libata: make ->scr_read/write callbacks return error code
[linux-block.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
8bc3fc47 62#define DRV_VERSION "2.21" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 74static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 75
f3187195 76unsigned int ata_print_id = 1;
1da177e4
LT
77static struct workqueue_struct *ata_wq;
78
453b07ac
TH
79struct workqueue_struct *ata_aux_wq;
80
418dc1f5 81int atapi_enabled = 1;
1623c81e
JG
82module_param(atapi_enabled, int, 0444);
83MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
95de719a
AL
85int atapi_dmadir = 0;
86module_param(atapi_dmadir, int, 0444);
87MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
c3c013a2
JG
89int libata_fua = 0;
90module_param_named(fua, libata_fua, int, 0444);
91MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92
1e999736
AC
93static int ata_ignore_hpa = 0;
94module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
95MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96
a8601e5f
AM
97static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
98module_param(ata_probe_timeout, int, 0444);
99MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
100
d7d0dad6
JG
101int libata_noacpi = 1;
102module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
103MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
104
1da177e4
LT
105MODULE_AUTHOR("Jeff Garzik");
106MODULE_DESCRIPTION("Library module for ATA devices");
107MODULE_LICENSE("GPL");
108MODULE_VERSION(DRV_VERSION);
109
0baab86b 110
1da177e4
LT
111/**
112 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
113 * @tf: Taskfile to convert
1da177e4 114 * @pmp: Port multiplier port
9977126c
TH
115 * @is_cmd: This FIS is for command
116 * @fis: Buffer into which data will output
1da177e4
LT
117 *
118 * Converts a standard ATA taskfile to a Serial ATA
119 * FIS structure (Register - Host to Device).
120 *
121 * LOCKING:
122 * Inherited from caller.
123 */
9977126c 124void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 125{
9977126c
TH
126 fis[0] = 0x27; /* Register - Host to Device FIS */
127 fis[1] = pmp & 0xf; /* Port multiplier number*/
128 if (is_cmd)
129 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
130
1da177e4
LT
131 fis[2] = tf->command;
132 fis[3] = tf->feature;
133
134 fis[4] = tf->lbal;
135 fis[5] = tf->lbam;
136 fis[6] = tf->lbah;
137 fis[7] = tf->device;
138
139 fis[8] = tf->hob_lbal;
140 fis[9] = tf->hob_lbam;
141 fis[10] = tf->hob_lbah;
142 fis[11] = tf->hob_feature;
143
144 fis[12] = tf->nsect;
145 fis[13] = tf->hob_nsect;
146 fis[14] = 0;
147 fis[15] = tf->ctl;
148
149 fis[16] = 0;
150 fis[17] = 0;
151 fis[18] = 0;
152 fis[19] = 0;
153}
154
155/**
156 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
157 * @fis: Buffer from which data will be input
158 * @tf: Taskfile to output
159 *
e12a1be6 160 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
161 *
162 * LOCKING:
163 * Inherited from caller.
164 */
165
057ace5e 166void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
167{
168 tf->command = fis[2]; /* status */
169 tf->feature = fis[3]; /* error */
170
171 tf->lbal = fis[4];
172 tf->lbam = fis[5];
173 tf->lbah = fis[6];
174 tf->device = fis[7];
175
176 tf->hob_lbal = fis[8];
177 tf->hob_lbam = fis[9];
178 tf->hob_lbah = fis[10];
179
180 tf->nsect = fis[12];
181 tf->hob_nsect = fis[13];
182}
183
8cbd6df1
AL
184static const u8 ata_rw_cmds[] = {
185 /* pio multi */
186 ATA_CMD_READ_MULTI,
187 ATA_CMD_WRITE_MULTI,
188 ATA_CMD_READ_MULTI_EXT,
189 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
190 0,
191 0,
192 0,
193 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
194 /* pio */
195 ATA_CMD_PIO_READ,
196 ATA_CMD_PIO_WRITE,
197 ATA_CMD_PIO_READ_EXT,
198 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
199 0,
200 0,
201 0,
202 0,
8cbd6df1
AL
203 /* dma */
204 ATA_CMD_READ,
205 ATA_CMD_WRITE,
206 ATA_CMD_READ_EXT,
9a3dccc4
TH
207 ATA_CMD_WRITE_EXT,
208 0,
209 0,
210 0,
211 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 212};
1da177e4
LT
213
214/**
8cbd6df1 215 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
216 * @tf: command to examine and configure
217 * @dev: device tf belongs to
1da177e4 218 *
2e9edbf8 219 * Examine the device configuration and tf->flags to calculate
8cbd6df1 220 * the proper read/write commands and protocol to use.
1da177e4
LT
221 *
222 * LOCKING:
223 * caller.
224 */
bd056d7e 225static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 226{
9a3dccc4 227 u8 cmd;
1da177e4 228
9a3dccc4 229 int index, fua, lba48, write;
2e9edbf8 230
9a3dccc4 231 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
232 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
233 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 234
8cbd6df1
AL
235 if (dev->flags & ATA_DFLAG_PIO) {
236 tf->protocol = ATA_PROT_PIO;
9a3dccc4 237 index = dev->multi_count ? 0 : 8;
bd056d7e 238 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
239 /* Unable to use DMA due to host limitation */
240 tf->protocol = ATA_PROT_PIO;
0565c26d 241 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
242 } else {
243 tf->protocol = ATA_PROT_DMA;
9a3dccc4 244 index = 16;
8cbd6df1 245 }
1da177e4 246
9a3dccc4
TH
247 cmd = ata_rw_cmds[index + fua + lba48 + write];
248 if (cmd) {
249 tf->command = cmd;
250 return 0;
251 }
252 return -1;
1da177e4
LT
253}
254
35b649fe
TH
255/**
256 * ata_tf_read_block - Read block address from ATA taskfile
257 * @tf: ATA taskfile of interest
258 * @dev: ATA device @tf belongs to
259 *
260 * LOCKING:
261 * None.
262 *
263 * Read block address from @tf. This function can handle all
264 * three address formats - LBA, LBA48 and CHS. tf->protocol and
265 * flags select the address format to use.
266 *
267 * RETURNS:
268 * Block address read from @tf.
269 */
270u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
271{
272 u64 block = 0;
273
274 if (tf->flags & ATA_TFLAG_LBA) {
275 if (tf->flags & ATA_TFLAG_LBA48) {
276 block |= (u64)tf->hob_lbah << 40;
277 block |= (u64)tf->hob_lbam << 32;
278 block |= tf->hob_lbal << 24;
279 } else
280 block |= (tf->device & 0xf) << 24;
281
282 block |= tf->lbah << 16;
283 block |= tf->lbam << 8;
284 block |= tf->lbal;
285 } else {
286 u32 cyl, head, sect;
287
288 cyl = tf->lbam | (tf->lbah << 8);
289 head = tf->device & 0xf;
290 sect = tf->lbal;
291
292 block = (cyl * dev->heads + head) * dev->sectors + sect;
293 }
294
295 return block;
296}
297
bd056d7e
TH
298/**
299 * ata_build_rw_tf - Build ATA taskfile for given read/write request
300 * @tf: Target ATA taskfile
301 * @dev: ATA device @tf belongs to
302 * @block: Block address
303 * @n_block: Number of blocks
304 * @tf_flags: RW/FUA etc...
305 * @tag: tag
306 *
307 * LOCKING:
308 * None.
309 *
310 * Build ATA taskfile @tf for read/write request described by
311 * @block, @n_block, @tf_flags and @tag on @dev.
312 *
313 * RETURNS:
314 *
315 * 0 on success, -ERANGE if the request is too large for @dev,
316 * -EINVAL if the request is invalid.
317 */
318int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
319 u64 block, u32 n_block, unsigned int tf_flags,
320 unsigned int tag)
321{
322 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
323 tf->flags |= tf_flags;
324
6d1245bf 325 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
326 /* yay, NCQ */
327 if (!lba_48_ok(block, n_block))
328 return -ERANGE;
329
330 tf->protocol = ATA_PROT_NCQ;
331 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
332
333 if (tf->flags & ATA_TFLAG_WRITE)
334 tf->command = ATA_CMD_FPDMA_WRITE;
335 else
336 tf->command = ATA_CMD_FPDMA_READ;
337
338 tf->nsect = tag << 3;
339 tf->hob_feature = (n_block >> 8) & 0xff;
340 tf->feature = n_block & 0xff;
341
342 tf->hob_lbah = (block >> 40) & 0xff;
343 tf->hob_lbam = (block >> 32) & 0xff;
344 tf->hob_lbal = (block >> 24) & 0xff;
345 tf->lbah = (block >> 16) & 0xff;
346 tf->lbam = (block >> 8) & 0xff;
347 tf->lbal = block & 0xff;
348
349 tf->device = 1 << 6;
350 if (tf->flags & ATA_TFLAG_FUA)
351 tf->device |= 1 << 7;
352 } else if (dev->flags & ATA_DFLAG_LBA) {
353 tf->flags |= ATA_TFLAG_LBA;
354
355 if (lba_28_ok(block, n_block)) {
356 /* use LBA28 */
357 tf->device |= (block >> 24) & 0xf;
358 } else if (lba_48_ok(block, n_block)) {
359 if (!(dev->flags & ATA_DFLAG_LBA48))
360 return -ERANGE;
361
362 /* use LBA48 */
363 tf->flags |= ATA_TFLAG_LBA48;
364
365 tf->hob_nsect = (n_block >> 8) & 0xff;
366
367 tf->hob_lbah = (block >> 40) & 0xff;
368 tf->hob_lbam = (block >> 32) & 0xff;
369 tf->hob_lbal = (block >> 24) & 0xff;
370 } else
371 /* request too large even for LBA48 */
372 return -ERANGE;
373
374 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
375 return -EINVAL;
376
377 tf->nsect = n_block & 0xff;
378
379 tf->lbah = (block >> 16) & 0xff;
380 tf->lbam = (block >> 8) & 0xff;
381 tf->lbal = block & 0xff;
382
383 tf->device |= ATA_LBA;
384 } else {
385 /* CHS */
386 u32 sect, head, cyl, track;
387
388 /* The request -may- be too large for CHS addressing. */
389 if (!lba_28_ok(block, n_block))
390 return -ERANGE;
391
392 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
393 return -EINVAL;
394
395 /* Convert LBA to CHS */
396 track = (u32)block / dev->sectors;
397 cyl = track / dev->heads;
398 head = track % dev->heads;
399 sect = (u32)block % dev->sectors + 1;
400
401 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
402 (u32)block, track, cyl, head, sect);
403
404 /* Check whether the converted CHS can fit.
405 Cylinder: 0-65535
406 Head: 0-15
407 Sector: 1-255*/
408 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
409 return -ERANGE;
410
411 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
412 tf->lbal = sect;
413 tf->lbam = cyl;
414 tf->lbah = cyl >> 8;
415 tf->device |= head;
416 }
417
418 return 0;
419}
420
cb95d562
TH
421/**
422 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
423 * @pio_mask: pio_mask
424 * @mwdma_mask: mwdma_mask
425 * @udma_mask: udma_mask
426 *
427 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
428 * unsigned int xfer_mask.
429 *
430 * LOCKING:
431 * None.
432 *
433 * RETURNS:
434 * Packed xfer_mask.
435 */
436static unsigned int ata_pack_xfermask(unsigned int pio_mask,
437 unsigned int mwdma_mask,
438 unsigned int udma_mask)
439{
440 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
441 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
442 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
443}
444
c0489e4e
TH
445/**
446 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
447 * @xfer_mask: xfer_mask to unpack
448 * @pio_mask: resulting pio_mask
449 * @mwdma_mask: resulting mwdma_mask
450 * @udma_mask: resulting udma_mask
451 *
452 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
453 * Any NULL distination masks will be ignored.
454 */
455static void ata_unpack_xfermask(unsigned int xfer_mask,
456 unsigned int *pio_mask,
457 unsigned int *mwdma_mask,
458 unsigned int *udma_mask)
459{
460 if (pio_mask)
461 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
462 if (mwdma_mask)
463 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
464 if (udma_mask)
465 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
466}
467
cb95d562 468static const struct ata_xfer_ent {
be9a50c8 469 int shift, bits;
cb95d562
TH
470 u8 base;
471} ata_xfer_tbl[] = {
472 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
473 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
474 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
475 { -1, },
476};
477
478/**
479 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
480 * @xfer_mask: xfer_mask of interest
481 *
482 * Return matching XFER_* value for @xfer_mask. Only the highest
483 * bit of @xfer_mask is considered.
484 *
485 * LOCKING:
486 * None.
487 *
488 * RETURNS:
489 * Matching XFER_* value, 0 if no match found.
490 */
491static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
492{
493 int highbit = fls(xfer_mask) - 1;
494 const struct ata_xfer_ent *ent;
495
496 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
497 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
498 return ent->base + highbit - ent->shift;
499 return 0;
500}
501
502/**
503 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
504 * @xfer_mode: XFER_* of interest
505 *
506 * Return matching xfer_mask for @xfer_mode.
507 *
508 * LOCKING:
509 * None.
510 *
511 * RETURNS:
512 * Matching xfer_mask, 0 if no match found.
513 */
514static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
515{
516 const struct ata_xfer_ent *ent;
517
518 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
519 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
520 return 1 << (ent->shift + xfer_mode - ent->base);
521 return 0;
522}
523
524/**
525 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
526 * @xfer_mode: XFER_* of interest
527 *
528 * Return matching xfer_shift for @xfer_mode.
529 *
530 * LOCKING:
531 * None.
532 *
533 * RETURNS:
534 * Matching xfer_shift, -1 if no match found.
535 */
536static int ata_xfer_mode2shift(unsigned int xfer_mode)
537{
538 const struct ata_xfer_ent *ent;
539
540 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
541 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
542 return ent->shift;
543 return -1;
544}
545
1da177e4 546/**
1da7b0d0
TH
547 * ata_mode_string - convert xfer_mask to string
548 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
549 *
550 * Determine string which represents the highest speed
1da7b0d0 551 * (highest bit in @modemask).
1da177e4
LT
552 *
553 * LOCKING:
554 * None.
555 *
556 * RETURNS:
557 * Constant C string representing highest speed listed in
1da7b0d0 558 * @mode_mask, or the constant C string "<n/a>".
1da177e4 559 */
1da7b0d0 560static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 561{
75f554bc
TH
562 static const char * const xfer_mode_str[] = {
563 "PIO0",
564 "PIO1",
565 "PIO2",
566 "PIO3",
567 "PIO4",
b352e57d
AC
568 "PIO5",
569 "PIO6",
75f554bc
TH
570 "MWDMA0",
571 "MWDMA1",
572 "MWDMA2",
b352e57d
AC
573 "MWDMA3",
574 "MWDMA4",
75f554bc
TH
575 "UDMA/16",
576 "UDMA/25",
577 "UDMA/33",
578 "UDMA/44",
579 "UDMA/66",
580 "UDMA/100",
581 "UDMA/133",
582 "UDMA7",
583 };
1da7b0d0 584 int highbit;
1da177e4 585
1da7b0d0
TH
586 highbit = fls(xfer_mask) - 1;
587 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
588 return xfer_mode_str[highbit];
1da177e4 589 return "<n/a>";
1da177e4
LT
590}
591
4c360c81
TH
592static const char *sata_spd_string(unsigned int spd)
593{
594 static const char * const spd_str[] = {
595 "1.5 Gbps",
596 "3.0 Gbps",
597 };
598
599 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
600 return "<unknown>";
601 return spd_str[spd - 1];
602}
603
3373efd8 604void ata_dev_disable(struct ata_device *dev)
0b8efb0a 605{
09d7f9b0
TH
606 if (ata_dev_enabled(dev)) {
607 if (ata_msg_drv(dev->ap))
608 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
609 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
610 ATA_DNXFER_QUIET);
0b8efb0a
TH
611 dev->class++;
612 }
613}
614
1da177e4 615/**
0d5ff566 616 * ata_devchk - PATA device presence detection
1da177e4
LT
617 * @ap: ATA channel to examine
618 * @device: Device to examine (starting at zero)
619 *
620 * This technique was originally described in
621 * Hale Landis's ATADRVR (www.ata-atapi.com), and
622 * later found its way into the ATA/ATAPI spec.
623 *
624 * Write a pattern to the ATA shadow registers,
625 * and if a device is present, it will respond by
626 * correctly storing and echoing back the
627 * ATA shadow register contents.
628 *
629 * LOCKING:
630 * caller.
631 */
632
0d5ff566 633static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
634{
635 struct ata_ioports *ioaddr = &ap->ioaddr;
636 u8 nsect, lbal;
637
638 ap->ops->dev_select(ap, device);
639
0d5ff566
TH
640 iowrite8(0x55, ioaddr->nsect_addr);
641 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 642
0d5ff566
TH
643 iowrite8(0xaa, ioaddr->nsect_addr);
644 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 645
0d5ff566
TH
646 iowrite8(0x55, ioaddr->nsect_addr);
647 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 648
0d5ff566
TH
649 nsect = ioread8(ioaddr->nsect_addr);
650 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
651
652 if ((nsect == 0x55) && (lbal == 0xaa))
653 return 1; /* we found a device */
654
655 return 0; /* nothing found */
656}
657
1da177e4
LT
658/**
659 * ata_dev_classify - determine device type based on ATA-spec signature
660 * @tf: ATA taskfile register set for device to be identified
661 *
662 * Determine from taskfile register contents whether a device is
663 * ATA or ATAPI, as per "Signature and persistence" section
664 * of ATA/PI spec (volume 1, sect 5.14).
