libata: factor out a ata_log_supported helper
[linux-2.6-block.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
8c3d3d4b 4 * Maintained by: Tejun Heo <tj@kernel.org>
af36d7f0
JG
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
9bb9a39c 28 * as Documentation/driver-api/libata.rst
af36d7f0
JG
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
848c3920 53#include <linux/time.h>
1da177e4
LT
54#include <linux/interrupt.h>
55#include <linux/completion.h>
56#include <linux/suspend.h>
57#include <linux/workqueue.h>
378f058c 58#include <linux/scatterlist.h>
2dcb407e 59#include <linux/io.h>
79318057 60#include <linux/async.h>
e18086d6 61#include <linux/log2.h>
5a0e3ad6 62#include <linux/slab.h>
428ac5fc 63#include <linux/glob.h>
1da177e4 64#include <scsi/scsi.h>
193515d5 65#include <scsi/scsi_cmnd.h>
1da177e4
LT
66#include <scsi/scsi_host.h>
67#include <linux/libata.h>
1da177e4 68#include <asm/byteorder.h>
fe5af0cc 69#include <asm/unaligned.h>
140b5e59 70#include <linux/cdrom.h>
9990b6f3 71#include <linux/ratelimit.h>
eb25cb99 72#include <linux/leds.h>
9ee4f393 73#include <linux/pm_runtime.h>
b7db04d9 74#include <linux/platform_device.h>
1da177e4 75
255c03d1
HR
76#define CREATE_TRACE_POINTS
77#include <trace/events/libata.h>
78
1da177e4 79#include "libata.h"
d9027470 80#include "libata-transport.h"
fda0efc5 81
d7bb4cc7 82/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
83const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
84const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
85const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 86
029cfd6b 87const struct ata_port_operations ata_base_port_ops = {
0aa1113d 88 .prereset = ata_std_prereset,
203c75b8 89 .postreset = ata_std_postreset,
a1efdaba 90 .error_handler = ata_std_error_handler,
e4a9c373
DW
91 .sched_eh = ata_std_sched_eh,
92 .end_eh = ata_std_end_eh,
029cfd6b
TH
93};
94
95const struct ata_port_operations sata_port_ops = {
96 .inherits = &ata_base_port_ops,
97
98 .qc_defer = ata_std_qc_defer,
57c9efdf 99 .hardreset = sata_std_hardreset,
029cfd6b
TH
100};
101
3373efd8
TH
102static unsigned int ata_dev_init_params(struct ata_device *dev,
103 u16 heads, u16 sectors);
104static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
105static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 106static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 107
a78f57af 108atomic_t ata_print_id = ATOMIC_INIT(0);
1da177e4 109
33267325
TH
110struct ata_force_param {
111 const char *name;
112 unsigned int cbl;
113 int spd_limit;
114 unsigned long xfer_mask;
115 unsigned int horkage_on;
116 unsigned int horkage_off;
05944bdf 117 unsigned int lflags;
33267325
TH
118};
119
120struct ata_force_ent {
121 int port;
122 int device;
123 struct ata_force_param param;
124};
125
126static struct ata_force_ent *ata_force_tbl;
127static int ata_force_tbl_size;
128
129static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
130/* param_buf is thrown away after initialization, disallow read */
131module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
8c27ceff 132MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
33267325 133
2486fa56 134static int atapi_enabled = 1;
1623c81e 135module_param(atapi_enabled, int, 0444);
ad5d8eac 136MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
1623c81e 137
c5c61bda 138static int atapi_dmadir = 0;
95de719a 139module_param(atapi_dmadir, int, 0444);
ad5d8eac 140MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
95de719a 141
baf4fdfa
ML
142int atapi_passthru16 = 1;
143module_param(atapi_passthru16, int, 0444);
ad5d8eac 144MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
baf4fdfa 145
c3c013a2
JG
146int libata_fua = 0;
147module_param_named(fua, libata_fua, int, 0444);
ad5d8eac 148MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
c3c013a2 149
2dcb407e 150static int ata_ignore_hpa;
1e999736
AC
151module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
152MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
153
b3a70601
AC
154static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
155module_param_named(dma, libata_dma_mask, int, 0444);
156MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
157
87fbc5a0 158static int ata_probe_timeout;
a8601e5f
AM
159module_param(ata_probe_timeout, int, 0444);
160MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
161
6ebe9d86 162int libata_noacpi = 0;
d7d0dad6 163module_param_named(noacpi, libata_noacpi, int, 0444);
ad5d8eac 164MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
11ef697b 165
ae8d4ee7
AC
166int libata_allow_tpm = 0;
167module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
ad5d8eac 168MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
ae8d4ee7 169
e7ecd435
TH
170static int atapi_an;
171module_param(atapi_an, int, 0444);
172MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
173
1da177e4
LT
174MODULE_AUTHOR("Jeff Garzik");
175MODULE_DESCRIPTION("Library module for ATA devices");
176MODULE_LICENSE("GPL");
177MODULE_VERSION(DRV_VERSION);
178
0baab86b 179
9913ff8a
TH
180static bool ata_sstatus_online(u32 sstatus)
181{
182 return (sstatus & 0xf) == 0x3;
183}
184
1eca4365
TH
185/**
186 * ata_link_next - link iteration helper
187 * @link: the previous link, NULL to start
188 * @ap: ATA port containing links to iterate
189 * @mode: iteration mode, one of ATA_LITER_*
190 *
191 * LOCKING:
192 * Host lock or EH context.
aadffb68 193 *
1eca4365
TH
194 * RETURNS:
195 * Pointer to the next link.
aadffb68 196 */
1eca4365
TH
197struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
198 enum ata_link_iter_mode mode)
aadffb68 199{
1eca4365
TH
200 BUG_ON(mode != ATA_LITER_EDGE &&
201 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
202
aadffb68 203 /* NULL link indicates start of iteration */
1eca4365
TH
204 if (!link)
205 switch (mode) {
206 case ATA_LITER_EDGE:
207 case ATA_LITER_PMP_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_HOST_FIRST:
212 return &ap->link;
213 }
aadffb68 214
1eca4365
TH
215 /* we just iterated over the host link, what's next? */
216 if (link == &ap->link)
217 switch (mode) {
218 case ATA_LITER_HOST_FIRST:
219 if (sata_pmp_attached(ap))
220 return ap->pmp_link;
221 /* fall through */
222 case ATA_LITER_PMP_FIRST:
223 if (unlikely(ap->slave_link))
b1c72916 224 return ap->slave_link;
1eca4365
TH
225 /* fall through */
226 case ATA_LITER_EDGE:
aadffb68 227 return NULL;
b1c72916 228 }
aadffb68 229
b1c72916
TH
230 /* slave_link excludes PMP */
231 if (unlikely(link == ap->slave_link))
232 return NULL;
233
1eca4365 234 /* we were over a PMP link */
aadffb68
TH
235 if (++link < ap->pmp_link + ap->nr_pmp_links)
236 return link;
1eca4365
TH
237
238 if (mode == ATA_LITER_PMP_FIRST)
239 return &ap->link;
240
aadffb68
TH
241 return NULL;
242}
243
1eca4365
TH
244/**
245 * ata_dev_next - device iteration helper
246 * @dev: the previous device, NULL to start
247 * @link: ATA link containing devices to iterate
248 * @mode: iteration mode, one of ATA_DITER_*
249 *
250 * LOCKING:
251 * Host lock or EH context.
252 *
253 * RETURNS:
254 * Pointer to the next device.
255 */
256struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
257 enum ata_dev_iter_mode mode)
258{
259 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
260 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
261
262 /* NULL dev indicates start of iteration */
263 if (!dev)
264 switch (mode) {
265 case ATA_DITER_ENABLED:
266 case ATA_DITER_ALL:
267 dev = link->device;
268 goto check;
269 case ATA_DITER_ENABLED_REVERSE:
270 case ATA_DITER_ALL_REVERSE:
271 dev = link->device + ata_link_max_devices(link) - 1;
272 goto check;
273 }
274
275 next:
276 /* move to the next one */
277 switch (mode) {
278 case ATA_DITER_ENABLED:
279 case ATA_DITER_ALL:
280 if (++dev < link->device + ata_link_max_devices(link))
281 goto check;
282 return NULL;
283 case ATA_DITER_ENABLED_REVERSE:
284 case ATA_DITER_ALL_REVERSE:
285 if (--dev >= link->device)
286 goto check;
287 return NULL;
288 }
289
290 check:
291 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
292 !ata_dev_enabled(dev))
293 goto next;
294 return dev;
295}
296
b1c72916
TH
297/**
298 * ata_dev_phys_link - find physical link for a device
299 * @dev: ATA device to look up physical link for
300 *
301 * Look up physical link which @dev is attached to. Note that
302 * this is different from @dev->link only when @dev is on slave
303 * link. For all other cases, it's the same as @dev->link.
304 *
305 * LOCKING:
306 * Don't care.
307 *
308 * RETURNS:
309 * Pointer to the found physical link.
310 */
311struct ata_link *ata_dev_phys_link(struct ata_device *dev)
312{
313 struct ata_port *ap = dev->link->ap;
314
315 if (!ap->slave_link)
316 return dev->link;
317 if (!dev->devno)
318 return &ap->link;
319 return ap->slave_link;
320}
321
33267325
TH
322/**
323 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 324 * @ap: ATA port of interest
33267325
TH
325 *
326 * Force cable type according to libata.force and whine about it.
327 * The last entry which has matching port number is used, so it
328 * can be specified as part of device force parameters. For
329 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
330 * same effect.
331 *
332 * LOCKING:
333 * EH context.
334 */
335void ata_force_cbl(struct ata_port *ap)
336{
337 int i;
338
339 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
340 const struct ata_force_ent *fe = &ata_force_tbl[i];
341
342 if (fe->port != -1 && fe->port != ap->print_id)
343 continue;
344
345 if (fe->param.cbl == ATA_CBL_NONE)
346 continue;
347
348 ap->cbl = fe->param.cbl;
a9a79dfe 349 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
33267325
TH
350 return;
351 }
352}
353
354/**
05944bdf 355 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
356 * @link: ATA link of interest
357 *
05944bdf
TH
358 * Force link flags and SATA spd limit according to libata.force
359 * and whine about it. When only the port part is specified
360 * (e.g. 1:), the limit applies to all links connected to both
361 * the host link and all fan-out ports connected via PMP. If the
362 * device part is specified as 0 (e.g. 1.00:), it specifies the
363 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
364 * points to the host link whether PMP is attached or not. If the
365 * controller has slave link, device number 16 points to it.
33267325
TH
366 *
367 * LOCKING:
368 * EH context.
369 */
05944bdf 370static void ata_force_link_limits(struct ata_link *link)
33267325 371{
05944bdf 372 bool did_spd = false;
b1c72916
TH
373 int linkno = link->pmp;
374 int i;
33267325
TH
375
376 if (ata_is_host_link(link))
b1c72916 377 linkno += 15;
33267325
TH
378
379 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
380 const struct ata_force_ent *fe = &ata_force_tbl[i];
381
382 if (fe->port != -1 && fe->port != link->ap->print_id)
383 continue;
384
385 if (fe->device != -1 && fe->device != linkno)
386 continue;
387
05944bdf
TH
388 /* only honor the first spd limit */
389 if (!did_spd && fe->param.spd_limit) {
390 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
a9a79dfe 391 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
05944bdf
TH
392 fe->param.name);
393 did_spd = true;
394 }
33267325 395
05944bdf
TH
396 /* let lflags stack */
397 if (fe->param.lflags) {
398 link->flags |= fe->param.lflags;
a9a79dfe 399 ata_link_notice(link,
05944bdf
TH
400 "FORCE: link flag 0x%x forced -> 0x%x\n",
401 fe->param.lflags, link->flags);
402 }
33267325
TH
403 }
404}
405
406/**
407 * ata_force_xfermask - force xfermask according to libata.force
408 * @dev: ATA device of interest
409 *
410 * Force xfer_mask according to libata.force and whine about it.
411 * For consistency with link selection, device number 15 selects
412 * the first device connected to the host link.
413 *
414 * LOCKING:
415 * EH context.
416 */
417static void ata_force_xfermask(struct ata_device *dev)
418{
419 int devno = dev->link->pmp + dev->devno;
420 int alt_devno = devno;
421 int i;
422
b1c72916
TH
423 /* allow n.15/16 for devices attached to host port */
424 if (ata_is_host_link(dev->link))
425 alt_devno += 15;
33267325
TH
426
427 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
428 const struct ata_force_ent *fe = &ata_force_tbl[i];
429 unsigned long pio_mask, mwdma_mask, udma_mask;
430
431 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
432 continue;
433
434 if (fe->device != -1 && fe->device != devno &&
435 fe->device != alt_devno)
436 continue;
437
438 if (!fe->param.xfer_mask)
439 continue;
440
441 ata_unpack_xfermask(fe->param.xfer_mask,
442 &pio_mask, &mwdma_mask, &udma_mask);
443 if (udma_mask)
444 dev->udma_mask = udma_mask;
445 else if (mwdma_mask) {
446 dev->udma_mask = 0;
447 dev->mwdma_mask = mwdma_mask;
448 } else {
449 dev->udma_mask = 0;
450 dev->mwdma_mask = 0;
451 dev->pio_mask = pio_mask;
452 }
453
a9a79dfe
JP
454 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
455 fe->param.name);
33267325
TH
456 return;
457 }
458}
459
460/**
461 * ata_force_horkage - force horkage according to libata.force
462 * @dev: ATA device of interest
463 *
464 * Force horkage according to libata.force and whine about it.
465 * For consistency with link selection, device number 15 selects
466 * the first device connected to the host link.
467 *
468 * LOCKING:
469 * EH context.
470 */
471static void ata_force_horkage(struct ata_device *dev)
472{
473 int devno = dev->link->pmp + dev->devno;
474 int alt_devno = devno;
475 int i;
476
b1c72916
TH
477 /* allow n.15/16 for devices attached to host port */
478 if (ata_is_host_link(dev->link))
479 alt_devno += 15;
33267325
TH
480
481 for (i = 0; i < ata_force_tbl_size; i++) {
482 const struct ata_force_ent *fe = &ata_force_tbl[i];
483
484 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
485 continue;
486
487 if (fe->device != -1 && fe->device != devno &&
488 fe->device != alt_devno)
489 continue;
490
491 if (!(~dev->horkage & fe->param.horkage_on) &&
492 !(dev->horkage & fe->param.horkage_off))
493 continue;
494
495 dev->horkage |= fe->param.horkage_on;
496 dev->horkage &= ~fe->param.horkage_off;
497
a9a79dfe
JP
498 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
499 fe->param.name);
33267325
TH
500 }
501}
502
436d34b3
TH
503/**
504 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505 * @opcode: SCSI opcode
506 *
507 * Determine ATAPI command type from @opcode.
508 *
509 * LOCKING:
510 * None.
511 *
512 * RETURNS:
513 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
514 */
515int atapi_cmd_type(u8 opcode)
516{
517 switch (opcode) {
518 case GPCMD_READ_10:
519 case GPCMD_READ_12:
520 return ATAPI_READ;
521
522 case GPCMD_WRITE_10:
523 case GPCMD_WRITE_12:
524 case GPCMD_WRITE_AND_VERIFY_10:
525 return ATAPI_WRITE;
526
527 case GPCMD_READ_CD:
528 case GPCMD_READ_CD_MSF:
529 return ATAPI_READ_CD;
530
e52dcc48
TH
531 case ATA_16:
532 case ATA_12:
533 if (atapi_passthru16)
534 return ATAPI_PASS_THRU;
535 /* fall thru */
436d34b3
TH
536 default:
537 return ATAPI_MISC;
538 }
539}
540
1da177e4
LT
541/**
542 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543 * @tf: Taskfile to convert
1da177e4 544 * @pmp: Port multiplier port
9977126c
TH
545 * @is_cmd: This FIS is for command
546 * @fis: Buffer into which data will output
1da177e4
LT
547 *
548 * Converts a standard ATA taskfile to a Serial ATA
549 * FIS structure (Register - Host to Device).
550 *
551 * LOCKING:
552 * Inherited from caller.
553 */
9977126c 554void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 555{
9977126c
TH
556 fis[0] = 0x27; /* Register - Host to Device FIS */
557 fis[1] = pmp & 0xf; /* Port multiplier number*/
558 if (is_cmd)
559 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
560
1da177e4
LT
561 fis[2] = tf->command;
562 fis[3] = tf->feature;
563
564 fis[4] = tf->lbal;
565 fis[5] = tf->lbam;
566 fis[6] = tf->lbah;
567 fis[7] = tf->device;
568
569 fis[8] = tf->hob_lbal;
570 fis[9] = tf->hob_lbam;
571 fis[10] = tf->hob_lbah;
572 fis[11] = tf->hob_feature;
573
574 fis[12] = tf->nsect;
575 fis[13] = tf->hob_nsect;
576 fis[14] = 0;
577 fis[15] = tf->ctl;
578
86a565e6
MC
579 fis[16] = tf->auxiliary & 0xff;
580 fis[17] = (tf->auxiliary >> 8) & 0xff;
581 fis[18] = (tf->auxiliary >> 16) & 0xff;
582 fis[19] = (tf->auxiliary >> 24) & 0xff;
1da177e4
LT
583}
584
585/**
586 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587 * @fis: Buffer from which data will be input
588 * @tf: Taskfile to output
589 *
e12a1be6 590 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
591 *
592 * LOCKING:
593 * Inherited from caller.
594 */
595
057ace5e 596void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
597{
598 tf->command = fis[2]; /* status */
599 tf->feature = fis[3]; /* error */
600
601 tf->lbal = fis[4];
602 tf->lbam = fis[5];
603 tf->lbah = fis[6];
604 tf->device = fis[7];
605
606 tf->hob_lbal = fis[8];
607 tf->hob_lbam = fis[9];
608 tf->hob_lbah = fis[10];
609
610 tf->nsect = fis[12];
611 tf->hob_nsect = fis[13];
612}
613
8cbd6df1
AL
614static const u8 ata_rw_cmds[] = {
615 /* pio multi */
616 ATA_CMD_READ_MULTI,
617 ATA_CMD_WRITE_MULTI,
618 ATA_CMD_READ_MULTI_EXT,
619 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
620 0,
621 0,
622 0,
623 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
624 /* pio */
625 ATA_CMD_PIO_READ,
626 ATA_CMD_PIO_WRITE,
627 ATA_CMD_PIO_READ_EXT,
628 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
629 0,
630 0,
631 0,
632 0,
8cbd6df1
AL
633 /* dma */
634 ATA_CMD_READ,
635 ATA_CMD_WRITE,
636 ATA_CMD_READ_EXT,
9a3dccc4
TH
637 ATA_CMD_WRITE_EXT,
638 0,
639 0,
640 0,
641 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 642};
1da177e4
LT
643
644/**
8cbd6df1 645 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
646 * @tf: command to examine and configure
647 * @dev: device tf belongs to
1da177e4 648 *
2e9edbf8 649 * Examine the device configuration and tf->flags to calculate
8cbd6df1 650 * the proper read/write commands and protocol to use.
1da177e4
LT
651 *
652 * LOCKING:
653 * caller.
654 */
bd056d7e 655static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 656{
9a3dccc4 657 u8 cmd;
1da177e4 658
9a3dccc4 659 int index, fua, lba48, write;
2e9edbf8 660
9a3dccc4 661 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
662 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
663 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 664
8cbd6df1
AL
665 if (dev->flags & ATA_DFLAG_PIO) {
666 tf->protocol = ATA_PROT_PIO;
9a3dccc4 667 index = dev->multi_count ? 0 : 8;
9af5c9c9 668 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
669 /* Unable to use DMA due to host limitation */
670 tf->protocol = ATA_PROT_PIO;
0565c26d 671 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
672 } else {
673 tf->protocol = ATA_PROT_DMA;
9a3dccc4 674 index = 16;
8cbd6df1 675 }
1da177e4 676
9a3dccc4
TH
677 cmd = ata_rw_cmds[index + fua + lba48 + write];
678 if (cmd) {
679 tf->command = cmd;
680 return 0;
681 }
682 return -1;
1da177e4
LT
683}
684
35b649fe
TH
685/**
686 * ata_tf_read_block - Read block address from ATA taskfile
687 * @tf: ATA taskfile of interest
688 * @dev: ATA device @tf belongs to
689 *
690 * LOCKING:
691 * None.
692 *
693 * Read block address from @tf. This function can handle all
694 * three address formats - LBA, LBA48 and CHS. tf->protocol and
695 * flags select the address format to use.
696 *
697 * RETURNS:
698 * Block address read from @tf.
699 */
cffd1ee9 700u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
35b649fe
TH
701{
702 u64 block = 0;
703
fe16d4f2 704 if (tf->flags & ATA_TFLAG_LBA) {
35b649fe
TH
705 if (tf->flags & ATA_TFLAG_LBA48) {
706 block |= (u64)tf->hob_lbah << 40;
707 block |= (u64)tf->hob_lbam << 32;
44901a96 708 block |= (u64)tf->hob_lbal << 24;
35b649fe
TH
709 } else
710 block |= (tf->device & 0xf) << 24;
711
712 block |= tf->lbah << 16;
713 block |= tf->lbam << 8;
714 block |= tf->lbal;
715 } else {
716 u32 cyl, head, sect;
717
718 cyl = tf->lbam | (tf->lbah << 8);
719 head = tf->device & 0xf;
720 sect = tf->lbal;
721
ac8672ea 722 if (!sect) {
a9a79dfe
JP
723 ata_dev_warn(dev,
724 "device reported invalid CHS sector 0\n");
cffd1ee9 725 return U64_MAX;
ac8672ea
TH
726 }
727
728 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
35b649fe
TH
729 }
730
731 return block;
732}
733
bd056d7e
TH
734/**
735 * ata_build_rw_tf - Build ATA taskfile for given read/write request
736 * @tf: Target ATA taskfile
737 * @dev: ATA device @tf belongs to
738 * @block: Block address
739 * @n_block: Number of blocks
740 * @tf_flags: RW/FUA etc...
741 * @tag: tag
8e061784 742 * @class: IO priority class
bd056d7e
TH
743 *
744 * LOCKING:
745 * None.
746 *
747 * Build ATA taskfile @tf for read/write request described by
748 * @block, @n_block, @tf_flags and @tag on @dev.
749 *
750 * RETURNS:
751 *
752 * 0 on success, -ERANGE if the request is too large for @dev,
753 * -EINVAL if the request is invalid.
754 */
755int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
756 u64 block, u32 n_block, unsigned int tf_flags,
8e061784 757 unsigned int tag, int class)
bd056d7e
TH
758{
759 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
760 tf->flags |= tf_flags;
761
6d1245bf 762 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
763 /* yay, NCQ */
764 if (!lba_48_ok(block, n_block))
765 return -ERANGE;
766
767 tf->protocol = ATA_PROT_NCQ;
768 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
769
770 if (tf->flags & ATA_TFLAG_WRITE)
771 tf->command = ATA_CMD_FPDMA_WRITE;
772 else
773 tf->command = ATA_CMD_FPDMA_READ;
774
775 tf->nsect = tag << 3;
776 tf->hob_feature = (n_block >> 8) & 0xff;
777 tf->feature = n_block & 0xff;
778
779 tf->hob_lbah = (block >> 40) & 0xff;
780 tf->hob_lbam = (block >> 32) & 0xff;
781 tf->hob_lbal = (block >> 24) & 0xff;
782 tf->lbah = (block >> 16) & 0xff;
783 tf->lbam = (block >> 8) & 0xff;
784 tf->lbal = block & 0xff;
785
9ca7cfa4 786 tf->device = ATA_LBA;
bd056d7e
TH
787 if (tf->flags & ATA_TFLAG_FUA)
788 tf->device |= 1 << 7;
8e061784 789
9f56eca3 790 if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
8e061784
AM
791 if (class == IOPRIO_CLASS_RT)
792 tf->hob_nsect |= ATA_PRIO_HIGH <<
793 ATA_SHIFT_PRIO;
794 }
bd056d7e
TH
795 } else if (dev->flags & ATA_DFLAG_LBA) {
796 tf->flags |= ATA_TFLAG_LBA;
797
798 if (lba_28_ok(block, n_block)) {
799 /* use LBA28 */
800 tf->device |= (block >> 24) & 0xf;
801 } else if (lba_48_ok(block, n_block)) {
802 if (!(dev->flags & ATA_DFLAG_LBA48))
803 return -ERANGE;
804
805 /* use LBA48 */
806 tf->flags |= ATA_TFLAG_LBA48;
807
808 tf->hob_nsect = (n_block >> 8) & 0xff;
809
810 tf->hob_lbah = (block >> 40) & 0xff;
811 tf->hob_lbam = (block >> 32) & 0xff;
812 tf->hob_lbal = (block >> 24) & 0xff;
813 } else
814 /* request too large even for LBA48 */
815 return -ERANGE;
816
817 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
818 return -EINVAL;
819
820 tf->nsect = n_block & 0xff;
821
822 tf->lbah = (block >> 16) & 0xff;
823 tf->lbam = (block >> 8) & 0xff;
824 tf->lbal = block & 0xff;
825
826 tf->device |= ATA_LBA;
827 } else {
828 /* CHS */
829 u32 sect, head, cyl, track;
830
831 /* The request -may- be too large for CHS addressing. */
832 if (!lba_28_ok(block, n_block))
833 return -ERANGE;
834
835 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
836 return -EINVAL;
837
838 /* Convert LBA to CHS */
839 track = (u32)block / dev->sectors;
840 cyl = track / dev->heads;
841 head = track % dev->heads;
842 sect = (u32)block % dev->sectors + 1;
843
844 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
845 (u32)block, track, cyl, head, sect);
846
847 /* Check whether the converted CHS can fit.
848 Cylinder: 0-65535
849 Head: 0-15
850 Sector: 1-255*/
851 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
852 return -ERANGE;
853
854 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
855 tf->lbal = sect;
856 tf->lbam = cyl;
857 tf->lbah = cyl >> 8;
858 tf->device |= head;
859 }
860
861 return 0;
862}
863
cb95d562
TH
864/**
865 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
866 * @pio_mask: pio_mask
867 * @mwdma_mask: mwdma_mask
868 * @udma_mask: udma_mask
869 *
870 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
871 * unsigned int xfer_mask.
872 *
873 * LOCKING:
874 * None.
875 *
876 * RETURNS:
877 * Packed xfer_mask.
878 */
7dc951ae
TH
879unsigned long ata_pack_xfermask(unsigned long pio_mask,
880 unsigned long mwdma_mask,
881 unsigned long udma_mask)
cb95d562
TH
882{
883 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
884 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
885 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
886}
887
c0489e4e
TH
888/**
889 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
890 * @xfer_mask: xfer_mask to unpack
891 * @pio_mask: resulting pio_mask
892 * @mwdma_mask: resulting mwdma_mask
893 * @udma_mask: resulting udma_mask
894 *
895 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
c9b5560a 896 * Any NULL destination masks will be ignored.
c0489e4e 897 */
7dc951ae
TH
898void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
899 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
900{
901 if (pio_mask)
902 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
903 if (mwdma_mask)
904 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
905 if (udma_mask)
906 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
907}
908
cb95d562 909static const struct ata_xfer_ent {
be9a50c8 910 int shift, bits;
cb95d562
TH
911 u8 base;
912} ata_xfer_tbl[] = {
70cd071e
TH
913 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
914 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
915 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
916 { -1, },
917};
918
919/**
920 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
921 * @xfer_mask: xfer_mask of interest
922 *
923 * Return matching XFER_* value for @xfer_mask. Only the highest
924 * bit of @xfer_mask is considered.
925 *
926 * LOCKING:
927 * None.
928 *
929 * RETURNS:
70cd071e 930 * Matching XFER_* value, 0xff if no match found.
cb95d562 931 */
7dc951ae 932u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
933{
934 int highbit = fls(xfer_mask) - 1;
935 const struct ata_xfer_ent *ent;
936
937 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
938 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
939 return ent->base + highbit - ent->shift;
70cd071e 940 return 0xff;
cb95d562
TH
941}
942
943/**
944 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
945 * @xfer_mode: XFER_* of interest
946 *
947 * Return matching xfer_mask for @xfer_mode.
948 *
949 * LOCKING:
950 * None.
951 *
952 * RETURNS:
953 * Matching xfer_mask, 0 if no match found.
954 */
7dc951ae 955unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
956{
957 const struct ata_xfer_ent *ent;
958
959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
961 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
962 & ~((1 << ent->shift) - 1);
cb95d562
TH
963 return 0;
964}
965
966/**
967 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
968 * @xfer_mode: XFER_* of interest
969 *
970 * Return matching xfer_shift for @xfer_mode.
971 *
972 * LOCKING:
973 * None.
974 *
975 * RETURNS:
976 * Matching xfer_shift, -1 if no match found.
977 */
7dc951ae 978int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
979{
980 const struct ata_xfer_ent *ent;
981
982 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
983 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
984 return ent->shift;
985 return -1;
986}
987
1da177e4 988/**
1da7b0d0
TH
989 * ata_mode_string - convert xfer_mask to string
990 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
991 *
992 * Determine string which represents the highest speed
1da7b0d0 993 * (highest bit in @modemask).
1da177e4
LT
994 *
995 * LOCKING:
996 * None.
997 *
998 * RETURNS:
999 * Constant C string representing highest speed listed in
1da7b0d0 1000 * @mode_mask, or the constant C string "<n/a>".
