733 ata_mode_string(xfer_mask),
2734 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2735 else
2736 snprintf(buf, sizeof(buf), "%s",
2737 ata_mode_string(xfer_mask));
2738
2739 ata_dev_printk(dev, KERN_WARNING,
2740 "limiting speed to %s\n", buf);
2741 }
cf176e1a
TH
2742
2743 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2744 &dev->udma_mask);
2745
cf176e1a 2746 return 0;
cf176e1a
TH
2747}
2748
3373efd8 2749static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2750{
baa1e78a 2751 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2752 unsigned int err_mask;
2753 int rc;
1da177e4 2754
e8384607 2755 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2756 if (dev->xfer_shift == ATA_SHIFT_PIO)
2757 dev->flags |= ATA_DFLAG_PIO;
2758
3373efd8 2759 err_mask = ata_dev_set_xfermode(dev);
11750a40
A
2760 /* Old CFA may refuse this command, which is just fine */
2761 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2762 err_mask &= ~AC_ERR_DEV;
2763
83206a29 2764 if (err_mask) {
f15a1daf
TH
2765 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2766 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2767 return -EIO;
2768 }
1da177e4 2769
baa1e78a 2770 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2771 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2772 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2773 if (rc)
83206a29 2774 return rc;
48a8a14f 2775
23e71c3d
TH
2776 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2777 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2778
f15a1daf
TH
2779 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2780 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2781 return 0;
1da177e4
LT
2782}
2783
1da177e4 2784/**
04351821 2785 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
1da177e4 2786 * @ap: port on which timings will be programmed
e82cbdb9 2787 * @r_failed_dev: out paramter for failed device
1da177e4 2788 *
04351821
A
2789 * Standard implementation of the function used to tune and set
2790 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2791 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2792 * returned in @r_failed_dev.
780a87f7 2793 *
1da177e4 2794 * LOCKING:
0cba632b 2795 * PCI/etc. bus probe sem.
e82cbdb9
TH
2796 *
2797 * RETURNS:
2798 * 0 on success, negative errno otherwise
1da177e4 2799 */
04351821
A
2800
2801int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2802{
e8e0619f 2803 struct ata_device *dev;
e82cbdb9 2804 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2805
3adcebb2 2806
a6d5a51c
TH
2807 /* step 1: calculate xfer_mask */
2808 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2809 unsigned int pio_mask, dma_mask;
a6d5a51c 2810
e8e0619f
TH
2811 dev = &ap->device[i];
2812
e1211e3f 2813 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2814 continue;
2815
3373efd8 2816 ata_dev_xfermask(dev);
1da177e4 2817
acf356b1
TH
2818 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2819 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2820 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2821 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2822
4f65977d 2823 found = 1;
5444a6f4
AC
2824 if (dev->dma_mode)
2825 used_dma = 1;
a6d5a51c 2826 }
4f65977d 2827 if (!found)
e82cbdb9 2828 goto out;
a6d5a51c
TH
2829
2830 /* step 2: always set host PIO timings */
e8e0619f
TH
2831 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2832 dev = &ap->device[i];
2833 if (!ata_dev_enabled(dev))
2834 continue;
2835
2836 if (!dev->pio_mode) {
f15a1daf 2837 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2838 rc = -EINVAL;
e82cbdb9 2839 goto out;
e8e0619f
TH
2840 }
2841
2842 dev->xfer_mode = dev->pio_mode;
2843 dev->xfer_shift = ATA_SHIFT_PIO;
2844 if (ap->ops->set_piomode)
2845 ap->ops->set_piomode(ap, dev);
2846 }
1da177e4 2847
a6d5a51c 2848 /* step 3: set host DMA timings */
e8e0619f
TH
2849 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2850 dev = &ap->device[i];
2851
2852 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2853 continue;
2854
2855 dev->xfer_mode = dev->dma_mode;
2856 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2857 if (ap->ops->set_dmamode)
2858 ap->ops->set_dmamode(ap, dev);
2859 }
1da177e4
LT
2860
2861 /* step 4: update devices' xfer mode */
83206a29 2862 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2863 dev = &ap->device[i];
1da177e4 2864
18d90deb 2865 /* don't update suspended devices' xfer mode */
9666f400 2866 if (!ata_dev_enabled(dev))
83206a29
TH
2867 continue;
2868
3373efd8 2869 rc = ata_dev_set_mode(dev);
5bbc53f4 2870 if (rc)
e82cbdb9 2871 goto out;
83206a29 2872 }
1da177e4 2873
e8e0619f
TH
2874 /* Record simplex status. If we selected DMA then the other
2875 * host channels are not permitted to do so.
5444a6f4 2876 */
cca3974e 2877 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2878 ap->host->simplex_claimed = ap;
5444a6f4 2879
e82cbdb9
TH
2880 out:
2881 if (rc)
2882 *r_failed_dev = dev;
2883 return rc;
1da177e4
LT
2884}
2885
04351821
A
2886/**
2887 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2888 * @ap: port on which timings will be programmed
2889 * @r_failed_dev: out paramter for failed device
2890 *
2891 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2892 * ata_set_mode() fails, pointer to the failing device is
2893 * returned in @r_failed_dev.
2894 *
2895 * LOCKING:
2896 * PCI/etc. bus probe sem.
2897 *
2898 * RETURNS:
2899 * 0 on success, negative errno otherwise
2900 */
2901int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2902{
2903 /* has private set_mode? */
2904 if (ap->ops->set_mode)
2905 return ap->ops->set_mode(ap, r_failed_dev);
2906 return ata_do_set_mode(ap, r_failed_dev);
2907}
2908
1fdffbce
JG
2909/**
2910 * ata_tf_to_host - issue ATA taskfile to host controller
2911 * @ap: port to which command is being issued
2912 * @tf: ATA taskfile register set
2913 *
2914 * Issues ATA taskfile register set to ATA host controller,
2915 * with proper synchronization with interrupt handler and
2916 * other threads.
2917 *
2918 * LOCKING:
cca3974e 2919 * spin_lock_irqsave(host lock)
1fdffbce
JG
2920 */
2921
2922static inline void ata_tf_to_host(struct ata_port *ap,
2923 const struct ata_taskfile *tf)
2924{
2925 ap->ops->tf_load(ap, tf);
2926 ap->ops->exec_command(ap, tf);
2927}
2928
1da177e4
LT
2929/**
2930 * ata_busy_sleep - sleep until BSY clears, or timeout
2931 * @ap: port containing status register to be polled
2932 * @tmout_pat: impatience timeout
2933 * @tmout: overall timeout
2934 *
780a87f7
JG
2935 * Sleep until ATA Status register bit BSY clears,
2936 * or a timeout occurs.
2937 *
d1adc1bb
TH
2938 * LOCKING:
2939 * Kernel thread context (may sleep).
2940 *
2941 * RETURNS:
2942 * 0 on success, -errno otherwise.
1da177e4 2943 */
d1adc1bb
TH
2944int ata_busy_sleep(struct ata_port *ap,
2945 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2946{
2947 unsigned long timer_start, timeout;
2948 u8 status;
2949
2950 status = ata_busy_wait(ap, ATA_BUSY, 300);
2951 timer_start = jiffies;
2952 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2953 while (status != 0xff && (status & ATA_BUSY) &&
2954 time_before(jiffies, timeout)) {
1da177e4
LT
2955 msleep(50);
2956 status = ata_busy_wait(ap, ATA_BUSY, 3);
2957 }
2958
d1adc1bb 2959 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2960 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2961 "port is slow to respond, please be patient "
2962 "(Status 0x%x)\n", status);
1da177e4
LT
2963
2964 timeout = timer_start + tmout;
d1adc1bb
TH
2965 while (status != 0xff && (status & ATA_BUSY) &&
2966 time_before(jiffies, timeout)) {
1da177e4
LT
2967 msleep(50);
2968 status = ata_chk_status(ap);
2969 }
2970
d1adc1bb
TH
2971 if (status == 0xff)
2972 return -ENODEV;
2973
1da177e4 2974 if (status & ATA_BUSY) {
f15a1daf 2975 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2976 "(%lu secs, Status 0x%x)\n",
2977 tmout / HZ, status);
d1adc1bb 2978 return -EBUSY;
1da177e4
LT
2979 }
2980
2981 return 0;
2982}
2983
d4b2bab4
TH
2984/**
2985 * ata_wait_ready - sleep until BSY clears, or timeout
2986 * @ap: port containing status register to be polled
2987 * @deadline: deadline jiffies for the operation
2988 *
2989 * Sleep until ATA Status register bit BSY clears, or timeout
2990 * occurs.
2991 *
2992 * LOCKING:
2993 * Kernel thread context (may sleep).
2994 *
2995 * RETURNS:
2996 * 0 on success, -errno otherwise.
2997 */
2998int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
2999{
3000 unsigned long start = jiffies;
3001 int warned = 0;
3002
3003 while (1) {
3004 u8 status = ata_chk_status(ap);
3005 unsigned long now = jiffies;
3006
3007 if (!(status & ATA_BUSY))
3008 return 0;
fd7fe701 3009 if (!ata_port_online(ap) && status == 0xff)
d4b2bab4
TH
3010 return -ENODEV;
3011 if (time_after(now, deadline))
3012 return -EBUSY;
3013
3014 if (!warned && time_after(now, start + 5 * HZ) &&
3015 (deadline - now > 3 * HZ)) {
3016 ata_port_printk(ap, KERN_WARNING,
3017 "port is slow to respond, please be patient "
3018 "(Status 0x%x)\n", status);
3019 warned = 1;
3020 }
3021
3022 msleep(50);
3023 }
3024}
3025
3026static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3027 unsigned long deadline)
1da177e4
LT
3028{
3029 struct ata_ioports *ioaddr = &ap->ioaddr;
3030 unsigned int dev0 = devmask & (1 << 0);
3031 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3032 int rc, ret = 0;
1da177e4
LT
3033
3034 /* if device 0 was found in ata_devchk, wait for its
3035 * BSY bit to clear
3036 */
d4b2bab4
TH
3037 if (dev0) {
3038 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3039 if (rc) {
3040 if (rc != -ENODEV)
3041 return rc;
3042 ret = rc;
3043 }
d4b2bab4 3044 }
1da177e4 3045
e141d999
TH
3046 /* if device 1 was found in ata_devchk, wait for register
3047 * access briefly, then wait for BSY to clear.
1da177e4 3048 */
e141d999
TH
3049 if (dev1) {
3050 int i;
1da177e4
LT
3051
3052 ap->ops->dev_select(ap, 1);
e141d999
TH
3053
3054 /* Wait for register access. Some ATAPI devices fail
3055 * to set nsect/lbal after reset, so don't waste too
3056 * much time on it. We're gonna wait for !BSY anyway.
3057 */
3058 for (i = 0; i < 2; i++) {
3059 u8 nsect, lbal;
3060
3061 nsect = ioread8(ioaddr->nsect_addr);
3062 lbal = ioread8(ioaddr->lbal_addr);
3063 if ((nsect == 1) && (lbal == 1))
3064 break;
3065 msleep(50); /* give drive a breather */
3066 }
3067
d4b2bab4 3068 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3069 if (rc) {
3070 if (rc != -ENODEV)
3071 return rc;
3072 ret = rc;
3073 }
d4b2bab4 3074 }
1da177e4
LT
3075
3076 /* is all this really necessary? */
3077 ap->ops->dev_select(ap, 0);
3078 if (dev1)
3079 ap->ops->dev_select(ap, 1);
3080 if (dev0)
3081 ap->ops->dev_select(ap, 0);
d4b2bab4 3082
9b89391c 3083 return ret;
1da177e4
LT
3084}
3085
d4b2bab4
TH
3086static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3087 unsigned long deadline)
1da177e4
LT
3088{
3089 struct ata_ioports *ioaddr = &ap->ioaddr;
3090
44877b4e 3091 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3092
3093 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3094 iowrite8(ap->ctl, ioaddr->ctl_addr);
3095 udelay(20); /* FIXME: flush */
3096 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3097 udelay(20); /* FIXME: flush */
3098 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3099
3100 /* spec mandates ">= 2ms" before checking status.
3101 * We wait 150ms, because that was the magic delay used for
3102 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3103 * between when the ATA command register is written, and then
3104 * status is checked. Because waiting for "a while" before
3105 * checking status is fine, post SRST, we perform this magic
3106 * delay here as well.
09c7ad79
AC
3107 *
3108 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3109 */
3110 msleep(150);
3111
2e9edbf8 3112 /* Before we perform post reset processing we want to see if
298a41ca
TH
3113 * the bus shows 0xFF because the odd clown forgets the D7
3114 * pulldown resistor.
3115 */
d1adc1bb 3116 if (ata_check_status(ap) == 0xFF)
9b89391c 3117 return -ENODEV;
09c7ad79 3118
d4b2bab4 3119 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3120}
3121
3122/**
3123 * ata_bus_reset - reset host port and associated ATA channel
3124 * @ap: port to reset
3125 *
3126 * This is typically the first time we actually start issuing
3127 * commands to the ATA channel. We wait for BSY to clear, then
3128 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3129 * result. Determine what devices, if any, are on the channel
3130 * by looking at the device 0/1 error register. Look at the signature
3131 * stored in each device's taskfile registers, to determine if
3132 * the device is ATA or ATAPI.
3133 *
3134 * LOCKING:
0cba632b 3135 * PCI/etc. bus probe sem.
cca3974e 3136 * Obtains host lock.
1da177e4
LT
3137 *
3138 * SIDE EFFECTS:
198e0fed 3139 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3140 */
3141
3142void ata_bus_reset(struct ata_port *ap)
3143{
3144 struct ata_ioports *ioaddr = &ap->ioaddr;
3145 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3146 u8 err;
aec5c3c1 3147 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3148 int rc;
1da177e4 3149
44877b4e 3150 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3151
3152 /* determine if device 0/1 are present */
3153 if (ap->flags & ATA_FLAG_SATA_RESET)
3154 dev0 = 1;
3155 else {
3156 dev0 = ata_devchk(ap, 0);
3157 if (slave_possible)
3158 dev1 = ata_devchk(ap, 1);
3159 }
3160
3161 if (dev0)
3162 devmask |= (1 << 0);
3163 if (dev1)
3164 devmask |= (1 << 1);
3165
3166 /* select device 0 again */
3167 ap->ops->dev_select(ap, 0);
3168
3169 /* issue bus reset */
9b89391c
TH
3170 if (ap->flags & ATA_FLAG_SRST) {
3171 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3172 if (rc && rc != -ENODEV)
aec5c3c1 3173 goto err_out;
9b89391c 3174 }
1da177e4
LT
3175
3176 /*
3177 * determine by signature whether we have ATA or ATAPI devices
3178 */
b4dc7623 3179 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 3180 if ((slave_possible) && (err != 0x81))
b4dc7623 3181 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4 3182
1da177e4
LT
3183 /* is double-select really necessary? */
3184 if (ap->device[1].class != ATA_DEV_NONE)
3185 ap->ops->dev_select(ap, 1);
3186 if (ap->device[0].class != ATA_DEV_NONE)
3187 ap->ops->dev_select(ap, 0);
3188
3189 /* if no devices were detected, disable this port */
3190 if ((ap->device[0].class == ATA_DEV_NONE) &&
3191 (ap->device[1].class == ATA_DEV_NONE))
3192 goto err_out;
3193
3194 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3195 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3196 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3197 }
3198
3199 DPRINTK("EXIT\n");
3200 return;
3201
3202err_out:
f15a1daf 3203 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
3204 ap->ops->port_disable(ap);
3205
3206 DPRINTK("EXIT\n");
3207}
3208
d7bb4cc7
TH
3209/**
3210 * sata_phy_debounce - debounce SATA phy status
3211 * @ap: ATA port to debounce SATA phy status for
3212 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3213 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3214 *
3215 * Make sure SStatus of @ap reaches stable state, determined by
3216 * holding the same value where DET is not 1 for @duration polled
3217 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3218 * beginning of the stable state. Because DET gets stuck at 1 on
3219 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3220 * until timeout then returns 0 if DET is stable at 1.
3221 *
d4b2bab4
TH
3222 * @timeout is further limited by @deadline. The sooner of the
3223 * two is used.
3224 *
d7bb4cc7
TH
3225 * LOCKING:
3226 * Kernel thread context (may sleep)
3227 *
3228 * RETURNS:
3229 * 0 on success, -errno on failure.