665 *
666 * LOCKING:
667 * None.
668 *
669 * RETURNS:
670 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
671 * the event of failure.
672 */
673
057ace5e 674unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
675{
676 /* Apple's open source Darwin code hints that some devices only
677 * put a proper signature into the LBA mid/high registers,
678 * So, we only check those. It's sufficient for uniqueness.
679 */
680
681 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
682 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
683 DPRINTK("found ATA device by sig\n");
684 return ATA_DEV_ATA;
685 }
686
687 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
688 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
689 DPRINTK("found ATAPI device by sig\n");
690 return ATA_DEV_ATAPI;
691 }
692
693 DPRINTK("unknown device\n");
694 return ATA_DEV_UNKNOWN;
695}
696
697/**
698 * ata_dev_try_classify - Parse returned ATA device signature
699 * @ap: ATA channel to examine
700 * @device: Device to examine (starting at zero)
b4dc7623 701 * @r_err: Value of error register on completion
1da177e4
LT
702 *
703 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
704 * an ATA/ATAPI-defined set of values is placed in the ATA
705 * shadow registers, indicating the results of device detection
706 * and diagnostics.
707 *
708 * Select the ATA device, and read the values from the ATA shadow
709 * registers. Then parse according to the Error register value,
710 * and the spec-defined values examined by ata_dev_classify().
711 *
712 * LOCKING:
713 * caller.
b4dc7623
TH
714 *
715 * RETURNS:
716 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
717 */
718
a619f981 719unsigned int
b4dc7623 720ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 721{
1da177e4
LT
722 struct ata_taskfile tf;
723 unsigned int class;
724 u8 err;
725
726 ap->ops->dev_select(ap, device);
727
728 memset(&tf, 0, sizeof(tf));
729
1da177e4 730 ap->ops->tf_read(ap, &tf);
0169e284 731 err = tf.feature;
b4dc7623
TH
732 if (r_err)
733 *r_err = err;
1da177e4 734
93590859
AC
735 /* see if device passed diags: if master then continue and warn later */
736 if (err == 0 && device == 0)
737 /* diagnostic fail : do nothing _YET_ */
738 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
739 else if (err == 1)
1da177e4
LT
740 /* do nothing */ ;
741 else if ((device == 0) && (err == 0x81))
742 /* do nothing */ ;
743 else
b4dc7623 744 return ATA_DEV_NONE;
1da177e4 745
b4dc7623 746 /* determine if device is ATA or ATAPI */
1da177e4 747 class = ata_dev_classify(&tf);
b4dc7623 748
1da177e4 749 if (class == ATA_DEV_UNKNOWN)
b4dc7623 750 return ATA_DEV_NONE;
1da177e4 751 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
752 return ATA_DEV_NONE;
753 return class;
1da177e4
LT
754}
755
756/**
6a62a04d 757 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
758 * @id: IDENTIFY DEVICE results we will examine
759 * @s: string into which data is output
760 * @ofs: offset into identify device page
761 * @len: length of string to return. must be an even number.
762 *
763 * The strings in the IDENTIFY DEVICE page are broken up into
764 * 16-bit chunks. Run through the string, and output each
765 * 8-bit chunk linearly, regardless of platform.
766 *
767 * LOCKING:
768 * caller.
769 */
770
6a62a04d
TH
771void ata_id_string(const u16 *id, unsigned char *s,
772 unsigned int ofs, unsigned int len)
1da177e4
LT
773{
774 unsigned int c;
775
776 while (len > 0) {
777 c = id[ofs] >> 8;
778 *s = c;
779 s++;
780
781 c = id[ofs] & 0xff;
782 *s = c;
783 s++;
784
785 ofs++;
786 len -= 2;
787 }
788}
789
0e949ff3 790/**
6a62a04d 791 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
792 * @id: IDENTIFY DEVICE results we will examine
793 * @s: string into which data is output
794 * @ofs: offset into identify device page
795 * @len: length of string to return. must be an odd number.
796 *
6a62a04d 797 * This function is identical to ata_id_string except that it
0e949ff3
TH
798 * trims trailing spaces and terminates the resulting string with
799 * null. @len must be actual maximum length (even number) + 1.
800 *
801 * LOCKING:
802 * caller.
803 */
6a62a04d
TH
804void ata_id_c_string(const u16 *id, unsigned char *s,
805 unsigned int ofs, unsigned int len)
0e949ff3
TH
806{
807 unsigned char *p;
808
809 WARN_ON(!(len & 1));
810
6a62a04d 811 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
812
813 p = s + strnlen(s, len - 1);
814 while (p > s && p[-1] == ' ')
815 p--;
816 *p = '\0';
817}
0baab86b 818
1e999736
AC
819static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
820{
821 u64 sectors = 0;
822
823 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
824 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
825 sectors |= (tf->hob_lbal & 0xff) << 24;
826 sectors |= (tf->lbah & 0xff) << 16;
827 sectors |= (tf->lbam & 0xff) << 8;
828 sectors |= (tf->lbal & 0xff);
829
830 return ++sectors;
831}
832
833static u64 ata_tf_to_lba(struct ata_taskfile *tf)
834{
835 u64 sectors = 0;
836
837 sectors |= (tf->device & 0x0f) << 24;
838 sectors |= (tf->lbah & 0xff) << 16;
839 sectors |= (tf->lbam & 0xff) << 8;
840 sectors |= (tf->lbal & 0xff);
841
842 return ++sectors;
843}
844
845/**
846 * ata_read_native_max_address_ext - LBA48 native max query
847 * @dev: Device to query
848 *
849 * Perform an LBA48 size query upon the device in question. Return the
850 * actual LBA48 size or zero if the command fails.
851 */
852
853static u64 ata_read_native_max_address_ext(struct ata_device *dev)
854{
855 unsigned int err;
856 struct ata_taskfile tf;
857
858 ata_tf_init(dev, &tf);
859
860 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
861 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
862 tf.protocol |= ATA_PROT_NODATA;
863 tf.device |= 0x40;
864
865 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
866 if (err)
867 return 0;
868
869 return ata_tf_to_lba48(&tf);
870}
871
872/**
873 * ata_read_native_max_address - LBA28 native max query
874 * @dev: Device to query
875 *
876 * Performa an LBA28 size query upon the device in question. Return the
877 * actual LBA28 size or zero if the command fails.
878 */
879
880static u64 ata_read_native_max_address(struct ata_device *dev)
881{
882 unsigned int err;
883 struct ata_taskfile tf;
884
885 ata_tf_init(dev, &tf);
886
887 tf.command = ATA_CMD_READ_NATIVE_MAX;
888 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
889 tf.protocol |= ATA_PROT_NODATA;
890 tf.device |= 0x40;
891
892 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
893 if (err)
894 return 0;
895
896 return ata_tf_to_lba(&tf);
897}
898
899/**
900 * ata_set_native_max_address_ext - LBA48 native max set
901 * @dev: Device to query
6b38d1d1 902 * @new_sectors: new max sectors value to set for the device
1e999736
AC
903 *
904 * Perform an LBA48 size set max upon the device in question. Return the
905 * actual LBA48 size or zero if the command fails.
906 */
907
908static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
909{
910 unsigned int err;
911 struct ata_taskfile tf;
912
913 new_sectors--;
914
915 ata_tf_init(dev, &tf);
916
917 tf.command = ATA_CMD_SET_MAX_EXT;
918 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
919 tf.protocol |= ATA_PROT_NODATA;
920 tf.device |= 0x40;
921
922 tf.lbal = (new_sectors >> 0) & 0xff;
923 tf.lbam = (new_sectors >> 8) & 0xff;
924 tf.lbah = (new_sectors >> 16) & 0xff;
925
926 tf.hob_lbal = (new_sectors >> 24) & 0xff;
927 tf.hob_lbam = (new_sectors >> 32) & 0xff;
928 tf.hob_lbah = (new_sectors >> 40) & 0xff;
929
930 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
931 if (err)
932 return 0;
933
934 return ata_tf_to_lba48(&tf);
935}
936
937/**
938 * ata_set_native_max_address - LBA28 native max set
939 * @dev: Device to query
6b38d1d1 940 * @new_sectors: new max sectors value to set for the device
1e999736
AC
941 *
942 * Perform an LBA28 size set max upon the device in question. Return the
943 * actual LBA28 size or zero if the command fails.
944 */
945
946static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
947{
948 unsigned int err;
949 struct ata_taskfile tf;
950
951 new_sectors--;
952
953 ata_tf_init(dev, &tf);
954
955 tf.command = ATA_CMD_SET_MAX;
956 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
957 tf.protocol |= ATA_PROT_NODATA;
958
959 tf.lbal = (new_sectors >> 0) & 0xff;
960 tf.lbam = (new_sectors >> 8) & 0xff;
961 tf.lbah = (new_sectors >> 16) & 0xff;
962 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
963
964 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
965 if (err)
966 return 0;
967
968 return ata_tf_to_lba(&tf);
969}
970
971/**
972 * ata_hpa_resize - Resize a device with an HPA set
973 * @dev: Device to resize
974 *
975 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
976 * it if required to the full size of the media. The caller must check
977 * the drive has the HPA feature set enabled.
978 */
979
980static u64 ata_hpa_resize(struct ata_device *dev)
981{
982 u64 sectors = dev->n_sectors;
983 u64 hpa_sectors;
a617c09f 984
1e999736
AC
985 if (ata_id_has_lba48(dev->id))
986 hpa_sectors = ata_read_native_max_address_ext(dev);
987 else
988 hpa_sectors = ata_read_native_max_address(dev);
989
1e999736
AC
990 if (hpa_sectors > sectors) {
991 ata_dev_printk(dev, KERN_INFO,
992 "Host Protected Area detected:\n"
993 "\tcurrent size: %lld sectors\n"
994 "\tnative size: %lld sectors\n",
bd1d5ec6 995 (long long)sectors, (long long)hpa_sectors);
1e999736
AC
996
997 if (ata_ignore_hpa) {
998 if (ata_id_has_lba48(dev->id))
999 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1000 else
bd1d5ec6
AM
1001 hpa_sectors = ata_set_native_max_address(dev,
1002 hpa_sectors);
1e999736
AC
1003
1004 if (hpa_sectors) {
bd1d5ec6
AM
1005 ata_dev_printk(dev, KERN_INFO, "native size "
1006 "increased to %lld sectors\n",
1007 (long long)hpa_sectors);
1e999736
AC
1008 return hpa_sectors;
1009 }
1010 }
37301a55
TH
1011 } else if (hpa_sectors < sectors)
1012 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1013 "is smaller than sectors (%lld)\n", __FUNCTION__,
1014 (long long)hpa_sectors, (long long)sectors);
1015
1e999736
AC
1016 return sectors;
1017}
1018
2940740b
TH
1019static u64 ata_id_n_sectors(const u16 *id)
1020{
1021 if (ata_id_has_lba(id)) {
1022 if (ata_id_has_lba48(id))
1023 return ata_id_u64(id, 100);
1024 else
1025 return ata_id_u32(id, 60);
1026 } else {
1027 if (ata_id_current_chs_valid(id))
1028 return ata_id_u32(id, 57);
1029 else
1030 return id[1] * id[3] * id[6];
1031 }
1032}
1033
10305f0f
A
1034/**
1035 * ata_id_to_dma_mode - Identify DMA mode from id block
1036 * @dev: device to identify
cc261267 1037 * @unknown: mode to assume if we cannot tell
10305f0f
A
1038 *
1039 * Set up the timing values for the device based upon the identify
1040 * reported values for the DMA mode. This function is used by drivers
1041 * which rely upon firmware configured modes, but wish to report the
1042 * mode correctly when possible.
1043 *
1044 * In addition we emit similarly formatted messages to the default
1045 * ata_dev_set_mode handler, in order to provide consistency of
1046 * presentation.
1047 */
1048
1049void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1050{
1051 unsigned int mask;
1052 u8 mode;
1053
1054 /* Pack the DMA modes */
1055 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1056 if (dev->id[53] & 0x04)
1057 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1058
1059 /* Select the mode in use */
1060 mode = ata_xfer_mask2mode(mask);
1061
1062 if (mode != 0) {
1063 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1064 ata_mode_string(mask));
1065 } else {
1066 /* SWDMA perhaps ? */
1067 mode = unknown;
1068 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1069 }
1070
1071 /* Configure the device reporting */
1072 dev->xfer_mode = mode;
1073 dev->xfer_shift = ata_xfer_mode2shift(mode);
1074}
1075
0baab86b
EF
1076/**
1077 * ata_noop_dev_select - Select device 0/1 on ATA bus
1078 * @ap: ATA channel to manipulate
1079 * @device: ATA device (numbered from zero) to select
1080 *
1081 * This function performs no actual function.
1082 *
1083 * May be used as the dev_select() entry in ata_port_operations.
1084 *
1085 * LOCKING:
1086 * caller.
1087 */
1da177e4
LT
1088void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1089{
1090}
1091
0baab86b 1092
1da177e4
LT
1093/**
1094 * ata_std_dev_select - Select device 0/1 on ATA bus
1095 * @ap: ATA channel to manipulate
1096 * @device: ATA device (numbered from zero) to select
1097 *
1098 * Use the method defined in the ATA specification to
1099 * make either device 0, or device 1, active on the
0baab86b
EF
1100 * ATA channel. Works with both PIO and MMIO.
1101 *
1102 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1103 *
1104 * LOCKING:
1105 * caller.
1106 */
1107
1108void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1109{
1110 u8 tmp;
1111
1112 if (device == 0)
1113 tmp = ATA_DEVICE_OBS;
1114 else
1115 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1116
0d5ff566 1117 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1118 ata_pause(ap); /* needed; also flushes, for mmio */
1119}
1120
1121/**
1122 * ata_dev_select - Select device 0/1 on ATA bus
1123 * @ap: ATA channel to manipulate
1124 * @device: ATA device (numbered from zero) to select
1125 * @wait: non-zero to wait for Status register BSY bit to clear
1126 * @can_sleep: non-zero if context allows sleeping
1127 *
1128 * Use the method defined in the ATA specification to
1129 * make either device 0, or device 1, active on the
1130 * ATA channel.
1131 *
1132 * This is a high-level version of ata_std_dev_select(),
1133 * which additionally provides the services of inserting
1134 * the proper pauses and status polling, where needed.
1135 *
1136 * LOCKING:
1137 * caller.
1138 */
1139
1140void ata_dev_select(struct ata_port *ap, unsigned int device,
1141 unsigned int wait, unsigned int can_sleep)
1142{
88574551 1143 if (ata_msg_probe(ap))
44877b4e
TH
1144 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1145 "device %u, wait %u\n", device, wait);
1da177e4
LT
1146
1147 if (wait)
1148 ata_wait_idle(ap);
1149
1150 ap->ops->dev_select(ap, device);
1151
1152 if (wait) {
1153 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1154 msleep(150);
1155 ata_wait_idle(ap);
1156 }
1157}
1158
1159/**
1160 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1161 * @id: IDENTIFY DEVICE page to dump
1da177e4 1162 *
0bd3300a
TH
1163 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1164 * page.
1da177e4
LT
1165 *
1166 * LOCKING:
1167 * caller.
1168 */
1169
0bd3300a 1170static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1171{
1172 DPRINTK("49==0x%04x "
1173 "53==0x%04x "
1174 "63==0x%04x "
1175 "64==0x%04x "
1176 "75==0x%04x \n",
0bd3300a
TH
1177 id[49],
1178 id[53],
1179 id[63],
1180 id[64],
1181 id[75]);
1da177e4
LT
1182 DPRINTK("80==0x%04x "
1183 "81==0x%04x "
1184 "82==0x%04x "
1185 "83==0x%04x "
1186 "84==0x%04x \n",
0bd3300a
TH
1187 id[80],
1188 id[81],
1189 id[82],
1190 id[83],
1191 id[84]);
1da177e4
LT
1192 DPRINTK("88==0x%04x "
1193 "93==0x%04x\n",
0bd3300a
TH
1194 id[88],
1195 id[93]);
1da177e4
LT
1196}
1197
cb95d562
TH
1198/**
1199 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1200 * @id: IDENTIFY data to compute xfer mask from
1201 *
1202 * Compute the xfermask for this device. This is not as trivial
1203 * as it seems if we must consider early devices correctly.
1204 *
1205 * FIXME: pre IDE drive timing (do we care ?).
1206 *
1207 * LOCKING:
1208 * None.
1209 *
1210 * RETURNS:
1211 * Computed xfermask
1212 */
1213static unsigned int ata_id_xfermask(const u16 *id)
1214{
1215 unsigned int pio_mask, mwdma_mask, udma_mask;
1216
1217 /* Usual case. Word 53 indicates word 64 is valid */
1218 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1219 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1220 pio_mask <<= 3;
1221 pio_mask |= 0x7;
1222 } else {
1223 /* If word 64 isn't valid then Word 51 high byte holds
1224 * the PIO timing number for the maximum. Turn it into
1225 * a mask.