1da177e4 1001 */
7dc951ae 1002const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 1003{
75f554bc
TH
1004 static const char * const xfer_mode_str[] = {
1005 "PIO0",
1006 "PIO1",
1007 "PIO2",
1008 "PIO3",
1009 "PIO4",
b352e57d
AC
1010 "PIO5",
1011 "PIO6",
75f554bc
TH
1012 "MWDMA0",
1013 "MWDMA1",
1014 "MWDMA2",
b352e57d
AC
1015 "MWDMA3",
1016 "MWDMA4",
75f554bc
TH
1017 "UDMA/16",
1018 "UDMA/25",
1019 "UDMA/33",
1020 "UDMA/44",
1021 "UDMA/66",
1022 "UDMA/100",
1023 "UDMA/133",
1024 "UDMA7",
1025 };
1da7b0d0 1026 int highbit;
1da177e4 1027
1da7b0d0
TH
1028 highbit = fls(xfer_mask) - 1;
1029 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1030 return xfer_mode_str[highbit];
1da177e4 1031 return "<n/a>";
1da177e4
LT
1032}
1033
d9027470 1034const char *sata_spd_string(unsigned int spd)
4c360c81
TH
1035{
1036 static const char * const spd_str[] = {
1037 "1.5 Gbps",
1038 "3.0 Gbps",
8522ee25 1039 "6.0 Gbps",
4c360c81
TH
1040 };
1041
1042 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1043 return "<unknown>";
1044 return spd_str[spd - 1];
1045}
1046
1da177e4
LT
1047/**
1048 * ata_dev_classify - determine device type based on ATA-spec signature
1049 * @tf: ATA taskfile register set for device to be identified
1050 *
1051 * Determine from taskfile register contents whether a device is
1052 * ATA or ATAPI, as per "Signature and persistence" section
1053 * of ATA/PI spec (volume 1, sect 5.14).
1054 *
1055 * LOCKING:
1056 * None.
1057 *
1058 * RETURNS:
9162c657
HR
1059 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1060 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1061 */
057ace5e 1062unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1063{
1064 /* Apple's open source Darwin code hints that some devices only
1065 * put a proper signature into the LBA mid/high registers,
1066 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1067 *
1068 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1069 * signatures for ATA and ATAPI devices attached on SerialATA,
1070 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1071 * spec has never mentioned about using different signatures
1072 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1073 * Multiplier specification began to use 0x69/0x96 to identify
1074 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1075 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1076 * 0x69/0x96 shortly and described them as reserved for
1077 * SerialATA.
1078 *
1079 * We follow the current spec and consider that 0x69/0x96
1080 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
79b42bab
TH
1081 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1082 * SEMB signature. This is worked around in
1083 * ata_dev_read_id().
1da177e4 1084 */
633273a3 1085 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1086 DPRINTK("found ATA device by sig\n");
1087 return ATA_DEV_ATA;
1088 }
1089
633273a3 1090 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1091 DPRINTK("found ATAPI device by sig\n");
1092 return ATA_DEV_ATAPI;
1093 }
1094
633273a3
TH
1095 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1096 DPRINTK("found PMP device by sig\n");
1097 return ATA_DEV_PMP;
1098 }
1099
1100 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
79b42bab
TH
1101 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1102 return ATA_DEV_SEMB;
633273a3
TH
1103 }
1104
9162c657
HR
1105 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1106 DPRINTK("found ZAC device by sig\n");
1107 return ATA_DEV_ZAC;
1108 }
1109
1da177e4
LT
1110 DPRINTK("unknown device\n");
1111 return ATA_DEV_UNKNOWN;
1112}
1113
1da177e4 1114/**
6a62a04d 1115 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1116 * @id: IDENTIFY DEVICE results we will examine
1117 * @s: string into which data is output
1118 * @ofs: offset into identify device page
1119 * @len: length of string to return. must be an even number.
1120 *
1121 * The strings in the IDENTIFY DEVICE page are broken up into
1122 * 16-bit chunks. Run through the string, and output each
1123 * 8-bit chunk linearly, regardless of platform.
1124 *
1125 * LOCKING:
1126 * caller.
1127 */
1128
6a62a04d
TH
1129void ata_id_string(const u16 *id, unsigned char *s,
1130 unsigned int ofs, unsigned int len)
1da177e4
LT
1131{
1132 unsigned int c;
1133
963e4975
AC
1134 BUG_ON(len & 1);
1135
1da177e4
LT
1136 while (len > 0) {
1137 c = id[ofs] >> 8;
1138 *s = c;
1139 s++;
1140
1141 c = id[ofs] & 0xff;
1142 *s = c;
1143 s++;
1144
1145 ofs++;
1146 len -= 2;
1147 }
1148}
1149
0e949ff3 1150/**
6a62a04d 1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1152 * @id: IDENTIFY DEVICE results we will examine
1153 * @s: string into which data is output
1154 * @ofs: offset into identify device page
1155 * @len: length of string to return. must be an odd number.
1156 *
6a62a04d 1157 * This function is identical to ata_id_string except that it
0e949ff3
TH
1158 * trims trailing spaces and terminates the resulting string with
1159 * null. @len must be actual maximum length (even number) + 1.
1160 *
1161 * LOCKING:
1162 * caller.
1163 */
6a62a04d
TH
1164void ata_id_c_string(const u16 *id, unsigned char *s,
1165 unsigned int ofs, unsigned int len)
0e949ff3
TH
1166{
1167 unsigned char *p;
1168
6a62a04d 1169 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1170
1171 p = s + strnlen(s, len - 1);
1172 while (p > s && p[-1] == ' ')
1173 p--;
1174 *p = '\0';
1175}
0baab86b 1176
db6f8759
TH
1177static u64 ata_id_n_sectors(const u16 *id)
1178{
1179 if (ata_id_has_lba(id)) {
1180 if (ata_id_has_lba48(id))
968e594a 1181 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
db6f8759 1182 else
968e594a 1183 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
db6f8759
TH
1184 } else {
1185 if (ata_id_current_chs_valid(id))
968e594a
RH
1186 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1187 id[ATA_ID_CUR_SECTORS];
db6f8759 1188 else
968e594a
RH
1189 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1190 id[ATA_ID_SECTORS];
db6f8759
TH
1191 }
1192}
1193
a5987e0a 1194u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1195{
1196 u64 sectors = 0;
1197
1198 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
ba14a9c2 1200 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1e999736
AC
1201 sectors |= (tf->lbah & 0xff) << 16;
1202 sectors |= (tf->lbam & 0xff) << 8;
1203 sectors |= (tf->lbal & 0xff);
1204
a5987e0a 1205 return sectors;
1e999736
AC
1206}
1207
a5987e0a 1208u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1209{
1210 u64 sectors = 0;
1211
1212 sectors |= (tf->device & 0x0f) << 24;
1213 sectors |= (tf->lbah & 0xff) << 16;
1214 sectors |= (tf->lbam & 0xff) << 8;
1215 sectors |= (tf->lbal & 0xff);
1216
a5987e0a 1217 return sectors;
1e999736
AC
1218}
1219
1220/**
c728a914
TH
1221 * ata_read_native_max_address - Read native max address
1222 * @dev: target device
1223 * @max_sectors: out parameter for the result native max address
1e999736 1224 *
c728a914
TH
1225 * Perform an LBA48 or LBA28 native size query upon the device in
1226 * question.
1e999736 1227 *
c728a914
TH
1228 * RETURNS:
1229 * 0 on success, -EACCES if command is aborted by the drive.
1230 * -EIO on other errors.
1e999736 1231 */
c728a914 1232static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1233{
c728a914 1234 unsigned int err_mask;
1e999736 1235 struct ata_taskfile tf;
c728a914 1236 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1237
1238 ata_tf_init(dev, &tf);
1239
c728a914 1240 /* always clear all address registers */
1e999736 1241 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1242
c728a914
TH
1243 if (lba48) {
1244 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245 tf.flags |= ATA_TFLAG_LBA48;
1246 } else
1247 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1248
bd18bc04 1249 tf.protocol = ATA_PROT_NODATA;
c728a914
TH
1250 tf.device |= ATA_LBA;
1251
2b789108 1252 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1253 if (err_mask) {
a9a79dfe
JP
1254 ata_dev_warn(dev,
1255 "failed to read native max address (err_mask=0x%x)\n",
1256 err_mask);
c728a914
TH
1257 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1258 return -EACCES;
1259 return -EIO;
1260 }
1e999736 1261
c728a914 1262 if (lba48)
a5987e0a 1263 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1264 else
a5987e0a 1265 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1266 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1267 (*max_sectors)--;
c728a914 1268 return 0;
1e999736
AC
1269}
1270
1271/**
c728a914
TH
1272 * ata_set_max_sectors - Set max sectors
1273 * @dev: target device
6b38d1d1 1274 * @new_sectors: new max sectors value to set for the device
1e999736 1275 *
c728a914
TH
1276 * Set max sectors of @dev to @new_sectors.
1277 *
1278 * RETURNS:
1279 * 0 on success, -EACCES if command is aborted or denied (due to
1280 * previous non-volatile SET_MAX) by the drive. -EIO on other
1281 * errors.
1e999736 1282 */
05027adc 1283static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1284{
c728a914 1285 unsigned int err_mask;
1e999736 1286 struct ata_taskfile tf;
c728a914 1287 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1288
1289 new_sectors--;
1290
1291 ata_tf_init(dev, &tf);
1292
1e999736 1293 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1294
1295 if (lba48) {
1296 tf.command = ATA_CMD_SET_MAX_EXT;
1297 tf.flags |= ATA_TFLAG_LBA48;
1298
1299 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1300 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1301 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1302 } else {
c728a914
TH
1303 tf.command = ATA_CMD_SET_MAX;
1304
1e582ba4
TH
1305 tf.device |= (new_sectors >> 24) & 0xf;
1306 }
1307
bd18bc04 1308 tf.protocol = ATA_PROT_NODATA;
c728a914 1309 tf.device |= ATA_LBA;
1e999736
AC
1310
1311 tf.lbal = (new_sectors >> 0) & 0xff;
1312 tf.lbam = (new_sectors >> 8) & 0xff;
1313 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1314
2b789108 1315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1316 if (err_mask) {
a9a79dfe
JP
1317 ata_dev_warn(dev,
1318 "failed to set max address (err_mask=0x%x)\n",
1319 err_mask);
c728a914
TH
1320 if (err_mask == AC_ERR_DEV &&
1321 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1322 return -EACCES;
1323 return -EIO;
1324 }
1325
c728a914 1326 return 0;
1e999736
AC
1327}
1328
1329/**
1330 * ata_hpa_resize - Resize a device with an HPA set
1331 * @dev: Device to resize
1332 *
1333 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1334 * it if required to the full size of the media. The caller must check
1335 * the drive has the HPA feature set enabled.
05027adc
TH
1336 *
1337 * RETURNS:
1338 * 0 on success, -errno on failure.
1e999736 1339 */
05027adc 1340static int ata_hpa_resize(struct ata_device *dev)
1e999736 1341{
05027adc
TH
1342 struct ata_eh_context *ehc = &dev->link->eh_context;
1343 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
445d211b 1344 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
05027adc
TH
1345 u64 sectors = ata_id_n_sectors(dev->id);
1346 u64 native_sectors;
c728a914 1347 int rc;
a617c09f 1348
05027adc 1349 /* do we need to do it? */
9162c657 1350 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
05027adc
TH
1351 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1352 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1353 return 0;
1e999736 1354
05027adc
TH
1355 /* read native max address */
1356 rc = ata_read_native_max_address(dev, &native_sectors);
1357 if (rc) {
dda7aba1
TH
1358 /* If device aborted the command or HPA isn't going to
1359 * be unlocked, skip HPA resizing.
05027adc 1360 */
445d211b 1361 if (rc == -EACCES || !unlock_hpa) {
a9a79dfe
JP
1362 ata_dev_warn(dev,
1363 "HPA support seems broken, skipping HPA handling\n");
05027adc
TH
1364 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1365
1366 /* we can continue if device aborted the command */
1367 if (rc == -EACCES)
1368 rc = 0;
1e999736 1369 }
37301a55 1370
05027adc
TH
1371 return rc;
1372 }
5920dadf 1373 dev->n_native_sectors = native_sectors;
05027adc
TH
1374
1375 /* nothing to do? */
445d211b 1376 if (native_sectors <= sectors || !unlock_hpa) {
05027adc
TH
1377 if (!print_info || native_sectors == sectors)
1378 return 0;
1379
1380 if (native_sectors > sectors)
a9a79dfe 1381 ata_dev_info(dev,
05027adc
TH
1382 "HPA detected: current %llu, native %llu\n",
1383 (unsigned long long)sectors,
1384 (unsigned long long)native_sectors);
1385 else if (native_sectors < sectors)
a9a79dfe
JP
1386 ata_dev_warn(dev,
1387 "native sectors (%llu) is smaller than sectors (%llu)\n",
05027adc
TH
1388 (unsigned long long)native_sectors,
1389 (unsigned long long)sectors);
1390 return 0;
1391 }
1392
1393 /* let's unlock HPA */
1394 rc = ata_set_max_sectors(dev, native_sectors);
1395 if (rc == -EACCES) {
1396 /* if device aborted the command, skip HPA resizing */
a9a79dfe
JP
1397 ata_dev_warn(dev,
1398 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1399 (unsigned long long)sectors,
1400 (unsigned long long)native_sectors);
05027adc
TH
1401 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1402 return 0;
1403 } else if (rc)
1404 return rc;
1405
1406 /* re-read IDENTIFY data */
1407 rc = ata_dev_reread_id(dev, 0);
1408 if (rc) {
a9a79dfe
JP
1409 ata_dev_err(dev,
1410 "failed to re-read IDENTIFY data after HPA resizing\n");
05027adc
TH
1411 return rc;
1412 }
1413
1414 if (print_info) {
1415 u64 new_sectors = ata_id_n_sectors(dev->id);
a9a79dfe 1416 ata_dev_info(dev,
05027adc
TH
1417 "HPA unlocked: %llu -> %llu, native %llu\n",
1418 (unsigned long long)sectors,
1419 (unsigned long long)new_sectors,
1420 (unsigned long long)native_sectors);
1421 }
1422
1423 return 0;
1e999736
AC
1424}
1425
1da177e4
LT
1426/**
1427 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1428 * @id: IDENTIFY DEVICE page to dump
1da177e4 1429 *
0bd3300a
TH
1430 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1431 * page.
1da177e4
LT
1432 *
1433 * LOCKING:
1434 * caller.
1435 */
1436
0bd3300a 1437static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1438{
1439 DPRINTK("49==0x%04x "
1440 "53==0x%04x "
1441 "63==0x%04x "
1442 "64==0x%04x "
1443 "75==0x%04x \n",
0bd3300a
TH
1444 id[49],
1445 id[53],
1446 id[63],
1447 id[64],
1448 id[75]);
1da177e4
LT
1449 DPRINTK("80==0x%04x "
1450 "81==0x%04x "
1451 "82==0x%04x "
1452 "83==0x%04x "
1453 "84==0x%04x \n",
0bd3300a
TH
1454 id[80],
1455 id[81],
1456 id[82],
1457 id[83],
1458 id[84]);
1da177e4
LT
1459 DPRINTK("88==0x%04x "
1460 "93==0x%04x\n",
0bd3300a
TH
1461 id[88],
1462 id[93]);
1da177e4
LT
1463}
1464
cb95d562
TH
1465/**
1466 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1467 * @id: IDENTIFY data to compute xfer mask from
1468 *
1469 * Compute the xfermask for this device. This is not as trivial
1470 * as it seems if we must consider early devices correctly.
1471 *
1472 * FIXME: pre IDE drive timing (do we care ?).
1473 *
1474 * LOCKING:
1475 * None.
1476 *
1477 * RETURNS:
1478 * Computed xfermask
1479 */
7dc951ae 1480unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1481{
7dc951ae 1482 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1483
1484 /* Usual case. Word 53 indicates word 64 is valid */
1485 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1486 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1487 pio_mask <<= 3;
1488 pio_mask |= 0x7;
1489 } else {
1490 /* If word 64 isn't valid then Word 51 high byte holds
1491 * the PIO timing number for the maximum. Turn it into
1492 * a mask.
1493 */
7a0f1c8a 1494 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1495 if (mode < 5) /* Valid PIO range */
2dcb407e 1496 pio_mask = (2 << mode) - 1;
46767aeb
AC
1497 else
1498 pio_mask = 1;
cb95d562
TH
1499
1500 /* But wait.. there's more. Design your standards by
1501 * committee and you too can get a free iordy field to
1502 * process. However its the speeds not the modes that
1503 * are supported... Note drivers using the timing API
1504 * will get this right anyway
1505 */
1506 }
1507
1508 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1509
b352e57d
AC
1510 if (ata_id_is_cfa(id)) {
1511 /*
1512 * Process compact flash extended modes
1513 */
62afe5d7
SS
1514 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1515 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
b352e57d
AC
1516
1517 if (pio)
1518 pio_mask |= (1 << 5);
1519 if (pio > 1)
1520 pio_mask |= (1 << 6);
1521 if (dma)
1522 mwdma_mask |= (1 << 3);
1523 if (dma > 1)
1524 mwdma_mask |= (1 << 4);
1525 }
1526
fb21f0d0
TH
1527 udma_mask = 0;
1528 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1529 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1530
1531 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1532}
1533
7102d230 1534static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1535{
77853bf2 1536 struct completion *waiting = qc->private_data;
a2a7a662 1537
a2a7a662 1538 complete(waiting);
a2a7a662
TH
1539}
1540
1541/**
2432697b 1542 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1543 * @dev: Device to which the command is sent
1544 * @tf: Taskfile registers for the command and the result
d69cf37d 1545 * @cdb: CDB for packet command
e227867f 1546 * @dma_dir: Data transfer direction of the command
5c1ad8b3 1547 * @sgl: sg list for the data buffer of the command
2432697b 1548 * @n_elem: Number of sg entries
2b789108 1549 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1550 *
1551 * Executes libata internal command with timeout. @tf contains
1552 * command on entry and result on return. Timeout and error
1553 * conditions are reported via return value. No recovery action
1554 * is taken after a command times out. It's caller's duty to
1555 * clean up after timeout.
1556 *
1557 * LOCKING:
1558 * None. Should be called with kernel context, might sleep.
551e8889
TH
1559 *
1560 * RETURNS:
1561 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1562 */
2432697b
TH
1563unsigned ata_exec_internal_sg(struct ata_device *dev,
1564 struct ata_taskfile *tf, const u8 *cdb,
87260216 1565 int dma_dir, struct scatterlist *sgl,
2b789108 1566 unsigned int n_elem, unsigned long timeout)
a2a7a662 1567{
9af5c9c9
TH
1568 struct ata_link *link = dev->link;
1569 struct ata_port *ap = link->ap;
a2a7a662 1570 u8 command = tf->command;
87fbc5a0 1571 int auto_timeout = 0;
a2a7a662 1572 struct ata_queued_cmd *qc;
2ab7db1f 1573 unsigned int tag, preempted_tag;
dedaf2b0 1574 u32 preempted_sactive, preempted_qc_active;
da917d69 1575 int preempted_nr_active_links;
60be6b9a 1576 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1577 unsigned long flags;
77853bf2 1578 unsigned int err_mask;
d95a717f 1579 int rc;
a2a7a662 1580
ba6a1308 1581 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1582
e3180499 1583 /* no internal command while frozen */
b51e9e5d 1584 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1585 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1586 return AC_ERR_SYSTEM;
1587 }
1588
2ab7db1f 1589 /* initialize internal qc */
a2a7a662 1590
2ab7db1f
TH
1591 /* XXX: Tag 0 is used for drivers with legacy EH as some
1592 * drivers choke if any other tag is given. This breaks
1593 * ata_tag_internal() test for those drivers. Don't use new
1594 * EH stuff without converting to it.
1595 */
1596 if (ap->ops->error_handler)
1597 tag = ATA_TAG_INTERNAL;
1598 else
1599 tag = 0;
1600
f69499f4 1601 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1602
1603 qc->tag = tag;
1604 qc->scsicmd = NULL;
1605 qc->ap = ap;
1606 qc->dev = dev;
1607 ata_qc_reinit(qc);
1608
9af5c9c9
TH
1609 preempted_tag = link->active_tag;
1610 preempted_sactive = link->sactive;
dedaf2b0 1611 preempted_qc_active = ap->qc_active;
da917d69 1612 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1613 link->active_tag = ATA_TAG_POISON;
1614 link->sactive = 0;
dedaf2b0 1615 ap->qc_active = 0;
da917d69 1616 ap->nr_active_links = 0;
2ab7db1f
TH
1617
1618 /* prepare & issue qc */
a2a7a662 1619 qc->tf = *tf;
d69cf37d
TH
1620 if (cdb)
1621 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e771451c
VP
1622
1623 /* some SATA bridges need us to indicate data xfer direction */
1624 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1625 dma_dir == DMA_FROM_DEVICE)
1626 qc->tf.feature |= ATAPI_DMADIR;
1627
e61e0672 1628 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1629 qc->dma_dir = dma_dir;
1630 if (dma_dir != DMA_NONE) {
2432697b 1631 unsigned int i, buflen = 0;
87260216 1632 struct scatterlist *sg;
2432697b 1633
87260216
JA
1634 for_each_sg(sgl, sg, n_elem, i)
1635 buflen += sg->length;
2432697b 1636
87260216 1637 ata_sg_init(qc, sgl, n_elem);
49c80429 1638 qc->nbytes = buflen;
a2a7a662
TH
1639 }
1640
77853bf2 1641 qc->private_data = &wait;
a2a7a662
TH
1642 qc->complete_fn = ata_qc_complete_internal;
1643
8e0e694a 1644 ata_qc_issue(qc);
a2a7a662 1645
ba6a1308 1646 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1647
87fbc5a0
TH
1648 if (!timeout) {
1649 if (ata_probe_timeout)
1650 timeout = ata_probe_timeout * 1000;
1651 else {
1652 timeout = ata_internal_cmd_timeout(dev, command);
1653 auto_timeout = 1;
1654 }
1655 }
2b789108 1656
c0c362b6
TH
1657 if (ap->ops->error_handler)
1658 ata_eh_release(ap);
1659
2b789108 1660 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f 1661
c0c362b6
TH
1662 if (ap->ops->error_handler)
1663 ata_eh_acquire(ap);
1664
c429137a 1665 ata_sff_flush_pio_task(ap);
41ade50c 1666
d95a717f 1667 if (!rc) {
ba6a1308 1668 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1669
1670 /* We're racing with irq here. If we lose, the
1671 * following test prevents us from completing the qc
d95a717f
TH
1672 * twice. If we win, the port is frozen and will be
1673 * cleaned up by ->post_internal_cmd().
a2a7a662 1674 */
77853bf2 1675 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1676 qc->err_mask |= AC_ERR_TIMEOUT;
1677
1678 if (ap->ops->error_handler)
1679 ata_port_freeze(ap);
1680 else
1681 ata_qc_complete(qc);
f15a1daf 1682
0dd4b21f 1683 if (ata_msg_warn(ap))
a9a79dfe
JP
1684 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1685 command);
a2a7a662
TH
1686 }
1687
ba6a1308 1688 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1689 }
1690
d95a717f
TH
1691 /* do post_internal_cmd */
1692 if (ap->ops->post_internal_cmd)
1693 ap->ops->post_internal_cmd(qc);
1694
a51d644a
TH
1695 /* perform minimal error analysis */
1696 if (qc->flags & ATA_QCFLAG_FAILED) {
1697 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1698 qc->err_mask |= AC_ERR_DEV;
1699
1700 if (!qc->err_mask)
1701 qc->err_mask |= AC_ERR_OTHER;
1702
1703 if (qc->err_mask & ~AC_ERR_OTHER)
1704 qc->err_mask &= ~AC_ERR_OTHER;
2dae9955
DLM
1705 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1706 qc->result_tf.command |= ATA_SENSE;
d95a717f
TH
1707 }
1708
15869303 1709 /* finish up */
ba6a1308 1710 spin_lock_irqsave(ap->lock, flags);
15869303 1711
e61e0672 1712 *tf = qc->result_tf;
77853bf2
TH
1713 err_mask = qc->err_mask;
1714
1715 ata_qc_free(qc);
9af5c9c9
TH
1716 link->active_tag = preempted_tag;
1717 link->sactive = preempted_sactive;
dedaf2b0 1718 ap->qc_active = preempted_qc_active;
da917d69 1719 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1720
ba6a1308 1721 spin_unlock_irqrestore(ap->lock, flags);
15869303 1722
87fbc5a0
TH
1723 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1724 ata_internal_cmd_timed_out(dev, command);
1725
77853bf2 1726 return err_mask;
a2a7a662
TH
1727}
1728
2432697b 1729/**
33480a0e 1730 * ata_exec_internal - execute libata internal command
2432697b
TH
1731 * @dev: Device to which the command is sent
1732 * @tf: Taskfile registers for the command and the result
1733 * @cdb: CDB for packet command
e227867f 1734 * @dma_dir: Data transfer direction of the command
2432697b
TH
1735 * @buf: Data buffer of the command
1736 * @buflen: Length of data buffer
2b789108 1737 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1738 *
1739 * Wrapper around ata_exec_internal_sg() which takes simple
1740 * buffer instead of sg list.
1741 *
1742 * LOCKING:
1743 * None. Should be called with kernel context, might sleep.
1744 *
1745 * RETURNS:
1746 * Zero on success, AC_ERR_* mask on failure
1747 */
1748unsigned ata_exec_internal(struct ata_device *dev,
1749 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1750 int dma_dir, void *buf, unsigned int buflen,
1751 unsigned long timeout)
2432697b 1752{
33480a0e
TH
1753 struct scatterlist *psg = NULL, sg;
1754 unsigned int n_elem = 0;
2432697b 1755
33480a0e
TH
1756 if (dma_dir != DMA_NONE) {
1757 WARN_ON(!buf);
1758 sg_init_one(&sg, buf, buflen);
1759 psg = &sg;
1760 n_elem++;
1761 }
2432697b 1762
2b789108
TH
1763 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1764 timeout);
2432697b
TH
1765}
1766
1bc4ccff
AC
1767/**
1768 * ata_pio_need_iordy - check if iordy needed
1769 * @adev: ATA device
1770 *
1771 * Check if the current speed of the device requires IORDY. Used
1772 * by various controllers for chip configuration.
1773 */
1bc4ccff
AC
1774unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1775{
0d9e6659
TH
1776 /* Don't set IORDY if we're preparing for reset. IORDY may
1777 * lead to controller lock up on certain controllers if the
1778 * port is not occupied. See bko#11703 for details.
1779 */
1780 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1781 return 0;
1782 /* Controller doesn't support IORDY. Probably a pointless
1783 * check as the caller should know this.
1784 */
9af5c9c9 1785 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1786 return 0;
5c18c4d2
DD
1787 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1788 if (ata_id_is_cfa(adev->id)
1789 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1790 return 0;
432729f0
AC
1791 /* PIO3 and higher it is mandatory */
1792 if (adev->pio_mode > XFER_PIO_2)
1793 return 1;
1794 /* We turn it on when possible */
1795 if (ata_id_has_iordy(adev->id))
1bc4ccff 1796 return 1;
432729f0
AC
1797 return 0;
1798}
2e9edbf8 1799
432729f0
AC
1800/**
1801 * ata_pio_mask_no_iordy - Return the non IORDY mask
1802 * @adev: ATA device
1803 *
1804 * Compute the highest mode possible if we are not using iordy. Return
1805 * -1 if no iordy mode is available.
1806 */
432729f0
AC
1807static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1808{
1bc4ccff 1809 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1810 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1811 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1812 /* Is the speed faster than the drive allows non IORDY ? */
1813 if (pio) {
1814 /* This is cycle times not frequency - watch the logic! */
1815 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1816 return 3 << ATA_SHIFT_PIO;
1817 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1818 }
1819 }
432729f0 1820 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1821}
1822
963e4975
AC
1823/**
1824 * ata_do_dev_read_id - default ID read method
1825 * @dev: device
1826 * @tf: proposed taskfile
1827 * @id: data buffer
1828 *
1829 * Issue the identify taskfile and hand back the buffer containing
1830 * identify data. For some RAID controllers and for pre ATA devices
1831 * this function is wrapped or replaced by the driver
1832 */
1833unsigned int ata_do_dev_read_id(struct ata_device *dev,
1834 struct ata_taskfile *tf, u16 *id)
1835{
1836 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1837 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1838}
1839
1da177e4 1840/**
49016aca 1841 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1842 * @dev: target device
1843 * @p_class: pointer to class of the target device (may be changed)
bff04647 1844 * @flags: ATA_READID_* flags
fe635c7e 1845 * @id: buffer to read IDENTIFY data into
1da177e4 1846 *
49016aca
TH
1847 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1848 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1849 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1850 * for pre-ATA4 drives.
1da177e4 1851 *
50a99018 1852 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1853 * now we abort if we hit that case.
50a99018 1854 *
1da177e4 1855 * LOCKING:
49016aca
TH
1856 * Kernel thread context (may sleep)
1857 *
1858 * RETURNS:
1859 * 0 on success, -errno otherwise.
1da177e4 1860 */
a9beec95 1861int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1862 unsigned int flags, u16 *id)
1da177e4 1863{
9af5c9c9 1864 struct ata_port *ap = dev->link->ap;
49016aca 1865 unsigned int class = *p_class;
a0123703 1866 struct ata_taskfile tf;
49016aca
TH
1867 unsigned int err_mask = 0;
1868 const char *reason;
79b42bab 1869 bool is_semb = class == ATA_DEV_SEMB;
54936f8b 1870 int may_fallback = 1, tried_spinup = 0;
49016aca 1871 int rc;
1da177e4 1872
0dd4b21f 1873 if (ata_msg_ctl(ap))
a9a79dfe 1874 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 1875
963e4975 1876retry:
3373efd8 1877 ata_tf_init(dev, &tf);
a0123703 1878
49016aca 1879 switch (class) {
79b42bab
TH
1880 case ATA_DEV_SEMB:
1881 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
49016aca 1882 case ATA_DEV_ATA:
9162c657 1883 case ATA_DEV_ZAC:
a0123703 1884 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1885 break;
1886 case ATA_DEV_ATAPI:
a0123703 1887 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1888 break;
1889 default:
1890 rc = -ENODEV;
1891 reason = "unsupported class";
1892 goto err_out;
1da177e4
LT
1893 }
1894
a0123703 1895 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1896
1897 /* Some devices choke if TF registers contain garbage. Make
1898 * sure those are properly initialized.