3230 */
d4b2bab4
TH
3231int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3232 unsigned long deadline)
7a7921e8 3233{
d7bb4cc7 3234 unsigned long interval_msec = params[0];
d4b2bab4
TH
3235 unsigned long duration = msecs_to_jiffies(params[1]);
3236 unsigned long last_jiffies, t;
d7bb4cc7
TH
3237 u32 last, cur;
3238 int rc;
3239
d4b2bab4
TH
3240 t = jiffies + msecs_to_jiffies(params[2]);
3241 if (time_before(t, deadline))
3242 deadline = t;
3243
d7bb4cc7
TH
3244 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3245 return rc;
3246 cur &= 0xf;
3247
3248 last = cur;
3249 last_jiffies = jiffies;
3250
3251 while (1) {
3252 msleep(interval_msec);
3253 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3254 return rc;
3255 cur &= 0xf;
3256
3257 /* DET stable? */
3258 if (cur == last) {
d4b2bab4 3259 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3260 continue;
3261 if (time_after(jiffies, last_jiffies + duration))
3262 return 0;
3263 continue;
3264 }
3265
3266 /* unstable, start over */
3267 last = cur;
3268 last_jiffies = jiffies;
3269
f1545154
TH
3270 /* Check deadline. If debouncing failed, return
3271 * -EPIPE to tell upper layer to lower link speed.
3272 */
d4b2bab4 3273 if (time_after(jiffies, deadline))
f1545154 3274 return -EPIPE;
d7bb4cc7
TH
3275 }
3276}
3277
3278/**
3279 * sata_phy_resume - resume SATA phy
3280 * @ap: ATA port to resume SATA phy for
3281 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3282 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3283 *
3284 * Resume SATA phy of @ap and debounce it.
3285 *
3286 * LOCKING:
3287 * Kernel thread context (may sleep)
3288 *
3289 * RETURNS:
3290 * 0 on success, -errno on failure.
3291 */
d4b2bab4
TH
3292int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3293 unsigned long deadline)
d7bb4cc7
TH
3294{
3295 u32 scontrol;
81952c54
TH
3296 int rc;
3297
3298 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3299 return rc;
7a7921e8 3300
852ee16a 3301 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
3302
3303 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3304 return rc;
7a7921e8 3305
d7bb4cc7
TH
3306 /* Some PHYs react badly if SStatus is pounded immediately
3307 * after resuming. Delay 200ms before debouncing.
3308 */
3309 msleep(200);
7a7921e8 3310
d4b2bab4 3311 return sata_phy_debounce(ap, params, deadline);
7a7921e8
TH
3312}
3313
f5914a46
TH
3314/**
3315 * ata_std_prereset - prepare for reset
3316 * @ap: ATA port to be reset
d4b2bab4 3317 * @deadline: deadline jiffies for the operation
f5914a46 3318 *
b8cffc6a
TH
3319 * @ap is about to be reset. Initialize it. Failure from
3320 * prereset makes libata abort whole reset sequence and give up
3321 * that port, so prereset should be best-effort. It does its
3322 * best to prepare for reset sequence but if things go wrong, it
3323 * should just whine, not fail.
f5914a46
TH
3324 *
3325 * LOCKING:
3326 * Kernel thread context (may sleep)
3327 *
3328 * RETURNS:
3329 * 0 on success, -errno otherwise.
3330 */
d4b2bab4 3331int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
f5914a46
TH
3332{
3333 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 3334 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3335 int rc;
3336
31daabda 3337 /* handle link resume */
28324304
TH
3338 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3339 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3340 ehc->i.action |= ATA_EH_HARDRESET;
3341
f5914a46
TH
3342 /* if we're about to do hardreset, nothing more to do */
3343 if (ehc->i.action & ATA_EH_HARDRESET)
3344 return 0;
3345
3346 /* if SATA, resume phy */
a16abc0b 3347 if (ap->flags & ATA_FLAG_SATA) {
d4b2bab4 3348 rc = sata_phy_resume(ap, timing, deadline);
b8cffc6a
TH
3349 /* whine about phy resume failure but proceed */
3350 if (rc && rc != -EOPNOTSUPP)
f5914a46
TH
3351 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3352 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3353 }
3354
3355 /* Wait for !BSY if the controller can wait for the first D2H
3356 * Reg FIS and we don't know that no device is attached.
3357 */
b8cffc6a
TH
3358 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3359 rc = ata_wait_ready(ap, deadline);
6dffaf61 3360 if (rc && rc != -ENODEV) {
b8cffc6a
TH
3361 ata_port_printk(ap, KERN_WARNING, "device not ready "
3362 "(errno=%d), forcing hardreset\n", rc);
3363 ehc->i.action |= ATA_EH_HARDRESET;
3364 }
3365 }
f5914a46
TH
3366
3367 return 0;
3368}
3369
c2bd5804
TH
3370/**
3371 * ata_std_softreset - reset host port via ATA SRST
3372 * @ap: port to reset
c2bd5804 3373 * @classes: resulting classes of attached devices
d4b2bab4 3374 * @deadline: deadline jiffies for the operation
c2bd5804 3375 *
52783c5d 3376 * Reset host port using ATA SRST.
c2bd5804
TH
3377 *
3378 * LOCKING:
3379 * Kernel thread context (may sleep)
3380 *
3381 * RETURNS:
3382 * 0 on success, -errno otherwise.
3383 */
d4b2bab4
TH
3384int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3385 unsigned long deadline)
c2bd5804
TH
3386{
3387 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3388 unsigned int devmask = 0;
3389 int rc;
c2bd5804
TH
3390 u8 err;
3391
3392 DPRINTK("ENTER\n");
3393
81952c54 3394 if (ata_port_offline(ap)) {
3a39746a
TH
3395 classes[0] = ATA_DEV_NONE;
3396 goto out;
3397 }
3398
c2bd5804
TH
3399 /* determine if device 0/1 are present */
3400 if (ata_devchk(ap, 0))
3401 devmask |= (1 << 0);
3402 if (slave_possible && ata_devchk(ap, 1))
3403 devmask |= (1 << 1);
3404
c2bd5804
TH
3405 /* select device 0 again */
3406 ap->ops->dev_select(ap, 0);
3407
3408 /* issue bus reset */
3409 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3410 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c
TH
3411 /* if link is occupied, -ENODEV too is an error */
3412 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
d4b2bab4
TH
3413 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3414 return rc;
c2bd5804
TH
3415 }
3416
3417 /* determine by signature whether we have ATA or ATAPI devices */
3418 classes[0] = ata_dev_try_classify(ap, 0, &err);
3419 if (slave_possible && err != 0x81)
3420 classes[1] = ata_dev_try_classify(ap, 1, &err);
3421
3a39746a 3422 out:
c2bd5804
TH
3423 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3424 return 0;
3425}
3426
3427/**
b6103f6d 3428 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3429 * @ap: port to reset
b6103f6d 3430 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3431 * @deadline: deadline jiffies for the operation
c2bd5804
TH
3432 *
3433 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3434 *
3435 * LOCKING:
3436 * Kernel thread context (may sleep)
3437 *
3438 * RETURNS:
3439 * 0 on success, -errno otherwise.
3440 */
d4b2bab4
TH
3441int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3442 unsigned long deadline)
c2bd5804 3443{
852ee16a 3444 u32 scontrol;
81952c54 3445 int rc;
852ee16a 3446
c2bd5804
TH
3447 DPRINTK("ENTER\n");
3448
3c567b7d 3449 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3450 /* SATA spec says nothing about how to reconfigure
3451 * spd. To be on the safe side, turn off phy during
3452 * reconfiguration. This works for at least ICH7 AHCI
3453 * and Sil3124.
3454 */
81952c54 3455 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3456 goto out;
81952c54 3457
a34b6fc0 3458 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3459
3460 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3461 goto out;
1c3fae4d 3462
3c567b7d 3463 sata_set_spd(ap);
1c3fae4d
TH
3464 }
3465
3466 /* issue phy wake/reset */
81952c54 3467 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3468 goto out;
81952c54 3469
852ee16a 3470 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3471
3472 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3473 goto out;
c2bd5804 3474
1c3fae4d 3475 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3476 * 10.4.2 says at least 1 ms.
3477 */
3478 msleep(1);
3479
1c3fae4d 3480 /* bring phy back */
d4b2bab4 3481 rc = sata_phy_resume(ap, timing, deadline);
b6103f6d
TH
3482 out:
3483 DPRINTK("EXIT, rc=%d\n", rc);
3484 return rc;
3485}
3486
3487/**
3488 * sata_std_hardreset - reset host port via SATA phy reset
3489 * @ap: port to reset
3490 * @class: resulting class of attached device
d4b2bab4 3491 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3492 *
3493 * SATA phy-reset host port using DET bits of SControl register,
3494 * wait for !BSY and classify the attached device.
3495 *
3496 * LOCKING:
3497 * Kernel thread context (may sleep)
3498 *
3499 * RETURNS:
3500 * 0 on success, -errno otherwise.
3501 */
d4b2bab4
TH
3502int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3503 unsigned long deadline)
b6103f6d
TH
3504{
3505 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3506 int rc;
3507
3508 DPRINTK("ENTER\n");
3509
3510 /* do hardreset */
d4b2bab4 3511 rc = sata_port_hardreset(ap, timing, deadline);
b6103f6d
TH
3512 if (rc) {
3513 ata_port_printk(ap, KERN_ERR,
3514 "COMRESET failed (errno=%d)\n", rc);
3515 return rc;
3516 }
c2bd5804 3517
c2bd5804 3518 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3519 if (ata_port_offline(ap)) {
c2bd5804
TH
3520 *class = ATA_DEV_NONE;
3521 DPRINTK("EXIT, link offline\n");
3522 return 0;
3523 }
3524
34fee227
TH
3525 /* wait a while before checking status, see SRST for more info */
3526 msleep(150);
3527
d4b2bab4 3528 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3529 /* link occupied, -ENODEV too is an error */
3530 if (rc) {
f15a1daf 3531 ata_port_printk(ap, KERN_ERR,
d4b2bab4
TH
3532 "COMRESET failed (errno=%d)\n", rc);
3533 return rc;
c2bd5804
TH
3534 }
3535
3a39746a
TH
3536 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3537
c2bd5804
TH
3538 *class = ata_dev_try_classify(ap, 0, NULL);
3539
3540 DPRINTK("EXIT, class=%u\n", *class);
3541 return 0;
3542}
3543
3544/**
3545 * ata_std_postreset - standard postreset callback
3546 * @ap: the target ata_port
3547 * @classes: classes of attached devices
3548 *
3549 * This function is invoked after a successful reset. Note that
3550 * the device might have been reset more than once using
3551 * different reset methods before postreset is invoked.
c2bd5804 3552 *
c2bd5804
TH
3553 * LOCKING:
3554 * Kernel thread context (may sleep)
3555 */
3556void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3557{
dc2b3515
TH
3558 u32 serror;
3559
c2bd5804
TH
3560 DPRINTK("ENTER\n");
3561
c2bd5804 3562 /* print link status */
81952c54 3563 sata_print_link_status(ap);
c2bd5804 3564
dc2b3515
TH
3565 /* clear SError */
3566 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3567 sata_scr_write(ap, SCR_ERROR, serror);
3568
c2bd5804
TH
3569 /* is double-select really necessary? */
3570 if (classes[0] != ATA_DEV_NONE)
3571 ap->ops->dev_select(ap, 1);
3572 if (classes[1] != ATA_DEV_NONE)
3573 ap->ops->dev_select(ap, 0);
3574
3a39746a
TH
3575 /* bail out if no device is present */
3576 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3577 DPRINTK("EXIT, no device\n");
3578 return;
3579 }
3580
3581 /* set up device control */
0d5ff566
TH
3582 if (ap->ioaddr.ctl_addr)
3583 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3584
3585 DPRINTK("EXIT\n");
3586}
3587
623a3128
TH
3588/**
3589 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3590 * @dev: device to compare against
3591 * @new_class: class of the new device
3592 * @new_id: IDENTIFY page of the new device
3593 *
3594 * Compare @new_class and @new_id against @dev and determine
3595 * whether @dev is the device indicated by @new_class and
3596 * @new_id.
3597 *
3598 * LOCKING:
3599 * None.
3600 *
3601 * RETURNS:
3602 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3603 */
3373efd8
TH
3604static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3605 const u16 *new_id)
623a3128
TH
3606{
3607 const u16 *old_id = dev->id;
a0cf733b
TH
3608 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3609 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3610
3611 if (dev->class != new_class) {
f15a1daf
TH
3612 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3613 dev->class, new_class);
623a3128
TH
3614 return 0;
3615 }
3616
a0cf733b
TH
3617 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3618 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3619 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3620 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3621
3622 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3623 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3624 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3625 return 0;
3626 }
3627
3628 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3629 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3630 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3631 return 0;
3632 }
3633
623a3128
TH
3634 return 1;
3635}
3636
3637/**
fe30911b 3638 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3639 * @dev: target ATA device
bff04647 3640 * @readid_flags: read ID flags
623a3128
TH
3641 *
3642 * Re-read IDENTIFY page and make sure @dev is still attached to
3643 * the port.
3644 *
3645 * LOCKING:
3646 * Kernel thread context (may sleep)
3647 *
3648 * RETURNS:
3649 * 0 on success, negative errno otherwise
3650 */
fe30911b 3651int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3652{
5eb45c02 3653 unsigned int class = dev->class;
f15a1daf 3654 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3655 int rc;
3656
fe635c7e 3657 /* read ID data */
bff04647 3658 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3659 if (rc)
fe30911b 3660 return rc;
623a3128
TH
3661
3662 /* is the device still there? */
fe30911b
TH
3663 if (!ata_dev_same_device(dev, class, id))
3664 return -ENODEV;
623a3128 3665
fe635c7e 3666 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3667 return 0;
3668}
3669
3670/**
3671 * ata_dev_revalidate - Revalidate ATA device
3672 * @dev: device to revalidate
3673 * @readid_flags: read ID flags
3674 *
3675 * Re-read IDENTIFY page, make sure @dev is still attached to the
3676 * port and reconfigure it according to the new IDENTIFY page.
3677 *
3678 * LOCKING:
3679 * Kernel thread context (may sleep)
3680 *
3681 * RETURNS:
3682 * 0 on success, negative errno otherwise
3683 */
3684int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3685{
6ddcd3b0 3686 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3687 int rc;
3688
3689 if (!ata_dev_enabled(dev))
3690 return -ENODEV;
3691
3692 /* re-read ID */
3693 rc = ata_dev_reread_id(dev, readid_flags);
3694 if (rc)
3695 goto fail;
623a3128
TH
3696
3697 /* configure device according to the new ID */
efdaedc4 3698 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3699 if (rc)
3700 goto fail;
3701
3702 /* verify n_sectors hasn't changed */
3703 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3704 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3705 "%llu != %llu\n",
3706 (unsigned long long)n_sectors,
3707 (unsigned long long)dev->n_sectors);
3708 rc = -ENODEV;
3709 goto fail;
3710 }
3711
3712 return 0;
623a3128
TH
3713
3714 fail:
f15a1daf 3715 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3716 return rc;
3717}
3718
6919a0a6
AC
3719struct ata_blacklist_entry {
3720 const char *model_num;
3721 const char *model_rev;
3722 unsigned long horkage;
3723};
3724
3725static const struct ata_blacklist_entry ata_device_blacklist [] = {
3726 /* Devices with DMA related problems under Linux */
3727 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3728 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3729 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3730 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3731 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3732 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3733 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3734 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3735 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3736 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3737 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3738 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3739 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3740 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3741 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3742 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3743 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3744 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3745 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3746 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3747 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3748 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3749 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3750 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3751 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3752 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3753 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3754 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3755 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
39f19886 3756 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
5acd50f6 3757 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
39ce7128
TH
3758 { "IOMEGA ZIP 250 ATAPI Floppy",
3759 NULL, ATA_HORKAGE_NODMA },
6919a0a6 3760
18d6e9d5 3761 /* Weird ATAPI devices */
40a1d531 3762 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 3763
6919a0a6
AC
3764 /* Devices we expect to fail diagnostics */
3765
3766 /* Devices where NCQ should be avoided */
3767 /* NCQ is slow */
3768 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3769 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3770 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30
PR
3771 /* NCQ is broken */
3772 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
e8361fc4 3773 { "Maxtor 6B200M0", "BANC1BM0", ATA_HORKAGE_NONCQ },
471e44b2 3774 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
2f8d90ab
PB
3775 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
3776 ATA_HORKAGE_NONCQ },
96442925
JA
3777 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3778 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
36e337d0
RH
3779 /* Blacklist entries taken from Silicon Image 3124/3132
3780 Windows driver .inf file - also several Linux problem reports */
3781 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3782 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3783 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
3784 /* Drives which do spurious command completion */
3785 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 3786 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
e14cbfa6 3787 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
2f8fcebb 3788 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
a520f261 3789 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3fb6589c 3790 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
6919a0a6
AC
3791
3792 /* Devices with NCQ limits */
3793
3794 /* End Marker */
3795 { }
1da177e4 3796};
2e9edbf8 3797
75683fe7 3798static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 3799{
8bfa79fc
TH
3800 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3801 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3802 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3803
8bfa79fc
TH
3804 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3805 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3806
6919a0a6 3807 while (ad->model_num) {
8bfa79fc 3808 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3809 if (ad->model_rev == NULL)
3810 return ad->horkage;
8bfa79fc 3811 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3812 return ad->horkage;
f4b15fef 3813 }
6919a0a6 3814 ad++;
f4b15fef 3815 }
1da177e4
LT
3816 return 0;
3817}
3818
6919a0a6
AC
3819static int ata_dma_blacklisted(const struct ata_device *dev)
3820{
3821 /* We don't support polling DMA.