1226 */
7a0f1c8a 1227 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1228 if (mode < 5) /* Valid PIO range */
1229 pio_mask = (2 << mode) - 1;
1230 else
1231 pio_mask = 1;
cb95d562
TH
1232
1233 /* But wait.. there's more. Design your standards by
1234 * committee and you too can get a free iordy field to
1235 * process. However its the speeds not the modes that
1236 * are supported... Note drivers using the timing API
1237 * will get this right anyway
1238 */
1239 }
1240
1241 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1242
b352e57d
AC
1243 if (ata_id_is_cfa(id)) {
1244 /*
1245 * Process compact flash extended modes
1246 */
1247 int pio = id[163] & 0x7;
1248 int dma = (id[163] >> 3) & 7;
1249
1250 if (pio)
1251 pio_mask |= (1 << 5);
1252 if (pio > 1)
1253 pio_mask |= (1 << 6);
1254 if (dma)
1255 mwdma_mask |= (1 << 3);
1256 if (dma > 1)
1257 mwdma_mask |= (1 << 4);
1258 }
1259
fb21f0d0
TH
1260 udma_mask = 0;
1261 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1262 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1263
1264 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1265}
1266
86e45b6b
TH
1267/**
1268 * ata_port_queue_task - Queue port_task
1269 * @ap: The ata_port to queue port_task for
e2a7f77a 1270 * @fn: workqueue function to be scheduled
65f27f38 1271 * @data: data for @fn to use
e2a7f77a 1272 * @delay: delay time for workqueue function
86e45b6b
TH
1273 *
1274 * Schedule @fn(@data) for execution after @delay jiffies using
1275 * port_task. There is one port_task per port and it's the
1276 * user(low level driver)'s responsibility to make sure that only
1277 * one task is active at any given time.
1278 *
1279 * libata core layer takes care of synchronization between
1280 * port_task and EH. ata_port_queue_task() may be ignored for EH
1281 * synchronization.
1282 *
1283 * LOCKING:
1284 * Inherited from caller.
1285 */
65f27f38 1286void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1287 unsigned long delay)
1288{
65f27f38
DH
1289 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1290 ap->port_task_data = data;
86e45b6b 1291
45a66c1c
ON
1292 /* may fail if ata_port_flush_task() in progress */
1293 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1294}
1295
1296/**
1297 * ata_port_flush_task - Flush port_task
1298 * @ap: The ata_port to flush port_task for
1299 *
1300 * After this function completes, port_task is guranteed not to
1301 * be running or scheduled.
1302 *
1303 * LOCKING:
1304 * Kernel thread context (may sleep)
1305 */
1306void ata_port_flush_task(struct ata_port *ap)
1307{
86e45b6b
TH
1308 DPRINTK("ENTER\n");
1309
45a66c1c 1310 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1311
0dd4b21f
BP
1312 if (ata_msg_ctl(ap))
1313 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1314}
1315
7102d230 1316static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1317{
77853bf2 1318 struct completion *waiting = qc->private_data;
a2a7a662 1319
a2a7a662 1320 complete(waiting);
a2a7a662
TH
1321}
1322
1323/**
2432697b 1324 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1325 * @dev: Device to which the command is sent
1326 * @tf: Taskfile registers for the command and the result
d69cf37d 1327 * @cdb: CDB for packet command
a2a7a662 1328 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1329 * @sg: sg list for the data buffer of the command
1330 * @n_elem: Number of sg entries
a2a7a662
TH
1331 *
1332 * Executes libata internal command with timeout. @tf contains
1333 * command on entry and result on return. Timeout and error
1334 * conditions are reported via return value. No recovery action
1335 * is taken after a command times out. It's caller's duty to
1336 * clean up after timeout.
1337 *
1338 * LOCKING:
1339 * None. Should be called with kernel context, might sleep.
551e8889
TH
1340 *
1341 * RETURNS:
1342 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1343 */
2432697b
TH
1344unsigned ata_exec_internal_sg(struct ata_device *dev,
1345 struct ata_taskfile *tf, const u8 *cdb,
1346 int dma_dir, struct scatterlist *sg,
1347 unsigned int n_elem)
a2a7a662 1348{
3373efd8 1349 struct ata_port *ap = dev->ap;
a2a7a662
TH
1350 u8 command = tf->command;
1351 struct ata_queued_cmd *qc;
2ab7db1f 1352 unsigned int tag, preempted_tag;
dedaf2b0 1353 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1354 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1355 unsigned long flags;
77853bf2 1356 unsigned int err_mask;
d95a717f 1357 int rc;
a2a7a662 1358
ba6a1308 1359 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1360
e3180499 1361 /* no internal command while frozen */
b51e9e5d 1362 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1363 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1364 return AC_ERR_SYSTEM;
1365 }
1366
2ab7db1f 1367 /* initialize internal qc */
a2a7a662 1368
2ab7db1f
TH
1369 /* XXX: Tag 0 is used for drivers with legacy EH as some
1370 * drivers choke if any other tag is given. This breaks
1371 * ata_tag_internal() test for those drivers. Don't use new
1372 * EH stuff without converting to it.
1373 */
1374 if (ap->ops->error_handler)
1375 tag = ATA_TAG_INTERNAL;
1376 else
1377 tag = 0;
1378
6cec4a39 1379 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1380 BUG();
f69499f4 1381 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1382
1383 qc->tag = tag;
1384 qc->scsicmd = NULL;
1385 qc->ap = ap;
1386 qc->dev = dev;
1387 ata_qc_reinit(qc);
1388
1389 preempted_tag = ap->active_tag;
dedaf2b0
TH
1390 preempted_sactive = ap->sactive;
1391 preempted_qc_active = ap->qc_active;
2ab7db1f 1392 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1393 ap->sactive = 0;
1394 ap->qc_active = 0;
2ab7db1f
TH
1395
1396 /* prepare & issue qc */
a2a7a662 1397 qc->tf = *tf;
d69cf37d
TH
1398 if (cdb)
1399 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1400 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1401 qc->dma_dir = dma_dir;
1402 if (dma_dir != DMA_NONE) {
2432697b
TH
1403 unsigned int i, buflen = 0;
1404
1405 for (i = 0; i < n_elem; i++)
1406 buflen += sg[i].length;
1407
1408 ata_sg_init(qc, sg, n_elem);
49c80429 1409 qc->nbytes = buflen;
a2a7a662
TH
1410 }
1411
77853bf2 1412 qc->private_data = &wait;
a2a7a662
TH
1413 qc->complete_fn = ata_qc_complete_internal;
1414
8e0e694a 1415 ata_qc_issue(qc);
a2a7a662 1416
ba6a1308 1417 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1418
a8601e5f 1419 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1420
1421 ata_port_flush_task(ap);
41ade50c 1422
d95a717f 1423 if (!rc) {
ba6a1308 1424 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1425
1426 /* We're racing with irq here. If we lose, the
1427 * following test prevents us from completing the qc
d95a717f
TH
1428 * twice. If we win, the port is frozen and will be
1429 * cleaned up by ->post_internal_cmd().
a2a7a662 1430 */
77853bf2 1431 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1432 qc->err_mask |= AC_ERR_TIMEOUT;
1433
1434 if (ap->ops->error_handler)
1435 ata_port_freeze(ap);
1436 else
1437 ata_qc_complete(qc);
f15a1daf 1438
0dd4b21f
BP
1439 if (ata_msg_warn(ap))
1440 ata_dev_printk(dev, KERN_WARNING,
88574551 1441 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1442 }
1443
ba6a1308 1444 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1445 }
1446
d95a717f
TH
1447 /* do post_internal_cmd */
1448 if (ap->ops->post_internal_cmd)
1449 ap->ops->post_internal_cmd(qc);
1450
a51d644a
TH
1451 /* perform minimal error analysis */
1452 if (qc->flags & ATA_QCFLAG_FAILED) {
1453 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1454 qc->err_mask |= AC_ERR_DEV;
1455
1456 if (!qc->err_mask)
1457 qc->err_mask |= AC_ERR_OTHER;
1458
1459 if (qc->err_mask & ~AC_ERR_OTHER)
1460 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1461 }
1462
15869303 1463 /* finish up */
ba6a1308 1464 spin_lock_irqsave(ap->lock, flags);
15869303 1465
e61e0672 1466 *tf = qc->result_tf;
77853bf2
TH
1467 err_mask = qc->err_mask;
1468
1469 ata_qc_free(qc);
2ab7db1f 1470 ap->active_tag = preempted_tag;
dedaf2b0
TH
1471 ap->sactive = preempted_sactive;
1472 ap->qc_active = preempted_qc_active;
77853bf2 1473
1f7dd3e9
TH
1474 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1475 * Until those drivers are fixed, we detect the condition
1476 * here, fail the command with AC_ERR_SYSTEM and reenable the
1477 * port.
1478 *
1479 * Note that this doesn't change any behavior as internal
1480 * command failure results in disabling the device in the
1481 * higher layer for LLDDs without new reset/EH callbacks.
1482 *
1483 * Kill the following code as soon as those drivers are fixed.
1484 */
198e0fed 1485 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1486 err_mask |= AC_ERR_SYSTEM;
1487 ata_port_probe(ap);
1488 }
1489
ba6a1308 1490 spin_unlock_irqrestore(ap->lock, flags);
15869303 1491
77853bf2 1492 return err_mask;
a2a7a662
TH
1493}
1494
2432697b 1495/**
33480a0e 1496 * ata_exec_internal - execute libata internal command
2432697b
TH
1497 * @dev: Device to which the command is sent
1498 * @tf: Taskfile registers for the command and the result
1499 * @cdb: CDB for packet command
1500 * @dma_dir: Data tranfer direction of the command
1501 * @buf: Data buffer of the command
1502 * @buflen: Length of data buffer
1503 *
1504 * Wrapper around ata_exec_internal_sg() which takes simple
1505 * buffer instead of sg list.
1506 *
1507 * LOCKING:
1508 * None. Should be called with kernel context, might sleep.
1509 *
1510 * RETURNS:
1511 * Zero on success, AC_ERR_* mask on failure
1512 */
1513unsigned ata_exec_internal(struct ata_device *dev,
1514 struct ata_taskfile *tf, const u8 *cdb,
1515 int dma_dir, void *buf, unsigned int buflen)
1516{
33480a0e
TH
1517 struct scatterlist *psg = NULL, sg;
1518 unsigned int n_elem = 0;
2432697b 1519
33480a0e
TH
1520 if (dma_dir != DMA_NONE) {
1521 WARN_ON(!buf);
1522 sg_init_one(&sg, buf, buflen);
1523 psg = &sg;
1524 n_elem++;
1525 }
2432697b 1526
33480a0e 1527 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1528}
1529
977e6b9f
TH
1530/**
1531 * ata_do_simple_cmd - execute simple internal command
1532 * @dev: Device to which the command is sent
1533 * @cmd: Opcode to execute
1534 *
1535 * Execute a 'simple' command, that only consists of the opcode
1536 * 'cmd' itself, without filling any other registers
1537 *
1538 * LOCKING:
1539 * Kernel thread context (may sleep).
1540 *
1541 * RETURNS:
1542 * Zero on success, AC_ERR_* mask on failure
e58eb583 1543 */
77b08fb5 1544unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1545{
1546 struct ata_taskfile tf;
e58eb583
TH
1547
1548 ata_tf_init(dev, &tf);
1549
1550 tf.command = cmd;
1551 tf.flags |= ATA_TFLAG_DEVICE;
1552 tf.protocol = ATA_PROT_NODATA;
1553
977e6b9f 1554 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1555}
1556
1bc4ccff
AC
1557/**
1558 * ata_pio_need_iordy - check if iordy needed
1559 * @adev: ATA device
1560 *
1561 * Check if the current speed of the device requires IORDY. Used
1562 * by various controllers for chip configuration.
1563 */
a617c09f 1564
1bc4ccff
AC
1565unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1566{
432729f0
AC
1567 /* Controller doesn't support IORDY. Probably a pointless check
1568 as the caller should know this */
1569 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1570 return 0;
432729f0
AC
1571 /* PIO3 and higher it is mandatory */
1572 if (adev->pio_mode > XFER_PIO_2)
1573 return 1;
1574 /* We turn it on when possible */
1575 if (ata_id_has_iordy(adev->id))
1bc4ccff 1576 return 1;
432729f0
AC
1577 return 0;
1578}
2e9edbf8 1579
432729f0
AC
1580/**
1581 * ata_pio_mask_no_iordy - Return the non IORDY mask
1582 * @adev: ATA device
1583 *
1584 * Compute the highest mode possible if we are not using iordy. Return
1585 * -1 if no iordy mode is available.
1586 */
a617c09f 1587
432729f0
AC
1588static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1589{
1bc4ccff 1590 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1591 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1592 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1593 /* Is the speed faster than the drive allows non IORDY ? */
1594 if (pio) {
1595 /* This is cycle times not frequency - watch the logic! */
1596 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1597 return 3 << ATA_SHIFT_PIO;
1598 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1599 }
1600 }
432729f0 1601 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1602}
1603
1da177e4 1604/**
49016aca 1605 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1606 * @dev: target device
1607 * @p_class: pointer to class of the target device (may be changed)
bff04647 1608 * @flags: ATA_READID_* flags
fe635c7e 1609 * @id: buffer to read IDENTIFY data into
1da177e4 1610 *
49016aca
TH
1611 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1612 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1613 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1614 * for pre-ATA4 drives.
1da177e4
LT
1615 *
1616 * LOCKING:
49016aca
TH
1617 * Kernel thread context (may sleep)
1618 *
1619 * RETURNS:
1620 * 0 on success, -errno otherwise.
1da177e4 1621 */
a9beec95 1622int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1623 unsigned int flags, u16 *id)
1da177e4 1624{
3373efd8 1625 struct ata_port *ap = dev->ap;
49016aca 1626 unsigned int class = *p_class;
a0123703 1627 struct ata_taskfile tf;
49016aca
TH
1628 unsigned int err_mask = 0;
1629 const char *reason;
54936f8b 1630 int may_fallback = 1, tried_spinup = 0;
49016aca 1631 int rc;
1da177e4 1632
0dd4b21f 1633 if (ata_msg_ctl(ap))
44877b4e 1634 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1635
49016aca 1636 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1637 retry:
3373efd8 1638 ata_tf_init(dev, &tf);
a0123703 1639
49016aca
TH
1640 switch (class) {
1641 case ATA_DEV_ATA:
a0123703 1642 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1643 break;
1644 case ATA_DEV_ATAPI:
a0123703 1645 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1646 break;
1647 default:
1648 rc = -ENODEV;
1649 reason = "unsupported class";
1650 goto err_out;
1da177e4
LT
1651 }
1652
a0123703 1653 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1654
1655 /* Some devices choke if TF registers contain garbage. Make
1656 * sure those are properly initialized.
1657 */
1658 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1659
1660 /* Device presence detection is unreliable on some
1661 * controllers. Always poll IDENTIFY if available.
1662 */
1663 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1664
3373efd8 1665 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1666 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1667 if (err_mask) {
800b3996 1668 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1669 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1670 ap->print_id, dev->devno);
55a8e2c8
TH
1671 return -ENOENT;
1672 }
1673
54936f8b
TH
1674 /* Device or controller might have reported the wrong
1675 * device class. Give a shot at the other IDENTIFY if
1676 * the current one is aborted by the device.
1677 */
1678 if (may_fallback &&
1679 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1680 may_fallback = 0;
1681
1682 if (class == ATA_DEV_ATA)
1683 class = ATA_DEV_ATAPI;
1684 else
1685 class = ATA_DEV_ATA;
1686 goto retry;
1687 }
1688
49016aca
TH
1689 rc = -EIO;
1690 reason = "I/O error";
1da177e4
LT
1691 goto err_out;
1692 }
1693
54936f8b
TH
1694 /* Falling back doesn't make sense if ID data was read
1695 * successfully at least once.
1696 */
1697 may_fallback = 0;
1698
49016aca 1699 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1700
49016aca 1701 /* sanity check */
a4f5749b 1702 rc = -EINVAL;
6070068b 1703 reason = "device reports invalid type";
a4f5749b
TH
1704
1705 if (class == ATA_DEV_ATA) {
1706 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1707 goto err_out;
1708 } else {
1709 if (ata_id_is_ata(id))
1710 goto err_out;
49016aca
TH
1711 }
1712
169439c2
ML
1713 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1714 tried_spinup = 1;
1715 /*
1716 * Drive powered-up in standby mode, and requires a specific
1717 * SET_FEATURES spin-up subcommand before it will accept
1718 * anything other than the original IDENTIFY command.
1719 */
1720 ata_tf_init(dev, &tf);
1721 tf.command = ATA_CMD_SET_FEATURES;
1722 tf.feature = SETFEATURES_SPINUP;
1723 tf.protocol = ATA_PROT_NODATA;
1724 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1725 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1726 if (err_mask) {
1727 rc = -EIO;
1728 reason = "SPINUP failed";
1729 goto err_out;
1730 }
1731 /*
1732 * If the drive initially returned incomplete IDENTIFY info,
1733 * we now must reissue the IDENTIFY command.
1734 */
1735 if (id[2] == 0x37c8)
1736 goto retry;
1737 }
1738
bff04647 1739 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1740 /*
1741 * The exact sequence expected by certain pre-ATA4 drives is:
1742 * SRST RESET
1743 * IDENTIFY
1744 * INITIALIZE DEVICE PARAMETERS
1745 * anything else..