1899 */
1900 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1901
1902 /* Device presence detection is unreliable on some
1903 * controllers. Always poll IDENTIFY if available.
1904 */
1905 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1906
963e4975
AC
1907 if (ap->ops->read_id)
1908 err_mask = ap->ops->read_id(dev, &tf, id);
1909 else
1910 err_mask = ata_do_dev_read_id(dev, &tf, id);
1911
a0123703 1912 if (err_mask) {
800b3996 1913 if (err_mask & AC_ERR_NODEV_HINT) {
a9a79dfe 1914 ata_dev_dbg(dev, "NODEV after polling detection\n");
55a8e2c8
TH
1915 return -ENOENT;
1916 }
1917
79b42bab 1918 if (is_semb) {
a9a79dfe
JP
1919 ata_dev_info(dev,
1920 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
79b42bab
TH
1921 /* SEMB is not supported yet */
1922 *p_class = ATA_DEV_SEMB_UNSUP;
1923 return 0;
1924 }
1925
1ffc151f
TH
1926 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1927 /* Device or controller might have reported
1928 * the wrong device class. Give a shot at the
1929 * other IDENTIFY if the current one is
1930 * aborted by the device.
1931 */
1932 if (may_fallback) {
1933 may_fallback = 0;
1934
1935 if (class == ATA_DEV_ATA)
1936 class = ATA_DEV_ATAPI;
1937 else
1938 class = ATA_DEV_ATA;
1939 goto retry;
1940 }
1941
1942 /* Control reaches here iff the device aborted
1943 * both flavors of IDENTIFYs which happens
1944 * sometimes with phantom devices.
1945 */
a9a79dfe
JP
1946 ata_dev_dbg(dev,
1947 "both IDENTIFYs aborted, assuming NODEV\n");
1ffc151f 1948 return -ENOENT;
54936f8b
TH
1949 }
1950
49016aca
TH
1951 rc = -EIO;
1952 reason = "I/O error";
1da177e4
LT
1953 goto err_out;
1954 }
1955
43c9c591 1956 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
a9a79dfe
JP
1957 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1958 "class=%d may_fallback=%d tried_spinup=%d\n",
1959 class, may_fallback, tried_spinup);
43c9c591
TH
1960 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1961 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1962 }
1963
54936f8b
TH
1964 /* Falling back doesn't make sense if ID data was read
1965 * successfully at least once.
1966 */
1967 may_fallback = 0;
1968
49016aca 1969 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1970
49016aca 1971 /* sanity check */
a4f5749b 1972 rc = -EINVAL;
6070068b 1973 reason = "device reports invalid type";
a4f5749b 1974
9162c657 1975 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
a4f5749b
TH
1976 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1977 goto err_out;
db63a4c8
AW
1978 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1979 ata_id_is_ata(id)) {
1980 ata_dev_dbg(dev,
1981 "host indicates ignore ATA devices, ignored\n");
1982 return -ENOENT;
1983 }
a4f5749b
TH
1984 } else {
1985 if (ata_id_is_ata(id))
1986 goto err_out;
49016aca
TH
1987 }
1988
169439c2
ML
1989 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1990 tried_spinup = 1;
1991 /*
1992 * Drive powered-up in standby mode, and requires a specific
1993 * SET_FEATURES spin-up subcommand before it will accept
1994 * anything other than the original IDENTIFY command.
1995 */
218f3d30 1996 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1997 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1998 rc = -EIO;
1999 reason = "SPINUP failed";
2000 goto err_out;
2001 }
2002 /*
2003 * If the drive initially returned incomplete IDENTIFY info,
2004 * we now must reissue the IDENTIFY command.
2005 */
2006 if (id[2] == 0x37c8)
2007 goto retry;
2008 }
2009
9162c657
HR
2010 if ((flags & ATA_READID_POSTRESET) &&
2011 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
49016aca
TH
2012 /*
2013 * The exact sequence expected by certain pre-ATA4 drives is:
2014 * SRST RESET
50a99018
AC
2015 * IDENTIFY (optional in early ATA)
2016 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2017 * anything else..
2018 * Some drives were very specific about that exact sequence.
50a99018
AC
2019 *
2020 * Note that ATA4 says lba is mandatory so the second check
c9404c9c 2021 * should never trigger.
49016aca
TH
2022 */
2023 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2024 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2025 if (err_mask) {
2026 rc = -EIO;
2027 reason = "INIT_DEV_PARAMS failed";
2028 goto err_out;
2029 }
2030
2031 /* current CHS translation info (id[53-58]) might be
2032 * changed. reread the identify device info.
2033 */
bff04647 2034 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2035 goto retry;
2036 }
2037 }
2038
2039 *p_class = class;
fe635c7e 2040
49016aca
TH
2041 return 0;
2042
2043 err_out:
88574551 2044 if (ata_msg_warn(ap))
a9a79dfe
JP
2045 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2046 reason, err_mask);
49016aca
TH
2047 return rc;
2048}
2049
f01f62c2
CH
2050/**
2051 * ata_read_log_page - read a specific log page
2052 * @dev: target device
2053 * @log: log to read
2054 * @page: page to read
2055 * @buf: buffer to store read page
2056 * @sectors: number of sectors to read
2057 *
2058 * Read log page using READ_LOG_EXT command.
2059 *
2060 * LOCKING:
2061 * Kernel thread context (may sleep).
2062 *
2063 * RETURNS:
2064 * 0 on success, AC_ERR_* mask otherwise.
2065 */
2066unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2067 u8 page, void *buf, unsigned int sectors)
2068{
2069 unsigned long ap_flags = dev->link->ap->flags;
2070 struct ata_taskfile tf;
2071 unsigned int err_mask;
2072 bool dma = false;
2073
2074 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2075
2076 /*
2077 * Return error without actually issuing the command on controllers
2078 * which e.g. lockup on a read log page.
2079 */
2080 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2081 return AC_ERR_DEV;
2082
2083retry:
2084 ata_tf_init(dev, &tf);
2085 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2086 !(dev->horkage & ATA_HORKAGE_NO_NCQ_LOG)) {
2087 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2088 tf.protocol = ATA_PROT_DMA;
2089 dma = true;
2090 } else {
2091 tf.command = ATA_CMD_READ_LOG_EXT;
2092 tf.protocol = ATA_PROT_PIO;
2093 dma = false;
2094 }
2095 tf.lbal = log;
2096 tf.lbam = page;
2097 tf.nsect = sectors;
2098 tf.hob_nsect = sectors >> 8;
2099 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2100
2101 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2102 buf, sectors * ATA_SECT_SIZE, 0);
2103
2104 if (err_mask && dma) {
2105 dev->horkage |= ATA_HORKAGE_NO_NCQ_LOG;
2106 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying unqueued\n");
2107 goto retry;
2108 }
2109
2110 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2111 return err_mask;
2112}
2113
efe205a3
CH
2114static bool ata_log_supported(struct ata_device *dev, u8 log)
2115{
2116 struct ata_port *ap = dev->link->ap;
2117
2118 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2119 return false;
2120 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2121}
2122
9062712f
TH
2123static int ata_do_link_spd_horkage(struct ata_device *dev)
2124{
2125 struct ata_link *plink = ata_dev_phys_link(dev);
2126 u32 target, target_limit;
2127
2128 if (!sata_scr_valid(plink))
2129 return 0;
2130
2131 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2132 target = 1;
2133 else
2134 return 0;
2135
2136 target_limit = (1 << target) - 1;
2137
2138 /* if already on stricter limit, no need to push further */
2139 if (plink->sata_spd_limit <= target_limit)
2140 return 0;
2141
2142 plink->sata_spd_limit = target_limit;
2143
2144 /* Request another EH round by returning -EAGAIN if link is
2145 * going faster than the target speed. Forward progress is
2146 * guaranteed by setting sata_spd_limit to target_limit above.
2147 */
2148 if (plink->sata_spd > target) {
a9a79dfe
JP
2149 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2150 sata_spd_string(target));
9062712f
TH
2151 return -EAGAIN;
2152 }
2153 return 0;
2154}
2155
3373efd8 2156static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2157{
9af5c9c9 2158 struct ata_port *ap = dev->link->ap;
9ce8e307
JA
2159
2160 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2161 return 0;
2162
9af5c9c9 2163 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2164}
2165
5a233551
HR
2166static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2167{
2168 struct ata_port *ap = dev->link->ap;
2169 unsigned int err_mask;
2170
efe205a3
CH
2171 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2172 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
fe5af0cc
HR
2173 return;
2174 }
5a233551
HR
2175 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2176 0, ap->sector_buf, 1);
2177 if (err_mask) {
2178 ata_dev_dbg(dev,
2179 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2180 err_mask);
2181 } else {
2182 u8 *cmds = dev->ncq_send_recv_cmds;
2183
2184 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2185 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2186
2187 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2188 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2189 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2190 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2191 }
2192 }
2193}
2194
284b3b77
HR
2195static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2196{
2197 struct ata_port *ap = dev->link->ap;
2198 unsigned int err_mask;
284b3b77 2199
efe205a3 2200 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
284b3b77
HR
2201 ata_dev_warn(dev,
2202 "NCQ Send/Recv Log not supported\n");
2203 return;
2204 }
2205 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2206 0, ap->sector_buf, 1);
2207 if (err_mask) {
2208 ata_dev_dbg(dev,
2209 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2210 err_mask);
2211 } else {
2212 u8 *cmds = dev->ncq_non_data_cmds;
2213
2214 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2215 }
2216}
2217
8e061784
AM
2218static void ata_dev_config_ncq_prio(struct ata_device *dev)
2219{
2220 struct ata_port *ap = dev->link->ap;
2221 unsigned int err_mask;
2222
9f56eca3
AM
2223 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2224 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2225 return;
2226 }
2227
8e061784
AM
2228 err_mask = ata_read_log_page(dev,
2229 ATA_LOG_SATA_ID_DEV_DATA,
2230 ATA_LOG_SATA_SETTINGS,
2231 ap->sector_buf,
2232 1);
2233 if (err_mask) {
2234 ata_dev_dbg(dev,
2235 "failed to get Identify Device data, Emask 0x%x\n",
2236 err_mask);
2237 return;
2238 }
2239
9f56eca3 2240 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
8e061784 2241 dev->flags |= ATA_DFLAG_NCQ_PRIO;
9f56eca3
AM
2242 } else {
2243 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
8e061784 2244 ata_dev_dbg(dev, "SATA page does not support priority\n");
9f56eca3 2245 }
8e061784
AM
2246
2247}
2248
388539f3 2249static int ata_dev_config_ncq(struct ata_device *dev,
a6e6ce8e
TH
2250 char *desc, size_t desc_sz)
2251{
9af5c9c9 2252 struct ata_port *ap = dev->link->ap;
a6e6ce8e 2253 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
388539f3
SL
2254 unsigned int err_mask;
2255 char *aa_desc = "";
a6e6ce8e
TH
2256
2257 if (!ata_id_has_ncq(dev->id)) {
2258 desc[0] = '\0';
388539f3 2259 return 0;
a6e6ce8e 2260 }
75683fe7 2261 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6 2262 snprintf(desc, desc_sz, "NCQ (not used)");
388539f3 2263 return 0;
6919a0a6 2264 }
a6e6ce8e 2265 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2266 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2267 dev->flags |= ATA_DFLAG_NCQ;
2268 }
2269
388539f3
SL
2270 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2271 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2272 ata_id_has_fpdma_aa(dev->id)) {
2273 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2274 SATA_FPDMA_AA);
2275 if (err_mask) {
a9a79dfe
JP
2276 ata_dev_err(dev,
2277 "failed to enable AA (error_mask=0x%x)\n",
2278 err_mask);
388539f3
SL
2279 if (err_mask != AC_ERR_DEV) {
2280 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2281 return -EIO;
2282 }
2283 } else
2284 aa_desc = ", AA";
2285 }
2286
a6e6ce8e 2287 if (hdepth >= ddepth)
388539f3 2288 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
a6e6ce8e 2289 else
388539f3
SL
2290 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2291 ddepth, aa_desc);
ed36911c 2292
284b3b77
HR
2293 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2294 if (ata_id_has_ncq_send_and_recv(dev->id))
2295 ata_dev_config_ncq_send_recv(dev);
2296 if (ata_id_has_ncq_non_data(dev->id))
2297 ata_dev_config_ncq_non_data(dev);
8e061784
AM
2298 if (ata_id_has_ncq_prio(dev->id))
2299 ata_dev_config_ncq_prio(dev);
284b3b77 2300 }
f78dea06 2301
388539f3 2302 return 0;
a6e6ce8e 2303}
f78dea06 2304
e87fd28c
HR
2305static void ata_dev_config_sense_reporting(struct ata_device *dev)
2306{
2307 unsigned int err_mask;
2308
2309 if (!ata_id_has_sense_reporting(dev->id))
2310 return;
2311
2312 if (ata_id_sense_reporting_enabled(dev->id))
2313 return;
2314
2315 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2316 if (err_mask) {
2317 ata_dev_dbg(dev,
2318 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2319 err_mask);
2320 }
2321}
2322
6d1003ae
HR
2323static void ata_dev_config_zac(struct ata_device *dev)
2324{
2325 struct ata_port *ap = dev->link->ap;
2326 unsigned int err_mask;
2327 u8 *identify_buf = ap->sector_buf;
efe205a3 2328 int i, found = 0;
6d1003ae
HR
2329 u16 log_pages;
2330
2331 dev->zac_zones_optimal_open = U32_MAX;
2332 dev->zac_zones_optimal_nonseq = U32_MAX;
2333 dev->zac_zones_max_open = U32_MAX;
2334
2335 /*
2336 * Always set the 'ZAC' flag for Host-managed devices.
2337 */
2338 if (dev->class == ATA_DEV_ZAC)
2339 dev->flags |= ATA_DFLAG_ZAC;
2340 else if (ata_id_zoned_cap(dev->id) == 0x01)
2341 /*
2342 * Check for host-aware devices.
2343 */
2344 dev->flags |= ATA_DFLAG_ZAC;
2345
2346 if (!(dev->flags & ATA_DFLAG_ZAC))
2347 return;
2348
efe205a3
CH
2349 if (!ata_log_supported(dev, ATA_LOG_SATA_ID_DEV_DATA)) {
2350 ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
6d1003ae
HR
2351 return;
2352 }
efe205a3 2353
6d1003ae
HR
2354 /*
2355 * Read IDENTIFY DEVICE data log, page 0, to figure out
2356 * if page 9 is supported.
2357 */
2358 err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA, 0,
2359 identify_buf, 1);
2360 if (err_mask) {
2361 ata_dev_info(dev,
2362 "failed to get Device Identify Log Emask 0x%x\n",
2363 err_mask);
2364 return;
2365 }
2366 log_pages = identify_buf[8];
2367 for (i = 0; i < log_pages; i++) {
2368 if (identify_buf[9 + i] == ATA_LOG_ZONED_INFORMATION) {
2369 found++;
2370 break;
ed36911c
MC
2371 }
2372 }
6d1003ae
HR
2373 if (!found) {
2374 ata_dev_warn(dev,
2375 "ATA Zoned Information Log not supported\n");
2376 return;
2377 }
ed36911c 2378
6d1003ae
HR
2379 /*
2380 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2381 */
2382 err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA,
2383 ATA_LOG_ZONED_INFORMATION,
2384 identify_buf, 1);
2385 if (!err_mask) {
2386 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2387
2388 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2389 if ((zoned_cap >> 63))
2390 dev->zac_zoned_cap = (zoned_cap & 1);
2391 opt_open = get_unaligned_le64(&identify_buf[24]);
2392 if ((opt_open >> 63))
2393 dev->zac_zones_optimal_open = (u32)opt_open;
2394 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2395 if ((opt_nonseq >> 63))
2396 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2397 max_open = get_unaligned_le64(&identify_buf[40]);
2398 if ((max_open >> 63))
2399 dev->zac_zones_max_open = (u32)max_open;
2400 }
a6e6ce8e
TH
2401}
2402
49016aca 2403/**
ffeae418 2404 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2405 * @dev: Target device to configure
2406 *
2407 * Configure @dev according to @dev->id. Generic and low-level
2408 * driver specific fixups are also applied.
49016aca
TH
2409 *
2410 * LOCKING:
ffeae418
TH
2411 * Kernel thread context (may sleep)
2412 *
2413 * RETURNS:
2414 * 0 on success, -errno otherwise
49016aca 2415 */
efdaedc4 2416int ata_dev_configure(struct ata_device *dev)
49016aca 2417{
9af5c9c9
TH
2418 struct ata_port *ap = dev->link->ap;
2419 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2420 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2421 const u16 *id = dev->id;
7dc951ae 2422 unsigned long xfer_mask;
65fe1f0f 2423 unsigned int err_mask;
b352e57d 2424 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2425 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2426 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2427 int rc;
49016aca 2428
0dd4b21f 2429 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
a9a79dfe 2430 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
ffeae418 2431 return 0;
49016aca
TH
2432 }
2433
0dd4b21f 2434 if (ata_msg_probe(ap))
a9a79dfe 2435 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 2436
75683fe7
TH
2437 /* set horkage */
2438 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2439 ata_force_horkage(dev);
75683fe7 2440
50af2fa1 2441 if (dev->horkage & ATA_HORKAGE_DISABLE) {
a9a79dfe 2442 ata_dev_info(dev, "unsupported device, disabling\n");
50af2fa1
TH
2443 ata_dev_disable(dev);
2444 return 0;
2445 }
2446
2486fa56
TH
2447 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2448 dev->class == ATA_DEV_ATAPI) {
a9a79dfe
JP
2449 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2450 atapi_enabled ? "not supported with this driver"
2451 : "disabled");
2486fa56
TH
2452 ata_dev_disable(dev);
2453 return 0;
2454 }
2455
9062712f
TH
2456 rc = ata_do_link_spd_horkage(dev);
2457 if (rc)
2458 return rc;
2459
ecd75ad5
TH
2460 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2461 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2462 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2463 dev->horkage |= ATA_HORKAGE_NOLPM;
2464
2465 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2466 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2467 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2468 }
2469
6746544c
TH
2470 /* let ACPI work its magic */
2471 rc = ata_acpi_on_devcfg(dev);
2472 if (rc)
2473 return rc;
08573a86 2474
05027adc
TH
2475 /* massage HPA, do it early as it might change IDENTIFY data */
2476 rc = ata_hpa_resize(dev);
2477 if (rc)
2478 return rc;
2479
c39f5ebe 2480 /* print device capabilities */
0dd4b21f 2481 if (ata_msg_probe(ap))
a9a79dfe
JP
2482 ata_dev_dbg(dev,
2483 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2484 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2485 __func__,
2486 id[49], id[82], id[83], id[84],
2487 id[85], id[86], id[87], id[88]);
c39f5ebe 2488
208a9933 2489 /* initialize to-be-configured parameters */
ea1dd4e1 2490 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2491 dev->max_sectors = 0;
2492 dev->cdb_len = 0;
2493 dev->n_sectors = 0;
2494 dev->cylinders = 0;
2495 dev->heads = 0;
2496 dev->sectors = 0;
e18086d6 2497 dev->multi_count = 0;
208a9933 2498
1da177e4
LT
2499 /*
2500 * common ATA, ATAPI feature tests
2501 */
2502
ff8854b2 2503 /* find max transfer mode; for printk only */
1148c3a7 2504 xfer_mask = ata_id_xfermask(id);
1da177e4 2505
0dd4b21f
BP
2506 if (ata_msg_probe(ap))
2507 ata_dump_id(id);
1da177e4 2508
ef143d57
AL
2509 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2510 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2511 sizeof(fwrevbuf));
2512
2513 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2514 sizeof(modelbuf));
2515
1da177e4 2516 /* ATA-specific feature tests */
9162c657 2517 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
b352e57d 2518 if (ata_id_is_cfa(id)) {
62afe5d7
SS
2519 /* CPRM may make this media unusable */
2520 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
a9a79dfe
JP
2521 ata_dev_warn(dev,
2522 "supports DRM functions and may not be fully accessible\n");
b352e57d 2523 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2524 } else {
2dcb407e 2525 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2526 /* Warn the user if the device has TPM extensions */
2527 if (ata_id_has_tpm(id))
a9a79dfe
JP
2528 ata_dev_warn(dev,
2529 "supports DRM functions and may not be fully accessible\n");
ae8d4ee7 2530 }
b352e57d 2531
1148c3a7 2532 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2533
e18086d6
ML
2534 /* get current R/W Multiple count setting */
2535 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2536 unsigned int max = dev->id[47] & 0xff;
2537 unsigned int cnt = dev->id[59] & 0xff;
2538 /* only recognize/allow powers of two here */
2539 if (is_power_of_2(max) && is_power_of_2(cnt))
2540 if (cnt <= max)
2541 dev->multi_count = cnt;
2542 }
3f64f565 2543
1148c3a7 2544 if (ata_id_has_lba(id)) {
4c2d721a 2545 const char *lba_desc;
388539f3 2546 char ncq_desc[24];
8bf62ece 2547
4c2d721a
TH
2548 lba_desc = "LBA";
2549 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2550 if (ata_id_has_lba48(id)) {
8bf62ece 2551 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2552 lba_desc = "LBA48";
6fc49adb
TH
2553
2554 if (dev->n_sectors >= (1UL << 28) &&
2555 ata_id_has_flush_ext(id))
2556 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2557 }
8bf62ece 2558
a6e6ce8e 2559 /* config NCQ */
388539f3
SL
2560 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2561 if (rc)
2562 return rc;
a6e6ce8e 2563
8bf62ece 2564 /* print device info to dmesg */
3f64f565 2565 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2566 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2567 revbuf, modelbuf, fwrevbuf,
2568 ata_mode_string(xfer_mask));
2569 ata_dev_info(dev,
2570 "%llu sectors, multi %u: %s %s\n",
f15a1daf 2571 (unsigned long long)dev->n_sectors,
3f64f565
EM
2572 dev->multi_count, lba_desc, ncq_desc);
2573 }
ffeae418 2574 } else {
8bf62ece
AL
2575 /* CHS */
2576
2577 /* Default translation */
1148c3a7
TH
2578 dev->cylinders = id[1];
2579 dev->heads = id[3];
2580 dev->sectors = id[6];
8bf62ece 2581
1148c3a7 2582 if (ata_id_current_chs_valid(id)) {
8bf62ece 2583 /* Current CHS translation is valid. */
1148c3a7
TH
2584 dev->cylinders = id[54];
2585 dev->heads = id[55];
2586 dev->sectors = id[56];
8bf62ece
AL
2587 }
2588
2589 /* print device info to dmesg */
3f64f565 2590 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2591 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2592 revbuf, modelbuf, fwrevbuf,
2593 ata_mode_string(xfer_mask));
2594 ata_dev_info(dev,
2595 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2596 (unsigned long long)dev->n_sectors,
2597 dev->multi_count, dev->cylinders,
2598 dev->heads, dev->sectors);
3f64f565 2599 }
07f6f7d0
AL
2600 }
2601
803739d2
SH
2602 /* Check and mark DevSlp capability. Get DevSlp timing variables
2603 * from SATA Settings page of Identify Device Data Log.
65fe1f0f 2604 */
803739d2 2605 if (ata_id_has_devslp(dev->id)) {
8e725c7f 2606 u8 *sata_setting = ap->sector_buf;
803739d2
SH
2607 int i, j;
2608
2609 dev->flags |= ATA_DFLAG_DEVSLP;
65fe1f0f
SH
2610 err_mask = ata_read_log_page(dev,
2611 ATA_LOG_SATA_ID_DEV_DATA,
2612 ATA_LOG_SATA_SETTINGS,
803739d2 2613 sata_setting,
65fe1f0f
SH
2614 1);
2615 if (err_mask)
2616 ata_dev_dbg(dev,
2617 "failed to get Identify Device Data, Emask 0x%x\n",
2618 err_mask);
803739d2
SH
2619 else
2620 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2621 j = ATA_LOG_DEVSLP_OFFSET + i;
2622 dev->devslp_timing[i] = sata_setting[j];
2623 }
65fe1f0f 2624 }
e87fd28c 2625 ata_dev_config_sense_reporting(dev);
6d1003ae 2626 ata_dev_config_zac(dev);
6e7846e9 2627 dev->cdb_len = 16;
1da177e4
LT
2628 }
2629
2630 /* ATAPI-specific feature tests */
2c13b7ce 2631 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2632 const char *cdb_intr_string = "";
2633 const char *atapi_an_string = "";
91163006 2634 const char *dma_dir_string = "";
7d77b247 2635 u32 sntf;
08a556db 2636
1148c3a7 2637 rc = atapi_cdb_len(id);
1da177e4 2638 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2639 if (ata_msg_warn(ap))
a9a79dfe 2640 ata_dev_warn(dev, "unsupported CDB len\n");
ffeae418 2641 rc = -EINVAL;
1da177e4
LT
2642 goto err_out_nosup;
2643 }
6e7846e9 2644 dev->cdb_len = (unsigned int) rc;
1da177e4 2645
7d77b247
TH
2646 /* Enable ATAPI AN if both the host and device have
2647 * the support. If PMP is attached, SNTF is required
2648 * to enable ATAPI AN to discern between PHY status
2649 * changed notifications and ATAPI ANs.
9f45cbd3 2650 */
e7ecd435
TH
2651 if (atapi_an &&
2652 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2653 (!sata_pmp_attached(ap) ||
7d77b247 2654 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
9f45cbd3 2655 /* issue SET feature command to turn this on */
218f3d30
JG
2656 err_mask = ata_dev_set_feature(dev,
2657 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2658 if (err_mask)
a9a79dfe
JP
2659 ata_dev_err(dev,
2660 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2661 err_mask);
854c73a2 2662 else {
9f45cbd3 2663 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2664 atapi_an_string = ", ATAPI AN";
2665 }
9f45cbd3
KCA
2666 }
2667
08a556db 2668 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2669 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2670 cdb_intr_string = ", CDB intr";
2671 }
312f7da2 2672
966fbe19 2673 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
91163006
TH
2674 dev->flags |= ATA_DFLAG_DMADIR;
2675 dma_dir_string = ", DMADIR";
2676 }
2677
afe75951 2678 if (ata_id_has_da(dev->id)) {
b1354cbb 2679 dev->flags |= ATA_DFLAG_DA;
afe75951
AL
2680 zpodd_init(dev);
2681 }
b1354cbb 2682
1da177e4 2683 /* print device info to dmesg */
5afc8142 2684 if (ata_msg_drv(ap) && print_info)
a9a79dfe
JP
2685 ata_dev_info(dev,
2686 "ATAPI: %s, %s, max %s%s%s%s\n",
2687 modelbuf, fwrevbuf,
2688 ata_mode_string(xfer_mask),
2689 cdb_intr_string, atapi_an_string,
2690 dma_dir_string);
1da177e4
LT
2691 }
2692
914ed354
TH
2693 /* determine max_sectors */
2694 dev->max_sectors = ATA_MAX_SECTORS;
2695 if (dev->flags & ATA_DFLAG_LBA48)
2696 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2697
c5038fc0
AC
2698 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2699 200 sectors */
3373efd8 2700 if (ata_dev_knobble(dev)) {
5afc8142 2701 if (ata_msg_drv(ap) && print_info)
a9a79dfe 2702 ata_dev_info(dev, "applying bridge limits\n");
5a529139 2703 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2704 dev->max_sectors = ATA_MAX_SECTORS;
2705 }
2706
f8d8e579 2707 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2708 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2709 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2710 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2711 }
f8d8e579 2712
75683fe7 2713 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2714 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2715 dev->max_sectors);
18d6e9d5 2716
af34d637
DM
2717 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2718 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2719 dev->max_sectors);
2720
a32450e1
SH
2721 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2722 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2723
4b2f3ede 2724 if (ap->ops->dev_config)
cd0d3bbc 2725 ap->ops->dev_config(dev);
4b2f3ede 2726
c5038fc0
AC
2727 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2728 /* Let the user know. We don't want to disallow opens for
2729 rescue purposes, or in case the vendor is just a blithering
2730 idiot. Do this after the dev_config call as some controllers
2731 with buggy firmware may want to avoid reporting false device
2732 bugs */
2733
2734 if (print_info) {
a9a79dfe 2735 ata_dev_warn(dev,
c5038fc0 2736"Drive reports diagnostics failure. This may indicate a drive\n");
a9a79dfe 2737 ata_dev_warn(dev,
c5038fc0
AC
2738"fault or invalid emulation. Contact drive vendor for information.\n");
2739 }
2740 }
2741
ac70a964 2742 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
a9a79dfe
JP
2743 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2744 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
ac70a964
TH
2745 }
2746
ffeae418 2747 return 0;
1da177e4
LT
2748
2749err_out_nosup:
0dd4b21f 2750 if (ata_msg_probe(ap))
a9a79dfe 2751 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
ffeae418 2752 return rc;
1da177e4
LT
2753}
2754
be0d18df 2755/**
2e41e8e6 2756 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2757 * @ap: port
2758 *
2e41e8e6 2759 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2760 * detection.
2761 */
2762
2763int ata_cable_40wire(struct ata_port *ap)
2764{
2765 return ATA_CBL_PATA40;
2766}
2767
2768/**
2e41e8e6 2769 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2770 * @ap: port
2771 *
2e41e8e6 2772 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2773 * detection.
2774 */
2775
2776int ata_cable_80wire(struct ata_port *ap)
2777{
2778 return ATA_CBL_PATA80;
2779}
2780
2781/**
2782 * ata_cable_unknown - return unknown PATA cable.