3822 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3823 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3824 */
3825 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3826 (dev->flags & ATA_DFLAG_CDB_INTR))
3827 return 1;
75683fe7 3828 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
3829}
3830
a6d5a51c
TH
3831/**
3832 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3833 * @dev: Device to compute xfermask for
3834 *
acf356b1
TH
3835 * Compute supported xfermask of @dev and store it in
3836 * dev->*_mask. This function is responsible for applying all
3837 * known limits including host controller limits, device
3838 * blacklist, etc...
a6d5a51c
TH
3839 *
3840 * LOCKING:
3841 * None.
a6d5a51c 3842 */
3373efd8 3843static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3844{
3373efd8 3845 struct ata_port *ap = dev->ap;
cca3974e 3846 struct ata_host *host = ap->host;
a6d5a51c 3847 unsigned long xfer_mask;
1da177e4 3848
37deecb5 3849 /* controller modes available */
565083e1
TH
3850 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3851 ap->mwdma_mask, ap->udma_mask);
3852
8343f889 3853 /* drive modes available */
37deecb5
TH
3854 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3855 dev->mwdma_mask, dev->udma_mask);
3856 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3857
b352e57d
AC
3858 /*
3859 * CFA Advanced TrueIDE timings are not allowed on a shared
3860 * cable
3861 */
3862 if (ata_dev_pair(dev)) {
3863 /* No PIO5 or PIO6 */
3864 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3865 /* No MWDMA3 or MWDMA 4 */
3866 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3867 }
3868
37deecb5
TH
3869 if (ata_dma_blacklisted(dev)) {
3870 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3871 ata_dev_printk(dev, KERN_WARNING,
3872 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3873 }
a6d5a51c 3874
14d66ab7
PV
3875 if ((host->flags & ATA_HOST_SIMPLEX) &&
3876 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3877 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3878 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3879 "other device, disabling DMA\n");
5444a6f4 3880 }
565083e1 3881
e424675f
JG
3882 if (ap->flags & ATA_FLAG_NO_IORDY)
3883 xfer_mask &= ata_pio_mask_no_iordy(dev);
3884
5444a6f4 3885 if (ap->ops->mode_filter)
a76b62ca 3886 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3887
8343f889
RH
3888 /* Apply cable rule here. Don't apply it early because when
3889 * we handle hot plug the cable type can itself change.
3890 * Check this last so that we know if the transfer rate was
3891 * solely limited by the cable.
3892 * Unknown or 80 wire cables reported host side are checked
3893 * drive side as well. Cases where we know a 40wire cable
3894 * is used safely for 80 are not checked here.
3895 */
3896 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3897 /* UDMA/44 or higher would be available */
3898 if((ap->cbl == ATA_CBL_PATA40) ||
3899 (ata_drive_40wire(dev->id) &&
3900 (ap->cbl == ATA_CBL_PATA_UNK ||
3901 ap->cbl == ATA_CBL_PATA80))) {
3902 ata_dev_printk(dev, KERN_WARNING,
3903 "limited to UDMA/33 due to 40-wire cable\n");
3904 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3905 }
3906
565083e1
TH
3907 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3908 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3909}
3910
1da177e4
LT
3911/**
3912 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3913 * @dev: Device to which command will be sent
3914 *
780a87f7
JG
3915 * Issue SET FEATURES - XFER MODE command to device @dev
3916 * on port @ap.
3917 *
1da177e4 3918 * LOCKING:
0cba632b 3919 * PCI/etc. bus probe sem.
83206a29
TH
3920 *
3921 * RETURNS:
3922 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3923 */
3924
3373efd8 3925static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3926{
a0123703 3927 struct ata_taskfile tf;
83206a29 3928 unsigned int err_mask;
1da177e4
LT
3929
3930 /* set up set-features taskfile */
3931 DPRINTK("set features - xfer mode\n");
3932
464cf177
TH
3933 /* Some controllers and ATAPI devices show flaky interrupt
3934 * behavior after setting xfer mode. Use polling instead.
3935 */
3373efd8 3936 ata_tf_init(dev, &tf);
a0123703
TH
3937 tf.command = ATA_CMD_SET_FEATURES;
3938 tf.feature = SETFEATURES_XFER;
464cf177 3939 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
3940 tf.protocol = ATA_PROT_NODATA;
3941 tf.nsect = dev->xfer_mode;
1da177e4 3942
3373efd8 3943 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3944
83206a29
TH
3945 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3946 return err_mask;
1da177e4
LT
3947}
3948
8bf62ece
AL
3949/**
3950 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3951 * @dev: Device to which command will be sent
e2a7f77a
RD
3952 * @heads: Number of heads (taskfile parameter)
3953 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3954 *
3955 * LOCKING:
6aff8f1f
TH
3956 * Kernel thread context (may sleep)
3957 *
3958 * RETURNS:
3959 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3960 */
3373efd8
TH
3961static unsigned int ata_dev_init_params(struct ata_device *dev,
3962 u16 heads, u16 sectors)
8bf62ece 3963{
a0123703 3964 struct ata_taskfile tf;
6aff8f1f 3965 unsigned int err_mask;
8bf62ece
AL
3966
3967 /* Number of sectors per track 1-255. Number of heads 1-16 */
3968 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3969 return AC_ERR_INVALID;
8bf62ece
AL
3970
3971 /* set up init dev params taskfile */
3972 DPRINTK("init dev params \n");
3973
3373efd8 3974 ata_tf_init(dev, &tf);
a0123703
TH
3975 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3976 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3977 tf.protocol = ATA_PROT_NODATA;
3978 tf.nsect = sectors;
3979 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3980
3373efd8 3981 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3982
6aff8f1f
TH
3983 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3984 return err_mask;
8bf62ece
AL
3985}
3986
1da177e4 3987/**
0cba632b
JG
3988 * ata_sg_clean - Unmap DMA memory associated with command
3989 * @qc: Command containing DMA memory to be released
3990 *
3991 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3992 *
3993 * LOCKING:
cca3974e 3994 * spin_lock_irqsave(host lock)
1da177e4 3995 */
70e6ad0c 3996void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
3997{
3998 struct ata_port *ap = qc->ap;
cedc9a47 3999 struct scatterlist *sg = qc->__sg;
1da177e4 4000 int dir = qc->dma_dir;
cedc9a47 4001 void *pad_buf = NULL;
1da177e4 4002
a4631474
TH
4003 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4004 WARN_ON(sg == NULL);
1da177e4
LT
4005
4006 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4007 WARN_ON(qc->n_elem > 1);
1da177e4 4008
2c13b7ce 4009 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4010
cedc9a47
JG
4011 /* if we padded the buffer out to 32-bit bound, and data
4012 * xfer direction is from-device, we must copy from the
4013 * pad buffer back into the supplied buffer
4014 */
4015 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4016 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4017
4018 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4019 if (qc->n_elem)
2f1f610b 4020 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
4021 /* restore last sg */
4022 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4023 if (pad_buf) {
4024 struct scatterlist *psg = &qc->pad_sgent;
4025 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4026 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4027 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4028 }
4029 } else {
2e242fa9 4030 if (qc->n_elem)
2f1f610b 4031 dma_unmap_single(ap->dev,
e1410f2d
JG
4032 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4033 dir);
cedc9a47
JG
4034 /* restore sg */
4035 sg->length += qc->pad_len;
4036 if (pad_buf)
4037 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4038 pad_buf, qc->pad_len);
4039 }
1da177e4
LT
4040
4041 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4042 qc->__sg = NULL;
1da177e4
LT
4043}
4044
4045/**
4046 * ata_fill_sg - Fill PCI IDE PRD table
4047 * @qc: Metadata associated with taskfile to be transferred
4048 *
780a87f7
JG
4049 * Fill PCI IDE PRD (scatter-gather) table with segments
4050 * associated with the current disk command.
4051 *
1da177e4 4052 * LOCKING:
cca3974e 4053 * spin_lock_irqsave(host lock)
1da177e4
LT
4054 *
4055 */
4056static void ata_fill_sg(struct ata_queued_cmd *qc)
4057{
1da177e4 4058 struct ata_port *ap = qc->ap;
cedc9a47
JG
4059 struct scatterlist *sg;
4060 unsigned int idx;
1da177e4 4061
a4631474 4062 WARN_ON(qc->__sg == NULL);
f131883e 4063 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4064
4065 idx = 0;
cedc9a47 4066 ata_for_each_sg(sg, qc) {
1da177e4
LT
4067 u32 addr, offset;
4068 u32 sg_len, len;
4069
4070 /* determine if physical DMA addr spans 64K boundary.
4071 * Note h/w doesn't support 64-bit, so we unconditionally
4072 * truncate dma_addr_t to u32.
4073 */
4074 addr = (u32) sg_dma_address(sg);
4075 sg_len = sg_dma_len(sg);
4076
4077 while (sg_len) {
4078 offset = addr & 0xffff;
4079 len = sg_len;
4080 if ((offset + sg_len) > 0x10000)
4081 len = 0x10000 - offset;
4082
4083 ap->prd[idx].addr = cpu_to_le32(addr);
4084 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4085 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4086
4087 idx++;
4088 sg_len -= len;
4089 addr += len;
4090 }
4091 }
4092
4093 if (idx)
4094 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4095}
b9a4197e 4096
d26fc955
AC
4097/**
4098 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4099 * @qc: Metadata associated with taskfile to be transferred
4100 *
4101 * Fill PCI IDE PRD (scatter-gather) table with segments
4102 * associated with the current disk command. Perform the fill
4103 * so that we avoid writing any length 64K records for
4104 * controllers that don't follow the spec.
4105 *
4106 * LOCKING:
4107 * spin_lock_irqsave(host lock)
4108 *
4109 */
4110static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4111{
4112 struct ata_port *ap = qc->ap;
4113 struct scatterlist *sg;
4114 unsigned int idx;
4115
4116 WARN_ON(qc->__sg == NULL);
4117 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4118
4119 idx = 0;
4120 ata_for_each_sg(sg, qc) {
4121 u32 addr, offset;
4122 u32 sg_len, len, blen;
4123
4124 /* determine if physical DMA addr spans 64K boundary.
4125 * Note h/w doesn't support 64-bit, so we unconditionally
4126 * truncate dma_addr_t to u32.
4127 */
4128 addr = (u32) sg_dma_address(sg);
4129 sg_len = sg_dma_len(sg);
4130
4131 while (sg_len) {
4132 offset = addr & 0xffff;
4133 len = sg_len;
4134 if ((offset + sg_len) > 0x10000)
4135 len = 0x10000 - offset;
4136
4137 blen = len & 0xffff;
4138 ap->prd[idx].addr = cpu_to_le32(addr);
4139 if (blen == 0) {
4140 /* Some PATA chipsets like the CS5530 can't
4141 cope with 0x0000 meaning 64K as the spec says */
4142 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4143 blen = 0x8000;
4144 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4145 }
4146 ap->prd[idx].flags_len = cpu_to_le32(blen);
4147 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4148
4149 idx++;
4150 sg_len -= len;
4151 addr += len;
4152 }
4153 }
4154
4155 if (idx)
4156 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4157}
4158
1da177e4
LT
4159/**
4160 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4161 * @qc: Metadata associated with taskfile to check
4162 *
780a87f7
JG
4163 * Allow low-level driver to filter ATA PACKET commands, returning
4164 * a status indicating whether or not it is OK to use DMA for the
4165 * supplied PACKET command.
4166 *
1da177e4 4167 * LOCKING:
cca3974e 4168 * spin_lock_irqsave(host lock)
0cba632b 4169 *
1da177e4
LT
4170 * RETURNS: 0 when ATAPI DMA can be used
4171 * nonzero otherwise
4172 */
4173int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4174{
4175 struct ata_port *ap = qc->ap;
b9a4197e
TH
4176
4177 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4178 * few ATAPI devices choke on such DMA requests.
4179 */
4180 if (unlikely(qc->nbytes & 15))
4181 return 1;
6f23a31d 4182
1da177e4 4183 if (ap->ops->check_atapi_dma)
b9a4197e 4184 return ap->ops->check_atapi_dma(qc);
1da177e4 4185
b9a4197e 4186 return 0;
1da177e4 4187}
b9a4197e 4188
1da177e4
LT
4189/**
4190 * ata_qc_prep - Prepare taskfile for submission
4191 * @qc: Metadata associated with taskfile to be prepared
4192 *
780a87f7
JG
4193 * Prepare ATA taskfile for submission.
4194 *
1da177e4 4195 * LOCKING:
cca3974e 4196 * spin_lock_irqsave(host lock)
1da177e4
LT
4197 */
4198void ata_qc_prep(struct ata_queued_cmd *qc)
4199{
4200 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4201 return;
4202
4203 ata_fill_sg(qc);
4204}
4205
d26fc955
AC
4206/**
4207 * ata_dumb_qc_prep - Prepare taskfile for submission
4208 * @qc: Metadata associated with taskfile to be prepared
4209 *
4210 * Prepare ATA taskfile for submission.
4211 *
4212 * LOCKING:
4213 * spin_lock_irqsave(host lock)
4214 */
4215void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4216{
4217 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4218 return;
4219
4220 ata_fill_sg_dumb(qc);
4221}
4222
e46834cd
BK
4223void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4224
0cba632b
JG
4225/**
4226 * ata_sg_init_one - Associate command with memory buffer
4227 * @qc: Command to be associated
4228 * @buf: Memory buffer
4229 * @buflen: Length of memory buffer, in bytes.
4230 *
4231 * Initialize the data-related elements of queued_cmd @qc
4232 * to point to a single memory buffer, @buf of byte length @buflen.
4233 *
4234 * LOCKING:
cca3974e 4235 * spin_lock_irqsave(host lock)
0cba632b
JG
4236 */
4237
1da177e4
LT
4238void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4239{
1da177e4
LT
4240 qc->flags |= ATA_QCFLAG_SINGLE;
4241
cedc9a47 4242 qc->__sg = &qc->sgent;
1da177e4 4243 qc->n_elem = 1;
cedc9a47 4244 qc->orig_n_elem = 1;
1da177e4 4245 qc->buf_virt = buf;
233277ca 4246 qc->nbytes = buflen;
1da177e4 4247
61c0596c 4248 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4249}
4250
0cba632b
JG
4251/**
4252 * ata_sg_init - Associate command with scatter-gather table.
4253 * @qc: Command to be associated
4254 * @sg: Scatter-gather table.
4255 * @n_elem: Number of elements in s/g table.
4256 *
4257 * Initialize the data-related elements of queued_cmd @qc
4258 * to point to a scatter-gather table @sg, containing @n_elem
4259 * elements.
4260 *
4261 * LOCKING:
cca3974e 4262 * spin_lock_irqsave(host lock)
0cba632b
JG
4263 */
4264
1da177e4
LT
4265void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4266 unsigned int n_elem)
4267{
4268 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4269 qc->__sg = sg;
1da177e4 4270 qc->n_elem = n_elem;
cedc9a47 4271 qc->orig_n_elem = n_elem;
1da177e4
LT
4272}
4273
4274/**
0cba632b
JG
4275 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4276 * @qc: Command with memory buffer to be mapped.
4277 *
4278 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4279 *
4280 * LOCKING:
cca3974e 4281 * spin_lock_irqsave(host lock)
1da177e4
LT
4282 *
4283 * RETURNS:
0cba632b 4284 * Zero on success, negative on error.