1746 * Some drives were very specific about that exact sequence.
1747 */
1748 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1749 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1750 if (err_mask) {
1751 rc = -EIO;
1752 reason = "INIT_DEV_PARAMS failed";
1753 goto err_out;
1754 }
1755
1756 /* current CHS translation info (id[53-58]) might be
1757 * changed. reread the identify device info.
1758 */
bff04647 1759 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1760 goto retry;
1761 }
1762 }
1763
1764 *p_class = class;
fe635c7e 1765
49016aca
TH
1766 return 0;
1767
1768 err_out:
88574551 1769 if (ata_msg_warn(ap))
0dd4b21f 1770 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1771 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1772 return rc;
1773}
1774
3373efd8 1775static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1776{
3373efd8 1777 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1778}
1779
a6e6ce8e
TH
1780static void ata_dev_config_ncq(struct ata_device *dev,
1781 char *desc, size_t desc_sz)
1782{
1783 struct ata_port *ap = dev->ap;
1784 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1785
1786 if (!ata_id_has_ncq(dev->id)) {
1787 desc[0] = '\0';
1788 return;
1789 }
75683fe7 1790 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
1791 snprintf(desc, desc_sz, "NCQ (not used)");
1792 return;
1793 }
a6e6ce8e 1794 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1795 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1796 dev->flags |= ATA_DFLAG_NCQ;
1797 }
1798
1799 if (hdepth >= ddepth)
1800 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1801 else
1802 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1803}
1804
49016aca 1805/**
ffeae418 1806 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1807 * @dev: Target device to configure
1808 *
1809 * Configure @dev according to @dev->id. Generic and low-level
1810 * driver specific fixups are also applied.
49016aca
TH
1811 *
1812 * LOCKING:
ffeae418
TH
1813 * Kernel thread context (may sleep)
1814 *
1815 * RETURNS:
1816 * 0 on success, -errno otherwise
49016aca 1817 */
efdaedc4 1818int ata_dev_configure(struct ata_device *dev)
49016aca 1819{
3373efd8 1820 struct ata_port *ap = dev->ap;
6746544c
TH
1821 struct ata_eh_context *ehc = &ap->eh_context;
1822 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1823 const u16 *id = dev->id;
ff8854b2 1824 unsigned int xfer_mask;
b352e57d 1825 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1826 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1827 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1828 int rc;
49016aca 1829
0dd4b21f 1830 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1831 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1832 __FUNCTION__);
ffeae418 1833 return 0;
49016aca
TH
1834 }
1835
0dd4b21f 1836 if (ata_msg_probe(ap))
44877b4e 1837 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1838
75683fe7
TH
1839 /* set horkage */
1840 dev->horkage |= ata_dev_blacklisted(dev);
1841
6746544c
TH
1842 /* let ACPI work its magic */
1843 rc = ata_acpi_on_devcfg(dev);
1844 if (rc)
1845 return rc;
08573a86 1846
c39f5ebe 1847 /* print device capabilities */
0dd4b21f 1848 if (ata_msg_probe(ap))
88574551
TH
1849 ata_dev_printk(dev, KERN_DEBUG,
1850 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1851 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1852 __FUNCTION__,
f15a1daf
TH
1853 id[49], id[82], id[83], id[84],
1854 id[85], id[86], id[87], id[88]);
c39f5ebe 1855
208a9933 1856 /* initialize to-be-configured parameters */
ea1dd4e1 1857 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1858 dev->max_sectors = 0;
1859 dev->cdb_len = 0;
1860 dev->n_sectors = 0;
1861 dev->cylinders = 0;
1862 dev->heads = 0;
1863 dev->sectors = 0;
1864
1da177e4
LT
1865 /*
1866 * common ATA, ATAPI feature tests
1867 */
1868
ff8854b2 1869 /* find max transfer mode; for printk only */
1148c3a7 1870 xfer_mask = ata_id_xfermask(id);
1da177e4 1871
0dd4b21f
BP
1872 if (ata_msg_probe(ap))
1873 ata_dump_id(id);
1da177e4 1874
ef143d57
AL
1875 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1876 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1877 sizeof(fwrevbuf));
1878
1879 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1880 sizeof(modelbuf));
1881
1da177e4
LT
1882 /* ATA-specific feature tests */
1883 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1884 if (ata_id_is_cfa(id)) {
1885 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1886 ata_dev_printk(dev, KERN_WARNING,
1887 "supports DRM functions and may "
1888 "not be fully accessable.\n");
b352e57d
AC
1889 snprintf(revbuf, 7, "CFA");
1890 }
1891 else
1892 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1893
1148c3a7 1894 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1895
3f64f565
EM
1896 if (dev->id[59] & 0x100)
1897 dev->multi_count = dev->id[59] & 0xff;
1898
1148c3a7 1899 if (ata_id_has_lba(id)) {
4c2d721a 1900 const char *lba_desc;
a6e6ce8e 1901 char ncq_desc[20];
8bf62ece 1902
4c2d721a
TH
1903 lba_desc = "LBA";
1904 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1905 if (ata_id_has_lba48(id)) {
8bf62ece 1906 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1907 lba_desc = "LBA48";
6fc49adb
TH
1908
1909 if (dev->n_sectors >= (1UL << 28) &&
1910 ata_id_has_flush_ext(id))
1911 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1912 }
8bf62ece 1913
1e999736
AC
1914 if (ata_id_hpa_enabled(dev->id))
1915 dev->n_sectors = ata_hpa_resize(dev);
1916
a6e6ce8e
TH
1917 /* config NCQ */
1918 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1919
8bf62ece 1920 /* print device info to dmesg */
3f64f565
EM
1921 if (ata_msg_drv(ap) && print_info) {
1922 ata_dev_printk(dev, KERN_INFO,
1923 "%s: %s, %s, max %s\n",
1924 revbuf, modelbuf, fwrevbuf,
1925 ata_mode_string(xfer_mask));
1926 ata_dev_printk(dev, KERN_INFO,
1927 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1928 (unsigned long long)dev->n_sectors,
3f64f565
EM
1929 dev->multi_count, lba_desc, ncq_desc);
1930 }
ffeae418 1931 } else {
8bf62ece
AL
1932 /* CHS */
1933
1934 /* Default translation */
1148c3a7
TH
1935 dev->cylinders = id[1];
1936 dev->heads = id[3];
1937 dev->sectors = id[6];
8bf62ece 1938
1148c3a7 1939 if (ata_id_current_chs_valid(id)) {
8bf62ece 1940 /* Current CHS translation is valid. */
1148c3a7
TH
1941 dev->cylinders = id[54];
1942 dev->heads = id[55];
1943 dev->sectors = id[56];
8bf62ece
AL
1944 }
1945
1946 /* print device info to dmesg */
3f64f565 1947 if (ata_msg_drv(ap) && print_info) {
88574551 1948 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1949 "%s: %s, %s, max %s\n",
1950 revbuf, modelbuf, fwrevbuf,
1951 ata_mode_string(xfer_mask));
a84471fe 1952 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1953 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1954 (unsigned long long)dev->n_sectors,
1955 dev->multi_count, dev->cylinders,
1956 dev->heads, dev->sectors);
1957 }
07f6f7d0
AL
1958 }
1959
6e7846e9 1960 dev->cdb_len = 16;
1da177e4
LT
1961 }
1962
1963 /* ATAPI-specific feature tests */
2c13b7ce 1964 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1965 char *cdb_intr_string = "";
1966
1148c3a7 1967 rc = atapi_cdb_len(id);
1da177e4 1968 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1969 if (ata_msg_warn(ap))
88574551
TH
1970 ata_dev_printk(dev, KERN_WARNING,
1971 "unsupported CDB len\n");
ffeae418 1972 rc = -EINVAL;
1da177e4
LT
1973 goto err_out_nosup;
1974 }
6e7846e9 1975 dev->cdb_len = (unsigned int) rc;
1da177e4 1976
08a556db 1977 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1978 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1979 cdb_intr_string = ", CDB intr";
1980 }
312f7da2 1981
1da177e4 1982 /* print device info to dmesg */
5afc8142 1983 if (ata_msg_drv(ap) && print_info)
ef143d57
AL
1984 ata_dev_printk(dev, KERN_INFO,
1985 "ATAPI: %s, %s, max %s%s\n",
1986 modelbuf, fwrevbuf,
12436c30
TH
1987 ata_mode_string(xfer_mask),
1988 cdb_intr_string);
1da177e4
LT
1989 }
1990
914ed354
TH
1991 /* determine max_sectors */
1992 dev->max_sectors = ATA_MAX_SECTORS;
1993 if (dev->flags & ATA_DFLAG_LBA48)
1994 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1995
93590859
AC
1996 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1997 /* Let the user know. We don't want to disallow opens for
1998 rescue purposes, or in case the vendor is just a blithering
1999 idiot */
2000 if (print_info) {
2001 ata_dev_printk(dev, KERN_WARNING,
2002"Drive reports diagnostics failure. This may indicate a drive\n");
2003 ata_dev_printk(dev, KERN_WARNING,
2004"fault or invalid emulation. Contact drive vendor for information.\n");
2005 }
2006 }
2007
4b2f3ede 2008 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2009 if (ata_dev_knobble(dev)) {
5afc8142 2010 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2011 ata_dev_printk(dev, KERN_INFO,
2012 "applying bridge limits\n");
5a529139 2013 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2014 dev->max_sectors = ATA_MAX_SECTORS;
2015 }
2016
75683fe7 2017 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2018 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2019 dev->max_sectors);
18d6e9d5 2020
4b2f3ede 2021 if (ap->ops->dev_config)
cd0d3bbc 2022 ap->ops->dev_config(dev);
4b2f3ede 2023
0dd4b21f
BP
2024 if (ata_msg_probe(ap))
2025 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2026 __FUNCTION__, ata_chk_status(ap));
ffeae418 2027 return 0;
1da177e4
LT
2028
2029err_out_nosup:
0dd4b21f 2030 if (ata_msg_probe(ap))
88574551
TH
2031 ata_dev_printk(dev, KERN_DEBUG,
2032 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2033 return rc;
1da177e4
LT
2034}
2035
be0d18df 2036/**
2e41e8e6 2037 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2038 * @ap: port
2039 *
2e41e8e6 2040 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2041 * detection.
2042 */
2043
2044int ata_cable_40wire(struct ata_port *ap)
2045{
2046 return ATA_CBL_PATA40;
2047}
2048
2049/**
2e41e8e6 2050 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2051 * @ap: port
2052 *
2e41e8e6 2053 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2054 * detection.
2055 */
2056
2057int ata_cable_80wire(struct ata_port *ap)
2058{
2059 return ATA_CBL_PATA80;
2060}
2061
2062/**
2063 * ata_cable_unknown - return unknown PATA cable.
2064 * @ap: port
2065 *
2066 * Helper method for drivers which have no PATA cable detection.
2067 */
2068
2069int ata_cable_unknown(struct ata_port *ap)
2070{
2071 return ATA_CBL_PATA_UNK;
2072}
2073
2074/**
2075 * ata_cable_sata - return SATA cable type
2076 * @ap: port
2077 *
2078 * Helper method for drivers which have SATA cables
2079 */
2080
2081int ata_cable_sata(struct ata_port *ap)
2082{
2083 return ATA_CBL_SATA;
2084}
2085
1da177e4
LT
2086/**
2087 * ata_bus_probe - Reset and probe ATA bus
2088 * @ap: Bus to probe
2089 *
0cba632b
JG
2090 * Master ATA bus probing function. Initiates a hardware-dependent
2091 * bus reset, then attempts to identify any devices found on
2092 * the bus.
2093 *
1da177e4 2094 * LOCKING:
0cba632b 2095 * PCI/etc. bus probe sem.
1da177e4
LT
2096 *
2097 * RETURNS:
96072e69 2098 * Zero on success, negative errno otherwise.
1da177e4
LT
2099 */
2100
80289167 2101int ata_bus_probe(struct ata_port *ap)
1da177e4 2102{
28ca5c57 2103 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2104 int tries[ATA_MAX_DEVICES];
4ae72a1e 2105 int i, rc;
e82cbdb9 2106 struct ata_device *dev;
1da177e4 2107
28ca5c57 2108 ata_port_probe(ap);
c19ba8af 2109
14d2bac1
TH
2110 for (i = 0; i < ATA_MAX_DEVICES; i++)
2111 tries[i] = ATA_PROBE_MAX_TRIES;
2112
2113 retry:
2044470c 2114 /* reset and determine device classes */
52783c5d 2115 ap->ops->phy_reset(ap);
2061a47a 2116
52783c5d
TH
2117 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2118 dev = &ap->device[i];
c19ba8af 2119
52783c5d
TH
2120 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2121 dev->class != ATA_DEV_UNKNOWN)
2122 classes[dev->devno] = dev->class;
2123 else
2124 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2125
52783c5d 2126 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2127 }
1da177e4 2128
52783c5d 2129 ata_port_probe(ap);
2044470c 2130
b6079ca4
AC
2131 /* after the reset the device state is PIO 0 and the controller
2132 state is undefined. Record the mode */
2133
2134 for (i = 0; i < ATA_MAX_DEVICES; i++)
2135 ap->device[i].pio_mode = XFER_PIO_0;
2136
f31f0cc2
JG
2137 /* read IDENTIFY page and configure devices. We have to do the identify
2138 specific sequence bass-ackwards so that PDIAG- is released by
2139 the slave device */
2140
2141 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
e82cbdb9 2142 dev = &ap->device[i];
28ca5c57 2143
ec573755
TH
2144 if (tries[i])
2145 dev->class = classes[i];
ffeae418 2146
14d2bac1 2147 if (!ata_dev_enabled(dev))
ffeae418 2148 continue;
ffeae418 2149
bff04647
TH
2150 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2151 dev->id);
14d2bac1
TH
2152 if (rc)
2153 goto fail;
f31f0cc2
JG
2154 }
2155
be0d18df
AC
2156 /* Now ask for the cable type as PDIAG- should have been released */
2157 if (ap->ops->cable_detect)
2158 ap->cbl = ap->ops->cable_detect(ap);
2159
f31f0cc2
JG
2160 /* After the identify sequence we can now set up the devices. We do
2161 this in the normal order so that the user doesn't get confused */
2162
2163 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2164 dev = &ap->device[i];
2165 if (!ata_dev_enabled(dev))
2166 continue;
14d2bac1 2167
efdaedc4
TH
2168 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2169 rc = ata_dev_configure(dev);
2170 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2171 if (rc)
2172 goto fail;
1da177e4
LT
2173 }
2174
e82cbdb9 2175 /* configure transfer mode */
3adcebb2 2176 rc = ata_set_mode(ap, &dev);
4ae72a1e 2177 if (rc)
51713d35 2178 goto fail;
1da177e4 2179
e82cbdb9
TH
2180 for (i = 0; i < ATA_MAX_DEVICES; i++)
2181 if (ata_dev_enabled(&ap->device[i]))
2182 return 0;
1da177e4 2183
e82cbdb9
TH
2184 /* no device present, disable port */
2185 ata_port_disable(ap);
1da177e4 2186 ap->ops->port_disable(ap);
96072e69 2187 return -ENODEV;
14d2bac1
TH
2188
2189 fail:
4ae72a1e
TH
2190 tries[dev->devno]--;
2191
14d2bac1
TH
2192 switch (rc) {
2193 case -EINVAL:
4ae72a1e 2194 /* eeek, something went very wrong, give up */
14d2bac1
TH
2195 tries[dev->devno] = 0;
2196 break;
4ae72a1e
TH
2197
2198 case -ENODEV:
2199 /* give it just one more chance */
2200 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2201 case -EIO:
4ae72a1e
TH
2202 if (tries[dev->devno] == 1) {
2203 /* This is the last chance, better to slow
2204 * down than lose it.
2205 */
2206 sata_down_spd_limit(ap);
2207 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2208 }
14d2bac1
TH
2209 }
2210
4ae72a1e 2211 if (!tries[dev->devno])
3373efd8 2212 ata_dev_disable(dev);
ec573755 2213
14d2bac1 2214 goto retry;
1da177e4
LT
2215}
2216
2217/**
0cba632b
JG
2218 * ata_port_probe - Mark port as enabled
2219 * @ap: Port for which we indicate enablement
1da177e4 2220 *
0cba632b
JG
2221 * Modify @ap data structure such that the system
2222 * thinks that the entire port is enabled.
2223 *
cca3974e 2224 * LOCKING: host lock, or some other form of
0cba632b 2225 * serialization.
1da177e4
LT
2226 */
2227
2228void ata_port_probe(struct ata_port *ap)
2229{
198e0fed 2230 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2231}
2232
3be680b7
TH
2233/**
2234 * sata_print_link_status - Print SATA link status
2235 * @ap: SATA port to printk link status about
2236 *
2237 * This function prints link speed and status of a SATA link.
2238 *
2239 * LOCKING:
2240 * None.
2241 */
43727fbc 2242void sata_print_link_status(struct ata_port *ap)
3be680b7 2243{
6d5f9732 2244 u32 sstatus, scontrol, tmp;
3be680b7 2245
81952c54 2246 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 2247 return;
81952c54 2248 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 2249
81952c54 2250 if (ata_port_online(ap)) {
3be680b7 2251 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
2252 ata_port_printk(ap, KERN_INFO,
2253 "SATA link up %s (SStatus %X SControl %X)\n",
2254 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2255 } else {
f15a1daf
TH
2256 ata_port_printk(ap, KERN_INFO,
2257 "SATA link down (SStatus %X SControl %X)\n",
2258 sstatus, scontrol);
3be680b7
TH
2259 }
2260}
2261
1da177e4 2262/**
780a87f7
JG
2263 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2264 * @ap: SATA port associated with target SATA PHY.