2783 * @ap: port
2784 *
2785 * Helper method for drivers which have no PATA cable detection.
2786 */
2787
2788int ata_cable_unknown(struct ata_port *ap)
2789{
2790 return ATA_CBL_PATA_UNK;
2791}
2792
c88f90c3
TH
2793/**
2794 * ata_cable_ignore - return ignored PATA cable.
2795 * @ap: port
2796 *
2797 * Helper method for drivers which don't use cable type to limit
2798 * transfer mode.
2799 */
2800int ata_cable_ignore(struct ata_port *ap)
2801{
2802 return ATA_CBL_PATA_IGN;
2803}
2804
be0d18df
AC
2805/**
2806 * ata_cable_sata - return SATA cable type
2807 * @ap: port
2808 *
2809 * Helper method for drivers which have SATA cables
2810 */
2811
2812int ata_cable_sata(struct ata_port *ap)
2813{
2814 return ATA_CBL_SATA;
2815}
2816
1da177e4
LT
2817/**
2818 * ata_bus_probe - Reset and probe ATA bus
2819 * @ap: Bus to probe
2820 *
0cba632b
JG
2821 * Master ATA bus probing function. Initiates a hardware-dependent
2822 * bus reset, then attempts to identify any devices found on
2823 * the bus.
2824 *
1da177e4 2825 * LOCKING:
0cba632b 2826 * PCI/etc. bus probe sem.
1da177e4
LT
2827 *
2828 * RETURNS:
96072e69 2829 * Zero on success, negative errno otherwise.
1da177e4
LT
2830 */
2831
80289167 2832int ata_bus_probe(struct ata_port *ap)
1da177e4 2833{
28ca5c57 2834 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2835 int tries[ATA_MAX_DEVICES];
f58229f8 2836 int rc;
e82cbdb9 2837 struct ata_device *dev;
1da177e4 2838
1eca4365 2839 ata_for_each_dev(dev, &ap->link, ALL)
f58229f8 2840 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2841
2842 retry:
1eca4365 2843 ata_for_each_dev(dev, &ap->link, ALL) {
cdeab114
TH
2844 /* If we issue an SRST then an ATA drive (not ATAPI)
2845 * may change configuration and be in PIO0 timing. If
2846 * we do a hard reset (or are coming from power on)
2847 * this is true for ATA or ATAPI. Until we've set a
2848 * suitable controller mode we should not touch the
2849 * bus as we may be talking too fast.
2850 */
2851 dev->pio_mode = XFER_PIO_0;
5416912a 2852 dev->dma_mode = 0xff;
cdeab114
TH
2853
2854 /* If the controller has a pio mode setup function
2855 * then use it to set the chipset to rights. Don't
2856 * touch the DMA setup as that will be dealt with when
2857 * configuring devices.
2858 */
2859 if (ap->ops->set_piomode)
2860 ap->ops->set_piomode(ap, dev);
2861 }
2862
2044470c 2863 /* reset and determine device classes */
52783c5d 2864 ap->ops->phy_reset(ap);
2061a47a 2865
1eca4365 2866 ata_for_each_dev(dev, &ap->link, ALL) {
3e4ec344 2867 if (dev->class != ATA_DEV_UNKNOWN)
52783c5d
TH
2868 classes[dev->devno] = dev->class;
2869 else
2870 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2871
52783c5d 2872 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2873 }
1da177e4 2874
f31f0cc2
JG
2875 /* read IDENTIFY page and configure devices. We have to do the identify
2876 specific sequence bass-ackwards so that PDIAG- is released by
2877 the slave device */
2878
1eca4365 2879 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
f58229f8
TH
2880 if (tries[dev->devno])
2881 dev->class = classes[dev->devno];
ffeae418 2882
14d2bac1 2883 if (!ata_dev_enabled(dev))
ffeae418 2884 continue;
ffeae418 2885
bff04647
TH
2886 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2887 dev->id);
14d2bac1
TH
2888 if (rc)
2889 goto fail;
f31f0cc2
JG
2890 }
2891
be0d18df
AC
2892 /* Now ask for the cable type as PDIAG- should have been released */
2893 if (ap->ops->cable_detect)
2894 ap->cbl = ap->ops->cable_detect(ap);
2895
1eca4365
TH
2896 /* We may have SATA bridge glue hiding here irrespective of
2897 * the reported cable types and sensed types. When SATA
2898 * drives indicate we have a bridge, we don't know which end
2899 * of the link the bridge is which is a problem.
2900 */
2901 ata_for_each_dev(dev, &ap->link, ENABLED)
614fe29b
AC
2902 if (ata_id_is_sata(dev->id))
2903 ap->cbl = ATA_CBL_SATA;
614fe29b 2904
f31f0cc2
JG
2905 /* After the identify sequence we can now set up the devices. We do
2906 this in the normal order so that the user doesn't get confused */
2907
1eca4365 2908 ata_for_each_dev(dev, &ap->link, ENABLED) {
9af5c9c9 2909 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2910 rc = ata_dev_configure(dev);
9af5c9c9 2911 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2912 if (rc)
2913 goto fail;
1da177e4
LT
2914 }
2915
e82cbdb9 2916 /* configure transfer mode */
0260731f 2917 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2918 if (rc)
51713d35 2919 goto fail;
1da177e4 2920
1eca4365
TH
2921 ata_for_each_dev(dev, &ap->link, ENABLED)
2922 return 0;
1da177e4 2923
96072e69 2924 return -ENODEV;
14d2bac1
TH
2925
2926 fail:
4ae72a1e
TH
2927 tries[dev->devno]--;
2928
14d2bac1
TH
2929 switch (rc) {
2930 case -EINVAL:
4ae72a1e 2931 /* eeek, something went very wrong, give up */
14d2bac1
TH
2932 tries[dev->devno] = 0;
2933 break;
4ae72a1e
TH
2934
2935 case -ENODEV:
2936 /* give it just one more chance */
2937 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2938 case -EIO:
4ae72a1e
TH
2939 if (tries[dev->devno] == 1) {
2940 /* This is the last chance, better to slow
2941 * down than lose it.
2942 */
a07d499b 2943 sata_down_spd_limit(&ap->link, 0);
4ae72a1e
TH
2944 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2945 }
14d2bac1
TH
2946 }
2947
4ae72a1e 2948 if (!tries[dev->devno])
3373efd8 2949 ata_dev_disable(dev);
ec573755 2950
14d2bac1 2951 goto retry;
1da177e4
LT
2952}
2953
3be680b7
TH
2954/**
2955 * sata_print_link_status - Print SATA link status
936fd732 2956 * @link: SATA link to printk link status about
3be680b7
TH
2957 *
2958 * This function prints link speed and status of a SATA link.
2959 *
2960 * LOCKING:
2961 * None.
2962 */
6bdb4fc9 2963static void sata_print_link_status(struct ata_link *link)
3be680b7 2964{
6d5f9732 2965 u32 sstatus, scontrol, tmp;
3be680b7 2966
936fd732 2967 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2968 return;
936fd732 2969 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2970
b1c72916 2971 if (ata_phys_link_online(link)) {
3be680b7 2972 tmp = (sstatus >> 4) & 0xf;
a9a79dfe
JP
2973 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2974 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2975 } else {
a9a79dfe
JP
2976 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2977 sstatus, scontrol);
3be680b7
TH
2978 }
2979}
2980
ebdfca6e
AC
2981/**
2982 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2983 * @adev: device
2984 *
2985 * Obtain the other device on the same cable, or if none is
2986 * present NULL is returned
2987 */
2e9edbf8 2988
3373efd8 2989struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2990{
9af5c9c9
TH
2991 struct ata_link *link = adev->link;
2992 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2993 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2994 return NULL;
2995 return pair;
2996}
2997
1c3fae4d 2998/**
3c567b7d 2999 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 3000 * @link: Link to adjust SATA spd limit for
a07d499b 3001 * @spd_limit: Additional limit
1c3fae4d 3002 *
936fd732 3003 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 3004 * function only adjusts the limit. The change must be applied
3c567b7d 3005 * using sata_set_spd().
1c3fae4d 3006 *
a07d499b
TH
3007 * If @spd_limit is non-zero, the speed is limited to equal to or
3008 * lower than @spd_limit if such speed is supported. If
3009 * @spd_limit is slower than any supported speed, only the lowest
3010 * supported speed is allowed.
3011 *
1c3fae4d
TH
3012 * LOCKING:
3013 * Inherited from caller.
3014 *
3015 * RETURNS:
3016 * 0 on success, negative errno on failure
3017 */
a07d499b 3018int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
1c3fae4d 3019{
81952c54 3020 u32 sstatus, spd, mask;
a07d499b 3021 int rc, bit;
1c3fae4d 3022
936fd732 3023 if (!sata_scr_valid(link))
008a7896
TH
3024 return -EOPNOTSUPP;
3025
3026 /* If SCR can be read, use it to determine the current SPD.
936fd732 3027 * If not, use cached value in link->sata_spd.
008a7896 3028 */
936fd732 3029 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
9913ff8a 3030 if (rc == 0 && ata_sstatus_online(sstatus))
008a7896
TH
3031 spd = (sstatus >> 4) & 0xf;
3032 else
936fd732 3033 spd = link->sata_spd;
1c3fae4d 3034
936fd732 3035 mask = link->sata_spd_limit;
1c3fae4d
TH
3036 if (mask <= 1)
3037 return -EINVAL;
008a7896
TH
3038
3039 /* unconditionally mask off the highest bit */
a07d499b
TH
3040 bit = fls(mask) - 1;
3041 mask &= ~(1 << bit);
1c3fae4d 3042
008a7896
TH
3043 /* Mask off all speeds higher than or equal to the current
3044 * one. Force 1.5Gbps if current SPD is not available.
3045 */
3046 if (spd > 1)
3047 mask &= (1 << (spd - 1)) - 1;
3048 else
3049 mask &= 1;
3050
3051 /* were we already at the bottom? */
1c3fae4d
TH
3052 if (!mask)
3053 return -EINVAL;
3054
a07d499b
TH
3055 if (spd_limit) {
3056 if (mask & ((1 << spd_limit) - 1))
3057 mask &= (1 << spd_limit) - 1;
3058 else {
3059 bit = ffs(mask) - 1;
3060 mask = 1 << bit;
3061 }
3062 }
3063
936fd732 3064 link->sata_spd_limit = mask;
1c3fae4d 3065
a9a79dfe
JP
3066 ata_link_warn(link, "limiting SATA link speed to %s\n",
3067 sata_spd_string(fls(mask)));
1c3fae4d
TH
3068
3069 return 0;
3070}
3071
936fd732 3072static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 3073{
5270222f
TH
3074 struct ata_link *host_link = &link->ap->link;
3075 u32 limit, target, spd;
1c3fae4d 3076
5270222f
TH
3077 limit = link->sata_spd_limit;
3078
3079 /* Don't configure downstream link faster than upstream link.
3080 * It doesn't speed up anything and some PMPs choke on such
3081 * configuration.
3082 */
3083 if (!ata_is_host_link(link) && host_link->sata_spd)
3084 limit &= (1 << host_link->sata_spd) - 1;
3085
3086 if (limit == UINT_MAX)
3087 target = 0;
1c3fae4d 3088 else
5270222f 3089 target = fls(limit);
1c3fae4d
TH
3090
3091 spd = (*scontrol >> 4) & 0xf;
5270222f 3092 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 3093
5270222f 3094 return spd != target;
1c3fae4d
TH
3095}
3096
3097/**
3c567b7d 3098 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 3099 * @link: Link in question
1c3fae4d
TH
3100 *
3101 * Test whether the spd limit in SControl matches
936fd732 3102 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
3103 * whether hardreset is necessary to apply SATA spd
3104 * configuration.
3105 *
3106 * LOCKING:
3107 * Inherited from caller.
3108 *
3109 * RETURNS:
3110 * 1 if SATA spd configuration is needed, 0 otherwise.
3111 */
1dc55e87 3112static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
3113{
3114 u32 scontrol;
3115
936fd732 3116 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 3117 return 1;
1c3fae4d 3118
936fd732 3119 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
3120}
3121
3122/**
3c567b7d 3123 * sata_set_spd - set SATA spd according to spd limit
936fd732 3124 * @link: Link to set SATA spd for
1c3fae4d 3125 *
936fd732 3126 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
3127 *
3128 * LOCKING:
3129 * Inherited from caller.
3130 *
3131 * RETURNS:
3132 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 3133 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 3134 */
936fd732 3135int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
3136{
3137 u32 scontrol;
81952c54 3138 int rc;
1c3fae4d 3139
936fd732 3140 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3141 return rc;
1c3fae4d 3142
936fd732 3143 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
3144 return 0;
3145
936fd732 3146 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
3147 return rc;
3148
1c3fae4d
TH
3149 return 1;
3150}
3151
452503f9
AC
3152/*
3153 * This mode timing computation functionality is ported over from
3154 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3155 */
3156/*
b352e57d 3157 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 3158 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
3159 * for UDMA6, which is currently supported only by Maxtor drives.
3160 *
3161 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
3162 */
3163
3164static const struct ata_timing ata_timing[] = {
3ada9c12
DD
3165/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3166 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3167 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3168 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3169 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3170 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3171 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3172 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3173
3174 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3175 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3176 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3177
3178 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3179 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3180 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3181 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3182 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3183
3184/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3185 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3186 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3187 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3188 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3189 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3190 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3191 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
3192
3193 { 0xFF }
3194};
3195
2dcb407e
JG
3196#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3197#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
3198
3199static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3200{
3ada9c12
DD
3201 q->setup = EZ(t->setup * 1000, T);
3202 q->act8b = EZ(t->act8b * 1000, T);
3203 q->rec8b = EZ(t->rec8b * 1000, T);
3204 q->cyc8b = EZ(t->cyc8b * 1000, T);
3205 q->active = EZ(t->active * 1000, T);
3206 q->recover = EZ(t->recover * 1000, T);
3207 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3208 q->cycle = EZ(t->cycle * 1000, T);
3209 q->udma = EZ(t->udma * 1000, UT);
452503f9
AC
3210}
3211
3212void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3213 struct ata_timing *m, unsigned int what)
3214{
3215 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3216 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3217 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3218 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3219 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3220 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3ada9c12 3221 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
452503f9
AC
3222 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3223 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3224}
3225
6357357c 3226const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 3227{
70cd071e
TH
3228 const struct ata_timing *t = ata_timing;
3229
3230 while (xfer_mode > t->mode)
3231 t++;
452503f9 3232
70cd071e
TH
3233 if (xfer_mode == t->mode)
3234 return t;
cd705d5a
BP
3235
3236 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3237 __func__, xfer_mode);
3238
70cd071e 3239 return NULL;
452503f9
AC
3240}
3241
3242int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3243 struct ata_timing *t, int T, int UT)
3244{
9e8808a9 3245 const u16 *id = adev->id;
452503f9
AC
3246 const struct ata_timing *s;
3247 struct ata_timing p;
3248
3249 /*
2e9edbf8 3250 * Find the mode.
75b1f2f8 3251 */
452503f9
AC
3252
3253 if (!(s = ata_timing_find_mode(speed)))
3254 return -EINVAL;
3255
75b1f2f8
AL
3256 memcpy(t, s, sizeof(*s));
3257
452503f9
AC
3258 /*
3259 * If the drive is an EIDE drive, it can tell us it needs extended
3260 * PIO/MW_DMA cycle timing.
3261 */
3262
9e8808a9 3263 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
452503f9 3264 memset(&p, 0, sizeof(p));
9e8808a9 3265
bff00256 3266 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
9e8808a9
BZ
3267 if (speed <= XFER_PIO_2)
3268 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3269 else if ((speed <= XFER_PIO_4) ||
3270 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3271 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3272 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3273 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3274
452503f9
AC
3275 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3276 }
3277
3278 /*
3279 * Convert the timing to bus clock counts.
3280 */
3281
75b1f2f8 3282 ata_timing_quantize(t, t, T, UT);
452503f9
AC
3283
3284 /*
c893a3ae
RD
3285 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3286 * S.M.A.R.T * and some other commands. We have to ensure that the
3287 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
3288 */
3289
fd3367af 3290 if (speed > XFER_PIO_6) {
452503f9
AC
3291 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3292 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3293 }
3294
3295 /*
c893a3ae 3296 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
3297 */
3298
3299 if (t->act8b + t->rec8b < t->cyc8b) {
3300 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3301 t->rec8b = t->cyc8b - t->act8b;
3302 }
3303
3304 if (t->active + t->recover < t->cycle) {
3305 t->active += (t->cycle - (t->active + t->recover)) / 2;
3306 t->recover = t->cycle - t->active;
3307 }
a617c09f 3308
4f701d1e
AC
3309 /* In a few cases quantisation may produce enough errors to
3310 leave t->cycle too low for the sum of active and recovery
3311 if so we must correct this */
3312 if (t->active + t->recover > t->cycle)
3313 t->cycle = t->active + t->recover;
452503f9
AC
3314
3315 return 0;
3316}
3317
a0f79b92
TH
3318/**
3319 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3320 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3321 * @cycle: cycle duration in ns
3322 *
3323 * Return matching xfer mode for @cycle. The returned mode is of
3324 * the transfer type specified by @xfer_shift. If @cycle is too
3325 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3326 * than the fastest known mode, the fasted mode is returned.
3327 *
3328 * LOCKING:
3329 * None.
3330 *
3331 * RETURNS:
3332 * Matching xfer_mode, 0xff if no match found.
3333 */
3334u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3335{
3336 u8 base_mode = 0xff, last_mode = 0xff;
3337 const struct ata_xfer_ent *ent;
3338 const struct ata_timing *t;
3339
3340 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3341 if (ent->shift == xfer_shift)
3342 base_mode = ent->base;
3343
3344 for (t = ata_timing_find_mode(base_mode);
3345 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3346 unsigned short this_cycle;
3347
3348 switch (xfer_shift) {
3349 case ATA_SHIFT_PIO:
3350 case ATA_SHIFT_MWDMA:
3351 this_cycle = t->cycle;
3352 break;
3353 case ATA_SHIFT_UDMA:
3354 this_cycle = t->udma;
3355 break;
3356 default:
3357 return 0xff;
3358 }
3359
3360 if (cycle > this_cycle)
3361 break;
3362
3363 last_mode = t->mode;
3364 }
3365
3366 return last_mode;
3367}
3368
cf176e1a
TH
3369/**
3370 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3371 * @dev: Device to adjust xfer masks
458337db 3372 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3373 *
3374 * Adjust xfer masks of @dev downward. Note that this function
3375 * does not apply the change. Invoking ata_set_mode() afterwards
3376 * will apply the limit.
3377 *
3378 * LOCKING:
3379 * Inherited from caller.
3380 *
3381 * RETURNS:
3382 * 0 on success, negative errno on failure
3383 */
458337db 3384int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3385{
458337db 3386 char buf[32];
7dc951ae
TH
3387 unsigned long orig_mask, xfer_mask;
3388 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3389 int quiet, highbit;
cf176e1a 3390
458337db
TH
3391 quiet = !!(sel & ATA_DNXFER_QUIET);
3392 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3393
458337db
TH
3394 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3395 dev->mwdma_mask,
3396 dev->udma_mask);
3397 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3398
458337db
TH
3399 switch (sel) {
3400 case ATA_DNXFER_PIO:
3401 highbit = fls(pio_mask) - 1;
3402 pio_mask &= ~(1 << highbit);
3403 break;
3404
3405 case ATA_DNXFER_DMA:
3406 if (udma_mask) {
3407 highbit = fls(udma_mask) - 1;
3408 udma_mask &= ~(1 << highbit);
3409 if (!udma_mask)
3410 return -ENOENT;
3411 } else if (mwdma_mask) {
3412 highbit = fls(mwdma_mask) - 1;
3413 mwdma_mask &= ~(1 << highbit);
3414 if (!mwdma_mask)
3415 return -ENOENT;
3416 }
3417 break;
3418
3419 case ATA_DNXFER_40C:
3420 udma_mask &= ATA_UDMA_MASK_40C;
3421 break;
3422
3423 case ATA_DNXFER_FORCE_PIO0:
3424 pio_mask &= 1;
3425 case ATA_DNXFER_FORCE_PIO:
3426 mwdma_mask = 0;
3427 udma_mask = 0;
3428 break;
3429
458337db
TH
3430 default:
3431 BUG();
3432 }
3433
3434 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3435
3436 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3437 return -ENOENT;
3438
3439 if (!quiet) {
3440 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3441 snprintf(buf, sizeof(buf), "%s:%s",
3442 ata_mode_string(xfer_mask),
3443 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3444 else
3445 snprintf(buf, sizeof(buf), "%s",
3446 ata_mode_string(xfer_mask));
3447
a9a79dfe 3448 ata_dev_warn(dev, "limiting speed to %s\n", buf);
458337db 3449 }
cf176e1a
TH
3450
3451 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3452 &dev->udma_mask);
3453
cf176e1a 3454 return 0;
cf176e1a
TH
3455}
3456
3373efd8 3457static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3458{
d0cb43b3 3459 struct ata_port *ap = dev->link->ap;
9af5c9c9 3460 struct ata_eh_context *ehc = &dev->link->eh_context;
d0cb43b3 3461 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
4055dee7
TH
3462 const char *dev_err_whine = "";
3463 int ign_dev_err = 0;
d0cb43b3 3464 unsigned int err_mask = 0;
83206a29 3465 int rc;
1da177e4 3466
e8384607 3467 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3468 if (dev->xfer_shift == ATA_SHIFT_PIO)
3469 dev->flags |= ATA_DFLAG_PIO;
3470
d0cb43b3
TH
3471 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3472 dev_err_whine = " (SET_XFERMODE skipped)";
3473 else {
3474 if (nosetxfer)
a9a79dfe
JP
3475 ata_dev_warn(dev,
3476 "NOSETXFER but PATA detected - can't "
3477 "skip SETXFER, might malfunction\n");
d0cb43b3
TH
3478 err_mask = ata_dev_set_xfermode(dev);
3479 }
2dcb407e 3480
4055dee7
TH
3481 if (err_mask & ~AC_ERR_DEV)
3482 goto fail;
3483
3484 /* revalidate */
3485 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3486 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3487 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3488 if (rc)
3489 return rc;
3490
b93fda12
AC
3491 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3492 /* Old CFA may refuse this command, which is just fine */
3493 if (ata_id_is_cfa(dev->id))
3494 ign_dev_err = 1;
3495 /* Catch several broken garbage emulations plus some pre
3496 ATA devices */
3497 if (ata_id_major_version(dev->id) == 0 &&
3498 dev->pio_mode <= XFER_PIO_2)
3499 ign_dev_err = 1;
3500 /* Some very old devices and some bad newer ones fail
3501 any kind of SET_XFERMODE request but support PIO0-2
3502 timings and no IORDY */
3503 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3504 ign_dev_err = 1;
3505 }
3acaf94b
AC
3506 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3507 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3508 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3509 dev->dma_mode == XFER_MW_DMA_0 &&
3510 (dev->id[63] >> 8) & 1)
4055dee7 3511 ign_dev_err = 1;
3acaf94b 3512
4055dee7
TH
3513 /* if the device is actually configured correctly, ignore dev err */
3514 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3515 ign_dev_err = 1;
1da177e4 3516
4055dee7
TH
3517 if (err_mask & AC_ERR_DEV) {
3518 if (!ign_dev_err)
3519 goto fail;
3520 else
3521 dev_err_whine = " (device error ignored)";
3522 }
48a8a14f 3523
23e71c3d
TH
3524 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3525 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3526
a9a79dfe
JP
3527 ata_dev_info(dev, "configured for %s%s\n",
3528 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3529 dev_err_whine);
4055dee7 3530
83206a29 3531 return 0;
4055dee7
TH
3532
3533 fail:
a9a79dfe 3534 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
4055dee7 3535 return -EIO;
1da177e4
LT
3536}
3537
1da177e4 3538/**
04351821 3539 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3540 * @link: link on which timings will be programmed
1967b7ff 3541 * @r_failed_dev: out parameter for failed device
1da177e4 3542 *
04351821
A
3543 * Standard implementation of the function used to tune and set
3544 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3545 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3546 * returned in @r_failed_dev.
780a87f7 3547 *
1da177e4 3548 * LOCKING:
0cba632b 3549 * PCI/etc. bus probe sem.
e82cbdb9
TH
3550 *
3551 * RETURNS:
3552 * 0 on success, negative errno otherwise
1da177e4 3553 */
04351821 3554
0260731f 3555int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3556{
0260731f 3557 struct ata_port *ap = link->ap;
e8e0619f 3558 struct ata_device *dev;
f58229f8 3559 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3560
a6d5a51c 3561 /* step 1: calculate xfer_mask */
1eca4365 3562 ata_for_each_dev(dev, link, ENABLED) {
7dc951ae 3563 unsigned long pio_mask, dma_mask;
b3a70601 3564 unsigned int mode_mask;
a6d5a51c 3565
b3a70601
AC
3566 mode_mask = ATA_DMA_MASK_ATA;
3567 if (dev->class == ATA_DEV_ATAPI)
3568 mode_mask = ATA_DMA_MASK_ATAPI;
3569 else if (ata_id_is_cfa(dev->id))
3570 mode_mask = ATA_DMA_MASK_CFA;
3571
3373efd8 3572 ata_dev_xfermask(dev);
33267325 3573 ata_force_xfermask(dev);
1da177e4 3574
acf356b1 3575 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
b3a70601
AC
3576
3577 if (libata_dma_mask & mode_mask)
80a9c430
SS
3578 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3579 dev->udma_mask);
b3a70601
AC
3580 else
3581 dma_mask = 0;
3582
acf356b1
TH
3583 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3584 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3585
4f65977d 3586 found = 1;
b15b3eba 3587 if (ata_dma_enabled(dev))
5444a6f4 3588 used_dma = 1;
a6d5a51c 3589 }
4f65977d 3590 if (!found)
e82cbdb9 3591 goto out;
a6d5a51c
TH
3592
3593 /* step 2: always set host PIO timings */
1eca4365 3594 ata_for_each_dev(dev, link, ENABLED) {
70cd071e 3595 if (dev->pio_mode == 0xff) {
a9a79dfe 3596 ata_dev_warn(dev, "no PIO support\n");
e8e0619f 3597 rc = -EINVAL;
e82cbdb9 3598 goto out;
e8e0619f
TH
3599 }
3600
3601 dev->xfer_mode = dev->pio_mode;
3602 dev->xfer_shift = ATA_SHIFT_PIO;
3603 if (ap->ops->set_piomode)
3604 ap->ops->set_piomode(ap, dev);
3605 }
1da177e4 3606
a6d5a51c 3607 /* step 3: set host DMA timings */
1eca4365
TH
3608 ata_for_each_dev(dev, link, ENABLED) {
3609 if (!ata_dma_enabled(dev))
e8e0619f
TH
3610 continue;
3611
3612 dev->xfer_mode = dev->dma_mode;
3613 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3614 if (ap->ops->set_dmamode)
3615 ap->ops->set_dmamode(ap, dev);
3616 }
1da177e4
LT
3617
3618 /* step 4: update devices' xfer mode */
1eca4365 3619 ata_for_each_dev(dev, link, ENABLED) {
3373efd8 3620 rc = ata_dev_set_mode(dev);
5bbc53f4 3621 if (rc)
e82cbdb9 3622 goto out;
83206a29 3623 }
1da177e4 3624
e8e0619f
TH
3625 /* Record simplex status. If we selected DMA then the other
3626 * host channels are not permitted to do so.
5444a6f4 3627 */
cca3974e 3628 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3629 ap->host->simplex_claimed = ap;
5444a6f4 3630
e82cbdb9
TH
3631 out:
3632 if (rc)
3633 *r_failed_dev = dev;
3634 return rc;
1da177e4
LT
3635}
3636
aa2731ad
TH
3637/**
3638 * ata_wait_ready - wait for link to become ready
3639 * @link: link to be waited on
3640 * @deadline: deadline jiffies for the operation
3641 * @check_ready: callback to check link readiness
3642 *
3643 * Wait for @link to become ready. @check_ready should return
3644 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3645 * link doesn't seem to be occupied, other errno for other error
3646 * conditions.
3647 *
3648 * Transient -ENODEV conditions are allowed for
3649 * ATA_TMOUT_FF_WAIT.
3650 *
3651 * LOCKING:
3652 * EH context.
3653 *
3654 * RETURNS:
c9b5560a 3655 * 0 if @link is ready before @deadline; otherwise, -errno.
aa2731ad
TH
3656 */
3657int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3658 int (*check_ready)(struct ata_link *link))
3659{
3660 unsigned long start = jiffies;
b48d58f5 3661 unsigned long nodev_deadline;
aa2731ad
TH
3662 int warned = 0;
3663
b48d58f5
TH
3664 /* choose which 0xff timeout to use, read comment in libata.h */
3665 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3666 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3667 else
3668 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3669
b1c72916
TH
3670 /* Slave readiness can't be tested separately from master. On
3671 * M/S emulation configuration, this function should be called
3672 * only on the master and it will handle both master and slave.
3673 */
3674 WARN_ON(link == link->ap->slave_link);
3675
aa2731ad
TH
3676 if (time_after(nodev_deadline, deadline))
3677 nodev_deadline = deadline;
3678
3679 while (1) {
3680 unsigned long now = jiffies;
3681 int ready, tmp;
3682
3683 ready = tmp = check_ready(link);
3684 if (ready > 0)
3685 return 0;
3686
b48d58f5
TH
3687 /*
3688 * -ENODEV could be transient. Ignore -ENODEV if link
aa2731ad 3689 * is online. Also, some SATA devices take a long
b48d58f5
TH
3690 * time to clear 0xff after reset. Wait for
3691 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3692 * offline.
aa2731ad
TH
3693 *
3694 * Note that some PATA controllers (pata_ali) explode
3695 * if status register is read more than once when
3696 * there's no device attached.