1da177e4
LT
4285 */
4286
4287static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4288{
4289 struct ata_port *ap = qc->ap;
4290 int dir = qc->dma_dir;
cedc9a47 4291 struct scatterlist *sg = qc->__sg;
1da177e4 4292 dma_addr_t dma_address;
2e242fa9 4293 int trim_sg = 0;
1da177e4 4294
cedc9a47
JG
4295 /* we must lengthen transfers to end on a 32-bit boundary */
4296 qc->pad_len = sg->length & 3;
4297 if (qc->pad_len) {
4298 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4299 struct scatterlist *psg = &qc->pad_sgent;
4300
a4631474 4301 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4302
4303 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4304
4305 if (qc->tf.flags & ATA_TFLAG_WRITE)
4306 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4307 qc->pad_len);
4308
4309 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4310 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4311 /* trim sg */
4312 sg->length -= qc->pad_len;
2e242fa9
TH
4313 if (sg->length == 0)
4314 trim_sg = 1;
cedc9a47
JG
4315
4316 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4317 sg->length, qc->pad_len);
4318 }
4319
2e242fa9
TH
4320 if (trim_sg) {
4321 qc->n_elem--;
e1410f2d
JG
4322 goto skip_map;
4323 }
4324
2f1f610b 4325 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4326 sg->length, dir);
537a95d9
TH
4327 if (dma_mapping_error(dma_address)) {
4328 /* restore sg */
4329 sg->length += qc->pad_len;
1da177e4 4330 return -1;
537a95d9 4331 }
1da177e4
LT
4332
4333 sg_dma_address(sg) = dma_address;
32529e01 4334 sg_dma_len(sg) = sg->length;
1da177e4 4335
2e242fa9 4336skip_map:
1da177e4
LT
4337 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4338 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4339
4340 return 0;
4341}
4342
4343/**
0cba632b
JG
4344 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4345 * @qc: Command with scatter-gather table to be mapped.
4346 *
4347 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4348 *
4349 * LOCKING:
cca3974e 4350 * spin_lock_irqsave(host lock)
1da177e4
LT
4351 *
4352 * RETURNS:
0cba632b 4353 * Zero on success, negative on error.
1da177e4
LT
4354 *
4355 */
4356
4357static int ata_sg_setup(struct ata_queued_cmd *qc)
4358{
4359 struct ata_port *ap = qc->ap;
cedc9a47
JG
4360 struct scatterlist *sg = qc->__sg;
4361 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4362 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4363
44877b4e 4364 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4365 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4366
cedc9a47
JG
4367 /* we must lengthen transfers to end on a 32-bit boundary */
4368 qc->pad_len = lsg->length & 3;
4369 if (qc->pad_len) {
4370 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4371 struct scatterlist *psg = &qc->pad_sgent;
4372 unsigned int offset;
4373
a4631474 4374 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4375
4376 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4377
4378 /*
4379 * psg->page/offset are used to copy to-be-written
4380 * data in this function or read data in ata_sg_clean.
4381 */
4382 offset = lsg->offset + lsg->length - qc->pad_len;
4383 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4384 psg->offset = offset_in_page(offset);
4385
4386 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4387 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4388 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4389 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4390 }
4391
4392 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4393 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4394 /* trim last sg */
4395 lsg->length -= qc->pad_len;
e1410f2d
JG
4396 if (lsg->length == 0)
4397 trim_sg = 1;
cedc9a47
JG
4398
4399 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4400 qc->n_elem - 1, lsg->length, qc->pad_len);
4401 }
4402
e1410f2d
JG
4403 pre_n_elem = qc->n_elem;
4404 if (trim_sg && pre_n_elem)
4405 pre_n_elem--;
4406
4407 if (!pre_n_elem) {
4408 n_elem = 0;
4409 goto skip_map;
4410 }
4411
1da177e4 4412 dir = qc->dma_dir;
2f1f610b 4413 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4414 if (n_elem < 1) {
4415 /* restore last sg */
4416 lsg->length += qc->pad_len;
1da177e4 4417 return -1;
537a95d9 4418 }
1da177e4
LT
4419
4420 DPRINTK("%d sg elements mapped\n", n_elem);
4421
e1410f2d 4422skip_map:
1da177e4
LT
4423 qc->n_elem = n_elem;
4424
4425 return 0;
4426}
4427
0baab86b 4428/**
c893a3ae 4429 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4430 * @buf: Buffer to swap
4431 * @buf_words: Number of 16-bit words in buffer.
4432 *
4433 * Swap halves of 16-bit words if needed to convert from
4434 * little-endian byte order to native cpu byte order, or
4435 * vice-versa.
4436 *
4437 * LOCKING:
6f0ef4fa 4438 * Inherited from caller.
0baab86b 4439 */
1da177e4
LT
4440void swap_buf_le16(u16 *buf, unsigned int buf_words)
4441{
4442#ifdef __BIG_ENDIAN
4443 unsigned int i;
4444
4445 for (i = 0; i < buf_words; i++)
4446 buf[i] = le16_to_cpu(buf[i]);
4447#endif /* __BIG_ENDIAN */
4448}
4449
6ae4cfb5 4450/**
0d5ff566 4451 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4452 * @adev: device to target
6ae4cfb5
AL
4453 * @buf: data buffer
4454 * @buflen: buffer length
344babaa 4455 * @write_data: read/write
6ae4cfb5
AL
4456 *
4457 * Transfer data from/to the device data register by PIO.
4458 *
4459 * LOCKING:
4460 * Inherited from caller.
6ae4cfb5 4461 */
0d5ff566
TH
4462void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4463 unsigned int buflen, int write_data)
1da177e4 4464{
a6b2c5d4 4465 struct ata_port *ap = adev->ap;
6ae4cfb5 4466 unsigned int words = buflen >> 1;
1da177e4 4467
6ae4cfb5 4468 /* Transfer multiple of 2 bytes */
1da177e4 4469 if (write_data)
0d5ff566 4470 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4471 else
0d5ff566 4472 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4473
4474 /* Transfer trailing 1 byte, if any. */
4475 if (unlikely(buflen & 0x01)) {
4476 u16 align_buf[1] = { 0 };
4477 unsigned char *trailing_buf = buf + buflen - 1;
4478
4479 if (write_data) {
4480 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4481 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4482 } else {
0d5ff566 4483 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4484 memcpy(trailing_buf, align_buf, 1);
4485 }
4486 }
1da177e4
LT
4487}
4488
75e99585 4489/**
0d5ff566 4490 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4491 * @adev: device to target
4492 * @buf: data buffer
4493 * @buflen: buffer length
4494 * @write_data: read/write
4495 *
88574551 4496 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4497 * transfer with interrupts disabled.
4498 *
4499 * LOCKING:
4500 * Inherited from caller.
4501 */
0d5ff566
TH
4502void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4503 unsigned int buflen, int write_data)
75e99585
AC
4504{
4505 unsigned long flags;
4506 local_irq_save(flags);
0d5ff566 4507 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4508 local_irq_restore(flags);
4509}
4510
4511
6ae4cfb5 4512/**
5a5dbd18 4513 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4514 * @qc: Command on going
4515 *
5a5dbd18 4516 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4517 *
4518 * LOCKING:
4519 * Inherited from caller.
4520 */
4521
1da177e4
LT
4522static void ata_pio_sector(struct ata_queued_cmd *qc)
4523{
4524 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4525 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4526 struct ata_port *ap = qc->ap;
4527 struct page *page;
4528 unsigned int offset;
4529 unsigned char *buf;
4530
5a5dbd18 4531 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4532 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4533
4534 page = sg[qc->cursg].page;
726f0785 4535 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4536
4537 /* get the current page and offset */
4538 page = nth_page(page, (offset >> PAGE_SHIFT));
4539 offset %= PAGE_SIZE;
4540
1da177e4
LT
4541 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4542
91b8b313
AL
4543 if (PageHighMem(page)) {
4544 unsigned long flags;
4545
a6b2c5d4 4546 /* FIXME: use a bounce buffer */
91b8b313
AL
4547 local_irq_save(flags);
4548 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4549
91b8b313 4550 /* do the actual data transfer */
5a5dbd18 4551 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4552
91b8b313
AL
4553 kunmap_atomic(buf, KM_IRQ0);
4554 local_irq_restore(flags);
4555 } else {
4556 buf = page_address(page);
5a5dbd18 4557 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4558 }
1da177e4 4559
5a5dbd18
ML
4560 qc->curbytes += qc->sect_size;
4561 qc->cursg_ofs += qc->sect_size;
1da177e4 4562
726f0785 4563 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4564 qc->cursg++;
4565 qc->cursg_ofs = 0;
4566 }
1da177e4 4567}
1da177e4 4568
07f6f7d0 4569/**
5a5dbd18 4570 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4571 * @qc: Command on going
4572 *
5a5dbd18 4573 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4574 * ATA device for the DRQ request.
4575 *
4576 * LOCKING:
4577 * Inherited from caller.
4578 */
1da177e4 4579
07f6f7d0
AL
4580static void ata_pio_sectors(struct ata_queued_cmd *qc)
4581{
4582 if (is_multi_taskfile(&qc->tf)) {
4583 /* READ/WRITE MULTIPLE */
4584 unsigned int nsect;
4585
587005de 4586 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4587
5a5dbd18 4588 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4589 qc->dev->multi_count);
07f6f7d0
AL
4590 while (nsect--)
4591 ata_pio_sector(qc);
4592 } else
4593 ata_pio_sector(qc);
4594}
4595
c71c1857
AL
4596/**
4597 * atapi_send_cdb - Write CDB bytes to hardware
4598 * @ap: Port to which ATAPI device is attached.
4599 * @qc: Taskfile currently active
4600 *
4601 * When device has indicated its readiness to accept
4602 * a CDB, this function is called. Send the CDB.
4603 *
4604 * LOCKING:
4605 * caller.
4606 */
4607
4608static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4609{
4610 /* send SCSI cdb */
4611 DPRINTK("send cdb\n");
db024d53 4612 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4613
a6b2c5d4 4614 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4615 ata_altstatus(ap); /* flush */
4616
4617 switch (qc->tf.protocol) {
4618 case ATA_PROT_ATAPI:
4619 ap->hsm_task_state = HSM_ST;
4620 break;
4621 case ATA_PROT_ATAPI_NODATA:
4622 ap->hsm_task_state = HSM_ST_LAST;
4623 break;
4624 case ATA_PROT_ATAPI_DMA:
4625 ap->hsm_task_state = HSM_ST_LAST;
4626 /* initiate bmdma */
4627 ap->ops->bmdma_start(qc);
4628 break;
4629 }
1da177e4
LT
4630}
4631
6ae4cfb5
AL
4632/**
4633 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4634 * @qc: Command on going
4635 * @bytes: number of bytes
4636 *
4637 * Transfer Transfer data from/to the ATAPI device.
4638 *
4639 * LOCKING:
4640 * Inherited from caller.
4641 *
4642 */
4643
1da177e4
LT
4644static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4645{
4646 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4647 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4648 struct ata_port *ap = qc->ap;
4649 struct page *page;
4650 unsigned char *buf;
4651 unsigned int offset, count;
4652
563a6e1f 4653 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4654 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4655
4656next_sg:
563a6e1f 4657 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4658 /*
563a6e1f
AL
4659 * The end of qc->sg is reached and the device expects
4660 * more data to transfer. In order not to overrun qc->sg
4661 * and fulfill length specified in the byte count register,
4662 * - for read case, discard trailing data from the device
4663 * - for write case, padding zero data to the device
4664 */
4665 u16 pad_buf[1] = { 0 };
4666 unsigned int words = bytes >> 1;
4667 unsigned int i;
4668
4669 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4670 ata_dev_printk(qc->dev, KERN_WARNING,
4671 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4672
4673 for (i = 0; i < words; i++)
a6b2c5d4 4674 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4675
14be71f4 4676 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4677 return;
4678 }
4679
cedc9a47 4680 sg = &qc->__sg[qc->cursg];
1da177e4 4681
1da177e4
LT
4682 page = sg->page;
4683 offset = sg->offset + qc->cursg_ofs;
4684
4685 /* get the current page and offset */
4686 page = nth_page(page, (offset >> PAGE_SHIFT));
4687 offset %= PAGE_SIZE;
4688
6952df03 4689 /* don't overrun current sg */
32529e01 4690 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4691
4692 /* don't cross page boundaries */
4693 count = min(count, (unsigned int)PAGE_SIZE - offset);
4694
7282aa4b
AL
4695 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4696
91b8b313
AL
4697 if (PageHighMem(page)) {
4698 unsigned long flags;
4699
a6b2c5d4 4700 /* FIXME: use bounce buffer */
91b8b313
AL
4701 local_irq_save(flags);
4702 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4703
91b8b313 4704 /* do the actual data transfer */
a6b2c5d4 4705 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4706
91b8b313
AL
4707 kunmap_atomic(buf, KM_IRQ0);
4708 local_irq_restore(flags);
4709 } else {
4710 buf = page_address(page);
a6b2c5d4 4711 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4712 }
1da177e4
LT
4713
4714 bytes -= count;
4715 qc->curbytes += count;
4716 qc->cursg_ofs += count;
4717
32529e01 4718 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4719 qc->cursg++;
4720 qc->cursg_ofs = 0;
4721 }
4722
563a6e1f 4723 if (bytes)
1da177e4 4724 goto next_sg;
1da177e4
LT
4725}
4726
6ae4cfb5
AL
4727/**
4728 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4729 * @qc: Command on going
4730 *
4731 * Transfer Transfer data from/to the ATAPI device.
4732 *
4733 * LOCKING:
4734 * Inherited from caller.
6ae4cfb5
AL
4735 */
4736
1da177e4
LT
4737static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4738{
4739 struct ata_port *ap = qc->ap;
4740 struct ata_device *dev = qc->dev;
4741 unsigned int ireason, bc_lo, bc_hi, bytes;
4742 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4743
eec4c3f3
AL
4744 /* Abuse qc->result_tf for temp storage of intermediate TF
4745 * here to save some kernel stack usage.
4746 * For normal completion, qc->result_tf is not relevant. For
4747 * error, qc->result_tf is later overwritten by ata_qc_complete().
4748 * So, the correctness of qc->result_tf is not affected.
4749 */
4750 ap->ops->tf_read(ap, &qc->result_tf);
4751 ireason = qc->result_tf.nsect;
4752 bc_lo = qc->result_tf.lbam;
4753 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4754 bytes = (bc_hi << 8) | bc_lo;
4755
4756 /* shall be cleared to zero, indicating xfer of data */
4757 if (ireason & (1 << 0))
4758 goto err_out;
4759
4760 /* make sure transfer direction matches expected */
4761 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4762 if (do_write != i_write)
4763 goto err_out;
4764
44877b4e 4765 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4766
1da177e4
LT
4767 __atapi_pio_bytes(qc, bytes);
4768
4769 return;
4770
4771err_out:
f15a1daf 4772 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4773 qc->err_mask |= AC_ERR_HSM;
14be71f4 4774 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4775}
4776
4777/**
c234fb00
AL
4778 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4779 * @ap: the target ata_port
4780 * @qc: qc on going
1da177e4 4781 *
c234fb00
AL
4782 * RETURNS:
4783 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4784 */
c234fb00
AL
4785
4786static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4787{
c234fb00
AL
4788 if (qc->tf.flags & ATA_TFLAG_POLLING)
4789 return 1;
1da177e4 4790
c234fb00
AL
4791 if (ap->hsm_task_state == HSM_ST_FIRST) {
4792 if (qc->tf.protocol == ATA_PROT_PIO &&
4793 (qc->tf.flags & ATA_TFLAG_WRITE))
4794 return 1;
1da177e4 4795
c234fb00
AL
4796 if (is_atapi_taskfile(&qc->tf) &&
4797 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4798 return 1;
fe79e683
AL
4799 }
4800
c234fb00
AL
4801 return 0;
4802}
1da177e4 4803
c17ea20d
TH
4804/**
4805 * ata_hsm_qc_complete - finish a qc running on standard HSM
4806 * @qc: Command to complete
4807 * @in_wq: 1 if called from workqueue, 0 otherwise
4808 *
4809 * Finish @qc which is running on standard HSM.
4810 *
4811 * LOCKING:
cca3974e 4812 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4813 * Otherwise, none on entry and grabs host lock.
4814 */
4815static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4816{
4817 struct ata_port *ap = qc->ap;
4818 unsigned long flags;
4819
4820 if (ap->ops->error_handler) {
4821 if (in_wq) {
ba6a1308 4822 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4823
cca3974e
JG
4824 /* EH might have kicked in while host lock is
4825 * released.
c17ea20d
TH
4826 */
4827 qc = ata_qc_from_tag(ap, qc->tag);
4828 if (qc) {
4829 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4830 ap->ops->irq_on(ap);
c17ea20d
TH
4831 ata_qc_complete(qc);
4832 } else
4833 ata_port_freeze(ap);
4834 }
4835
ba6a1308 4836 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4837 } else {
4838 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4839 ata_qc_complete(qc);
4840 else
4841 ata_port_freeze(ap);
4842 }
4843 } else {
4844 if (in_wq) {
ba6a1308 4845 spin_lock_irqsave(ap->lock, flags);
83625006 4846 ap->ops->irq_on(ap);
c17ea20d 4847 ata_qc_complete(qc);
ba6a1308 4848 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4849 } else
4850 ata_qc_complete(qc);
4851 }
4852}
4853
bb5cb290
AL
4854/**
4855 * ata_hsm_move - move the HSM to the next state.