1da177e4 2265 *
780a87f7
JG
2266 * This function issues commands to standard SATA Sxxx
2267 * PHY registers, to wake up the phy (and device), and
2268 * clear any reset condition.
1da177e4
LT
2269 *
2270 * LOCKING:
0cba632b 2271 * PCI/etc. bus probe sem.
1da177e4
LT
2272 *
2273 */
2274void __sata_phy_reset(struct ata_port *ap)
2275{
2276 u32 sstatus;
2277 unsigned long timeout = jiffies + (HZ * 5);
2278
2279 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2280 /* issue phy wake/reset */
81952c54 2281 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
2282 /* Couldn't find anything in SATA I/II specs, but
2283 * AHCI-1.1 10.4.2 says at least 1 ms. */
2284 mdelay(1);
1da177e4 2285 }
81952c54
TH
2286 /* phy wake/clear reset */
2287 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
2288
2289 /* wait for phy to become ready, if necessary */
2290 do {
2291 msleep(200);
81952c54 2292 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
2293 if ((sstatus & 0xf) != 1)
2294 break;
2295 } while (time_before(jiffies, timeout));
2296
3be680b7
TH
2297 /* print link status */
2298 sata_print_link_status(ap);
656563e3 2299
3be680b7 2300 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2301 if (!ata_port_offline(ap))
1da177e4 2302 ata_port_probe(ap);
3be680b7 2303 else
1da177e4 2304 ata_port_disable(ap);
1da177e4 2305
198e0fed 2306 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2307 return;
2308
2309 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2310 ata_port_disable(ap);
2311 return;
2312 }
2313
2314 ap->cbl = ATA_CBL_SATA;
2315}
2316
2317/**
780a87f7
JG
2318 * sata_phy_reset - Reset SATA bus.
2319 * @ap: SATA port associated with target SATA PHY.
1da177e4 2320 *
780a87f7
JG
2321 * This function resets the SATA bus, and then probes
2322 * the bus for devices.
1da177e4
LT
2323 *
2324 * LOCKING:
0cba632b 2325 * PCI/etc. bus probe sem.
1da177e4
LT
2326 *
2327 */
2328void sata_phy_reset(struct ata_port *ap)
2329{
2330 __sata_phy_reset(ap);
198e0fed 2331 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2332 return;
2333 ata_bus_reset(ap);
2334}
2335
ebdfca6e
AC
2336/**
2337 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2338 * @adev: device
2339 *
2340 * Obtain the other device on the same cable, or if none is
2341 * present NULL is returned
2342 */
2e9edbf8 2343
3373efd8 2344struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2345{
3373efd8 2346 struct ata_port *ap = adev->ap;
ebdfca6e 2347 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2348 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2349 return NULL;
2350 return pair;
2351}
2352
1da177e4 2353/**
780a87f7
JG
2354 * ata_port_disable - Disable port.
2355 * @ap: Port to be disabled.
1da177e4 2356 *
780a87f7
JG
2357 * Modify @ap data structure such that the system
2358 * thinks that the entire port is disabled, and should
2359 * never attempt to probe or communicate with devices
2360 * on this port.
2361 *
cca3974e 2362 * LOCKING: host lock, or some other form of
780a87f7 2363 * serialization.
1da177e4
LT
2364 */
2365
2366void ata_port_disable(struct ata_port *ap)
2367{
2368 ap->device[0].class = ATA_DEV_NONE;
2369 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2370 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2371}
2372
1c3fae4d 2373/**
3c567b7d 2374 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2375 * @ap: Port to adjust SATA spd limit for
2376 *
2377 * Adjust SATA spd limit of @ap downward. Note that this
2378 * function only adjusts the limit. The change must be applied
3c567b7d 2379 * using sata_set_spd().
1c3fae4d
TH
2380 *
2381 * LOCKING:
2382 * Inherited from caller.
2383 *
2384 * RETURNS:
2385 * 0 on success, negative errno on failure
2386 */
3c567b7d 2387int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2388{
81952c54
TH
2389 u32 sstatus, spd, mask;
2390 int rc, highbit;
1c3fae4d 2391
81952c54
TH
2392 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2393 if (rc)
2394 return rc;
1c3fae4d
TH
2395
2396 mask = ap->sata_spd_limit;
2397 if (mask <= 1)
2398 return -EINVAL;
2399 highbit = fls(mask) - 1;
2400 mask &= ~(1 << highbit);
2401
81952c54 2402 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
2403 if (spd <= 1)
2404 return -EINVAL;
2405 spd--;
2406 mask &= (1 << spd) - 1;
2407 if (!mask)
2408 return -EINVAL;
2409
2410 ap->sata_spd_limit = mask;
2411
f15a1daf
TH
2412 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2413 sata_spd_string(fls(mask)));
1c3fae4d
TH
2414
2415 return 0;
2416}
2417
3c567b7d 2418static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2419{
2420 u32 spd, limit;
2421
2422 if (ap->sata_spd_limit == UINT_MAX)
2423 limit = 0;
2424 else
2425 limit = fls(ap->sata_spd_limit);
2426
2427 spd = (*scontrol >> 4) & 0xf;
2428 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2429
2430 return spd != limit;
2431}
2432
2433/**
3c567b7d 2434 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2435 * @ap: Port in question
2436 *
2437 * Test whether the spd limit in SControl matches
2438 * @ap->sata_spd_limit. This function is used to determine
2439 * whether hardreset is necessary to apply SATA spd
2440 * configuration.
2441 *
2442 * LOCKING:
2443 * Inherited from caller.
2444 *
2445 * RETURNS:
2446 * 1 if SATA spd configuration is needed, 0 otherwise.
2447 */
3c567b7d 2448int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2449{
2450 u32 scontrol;
2451
81952c54 2452 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2453 return 0;
2454
3c567b7d 2455 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2456}
2457
2458/**
3c567b7d 2459 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2460 * @ap: Port to set SATA spd for
2461 *
2462 * Set SATA spd of @ap according to sata_spd_limit.
2463 *
2464 * LOCKING:
2465 * Inherited from caller.
2466 *
2467 * RETURNS:
2468 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2469 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2470 */
3c567b7d 2471int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2472{
2473 u32 scontrol;
81952c54 2474 int rc;
1c3fae4d 2475
81952c54
TH
2476 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2477 return rc;
1c3fae4d 2478
3c567b7d 2479 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2480 return 0;
2481
81952c54
TH
2482 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2483 return rc;
2484
1c3fae4d
TH
2485 return 1;
2486}
2487
452503f9
AC
2488/*
2489 * This mode timing computation functionality is ported over from
2490 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2491 */
2492/*
b352e57d 2493 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2494 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2495 * for UDMA6, which is currently supported only by Maxtor drives.
2496 *
2497 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2498 */
2499
2500static const struct ata_timing ata_timing[] = {
2501
2502 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2503 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2504 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2505 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2506
b352e57d
AC
2507 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2508 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2509 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2510 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2511 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2512
2513/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2514
452503f9
AC
2515 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2516 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2517 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2518
452503f9
AC
2519 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2520 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2521 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2522
b352e57d
AC
2523 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2524 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2525 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2526 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2527
2528 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2529 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2530 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2531
2532/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2533
2534 { 0xFF }
2535};
2536
2537#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2538#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2539
2540static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2541{
2542 q->setup = EZ(t->setup * 1000, T);
2543 q->act8b = EZ(t->act8b * 1000, T);
2544 q->rec8b = EZ(t->rec8b * 1000, T);
2545 q->cyc8b = EZ(t->cyc8b * 1000, T);
2546 q->active = EZ(t->active * 1000, T);
2547 q->recover = EZ(t->recover * 1000, T);
2548 q->cycle = EZ(t->cycle * 1000, T);
2549 q->udma = EZ(t->udma * 1000, UT);
2550}
2551
2552void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2553 struct ata_timing *m, unsigned int what)
2554{
2555 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2556 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2557 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2558 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2559 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2560 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2561 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2562 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2563}
2564
2565static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2566{
2567 const struct ata_timing *t;
2568
2569 for (t = ata_timing; t->mode != speed; t++)
91190758 2570 if (t->mode == 0xFF)
452503f9 2571 return NULL;
2e9edbf8 2572 return t;
452503f9
AC
2573}
2574
2575int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2576 struct ata_timing *t, int T, int UT)
2577{
2578 const struct ata_timing *s;
2579 struct ata_timing p;
2580
2581 /*
2e9edbf8 2582 * Find the mode.
75b1f2f8 2583 */
452503f9
AC
2584
2585 if (!(s = ata_timing_find_mode(speed)))
2586 return -EINVAL;
2587
75b1f2f8
AL
2588 memcpy(t, s, sizeof(*s));
2589
452503f9
AC
2590 /*
2591 * If the drive is an EIDE drive, it can tell us it needs extended
2592 * PIO/MW_DMA cycle timing.
2593 */
2594
2595 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2596 memset(&p, 0, sizeof(p));
2597 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2598 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2599 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2600 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2601 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2602 }
2603 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2604 }
2605
2606 /*
2607 * Convert the timing to bus clock counts.
2608 */
2609
75b1f2f8 2610 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2611
2612 /*
c893a3ae
RD
2613 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2614 * S.M.A.R.T * and some other commands. We have to ensure that the
2615 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2616 */
2617
fd3367af 2618 if (speed > XFER_PIO_6) {
452503f9
AC
2619 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2620 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2621 }
2622
2623 /*
c893a3ae 2624 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2625 */
2626
2627 if (t->act8b + t->rec8b < t->cyc8b) {
2628 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2629 t->rec8b = t->cyc8b - t->act8b;
2630 }
2631
2632 if (t->active + t->recover < t->cycle) {
2633 t->active += (t->cycle - (t->active + t->recover)) / 2;
2634 t->recover = t->cycle - t->active;
2635 }
a617c09f 2636
4f701d1e
AC
2637 /* In a few cases quantisation may produce enough errors to
2638 leave t->cycle too low for the sum of active and recovery
2639 if so we must correct this */
2640 if (t->active + t->recover > t->cycle)
2641 t->cycle = t->active + t->recover;
452503f9
AC
2642
2643 return 0;
2644}
2645
cf176e1a
TH
2646/**
2647 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2648 * @dev: Device to adjust xfer masks
458337db 2649 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2650 *
2651 * Adjust xfer masks of @dev downward. Note that this function
2652 * does not apply the change. Invoking ata_set_mode() afterwards
2653 * will apply the limit.
2654 *
2655 * LOCKING:
2656 * Inherited from caller.
2657 *
2658 * RETURNS:
2659 * 0 on success, negative errno on failure
2660 */
458337db 2661int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2662{
458337db
TH
2663 char buf[32];
2664 unsigned int orig_mask, xfer_mask;
2665 unsigned int pio_mask, mwdma_mask, udma_mask;
2666 int quiet, highbit;
cf176e1a 2667
458337db
TH
2668 quiet = !!(sel & ATA_DNXFER_QUIET);
2669 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2670
458337db
TH
2671 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2672 dev->mwdma_mask,
2673 dev->udma_mask);
2674 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2675
458337db
TH
2676 switch (sel) {
2677 case ATA_DNXFER_PIO:
2678 highbit = fls(pio_mask) - 1;
2679 pio_mask &= ~(1 << highbit);
2680 break;
2681
2682 case ATA_DNXFER_DMA:
2683 if (udma_mask) {
2684 highbit = fls(udma_mask) - 1;
2685 udma_mask &= ~(1 << highbit);
2686 if (!udma_mask)
2687 return -ENOENT;
2688 } else if (mwdma_mask) {
2689 highbit = fls(mwdma_mask) - 1;
2690 mwdma_mask &= ~(1 << highbit);
2691 if (!mwdma_mask)
2692 return -ENOENT;
2693 }
2694 break;
2695
2696 case ATA_DNXFER_40C:
2697 udma_mask &= ATA_UDMA_MASK_40C;
2698 break;
2699
2700 case ATA_DNXFER_FORCE_PIO0:
2701 pio_mask &= 1;
2702 case ATA_DNXFER_FORCE_PIO:
2703 mwdma_mask = 0;
2704 udma_mask = 0;
2705 break;
2706
458337db
TH
2707 default:
2708 BUG();
2709 }
2710
2711 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2712
2713 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2714 return -ENOENT;
2715
2716 if (!quiet) {
2717 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2718 snprintf(buf, sizeof(buf), "%s:%s",
2719 ata_mode_string(xfer_mask),
2720 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2721 else
2722 snprintf(buf, sizeof(buf), "%s",
2723 ata_mode_string(xfer_mask));
2724
2725 ata_dev_printk(dev, KERN_WARNING,
2726 "limiting speed to %s\n", buf);
2727 }
cf176e1a
TH
2728
2729 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2730 &dev->udma_mask);
2731
cf176e1a 2732 return 0;
cf176e1a
TH
2733}
2734
3373efd8 2735static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2736{
baa1e78a 2737 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2738 unsigned int err_mask;
2739 int rc;
1da177e4 2740
e8384607 2741 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2742 if (dev->xfer_shift == ATA_SHIFT_PIO)
2743 dev->flags |= ATA_DFLAG_PIO;
2744
3373efd8 2745 err_mask = ata_dev_set_xfermode(dev);
11750a40
A
2746 /* Old CFA may refuse this command, which is just fine */
2747 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2748 err_mask &= ~AC_ERR_DEV;
2749
83206a29 2750 if (err_mask) {
f15a1daf
TH
2751 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2752 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2753 return -EIO;
2754 }
1da177e4 2755
baa1e78a 2756 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2757 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2758 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2759 if (rc)
83206a29 2760 return rc;
48a8a14f 2761
23e71c3d
TH
2762 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2763 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2764
f15a1daf
TH
2765 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2766 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2767 return 0;
1da177e4
LT
2768}
2769
1da177e4 2770/**
04351821 2771 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
1da177e4 2772 * @ap: port on which timings will be programmed
e82cbdb9 2773 * @r_failed_dev: out paramter for failed device
1da177e4 2774 *
04351821
A
2775 * Standard implementation of the function used to tune and set
2776 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2777 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2778 * returned in @r_failed_dev.
780a87f7 2779 *
1da177e4 2780 * LOCKING:
0cba632b 2781 * PCI/etc. bus probe sem.
e82cbdb9
TH
2782 *
2783 * RETURNS:
2784 * 0 on success, negative errno otherwise
1da177e4 2785 */
04351821
A
2786
2787int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2788{
e8e0619f 2789 struct ata_device *dev;
e82cbdb9 2790 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2791
3adcebb2 2792
a6d5a51c
TH
2793 /* step 1: calculate xfer_mask */
2794 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2795 unsigned int pio_mask, dma_mask;
a6d5a51c 2796
e8e0619f
TH
2797 dev = &ap->device[i];
2798
e1211e3f 2799 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2800 continue;
2801
3373efd8 2802 ata_dev_xfermask(dev);
1da177e4 2803
acf356b1
TH
2804 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2805 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2806 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2807 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2808
4f65977d 2809 found = 1;
5444a6f4
AC
2810 if (dev->dma_mode)
2811 used_dma = 1;
a6d5a51c 2812 }
4f65977d 2813 if (!found)
e82cbdb9 2814 goto out;
a6d5a51c
TH
2815
2816 /* step 2: always set host PIO timings */
e8e0619f
TH
2817 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2818 dev = &ap->device[i];
2819 if (!ata_dev_enabled(dev))
2820 continue;
2821
2822 if (!dev->pio_mode) {
f15a1daf 2823 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2824 rc = -EINVAL;
e82cbdb9 2825 goto out;
e8e0619f
TH
2826 }
2827
2828 dev->xfer_mode = dev->pio_mode;
2829 dev->xfer_shift = ATA_SHIFT_PIO;
2830 if (ap->ops->set_piomode)
2831 ap->ops->set_piomode(ap, dev);
2832 }
1da177e4 2833
a6d5a51c 2834 /* step 3: set host DMA timings */
e8e0619f
TH
2835 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2836 dev = &ap->device[i];
2837
2838 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2839 continue;
2840
2841 dev->xfer_mode = dev->dma_mode;
2842 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2843 if (ap->ops->set_dmamode)
2844 ap->ops->set_dmamode(ap, dev);
2845 }
1da177e4
LT
2846
2847 /* step 4: update devices' xfer mode */
83206a29 2848 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2849 dev = &ap->device[i];
1da177e4 2850
18d90deb 2851 /* don't update suspended devices' xfer mode */
9666f400 2852 if (!ata_dev_enabled(dev))
83206a29
TH
2853 continue;
2854
3373efd8 2855 rc = ata_dev_set_mode(dev);
5bbc53f4 2856 if (rc)
e82cbdb9 2857 goto out;
83206a29 2858 }
1da177e4 2859
e8e0619f
TH
2860 /* Record simplex status. If we selected DMA then the other
2861 * host channels are not permitted to do so.