3697 */
3698 if (ready == -ENODEV) {
3699 if (ata_link_online(link))
3700 ready = 0;
3701 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3702 !ata_link_offline(link) &&
3703 time_before(now, nodev_deadline))
3704 ready = 0;
3705 }
3706
3707 if (ready)
3708 return ready;
3709 if (time_after(now, deadline))
3710 return -EBUSY;
3711
3712 if (!warned && time_after(now, start + 5 * HZ) &&
3713 (deadline - now > 3 * HZ)) {
a9a79dfe 3714 ata_link_warn(link,
aa2731ad
TH
3715 "link is slow to respond, please be patient "
3716 "(ready=%d)\n", tmp);
3717 warned = 1;
3718 }
3719
97750ceb 3720 ata_msleep(link->ap, 50);
aa2731ad
TH
3721 }
3722}
3723
3724/**
3725 * ata_wait_after_reset - wait for link to become ready after reset
3726 * @link: link to be waited on
3727 * @deadline: deadline jiffies for the operation
3728 * @check_ready: callback to check link readiness
3729 *
3730 * Wait for @link to become ready after reset.
3731 *
3732 * LOCKING:
3733 * EH context.
3734 *
3735 * RETURNS:
c9b5560a 3736 * 0 if @link is ready before @deadline; otherwise, -errno.
aa2731ad 3737 */
2b4221bb 3738int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3739 int (*check_ready)(struct ata_link *link))
3740{
97750ceb 3741 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3742
3743 return ata_wait_ready(link, deadline, check_ready);
3744}
3745
d7bb4cc7 3746/**
936fd732
TH
3747 * sata_link_debounce - debounce SATA phy status
3748 * @link: ATA link to debounce SATA phy status for
c9b5560a 3749 * @params: timing parameters { interval, duration, timeout } in msec
d4b2bab4 3750 * @deadline: deadline jiffies for the operation
d7bb4cc7 3751 *
1152b261 3752 * Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3753 * holding the same value where DET is not 1 for @duration polled
3754 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3755 * beginning of the stable state. Because DET gets stuck at 1 on
3756 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3757 * until timeout then returns 0 if DET is stable at 1.
3758 *
d4b2bab4
TH
3759 * @timeout is further limited by @deadline. The sooner of the
3760 * two is used.
3761 *
d7bb4cc7
TH
3762 * LOCKING:
3763 * Kernel thread context (may sleep)
3764 *
3765 * RETURNS:
3766 * 0 on success, -errno on failure.
3767 */
936fd732
TH
3768int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3769 unsigned long deadline)
7a7921e8 3770{
341c2c95
TH
3771 unsigned long interval = params[0];
3772 unsigned long duration = params[1];
d4b2bab4 3773 unsigned long last_jiffies, t;
d7bb4cc7
TH
3774 u32 last, cur;
3775 int rc;
3776
341c2c95 3777 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3778 if (time_before(t, deadline))
3779 deadline = t;
3780
936fd732 3781 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3782 return rc;
3783 cur &= 0xf;
3784
3785 last = cur;
3786 last_jiffies = jiffies;
3787
3788 while (1) {
97750ceb 3789 ata_msleep(link->ap, interval);
936fd732 3790 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3791 return rc;
3792 cur &= 0xf;
3793
3794 /* DET stable? */
3795 if (cur == last) {
d4b2bab4 3796 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3797 continue;
341c2c95
TH
3798 if (time_after(jiffies,
3799 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3800 return 0;
3801 continue;
3802 }
3803
3804 /* unstable, start over */
3805 last = cur;
3806 last_jiffies = jiffies;
3807
f1545154
TH
3808 /* Check deadline. If debouncing failed, return
3809 * -EPIPE to tell upper layer to lower link speed.
3810 */
d4b2bab4 3811 if (time_after(jiffies, deadline))
f1545154 3812 return -EPIPE;
d7bb4cc7
TH
3813 }
3814}
3815
3816/**
936fd732
TH
3817 * sata_link_resume - resume SATA link
3818 * @link: ATA link to resume SATA
c9b5560a 3819 * @params: timing parameters { interval, duration, timeout } in msec
d4b2bab4 3820 * @deadline: deadline jiffies for the operation
d7bb4cc7 3821 *
936fd732 3822 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3823 *
3824 * LOCKING:
3825 * Kernel thread context (may sleep)
3826 *
3827 * RETURNS:
3828 * 0 on success, -errno on failure.
3829 */
936fd732
TH
3830int sata_link_resume(struct ata_link *link, const unsigned long *params,
3831 unsigned long deadline)
d7bb4cc7 3832{
5040ab67 3833 int tries = ATA_LINK_RESUME_TRIES;
ac371987 3834 u32 scontrol, serror;
81952c54
TH
3835 int rc;
3836
936fd732 3837 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3838 return rc;
7a7921e8 3839
5040ab67
TH
3840 /*
3841 * Writes to SControl sometimes get ignored under certain
3842 * controllers (ata_piix SIDPR). Make sure DET actually is
3843 * cleared.
3844 */
3845 do {
3846 scontrol = (scontrol & 0x0f0) | 0x300;
3847 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3848 return rc;
3849 /*
3850 * Some PHYs react badly if SStatus is pounded
3851 * immediately after resuming. Delay 200ms before
3852 * debouncing.
3853 */
e39b2bb3
DP
3854 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3855 ata_msleep(link->ap, 200);
81952c54 3856
5040ab67
TH
3857 /* is SControl restored correctly? */
3858 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3859 return rc;
3860 } while ((scontrol & 0xf0f) != 0x300 && --tries);
7a7921e8 3861
5040ab67 3862 if ((scontrol & 0xf0f) != 0x300) {
38941c95 3863 ata_link_warn(link, "failed to resume link (SControl %X)\n",
a9a79dfe 3864 scontrol);
5040ab67
TH
3865 return 0;
3866 }
3867
3868 if (tries < ATA_LINK_RESUME_TRIES)
a9a79dfe
JP
3869 ata_link_warn(link, "link resume succeeded after %d retries\n",
3870 ATA_LINK_RESUME_TRIES - tries);
7a7921e8 3871
ac371987
TH
3872 if ((rc = sata_link_debounce(link, params, deadline)))
3873 return rc;
3874
f046519f 3875 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3876 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3877 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3878
f046519f 3879 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3880}
3881
1152b261
TH
3882/**
3883 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3884 * @link: ATA link to manipulate SControl for
3885 * @policy: LPM policy to configure
3886 * @spm_wakeup: initiate LPM transition to active state
3887 *
3888 * Manipulate the IPM field of the SControl register of @link
3889 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3890 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3891 * the link. This function also clears PHYRDY_CHG before
3892 * returning.
3893 *
3894 * LOCKING:
3895 * EH context.
3896 *
3897 * RETURNS:
8485187b 3898 * 0 on success, -errno otherwise.
1152b261
TH
3899 */
3900int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3901 bool spm_wakeup)
3902{
3903 struct ata_eh_context *ehc = &link->eh_context;
3904 bool woken_up = false;
3905 u32 scontrol;
3906 int rc;
3907
3908 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3909 if (rc)
3910 return rc;
3911
3912 switch (policy) {
3913 case ATA_LPM_MAX_POWER:
3914 /* disable all LPM transitions */
65fe1f0f 3915 scontrol |= (0x7 << 8);
1152b261
TH
3916 /* initiate transition to active state */
3917 if (spm_wakeup) {
3918 scontrol |= (0x4 << 12);
3919 woken_up = true;
3920 }
3921 break;
3922 case ATA_LPM_MED_POWER:
3923 /* allow LPM to PARTIAL */
3924 scontrol &= ~(0x1 << 8);
65fe1f0f 3925 scontrol |= (0x6 << 8);
1152b261
TH
3926 break;
3927 case ATA_LPM_MIN_POWER:
8a745f1f
KCA
3928 if (ata_link_nr_enabled(link) > 0)
3929 /* no restrictions on LPM transitions */
65fe1f0f 3930 scontrol &= ~(0x7 << 8);
8a745f1f
KCA
3931 else {
3932 /* empty port, power off */
3933 scontrol &= ~0xf;
3934 scontrol |= (0x1 << 2);
3935 }
1152b261
TH
3936 break;
3937 default:
3938 WARN_ON(1);
3939 }
3940
3941 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3942 if (rc)
3943 return rc;
3944
3945 /* give the link time to transit out of LPM state */
3946 if (woken_up)
3947 msleep(10);
3948
3949 /* clear PHYRDY_CHG from SError */
3950 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3951 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3952}
3953
f5914a46 3954/**
0aa1113d 3955 * ata_std_prereset - prepare for reset
cc0680a5 3956 * @link: ATA link to be reset
d4b2bab4 3957 * @deadline: deadline jiffies for the operation
f5914a46 3958 *
cc0680a5 3959 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3960 * prereset makes libata abort whole reset sequence and give up
3961 * that port, so prereset should be best-effort. It does its
3962 * best to prepare for reset sequence but if things go wrong, it
3963 * should just whine, not fail.
f5914a46
TH
3964 *
3965 * LOCKING:
3966 * Kernel thread context (may sleep)
3967 *
3968 * RETURNS:
3969 * 0 on success, -errno otherwise.
3970 */
0aa1113d 3971int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3972{
cc0680a5 3973 struct ata_port *ap = link->ap;
936fd732 3974 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3975 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3976 int rc;
3977
f5914a46
TH
3978 /* if we're about to do hardreset, nothing more to do */
3979 if (ehc->i.action & ATA_EH_HARDRESET)
3980 return 0;
3981
936fd732 3982 /* if SATA, resume link */
a16abc0b 3983 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3984 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3985 /* whine about phy resume failure but proceed */
3986 if (rc && rc != -EOPNOTSUPP)
a9a79dfe
JP
3987 ata_link_warn(link,
3988 "failed to resume link for reset (errno=%d)\n",
3989 rc);
f5914a46
TH
3990 }
3991
45db2f6c 3992 /* no point in trying softreset on offline link */
b1c72916 3993 if (ata_phys_link_offline(link))
45db2f6c
TH
3994 ehc->i.action &= ~ATA_EH_SOFTRESET;
3995
f5914a46
TH
3996 return 0;
3997}
3998
c2bd5804 3999/**
624d5c51
TH
4000 * sata_link_hardreset - reset link via SATA phy reset
4001 * @link: link to reset
c9b5560a 4002 * @timing: timing parameters { interval, duration, timeout } in msec
d4b2bab4 4003 * @deadline: deadline jiffies for the operation
9dadd45b
TH
4004 * @online: optional out parameter indicating link onlineness
4005 * @check_ready: optional callback to check link readiness
c2bd5804 4006 *
624d5c51 4007 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
4008 * After hardreset, link readiness is waited upon using
4009 * ata_wait_ready() if @check_ready is specified. LLDs are
4010 * allowed to not specify @check_ready and wait itself after this
4011 * function returns. Device classification is LLD's
4012 * responsibility.
4013 *
4014 * *@online is set to one iff reset succeeded and @link is online
4015 * after reset.
c2bd5804
TH
4016 *
4017 * LOCKING:
4018 * Kernel thread context (may sleep)
4019 *
4020 * RETURNS:
4021 * 0 on success, -errno otherwise.
4022 */
624d5c51 4023int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
4024 unsigned long deadline,
4025 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 4026{
624d5c51 4027 u32 scontrol;
81952c54 4028 int rc;
852ee16a 4029
c2bd5804
TH
4030 DPRINTK("ENTER\n");
4031
9dadd45b
TH
4032 if (online)
4033 *online = false;
4034
936fd732 4035 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
4036 /* SATA spec says nothing about how to reconfigure
4037 * spd. To be on the safe side, turn off phy during
4038 * reconfiguration. This works for at least ICH7 AHCI
4039 * and Sil3124.
4040 */
936fd732 4041 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 4042 goto out;
81952c54 4043
a34b6fc0 4044 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 4045
936fd732 4046 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 4047 goto out;
1c3fae4d 4048
936fd732 4049 sata_set_spd(link);
1c3fae4d
TH
4050 }
4051
4052 /* issue phy wake/reset */
936fd732 4053 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 4054 goto out;
81952c54 4055
852ee16a 4056 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 4057
936fd732 4058 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 4059 goto out;
c2bd5804 4060
1c3fae4d 4061 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
4062 * 10.4.2 says at least 1 ms.
4063 */
97750ceb 4064 ata_msleep(link->ap, 1);
c2bd5804 4065
936fd732
TH
4066 /* bring link back */
4067 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
4068 if (rc)
4069 goto out;
4070 /* if link is offline nothing more to do */
b1c72916 4071 if (ata_phys_link_offline(link))
9dadd45b
TH
4072 goto out;
4073
4074 /* Link is online. From this point, -ENODEV too is an error. */
4075 if (online)
4076 *online = true;
4077
071f44b1 4078 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
4079 /* If PMP is supported, we have to do follow-up SRST.
4080 * Some PMPs don't send D2H Reg FIS after hardreset if
4081 * the first port is empty. Wait only for
4082 * ATA_TMOUT_PMP_SRST_WAIT.
4083 */
4084 if (check_ready) {
4085 unsigned long pmp_deadline;
4086
341c2c95
TH
4087 pmp_deadline = ata_deadline(jiffies,
4088 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
4089 if (time_after(pmp_deadline, deadline))
4090 pmp_deadline = deadline;
4091 ata_wait_ready(link, pmp_deadline, check_ready);
4092 }
4093 rc = -EAGAIN;
4094 goto out;
4095 }
4096
4097 rc = 0;
4098 if (check_ready)
4099 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 4100 out:
0cbf0711
TH
4101 if (rc && rc != -EAGAIN) {
4102 /* online is set iff link is online && reset succeeded */
4103 if (online)
4104 *online = false;
a9a79dfe 4105 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
0cbf0711 4106 }
b6103f6d
TH
4107 DPRINTK("EXIT, rc=%d\n", rc);
4108 return rc;
4109}
4110
57c9efdf
TH
4111/**
4112 * sata_std_hardreset - COMRESET w/o waiting or classification
4113 * @link: link to reset
4114 * @class: resulting class of attached device
4115 * @deadline: deadline jiffies for the operation
4116 *
4117 * Standard SATA COMRESET w/o waiting or classification.
4118 *
4119 * LOCKING:
4120 * Kernel thread context (may sleep)
4121 *
4122 * RETURNS:
4123 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4124 */
4125int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4126 unsigned long deadline)
4127{
4128 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4129 bool online;
4130 int rc;
4131
4132 /* do hardreset */
4133 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
4134 return online ? -EAGAIN : rc;
4135}
4136
c2bd5804 4137/**
203c75b8 4138 * ata_std_postreset - standard postreset callback
cc0680a5 4139 * @link: the target ata_link
c2bd5804
TH
4140 * @classes: classes of attached devices
4141 *
4142 * This function is invoked after a successful reset. Note that
4143 * the device might have been reset more than once using
4144 * different reset methods before postreset is invoked.
c2bd5804 4145 *
c2bd5804
TH
4146 * LOCKING:
4147 * Kernel thread context (may sleep)
4148 */
203c75b8 4149void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 4150{
f046519f
TH
4151 u32 serror;
4152
c2bd5804
TH
4153 DPRINTK("ENTER\n");
4154
f046519f
TH
4155 /* reset complete, clear SError */
4156 if (!sata_scr_read(link, SCR_ERROR, &serror))
4157 sata_scr_write(link, SCR_ERROR, serror);
4158
c2bd5804 4159 /* print link status */
936fd732 4160 sata_print_link_status(link);
c2bd5804 4161
c2bd5804
TH
4162 DPRINTK("EXIT\n");
4163}
4164
623a3128
TH
4165/**
4166 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
4167 * @dev: device to compare against
4168 * @new_class: class of the new device
4169 * @new_id: IDENTIFY page of the new device
4170 *
4171 * Compare @new_class and @new_id against @dev and determine
4172 * whether @dev is the device indicated by @new_class and
4173 * @new_id.
4174 *
4175 * LOCKING:
4176 * None.
4177 *
4178 * RETURNS:
4179 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4180 */
3373efd8
TH
4181static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4182 const u16 *new_id)
623a3128
TH
4183{
4184 const u16 *old_id = dev->id;
a0cf733b
TH
4185 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4186 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
4187
4188 if (dev->class != new_class) {
a9a79dfe
JP
4189 ata_dev_info(dev, "class mismatch %d != %d\n",
4190 dev->class, new_class);
623a3128
TH
4191 return 0;
4192 }
4193
a0cf733b
TH
4194 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4195 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4196 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4197 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
4198
4199 if (strcmp(model[0], model[1])) {
a9a79dfe
JP
4200 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4201 model[0], model[1]);
623a3128
TH
4202 return 0;
4203 }
4204
4205 if (strcmp(serial[0], serial[1])) {
a9a79dfe
JP
4206 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4207 serial[0], serial[1]);
623a3128
TH
4208 return 0;
4209 }
4210
623a3128
TH
4211 return 1;
4212}
4213
4214/**
fe30911b 4215 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4216 * @dev: target ATA device
bff04647 4217 * @readid_flags: read ID flags
623a3128
TH
4218 *
4219 * Re-read IDENTIFY page and make sure @dev is still attached to
4220 * the port.
4221 *
4222 * LOCKING:
4223 * Kernel thread context (may sleep)
4224 *
4225 * RETURNS:
4226 * 0 on success, negative errno otherwise
4227 */
fe30911b 4228int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4229{
5eb45c02 4230 unsigned int class = dev->class;
9af5c9c9 4231 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4232 int rc;
4233
fe635c7e 4234 /* read ID data */
bff04647 4235 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4236 if (rc)
fe30911b 4237 return rc;
623a3128
TH
4238
4239 /* is the device still there? */
fe30911b
TH
4240 if (!ata_dev_same_device(dev, class, id))
4241 return -ENODEV;
623a3128 4242
fe635c7e 4243 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4244 return 0;
4245}
4246
4247/**
4248 * ata_dev_revalidate - Revalidate ATA device
4249 * @dev: device to revalidate
422c9daa 4250 * @new_class: new class code
fe30911b
TH
4251 * @readid_flags: read ID flags
4252 *
4253 * Re-read IDENTIFY page, make sure @dev is still attached to the
4254 * port and reconfigure it according to the new IDENTIFY page.
4255 *
4256 * LOCKING:
4257 * Kernel thread context (may sleep)
4258 *
4259 * RETURNS:
4260 * 0 on success, negative errno otherwise
4261 */
422c9daa
TH
4262int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4263 unsigned int readid_flags)
fe30911b 4264{
6ddcd3b0 4265 u64 n_sectors = dev->n_sectors;
5920dadf 4266 u64 n_native_sectors = dev->n_native_sectors;
fe30911b
TH
4267 int rc;
4268
4269 if (!ata_dev_enabled(dev))
4270 return -ENODEV;
4271
422c9daa
TH
4272 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4273 if (ata_class_enabled(new_class) &&
f0d0613d
BP
4274 new_class != ATA_DEV_ATA &&
4275 new_class != ATA_DEV_ATAPI &&
9162c657 4276 new_class != ATA_DEV_ZAC &&
f0d0613d 4277 new_class != ATA_DEV_SEMB) {
a9a79dfe
JP
4278 ata_dev_info(dev, "class mismatch %u != %u\n",
4279 dev->class, new_class);
422c9daa
TH
4280 rc = -ENODEV;
4281 goto fail;
4282 }
4283
fe30911b
TH
4284 /* re-read ID */
4285 rc = ata_dev_reread_id(dev, readid_flags);
4286 if (rc)
4287 goto fail;
623a3128
TH
4288
4289 /* configure device according to the new ID */
efdaedc4 4290 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4291 if (rc)
4292 goto fail;
4293
4294 /* verify n_sectors hasn't changed */
445d211b
TH
4295 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4296 dev->n_sectors == n_sectors)
4297 return 0;
4298
4299 /* n_sectors has changed */
a9a79dfe
JP
4300 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4301 (unsigned long long)n_sectors,
4302 (unsigned long long)dev->n_sectors);
445d211b
TH
4303
4304 /*
4305 * Something could have caused HPA to be unlocked
4306 * involuntarily. If n_native_sectors hasn't changed and the
4307 * new size matches it, keep the device.
4308 */
4309 if (dev->n_native_sectors == n_native_sectors &&
4310 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
a9a79dfe
JP
4311 ata_dev_warn(dev,
4312 "new n_sectors matches native, probably "
4313 "late HPA unlock, n_sectors updated\n");
68939ce5 4314 /* use the larger n_sectors */
445d211b 4315 return 0;
6ddcd3b0
TH
4316 }
4317
445d211b
TH
4318 /*
4319 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4320 * unlocking HPA in those cases.
4321 *
4322 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4323 */
4324 if (dev->n_native_sectors == n_native_sectors &&
4325 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4326 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
a9a79dfe
JP
4327 ata_dev_warn(dev,
4328 "old n_sectors matches native, probably "
4329 "late HPA lock, will try to unlock HPA\n");
445d211b
TH
4330 /* try unlocking HPA */
4331 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4332 rc = -EIO;
4333 } else
4334 rc = -ENODEV;
623a3128 4335
445d211b
TH
4336 /* restore original n_[native_]sectors and fail */
4337 dev->n_native_sectors = n_native_sectors;
4338 dev->n_sectors = n_sectors;
623a3128 4339 fail:
a9a79dfe 4340 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4341 return rc;
4342}
4343
6919a0a6
AC
4344struct ata_blacklist_entry {
4345 const char *model_num;
4346 const char *model_rev;
4347 unsigned long horkage;
4348};
4349
4350static const struct ata_blacklist_entry ata_device_blacklist [] = {
4351 /* Devices with DMA related problems under Linux */
4352 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4353 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4354 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4355 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4356 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4357 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4358 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4359 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4360 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
7da4c935 4361 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4362 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4363 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4364 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4365 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4366 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
7da4c935 4367 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4368 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4369 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4370 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4371 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4372 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4373 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4374 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4375 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4376 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4377 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4378 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4379 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
d17d794c 4380 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
b00622fc 4381 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
3af9a77a 4382 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4383 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4384
18d6e9d5 4385 /* Weird ATAPI devices */
40a1d531 4386 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
6a87e42e 4387 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
a32450e1 4388 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
0523f037 4389 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
18d6e9d5 4390
af34d637
DM
4391 /*
4392 * Causes silent data corruption with higher max sects.
4393 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4394 */
4395 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
1488a1e3
TH
4396
4397 /*
e0edc8c5 4398 * These devices time out with higher max sects.
1488a1e3
TH
4399 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4400 */
e0edc8c5 4401 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
af34d637 4402
6919a0a6
AC
4403 /* Devices we expect to fail diagnostics */
4404
4405 /* Devices where NCQ should be avoided */
4406 /* NCQ is slow */
2dcb407e 4407 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4408 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4409 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4410 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4411 /* NCQ is broken */
539cc7c7 4412 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4413 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4414 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4415 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
5ccfca97 4416 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
539cc7c7 4417
ac70a964 4418 /* Seagate NCQ + FLUSH CACHE firmware bug */
4d1f9082 4419 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964 4420 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4421
4d1f9082 4422 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4423 ATA_HORKAGE_FIRMWARE_WARN },
4424
4d1f9082 4425 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4426 ATA_HORKAGE_FIRMWARE_WARN },
4427
4d1f9082 4428 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964
TH
4429 ATA_HORKAGE_FIRMWARE_WARN },
4430
08c85d2a 4431 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
87809942 4432 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
b28a613e 4433 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
08c85d2a 4434 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
87809942 4435
36e337d0
RH
4436 /* Blacklist entries taken from Silicon Image 3124/3132
4437 Windows driver .inf file - also several Linux problem reports */
4438 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4439 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4440 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4441
68b0ddb2
TH
4442 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4443 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4444
16c55b03
TH
4445 /* devices which puke on READ_NATIVE_MAX */
4446 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4447 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4448 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4449 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4450
7831387b
TH
4451 /* this one allows HPA unlocking but fails IOs on the area */
4452 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4453
93328e11
AC
4454 /* Devices which report 1 sector over size HPA */
4455 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4456 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4457 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4458
6bbfd53d
AC
4459 /* Devices which get the IVB wrong */
4460 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5 4461 /* Maybe we should just blacklist TSSTcorp... */
7da4c935 4462 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
6bbfd53d 4463
9ce8e307
JA
4464 /* Devices that do not need bridging limits applied */
4465 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
04d0f1b8 4466 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
9ce8e307 4467
9062712f
TH
4468 /* Devices which aren't very happy with higher link speeds */
4469 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
c531077f 4470 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
9062712f 4471
d0cb43b3
TH
4472 /*
4473 * Devices which choke on SETXFER. Applies only if both the
4474 * device and controller are SATA.
4475 */
cd691876 4476 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
3a25179e
VL
4477 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4478 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
cd691876
TH
4479 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4480 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
d0cb43b3 4481
f78dea06 4482 /* devices that don't properly handle queued TRIM commands */
243918be 4483 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
ff7f53fb
MP
4484 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4485 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4486 ATA_HORKAGE_ZERO_AFTER_TRIM, },
9051bd39 4487 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
ff7f53fb
MP
4488 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4489 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4490 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4491 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
e61f7d1c 4492 ATA_HORKAGE_ZERO_AFTER_TRIM, },
9a9324d3 4493 { "Samsung SSD 8*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
6fc4d97a 4494 ATA_HORKAGE_ZERO_AFTER_TRIM, },
7a7184b0
GA
4495 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4496 ATA_HORKAGE_ZERO_AFTER_TRIM, },
e61f7d1c 4497
cda57b1b
AF
4498 /* devices that don't properly handle TRIM commands */
4499 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4500
e61f7d1c
MP
4501 /*
4502 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4503 * (Return Zero After Trim) flags in the ATA Command Set are
4504 * unreliable in the sense that they only define what happens if
4505 * the device successfully executed the DSM TRIM command. TRIM
4506 * is only advisory, however, and the device is free to silently
4507 * ignore all or parts of the request.
4508 *
4509 * Whitelist drives that are known to reliably return zeroes
4510 * after TRIM.
4511 */
4512
4513 /*
4514 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4515 * that model before whitelisting all other intel SSDs.
4516 */
4517 { "INTEL*SSDSC2MH*", NULL, 0, },
4518
ff7f53fb
MP
4519 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4520 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
e61f7d1c
MP
4521 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4522 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4523 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4524 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4525 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
f78dea06 4526
ecd75ad5
TH
4527 /*
4528 * Some WD SATA-I drives spin up and down erratically when the link
4529 * is put into the slumber mode. We don't have full list of the
4530 * affected devices. Disable LPM if the device matches one of the
4531 * known prefixes and is SATA-1. As a side effect LPM partial is
4532 * lost too.
4533 *
4534 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4535 */
4536 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4537 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4538 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4539 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4540 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4541 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4542 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4543
6919a0a6
AC
4544 /* End Marker */
4545 { }
1da177e4 4546};
2e9edbf8 4547
75683fe7 4548static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4549{
8bfa79fc
TH
4550 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4551 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4552 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4553
8bfa79fc
TH
4554 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4555 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4556
6919a0a6 4557 while (ad->model_num) {
1c402799 4558 if (glob_match(ad->model_num, model_num)) {
6919a0a6
AC
4559 if (ad->model_rev == NULL)
4560 return ad->horkage;
1c402799 4561 if (glob_match(ad->model_rev, model_rev))
6919a0a6 4562 return ad->horkage;
f4b15fef 4563 }
6919a0a6 4564 ad++;
f4b15fef 4565 }
1da177e4
LT
4566 return 0;
4567}
4568
6919a0a6
AC
4569static int ata_dma_blacklisted(const struct ata_device *dev)
4570{
4571 /* We don't support polling DMA.
4572 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4573 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4574 */
9af5c9c9 4575 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4576 (dev->flags & ATA_DFLAG_CDB_INTR))
4577 return 1;
75683fe7 4578 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4579}
4580
6bbfd53d
AC
4581/**
4582 * ata_is_40wire - check drive side detection
4583 * @dev: device
4584 *
4585 * Perform drive side detection decoding, allowing for device vendors
4586 * who can't follow the documentation.
4587 */
4588
4589static int ata_is_40wire(struct ata_device *dev)
4590{
4591 if (dev->horkage & ATA_HORKAGE_IVB)
4592 return ata_drive_40wire_relaxed(dev->id);
4593 return ata_drive_40wire(dev->id);
4594}
4595
15a5551c
AC
4596/**
4597 * cable_is_40wire - 40/80/SATA decider
4598 * @ap: port to consider
4599 *
4600 * This function encapsulates the policy for speed management
4601 * in one place. At the moment we don't cache the result but
4602 * there is a good case for setting ap->cbl to the result when
4603 * we are called with unknown cables (and figuring out if it
4604 * impacts hotplug at all).
4605 *
4606 * Return 1 if the cable appears to be 40 wire.
4607 */
4608
4609static int cable_is_40wire(struct ata_port *ap)
4610{
4611 struct ata_link *link;
4612 struct ata_device *dev;
4613
4a9c7b33 4614 /* If the controller thinks we are 40 wire, we are. */
15a5551c
AC
4615 if (ap->cbl == ATA_CBL_PATA40)
4616 return 1;
4a9c7b33
TH
4617
4618 /* If the controller thinks we are 80 wire, we are. */
15a5551c
AC
4619 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4620 return 0;
4a9c7b33
TH
4621
4622 /* If the system is known to be 40 wire short cable (eg
4623 * laptop), then we allow 80 wire modes even if the drive
4624 * isn't sure.
4625 */
f792068e
AC
4626 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4627 return 0;
4a9c7b33
TH
4628
4629 /* If the controller doesn't know, we scan.