4856 * @ap: the target ata_port
4857 * @qc: qc on going
4858 * @status: current device status
4859 * @in_wq: 1 if called from workqueue, 0 otherwise
4860 *
4861 * RETURNS:
4862 * 1 when poll next status needed, 0 otherwise.
4863 */
9a1004d0
TH
4864int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4865 u8 status, int in_wq)
e2cec771 4866{
bb5cb290
AL
4867 unsigned long flags = 0;
4868 int poll_next;
4869
6912ccd5
AL
4870 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4871
bb5cb290
AL
4872 /* Make sure ata_qc_issue_prot() does not throw things
4873 * like DMA polling into the workqueue. Notice that
4874 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4875 */
c234fb00 4876 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4877
e2cec771 4878fsm_start:
999bb6f4 4879 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4880 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4881
e2cec771
AL
4882 switch (ap->hsm_task_state) {
4883 case HSM_ST_FIRST:
bb5cb290
AL
4884 /* Send first data block or PACKET CDB */
4885
4886 /* If polling, we will stay in the work queue after
4887 * sending the data. Otherwise, interrupt handler
4888 * takes over after sending the data.
4889 */
4890 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4891
e2cec771 4892 /* check device status */
3655d1d3
AL
4893 if (unlikely((status & ATA_DRQ) == 0)) {
4894 /* handle BSY=0, DRQ=0 as error */
4895 if (likely(status & (ATA_ERR | ATA_DF)))
4896 /* device stops HSM for abort/error */
4897 qc->err_mask |= AC_ERR_DEV;
4898 else
4899 /* HSM violation. Let EH handle this */
4900 qc->err_mask |= AC_ERR_HSM;
4901
14be71f4 4902 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4903 goto fsm_start;
1da177e4
LT
4904 }
4905
71601958
AL
4906 /* Device should not ask for data transfer (DRQ=1)
4907 * when it finds something wrong.
eee6c32f
AL
4908 * We ignore DRQ here and stop the HSM by
4909 * changing hsm_task_state to HSM_ST_ERR and
4910 * let the EH abort the command or reset the device.
71601958
AL
4911 */
4912 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4913 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4914 "error, dev_stat 0x%X\n", status);
3655d1d3 4915 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4916 ap->hsm_task_state = HSM_ST_ERR;
4917 goto fsm_start;
71601958 4918 }
1da177e4 4919
bb5cb290
AL
4920 /* Send the CDB (atapi) or the first data block (ata pio out).
4921 * During the state transition, interrupt handler shouldn't
4922 * be invoked before the data transfer is complete and
4923 * hsm_task_state is changed. Hence, the following locking.
4924 */
4925 if (in_wq)
ba6a1308 4926 spin_lock_irqsave(ap->lock, flags);
1da177e4 4927
bb5cb290
AL
4928 if (qc->tf.protocol == ATA_PROT_PIO) {
4929 /* PIO data out protocol.
4930 * send first data block.
4931 */
0565c26d 4932
bb5cb290
AL
4933 /* ata_pio_sectors() might change the state
4934 * to HSM_ST_LAST. so, the state is changed here
4935 * before ata_pio_sectors().
4936 */
4937 ap->hsm_task_state = HSM_ST;
4938 ata_pio_sectors(qc);
4939 ata_altstatus(ap); /* flush */
4940 } else
4941 /* send CDB */
4942 atapi_send_cdb(ap, qc);
4943
4944 if (in_wq)
ba6a1308 4945 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4946
4947 /* if polling, ata_pio_task() handles the rest.
4948 * otherwise, interrupt handler takes over from here.
4949 */
e2cec771 4950 break;
1c848984 4951
e2cec771
AL
4952 case HSM_ST:
4953 /* complete command or read/write the data register */
4954 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4955 /* ATAPI PIO protocol */
4956 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4957 /* No more data to transfer or device error.
4958 * Device error will be tagged in HSM_ST_LAST.
4959 */
e2cec771
AL
4960 ap->hsm_task_state = HSM_ST_LAST;
4961 goto fsm_start;
4962 }
1da177e4 4963
71601958
AL
4964 /* Device should not ask for data transfer (DRQ=1)
4965 * when it finds something wrong.
eee6c32f
AL
4966 * We ignore DRQ here and stop the HSM by
4967 * changing hsm_task_state to HSM_ST_ERR and
4968 * let the EH abort the command or reset the device.
71601958
AL
4969 */
4970 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4971 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4972 "device error, dev_stat 0x%X\n",
4973 status);
3655d1d3 4974 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4975 ap->hsm_task_state = HSM_ST_ERR;
4976 goto fsm_start;
71601958 4977 }
1da177e4 4978
e2cec771 4979 atapi_pio_bytes(qc);
7fb6ec28 4980
e2cec771
AL
4981 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4982 /* bad ireason reported by device */
4983 goto fsm_start;
1da177e4 4984
e2cec771
AL
4985 } else {
4986 /* ATA PIO protocol */
4987 if (unlikely((status & ATA_DRQ) == 0)) {
4988 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4989 if (likely(status & (ATA_ERR | ATA_DF)))
4990 /* device stops HSM for abort/error */
4991 qc->err_mask |= AC_ERR_DEV;
4992 else
55a8e2c8
TH
4993 /* HSM violation. Let EH handle this.
4994 * Phantom devices also trigger this
4995 * condition. Mark hint.
4996 */
4997 qc->err_mask |= AC_ERR_HSM |
4998 AC_ERR_NODEV_HINT;
3655d1d3 4999
e2cec771
AL
5000 ap->hsm_task_state = HSM_ST_ERR;
5001 goto fsm_start;
5002 }
1da177e4 5003
eee6c32f
AL
5004 /* For PIO reads, some devices may ask for
5005 * data transfer (DRQ=1) alone with ERR=1.
5006 * We respect DRQ here and transfer one
5007 * block of junk data before changing the
5008 * hsm_task_state to HSM_ST_ERR.
5009 *
5010 * For PIO writes, ERR=1 DRQ=1 doesn't make
5011 * sense since the data block has been
5012 * transferred to the device.
71601958
AL
5013 */
5014 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5015 /* data might be corrputed */
5016 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5017
5018 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5019 ata_pio_sectors(qc);
5020 ata_altstatus(ap);
5021 status = ata_wait_idle(ap);
5022 }
5023
3655d1d3
AL
5024 if (status & (ATA_BUSY | ATA_DRQ))
5025 qc->err_mask |= AC_ERR_HSM;
5026
eee6c32f
AL
5027 /* ata_pio_sectors() might change the
5028 * state to HSM_ST_LAST. so, the state
5029 * is changed after ata_pio_sectors().
5030 */
5031 ap->hsm_task_state = HSM_ST_ERR;
5032 goto fsm_start;
71601958
AL
5033 }
5034
e2cec771
AL
5035 ata_pio_sectors(qc);
5036
5037 if (ap->hsm_task_state == HSM_ST_LAST &&
5038 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5039 /* all data read */
5040 ata_altstatus(ap);
52a32205 5041 status = ata_wait_idle(ap);
e2cec771
AL
5042 goto fsm_start;
5043 }
5044 }
5045
5046 ata_altstatus(ap); /* flush */
bb5cb290 5047 poll_next = 1;
1da177e4
LT
5048 break;
5049
14be71f4 5050 case HSM_ST_LAST:
6912ccd5
AL
5051 if (unlikely(!ata_ok(status))) {
5052 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5053 ap->hsm_task_state = HSM_ST_ERR;
5054 goto fsm_start;
5055 }
5056
5057 /* no more data to transfer */
4332a771 5058 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5059 ap->print_id, qc->dev->devno, status);
e2cec771 5060
6912ccd5
AL
5061 WARN_ON(qc->err_mask);
5062
e2cec771 5063 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5064
e2cec771 5065 /* complete taskfile transaction */
c17ea20d 5066 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5067
5068 poll_next = 0;
1da177e4
LT
5069 break;
5070
14be71f4 5071 case HSM_ST_ERR:
e2cec771
AL
5072 /* make sure qc->err_mask is available to
5073 * know what's wrong and recover
5074 */
5075 WARN_ON(qc->err_mask == 0);
5076
5077 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5078
999bb6f4 5079 /* complete taskfile transaction */
c17ea20d 5080 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5081
5082 poll_next = 0;
e2cec771
AL
5083 break;
5084 default:
bb5cb290 5085 poll_next = 0;
6912ccd5 5086 BUG();
1da177e4
LT
5087 }
5088
bb5cb290 5089 return poll_next;
1da177e4
LT
5090}
5091
65f27f38 5092static void ata_pio_task(struct work_struct *work)
8061f5f0 5093{
65f27f38
DH
5094 struct ata_port *ap =
5095 container_of(work, struct ata_port, port_task.work);
5096 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5097 u8 status;
a1af3734 5098 int poll_next;
8061f5f0 5099
7fb6ec28 5100fsm_start:
a1af3734 5101 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5102
a1af3734
AL
5103 /*
5104 * This is purely heuristic. This is a fast path.
5105 * Sometimes when we enter, BSY will be cleared in
5106 * a chk-status or two. If not, the drive is probably seeking
5107 * or something. Snooze for a couple msecs, then
5108 * chk-status again. If still busy, queue delayed work.
5109 */
5110 status = ata_busy_wait(ap, ATA_BUSY, 5);
5111 if (status & ATA_BUSY) {
5112 msleep(2);
5113 status = ata_busy_wait(ap, ATA_BUSY, 10);
5114 if (status & ATA_BUSY) {
31ce6dae 5115 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5116 return;
5117 }
8061f5f0
TH
5118 }
5119
a1af3734
AL
5120 /* move the HSM */
5121 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5122
a1af3734
AL
5123 /* another command or interrupt handler
5124 * may be running at this point.
5125 */
5126 if (poll_next)
7fb6ec28 5127 goto fsm_start;
8061f5f0
TH
5128}
5129
1da177e4
LT
5130/**
5131 * ata_qc_new - Request an available ATA command, for queueing
5132 * @ap: Port associated with device @dev
5133 * @dev: Device from whom we request an available command structure
5134 *
5135 * LOCKING:
0cba632b 5136 * None.
1da177e4
LT
5137 */
5138
5139static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5140{
5141 struct ata_queued_cmd *qc = NULL;
5142 unsigned int i;
5143
e3180499 5144 /* no command while frozen */
b51e9e5d 5145 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5146 return NULL;
5147
2ab7db1f
TH
5148 /* the last tag is reserved for internal command. */
5149 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5150 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5151 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5152 break;
5153 }
5154
5155 if (qc)
5156 qc->tag = i;
5157
5158 return qc;
5159}
5160
5161/**
5162 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5163 * @dev: Device from whom we request an available command structure
5164 *
5165 * LOCKING:
0cba632b 5166 * None.
1da177e4
LT
5167 */
5168
3373efd8 5169struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5170{
3373efd8 5171 struct ata_port *ap = dev->ap;
1da177e4
LT
5172 struct ata_queued_cmd *qc;
5173
5174 qc = ata_qc_new(ap);
5175 if (qc) {
1da177e4
LT
5176 qc->scsicmd = NULL;
5177 qc->ap = ap;
5178 qc->dev = dev;
1da177e4 5179
2c13b7ce 5180 ata_qc_reinit(qc);
1da177e4
LT
5181 }
5182
5183 return qc;
5184}
5185
1da177e4
LT
5186/**
5187 * ata_qc_free - free unused ata_queued_cmd
5188 * @qc: Command to complete
5189 *
5190 * Designed to free unused ata_queued_cmd object
5191 * in case something prevents using it.
5192 *
5193 * LOCKING:
cca3974e 5194 * spin_lock_irqsave(host lock)
1da177e4
LT
5195 */
5196void ata_qc_free(struct ata_queued_cmd *qc)
5197{
4ba946e9
TH
5198 struct ata_port *ap = qc->ap;
5199 unsigned int tag;
5200
a4631474 5201 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5202
4ba946e9
TH
5203 qc->flags = 0;
5204 tag = qc->tag;
5205 if (likely(ata_tag_valid(tag))) {
4ba946e9 5206 qc->tag = ATA_TAG_POISON;
6cec4a39 5207 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5208 }
1da177e4
LT
5209}
5210
76014427 5211void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5212{
dedaf2b0
TH
5213 struct ata_port *ap = qc->ap;
5214
a4631474
TH
5215 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5216 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5217
5218 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5219 ata_sg_clean(qc);
5220
7401abf2 5221 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
5222 if (qc->tf.protocol == ATA_PROT_NCQ)
5223 ap->sactive &= ~(1 << qc->tag);
5224 else
5225 ap->active_tag = ATA_TAG_POISON;
7401abf2 5226
3f3791d3
AL
5227 /* atapi: mark qc as inactive to prevent the interrupt handler
5228 * from completing the command twice later, before the error handler
5229 * is called. (when rc != 0 and atapi request sense is needed)
5230 */
5231 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5232 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5233
1da177e4 5234 /* call completion callback */
77853bf2 5235 qc->complete_fn(qc);
1da177e4
LT
5236}
5237
39599a53
TH
5238static void fill_result_tf(struct ata_queued_cmd *qc)
5239{
5240 struct ata_port *ap = qc->ap;
5241
39599a53 5242 qc->result_tf.flags = qc->tf.flags;
4742d54f 5243 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5244}
5245
f686bcb8
TH
5246/**
5247 * ata_qc_complete - Complete an active ATA command
5248 * @qc: Command to complete
5249 * @err_mask: ATA Status register contents
5250 *
5251 * Indicate to the mid and upper layers that an ATA
5252 * command has completed, with either an ok or not-ok status.
5253 *
5254 * LOCKING:
cca3974e 5255 * spin_lock_irqsave(host lock)
f686bcb8
TH
5256 */
5257void ata_qc_complete(struct ata_queued_cmd *qc)
5258{
5259 struct ata_port *ap = qc->ap;
5260
5261 /* XXX: New EH and old EH use different mechanisms to
5262 * synchronize EH with regular execution path.
5263 *
5264 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5265 * Normal execution path is responsible for not accessing a
5266 * failed qc. libata core enforces the rule by returning NULL
5267 * from ata_qc_from_tag() for failed qcs.
5268 *
5269 * Old EH depends on ata_qc_complete() nullifying completion
5270 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5271 * not synchronize with interrupt handler. Only PIO task is
5272 * taken care of.
5273 */
5274 if (ap->ops->error_handler) {
b51e9e5d 5275 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5276
5277 if (unlikely(qc->err_mask))
5278 qc->flags |= ATA_QCFLAG_FAILED;
5279
5280 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5281 if (!ata_tag_internal(qc->tag)) {
5282 /* always fill result TF for failed qc */
39599a53 5283 fill_result_tf(qc);
f686bcb8
TH
5284 ata_qc_schedule_eh(qc);
5285 return;
5286 }
5287 }
5288
5289 /* read result TF if requested */
5290 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5291 fill_result_tf(qc);
f686bcb8
TH
5292
5293 __ata_qc_complete(qc);
5294 } else {
5295 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5296 return;
5297
5298 /* read result TF if failed or requested */
5299 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5300 fill_result_tf(qc);
f686bcb8
TH
5301
5302 __ata_qc_complete(qc);
5303 }
5304}
5305
dedaf2b0
TH
5306/**
5307 * ata_qc_complete_multiple - Complete multiple qcs successfully
5308 * @ap: port in question
5309 * @qc_active: new qc_active mask
5310 * @finish_qc: LLDD callback invoked before completing a qc
5311 *
5312 * Complete in-flight commands. This functions is meant to be
5313 * called from low-level driver's interrupt routine to complete
5314 * requests normally. ap->qc_active and @qc_active is compared
5315 * and commands are completed accordingly.
5316 *
5317 * LOCKING:
cca3974e 5318 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5319 *
5320 * RETURNS:
5321 * Number of completed commands on success, -errno otherwise.
5322 */
5323int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5324 void (*finish_qc)(struct ata_queued_cmd *))
5325{
5326 int nr_done = 0;
5327 u32 done_mask;
5328 int i;
5329
5330 done_mask = ap->qc_active ^ qc_active;
5331
5332 if (unlikely(done_mask & qc_active)) {
5333 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5334 "(%08x->%08x)\n", ap->qc_active, qc_active);
5335 return -EINVAL;
5336 }
5337
5338 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5339 struct ata_queued_cmd *qc;
5340
5341 if (!(done_mask & (1 << i)))
5342 continue;
5343
5344 if ((qc = ata_qc_from_tag(ap, i))) {
5345 if (finish_qc)
5346 finish_qc(qc);
5347 ata_qc_complete(qc);
5348 nr_done++;
5349 }
5350 }
5351
5352 return nr_done;
5353}
5354
1da177e4
LT
5355static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5356{
5357 struct ata_port *ap = qc->ap;
5358
5359 switch (qc->tf.protocol) {
3dc1d881 5360 case ATA_PROT_NCQ:
1da177e4
LT
5361 case ATA_PROT_DMA:
5362 case ATA_PROT_ATAPI_DMA:
5363 return 1;
5364
5365 case ATA_PROT_ATAPI:
5366 case ATA_PROT_PIO:
1da177e4
LT
5367 if (ap->flags & ATA_FLAG_PIO_DMA)
5368 return 1;
5369
5370 /* fall through */
5371
5372 default:
5373 return 0;
5374 }
5375
5376 /* never reached */
5377}
5378
5379/**
5380 * ata_qc_issue - issue taskfile to device
5381 * @qc: command to issue to device
5382 *
5383 * Prepare an ATA command to submission to device.