5444a6f4 2862 */
cca3974e 2863 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2864 ap->host->simplex_claimed = ap;
5444a6f4 2865
e82cbdb9
TH
2866 out:
2867 if (rc)
2868 *r_failed_dev = dev;
2869 return rc;
1da177e4
LT
2870}
2871
04351821
A
2872/**
2873 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2874 * @ap: port on which timings will be programmed
2875 * @r_failed_dev: out paramter for failed device
2876 *
2877 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2878 * ata_set_mode() fails, pointer to the failing device is
2879 * returned in @r_failed_dev.
2880 *
2881 * LOCKING:
2882 * PCI/etc. bus probe sem.
2883 *
2884 * RETURNS:
2885 * 0 on success, negative errno otherwise
2886 */
2887int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2888{
2889 /* has private set_mode? */
2890 if (ap->ops->set_mode)
2891 return ap->ops->set_mode(ap, r_failed_dev);
2892 return ata_do_set_mode(ap, r_failed_dev);
2893}
2894
1fdffbce
JG
2895/**
2896 * ata_tf_to_host - issue ATA taskfile to host controller
2897 * @ap: port to which command is being issued
2898 * @tf: ATA taskfile register set
2899 *
2900 * Issues ATA taskfile register set to ATA host controller,
2901 * with proper synchronization with interrupt handler and
2902 * other threads.
2903 *
2904 * LOCKING:
cca3974e 2905 * spin_lock_irqsave(host lock)
1fdffbce
JG
2906 */
2907
2908static inline void ata_tf_to_host(struct ata_port *ap,
2909 const struct ata_taskfile *tf)
2910{
2911 ap->ops->tf_load(ap, tf);
2912 ap->ops->exec_command(ap, tf);
2913}
2914
1da177e4
LT
2915/**
2916 * ata_busy_sleep - sleep until BSY clears, or timeout
2917 * @ap: port containing status register to be polled
2918 * @tmout_pat: impatience timeout
2919 * @tmout: overall timeout
2920 *
780a87f7
JG
2921 * Sleep until ATA Status register bit BSY clears,
2922 * or a timeout occurs.
2923 *
d1adc1bb
TH
2924 * LOCKING:
2925 * Kernel thread context (may sleep).
2926 *
2927 * RETURNS:
2928 * 0 on success, -errno otherwise.
1da177e4 2929 */
d1adc1bb
TH
2930int ata_busy_sleep(struct ata_port *ap,
2931 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2932{
2933 unsigned long timer_start, timeout;
2934 u8 status;
2935
2936 status = ata_busy_wait(ap, ATA_BUSY, 300);
2937 timer_start = jiffies;
2938 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2939 while (status != 0xff && (status & ATA_BUSY) &&
2940 time_before(jiffies, timeout)) {
1da177e4
LT
2941 msleep(50);
2942 status = ata_busy_wait(ap, ATA_BUSY, 3);
2943 }
2944
d1adc1bb 2945 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2946 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2947 "port is slow to respond, please be patient "
2948 "(Status 0x%x)\n", status);
1da177e4
LT
2949
2950 timeout = timer_start + tmout;
d1adc1bb
TH
2951 while (status != 0xff && (status & ATA_BUSY) &&
2952 time_before(jiffies, timeout)) {
1da177e4
LT
2953 msleep(50);
2954 status = ata_chk_status(ap);
2955 }
2956
d1adc1bb
TH
2957 if (status == 0xff)
2958 return -ENODEV;
2959
1da177e4 2960 if (status & ATA_BUSY) {
f15a1daf 2961 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2962 "(%lu secs, Status 0x%x)\n",
2963 tmout / HZ, status);
d1adc1bb 2964 return -EBUSY;
1da177e4
LT
2965 }
2966
2967 return 0;
2968}
2969
d4b2bab4
TH
2970/**
2971 * ata_wait_ready - sleep until BSY clears, or timeout
2972 * @ap: port containing status register to be polled
2973 * @deadline: deadline jiffies for the operation
2974 *
2975 * Sleep until ATA Status register bit BSY clears, or timeout
2976 * occurs.
2977 *
2978 * LOCKING:
2979 * Kernel thread context (may sleep).
2980 *
2981 * RETURNS:
2982 * 0 on success, -errno otherwise.
2983 */
2984int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
2985{
2986 unsigned long start = jiffies;
2987 int warned = 0;
2988
2989 while (1) {
2990 u8 status = ata_chk_status(ap);
2991 unsigned long now = jiffies;
2992
2993 if (!(status & ATA_BUSY))
2994 return 0;
fd7fe701 2995 if (!ata_port_online(ap) && status == 0xff)
d4b2bab4
TH
2996 return -ENODEV;
2997 if (time_after(now, deadline))
2998 return -EBUSY;
2999
3000 if (!warned && time_after(now, start + 5 * HZ) &&
3001 (deadline - now > 3 * HZ)) {
3002 ata_port_printk(ap, KERN_WARNING,
3003 "port is slow to respond, please be patient "
3004 "(Status 0x%x)\n", status);
3005 warned = 1;
3006 }
3007
3008 msleep(50);
3009 }
3010}
3011
3012static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3013 unsigned long deadline)
1da177e4
LT
3014{
3015 struct ata_ioports *ioaddr = &ap->ioaddr;
3016 unsigned int dev0 = devmask & (1 << 0);
3017 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3018 int rc, ret = 0;
1da177e4
LT
3019
3020 /* if device 0 was found in ata_devchk, wait for its
3021 * BSY bit to clear
3022 */
d4b2bab4
TH
3023 if (dev0) {
3024 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3025 if (rc) {
3026 if (rc != -ENODEV)
3027 return rc;
3028 ret = rc;
3029 }
d4b2bab4 3030 }
1da177e4 3031
e141d999
TH
3032 /* if device 1 was found in ata_devchk, wait for register
3033 * access briefly, then wait for BSY to clear.
1da177e4 3034 */
e141d999
TH
3035 if (dev1) {
3036 int i;
1da177e4
LT
3037
3038 ap->ops->dev_select(ap, 1);
e141d999
TH
3039
3040 /* Wait for register access. Some ATAPI devices fail
3041 * to set nsect/lbal after reset, so don't waste too
3042 * much time on it. We're gonna wait for !BSY anyway.
3043 */
3044 for (i = 0; i < 2; i++) {
3045 u8 nsect, lbal;
3046
3047 nsect = ioread8(ioaddr->nsect_addr);
3048 lbal = ioread8(ioaddr->lbal_addr);
3049 if ((nsect == 1) && (lbal == 1))
3050 break;
3051 msleep(50); /* give drive a breather */
3052 }
3053
d4b2bab4 3054 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3055 if (rc) {
3056 if (rc != -ENODEV)
3057 return rc;
3058 ret = rc;
3059 }
d4b2bab4 3060 }
1da177e4
LT
3061
3062 /* is all this really necessary? */
3063 ap->ops->dev_select(ap, 0);
3064 if (dev1)
3065 ap->ops->dev_select(ap, 1);
3066 if (dev0)
3067 ap->ops->dev_select(ap, 0);
d4b2bab4 3068
9b89391c 3069 return ret;
1da177e4
LT
3070}
3071
d4b2bab4
TH
3072static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3073 unsigned long deadline)
1da177e4
LT
3074{
3075 struct ata_ioports *ioaddr = &ap->ioaddr;
3076
44877b4e 3077 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3078
3079 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3080 iowrite8(ap->ctl, ioaddr->ctl_addr);
3081 udelay(20); /* FIXME: flush */
3082 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3083 udelay(20); /* FIXME: flush */
3084 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3085
3086 /* spec mandates ">= 2ms" before checking status.
3087 * We wait 150ms, because that was the magic delay used for
3088 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3089 * between when the ATA command register is written, and then
3090 * status is checked. Because waiting for "a while" before
3091 * checking status is fine, post SRST, we perform this magic
3092 * delay here as well.
09c7ad79
AC
3093 *
3094 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3095 */
3096 msleep(150);
3097
2e9edbf8 3098 /* Before we perform post reset processing we want to see if
298a41ca
TH
3099 * the bus shows 0xFF because the odd clown forgets the D7
3100 * pulldown resistor.
3101 */
d1adc1bb 3102 if (ata_check_status(ap) == 0xFF)
9b89391c 3103 return -ENODEV;
09c7ad79 3104
d4b2bab4 3105 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3106}
3107
3108/**
3109 * ata_bus_reset - reset host port and associated ATA channel
3110 * @ap: port to reset
3111 *
3112 * This is typically the first time we actually start issuing
3113 * commands to the ATA channel. We wait for BSY to clear, then
3114 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3115 * result. Determine what devices, if any, are on the channel
3116 * by looking at the device 0/1 error register. Look at the signature
3117 * stored in each device's taskfile registers, to determine if
3118 * the device is ATA or ATAPI.
3119 *
3120 * LOCKING:
0cba632b 3121 * PCI/etc. bus probe sem.
cca3974e 3122 * Obtains host lock.
1da177e4
LT
3123 *
3124 * SIDE EFFECTS:
198e0fed 3125 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3126 */
3127
3128void ata_bus_reset(struct ata_port *ap)
3129{
3130 struct ata_ioports *ioaddr = &ap->ioaddr;
3131 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3132 u8 err;
aec5c3c1 3133 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3134 int rc;
1da177e4 3135
44877b4e 3136 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3137
3138 /* determine if device 0/1 are present */
3139 if (ap->flags & ATA_FLAG_SATA_RESET)
3140 dev0 = 1;
3141 else {
3142 dev0 = ata_devchk(ap, 0);
3143 if (slave_possible)
3144 dev1 = ata_devchk(ap, 1);
3145 }
3146
3147 if (dev0)
3148 devmask |= (1 << 0);
3149 if (dev1)
3150 devmask |= (1 << 1);
3151
3152 /* select device 0 again */
3153 ap->ops->dev_select(ap, 0);
3154
3155 /* issue bus reset */
9b89391c
TH
3156 if (ap->flags & ATA_FLAG_SRST) {
3157 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3158 if (rc && rc != -ENODEV)
aec5c3c1 3159 goto err_out;
9b89391c 3160 }
1da177e4
LT
3161
3162 /*
3163 * determine by signature whether we have ATA or ATAPI devices
3164 */
b4dc7623 3165 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 3166 if ((slave_possible) && (err != 0x81))
b4dc7623 3167 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4 3168
1da177e4
LT
3169 /* is double-select really necessary? */
3170 if (ap->device[1].class != ATA_DEV_NONE)
3171 ap->ops->dev_select(ap, 1);
3172 if (ap->device[0].class != ATA_DEV_NONE)
3173 ap->ops->dev_select(ap, 0);
3174
3175 /* if no devices were detected, disable this port */
3176 if ((ap->device[0].class == ATA_DEV_NONE) &&
3177 (ap->device[1].class == ATA_DEV_NONE))
3178 goto err_out;
3179
3180 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3181 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3182 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3183 }
3184
3185 DPRINTK("EXIT\n");
3186 return;
3187
3188err_out:
f15a1daf 3189 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
3190 ap->ops->port_disable(ap);
3191
3192 DPRINTK("EXIT\n");
3193}
3194
d7bb4cc7
TH
3195/**
3196 * sata_phy_debounce - debounce SATA phy status
3197 * @ap: ATA port to debounce SATA phy status for
3198 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3199 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3200 *
3201 * Make sure SStatus of @ap reaches stable state, determined by
3202 * holding the same value where DET is not 1 for @duration polled
3203 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3204 * beginning of the stable state. Because DET gets stuck at 1 on
3205 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3206 * until timeout then returns 0 if DET is stable at 1.
3207 *
d4b2bab4
TH
3208 * @timeout is further limited by @deadline. The sooner of the
3209 * two is used.
3210 *
d7bb4cc7
TH
3211 * LOCKING:
3212 * Kernel thread context (may sleep)
3213 *
3214 * RETURNS:
3215 * 0 on success, -errno on failure.
3216 */
d4b2bab4
TH
3217int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3218 unsigned long deadline)
7a7921e8 3219{
d7bb4cc7 3220 unsigned long interval_msec = params[0];
d4b2bab4
TH
3221 unsigned long duration = msecs_to_jiffies(params[1]);
3222 unsigned long last_jiffies, t;
d7bb4cc7
TH
3223 u32 last, cur;
3224 int rc;
3225
d4b2bab4
TH
3226 t = jiffies + msecs_to_jiffies(params[2]);
3227 if (time_before(t, deadline))
3228 deadline = t;
3229
d7bb4cc7
TH
3230 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3231 return rc;
3232 cur &= 0xf;
3233
3234 last = cur;
3235 last_jiffies = jiffies;
3236
3237 while (1) {
3238 msleep(interval_msec);
3239 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3240 return rc;
3241 cur &= 0xf;
3242
3243 /* DET stable? */
3244 if (cur == last) {
d4b2bab4 3245 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3246 continue;
3247 if (time_after(jiffies, last_jiffies + duration))
3248 return 0;
3249 continue;
3250 }
3251
3252 /* unstable, start over */
3253 last = cur;
3254 last_jiffies = jiffies;
3255
d4b2bab4
TH
3256 /* check deadline */
3257 if (time_after(jiffies, deadline))
d7bb4cc7
TH
3258 return -EBUSY;
3259 }
3260}
3261
3262/**
3263 * sata_phy_resume - resume SATA phy
3264 * @ap: ATA port to resume SATA phy for
3265 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3266 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3267 *
3268 * Resume SATA phy of @ap and debounce it.
3269 *
3270 * LOCKING:
3271 * Kernel thread context (may sleep)
3272 *
3273 * RETURNS:
3274 * 0 on success, -errno on failure.
3275 */
d4b2bab4
TH
3276int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3277 unsigned long deadline)
d7bb4cc7
TH
3278{
3279 u32 scontrol;
81952c54
TH
3280 int rc;
3281
3282 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3283 return rc;
7a7921e8 3284
852ee16a 3285 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
3286
3287 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3288 return rc;
7a7921e8 3289
d7bb4cc7
TH
3290 /* Some PHYs react badly if SStatus is pounded immediately
3291 * after resuming. Delay 200ms before debouncing.
3292 */
3293 msleep(200);
7a7921e8 3294
d4b2bab4 3295 return sata_phy_debounce(ap, params, deadline);
7a7921e8
TH
3296}
3297
f5914a46
TH
3298/**
3299 * ata_std_prereset - prepare for reset
3300 * @ap: ATA port to be reset
d4b2bab4 3301 * @deadline: deadline jiffies for the operation
f5914a46 3302 *
b8cffc6a
TH
3303 * @ap is about to be reset. Initialize it. Failure from
3304 * prereset makes libata abort whole reset sequence and give up
3305 * that port, so prereset should be best-effort. It does its
3306 * best to prepare for reset sequence but if things go wrong, it
3307 * should just whine, not fail.
f5914a46
TH
3308 *
3309 * LOCKING:
3310 * Kernel thread context (may sleep)
3311 *
3312 * RETURNS:
3313 * 0 on success, -errno otherwise.
3314 */
d4b2bab4 3315int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
f5914a46
TH
3316{
3317 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 3318 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3319 int rc;
3320
31daabda 3321 /* handle link resume */
28324304
TH
3322 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3323 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3324 ehc->i.action |= ATA_EH_HARDRESET;
3325
f5914a46
TH
3326 /* if we're about to do hardreset, nothing more to do */
3327 if (ehc->i.action & ATA_EH_HARDRESET)
3328 return 0;
3329
3330 /* if SATA, resume phy */
a16abc0b 3331 if (ap->flags & ATA_FLAG_SATA) {
d4b2bab4 3332 rc = sata_phy_resume(ap, timing, deadline);
b8cffc6a
TH
3333 /* whine about phy resume failure but proceed */
3334 if (rc && rc != -EOPNOTSUPP)
f5914a46
TH
3335 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3336 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3337 }
3338
3339 /* Wait for !BSY if the controller can wait for the first D2H
3340 * Reg FIS and we don't know that no device is attached.
3341 */
b8cffc6a
TH
3342 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3343 rc = ata_wait_ready(ap, deadline);
6dffaf61 3344 if (rc && rc != -ENODEV) {
b8cffc6a
TH
3345 ata_port_printk(ap, KERN_WARNING, "device not ready "
3346 "(errno=%d), forcing hardreset\n", rc);
3347 ehc->i.action |= ATA_EH_HARDRESET;
3348 }
3349 }
f5914a46
TH
3350
3351 return 0;
3352}
3353
c2bd5804
TH
3354/**
3355 * ata_std_softreset - reset host port via ATA SRST
3356 * @ap: port to reset
c2bd5804 3357 * @classes: resulting classes of attached devices
d4b2bab4 3358 * @deadline: deadline jiffies for the operation
c2bd5804 3359 *
52783c5d 3360 * Reset host port using ATA SRST.
c2bd5804
TH
3361 *
3362 * LOCKING:
3363 * Kernel thread context (may sleep)
3364 *
3365 * RETURNS:
3366 * 0 on success, -errno otherwise.