4630 *
4631 * Note: We look for all 40 wire detects at this point. Any
4632 * 80 wire detect is taken to be 80 wire cable because
4633 * - in many setups only the one drive (slave if present) will
4634 * give a valid detect
4635 * - if you have a non detect capable drive you don't want it
4636 * to colour the choice
4637 */
1eca4365
TH
4638 ata_for_each_link(link, ap, EDGE) {
4639 ata_for_each_dev(dev, link, ENABLED) {
4640 if (!ata_is_40wire(dev))
15a5551c
AC
4641 return 0;
4642 }
4643 }
4644 return 1;
4645}
4646
a6d5a51c
TH
4647/**
4648 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4649 * @dev: Device to compute xfermask for
4650 *
acf356b1
TH
4651 * Compute supported xfermask of @dev and store it in
4652 * dev->*_mask. This function is responsible for applying all
4653 * known limits including host controller limits, device
4654 * blacklist, etc...
a6d5a51c
TH
4655 *
4656 * LOCKING:
4657 * None.
a6d5a51c 4658 */
3373efd8 4659static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4660{
9af5c9c9
TH
4661 struct ata_link *link = dev->link;
4662 struct ata_port *ap = link->ap;
cca3974e 4663 struct ata_host *host = ap->host;
a6d5a51c 4664 unsigned long xfer_mask;
1da177e4 4665
37deecb5 4666 /* controller modes available */
565083e1
TH
4667 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4668 ap->mwdma_mask, ap->udma_mask);
4669
8343f889 4670 /* drive modes available */
37deecb5
TH
4671 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4672 dev->mwdma_mask, dev->udma_mask);
4673 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4674
b352e57d
AC
4675 /*
4676 * CFA Advanced TrueIDE timings are not allowed on a shared
4677 * cable
4678 */
4679 if (ata_dev_pair(dev)) {
4680 /* No PIO5 or PIO6 */
4681 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4682 /* No MWDMA3 or MWDMA 4 */
4683 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4684 }
4685
37deecb5
TH
4686 if (ata_dma_blacklisted(dev)) {
4687 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4688 ata_dev_warn(dev,
4689 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4690 }
a6d5a51c 4691
14d66ab7 4692 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4693 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5 4694 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4695 ata_dev_warn(dev,
4696 "simplex DMA is claimed by other device, disabling DMA\n");
5444a6f4 4697 }
565083e1 4698
e424675f
JG
4699 if (ap->flags & ATA_FLAG_NO_IORDY)
4700 xfer_mask &= ata_pio_mask_no_iordy(dev);
4701
5444a6f4 4702 if (ap->ops->mode_filter)
a76b62ca 4703 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4704
8343f889
RH
4705 /* Apply cable rule here. Don't apply it early because when
4706 * we handle hot plug the cable type can itself change.
4707 * Check this last so that we know if the transfer rate was
4708 * solely limited by the cable.
4709 * Unknown or 80 wire cables reported host side are checked
4710 * drive side as well. Cases where we know a 40wire cable
4711 * is used safely for 80 are not checked here.
4712 */
4713 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4714 /* UDMA/44 or higher would be available */
15a5551c 4715 if (cable_is_40wire(ap)) {
a9a79dfe
JP
4716 ata_dev_warn(dev,
4717 "limited to UDMA/33 due to 40-wire cable\n");
8343f889
RH
4718 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4719 }
4720
565083e1
TH
4721 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4722 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4723}
4724
1da177e4
LT
4725/**
4726 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4727 * @dev: Device to which command will be sent
4728 *
780a87f7
JG
4729 * Issue SET FEATURES - XFER MODE command to device @dev
4730 * on port @ap.
4731 *
1da177e4 4732 * LOCKING:
0cba632b 4733 * PCI/etc. bus probe sem.
83206a29
TH
4734 *
4735 * RETURNS:
4736 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4737 */
4738
3373efd8 4739static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4740{
a0123703 4741 struct ata_taskfile tf;
83206a29 4742 unsigned int err_mask;
1da177e4
LT
4743
4744 /* set up set-features taskfile */
4745 DPRINTK("set features - xfer mode\n");
4746
464cf177
TH
4747 /* Some controllers and ATAPI devices show flaky interrupt
4748 * behavior after setting xfer mode. Use polling instead.
4749 */
3373efd8 4750 ata_tf_init(dev, &tf);
a0123703
TH
4751 tf.command = ATA_CMD_SET_FEATURES;
4752 tf.feature = SETFEATURES_XFER;
464cf177 4753 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4754 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4755 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4756 if (ata_pio_need_iordy(dev))
4757 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4758 /* If the device has IORDY and the controller does not - turn it off */
4759 else if (ata_id_has_iordy(dev->id))
11b7becc 4760 tf.nsect = 0x01;
b9f8ab2d
AC
4761 else /* In the ancient relic department - skip all of this */
4762 return 0;
1da177e4 4763
d531be2c
MP
4764 /* On some disks, this command causes spin-up, so we need longer timeout */
4765 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
9f45cbd3
KCA
4766
4767 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4768 return err_mask;
4769}
1152b261 4770
9f45cbd3 4771/**
218f3d30 4772 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4773 * @dev: Device to which command will be sent
4774 * @enable: Whether to enable or disable the feature
218f3d30 4775 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4776 *
4777 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4778 * on port @ap with sector count
9f45cbd3
KCA
4779 *
4780 * LOCKING:
4781 * PCI/etc. bus probe sem.
4782 *
4783 * RETURNS:
4784 * 0 on success, AC_ERR_* mask otherwise.
4785 */
1152b261 4786unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
9f45cbd3
KCA
4787{
4788 struct ata_taskfile tf;
4789 unsigned int err_mask;
974e0a45 4790 unsigned long timeout = 0;
9f45cbd3
KCA
4791
4792 /* set up set-features taskfile */
4793 DPRINTK("set features - SATA features\n");
4794
4795 ata_tf_init(dev, &tf);
4796 tf.command = ATA_CMD_SET_FEATURES;
4797 tf.feature = enable;
4798 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4799 tf.protocol = ATA_PROT_NODATA;
218f3d30 4800 tf.nsect = feature;
9f45cbd3 4801
974e0a45
DLM
4802 if (enable == SETFEATURES_SPINUP)
4803 timeout = ata_probe_timeout ?
4804 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4805 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
1da177e4 4806
83206a29
TH
4807 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4808 return err_mask;
1da177e4 4809}
633de4cc 4810EXPORT_SYMBOL_GPL(ata_dev_set_feature);
1da177e4 4811
8bf62ece
AL
4812/**
4813 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4814 * @dev: Device to which command will be sent
e2a7f77a
RD
4815 * @heads: Number of heads (taskfile parameter)
4816 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4817 *
4818 * LOCKING:
6aff8f1f
TH
4819 * Kernel thread context (may sleep)
4820 *
4821 * RETURNS:
4822 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4823 */
3373efd8
TH
4824static unsigned int ata_dev_init_params(struct ata_device *dev,
4825 u16 heads, u16 sectors)
8bf62ece 4826{
a0123703 4827 struct ata_taskfile tf;
6aff8f1f 4828 unsigned int err_mask;
8bf62ece
AL
4829
4830 /* Number of sectors per track 1-255. Number of heads 1-16 */
4831 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4832 return AC_ERR_INVALID;
8bf62ece
AL
4833
4834 /* set up init dev params taskfile */
4835 DPRINTK("init dev params \n");
4836
3373efd8 4837 ata_tf_init(dev, &tf);
a0123703
TH
4838 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4839 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4840 tf.protocol = ATA_PROT_NODATA;
4841 tf.nsect = sectors;
4842 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4843
2b789108 4844 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4845 /* A clean abort indicates an original or just out of spec drive
4846 and we should continue as we issue the setup based on the
4847 drive reported working geometry */
4848 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4849 err_mask = 0;
8bf62ece 4850
6aff8f1f
TH
4851 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4852 return err_mask;
8bf62ece
AL
4853}
4854
1da177e4 4855/**
5895ef9a 4856 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4857 * @qc: Metadata associated with taskfile to check
4858 *
780a87f7
JG
4859 * Allow low-level driver to filter ATA PACKET commands, returning
4860 * a status indicating whether or not it is OK to use DMA for the
4861 * supplied PACKET command.
4862 *
1da177e4 4863 * LOCKING:
624d5c51
TH
4864 * spin_lock_irqsave(host lock)
4865 *
4866 * RETURNS: 0 when ATAPI DMA can be used
4867 * nonzero otherwise
4868 */
5895ef9a 4869int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4870{
4871 struct ata_port *ap = qc->ap;
71601958 4872
624d5c51
TH
4873 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4874 * few ATAPI devices choke on such DMA requests.
4875 */
6a87e42e
TH
4876 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4877 unlikely(qc->nbytes & 15))
624d5c51 4878 return 1;
e2cec771 4879
624d5c51
TH
4880 if (ap->ops->check_atapi_dma)
4881 return ap->ops->check_atapi_dma(qc);
e2cec771 4882
624d5c51
TH
4883 return 0;
4884}
1da177e4 4885
624d5c51
TH
4886/**
4887 * ata_std_qc_defer - Check whether a qc needs to be deferred
4888 * @qc: ATA command in question
4889 *
4890 * Non-NCQ commands cannot run with any other command, NCQ or
4891 * not. As upper layer only knows the queue depth, we are
4892 * responsible for maintaining exclusion. This function checks
4893 * whether a new command @qc can be issued.
4894 *
4895 * LOCKING:
4896 * spin_lock_irqsave(host lock)
4897 *
4898 * RETURNS:
4899 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4900 */
4901int ata_std_qc_defer(struct ata_queued_cmd *qc)
4902{
4903 struct ata_link *link = qc->dev->link;
e2cec771 4904
179b310a 4905 if (ata_is_ncq(qc->tf.protocol)) {
624d5c51
TH
4906 if (!ata_tag_valid(link->active_tag))
4907 return 0;
4908 } else {
4909 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4910 return 0;
4911 }
e2cec771 4912
624d5c51
TH
4913 return ATA_DEFER_LINK;
4914}
6912ccd5 4915
624d5c51 4916void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4917
624d5c51
TH
4918/**
4919 * ata_sg_init - Associate command with scatter-gather table.
4920 * @qc: Command to be associated
4921 * @sg: Scatter-gather table.
4922 * @n_elem: Number of elements in s/g table.
4923 *
4924 * Initialize the data-related elements of queued_cmd @qc
4925 * to point to a scatter-gather table @sg, containing @n_elem
4926 * elements.
4927 *
4928 * LOCKING:
4929 * spin_lock_irqsave(host lock)
4930 */
4931void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4932 unsigned int n_elem)
4933{
4934 qc->sg = sg;
4935 qc->n_elem = n_elem;
4936 qc->cursg = qc->sg;
4937}
bb5cb290 4938
2874d5ee
GU
4939#ifdef CONFIG_HAS_DMA
4940
4941/**
4942 * ata_sg_clean - Unmap DMA memory associated with command
4943 * @qc: Command containing DMA memory to be released
4944 *
4945 * Unmap all mapped DMA memory associated with this command.
4946 *
4947 * LOCKING:
4948 * spin_lock_irqsave(host lock)
4949 */
af27e01c 4950static void ata_sg_clean(struct ata_queued_cmd *qc)
2874d5ee
GU
4951{
4952 struct ata_port *ap = qc->ap;
4953 struct scatterlist *sg = qc->sg;
4954 int dir = qc->dma_dir;
4955
4956 WARN_ON_ONCE(sg == NULL);
4957
4958 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4959
4960 if (qc->n_elem)
4961 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4962
4963 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4964 qc->sg = NULL;
4965}
4966
624d5c51
TH
4967/**
4968 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4969 * @qc: Command with scatter-gather table to be mapped.
4970 *
4971 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4972 *
4973 * LOCKING:
4974 * spin_lock_irqsave(host lock)
4975 *
4976 * RETURNS:
4977 * Zero on success, negative on error.
4978 *
4979 */
4980static int ata_sg_setup(struct ata_queued_cmd *qc)
4981{
4982 struct ata_port *ap = qc->ap;
4983 unsigned int n_elem;
1da177e4 4984
624d5c51 4985 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 4986
624d5c51
TH
4987 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4988 if (n_elem < 1)
4989 return -1;
bb5cb290 4990
624d5c51 4991 DPRINTK("%d sg elements mapped\n", n_elem);
5825627c 4992 qc->orig_n_elem = qc->n_elem;
624d5c51
TH
4993 qc->n_elem = n_elem;
4994 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 4995
624d5c51 4996 return 0;
1da177e4
LT
4997}
4998
2874d5ee
GU
4999#else /* !CONFIG_HAS_DMA */
5000
5001static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
5002static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5003
5004#endif /* !CONFIG_HAS_DMA */
5005
624d5c51
TH
5006/**
5007 * swap_buf_le16 - swap halves of 16-bit words in place
5008 * @buf: Buffer to swap
5009 * @buf_words: Number of 16-bit words in buffer.
5010 *
5011 * Swap halves of 16-bit words if needed to convert from
5012 * little-endian byte order to native cpu byte order, or
5013 * vice-versa.
5014 *
5015 * LOCKING:
5016 * Inherited from caller.
5017 */
5018void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 5019{
624d5c51
TH
5020#ifdef __BIG_ENDIAN
5021 unsigned int i;
8061f5f0 5022
624d5c51
TH
5023 for (i = 0; i < buf_words; i++)
5024 buf[i] = le16_to_cpu(buf[i]);
5025#endif /* __BIG_ENDIAN */
8061f5f0
TH
5026}
5027
8a8bc223 5028/**
98bd4be1
SL
5029 * ata_qc_new_init - Request an available ATA command, and initialize it
5030 * @dev: Device from whom we request an available command structure
38755e89 5031 * @tag: tag
1871ee13 5032 *
8a8bc223
TH
5033 * LOCKING:
5034 * None.
5035 */
5036
98bd4be1 5037struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
8a8bc223 5038{
98bd4be1 5039 struct ata_port *ap = dev->link->ap;
12cb5ce1 5040 struct ata_queued_cmd *qc;
8a8bc223
TH
5041
5042 /* no command while frozen */
5043 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5044 return NULL;
5045
98bd4be1 5046 /* libsas case */
5067c046 5047 if (ap->flags & ATA_FLAG_SAS_HOST) {
98bd4be1
SL
5048 tag = ata_sas_allocate_tag(ap);
5049 if (tag < 0)
5050 return NULL;
8a4aeec8 5051 }
8a8bc223 5052
98bd4be1
SL
5053 qc = __ata_qc_from_tag(ap, tag);
5054 qc->tag = tag;
5055 qc->scsicmd = NULL;
5056 qc->ap = ap;
5057 qc->dev = dev;
1da177e4 5058
98bd4be1 5059 ata_qc_reinit(qc);
1da177e4
LT
5060
5061 return qc;
5062}
5063
8a8bc223
TH
5064/**
5065 * ata_qc_free - free unused ata_queued_cmd
5066 * @qc: Command to complete
5067 *
5068 * Designed to free unused ata_queued_cmd object
5069 * in case something prevents using it.
5070 *
5071 * LOCKING:
5072 * spin_lock_irqsave(host lock)
5073 */
5074void ata_qc_free(struct ata_queued_cmd *qc)
5075{
a1104016 5076 struct ata_port *ap;
8a8bc223
TH
5077 unsigned int tag;
5078
efcb3cf7 5079 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
a1104016 5080 ap = qc->ap;
8a8bc223
TH
5081
5082 qc->flags = 0;
5083 tag = qc->tag;
5084 if (likely(ata_tag_valid(tag))) {
5085 qc->tag = ATA_TAG_POISON;
5067c046 5086 if (ap->flags & ATA_FLAG_SAS_HOST)
98bd4be1 5087 ata_sas_free_tag(tag, ap);
8a8bc223
TH
5088 }
5089}
5090
76014427 5091void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5092{
a1104016
JL
5093 struct ata_port *ap;
5094 struct ata_link *link;
dedaf2b0 5095
efcb3cf7
TH
5096 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5097 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
a1104016
JL
5098 ap = qc->ap;
5099 link = qc->dev->link;
1da177e4
LT
5100
5101 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5102 ata_sg_clean(qc);
5103
7401abf2 5104 /* command should be marked inactive atomically with qc completion */
179b310a 5105 if (ata_is_ncq(qc->tf.protocol)) {
9af5c9c9 5106 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5107 if (!link->sactive)
5108 ap->nr_active_links--;
5109 } else {
9af5c9c9 5110 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5111 ap->nr_active_links--;
5112 }
5113
5114 /* clear exclusive status */
5115 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5116 ap->excl_link == link))
5117 ap->excl_link = NULL;
7401abf2 5118
3f3791d3
AL
5119 /* atapi: mark qc as inactive to prevent the interrupt handler
5120 * from completing the command twice later, before the error handler
5121 * is called. (when rc != 0 and atapi request sense is needed)
5122 */
5123 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5124 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5125
1da177e4 5126 /* call completion callback */
77853bf2 5127 qc->complete_fn(qc);
1da177e4
LT
5128}
5129
39599a53
TH
5130static void fill_result_tf(struct ata_queued_cmd *qc)
5131{
5132 struct ata_port *ap = qc->ap;
5133
39599a53 5134 qc->result_tf.flags = qc->tf.flags;
22183bf5 5135 ap->ops->qc_fill_rtf(qc);
39599a53
TH
5136}
5137
00115e0f
TH
5138static void ata_verify_xfer(struct ata_queued_cmd *qc)
5139{
5140 struct ata_device *dev = qc->dev;
5141
eb0effdf 5142 if (!ata_is_data(qc->tf.protocol))
00115e0f
TH
5143 return;
5144
5145 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5146 return;
5147
5148 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5149}
5150
f686bcb8
TH
5151/**
5152 * ata_qc_complete - Complete an active ATA command
5153 * @qc: Command to complete
f686bcb8 5154 *
1aadf5c3
TH
5155 * Indicate to the mid and upper layers that an ATA command has
5156 * completed, with either an ok or not-ok status.
5157 *
5158 * Refrain from calling this function multiple times when
5159 * successfully completing multiple NCQ commands.
5160 * ata_qc_complete_multiple() should be used instead, which will
5161 * properly update IRQ expect state.
f686bcb8
TH
5162 *
5163 * LOCKING:
cca3974e 5164 * spin_lock_irqsave(host lock)
f686bcb8
TH
5165 */
5166void ata_qc_complete(struct ata_queued_cmd *qc)
5167{
5168 struct ata_port *ap = qc->ap;
5169
eb25cb99
SL
5170 /* Trigger the LED (if available) */
5171 ledtrig_disk_activity();
5172
f686bcb8
TH
5173 /* XXX: New EH and old EH use different mechanisms to
5174 * synchronize EH with regular execution path.
5175 *
5176 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5177 * Normal execution path is responsible for not accessing a
5178 * failed qc. libata core enforces the rule by returning NULL
5179 * from ata_qc_from_tag() for failed qcs.
5180 *
5181 * Old EH depends on ata_qc_complete() nullifying completion
5182 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5183 * not synchronize with interrupt handler. Only PIO task is
5184 * taken care of.
5185 */
5186 if (ap->ops->error_handler) {
4dbfa39b
TH
5187 struct ata_device *dev = qc->dev;
5188 struct ata_eh_info *ehi = &dev->link->eh_info;
5189
f686bcb8
TH
5190 if (unlikely(qc->err_mask))
5191 qc->flags |= ATA_QCFLAG_FAILED;
5192
f08dc1ac
TH
5193 /*
5194 * Finish internal commands without any further processing
5195 * and always with the result TF filled.
5196 */
5197 if (unlikely(ata_tag_internal(qc->tag))) {
f4b31db9 5198 fill_result_tf(qc);
255c03d1 5199 trace_ata_qc_complete_internal(qc);
f08dc1ac
TH
5200 __ata_qc_complete(qc);
5201 return;
5202 }
f4b31db9 5203
f08dc1ac
TH
5204 /*
5205 * Non-internal qc has failed. Fill the result TF and
5206 * summon EH.
5207 */
5208 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5209 fill_result_tf(qc);
255c03d1 5210 trace_ata_qc_complete_failed(qc);
f08dc1ac 5211 ata_qc_schedule_eh(qc);
f4b31db9 5212 return;
f686bcb8
TH
5213 }
5214
4dc738ed
TH
5215 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5216
f686bcb8
TH
5217 /* read result TF if requested */
5218 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5219 fill_result_tf(qc);
f686bcb8 5220
255c03d1 5221 trace_ata_qc_complete_done(qc);
4dbfa39b
TH
5222 /* Some commands need post-processing after successful
5223 * completion.
5224 */
5225 switch (qc->tf.command) {
5226 case ATA_CMD_SET_FEATURES:
5227 if (qc->tf.feature != SETFEATURES_WC_ON &&
0c12735e
TY
5228 qc->tf.feature != SETFEATURES_WC_OFF &&
5229 qc->tf.feature != SETFEATURES_RA_ON &&
5230 qc->tf.feature != SETFEATURES_RA_OFF)
4dbfa39b
TH
5231 break;
5232 /* fall through */
5233 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5234 case ATA_CMD_SET_MULTI: /* multi_count changed */
5235 /* revalidate device */
5236 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5237 ata_port_schedule_eh(ap);
5238 break;
054a5fba
TH
5239
5240 case ATA_CMD_SLEEP:
5241 dev->flags |= ATA_DFLAG_SLEEPING;
5242 break;
4dbfa39b
TH
5243 }
5244
00115e0f
TH
5245 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5246 ata_verify_xfer(qc);
5247
f686bcb8
TH
5248 __ata_qc_complete(qc);
5249 } else {
5250 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5251 return;
5252
5253 /* read result TF if failed or requested */
5254 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5255 fill_result_tf(qc);
f686bcb8
TH
5256
5257 __ata_qc_complete(qc);
5258 }
5259}
5260
dedaf2b0
TH
5261/**
5262 * ata_qc_complete_multiple - Complete multiple qcs successfully
5263 * @ap: port in question
5264 * @qc_active: new qc_active mask
dedaf2b0
TH
5265 *
5266 * Complete in-flight commands. This functions is meant to be
5267 * called from low-level driver's interrupt routine to complete
5268 * requests normally. ap->qc_active and @qc_active is compared
5269 * and commands are completed accordingly.
5270 *
1aadf5c3
TH
5271 * Always use this function when completing multiple NCQ commands
5272 * from IRQ handlers instead of calling ata_qc_complete()
5273 * multiple times to keep IRQ expect status properly in sync.
5274 *
dedaf2b0 5275 * LOCKING:
cca3974e 5276 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5277 *
5278 * RETURNS:
5279 * Number of completed commands on success, -errno otherwise.
5280 */
79f97dad 5281int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
dedaf2b0
TH
5282{
5283 int nr_done = 0;
5284 u32 done_mask;
dedaf2b0
TH
5285
5286 done_mask = ap->qc_active ^ qc_active;
5287
5288 if (unlikely(done_mask & qc_active)) {
a9a79dfe
JP
5289 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5290 ap->qc_active, qc_active);
dedaf2b0
TH
5291 return -EINVAL;
5292 }
5293
43768180 5294 while (done_mask) {
dedaf2b0 5295 struct ata_queued_cmd *qc;
43768180 5296 unsigned int tag = __ffs(done_mask);
dedaf2b0 5297
43768180
JA
5298 qc = ata_qc_from_tag(ap, tag);
5299 if (qc) {
dedaf2b0
TH
5300 ata_qc_complete(qc);
5301 nr_done++;
5302 }
43768180 5303 done_mask &= ~(1 << tag);
dedaf2b0
TH
5304 }
5305
5306 return nr_done;
5307}
5308
1da177e4
LT
5309/**
5310 * ata_qc_issue - issue taskfile to device
5311 * @qc: command to issue to device
5312 *
5313 * Prepare an ATA command to submission to device.
5314 * This includes mapping the data into a DMA-able
5315 * area, filling in the S/G table, and finally
5316 * writing the taskfile to hardware, starting the command.
5317 *
5318 * LOCKING:
cca3974e 5319 * spin_lock_irqsave(host lock)
1da177e4 5320 */
8e0e694a 5321void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5322{
5323 struct ata_port *ap = qc->ap;
9af5c9c9 5324 struct ata_link *link = qc->dev->link;
405e66b3 5325 u8 prot = qc->tf.protocol;
1da177e4 5326
dedaf2b0
TH
5327 /* Make sure only one non-NCQ command is outstanding. The
5328 * check is skipped for old EH because it reuses active qc to
5329 * request ATAPI sense.
5330 */
efcb3cf7 5331 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5332
1973a023 5333 if (ata_is_ncq(prot)) {
efcb3cf7 5334 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
da917d69
TH
5335
5336 if (!link->sactive)
5337 ap->nr_active_links++;
9af5c9c9 5338 link->sactive |= 1 << qc->tag;
dedaf2b0 5339 } else {
efcb3cf7 5340 WARN_ON_ONCE(link->sactive);
da917d69
TH
5341
5342 ap->nr_active_links++;
9af5c9c9 5343 link->active_tag = qc->tag;
dedaf2b0
TH
5344 }
5345
e4a70e76 5346 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5347 ap->qc_active |= 1 << qc->tag;
e4a70e76 5348
60f5d6ef
TH
5349 /*
5350 * We guarantee to LLDs that they will have at least one
f92a2636
TH
5351 * non-zero sg if the command is a data command.
5352 */
60f5d6ef
TH
5353 if (WARN_ON_ONCE(ata_is_data(prot) &&
5354 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5355 goto sys_err;
f92a2636 5356
405e66b3 5357 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5358 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7 5359 if (ata_sg_setup(qc))
60f5d6ef 5360 goto sys_err;
1da177e4 5361
cf480626 5362 /* if device is sleeping, schedule reset and abort the link */
054a5fba 5363 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 5364 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
5365 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5366 ata_link_abort(link);
5367 return;
5368 }
5369
1da177e4 5370 ap->ops->qc_prep(qc);
255c03d1 5371 trace_ata_qc_issue(qc);
8e0e694a
TH
5372 qc->err_mask |= ap->ops->qc_issue(qc);
5373 if (unlikely(qc->err_mask))
5374 goto err;
5375 return;
1da177e4 5376
60f5d6ef 5377sys_err:
8e0e694a
TH
5378 qc->err_mask |= AC_ERR_SYSTEM;
5379err:
5380 ata_qc_complete(qc);
1da177e4
LT
5381}
5382
34bf2170
TH
5383/**
5384 * sata_scr_valid - test whether SCRs are accessible
936fd732 5385 * @link: ATA link to test SCR accessibility for
34bf2170 5386 *
936fd732 5387 * Test whether SCRs are accessible for @link.
34bf2170
TH
5388 *
5389 * LOCKING:
5390 * None.
5391 *
5392 * RETURNS:
5393 * 1 if SCRs are accessible, 0 otherwise.
5394 */
936fd732 5395int sata_scr_valid(struct ata_link *link)
34bf2170 5396{
936fd732
TH
5397 struct ata_port *ap = link->ap;
5398
a16abc0b 5399 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5400}
5401
5402/**
5403 * sata_scr_read - read SCR register of the specified port
936fd732 5404 * @link: ATA link to read SCR for
34bf2170
TH
5405 * @reg: SCR to read
5406 * @val: Place to store read value
5407 *
936fd732 5408 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
5409 * guaranteed to succeed if @link is ap->link, the cable type of
5410 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5411 *
5412 * LOCKING:
633273a3 5413 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5414 *
5415 * RETURNS:
5416 * 0 on success, negative errno on failure.
5417 */
936fd732 5418int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5419{
633273a3 5420 if (ata_is_host_link(link)) {
633273a3 5421 if (sata_scr_valid(link))
82ef04fb 5422 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
5423 return -EOPNOTSUPP;
5424 }
5425
5426 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
5427}
5428
5429/**
5430 * sata_scr_write - write SCR register of the specified port
936fd732 5431 * @link: ATA link to write SCR for
34bf2170
TH
5432 * @reg: SCR to write
5433 * @val: value to write
5434 *
936fd732 5435 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
5436 * guaranteed to succeed if @link is ap->link, the cable type of
5437 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5438 *
5439 * LOCKING:
633273a3 5440 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5441 *
5442 * RETURNS:
5443 * 0 on success, negative errno on failure.
5444 */
936fd732 5445int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5446{
633273a3 5447 if (ata_is_host_link(link)) {
633273a3 5448 if (sata_scr_valid(link))
82ef04fb 5449 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
5450 return -EOPNOTSUPP;
5451 }
936fd732 5452
633273a3 5453 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5454}
5455
5456/**
5457 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5458 * @link: ATA link to write SCR for
34bf2170
TH
5459 * @reg: SCR to write
5460 * @val: value to write
5461 *
5462 * This function is identical to sata_scr_write() except that this
5463 * function performs flush after writing to the register.
5464 *
5465 * LOCKING:
633273a3 5466 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5467 *
5468 * RETURNS:
5469 * 0 on success, negative errno on failure.
5470 */
936fd732 5471int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5472{
633273a3 5473 if (ata_is_host_link(link)) {
633273a3 5474 int rc;
da3dbb17 5475
633273a3 5476 if (sata_scr_valid(link)) {
82ef04fb 5477 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 5478 if (rc == 0)
82ef04fb 5479 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
5480 return rc;
5481 }
5482 return -EOPNOTSUPP;
34bf2170 5483 }
633273a3
TH
5484
5485 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5486}
5487
5488/**
b1c72916 5489 * ata_phys_link_online - test whether the given link is online
936fd732 5490 * @link: ATA link to test
34bf2170 5491 *
936fd732
TH
5492 * Test whether @link is online. Note that this function returns
5493 * 0 if online status of @link cannot be obtained, so
5494 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5495 *
5496 * LOCKING:
5497 * None.
5498 *
5499 * RETURNS:
b5b3fa38 5500 * True if the port online status is available and online.