5384 * This includes mapping the data into a DMA-able
5385 * area, filling in the S/G table, and finally
5386 * writing the taskfile to hardware, starting the command.
5387 *
5388 * LOCKING:
cca3974e 5389 * spin_lock_irqsave(host lock)
1da177e4 5390 */
8e0e694a 5391void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5392{
5393 struct ata_port *ap = qc->ap;
5394
dedaf2b0
TH
5395 /* Make sure only one non-NCQ command is outstanding. The
5396 * check is skipped for old EH because it reuses active qc to
5397 * request ATAPI sense.
5398 */
5399 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5400
5401 if (qc->tf.protocol == ATA_PROT_NCQ) {
5402 WARN_ON(ap->sactive & (1 << qc->tag));
5403 ap->sactive |= 1 << qc->tag;
5404 } else {
5405 WARN_ON(ap->sactive);
5406 ap->active_tag = qc->tag;
5407 }
5408
e4a70e76 5409 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5410 ap->qc_active |= 1 << qc->tag;
e4a70e76 5411
1da177e4
LT
5412 if (ata_should_dma_map(qc)) {
5413 if (qc->flags & ATA_QCFLAG_SG) {
5414 if (ata_sg_setup(qc))
8e436af9 5415 goto sg_err;
1da177e4
LT
5416 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5417 if (ata_sg_setup_one(qc))
8e436af9 5418 goto sg_err;
1da177e4
LT
5419 }
5420 } else {
5421 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5422 }
5423
5424 ap->ops->qc_prep(qc);
5425
8e0e694a
TH
5426 qc->err_mask |= ap->ops->qc_issue(qc);
5427 if (unlikely(qc->err_mask))
5428 goto err;
5429 return;
1da177e4 5430
8e436af9
TH
5431sg_err:
5432 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5433 qc->err_mask |= AC_ERR_SYSTEM;
5434err:
5435 ata_qc_complete(qc);
1da177e4
LT
5436}
5437
5438/**
5439 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5440 * @qc: command to issue to device
5441 *
5442 * Using various libata functions and hooks, this function
5443 * starts an ATA command. ATA commands are grouped into
5444 * classes called "protocols", and issuing each type of protocol
5445 * is slightly different.
5446 *
0baab86b
EF
5447 * May be used as the qc_issue() entry in ata_port_operations.
5448 *
1da177e4 5449 * LOCKING:
cca3974e 5450 * spin_lock_irqsave(host lock)
1da177e4
LT
5451 *
5452 * RETURNS:
9a3d9eb0 5453 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5454 */
5455
9a3d9eb0 5456unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5457{
5458 struct ata_port *ap = qc->ap;
5459
e50362ec
AL
5460 /* Use polling pio if the LLD doesn't handle
5461 * interrupt driven pio and atapi CDB interrupt.
5462 */
5463 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5464 switch (qc->tf.protocol) {
5465 case ATA_PROT_PIO:
e3472cbe 5466 case ATA_PROT_NODATA:
e50362ec
AL
5467 case ATA_PROT_ATAPI:
5468 case ATA_PROT_ATAPI_NODATA:
5469 qc->tf.flags |= ATA_TFLAG_POLLING;
5470 break;
5471 case ATA_PROT_ATAPI_DMA:
5472 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5473 /* see ata_dma_blacklisted() */
e50362ec
AL
5474 BUG();
5475 break;
5476 default:
5477 break;
5478 }
5479 }
5480
312f7da2 5481 /* select the device */
1da177e4
LT
5482 ata_dev_select(ap, qc->dev->devno, 1, 0);
5483
312f7da2 5484 /* start the command */
1da177e4
LT
5485 switch (qc->tf.protocol) {
5486 case ATA_PROT_NODATA:
312f7da2
AL
5487 if (qc->tf.flags & ATA_TFLAG_POLLING)
5488 ata_qc_set_polling(qc);
5489
e5338254 5490 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5491 ap->hsm_task_state = HSM_ST_LAST;
5492
5493 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5494 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5495
1da177e4
LT
5496 break;
5497
5498 case ATA_PROT_DMA:
587005de 5499 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5500
1da177e4
LT
5501 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5502 ap->ops->bmdma_setup(qc); /* set up bmdma */
5503 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5504 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5505 break;
5506
312f7da2
AL
5507 case ATA_PROT_PIO:
5508 if (qc->tf.flags & ATA_TFLAG_POLLING)
5509 ata_qc_set_polling(qc);
1da177e4 5510
e5338254 5511 ata_tf_to_host(ap, &qc->tf);
312f7da2 5512
54f00389
AL
5513 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5514 /* PIO data out protocol */
5515 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5516 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5517
5518 /* always send first data block using
e27486db 5519 * the ata_pio_task() codepath.
54f00389 5520 */
312f7da2 5521 } else {
54f00389
AL
5522 /* PIO data in protocol */
5523 ap->hsm_task_state = HSM_ST;
5524
5525 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5526 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5527
5528 /* if polling, ata_pio_task() handles the rest.
5529 * otherwise, interrupt handler takes over from here.
5530 */
312f7da2
AL
5531 }
5532
1da177e4
LT
5533 break;
5534
1da177e4 5535 case ATA_PROT_ATAPI:
1da177e4 5536 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5537 if (qc->tf.flags & ATA_TFLAG_POLLING)
5538 ata_qc_set_polling(qc);
5539
e5338254 5540 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5541
312f7da2
AL
5542 ap->hsm_task_state = HSM_ST_FIRST;
5543
5544 /* send cdb by polling if no cdb interrupt */
5545 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5546 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5547 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5548 break;
5549
5550 case ATA_PROT_ATAPI_DMA:
587005de 5551 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5552
1da177e4
LT
5553 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5554 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5555 ap->hsm_task_state = HSM_ST_FIRST;
5556
5557 /* send cdb by polling if no cdb interrupt */
5558 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5559 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5560 break;
5561
5562 default:
5563 WARN_ON(1);
9a3d9eb0 5564 return AC_ERR_SYSTEM;
1da177e4
LT
5565 }
5566
5567 return 0;
5568}
5569
1da177e4
LT
5570/**
5571 * ata_host_intr - Handle host interrupt for given (port, task)
5572 * @ap: Port on which interrupt arrived (possibly...)
5573 * @qc: Taskfile currently active in engine
5574 *
5575 * Handle host interrupt for given queued command. Currently,
5576 * only DMA interrupts are handled. All other commands are
5577 * handled via polling with interrupts disabled (nIEN bit).
5578 *
5579 * LOCKING:
cca3974e 5580 * spin_lock_irqsave(host lock)
1da177e4
LT
5581 *
5582 * RETURNS:
5583 * One if interrupt was handled, zero if not (shared irq).
5584 */
5585
5586inline unsigned int ata_host_intr (struct ata_port *ap,
5587 struct ata_queued_cmd *qc)
5588{
ea54763f 5589 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5590 u8 status, host_stat = 0;
1da177e4 5591
312f7da2 5592 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5593 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5594
312f7da2
AL
5595 /* Check whether we are expecting interrupt in this state */
5596 switch (ap->hsm_task_state) {
5597 case HSM_ST_FIRST:
6912ccd5
AL
5598 /* Some pre-ATAPI-4 devices assert INTRQ
5599 * at this state when ready to receive CDB.
5600 */
1da177e4 5601
312f7da2
AL
5602 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5603 * The flag was turned on only for atapi devices.
5604 * No need to check is_atapi_taskfile(&qc->tf) again.
5605 */
5606 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5607 goto idle_irq;
1da177e4 5608 break;
312f7da2
AL
5609 case HSM_ST_LAST:
5610 if (qc->tf.protocol == ATA_PROT_DMA ||
5611 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5612 /* check status of DMA engine */
5613 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5614 VPRINTK("ata%u: host_stat 0x%X\n",
5615 ap->print_id, host_stat);
312f7da2
AL
5616
5617 /* if it's not our irq... */
5618 if (!(host_stat & ATA_DMA_INTR))
5619 goto idle_irq;
5620
5621 /* before we do anything else, clear DMA-Start bit */
5622 ap->ops->bmdma_stop(qc);
a4f16610
AL
5623
5624 if (unlikely(host_stat & ATA_DMA_ERR)) {
5625 /* error when transfering data to/from memory */
5626 qc->err_mask |= AC_ERR_HOST_BUS;
5627 ap->hsm_task_state = HSM_ST_ERR;
5628 }
312f7da2
AL
5629 }
5630 break;
5631 case HSM_ST:
5632 break;
1da177e4
LT
5633 default:
5634 goto idle_irq;
5635 }
5636
312f7da2
AL
5637 /* check altstatus */
5638 status = ata_altstatus(ap);
5639 if (status & ATA_BUSY)
5640 goto idle_irq;
1da177e4 5641
312f7da2
AL
5642 /* check main status, clearing INTRQ */
5643 status = ata_chk_status(ap);
5644 if (unlikely(status & ATA_BUSY))
5645 goto idle_irq;
1da177e4 5646
312f7da2
AL
5647 /* ack bmdma irq events */
5648 ap->ops->irq_clear(ap);
1da177e4 5649
bb5cb290 5650 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5651
5652 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5653 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5654 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5655
1da177e4
LT
5656 return 1; /* irq handled */
5657
5658idle_irq:
5659 ap->stats.idle_irq++;
5660
5661#ifdef ATA_IRQ_TRAP
5662 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5663 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5664 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5665 return 1;
1da177e4
LT
5666 }
5667#endif
5668 return 0; /* irq not handled */
5669}
5670
5671/**
5672 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5673 * @irq: irq line (unused)
cca3974e 5674 * @dev_instance: pointer to our ata_host information structure
1da177e4 5675 *
0cba632b
JG
5676 * Default interrupt handler for PCI IDE devices. Calls
5677 * ata_host_intr() for each port that is not disabled.
5678 *
1da177e4 5679 * LOCKING:
cca3974e 5680 * Obtains host lock during operation.
1da177e4
LT
5681 *
5682 * RETURNS:
0cba632b 5683 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5684 */
5685
7d12e780 5686irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5687{
cca3974e 5688 struct ata_host *host = dev_instance;
1da177e4
LT
5689 unsigned int i;
5690 unsigned int handled = 0;
5691 unsigned long flags;
5692
5693 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5694 spin_lock_irqsave(&host->lock, flags);
1da177e4 5695
cca3974e 5696 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5697 struct ata_port *ap;
5698
cca3974e 5699 ap = host->ports[i];
c1389503 5700 if (ap &&
029f5468 5701 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5702 struct ata_queued_cmd *qc;
5703
5704 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5705 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5706 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5707 handled |= ata_host_intr(ap, qc);
5708 }
5709 }
5710
cca3974e 5711 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5712
5713 return IRQ_RETVAL(handled);
5714}
5715
34bf2170
TH
5716/**
5717 * sata_scr_valid - test whether SCRs are accessible
5718 * @ap: ATA port to test SCR accessibility for
5719 *
5720 * Test whether SCRs are accessible for @ap.
5721 *
5722 * LOCKING:
5723 * None.
5724 *
5725 * RETURNS:
5726 * 1 if SCRs are accessible, 0 otherwise.
5727 */
5728int sata_scr_valid(struct ata_port *ap)
5729{
a16abc0b 5730 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5731}
5732
5733/**
5734 * sata_scr_read - read SCR register of the specified port
5735 * @ap: ATA port to read SCR for
5736 * @reg: SCR to read
5737 * @val: Place to store read value
5738 *
5739 * Read SCR register @reg of @ap into *@val. This function is
5740 * guaranteed to succeed if the cable type of the port is SATA
5741 * and the port implements ->scr_read.
5742 *
5743 * LOCKING:
5744 * None.
5745 *
5746 * RETURNS:
5747 * 0 on success, negative errno on failure.
5748 */
5749int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5750{
da3dbb17
TH
5751 if (sata_scr_valid(ap))
5752 return ap->ops->scr_read(ap, reg, val);
34bf2170
TH
5753 return -EOPNOTSUPP;
5754}
5755
5756/**
5757 * sata_scr_write - write SCR register of the specified port
5758 * @ap: ATA port to write SCR for
5759 * @reg: SCR to write
5760 * @val: value to write
5761 *
5762 * Write @val to SCR register @reg of @ap. This function is
5763 * guaranteed to succeed if the cable type of the port is SATA
5764 * and the port implements ->scr_read.
5765 *
5766 * LOCKING:
5767 * None.
5768 *
5769 * RETURNS:
5770 * 0 on success, negative errno on failure.
5771 */
5772int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5773{
da3dbb17
TH
5774 if (sata_scr_valid(ap))
5775 return ap->ops->scr_write(ap, reg, val);
34bf2170
TH
5776 return -EOPNOTSUPP;
5777}
5778
5779/**
5780 * sata_scr_write_flush - write SCR register of the specified port and flush
5781 * @ap: ATA port to write SCR for
5782 * @reg: SCR to write
5783 * @val: value to write
5784 *
5785 * This function is identical to sata_scr_write() except that this
5786 * function performs flush after writing to the register.
5787 *
5788 * LOCKING:
5789 * None.
5790 *
5791 * RETURNS:
5792 * 0 on success, negative errno on failure.
5793 */
5794int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5795{
da3dbb17
TH
5796 int rc;
5797
34bf2170 5798 if (sata_scr_valid(ap)) {
da3dbb17
TH
5799 rc = ap->ops->scr_write(ap, reg, val);
5800 if (rc == 0)
5801 rc = ap->ops->scr_read(ap, reg, &val);
5802 return rc;
34bf2170
TH
5803 }
5804 return -EOPNOTSUPP;
5805}
5806
5807/**
5808 * ata_port_online - test whether the given port is online
5809 * @ap: ATA port to test
5810 *
5811 * Test whether @ap is online. Note that this function returns 0
5812 * if online status of @ap cannot be obtained, so
5813 * ata_port_online(ap) != !ata_port_offline(ap).
5814 *
5815 * LOCKING:
5816 * None.
5817 *
5818 * RETURNS:
5819 * 1 if the port online status is available and online.
5820 */
5821int ata_port_online(struct ata_port *ap)
5822{
5823 u32 sstatus;
5824
5825 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5826 return 1;
5827 return 0;
5828}
5829
5830/**
5831 * ata_port_offline - test whether the given port is offline
5832 * @ap: ATA port to test
5833 *
5834 * Test whether @ap is offline. Note that this function returns
5835 * 0 if offline status of @ap cannot be obtained, so
5836 * ata_port_online(ap) != !ata_port_offline(ap).
5837 *
5838 * LOCKING:
5839 * None.
5840 *
5841 * RETURNS:
5842 * 1 if the port offline status is available and offline.
5843 */
5844int ata_port_offline(struct ata_port *ap)
5845{
5846 u32 sstatus;
5847
5848 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5849 return 1;
5850 return 0;
5851}
0baab86b 5852
77b08fb5 5853int ata_flush_cache(struct ata_device *dev)
9b847548 5854{
977e6b9f 5855 unsigned int err_mask;
9b847548
JA
5856 u8 cmd;
5857
5858 if (!ata_try_flush_cache(dev))
5859 return 0;
5860
6fc49adb 5861 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5862 cmd = ATA_CMD_FLUSH_EXT;
5863 else
5864 cmd = ATA_CMD_FLUSH;
5865
977e6b9f
TH
5866 err_mask = ata_do_simple_cmd(dev, cmd);
5867 if (err_mask) {
5868 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5869 return -EIO;
5870 }
5871
5872 return 0;
9b847548
JA
5873}
5874
6ffa01d8 5875#ifdef CONFIG_PM
cca3974e
JG
5876static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5877 unsigned int action, unsigned int ehi_flags,
5878 int wait)
500530f6
TH
5879{
5880 unsigned long flags;
5881 int i, rc;
5882
cca3974e
JG
5883 for (i = 0; i < host->n_ports; i++) {
5884 struct ata_port *ap = host->ports[i];
500530f6
TH
5885
5886 /* Previous resume operation might still be in
5887 * progress. Wait for PM_PENDING to clear.