3367 */
d4b2bab4
TH
3368int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3369 unsigned long deadline)
c2bd5804
TH
3370{
3371 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3372 unsigned int devmask = 0;
3373 int rc;
c2bd5804
TH
3374 u8 err;
3375
3376 DPRINTK("ENTER\n");
3377
81952c54 3378 if (ata_port_offline(ap)) {
3a39746a
TH
3379 classes[0] = ATA_DEV_NONE;
3380 goto out;
3381 }
3382
c2bd5804
TH
3383 /* determine if device 0/1 are present */
3384 if (ata_devchk(ap, 0))
3385 devmask |= (1 << 0);
3386 if (slave_possible && ata_devchk(ap, 1))
3387 devmask |= (1 << 1);
3388
c2bd5804
TH
3389 /* select device 0 again */
3390 ap->ops->dev_select(ap, 0);
3391
3392 /* issue bus reset */
3393 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3394 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c
TH
3395 /* if link is occupied, -ENODEV too is an error */
3396 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
d4b2bab4
TH
3397 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3398 return rc;
c2bd5804
TH
3399 }
3400
3401 /* determine by signature whether we have ATA or ATAPI devices */
3402 classes[0] = ata_dev_try_classify(ap, 0, &err);
3403 if (slave_possible && err != 0x81)
3404 classes[1] = ata_dev_try_classify(ap, 1, &err);
3405
3a39746a 3406 out:
c2bd5804
TH
3407 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3408 return 0;
3409}
3410
3411/**
b6103f6d 3412 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3413 * @ap: port to reset
b6103f6d 3414 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3415 * @deadline: deadline jiffies for the operation
c2bd5804
TH
3416 *
3417 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3418 *
3419 * LOCKING:
3420 * Kernel thread context (may sleep)
3421 *
3422 * RETURNS:
3423 * 0 on success, -errno otherwise.
3424 */
d4b2bab4
TH
3425int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3426 unsigned long deadline)
c2bd5804 3427{
852ee16a 3428 u32 scontrol;
81952c54 3429 int rc;
852ee16a 3430
c2bd5804
TH
3431 DPRINTK("ENTER\n");
3432
3c567b7d 3433 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3434 /* SATA spec says nothing about how to reconfigure
3435 * spd. To be on the safe side, turn off phy during
3436 * reconfiguration. This works for at least ICH7 AHCI
3437 * and Sil3124.
3438 */
81952c54 3439 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3440 goto out;
81952c54 3441
a34b6fc0 3442 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3443
3444 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3445 goto out;
1c3fae4d 3446
3c567b7d 3447 sata_set_spd(ap);
1c3fae4d
TH
3448 }
3449
3450 /* issue phy wake/reset */
81952c54 3451 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3452 goto out;
81952c54 3453
852ee16a 3454 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3455
3456 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3457 goto out;
c2bd5804 3458
1c3fae4d 3459 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3460 * 10.4.2 says at least 1 ms.
3461 */
3462 msleep(1);
3463
1c3fae4d 3464 /* bring phy back */
d4b2bab4 3465 rc = sata_phy_resume(ap, timing, deadline);
b6103f6d
TH
3466 out:
3467 DPRINTK("EXIT, rc=%d\n", rc);
3468 return rc;
3469}
3470
3471/**
3472 * sata_std_hardreset - reset host port via SATA phy reset
3473 * @ap: port to reset
3474 * @class: resulting class of attached device
d4b2bab4 3475 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3476 *
3477 * SATA phy-reset host port using DET bits of SControl register,
3478 * wait for !BSY and classify the attached device.
3479 *
3480 * LOCKING:
3481 * Kernel thread context (may sleep)
3482 *
3483 * RETURNS:
3484 * 0 on success, -errno otherwise.
3485 */
d4b2bab4
TH
3486int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3487 unsigned long deadline)
b6103f6d
TH
3488{
3489 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3490 int rc;
3491
3492 DPRINTK("ENTER\n");
3493
3494 /* do hardreset */
d4b2bab4 3495 rc = sata_port_hardreset(ap, timing, deadline);
b6103f6d
TH
3496 if (rc) {
3497 ata_port_printk(ap, KERN_ERR,
3498 "COMRESET failed (errno=%d)\n", rc);
3499 return rc;
3500 }
c2bd5804 3501
c2bd5804 3502 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3503 if (ata_port_offline(ap)) {
c2bd5804
TH
3504 *class = ATA_DEV_NONE;
3505 DPRINTK("EXIT, link offline\n");
3506 return 0;
3507 }
3508
34fee227
TH
3509 /* wait a while before checking status, see SRST for more info */
3510 msleep(150);
3511
d4b2bab4 3512 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3513 /* link occupied, -ENODEV too is an error */
3514 if (rc) {
f15a1daf 3515 ata_port_printk(ap, KERN_ERR,
d4b2bab4
TH
3516 "COMRESET failed (errno=%d)\n", rc);
3517 return rc;
c2bd5804
TH
3518 }
3519
3a39746a
TH
3520 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3521
c2bd5804
TH
3522 *class = ata_dev_try_classify(ap, 0, NULL);
3523
3524 DPRINTK("EXIT, class=%u\n", *class);
3525 return 0;
3526}
3527
3528/**
3529 * ata_std_postreset - standard postreset callback
3530 * @ap: the target ata_port
3531 * @classes: classes of attached devices
3532 *
3533 * This function is invoked after a successful reset. Note that
3534 * the device might have been reset more than once using
3535 * different reset methods before postreset is invoked.
c2bd5804 3536 *
c2bd5804
TH
3537 * LOCKING:
3538 * Kernel thread context (may sleep)
3539 */
3540void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3541{
dc2b3515
TH
3542 u32 serror;
3543
c2bd5804
TH
3544 DPRINTK("ENTER\n");
3545
c2bd5804 3546 /* print link status */
81952c54 3547 sata_print_link_status(ap);
c2bd5804 3548
dc2b3515
TH
3549 /* clear SError */
3550 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3551 sata_scr_write(ap, SCR_ERROR, serror);
3552
c2bd5804
TH
3553 /* is double-select really necessary? */
3554 if (classes[0] != ATA_DEV_NONE)
3555 ap->ops->dev_select(ap, 1);
3556 if (classes[1] != ATA_DEV_NONE)
3557 ap->ops->dev_select(ap, 0);
3558
3a39746a
TH
3559 /* bail out if no device is present */
3560 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3561 DPRINTK("EXIT, no device\n");
3562 return;
3563 }
3564
3565 /* set up device control */
0d5ff566
TH
3566 if (ap->ioaddr.ctl_addr)
3567 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3568
3569 DPRINTK("EXIT\n");
3570}
3571
623a3128
TH
3572/**
3573 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3574 * @dev: device to compare against
3575 * @new_class: class of the new device
3576 * @new_id: IDENTIFY page of the new device
3577 *
3578 * Compare @new_class and @new_id against @dev and determine
3579 * whether @dev is the device indicated by @new_class and
3580 * @new_id.
3581 *
3582 * LOCKING:
3583 * None.
3584 *
3585 * RETURNS:
3586 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3587 */
3373efd8
TH
3588static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3589 const u16 *new_id)
623a3128
TH
3590{
3591 const u16 *old_id = dev->id;
a0cf733b
TH
3592 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3593 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3594
3595 if (dev->class != new_class) {
f15a1daf
TH
3596 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3597 dev->class, new_class);
623a3128
TH
3598 return 0;
3599 }
3600
a0cf733b
TH
3601 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3602 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3603 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3604 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3605
3606 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3607 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3608 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3609 return 0;
3610 }
3611
3612 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3613 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3614 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3615 return 0;
3616 }
3617
623a3128
TH
3618 return 1;
3619}
3620
3621/**
fe30911b 3622 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3623 * @dev: target ATA device
bff04647 3624 * @readid_flags: read ID flags
623a3128
TH
3625 *
3626 * Re-read IDENTIFY page and make sure @dev is still attached to
3627 * the port.
3628 *
3629 * LOCKING:
3630 * Kernel thread context (may sleep)
3631 *
3632 * RETURNS:
3633 * 0 on success, negative errno otherwise
3634 */
fe30911b 3635int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3636{
5eb45c02 3637 unsigned int class = dev->class;
f15a1daf 3638 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3639 int rc;
3640
fe635c7e 3641 /* read ID data */
bff04647 3642 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3643 if (rc)
fe30911b 3644 return rc;
623a3128
TH
3645
3646 /* is the device still there? */
fe30911b
TH
3647 if (!ata_dev_same_device(dev, class, id))
3648 return -ENODEV;
623a3128 3649
fe635c7e 3650 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3651 return 0;
3652}
3653
3654/**
3655 * ata_dev_revalidate - Revalidate ATA device
3656 * @dev: device to revalidate
3657 * @readid_flags: read ID flags
3658 *
3659 * Re-read IDENTIFY page, make sure @dev is still attached to the
3660 * port and reconfigure it according to the new IDENTIFY page.
3661 *
3662 * LOCKING:
3663 * Kernel thread context (may sleep)
3664 *
3665 * RETURNS:
3666 * 0 on success, negative errno otherwise
3667 */
3668int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3669{
6ddcd3b0 3670 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3671 int rc;
3672
3673 if (!ata_dev_enabled(dev))
3674 return -ENODEV;
3675
3676 /* re-read ID */
3677 rc = ata_dev_reread_id(dev, readid_flags);
3678 if (rc)
3679 goto fail;
623a3128
TH
3680
3681 /* configure device according to the new ID */
efdaedc4 3682 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3683 if (rc)
3684 goto fail;
3685
3686 /* verify n_sectors hasn't changed */
3687 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3688 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3689 "%llu != %llu\n",
3690 (unsigned long long)n_sectors,
3691 (unsigned long long)dev->n_sectors);
3692 rc = -ENODEV;
3693 goto fail;
3694 }
3695
3696 return 0;
623a3128
TH
3697
3698 fail:
f15a1daf 3699 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3700 return rc;
3701}
3702
6919a0a6
AC
3703struct ata_blacklist_entry {
3704 const char *model_num;
3705 const char *model_rev;
3706 unsigned long horkage;
3707};
3708
3709static const struct ata_blacklist_entry ata_device_blacklist [] = {
3710 /* Devices with DMA related problems under Linux */
3711 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3712 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3713 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3714 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3715 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3716 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3717 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3718 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3719 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3720 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3721 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3722 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3723 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3724 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3725 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3726 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3727 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3728 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3729 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3730 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3731 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3732 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3733 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3734 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3735 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3736 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3737 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3738 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3739 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
39f19886 3740 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
5acd50f6 3741 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
39ce7128
TH
3742 { "IOMEGA ZIP 250 ATAPI Floppy",
3743 NULL, ATA_HORKAGE_NODMA },
6919a0a6 3744
18d6e9d5 3745 /* Weird ATAPI devices */
40a1d531 3746 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 3747
6919a0a6
AC
3748 /* Devices we expect to fail diagnostics */
3749
3750 /* Devices where NCQ should be avoided */
3751 /* NCQ is slow */
3752 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3753 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3754 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30
PR
3755 /* NCQ is broken */
3756 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
e8361fc4 3757 { "Maxtor 6B200M0", "BANC1BM0", ATA_HORKAGE_NONCQ },
471e44b2 3758 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
2f8d90ab
PB
3759 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
3760 ATA_HORKAGE_NONCQ },
96442925
JA
3761 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3762 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
36e337d0
RH
3763 /* Blacklist entries taken from Silicon Image 3124/3132
3764 Windows driver .inf file - also several Linux problem reports */
3765 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3766 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3767 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
3768 /* Drives which do spurious command completion */
3769 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 3770 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
e14cbfa6 3771 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
2f8fcebb 3772 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
a520f261 3773 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3fb6589c 3774 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
6919a0a6
AC
3775
3776 /* Devices with NCQ limits */
3777
3778 /* End Marker */
3779 { }
1da177e4 3780};
2e9edbf8 3781
75683fe7 3782static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 3783{
8bfa79fc
TH
3784 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3785 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3786 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3787
8bfa79fc
TH
3788 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3789 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3790
6919a0a6 3791 while (ad->model_num) {
8bfa79fc 3792 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3793 if (ad->model_rev == NULL)
3794 return ad->horkage;
8bfa79fc 3795 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3796 return ad->horkage;
f4b15fef 3797 }
6919a0a6 3798 ad++;
f4b15fef 3799 }
1da177e4
LT
3800 return 0;
3801}
3802
6919a0a6
AC
3803static int ata_dma_blacklisted(const struct ata_device *dev)
3804{
3805 /* We don't support polling DMA.
3806 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3807 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3808 */
3809 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3810 (dev->flags & ATA_DFLAG_CDB_INTR))
3811 return 1;
75683fe7 3812 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
3813}
3814
a6d5a51c
TH
3815/**
3816 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3817 * @dev: Device to compute xfermask for
3818 *
acf356b1
TH
3819 * Compute supported xfermask of @dev and store it in
3820 * dev->*_mask. This function is responsible for applying all
3821 * known limits including host controller limits, device
3822 * blacklist, etc...
a6d5a51c
TH
3823 *
3824 * LOCKING:
3825 * None.
a6d5a51c 3826 */
3373efd8 3827static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3828{
3373efd8 3829 struct ata_port *ap = dev->ap;
cca3974e 3830 struct ata_host *host = ap->host;
a6d5a51c 3831 unsigned long xfer_mask;
1da177e4 3832
37deecb5 3833 /* controller modes available */
565083e1
TH
3834 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3835 ap->mwdma_mask, ap->udma_mask);
3836
8343f889 3837 /* drive modes available */
37deecb5
TH
3838 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3839 dev->mwdma_mask, dev->udma_mask);
3840 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3841
b352e57d
AC
3842 /*
3843 * CFA Advanced TrueIDE timings are not allowed on a shared
3844 * cable
3845 */
3846 if (ata_dev_pair(dev)) {
3847 /* No PIO5 or PIO6 */
3848 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3849 /* No MWDMA3 or MWDMA 4 */
3850 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3851 }
3852
37deecb5
TH
3853 if (ata_dma_blacklisted(dev)) {
3854 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3855 ata_dev_printk(dev, KERN_WARNING,
3856 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3857 }
a6d5a51c 3858
14d66ab7
PV
3859 if ((host->flags & ATA_HOST_SIMPLEX) &&
3860 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3861 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3862 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3863 "other device, disabling DMA\n");
5444a6f4 3864 }
565083e1 3865
e424675f
JG
3866 if (ap->flags & ATA_FLAG_NO_IORDY)
3867 xfer_mask &= ata_pio_mask_no_iordy(dev);
3868
5444a6f4 3869 if (ap->ops->mode_filter)
a76b62ca 3870 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3871
8343f889
RH
3872 /* Apply cable rule here. Don't apply it early because when
3873 * we handle hot plug the cable type can itself change.
3874 * Check this last so that we know if the transfer rate was
3875 * solely limited by the cable.
3876 * Unknown or 80 wire cables reported host side are checked
3877 * drive side as well. Cases where we know a 40wire cable
3878 * is used safely for 80 are not checked here.
3879 */
3880 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3881 /* UDMA/44 or higher would be available */
3882 if((ap->cbl == ATA_CBL_PATA40) ||
3883 (ata_drive_40wire(dev->id) &&
3884 (ap->cbl == ATA_CBL_PATA_UNK ||
3885 ap->cbl == ATA_CBL_PATA80))) {
3886 ata_dev_printk(dev, KERN_WARNING,
3887 "limited to UDMA/33 due to 40-wire cable\n");
3888 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3889 }
3890
565083e1
TH
3891 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3892 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3893}
3894
1da177e4
LT
3895/**
3896 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3897 * @dev: Device to which command will be sent
3898 *
780a87f7
JG
3899 * Issue SET FEATURES - XFER MODE command to device @dev
3900 * on port @ap.
3901 *
1da177e4 3902 * LOCKING:
0cba632b 3903 * PCI/etc. bus probe sem.
83206a29
TH
3904 *
3905 * RETURNS:
3906 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3907 */
3908
3373efd8 3909static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3910{
a0123703 3911 struct ata_taskfile tf;
83206a29 3912 unsigned int err_mask;
1da177e4
LT
3913
3914 /* set up set-features taskfile */
3915 DPRINTK("set features - xfer mode\n");
3916
464cf177
TH
3917 /* Some controllers and ATAPI devices show flaky interrupt
3918 * behavior after setting xfer mode. Use polling instead.