34bf2170 5501 */
b1c72916 5502bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5503{
5504 u32 sstatus;
5505
936fd732 5506 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5507 ata_sstatus_online(sstatus))
b5b3fa38
TH
5508 return true;
5509 return false;
34bf2170
TH
5510}
5511
5512/**
b1c72916 5513 * ata_phys_link_offline - test whether the given link is offline
936fd732 5514 * @link: ATA link to test
34bf2170 5515 *
936fd732
TH
5516 * Test whether @link is offline. Note that this function
5517 * returns 0 if offline status of @link cannot be obtained, so
5518 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5519 *
5520 * LOCKING:
5521 * None.
5522 *
5523 * RETURNS:
b5b3fa38 5524 * True if the port offline status is available and offline.
34bf2170 5525 */
b1c72916 5526bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5527{
5528 u32 sstatus;
5529
936fd732 5530 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5531 !ata_sstatus_online(sstatus))
b5b3fa38
TH
5532 return true;
5533 return false;
34bf2170 5534}
0baab86b 5535
b1c72916
TH
5536/**
5537 * ata_link_online - test whether the given link is online
5538 * @link: ATA link to test
5539 *
5540 * Test whether @link is online. This is identical to
5541 * ata_phys_link_online() when there's no slave link. When
5542 * there's a slave link, this function should only be called on
5543 * the master link and will return true if any of M/S links is
5544 * online.
5545 *
5546 * LOCKING:
5547 * None.
5548 *
5549 * RETURNS:
5550 * True if the port online status is available and online.
5551 */
5552bool ata_link_online(struct ata_link *link)
5553{
5554 struct ata_link *slave = link->ap->slave_link;
5555
5556 WARN_ON(link == slave); /* shouldn't be called on slave link */
5557
5558 return ata_phys_link_online(link) ||
5559 (slave && ata_phys_link_online(slave));
5560}
5561
5562/**
5563 * ata_link_offline - test whether the given link is offline
5564 * @link: ATA link to test
5565 *
5566 * Test whether @link is offline. This is identical to
5567 * ata_phys_link_offline() when there's no slave link. When
5568 * there's a slave link, this function should only be called on
5569 * the master link and will return true if both M/S links are
5570 * offline.
5571 *
5572 * LOCKING:
5573 * None.
5574 *
5575 * RETURNS:
5576 * True if the port offline status is available and offline.
5577 */
5578bool ata_link_offline(struct ata_link *link)
5579{
5580 struct ata_link *slave = link->ap->slave_link;
5581
5582 WARN_ON(link == slave); /* shouldn't be called on slave link */
5583
5584 return ata_phys_link_offline(link) &&
5585 (!slave || ata_phys_link_offline(slave));
5586}
5587
6ffa01d8 5588#ifdef CONFIG_PM
bc6e7c4b
DW
5589static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5590 unsigned int action, unsigned int ehi_flags,
5591 bool async)
500530f6 5592{
5ef41082 5593 struct ata_link *link;
500530f6 5594 unsigned long flags;
500530f6 5595
5ef41082
LM
5596 /* Previous resume operation might still be in
5597 * progress. Wait for PM_PENDING to clear.
5598 */
5599 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5600 ata_port_wait_eh(ap);
5601 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5602 }
500530f6 5603
5ef41082
LM
5604 /* request PM ops to EH */
5605 spin_lock_irqsave(ap->lock, flags);
500530f6 5606
5ef41082 5607 ap->pm_mesg = mesg;
5ef41082
LM
5608 ap->pflags |= ATA_PFLAG_PM_PENDING;
5609 ata_for_each_link(link, ap, HOST_FIRST) {
5610 link->eh_info.action |= action;
5611 link->eh_info.flags |= ehi_flags;
5612 }
500530f6 5613
5ef41082 5614 ata_port_schedule_eh(ap);
500530f6 5615
5ef41082 5616 spin_unlock_irqrestore(ap->lock, flags);
500530f6 5617
2fcbdcb4 5618 if (!async) {
5ef41082
LM
5619 ata_port_wait_eh(ap);
5620 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
500530f6 5621 }
500530f6
TH
5622}
5623
bc6e7c4b
DW
5624/*
5625 * On some hardware, device fails to respond after spun down for suspend. As
5626 * the device won't be used before being resumed, we don't need to touch the
5627 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5628 *
5629 * http://thread.gmane.org/gmane.linux.ide/46764
5630 */
5631static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5632 | ATA_EHI_NO_AUTOPSY
5633 | ATA_EHI_NO_RECOVERY;
5634
5635static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5ef41082 5636{
bc6e7c4b 5637 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5ef41082
LM
5638}
5639
bc6e7c4b 5640static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
2fcbdcb4 5641{
bc6e7c4b 5642 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
2fcbdcb4
DW
5643}
5644
bc6e7c4b 5645static int ata_port_pm_suspend(struct device *dev)
5ef41082 5646{
bc6e7c4b
DW
5647 struct ata_port *ap = to_ata_port(dev);
5648
5ef41082
LM
5649 if (pm_runtime_suspended(dev))
5650 return 0;
5651
bc6e7c4b
DW
5652 ata_port_suspend(ap, PMSG_SUSPEND);
5653 return 0;
33574d68
LM
5654}
5655
bc6e7c4b 5656static int ata_port_pm_freeze(struct device *dev)
33574d68 5657{
bc6e7c4b
DW
5658 struct ata_port *ap = to_ata_port(dev);
5659
33574d68 5660 if (pm_runtime_suspended(dev))
f5e6d0d0 5661 return 0;
33574d68 5662
bc6e7c4b
DW
5663 ata_port_suspend(ap, PMSG_FREEZE);
5664 return 0;
33574d68
LM
5665}
5666
bc6e7c4b 5667static int ata_port_pm_poweroff(struct device *dev)
33574d68 5668{
bc6e7c4b
DW
5669 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5670 return 0;
5ef41082
LM
5671}
5672
bc6e7c4b
DW
5673static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5674 | ATA_EHI_QUIET;
5ef41082 5675
bc6e7c4b
DW
5676static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5677{
5678 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5ef41082
LM
5679}
5680
bc6e7c4b 5681static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
2fcbdcb4 5682{
bc6e7c4b 5683 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
2fcbdcb4
DW
5684}
5685
bc6e7c4b 5686static int ata_port_pm_resume(struct device *dev)
e90b1e5a 5687{
200421a8 5688 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
bc6e7c4b
DW
5689 pm_runtime_disable(dev);
5690 pm_runtime_set_active(dev);
5691 pm_runtime_enable(dev);
5692 return 0;
e90b1e5a
LM
5693}
5694
7e15e9be
AL
5695/*
5696 * For ODDs, the upper layer will poll for media change every few seconds,
5697 * which will make it enter and leave suspend state every few seconds. And
5698 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5699 * is very little and the ODD may malfunction after constantly being reset.
5700 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5701 * ODD is attached to the port.
5702 */
9ee4f393
LM
5703static int ata_port_runtime_idle(struct device *dev)
5704{
7e15e9be
AL
5705 struct ata_port *ap = to_ata_port(dev);
5706 struct ata_link *link;
5707 struct ata_device *adev;
5708
5709 ata_for_each_link(link, ap, HOST_FIRST) {
5710 ata_for_each_dev(adev, link, ENABLED)
5711 if (adev->class == ATA_DEV_ATAPI &&
5712 !zpodd_dev_enabled(adev))
5713 return -EBUSY;
5714 }
5715
45f0a85c 5716 return 0;
9ee4f393
LM
5717}
5718
a7ff60db
AL
5719static int ata_port_runtime_suspend(struct device *dev)
5720{
bc6e7c4b
DW
5721 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5722 return 0;
a7ff60db
AL
5723}
5724
5725static int ata_port_runtime_resume(struct device *dev)
5726{
bc6e7c4b
DW
5727 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5728 return 0;
a7ff60db
AL
5729}
5730
5ef41082 5731static const struct dev_pm_ops ata_port_pm_ops = {
bc6e7c4b
DW
5732 .suspend = ata_port_pm_suspend,
5733 .resume = ata_port_pm_resume,
5734 .freeze = ata_port_pm_freeze,
5735 .thaw = ata_port_pm_resume,
5736 .poweroff = ata_port_pm_poweroff,
5737 .restore = ata_port_pm_resume,
9ee4f393 5738
a7ff60db
AL
5739 .runtime_suspend = ata_port_runtime_suspend,
5740 .runtime_resume = ata_port_runtime_resume,
9ee4f393 5741 .runtime_idle = ata_port_runtime_idle,
5ef41082
LM
5742};
5743
2fcbdcb4
DW
5744/* sas ports don't participate in pm runtime management of ata_ports,
5745 * and need to resume ata devices at the domain level, not the per-port
5746 * level. sas suspend/resume is async to allow parallel port recovery
5747 * since sas has multiple ata_port instances per Scsi_Host.
5748 */
bc6e7c4b 5749void ata_sas_port_suspend(struct ata_port *ap)
2fcbdcb4 5750{
bc6e7c4b 5751 ata_port_suspend_async(ap, PMSG_SUSPEND);
2fcbdcb4 5752}
bc6e7c4b 5753EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
2fcbdcb4 5754
bc6e7c4b 5755void ata_sas_port_resume(struct ata_port *ap)
2fcbdcb4 5756{
bc6e7c4b 5757 ata_port_resume_async(ap, PMSG_RESUME);
2fcbdcb4 5758}
bc6e7c4b 5759EXPORT_SYMBOL_GPL(ata_sas_port_resume);
2fcbdcb4 5760
500530f6 5761/**
cca3974e
JG
5762 * ata_host_suspend - suspend host
5763 * @host: host to suspend
500530f6
TH
5764 * @mesg: PM message
5765 *
5ef41082 5766 * Suspend @host. Actual operation is performed by port suspend.
500530f6 5767 */
cca3974e 5768int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5769{
5ef41082
LM
5770 host->dev->power.power_state = mesg;
5771 return 0;
500530f6
TH
5772}
5773
5774/**
cca3974e
JG
5775 * ata_host_resume - resume host
5776 * @host: host to resume
500530f6 5777 *
5ef41082 5778 * Resume @host. Actual operation is performed by port resume.
500530f6 5779 */
cca3974e 5780void ata_host_resume(struct ata_host *host)
500530f6 5781{
72ad6ec4 5782 host->dev->power.power_state = PMSG_ON;
500530f6 5783}
6ffa01d8 5784#endif
500530f6 5785
5ef41082
LM
5786struct device_type ata_port_type = {
5787 .name = "ata_port",
5788#ifdef CONFIG_PM
5789 .pm = &ata_port_pm_ops,
5790#endif
5791};
5792
3ef3b43d
TH
5793/**
5794 * ata_dev_init - Initialize an ata_device structure
5795 * @dev: Device structure to initialize
5796 *
5797 * Initialize @dev in preparation for probing.
5798 *
5799 * LOCKING:
5800 * Inherited from caller.
5801 */
5802void ata_dev_init(struct ata_device *dev)
5803{
b1c72916 5804 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5805 struct ata_port *ap = link->ap;
72fa4b74
TH
5806 unsigned long flags;
5807
b1c72916 5808 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5809 link->sata_spd_limit = link->hw_sata_spd_limit;
5810 link->sata_spd = 0;
5a04bf4b 5811
72fa4b74
TH
5812 /* High bits of dev->flags are used to record warm plug
5813 * requests which occur asynchronously. Synchronize using
cca3974e 5814 * host lock.
72fa4b74 5815 */
ba6a1308 5816 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5817 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5818 dev->horkage = 0;
ba6a1308 5819 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5820
99cf610a
TH
5821 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5822 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
3ef3b43d
TH
5823 dev->pio_mask = UINT_MAX;
5824 dev->mwdma_mask = UINT_MAX;
5825 dev->udma_mask = UINT_MAX;
5826}
5827
4fb37a25
TH
5828/**
5829 * ata_link_init - Initialize an ata_link structure
5830 * @ap: ATA port link is attached to
5831 * @link: Link structure to initialize
8989805d 5832 * @pmp: Port multiplier port number
4fb37a25
TH
5833 *
5834 * Initialize @link.
5835 *
5836 * LOCKING:
5837 * Kernel thread context (may sleep)
5838 */
fb7fd614 5839void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5840{
5841 int i;
5842
5843 /* clear everything except for devices */
d9027470
GG
5844 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5845 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
4fb37a25
TH
5846
5847 link->ap = ap;
8989805d 5848 link->pmp = pmp;
4fb37a25
TH
5849 link->active_tag = ATA_TAG_POISON;
5850 link->hw_sata_spd_limit = UINT_MAX;
5851
5852 /* can't use iterator, ap isn't initialized yet */
5853 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5854 struct ata_device *dev = &link->device[i];
5855
5856 dev->link = link;
5857 dev->devno = dev - link->device;
110f66d2
TH
5858#ifdef CONFIG_ATA_ACPI
5859 dev->gtf_filter = ata_acpi_gtf_filter;
5860#endif
4fb37a25
TH
5861 ata_dev_init(dev);
5862 }
5863}
5864
5865/**
5866 * sata_link_init_spd - Initialize link->sata_spd_limit
5867 * @link: Link to configure sata_spd_limit for
5868 *
5869 * Initialize @link->[hw_]sata_spd_limit to the currently
5870 * configured value.
5871 *
5872 * LOCKING:
5873 * Kernel thread context (may sleep).
5874 *
5875 * RETURNS:
5876 * 0 on success, -errno on failure.
5877 */
fb7fd614 5878int sata_link_init_spd(struct ata_link *link)
4fb37a25 5879{
33267325 5880 u8 spd;
4fb37a25
TH
5881 int rc;
5882
d127ea7b 5883 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5884 if (rc)
5885 return rc;
5886
d127ea7b 5887 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5888 if (spd)
5889 link->hw_sata_spd_limit &= (1 << spd) - 1;
5890
05944bdf 5891 ata_force_link_limits(link);
33267325 5892
4fb37a25
TH
5893 link->sata_spd_limit = link->hw_sata_spd_limit;
5894
5895 return 0;
5896}
5897
1da177e4 5898/**
f3187195
TH
5899 * ata_port_alloc - allocate and initialize basic ATA port resources
5900 * @host: ATA host this allocated port belongs to
1da177e4 5901 *
f3187195
TH
5902 * Allocate and initialize basic ATA port resources.
5903 *
5904 * RETURNS:
5905 * Allocate ATA port on success, NULL on failure.
0cba632b 5906 *
1da177e4 5907 * LOCKING:
f3187195 5908 * Inherited from calling layer (may sleep).
1da177e4 5909 */
f3187195 5910struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5911{
f3187195 5912 struct ata_port *ap;
1da177e4 5913
f3187195
TH
5914 DPRINTK("ENTER\n");
5915
5916 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5917 if (!ap)
5918 return NULL;
4fca377f 5919
7b3a24c5 5920 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
cca3974e 5921 ap->lock = &host->lock;
f3187195 5922 ap->print_id = -1;
e628dc99 5923 ap->local_port_no = -1;
cca3974e 5924 ap->host = host;
f3187195 5925 ap->dev = host->dev;
bd5d825c
BP
5926
5927#if defined(ATA_VERBOSE_DEBUG)
5928 /* turn on all debugging levels */
5929 ap->msg_enable = 0x00FF;
5930#elif defined(ATA_DEBUG)
5931 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5932#else
0dd4b21f 5933 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5934#endif
1da177e4 5935
ad72cf98 5936 mutex_init(&ap->scsi_scan_mutex);
65f27f38
DH
5937 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5938 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5939 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5940 init_waitqueue_head(&ap->eh_wait_q);
45fabbb7 5941 init_completion(&ap->park_req_pending);
7c92357c
GT
5942 setup_deferrable_timer(&ap->fastdrain_timer,
5943 ata_eh_fastdrain_timerfn,
5944 (unsigned long)ap);
1da177e4 5945
838df628 5946 ap->cbl = ATA_CBL_NONE;
838df628 5947
8989805d 5948 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
5949
5950#ifdef ATA_IRQ_TRAP
5951 ap->stats.unhandled_irq = 1;
5952 ap->stats.idle_irq = 1;
5953#endif
270390e1
TH
5954 ata_sff_port_init(ap);
5955
1da177e4 5956 return ap;
1da177e4
LT
5957}
5958
f0d36efd
TH
5959static void ata_host_release(struct device *gendev, void *res)
5960{
5961 struct ata_host *host = dev_get_drvdata(gendev);
5962 int i;
5963
1aa506e4
TH
5964 for (i = 0; i < host->n_ports; i++) {
5965 struct ata_port *ap = host->ports[i];
5966
4911487a
TH
5967 if (!ap)
5968 continue;
5969
5970 if (ap->scsi_host)
1aa506e4
TH
5971 scsi_host_put(ap->scsi_host);
5972
633273a3 5973 kfree(ap->pmp_link);
b1c72916 5974 kfree(ap->slave_link);
4911487a 5975 kfree(ap);
1aa506e4
TH
5976 host->ports[i] = NULL;
5977 }
5978
1aa56cca 5979 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5980}
5981
f3187195
TH
5982/**
5983 * ata_host_alloc - allocate and init basic ATA host resources
5984 * @dev: generic device this host is associated with
5985 * @max_ports: maximum number of ATA ports associated with this host
5986 *
5987 * Allocate and initialize basic ATA host resources. LLD calls
5988 * this function to allocate a host, initializes it fully and
5989 * attaches it using ata_host_register().
5990 *
5991 * @max_ports ports are allocated and host->n_ports is
5992 * initialized to @max_ports. The caller is allowed to decrease
5993 * host->n_ports before calling ata_host_register(). The unused
5994 * ports will be automatically freed on registration.
5995 *
5996 * RETURNS:
5997 * Allocate ATA host on success, NULL on failure.
5998 *
5999 * LOCKING:
6000 * Inherited from calling layer (may sleep).
6001 */
6002struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6003{
6004 struct ata_host *host;
6005 size_t sz;
6006 int i;
6007
6008 DPRINTK("ENTER\n");
6009
6010 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6011 return NULL;
6012
6013 /* alloc a container for our list of ATA ports (buses) */
6014 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6015 /* alloc a container for our list of ATA ports (buses) */
6016 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6017 if (!host)
6018 goto err_out;
6019
6020 devres_add(dev, host);
6021 dev_set_drvdata(dev, host);
6022
6023 spin_lock_init(&host->lock);
c0c362b6 6024 mutex_init(&host->eh_mutex);
f3187195
TH
6025 host->dev = dev;
6026 host->n_ports = max_ports;
6027
6028 /* allocate ports bound to this host */
6029 for (i = 0; i < max_ports; i++) {
6030 struct ata_port *ap;
6031
6032 ap = ata_port_alloc(host);
6033 if (!ap)
6034 goto err_out;
6035
6036 ap->port_no = i;
6037 host->ports[i] = ap;
6038 }
6039
6040 devres_remove_group(dev, NULL);
6041 return host;
6042
6043 err_out:
6044 devres_release_group(dev, NULL);
6045 return NULL;
6046}
6047
f5cda257
TH
6048/**
6049 * ata_host_alloc_pinfo - alloc host and init with port_info array
6050 * @dev: generic device this host is associated with
6051 * @ppi: array of ATA port_info to initialize host with
6052 * @n_ports: number of ATA ports attached to this host
6053 *
6054 * Allocate ATA host and initialize with info from @ppi. If NULL
6055 * terminated, @ppi may contain fewer entries than @n_ports. The
6056 * last entry will be used for the remaining ports.
6057 *
6058 * RETURNS:
6059 * Allocate ATA host on success, NULL on failure.
6060 *
6061 * LOCKING:
6062 * Inherited from calling layer (may sleep).
6063 */
6064struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6065 const struct ata_port_info * const * ppi,
6066 int n_ports)
6067{
6068 const struct ata_port_info *pi;
6069 struct ata_host *host;
6070 int i, j;
6071
6072 host = ata_host_alloc(dev, n_ports);
6073 if (!host)
6074 return NULL;
6075
6076 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6077 struct ata_port *ap = host->ports[i];
6078
6079 if (ppi[j])
6080 pi = ppi[j++];
6081
6082 ap->pio_mask = pi->pio_mask;
6083 ap->mwdma_mask = pi->mwdma_mask;
6084 ap->udma_mask = pi->udma_mask;
6085 ap->flags |= pi->flags;
0c88758b 6086 ap->link.flags |= pi->link_flags;
f5cda257
TH
6087 ap->ops = pi->port_ops;
6088
6089 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6090 host->ops = pi->port_ops;
f5cda257
TH
6091 }
6092
6093 return host;
6094}
6095
b1c72916
TH
6096/**
6097 * ata_slave_link_init - initialize slave link
6098 * @ap: port to initialize slave link for
6099 *
6100 * Create and initialize slave link for @ap. This enables slave
6101 * link handling on the port.
6102 *
6103 * In libata, a port contains links and a link contains devices.
6104 * There is single host link but if a PMP is attached to it,
6105 * there can be multiple fan-out links. On SATA, there's usually
6106 * a single device connected to a link but PATA and SATA
6107 * controllers emulating TF based interface can have two - master
6108 * and slave.
6109 *
6110 * However, there are a few controllers which don't fit into this
6111 * abstraction too well - SATA controllers which emulate TF
6112 * interface with both master and slave devices but also have
6113 * separate SCR register sets for each device. These controllers
6114 * need separate links for physical link handling
6115 * (e.g. onlineness, link speed) but should be treated like a
6116 * traditional M/S controller for everything else (e.g. command
6117 * issue, softreset).
6118 *
6119 * slave_link is libata's way of handling this class of
6120 * controllers without impacting core layer too much. For
6121 * anything other than physical link handling, the default host
6122 * link is used for both master and slave. For physical link
6123 * handling, separate @ap->slave_link is used. All dirty details
6124 * are implemented inside libata core layer. From LLD's POV, the
6125 * only difference is that prereset, hardreset and postreset are
6126 * called once more for the slave link, so the reset sequence
6127 * looks like the following.
6128 *
6129 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6130 * softreset(M) -> postreset(M) -> postreset(S)
6131 *
6132 * Note that softreset is called only for the master. Softreset
6133 * resets both M/S by definition, so SRST on master should handle
6134 * both (the standard method will work just fine).
6135 *
6136 * LOCKING:
6137 * Should be called before host is registered.
6138 *
6139 * RETURNS:
6140 * 0 on success, -errno on failure.
6141 */
6142int ata_slave_link_init(struct ata_port *ap)
6143{
6144 struct ata_link *link;
6145
6146 WARN_ON(ap->slave_link);
6147 WARN_ON(ap->flags & ATA_FLAG_PMP);
6148
6149 link = kzalloc(sizeof(*link), GFP_KERNEL);
6150 if (!link)
6151 return -ENOMEM;
6152
6153 ata_link_init(ap, link, 1);
6154 ap->slave_link = link;
6155 return 0;
6156}
6157
32ebbc0c
TH
6158static void ata_host_stop(struct device *gendev, void *res)
6159{
6160 struct ata_host *host = dev_get_drvdata(gendev);
6161 int i;
6162
6163 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6164
6165 for (i = 0; i < host->n_ports; i++) {
6166 struct ata_port *ap = host->ports[i];
6167
6168 if (ap->ops->port_stop)
6169 ap->ops->port_stop(ap);
6170 }
6171
6172 if (host->ops->host_stop)
6173 host->ops->host_stop(host);
6174}
6175
029cfd6b
TH
6176/**
6177 * ata_finalize_port_ops - finalize ata_port_operations
6178 * @ops: ata_port_operations to finalize
6179 *
6180 * An ata_port_operations can inherit from another ops and that
6181 * ops can again inherit from another. This can go on as many
6182 * times as necessary as long as there is no loop in the
6183 * inheritance chain.
6184 *
6185 * Ops tables are finalized when the host is started. NULL or
6186 * unspecified entries are inherited from the closet ancestor
6187 * which has the method and the entry is populated with it.
6188 * After finalization, the ops table directly points to all the
6189 * methods and ->inherits is no longer necessary and cleared.
6190 *
6191 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6192 *
6193 * LOCKING:
6194 * None.
6195 */
6196static void ata_finalize_port_ops(struct ata_port_operations *ops)
6197{
2da67659 6198 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
6199 const struct ata_port_operations *cur;
6200 void **begin = (void **)ops;
6201 void **end = (void **)&ops->inherits;
6202 void **pp;
6203
6204 if (!ops || !ops->inherits)
6205 return;
6206
6207 spin_lock(&lock);
6208
6209 for (cur = ops->inherits; cur; cur = cur->inherits) {
6210 void **inherit = (void **)cur;
6211
6212 for (pp = begin; pp < end; pp++, inherit++)
6213 if (!*pp)
6214 *pp = *inherit;
6215 }
6216
6217 for (pp = begin; pp < end; pp++)
6218 if (IS_ERR(*pp))
6219 *pp = NULL;
6220
6221 ops->inherits = NULL;
6222
6223 spin_unlock(&lock);
6224}
6225
ecef7253
TH
6226/**
6227 * ata_host_start - start and freeze ports of an ATA host
6228 * @host: ATA host to start ports for
6229 *
6230 * Start and then freeze ports of @host. Started status is
6231 * recorded in host->flags, so this function can be called
6232 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6233 * once. If host->ops isn't initialized yet, its set to the
6234 * first non-dummy port ops.
ecef7253
TH
6235 *
6236 * LOCKING:
6237 * Inherited from calling layer (may sleep).
6238 *
6239 * RETURNS:
6240 * 0 if all ports are started successfully, -errno otherwise.
6241 */
6242int ata_host_start(struct ata_host *host)
6243{
32ebbc0c
TH
6244 int have_stop = 0;
6245 void *start_dr = NULL;
ecef7253
TH
6246 int i, rc;
6247
6248 if (host->flags & ATA_HOST_STARTED)
6249 return 0;
6250
029cfd6b
TH
6251 ata_finalize_port_ops(host->ops);
6252
ecef7253
TH
6253 for (i = 0; i < host->n_ports; i++) {
6254 struct ata_port *ap = host->ports[i];
6255
029cfd6b
TH
6256 ata_finalize_port_ops(ap->ops);
6257
f3187195
TH
6258 if (!host->ops && !ata_port_is_dummy(ap))
6259 host->ops = ap->ops;
6260
32ebbc0c
TH
6261 if (ap->ops->port_stop)
6262 have_stop = 1;
6263 }
6264
6265 if (host->ops->host_stop)
6266 have_stop = 1;
6267
6268 if (have_stop) {
6269 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6270 if (!start_dr)
6271 return -ENOMEM;
6272 }
6273
6274 for (i = 0; i < host->n_ports; i++) {
6275 struct ata_port *ap = host->ports[i];
6276
ecef7253
TH
6277 if (ap->ops->port_start) {
6278 rc = ap->ops->port_start(ap);
6279 if (rc) {
0f9fe9b7 6280 if (rc != -ENODEV)
a44fec1f
JP
6281 dev_err(host->dev,
6282 "failed to start port %d (errno=%d)\n",
6283 i, rc);
ecef7253
TH
6284 goto err_out;
6285 }
6286 }
ecef7253
TH
6287 ata_eh_freeze_port(ap);
6288 }
6289
32ebbc0c
TH
6290 if (start_dr)
6291 devres_add(host->dev, start_dr);
ecef7253
TH
6292 host->flags |= ATA_HOST_STARTED;
6293 return 0;
6294
6295 err_out:
6296 while (--i >= 0) {
6297 struct ata_port *ap = host->ports[i];
6298
6299 if (ap->ops->port_stop)
6300 ap->ops->port_stop(ap);
6301 }
32ebbc0c 6302 devres_free(start_dr);
ecef7253
TH
6303 return rc;
6304}
6305
b03732f0 6306/**
8d8e7d13 6307 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
cca3974e
JG
6308 * @host: host to initialize
6309 * @dev: device host is attached to
cca3974e 6310 * @ops: port_ops
b03732f0 6311 *
b03732f0 6312 */
cca3974e 6313void ata_host_init(struct ata_host *host, struct device *dev,
8d8e7d13 6314 struct ata_port_operations *ops)
b03732f0 6315{
cca3974e 6316 spin_lock_init(&host->lock);
c0c362b6 6317 mutex_init(&host->eh_mutex);
1a112d10 6318 host->n_tags = ATA_MAX_QUEUE - 1;
cca3974e 6319 host->dev = dev;
cca3974e 6320 host->ops = ops;
b03732f0
BK
6321}
6322
9508a66f 6323void __ata_port_probe(struct ata_port *ap)
79318057 6324{
9508a66f
DW
6325 struct ata_eh_info *ehi = &ap->link.eh_info;
6326 unsigned long flags;
886ad09f 6327
9508a66f
DW
6328 /* kick EH for boot probing */
6329 spin_lock_irqsave(ap->lock, flags);
79318057 6330
9508a66f
DW
6331 ehi->probe_mask |= ATA_ALL_DEVICES;
6332 ehi->action |= ATA_EH_RESET;
6333 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
79318057 6334
9508a66f
DW
6335 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6336 ap->pflags |= ATA_PFLAG_LOADING;
6337 ata_port_schedule_eh(ap);
79318057 6338
9508a66f
DW
6339 spin_unlock_irqrestore(ap->lock, flags);
6340}
79318057 6341
9508a66f
DW
6342int ata_port_probe(struct ata_port *ap)
6343{
6344 int rc = 0;
79318057 6345
9508a66f
DW
6346 if (ap->ops->error_handler) {
6347 __ata_port_probe(ap);
79318057
AV
6348 ata_port_wait_eh(ap);
6349 } else {
6350 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6351 rc = ata_bus_probe(ap);
6352 DPRINTK("ata%u: bus probe end\n", ap->print_id);
79318057 6353 }
238c9cf9
JB
6354 return rc;
6355}
6356
6357
6358static void async_port_probe(void *data, async_cookie_t cookie)
6359{
6360 struct ata_port *ap = data;
4fca377f 6361
238c9cf9
JB
6362 /*
6363 * If we're not allowed to scan this host in parallel,
6364 * we need to wait until all previous scans have completed
6365 * before going further.