5888 */
5889 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5890 ata_port_wait_eh(ap);
5891 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5892 }
5893
5894 /* request PM ops to EH */
5895 spin_lock_irqsave(ap->lock, flags);
5896
5897 ap->pm_mesg = mesg;
5898 if (wait) {
5899 rc = 0;
5900 ap->pm_result = &rc;
5901 }
5902
5903 ap->pflags |= ATA_PFLAG_PM_PENDING;
5904 ap->eh_info.action |= action;
5905 ap->eh_info.flags |= ehi_flags;
5906
5907 ata_port_schedule_eh(ap);
5908
5909 spin_unlock_irqrestore(ap->lock, flags);
5910
5911 /* wait and check result */
5912 if (wait) {
5913 ata_port_wait_eh(ap);
5914 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5915 if (rc)
5916 return rc;
5917 }
5918 }
5919
5920 return 0;
5921}
5922
5923/**
cca3974e
JG
5924 * ata_host_suspend - suspend host
5925 * @host: host to suspend
500530f6
TH
5926 * @mesg: PM message
5927 *
cca3974e 5928 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5929 * function requests EH to perform PM operations and waits for EH
5930 * to finish.
5931 *
5932 * LOCKING:
5933 * Kernel thread context (may sleep).
5934 *
5935 * RETURNS:
5936 * 0 on success, -errno on failure.
5937 */
cca3974e 5938int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5939{
9666f400 5940 int rc;
500530f6 5941
cca3974e 5942 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
5943 if (rc == 0)
5944 host->dev->power.power_state = mesg;
500530f6
TH
5945 return rc;
5946}
5947
5948/**
cca3974e
JG
5949 * ata_host_resume - resume host
5950 * @host: host to resume
500530f6 5951 *
cca3974e 5952 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5953 * function requests EH to perform PM operations and returns.
5954 * Note that all resume operations are performed parallely.
5955 *
5956 * LOCKING:
5957 * Kernel thread context (may sleep).
5958 */
cca3974e 5959void ata_host_resume(struct ata_host *host)
500530f6 5960{
cca3974e
JG
5961 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5962 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5963 host->dev->power.power_state = PMSG_ON;
500530f6 5964}
6ffa01d8 5965#endif
500530f6 5966
c893a3ae
RD
5967/**
5968 * ata_port_start - Set port up for dma.
5969 * @ap: Port to initialize
5970 *
5971 * Called just after data structures for each port are
5972 * initialized. Allocates space for PRD table.
5973 *
5974 * May be used as the port_start() entry in ata_port_operations.
5975 *
5976 * LOCKING:
5977 * Inherited from caller.
5978 */
f0d36efd 5979int ata_port_start(struct ata_port *ap)
1da177e4 5980{
2f1f610b 5981 struct device *dev = ap->dev;
6037d6bb 5982 int rc;
1da177e4 5983
f0d36efd
TH
5984 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5985 GFP_KERNEL);
1da177e4
LT
5986 if (!ap->prd)
5987 return -ENOMEM;
5988
6037d6bb 5989 rc = ata_pad_alloc(ap, dev);
f0d36efd 5990 if (rc)
6037d6bb 5991 return rc;
1da177e4 5992
f0d36efd
TH
5993 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5994 (unsigned long long)ap->prd_dma);
1da177e4
LT
5995 return 0;
5996}
5997
3ef3b43d
TH
5998/**
5999 * ata_dev_init - Initialize an ata_device structure
6000 * @dev: Device structure to initialize
6001 *
6002 * Initialize @dev in preparation for probing.
6003 *
6004 * LOCKING:
6005 * Inherited from caller.
6006 */
6007void ata_dev_init(struct ata_device *dev)
6008{
6009 struct ata_port *ap = dev->ap;
72fa4b74
TH
6010 unsigned long flags;
6011
5a04bf4b
TH
6012 /* SATA spd limit is bound to the first device */
6013 ap->sata_spd_limit = ap->hw_sata_spd_limit;
008a7896 6014 ap->sata_spd = 0;
5a04bf4b 6015
72fa4b74
TH
6016 /* High bits of dev->flags are used to record warm plug
6017 * requests which occur asynchronously. Synchronize using
cca3974e 6018 * host lock.
72fa4b74 6019 */
ba6a1308 6020 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6021 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 6022 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6023
72fa4b74
TH
6024 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6025 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6026 dev->pio_mask = UINT_MAX;
6027 dev->mwdma_mask = UINT_MAX;
6028 dev->udma_mask = UINT_MAX;
6029}
6030
1da177e4 6031/**
f3187195
TH
6032 * ata_port_alloc - allocate and initialize basic ATA port resources
6033 * @host: ATA host this allocated port belongs to
1da177e4 6034 *
f3187195
TH
6035 * Allocate and initialize basic ATA port resources.
6036 *
6037 * RETURNS:
6038 * Allocate ATA port on success, NULL on failure.
0cba632b 6039 *
1da177e4 6040 * LOCKING:
f3187195 6041 * Inherited from calling layer (may sleep).
1da177e4 6042 */
f3187195 6043struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6044{
f3187195 6045 struct ata_port *ap;
1da177e4
LT
6046 unsigned int i;
6047
f3187195
TH
6048 DPRINTK("ENTER\n");
6049
6050 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6051 if (!ap)
6052 return NULL;
6053
f4d6d004 6054 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6055 ap->lock = &host->lock;
198e0fed 6056 ap->flags = ATA_FLAG_DISABLED;
f3187195 6057 ap->print_id = -1;
1da177e4 6058 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6059 ap->host = host;
f3187195
TH
6060 ap->dev = host->dev;
6061
5a04bf4b 6062 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
6063 ap->active_tag = ATA_TAG_POISON;
6064 ap->last_ctl = 0xFF;
bd5d825c
BP
6065
6066#if defined(ATA_VERBOSE_DEBUG)
6067 /* turn on all debugging levels */
6068 ap->msg_enable = 0x00FF;
6069#elif defined(ATA_DEBUG)
6070 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6071#else
0dd4b21f 6072 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6073#endif
1da177e4 6074
65f27f38
DH
6075 INIT_DELAYED_WORK(&ap->port_task, NULL);
6076 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6077 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6078 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6079 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 6080
838df628 6081 ap->cbl = ATA_CBL_NONE;
838df628 6082
acf356b1
TH
6083 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6084 struct ata_device *dev = &ap->device[i];
38d87234 6085 dev->ap = ap;
72fa4b74 6086 dev->devno = i;
3ef3b43d 6087 ata_dev_init(dev);
acf356b1 6088 }
1da177e4
LT
6089
6090#ifdef ATA_IRQ_TRAP
6091 ap->stats.unhandled_irq = 1;
6092 ap->stats.idle_irq = 1;
6093#endif
1da177e4 6094 return ap;
1da177e4
LT
6095}
6096
f0d36efd
TH
6097static void ata_host_release(struct device *gendev, void *res)
6098{
6099 struct ata_host *host = dev_get_drvdata(gendev);
6100 int i;
6101
6102 for (i = 0; i < host->n_ports; i++) {
6103 struct ata_port *ap = host->ports[i];
6104
ecef7253
TH
6105 if (!ap)
6106 continue;
6107
6108 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6109 ap->ops->port_stop(ap);
f0d36efd
TH
6110 }
6111
ecef7253 6112 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6113 host->ops->host_stop(host);
1aa56cca 6114
1aa506e4
TH
6115 for (i = 0; i < host->n_ports; i++) {
6116 struct ata_port *ap = host->ports[i];
6117
4911487a
TH
6118 if (!ap)
6119 continue;
6120
6121 if (ap->scsi_host)
1aa506e4
TH
6122 scsi_host_put(ap->scsi_host);
6123
4911487a 6124 kfree(ap);
1aa506e4
TH
6125 host->ports[i] = NULL;
6126 }
6127
1aa56cca 6128 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6129}
6130
f3187195
TH
6131/**
6132 * ata_host_alloc - allocate and init basic ATA host resources
6133 * @dev: generic device this host is associated with
6134 * @max_ports: maximum number of ATA ports associated with this host
6135 *
6136 * Allocate and initialize basic ATA host resources. LLD calls
6137 * this function to allocate a host, initializes it fully and
6138 * attaches it using ata_host_register().
6139 *
6140 * @max_ports ports are allocated and host->n_ports is
6141 * initialized to @max_ports. The caller is allowed to decrease
6142 * host->n_ports before calling ata_host_register(). The unused
6143 * ports will be automatically freed on registration.
6144 *
6145 * RETURNS:
6146 * Allocate ATA host on success, NULL on failure.
6147 *
6148 * LOCKING:
6149 * Inherited from calling layer (may sleep).
6150 */
6151struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6152{
6153 struct ata_host *host;
6154 size_t sz;
6155 int i;
6156
6157 DPRINTK("ENTER\n");
6158
6159 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6160 return NULL;
6161
6162 /* alloc a container for our list of ATA ports (buses) */
6163 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6164 /* alloc a container for our list of ATA ports (buses) */
6165 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6166 if (!host)
6167 goto err_out;
6168
6169 devres_add(dev, host);
6170 dev_set_drvdata(dev, host);
6171
6172 spin_lock_init(&host->lock);
6173 host->dev = dev;
6174 host->n_ports = max_ports;
6175
6176 /* allocate ports bound to this host */
6177 for (i = 0; i < max_ports; i++) {
6178 struct ata_port *ap;
6179
6180 ap = ata_port_alloc(host);
6181 if (!ap)
6182 goto err_out;
6183
6184 ap->port_no = i;
6185 host->ports[i] = ap;
6186 }
6187
6188 devres_remove_group(dev, NULL);
6189 return host;
6190
6191 err_out:
6192 devres_release_group(dev, NULL);
6193 return NULL;
6194}
6195
f5cda257
TH
6196/**
6197 * ata_host_alloc_pinfo - alloc host and init with port_info array
6198 * @dev: generic device this host is associated with
6199 * @ppi: array of ATA port_info to initialize host with
6200 * @n_ports: number of ATA ports attached to this host
6201 *
6202 * Allocate ATA host and initialize with info from @ppi. If NULL
6203 * terminated, @ppi may contain fewer entries than @n_ports. The
6204 * last entry will be used for the remaining ports.
6205 *
6206 * RETURNS:
6207 * Allocate ATA host on success, NULL on failure.
6208 *
6209 * LOCKING:
6210 * Inherited from calling layer (may sleep).
6211 */
6212struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6213 const struct ata_port_info * const * ppi,
6214 int n_ports)
6215{
6216 const struct ata_port_info *pi;
6217 struct ata_host *host;
6218 int i, j;
6219
6220 host = ata_host_alloc(dev, n_ports);
6221 if (!host)
6222 return NULL;
6223
6224 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6225 struct ata_port *ap = host->ports[i];
6226
6227 if (ppi[j])
6228 pi = ppi[j++];
6229
6230 ap->pio_mask = pi->pio_mask;
6231 ap->mwdma_mask = pi->mwdma_mask;
6232 ap->udma_mask = pi->udma_mask;
6233 ap->flags |= pi->flags;
6234 ap->ops = pi->port_ops;
6235
6236 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6237 host->ops = pi->port_ops;
6238 if (!host->private_data && pi->private_data)
6239 host->private_data = pi->private_data;
6240 }
6241
6242 return host;
6243}
6244
ecef7253
TH
6245/**
6246 * ata_host_start - start and freeze ports of an ATA host
6247 * @host: ATA host to start ports for
6248 *
6249 * Start and then freeze ports of @host. Started status is
6250 * recorded in host->flags, so this function can be called
6251 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6252 * once. If host->ops isn't initialized yet, its set to the
6253 * first non-dummy port ops.
ecef7253
TH
6254 *
6255 * LOCKING:
6256 * Inherited from calling layer (may sleep).
6257 *
6258 * RETURNS:
6259 * 0 if all ports are started successfully, -errno otherwise.
6260 */
6261int ata_host_start(struct ata_host *host)
6262{
6263 int i, rc;
6264
6265 if (host->flags & ATA_HOST_STARTED)
6266 return 0;
6267
6268 for (i = 0; i < host->n_ports; i++) {
6269 struct ata_port *ap = host->ports[i];
6270
f3187195
TH
6271 if (!host->ops && !ata_port_is_dummy(ap))
6272 host->ops = ap->ops;
6273
ecef7253
TH
6274 if (ap->ops->port_start) {
6275 rc = ap->ops->port_start(ap);
6276 if (rc) {
6277 ata_port_printk(ap, KERN_ERR, "failed to "
6278 "start port (errno=%d)\n", rc);
6279 goto err_out;
6280 }
6281 }
6282
6283 ata_eh_freeze_port(ap);
6284 }
6285
6286 host->flags |= ATA_HOST_STARTED;
6287 return 0;
6288
6289 err_out:
6290 while (--i >= 0) {
6291 struct ata_port *ap = host->ports[i];
6292
6293 if (ap->ops->port_stop)
6294 ap->ops->port_stop(ap);
6295 }
6296 return rc;
6297}
6298
b03732f0 6299/**
cca3974e
JG
6300 * ata_sas_host_init - Initialize a host struct
6301 * @host: host to initialize
6302 * @dev: device host is attached to
6303 * @flags: host flags
6304 * @ops: port_ops
b03732f0
BK
6305 *
6306 * LOCKING:
6307 * PCI/etc. bus probe sem.
6308 *
6309 */
f3187195 6310/* KILLME - the only user left is ipr */
cca3974e
JG
6311void ata_host_init(struct ata_host *host, struct device *dev,
6312 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6313{
cca3974e
JG
6314 spin_lock_init(&host->lock);
6315 host->dev = dev;
6316 host->flags = flags;
6317 host->ops = ops;
b03732f0
BK
6318}
6319
f3187195
TH
6320/**
6321 * ata_host_register - register initialized ATA host
6322 * @host: ATA host to register
6323 * @sht: template for SCSI host
6324 *
6325 * Register initialized ATA host. @host is allocated using
6326 * ata_host_alloc() and fully initialized by LLD. This function
6327 * starts ports, registers @host with ATA and SCSI layers and
6328 * probe registered devices.
6329 *
6330 * LOCKING:
6331 * Inherited from calling layer (may sleep).
6332 *
6333 * RETURNS:
6334 * 0 on success, -errno otherwise.
6335 */
6336int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6337{
6338 int i, rc;
6339
6340 /* host must have been started */
6341 if (!(host->flags & ATA_HOST_STARTED)) {
6342 dev_printk(KERN_ERR, host->dev,
6343 "BUG: trying to register unstarted host\n");
6344 WARN_ON(1);
6345 return -EINVAL;
6346 }
6347
6348 /* Blow away unused ports. This happens when LLD can't
6349 * determine the exact number of ports to allocate at
6350 * allocation time.
6351 */
6352 for (i = host->n_ports; host->ports[i]; i++)
6353 kfree(host->ports[i]);
6354
6355 /* give ports names and add SCSI hosts */
6356 for (i = 0; i < host->n_ports; i++)
6357 host->ports[i]->print_id = ata_print_id++;
6358
6359 rc = ata_scsi_add_hosts(host, sht);
6360 if (rc)
6361 return rc;
6362
fafbae87
TH
6363 /* associate with ACPI nodes */
6364 ata_acpi_associate(host);
6365
f3187195
TH
6366 /* set cable, sata_spd_limit and report */
6367 for (i = 0; i < host->n_ports; i++) {
6368 struct ata_port *ap = host->ports[i];
6369 int irq_line;
6370 u32 scontrol;
6371 unsigned long xfer_mask;
6372
6373 /* set SATA cable type if still unset */
6374 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6375 ap->cbl = ATA_CBL_SATA;
6376
6377 /* init sata_spd_limit to the current value */
6378 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6379 int spd = (scontrol >> 4) & 0xf;
afe3cc51
TH
6380 if (spd)
6381 ap->hw_sata_spd_limit &= (1 << spd) - 1;
f3187195
TH
6382 }
6383 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6384
6385 /* report the secondary IRQ for second channel legacy */
6386 irq_line = host->irq;
6387 if (i == 1 && host->irq2)
6388 irq_line = host->irq2;
6389
6390 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6391 ap->udma_mask);
6392
6393 /* print per-port info to dmesg */
6394 if (!ata_port_is_dummy(ap))
6395 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6396 "ctl 0x%p bmdma 0x%p irq %d\n",
a16abc0b 6397 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195
TH
6398 ata_mode_string(xfer_mask),
6399 ap->ioaddr.cmd_addr,
6400 ap->ioaddr.ctl_addr,
6401 ap->ioaddr.bmdma_addr,
6402 irq_line);
6403 else
6404 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6405 }
6406
6407 /* perform each probe synchronously */
6408 DPRINTK("probe begin\n");
6409 for (i = 0; i < host->n_ports; i++) {
6410 struct ata_port *ap = host->ports[i];
6411 int rc;
6412
6413 /* probe */
6414 if (ap->ops->error_handler) {
6415 struct ata_eh_info *ehi = &ap->eh_info;
6416 unsigned long flags;
6417
6418 ata_port_probe(ap);
6419
6420 /* kick EH for boot probing */
6421 spin_lock_irqsave(ap->lock, flags);
6422
6423 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6424 ehi->action |= ATA_EH_SOFTRESET;
6425 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6426
f4d6d004 6427 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6428 ap->pflags |= ATA_PFLAG_LOADING;
6429 ata_port_schedule_eh(ap);
6430
6431 spin_unlock_irqrestore(ap->lock, flags);
6432
6433 /* wait for EH to finish */
6434 ata_port_wait_eh(ap);
6435 } else {
6436 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6437 rc = ata_bus_probe(ap);
6438 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6439
6440 if (rc) {
6441 /* FIXME: do something useful here?