6366 * Jeff Garzik says this is only within a controller, so we
6367 * don't need to wait for port 0, only for later ports.
6368 */
6369 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6370 async_synchronize_cookie(cookie);
6371
6372 (void)ata_port_probe(ap);
f29d3b23
AV
6373
6374 /* in order to keep device order, we need to synchronize at this point */
6375 async_synchronize_cookie(cookie);
6376
6377 ata_scsi_scan_host(ap, 1);
79318057 6378}
238c9cf9 6379
f3187195
TH
6380/**
6381 * ata_host_register - register initialized ATA host
6382 * @host: ATA host to register
6383 * @sht: template for SCSI host
6384 *
6385 * Register initialized ATA host. @host is allocated using
6386 * ata_host_alloc() and fully initialized by LLD. This function
6387 * starts ports, registers @host with ATA and SCSI layers and
6388 * probe registered devices.
6389 *
6390 * LOCKING:
6391 * Inherited from calling layer (may sleep).
6392 *
6393 * RETURNS:
6394 * 0 on success, -errno otherwise.
6395 */
6396int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6397{
6398 int i, rc;
6399
1a112d10 6400 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
1871ee13 6401
f3187195
TH
6402 /* host must have been started */
6403 if (!(host->flags & ATA_HOST_STARTED)) {
a44fec1f 6404 dev_err(host->dev, "BUG: trying to register unstarted host\n");
f3187195
TH
6405 WARN_ON(1);
6406 return -EINVAL;
6407 }
6408
6409 /* Blow away unused ports. This happens when LLD can't
6410 * determine the exact number of ports to allocate at
6411 * allocation time.
6412 */
6413 for (i = host->n_ports; host->ports[i]; i++)
6414 kfree(host->ports[i]);
6415
6416 /* give ports names and add SCSI hosts */
e628dc99 6417 for (i = 0; i < host->n_ports; i++) {
85d6725b 6418 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
e628dc99
DM
6419 host->ports[i]->local_port_no = i + 1;
6420 }
4fca377f 6421
d9027470
GG
6422 /* Create associated sysfs transport objects */
6423 for (i = 0; i < host->n_ports; i++) {
6424 rc = ata_tport_add(host->dev,host->ports[i]);
6425 if (rc) {
6426 goto err_tadd;
6427 }
6428 }
6429
f3187195
TH
6430 rc = ata_scsi_add_hosts(host, sht);
6431 if (rc)
d9027470 6432 goto err_tadd;
f3187195
TH
6433
6434 /* set cable, sata_spd_limit and report */
6435 for (i = 0; i < host->n_ports; i++) {
6436 struct ata_port *ap = host->ports[i];
f3187195
TH
6437 unsigned long xfer_mask;
6438
6439 /* set SATA cable type if still unset */
6440 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6441 ap->cbl = ATA_CBL_SATA;
6442
6443 /* init sata_spd_limit to the current value */
4fb37a25 6444 sata_link_init_spd(&ap->link);
b1c72916
TH
6445 if (ap->slave_link)
6446 sata_link_init_spd(ap->slave_link);
f3187195 6447
cbcdd875 6448 /* print per-port info to dmesg */
f3187195
TH
6449 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6450 ap->udma_mask);
6451
abf6e8ed 6452 if (!ata_port_is_dummy(ap)) {
a9a79dfe
JP
6453 ata_port_info(ap, "%cATA max %s %s\n",
6454 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6455 ata_mode_string(xfer_mask),
6456 ap->link.eh_info.desc);
abf6e8ed
TH
6457 ata_ehi_clear_desc(&ap->link.eh_info);
6458 } else
a9a79dfe 6459 ata_port_info(ap, "DUMMY\n");
f3187195
TH
6460 }
6461
f6005354 6462 /* perform each probe asynchronously */
f3187195
TH
6463 for (i = 0; i < host->n_ports; i++) {
6464 struct ata_port *ap = host->ports[i];
79318057 6465 async_schedule(async_port_probe, ap);
f3187195 6466 }
f3187195
TH
6467
6468 return 0;
d9027470
GG
6469
6470 err_tadd:
6471 while (--i >= 0) {
6472 ata_tport_delete(host->ports[i]);
6473 }
6474 return rc;
6475
f3187195
TH
6476}
6477
f5cda257
TH
6478/**
6479 * ata_host_activate - start host, request IRQ and register it
6480 * @host: target ATA host
6481 * @irq: IRQ to request
6482 * @irq_handler: irq_handler used when requesting IRQ
6483 * @irq_flags: irq_flags used when requesting IRQ
6484 * @sht: scsi_host_template to use when registering the host
6485 *
6486 * After allocating an ATA host and initializing it, most libata
6487 * LLDs perform three steps to activate the host - start host,
c9b5560a 6488 * request IRQ and register it. This helper takes necessary
f5cda257
TH
6489 * arguments and performs the three steps in one go.
6490 *
3d46b2e2
PM
6491 * An invalid IRQ skips the IRQ registration and expects the host to
6492 * have set polling mode on the port. In this case, @irq_handler
6493 * should be NULL.
6494 *
f5cda257
TH
6495 * LOCKING:
6496 * Inherited from calling layer (may sleep).
6497 *
6498 * RETURNS:
6499 * 0 on success, -errno otherwise.
6500 */
6501int ata_host_activate(struct ata_host *host, int irq,
6502 irq_handler_t irq_handler, unsigned long irq_flags,
6503 struct scsi_host_template *sht)
6504{
cbcdd875 6505 int i, rc;
7e22c002 6506 char *irq_desc;
f5cda257
TH
6507
6508 rc = ata_host_start(host);
6509 if (rc)
6510 return rc;
6511
3d46b2e2
PM
6512 /* Special case for polling mode */
6513 if (!irq) {
6514 WARN_ON(irq_handler);
6515 return ata_host_register(host, sht);
6516 }
6517
7e22c002
HK
6518 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6519 dev_driver_string(host->dev),
6520 dev_name(host->dev));
6521 if (!irq_desc)
6522 return -ENOMEM;
6523
f5cda257 6524 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7e22c002 6525 irq_desc, host);
f5cda257
TH
6526 if (rc)
6527 return rc;
6528
cbcdd875
TH
6529 for (i = 0; i < host->n_ports; i++)
6530 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6531
f5cda257
TH
6532 rc = ata_host_register(host, sht);
6533 /* if failed, just free the IRQ and leave ports alone */
6534 if (rc)
6535 devm_free_irq(host->dev, irq, host);
6536
6537 return rc;
6538}
6539
720ba126 6540/**
c9b5560a 6541 * ata_port_detach - Detach ATA port in preparation of device removal
720ba126
TH
6542 * @ap: ATA port to be detached
6543 *
6544 * Detach all ATA devices and the associated SCSI devices of @ap;
6545 * then, remove the associated SCSI host. @ap is guaranteed to
6546 * be quiescent on return from this function.
6547 *
6548 * LOCKING:
6549 * Kernel thread context (may sleep).
6550 */
741b7763 6551static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6552{
6553 unsigned long flags;
a6f9bf4d
LK
6554 struct ata_link *link;
6555 struct ata_device *dev;
720ba126
TH
6556
6557 if (!ap->ops->error_handler)
c3cf30a9 6558 goto skip_eh;
720ba126
TH
6559
6560 /* tell EH we're leaving & flush EH */
ba6a1308 6561 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6562 ap->pflags |= ATA_PFLAG_UNLOADING;
ece180d1 6563 ata_port_schedule_eh(ap);
ba6a1308 6564 spin_unlock_irqrestore(ap->lock, flags);
720ba126 6565
ece180d1 6566 /* wait till EH commits suicide */
720ba126
TH
6567 ata_port_wait_eh(ap);
6568
ece180d1
TH
6569 /* it better be dead now */
6570 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
720ba126 6571
afe2c511 6572 cancel_delayed_work_sync(&ap->hotplug_task);
720ba126 6573
c3cf30a9 6574 skip_eh:
a6f9bf4d
LK
6575 /* clean up zpodd on port removal */
6576 ata_for_each_link(link, ap, HOST_FIRST) {
6577 ata_for_each_dev(dev, link, ALL) {
6578 if (zpodd_dev_enabled(dev))
6579 zpodd_exit(dev);
6580 }
6581 }
d9027470
GG
6582 if (ap->pmp_link) {
6583 int i;
6584 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6585 ata_tlink_delete(&ap->pmp_link[i]);
6586 }
720ba126 6587 /* remove the associated SCSI host */
cca3974e 6588 scsi_remove_host(ap->scsi_host);
c5700766 6589 ata_tport_delete(ap);
720ba126
TH
6590}
6591
0529c159
TH
6592/**
6593 * ata_host_detach - Detach all ports of an ATA host
6594 * @host: Host to detach
6595 *
6596 * Detach all ports of @host.
6597 *
6598 * LOCKING:
6599 * Kernel thread context (may sleep).
6600 */
6601void ata_host_detach(struct ata_host *host)
6602{
6603 int i;
6604
6605 for (i = 0; i < host->n_ports; i++)
6606 ata_port_detach(host->ports[i]);
562f0c2d
TH
6607
6608 /* the host is dead now, dissociate ACPI */
6609 ata_acpi_dissociate(host);
0529c159
TH
6610}
6611
374b1873
JG
6612#ifdef CONFIG_PCI
6613
1da177e4
LT
6614/**
6615 * ata_pci_remove_one - PCI layer callback for device removal
6616 * @pdev: PCI device that was removed
6617 *
b878ca5d
TH
6618 * PCI layer indicates to libata via this hook that hot-unplug or
6619 * module unload event has occurred. Detach all ports. Resource
6620 * release is handled via devres.
1da177e4
LT
6621 *
6622 * LOCKING:
6623 * Inherited from PCI layer (may sleep).
6624 */
f0d36efd 6625void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6626{
04a3f5b7 6627 struct ata_host *host = pci_get_drvdata(pdev);
1da177e4 6628
b878ca5d 6629 ata_host_detach(host);
1da177e4
LT
6630}
6631
6632/* move to PCI subsystem */
057ace5e 6633int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6634{
6635 unsigned long tmp = 0;
6636
6637 switch (bits->width) {
6638 case 1: {
6639 u8 tmp8 = 0;
6640 pci_read_config_byte(pdev, bits->reg, &tmp8);
6641 tmp = tmp8;
6642 break;
6643 }
6644 case 2: {
6645 u16 tmp16 = 0;
6646 pci_read_config_word(pdev, bits->reg, &tmp16);
6647 tmp = tmp16;
6648 break;
6649 }
6650 case 4: {
6651 u32 tmp32 = 0;
6652 pci_read_config_dword(pdev, bits->reg, &tmp32);
6653 tmp = tmp32;
6654 break;
6655 }
6656
6657 default:
6658 return -EINVAL;
6659 }
6660
6661 tmp &= bits->mask;
6662
6663 return (tmp == bits->val) ? 1 : 0;
6664}
9b847548 6665
6ffa01d8 6666#ifdef CONFIG_PM
3c5100c1 6667void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6668{
6669 pci_save_state(pdev);
4c90d971 6670 pci_disable_device(pdev);
500530f6 6671
3a2d5b70 6672 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6673 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6674}
6675
553c4aa6 6676int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6677{
553c4aa6
TH
6678 int rc;
6679
9b847548
JA
6680 pci_set_power_state(pdev, PCI_D0);
6681 pci_restore_state(pdev);
553c4aa6 6682
b878ca5d 6683 rc = pcim_enable_device(pdev);
553c4aa6 6684 if (rc) {
a44fec1f
JP
6685 dev_err(&pdev->dev,
6686 "failed to enable device after resume (%d)\n", rc);
553c4aa6
TH
6687 return rc;
6688 }
6689
9b847548 6690 pci_set_master(pdev);
553c4aa6 6691 return 0;
500530f6
TH
6692}
6693
3c5100c1 6694int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6695{
04a3f5b7 6696 struct ata_host *host = pci_get_drvdata(pdev);
500530f6
TH
6697 int rc = 0;
6698
cca3974e 6699 rc = ata_host_suspend(host, mesg);
500530f6
TH
6700 if (rc)
6701 return rc;
6702
3c5100c1 6703 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6704
6705 return 0;
6706}
6707
6708int ata_pci_device_resume(struct pci_dev *pdev)
6709{
04a3f5b7 6710 struct ata_host *host = pci_get_drvdata(pdev);
553c4aa6 6711 int rc;
500530f6 6712
553c4aa6
TH
6713 rc = ata_pci_device_do_resume(pdev);
6714 if (rc == 0)
6715 ata_host_resume(host);
6716 return rc;
9b847548 6717}
6ffa01d8
TH
6718#endif /* CONFIG_PM */
6719
1da177e4
LT
6720#endif /* CONFIG_PCI */
6721
b7db04d9
BN
6722/**
6723 * ata_platform_remove_one - Platform layer callback for device removal
6724 * @pdev: Platform device that was removed
6725 *
6726 * Platform layer indicates to libata via this hook that hot-unplug or
6727 * module unload event has occurred. Detach all ports. Resource
6728 * release is handled via devres.
6729 *
6730 * LOCKING:
6731 * Inherited from platform layer (may sleep).
6732 */
6733int ata_platform_remove_one(struct platform_device *pdev)
6734{
6735 struct ata_host *host = platform_get_drvdata(pdev);
6736
6737 ata_host_detach(host);
6738
6739 return 0;
6740}
6741
33267325
TH
6742static int __init ata_parse_force_one(char **cur,
6743 struct ata_force_ent *force_ent,
6744 const char **reason)
6745{
0f5f264b 6746 static const struct ata_force_param force_tbl[] __initconst = {
33267325
TH
6747 { "40c", .cbl = ATA_CBL_PATA40 },
6748 { "80c", .cbl = ATA_CBL_PATA80 },
6749 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6750 { "unk", .cbl = ATA_CBL_PATA_UNK },
6751 { "ign", .cbl = ATA_CBL_PATA_IGN },
6752 { "sata", .cbl = ATA_CBL_SATA },
6753 { "1.5Gbps", .spd_limit = 1 },
6754 { "3.0Gbps", .spd_limit = 2 },
6755 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6756 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
d7b16e4f
MP
6757 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6758 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
43c9c591 6759 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
33267325
TH
6760 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6761 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6762 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6763 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6764 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6765 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6766 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6767 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6768 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6769 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6770 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6771 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6772 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6773 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6774 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6775 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6776 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6777 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6778 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6779 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6780 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6781 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6782 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6783 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6784 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6785 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6786 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6787 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6788 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6789 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6790 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6791 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6792 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6793 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6794 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6795 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6796 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
ca6d43b0 6797 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
966fbe19 6798 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
b8bd6dc3 6799 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
33267325
TH
6800 };
6801 char *start = *cur, *p = *cur;
6802 char *id, *val, *endp;
6803 const struct ata_force_param *match_fp = NULL;
6804 int nr_matches = 0, i;
6805
6806 /* find where this param ends and update *cur */
6807 while (*p != '\0' && *p != ',')
6808 p++;
6809
6810 if (*p == '\0')
6811 *cur = p;
6812 else
6813 *cur = p + 1;
6814
6815 *p = '\0';
6816
6817 /* parse */
6818 p = strchr(start, ':');
6819 if (!p) {
6820 val = strstrip(start);
6821 goto parse_val;
6822 }
6823 *p = '\0';
6824
6825 id = strstrip(start);
6826 val = strstrip(p + 1);
6827
6828 /* parse id */
6829 p = strchr(id, '.');
6830 if (p) {
6831 *p++ = '\0';
6832 force_ent->device = simple_strtoul(p, &endp, 10);
6833 if (p == endp || *endp != '\0') {
6834 *reason = "invalid device";
6835 return -EINVAL;
6836 }
6837 }
6838
6839 force_ent->port = simple_strtoul(id, &endp, 10);
6840 if (p == endp || *endp != '\0') {
6841 *reason = "invalid port/link";
6842 return -EINVAL;
6843 }
6844
6845 parse_val:
6846 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6847 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6848 const struct ata_force_param *fp = &force_tbl[i];
6849
6850 if (strncasecmp(val, fp->name, strlen(val)))
6851 continue;
6852
6853 nr_matches++;
6854 match_fp = fp;
6855
6856 if (strcasecmp(val, fp->name) == 0) {
6857 nr_matches = 1;
6858 break;
6859 }
6860 }
6861
6862 if (!nr_matches) {
6863 *reason = "unknown value";
6864 return -EINVAL;
6865 }
6866 if (nr_matches > 1) {
6867 *reason = "ambigious value";
6868 return -EINVAL;
6869 }
6870
6871 force_ent->param = *match_fp;
6872
6873 return 0;
6874}
6875
6876static void __init ata_parse_force_param(void)
6877{
6878 int idx = 0, size = 1;
6879 int last_port = -1, last_device = -1;
6880 char *p, *cur, *next;
6881
6882 /* calculate maximum number of params and allocate force_tbl */
6883 for (p = ata_force_param_buf; *p; p++)
6884 if (*p == ',')
6885 size++;
6886
6887 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6888 if (!ata_force_tbl) {
6889 printk(KERN_WARNING "ata: failed to extend force table, "
6890 "libata.force ignored\n");
6891 return;
6892 }
6893
6894 /* parse and populate the table */
6895 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6896 const char *reason = "";
6897 struct ata_force_ent te = { .port = -1, .device = -1 };
6898
6899 next = cur;
6900 if (ata_parse_force_one(&next, &te, &reason)) {
6901 printk(KERN_WARNING "ata: failed to parse force "
6902 "parameter \"%s\" (%s)\n",
6903 cur, reason);
6904 continue;
6905 }
6906
6907 if (te.port == -1) {
6908 te.port = last_port;
6909 te.device = last_device;
6910 }
6911
6912 ata_force_tbl[idx++] = te;
6913
6914 last_port = te.port;
6915 last_device = te.device;
6916 }
6917
6918 ata_force_tbl_size = idx;
6919}
1da177e4 6920
1da177e4
LT
6921static int __init ata_init(void)
6922{
d9027470 6923 int rc;
270390e1 6924
33267325
TH
6925 ata_parse_force_param();
6926
270390e1 6927 rc = ata_sff_init();
ad72cf98
TH
6928 if (rc) {
6929 kfree(ata_force_tbl);
6930 return rc;
6931 }
453b07ac 6932
d9027470
GG
6933 libata_transport_init();
6934 ata_scsi_transport_template = ata_attach_transport();
6935 if (!ata_scsi_transport_template) {
6936 ata_sff_exit();
6937 rc = -ENOMEM;
6938 goto err_out;
4fca377f 6939 }
d9027470 6940
1da177e4
LT
6941 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6942 return 0;
d9027470
GG
6943
6944err_out:
6945 return rc;
1da177e4
LT
6946}
6947
6948static void __exit ata_exit(void)
6949{
d9027470
GG
6950 ata_release_transport(ata_scsi_transport_template);
6951 libata_transport_exit();
270390e1 6952 ata_sff_exit();
33267325 6953 kfree(ata_force_tbl);
1da177e4
LT
6954}
6955
a4625085 6956subsys_initcall(ata_init);
1da177e4
LT
6957module_exit(ata_exit);
6958
9990b6f3 6959static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
67846b30
JG
6960
6961int ata_ratelimit(void)
6962{
9990b6f3 6963 return __ratelimit(&ratelimit);
67846b30
JG
6964}
6965
c0c362b6
TH
6966/**
6967 * ata_msleep - ATA EH owner aware msleep
6968 * @ap: ATA port to attribute the sleep to
6969 * @msecs: duration to sleep in milliseconds
6970 *
6971 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6972 * ownership is released before going to sleep and reacquired
6973 * after the sleep is complete. IOW, other ports sharing the
6974 * @ap->host will be allowed to own the EH while this task is
6975 * sleeping.
6976 *
6977 * LOCKING:
6978 * Might sleep.
6979 */
97750ceb
TH
6980void ata_msleep(struct ata_port *ap, unsigned int msecs)
6981{
c0c362b6
TH
6982 bool owns_eh = ap && ap->host->eh_owner == current;
6983
6984 if (owns_eh)
6985 ata_eh_release(ap);
6986
848c3920
AVM
6987 if (msecs < 20) {
6988 unsigned long usecs = msecs * USEC_PER_MSEC;
6989 usleep_range(usecs, usecs + 50);
6990 } else {
6991 msleep(msecs);
6992 }
c0c362b6
TH
6993
6994 if (owns_eh)
6995 ata_eh_acquire(ap);
97750ceb
TH
6996}
6997
c22daff4
TH
6998/**
6999 * ata_wait_register - wait until register value changes
97750ceb 7000 * @ap: ATA port to wait register for, can be NULL
c22daff4
TH
7001 * @reg: IO-mapped register
7002 * @mask: Mask to apply to read register value
7003 * @val: Wait condition
341c2c95
TH
7004 * @interval: polling interval in milliseconds
7005 * @timeout: timeout in milliseconds
c22daff4
TH
7006 *
7007 * Waiting for some bits of register to change is a common
7008 * operation for ATA controllers. This function reads 32bit LE
7009 * IO-mapped register @reg and tests for the following condition.
7010 *
7011 * (*@reg & mask) != val
7012 *
7013 * If the condition is met, it returns; otherwise, the process is
7014 * repeated after @interval_msec until timeout.
7015 *
7016 * LOCKING:
7017 * Kernel thread context (may sleep)
7018 *
7019 * RETURNS:
7020 * The final register value.
7021 */
97750ceb 7022u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
341c2c95 7023 unsigned long interval, unsigned long timeout)
c22daff4 7024{
341c2c95 7025 unsigned long deadline;
c22daff4
TH
7026 u32 tmp;
7027
7028 tmp = ioread32(reg);
7029
7030 /* Calculate timeout _after_ the first read to make sure
7031 * preceding writes reach the controller before starting to
7032 * eat away the timeout.
7033 */
341c2c95 7034 deadline = ata_deadline(jiffies, timeout);
c22daff4 7035
341c2c95 7036 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
97750ceb 7037 ata_msleep(ap, interval);
c22daff4
TH
7038 tmp = ioread32(reg);
7039 }
7040
7041 return tmp;
7042}
7043
8393b811
GM
7044/**
7045 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
7046 * @link: Link receiving the event
7047 *
7048 * Test whether the received PHY event has to be ignored or not.
7049 *
7050 * LOCKING:
7051 * None:
7052 *
7053 * RETURNS:
7054 * True if the event has to be ignored.
7055 */
7056bool sata_lpm_ignore_phy_events(struct ata_link *link)
7057{
09c5b480
GM
7058 unsigned long lpm_timeout = link->last_lpm_change +
7059 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7060
8393b811 7061 /* if LPM is enabled, PHYRDY doesn't mean anything */
09c5b480
GM
7062 if (link->lpm_policy > ATA_LPM_MAX_POWER)
7063 return true;
7064
7065 /* ignore the first PHY event after the LPM policy changed
7066 * as it is might be spurious
7067 */
7068 if ((link->flags & ATA_LFLAG_CHANGED) &&
7069 time_before(jiffies, lpm_timeout))
7070 return true;
7071
7072 return false;
8393b811
GM
7073}
7074EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7075
dd5b06c4
TH
7076/*
7077 * Dummy port_ops
7078 */
182d7bba 7079static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 7080{
182d7bba 7081 return AC_ERR_SYSTEM;
dd5b06c4
TH
7082}
7083
182d7bba 7084static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 7085{
182d7bba 7086 /* truly dummy */
dd5b06c4
TH
7087}
7088
029cfd6b 7089struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7090 .qc_prep = ata_noop_qc_prep,
7091 .qc_issue = ata_dummy_qc_issue,
182d7bba 7092 .error_handler = ata_dummy_error_handler,
e4a9c373
DW
7093 .sched_eh = ata_std_sched_eh,
7094 .end_eh = ata_std_end_eh,
dd5b06c4
TH
7095};
7096
21b0ad4f
TH
7097const struct ata_port_info ata_dummy_port_info = {
7098 .port_ops = &ata_dummy_port_ops,
7099};
7100
a9a79dfe
JP
7101/*
7102 * Utility print functions
7103 */
d7bead1b
JP
7104void ata_port_printk(const struct ata_port *ap, const char *level,
7105 const char *fmt, ...)
a9a79dfe
JP
7106{
7107 struct va_format vaf;
7108 va_list args;
a9a79dfe
JP
7109
7110 va_start(args, fmt);
7111
7112 vaf.fmt = fmt;
7113 vaf.va = &args;
7114
d7bead1b 7115 printk("%sata%u: %pV", level, ap->print_id, &vaf);
a9a79dfe
JP
7116
7117 va_end(args);
a9a79dfe
JP
7118}
7119EXPORT_SYMBOL(ata_port_printk);
7120
d7bead1b
JP
7121void ata_link_printk(const struct ata_link *link, const char *level,
7122 const char *fmt, ...)
a9a79dfe
JP
7123{
7124 struct va_format vaf;
7125 va_list args;
a9a79dfe
JP
7126
7127 va_start(args, fmt);
7128
7129 vaf.fmt = fmt;
7130 vaf.va = &args;
7131
7132 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
d7bead1b
JP
7133 printk("%sata%u.%02u: %pV",
7134 level, link->ap->print_id, link->pmp, &vaf);
a9a79dfe 7135 else
d7bead1b
JP
7136 printk("%sata%u: %pV",
7137 level, link->ap->print_id, &vaf);
a9a79dfe
JP
7138
7139 va_end(args);
a9a79dfe
JP
7140}
7141EXPORT_SYMBOL(ata_link_printk);
7142
d7bead1b 7143void ata_dev_printk(const struct ata_device *dev, const char *level,
a9a79dfe
JP
7144 const char *fmt, ...)
7145{
7146 struct va_format vaf;
7147 va_list args;
a9a79dfe
JP
7148
7149 va_start(args, fmt);
7150
7151 vaf.fmt = fmt;
7152 vaf.va = &args;
7153
d7bead1b
JP
7154 printk("%sata%u.%02u: %pV",
7155 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7156 &vaf);
a9a79dfe
JP
7157
7158 va_end(args);
a9a79dfe
JP
7159}
7160EXPORT_SYMBOL(ata_dev_printk);
7161
06296a1e
JP
7162void ata_print_version(const struct device *dev, const char *version)
7163{
7164 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7165}
7166EXPORT_SYMBOL(ata_print_version);
7167
1da177e4
LT
7168/*
7169 * libata is essentially a library of internal helper functions for
7170 * low-level ATA host controller drivers. As such, the API/ABI is
7171 * likely to change as new drivers are added and updated.
7172 * Do not depend on ABI/API stability.
7173 */
e9c83914
TH
7174EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7175EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7176EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
7177EXPORT_SYMBOL_GPL(ata_base_port_ops);
7178EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 7179EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7180EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1eca4365
TH
7181EXPORT_SYMBOL_GPL(ata_link_next);
7182EXPORT_SYMBOL_GPL(ata_dev_next);
1da177e4 7183EXPORT_SYMBOL_GPL(ata_std_bios_param);
d8d9129e 7184EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
cca3974e 7185EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7186EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7187EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 7188EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 7189EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7190EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7191EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7192EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 7193EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 7194EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7195EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 7196EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
7197EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7198EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
7199EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7200EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7201EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7202EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7203EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7204EXPORT_SYMBOL_GPL(ata_mode_string);
7205EXPORT_SYMBOL_GPL(ata_id_xfermask);
04351821 7206EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 7207EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 7208EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
10305f0f 7209EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7210EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 7211EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
7212EXPORT_SYMBOL_GPL(sata_link_debounce);
7213EXPORT_SYMBOL_GPL(sata_link_resume);
1152b261 7214EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
0aa1113d 7215EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 7216EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 7217EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 7218EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7219EXPORT_SYMBOL_GPL(ata_dev_classify);
7220EXPORT_SYMBOL_GPL(ata_dev_pair);
67846b30 7221EXPORT_SYMBOL_GPL(ata_ratelimit);
97750ceb 7222EXPORT_SYMBOL_GPL(ata_msleep);
c22daff4 7223EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4 7224EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7225EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7226EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7227EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
f6e67035 7228EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
34bf2170
TH
7229EXPORT_SYMBOL_GPL(sata_scr_valid);
7230EXPORT_SYMBOL_GPL(sata_scr_read);
7231EXPORT_SYMBOL_GPL(sata_scr_write);
7232EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7233EXPORT_SYMBOL_GPL(ata_link_online);
7234EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7235#ifdef CONFIG_PM
cca3974e
JG
7236EXPORT_SYMBOL_GPL(ata_host_suspend);
7237EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7238#endif /* CONFIG_PM */
6a62a04d
TH
7239EXPORT_SYMBOL_GPL(ata_id_string);
7240EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 7241EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
7242EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7243
1bc4ccff 7244EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 7245EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
7246EXPORT_SYMBOL_GPL(ata_timing_compute);
7247EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 7248EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 7249
1da177e4
LT
7250#ifdef CONFIG_PCI
7251EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 7252EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7253#ifdef CONFIG_PM
500530f6
TH
7254EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7255EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7256EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7257EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7258#endif /* CONFIG_PM */
1da177e4 7259#endif /* CONFIG_PCI */
9b847548 7260
b7db04d9
BN
7261EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7262
b64bbc39
TH
7263EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7264EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7265EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7266EXPORT_SYMBOL_GPL(ata_port_desc);
7267#ifdef CONFIG_PCI
7268EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7269#endif /* CONFIG_PCI */
7b70fc03 7270EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7271EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7272EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7273EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7274EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7275EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7276EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7277EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7278EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 7279EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 7280EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 7281EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
7282
7283EXPORT_SYMBOL_GPL(ata_cable_40wire);
7284EXPORT_SYMBOL_GPL(ata_cable_80wire);
7285EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 7286EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 7287EXPORT_SYMBOL_GPL(ata_cable_sata);