6442 * Current libata behavior will
6443 * tear down everything when
6444 * the module is removed
6445 * or the h/w is unplugged.
6446 */
6447 }
6448 }
6449 }
6450
6451 /* probes are done, now scan each port's disk(s) */
6452 DPRINTK("host probe begin\n");
6453 for (i = 0; i < host->n_ports; i++) {
6454 struct ata_port *ap = host->ports[i];
6455
6456 ata_scsi_scan_host(ap);
6457 }
6458
6459 return 0;
6460}
6461
f5cda257
TH
6462/**
6463 * ata_host_activate - start host, request IRQ and register it
6464 * @host: target ATA host
6465 * @irq: IRQ to request
6466 * @irq_handler: irq_handler used when requesting IRQ
6467 * @irq_flags: irq_flags used when requesting IRQ
6468 * @sht: scsi_host_template to use when registering the host
6469 *
6470 * After allocating an ATA host and initializing it, most libata
6471 * LLDs perform three steps to activate the host - start host,
6472 * request IRQ and register it. This helper takes necessasry
6473 * arguments and performs the three steps in one go.
6474 *
6475 * LOCKING:
6476 * Inherited from calling layer (may sleep).
6477 *
6478 * RETURNS:
6479 * 0 on success, -errno otherwise.
6480 */
6481int ata_host_activate(struct ata_host *host, int irq,
6482 irq_handler_t irq_handler, unsigned long irq_flags,
6483 struct scsi_host_template *sht)
6484{
6485 int rc;
6486
6487 rc = ata_host_start(host);
6488 if (rc)
6489 return rc;
6490
6491 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6492 dev_driver_string(host->dev), host);
6493 if (rc)
6494 return rc;
6495
4031826b
TH
6496 /* Used to print device info at probe */
6497 host->irq = irq;
6498
f5cda257
TH
6499 rc = ata_host_register(host, sht);
6500 /* if failed, just free the IRQ and leave ports alone */
6501 if (rc)
6502 devm_free_irq(host->dev, irq, host);
6503
6504 return rc;
6505}
6506
720ba126
TH
6507/**
6508 * ata_port_detach - Detach ATA port in prepration of device removal
6509 * @ap: ATA port to be detached
6510 *
6511 * Detach all ATA devices and the associated SCSI devices of @ap;
6512 * then, remove the associated SCSI host. @ap is guaranteed to
6513 * be quiescent on return from this function.
6514 *
6515 * LOCKING:
6516 * Kernel thread context (may sleep).
6517 */
6518void ata_port_detach(struct ata_port *ap)
6519{
6520 unsigned long flags;
6521 int i;
6522
6523 if (!ap->ops->error_handler)
c3cf30a9 6524 goto skip_eh;
720ba126
TH
6525
6526 /* tell EH we're leaving & flush EH */
ba6a1308 6527 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6528 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6529 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6530
6531 ata_port_wait_eh(ap);
6532
6533 /* EH is now guaranteed to see UNLOADING, so no new device
6534 * will be attached. Disable all existing devices.
6535 */
ba6a1308 6536 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
6537
6538 for (i = 0; i < ATA_MAX_DEVICES; i++)
6539 ata_dev_disable(&ap->device[i]);
6540
ba6a1308 6541 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6542
6543 /* Final freeze & EH. All in-flight commands are aborted. EH
6544 * will be skipped and retrials will be terminated with bad
6545 * target.
6546 */
ba6a1308 6547 spin_lock_irqsave(ap->lock, flags);
720ba126 6548 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6549 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6550
6551 ata_port_wait_eh(ap);
45a66c1c 6552 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6553
c3cf30a9 6554 skip_eh:
720ba126 6555 /* remove the associated SCSI host */
cca3974e 6556 scsi_remove_host(ap->scsi_host);
720ba126
TH
6557}
6558
0529c159
TH
6559/**
6560 * ata_host_detach - Detach all ports of an ATA host
6561 * @host: Host to detach
6562 *
6563 * Detach all ports of @host.
6564 *
6565 * LOCKING:
6566 * Kernel thread context (may sleep).
6567 */
6568void ata_host_detach(struct ata_host *host)
6569{
6570 int i;
6571
6572 for (i = 0; i < host->n_ports; i++)
6573 ata_port_detach(host->ports[i]);
6574}
6575
1da177e4
LT
6576/**
6577 * ata_std_ports - initialize ioaddr with standard port offsets.
6578 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6579 *
6580 * Utility function which initializes data_addr, error_addr,
6581 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6582 * device_addr, status_addr, and command_addr to standard offsets
6583 * relative to cmd_addr.
6584 *
6585 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6586 */
0baab86b 6587
1da177e4
LT
6588void ata_std_ports(struct ata_ioports *ioaddr)
6589{
6590 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6591 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6592 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6593 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6594 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6595 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6596 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6597 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6598 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6599 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6600}
6601
0baab86b 6602
374b1873
JG
6603#ifdef CONFIG_PCI
6604
1da177e4
LT
6605/**
6606 * ata_pci_remove_one - PCI layer callback for device removal
6607 * @pdev: PCI device that was removed
6608 *
b878ca5d
TH
6609 * PCI layer indicates to libata via this hook that hot-unplug or
6610 * module unload event has occurred. Detach all ports. Resource
6611 * release is handled via devres.
1da177e4
LT
6612 *
6613 * LOCKING:
6614 * Inherited from PCI layer (may sleep).
6615 */
f0d36efd 6616void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6617{
6618 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6619 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6620
b878ca5d 6621 ata_host_detach(host);
1da177e4
LT
6622}
6623
6624/* move to PCI subsystem */
057ace5e 6625int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6626{
6627 unsigned long tmp = 0;
6628
6629 switch (bits->width) {
6630 case 1: {
6631 u8 tmp8 = 0;
6632 pci_read_config_byte(pdev, bits->reg, &tmp8);
6633 tmp = tmp8;
6634 break;
6635 }
6636 case 2: {
6637 u16 tmp16 = 0;
6638 pci_read_config_word(pdev, bits->reg, &tmp16);
6639 tmp = tmp16;
6640 break;
6641 }
6642 case 4: {
6643 u32 tmp32 = 0;
6644 pci_read_config_dword(pdev, bits->reg, &tmp32);
6645 tmp = tmp32;
6646 break;
6647 }
6648
6649 default:
6650 return -EINVAL;
6651 }
6652
6653 tmp &= bits->mask;
6654
6655 return (tmp == bits->val) ? 1 : 0;
6656}
9b847548 6657
6ffa01d8 6658#ifdef CONFIG_PM
3c5100c1 6659void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6660{
6661 pci_save_state(pdev);
4c90d971 6662 pci_disable_device(pdev);
500530f6 6663
4c90d971 6664 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6665 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6666}
6667
553c4aa6 6668int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6669{
553c4aa6
TH
6670 int rc;
6671
9b847548
JA
6672 pci_set_power_state(pdev, PCI_D0);
6673 pci_restore_state(pdev);
553c4aa6 6674
b878ca5d 6675 rc = pcim_enable_device(pdev);
553c4aa6
TH
6676 if (rc) {
6677 dev_printk(KERN_ERR, &pdev->dev,
6678 "failed to enable device after resume (%d)\n", rc);
6679 return rc;
6680 }
6681
9b847548 6682 pci_set_master(pdev);
553c4aa6 6683 return 0;
500530f6
TH
6684}
6685
3c5100c1 6686int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6687{
cca3974e 6688 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6689 int rc = 0;
6690
cca3974e 6691 rc = ata_host_suspend(host, mesg);
500530f6
TH
6692 if (rc)
6693 return rc;
6694
3c5100c1 6695 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6696
6697 return 0;
6698}
6699
6700int ata_pci_device_resume(struct pci_dev *pdev)
6701{
cca3974e 6702 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6703 int rc;
500530f6 6704
553c4aa6
TH
6705 rc = ata_pci_device_do_resume(pdev);
6706 if (rc == 0)
6707 ata_host_resume(host);
6708 return rc;
9b847548 6709}
6ffa01d8
TH
6710#endif /* CONFIG_PM */
6711
1da177e4
LT
6712#endif /* CONFIG_PCI */
6713
6714
1da177e4
LT
6715static int __init ata_init(void)
6716{
a8601e5f 6717 ata_probe_timeout *= HZ;
1da177e4
LT
6718 ata_wq = create_workqueue("ata");
6719 if (!ata_wq)
6720 return -ENOMEM;
6721
453b07ac
TH
6722 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6723 if (!ata_aux_wq) {
6724 destroy_workqueue(ata_wq);
6725 return -ENOMEM;
6726 }
6727
1da177e4
LT
6728 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6729 return 0;
6730}
6731
6732static void __exit ata_exit(void)
6733{
6734 destroy_workqueue(ata_wq);
453b07ac 6735 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6736}
6737
a4625085 6738subsys_initcall(ata_init);
1da177e4
LT
6739module_exit(ata_exit);
6740
67846b30 6741static unsigned long ratelimit_time;
34af946a 6742static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6743
6744int ata_ratelimit(void)
6745{
6746 int rc;
6747 unsigned long flags;
6748
6749 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6750
6751 if (time_after(jiffies, ratelimit_time)) {
6752 rc = 1;
6753 ratelimit_time = jiffies + (HZ/5);
6754 } else
6755 rc = 0;
6756
6757 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6758
6759 return rc;
6760}
6761
c22daff4
TH
6762/**
6763 * ata_wait_register - wait until register value changes
6764 * @reg: IO-mapped register
6765 * @mask: Mask to apply to read register value
6766 * @val: Wait condition
6767 * @interval_msec: polling interval in milliseconds
6768 * @timeout_msec: timeout in milliseconds
6769 *
6770 * Waiting for some bits of register to change is a common
6771 * operation for ATA controllers. This function reads 32bit LE
6772 * IO-mapped register @reg and tests for the following condition.
6773 *
6774 * (*@reg & mask) != val
6775 *
6776 * If the condition is met, it returns; otherwise, the process is
6777 * repeated after @interval_msec until timeout.
6778 *
6779 * LOCKING:
6780 * Kernel thread context (may sleep)
6781 *
6782 * RETURNS:
6783 * The final register value.
6784 */
6785u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6786 unsigned long interval_msec,
6787 unsigned long timeout_msec)
6788{
6789 unsigned long timeout;
6790 u32 tmp;
6791
6792 tmp = ioread32(reg);
6793
6794 /* Calculate timeout _after_ the first read to make sure
6795 * preceding writes reach the controller before starting to
6796 * eat away the timeout.
6797 */
6798 timeout = jiffies + (timeout_msec * HZ) / 1000;
6799
6800 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6801 msleep(interval_msec);
6802 tmp = ioread32(reg);
6803 }
6804
6805 return tmp;
6806}
6807
dd5b06c4
TH
6808/*
6809 * Dummy port_ops
6810 */
6811static void ata_dummy_noret(struct ata_port *ap) { }
6812static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6813static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6814
6815static u8 ata_dummy_check_status(struct ata_port *ap)
6816{
6817 return ATA_DRDY;
6818}
6819
6820static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6821{
6822 return AC_ERR_SYSTEM;
6823}
6824
6825const struct ata_port_operations ata_dummy_port_ops = {
6826 .port_disable = ata_port_disable,
6827 .check_status = ata_dummy_check_status,
6828 .check_altstatus = ata_dummy_check_status,
6829 .dev_select = ata_noop_dev_select,
6830 .qc_prep = ata_noop_qc_prep,
6831 .qc_issue = ata_dummy_qc_issue,
6832 .freeze = ata_dummy_noret,
6833 .thaw = ata_dummy_noret,
6834 .error_handler = ata_dummy_noret,
6835 .post_internal_cmd = ata_dummy_qc_noret,
6836 .irq_clear = ata_dummy_noret,
6837 .port_start = ata_dummy_ret0,
6838 .port_stop = ata_dummy_noret,
6839};
6840
21b0ad4f
TH
6841const struct ata_port_info ata_dummy_port_info = {
6842 .port_ops = &ata_dummy_port_ops,
6843};
6844
1da177e4
LT
6845/*
6846 * libata is essentially a library of internal helper functions for
6847 * low-level ATA host controller drivers. As such, the API/ABI is
6848 * likely to change as new drivers are added and updated.
6849 * Do not depend on ABI/API stability.
6850 */
6851
e9c83914
TH
6852EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6853EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6854EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6855EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6856EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
6857EXPORT_SYMBOL_GPL(ata_std_bios_param);
6858EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6859EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6860EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6861EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 6862EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6863EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6864EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6865EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6866EXPORT_SYMBOL_GPL(ata_sg_init);
6867EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6868EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6869EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6870EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6871EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6872EXPORT_SYMBOL_GPL(ata_tf_load);
6873EXPORT_SYMBOL_GPL(ata_tf_read);
6874EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6875EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 6876EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
6877EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6878EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6879EXPORT_SYMBOL_GPL(ata_check_status);
6880EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6881EXPORT_SYMBOL_GPL(ata_exec_command);
6882EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 6883EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 6884EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 6885EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
6886EXPORT_SYMBOL_GPL(ata_data_xfer);
6887EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6888EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 6889EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 6890EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6891EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6892EXPORT_SYMBOL_GPL(ata_bmdma_start);
6893EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6894EXPORT_SYMBOL_GPL(ata_bmdma_status);
6895EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6896EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6897EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6898EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6899EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6900EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6901EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6902EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6903EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6904EXPORT_SYMBOL_GPL(sata_phy_debounce);
6905EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6906EXPORT_SYMBOL_GPL(sata_phy_reset);
6907EXPORT_SYMBOL_GPL(__sata_phy_reset);
6908EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6909EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6910EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6911EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6912EXPORT_SYMBOL_GPL(sata_std_hardreset);
6913EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6914EXPORT_SYMBOL_GPL(ata_dev_classify);
6915EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6916EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6917EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6918EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6919EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 6920EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 6921EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6922EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6923EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6924EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6925EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6926EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 6927EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6928EXPORT_SYMBOL_GPL(sata_scr_valid);
6929EXPORT_SYMBOL_GPL(sata_scr_read);
6930EXPORT_SYMBOL_GPL(sata_scr_write);
6931EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6932EXPORT_SYMBOL_GPL(ata_port_online);
6933EXPORT_SYMBOL_GPL(ata_port_offline);
6ffa01d8 6934#ifdef CONFIG_PM
cca3974e
JG
6935EXPORT_SYMBOL_GPL(ata_host_suspend);
6936EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6937#endif /* CONFIG_PM */
6a62a04d
TH
6938EXPORT_SYMBOL_GPL(ata_id_string);
6939EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 6940EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
6941EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6942
1bc4ccff 6943EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6944EXPORT_SYMBOL_GPL(ata_timing_compute);
6945EXPORT_SYMBOL_GPL(ata_timing_merge);
6946
1da177e4
LT
6947#ifdef CONFIG_PCI
6948EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 6949EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 6950EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 6951EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
6952EXPORT_SYMBOL_GPL(ata_pci_init_one);
6953EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6954#ifdef CONFIG_PM
500530f6
TH
6955EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6956EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6957EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6958EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6959#endif /* CONFIG_PM */
67951ade
AC
6960EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6961EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6962#endif /* CONFIG_PCI */
9b847548 6963
b64bbc39
TH
6964EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6965EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6966EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
ece1d636 6967EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6968EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6969EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6970EXPORT_SYMBOL_GPL(ata_port_freeze);
6971EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6972EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6973EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6974EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6975EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
6976EXPORT_SYMBOL_GPL(ata_irq_on);
6977EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6978EXPORT_SYMBOL_GPL(ata_irq_ack);
6979EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 6980EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
6981
6982EXPORT_SYMBOL_GPL(ata_cable_40wire);
6983EXPORT_SYMBOL_GPL(ata_cable_80wire);
6984EXPORT_SYMBOL_GPL(ata_cable_unknown);
6985EXPORT_SYMBOL_GPL(ata_cable_sata);