3919 */
3373efd8 3920 ata_tf_init(dev, &tf);
a0123703
TH
3921 tf.command = ATA_CMD_SET_FEATURES;
3922 tf.feature = SETFEATURES_XFER;
464cf177 3923 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
3924 tf.protocol = ATA_PROT_NODATA;
3925 tf.nsect = dev->xfer_mode;
1da177e4 3926
3373efd8 3927 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3928
83206a29
TH
3929 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3930 return err_mask;
1da177e4
LT
3931}
3932
8bf62ece
AL
3933/**
3934 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3935 * @dev: Device to which command will be sent
e2a7f77a
RD
3936 * @heads: Number of heads (taskfile parameter)
3937 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3938 *
3939 * LOCKING:
6aff8f1f
TH
3940 * Kernel thread context (may sleep)
3941 *
3942 * RETURNS:
3943 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3944 */
3373efd8
TH
3945static unsigned int ata_dev_init_params(struct ata_device *dev,
3946 u16 heads, u16 sectors)
8bf62ece 3947{
a0123703 3948 struct ata_taskfile tf;
6aff8f1f 3949 unsigned int err_mask;
8bf62ece
AL
3950
3951 /* Number of sectors per track 1-255. Number of heads 1-16 */
3952 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3953 return AC_ERR_INVALID;
8bf62ece
AL
3954
3955 /* set up init dev params taskfile */
3956 DPRINTK("init dev params \n");
3957
3373efd8 3958 ata_tf_init(dev, &tf);
a0123703
TH
3959 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3960 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3961 tf.protocol = ATA_PROT_NODATA;
3962 tf.nsect = sectors;
3963 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3964
3373efd8 3965 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3966
6aff8f1f
TH
3967 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3968 return err_mask;
8bf62ece
AL
3969}
3970
1da177e4 3971/**
0cba632b
JG
3972 * ata_sg_clean - Unmap DMA memory associated with command
3973 * @qc: Command containing DMA memory to be released
3974 *
3975 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3976 *
3977 * LOCKING:
cca3974e 3978 * spin_lock_irqsave(host lock)
1da177e4 3979 */
70e6ad0c 3980void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
3981{
3982 struct ata_port *ap = qc->ap;
cedc9a47 3983 struct scatterlist *sg = qc->__sg;
1da177e4 3984 int dir = qc->dma_dir;
cedc9a47 3985 void *pad_buf = NULL;
1da177e4 3986
a4631474
TH
3987 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3988 WARN_ON(sg == NULL);
1da177e4
LT
3989
3990 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3991 WARN_ON(qc->n_elem > 1);
1da177e4 3992
2c13b7ce 3993 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3994
cedc9a47
JG
3995 /* if we padded the buffer out to 32-bit bound, and data
3996 * xfer direction is from-device, we must copy from the
3997 * pad buffer back into the supplied buffer
3998 */
3999 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4000 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4001
4002 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4003 if (qc->n_elem)
2f1f610b 4004 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
4005 /* restore last sg */
4006 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4007 if (pad_buf) {
4008 struct scatterlist *psg = &qc->pad_sgent;
4009 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4010 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4011 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4012 }
4013 } else {
2e242fa9 4014 if (qc->n_elem)
2f1f610b 4015 dma_unmap_single(ap->dev,
e1410f2d
JG
4016 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4017 dir);
cedc9a47
JG
4018 /* restore sg */
4019 sg->length += qc->pad_len;
4020 if (pad_buf)
4021 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4022 pad_buf, qc->pad_len);
4023 }
1da177e4
LT
4024
4025 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4026 qc->__sg = NULL;
1da177e4
LT
4027}
4028
4029/**
4030 * ata_fill_sg - Fill PCI IDE PRD table
4031 * @qc: Metadata associated with taskfile to be transferred
4032 *
780a87f7
JG
4033 * Fill PCI IDE PRD (scatter-gather) table with segments
4034 * associated with the current disk command.
4035 *
1da177e4 4036 * LOCKING:
cca3974e 4037 * spin_lock_irqsave(host lock)
1da177e4
LT
4038 *
4039 */
4040static void ata_fill_sg(struct ata_queued_cmd *qc)
4041{
1da177e4 4042 struct ata_port *ap = qc->ap;
cedc9a47
JG
4043 struct scatterlist *sg;
4044 unsigned int idx;
1da177e4 4045
a4631474 4046 WARN_ON(qc->__sg == NULL);
f131883e 4047 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4048
4049 idx = 0;
cedc9a47 4050 ata_for_each_sg(sg, qc) {
1da177e4
LT
4051 u32 addr, offset;
4052 u32 sg_len, len;
4053
4054 /* determine if physical DMA addr spans 64K boundary.
4055 * Note h/w doesn't support 64-bit, so we unconditionally
4056 * truncate dma_addr_t to u32.
4057 */
4058 addr = (u32) sg_dma_address(sg);
4059 sg_len = sg_dma_len(sg);
4060
4061 while (sg_len) {
4062 offset = addr & 0xffff;
4063 len = sg_len;
4064 if ((offset + sg_len) > 0x10000)
4065 len = 0x10000 - offset;
4066
4067 ap->prd[idx].addr = cpu_to_le32(addr);
4068 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4069 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4070
4071 idx++;
4072 sg_len -= len;
4073 addr += len;
4074 }
4075 }
4076
4077 if (idx)
4078 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4079}
b9a4197e 4080
d26fc955
AC
4081/**
4082 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4083 * @qc: Metadata associated with taskfile to be transferred
4084 *
4085 * Fill PCI IDE PRD (scatter-gather) table with segments
4086 * associated with the current disk command. Perform the fill
4087 * so that we avoid writing any length 64K records for
4088 * controllers that don't follow the spec.
4089 *
4090 * LOCKING:
4091 * spin_lock_irqsave(host lock)
4092 *
4093 */
4094static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4095{
4096 struct ata_port *ap = qc->ap;
4097 struct scatterlist *sg;
4098 unsigned int idx;
4099
4100 WARN_ON(qc->__sg == NULL);
4101 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4102
4103 idx = 0;
4104 ata_for_each_sg(sg, qc) {
4105 u32 addr, offset;
4106 u32 sg_len, len, blen;
4107
4108 /* determine if physical DMA addr spans 64K boundary.
4109 * Note h/w doesn't support 64-bit, so we unconditionally
4110 * truncate dma_addr_t to u32.
4111 */
4112 addr = (u32) sg_dma_address(sg);
4113 sg_len = sg_dma_len(sg);
4114
4115 while (sg_len) {
4116 offset = addr & 0xffff;
4117 len = sg_len;
4118 if ((offset + sg_len) > 0x10000)
4119 len = 0x10000 - offset;
4120
4121 blen = len & 0xffff;
4122 ap->prd[idx].addr = cpu_to_le32(addr);
4123 if (blen == 0) {
4124 /* Some PATA chipsets like the CS5530 can't
4125 cope with 0x0000 meaning 64K as the spec says */
4126 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4127 blen = 0x8000;
4128 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4129 }
4130 ap->prd[idx].flags_len = cpu_to_le32(blen);
4131 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4132
4133 idx++;
4134 sg_len -= len;
4135 addr += len;
4136 }
4137 }
4138
4139 if (idx)
4140 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4141}
4142
1da177e4
LT
4143/**
4144 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4145 * @qc: Metadata associated with taskfile to check
4146 *
780a87f7
JG
4147 * Allow low-level driver to filter ATA PACKET commands, returning
4148 * a status indicating whether or not it is OK to use DMA for the
4149 * supplied PACKET command.
4150 *
1da177e4 4151 * LOCKING:
cca3974e 4152 * spin_lock_irqsave(host lock)
0cba632b 4153 *
1da177e4
LT
4154 * RETURNS: 0 when ATAPI DMA can be used
4155 * nonzero otherwise
4156 */
4157int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4158{
4159 struct ata_port *ap = qc->ap;
b9a4197e
TH
4160
4161 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4162 * few ATAPI devices choke on such DMA requests.
4163 */
4164 if (unlikely(qc->nbytes & 15))
4165 return 1;
6f23a31d 4166
1da177e4 4167 if (ap->ops->check_atapi_dma)
b9a4197e 4168 return ap->ops->check_atapi_dma(qc);
1da177e4 4169
b9a4197e 4170 return 0;
1da177e4 4171}
b9a4197e 4172
1da177e4
LT
4173/**
4174 * ata_qc_prep - Prepare taskfile for submission
4175 * @qc: Metadata associated with taskfile to be prepared
4176 *
780a87f7
JG
4177 * Prepare ATA taskfile for submission.
4178 *
1da177e4 4179 * LOCKING:
cca3974e 4180 * spin_lock_irqsave(host lock)
1da177e4
LT
4181 */
4182void ata_qc_prep(struct ata_queued_cmd *qc)
4183{
4184 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4185 return;
4186
4187 ata_fill_sg(qc);
4188}
4189
d26fc955
AC
4190/**
4191 * ata_dumb_qc_prep - Prepare taskfile for submission
4192 * @qc: Metadata associated with taskfile to be prepared
4193 *
4194 * Prepare ATA taskfile for submission.
4195 *
4196 * LOCKING:
4197 * spin_lock_irqsave(host lock)
4198 */
4199void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4200{
4201 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4202 return;
4203
4204 ata_fill_sg_dumb(qc);
4205}
4206
e46834cd
BK
4207void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4208
0cba632b
JG
4209/**
4210 * ata_sg_init_one - Associate command with memory buffer
4211 * @qc: Command to be associated
4212 * @buf: Memory buffer
4213 * @buflen: Length of memory buffer, in bytes.
4214 *
4215 * Initialize the data-related elements of queued_cmd @qc
4216 * to point to a single memory buffer, @buf of byte length @buflen.
4217 *
4218 * LOCKING:
cca3974e 4219 * spin_lock_irqsave(host lock)
0cba632b
JG
4220 */
4221
1da177e4
LT
4222void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4223{
1da177e4
LT
4224 qc->flags |= ATA_QCFLAG_SINGLE;
4225
cedc9a47 4226 qc->__sg = &qc->sgent;
1da177e4 4227 qc->n_elem = 1;
cedc9a47 4228 qc->orig_n_elem = 1;
1da177e4 4229 qc->buf_virt = buf;
233277ca 4230 qc->nbytes = buflen;
1da177e4 4231
61c0596c 4232 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4233}
4234
0cba632b
JG
4235/**
4236 * ata_sg_init - Associate command with scatter-gather table.
4237 * @qc: Command to be associated
4238 * @sg: Scatter-gather table.
4239 * @n_elem: Number of elements in s/g table.
4240 *
4241 * Initialize the data-related elements of queued_cmd @qc
4242 * to point to a scatter-gather table @sg, containing @n_elem
4243 * elements.
4244 *
4245 * LOCKING:
cca3974e 4246 * spin_lock_irqsave(host lock)
0cba632b
JG
4247 */
4248
1da177e4
LT
4249void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4250 unsigned int n_elem)
4251{
4252 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4253 qc->__sg = sg;
1da177e4 4254 qc->n_elem = n_elem;
cedc9a47 4255 qc->orig_n_elem = n_elem;
1da177e4
LT
4256}
4257
4258/**
0cba632b
JG
4259 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4260 * @qc: Command with memory buffer to be mapped.
4261 *
4262 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4263 *
4264 * LOCKING:
cca3974e 4265 * spin_lock_irqsave(host lock)
1da177e4
LT
4266 *
4267 * RETURNS:
0cba632b 4268 * Zero on success, negative on error.
1da177e4
LT
4269 */
4270
4271static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4272{
4273 struct ata_port *ap = qc->ap;
4274 int dir = qc->dma_dir;
cedc9a47 4275 struct scatterlist *sg = qc->__sg;
1da177e4 4276 dma_addr_t dma_address;
2e242fa9 4277 int trim_sg = 0;
1da177e4 4278
cedc9a47
JG
4279 /* we must lengthen transfers to end on a 32-bit boundary */
4280 qc->pad_len = sg->length & 3;
4281 if (qc->pad_len) {
4282 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4283 struct scatterlist *psg = &qc->pad_sgent;
4284
a4631474 4285 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4286
4287 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4288
4289 if (qc->tf.flags & ATA_TFLAG_WRITE)
4290 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4291 qc->pad_len);
4292
4293 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4294 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4295 /* trim sg */
4296 sg->length -= qc->pad_len;
2e242fa9
TH
4297 if (sg->length == 0)
4298 trim_sg = 1;
cedc9a47
JG
4299
4300 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4301 sg->length, qc->pad_len);
4302 }
4303
2e242fa9
TH
4304 if (trim_sg) {
4305 qc->n_elem--;
e1410f2d
JG
4306 goto skip_map;
4307 }
4308
2f1f610b 4309 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4310 sg->length, dir);
537a95d9
TH
4311 if (dma_mapping_error(dma_address)) {
4312 /* restore sg */
4313 sg->length += qc->pad_len;
1da177e4 4314 return -1;
537a95d9 4315 }
1da177e4
LT
4316
4317 sg_dma_address(sg) = dma_address;
32529e01 4318 sg_dma_len(sg) = sg->length;
1da177e4 4319
2e242fa9 4320skip_map:
1da177e4
LT
4321 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4322 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4323
4324 return 0;
4325}
4326
4327/**
0cba632b
JG
4328 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4329 * @qc: Command with scatter-gather table to be mapped.
4330 *
4331 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4332 *
4333 * LOCKING:
cca3974e 4334 * spin_lock_irqsave(host lock)
1da177e4
LT
4335 *
4336 * RETURNS:
0cba632b 4337 * Zero on success, negative on error.
1da177e4
LT
4338 *
4339 */
4340
4341static int ata_sg_setup(struct ata_queued_cmd *qc)
4342{
4343 struct ata_port *ap = qc->ap;
cedc9a47
JG
4344 struct scatterlist *sg = qc->__sg;
4345 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4346 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4347
44877b4e 4348 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4349 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4350
cedc9a47
JG
4351 /* we must lengthen transfers to end on a 32-bit boundary */
4352 qc->pad_len = lsg->length & 3;
4353 if (qc->pad_len) {
4354 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4355 struct scatterlist *psg = &qc->pad_sgent;
4356 unsigned int offset;
4357
a4631474 4358 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4359
4360 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4361
4362 /*
4363 * psg->page/offset are used to copy to-be-written
4364 * data in this function or read data in ata_sg_clean.
4365 */
4366 offset = lsg->offset + lsg->length - qc->pad_len;
4367 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4368 psg->offset = offset_in_page(offset);
4369
4370 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4371 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4372 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4373 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4374 }
4375
4376 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4377 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4378 /* trim last sg */
4379 lsg->length -= qc->pad_len;
e1410f2d
JG
4380 if (lsg->length == 0)
4381 trim_sg = 1;
cedc9a47
JG
4382
4383 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4384 qc->n_elem - 1, lsg->length, qc->pad_len);
4385 }
4386
e1410f2d
JG
4387 pre_n_elem = qc->n_elem;
4388 if (trim_sg && pre_n_elem)
4389 pre_n_elem--;
4390
4391 if (!pre_n_elem) {
4392 n_elem = 0;
4393 goto skip_map;
4394 }
4395
1da177e4 4396 dir = qc->dma_dir;
2f1f610b 4397 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4398 if (n_elem < 1) {
4399 /* restore last sg */
4400 lsg->length += qc->pad_len;
1da177e4 4401 return -1;
537a95d9 4402 }
1da177e4
LT
4403
4404 DPRINTK("%d sg elements mapped\n", n_elem);
4405
e1410f2d 4406skip_map:
1da177e4
LT
4407 qc->n_elem = n_elem;
4408
4409 return 0;
4410}
4411
0baab86b 4412/**
c893a3ae 4413 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4414 * @buf: Buffer to swap
4415 * @buf_words: Number of 16-bit words in buffer.
4416 *
4417 * Swap halves of 16-bit words if needed to convert from
4418 * little-endian byte order to native cpu byte order, or
4419 * vice-versa.
4420 *
4421 * LOCKING:
6f0ef4fa 4422 * Inherited from caller.
0baab86b 4423 */
1da177e4
LT
4424void swap_buf_le16(u16 *buf, unsigned int buf_words)
4425{
4426#ifdef __BIG_ENDIAN
4427 unsigned int i;
4428
4429 for (i = 0; i < buf_words; i++)
4430 buf[i] = le16_to_cpu(buf[i]);
4431#endif /* __BIG_ENDIAN */
4432}
4433
6ae4cfb5 4434/**
0d5ff566 4435 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4436 * @adev: device to target
6ae4cfb5
AL
4437 * @buf: data buffer
4438 * @buflen: buffer length
344babaa 4439 * @write_data: read/write
6ae4cfb5
AL
4440 *
4441 * Transfer data from/to the device data register by PIO.
4442 *
4443 * LOCKING:
4444 * Inherited from caller.
6ae4cfb5 4445 */
0d5ff566
TH
4446void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4447 unsigned int buflen, int write_data)
1da177e4 4448{
a6b2c5d4 4449 struct ata_port *ap = adev->ap;
6ae4cfb5 4450 unsigned int words = buflen >> 1;
1da177e4 4451
6ae4cfb5 4452 /* Transfer multiple of 2 bytes */
1da177e4 4453 if (write_data)
0d5ff566 4454 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4455 else
0d5ff566 4456 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4457
4458 /* Transfer trailing 1 byte, if any. */
4459 if (unlikely(buflen & 0x01)) {
4460 u16 align_buf[1] = { 0 };
4461 unsigned char *trailing_buf = buf + buflen - 1;
4462
4463 if (write_data) {
4464 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4465 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4466 } else {
0d5ff566 4467 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4468 memcpy(trailing_buf, align_buf, 1);
4469 }
4470 }
1da177e4
LT
4471}
4472
75e99585 4473/**
0d5ff566 4474 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4475 * @adev: device to target
4476 * @buf: data buffer
4477 * @buflen: buffer length
4478 * @write_data: read/write
4479 *
88574551 4480 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4481 * transfer with interrupts disabled.
4482 *
4483 * LOCKING:
4484 * Inherited from caller.
4485 */
0d5ff566
TH
4486void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4487 unsigned int buflen, int write_data)
75e99585
AC
4488{
4489 unsigned long flags;
4490 local_irq_save(flags);
0d5ff566 4491 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4492 local_irq_restore(flags);
4493}
4494
4495
6ae4cfb5 4496/**
5a5dbd18 4497 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4498 * @qc: Command on going
4499 *
5a5dbd18 4500 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4501 *
4502 * LOCKING:
4503 * Inherited from caller.
4504 */
4505
1da177e4
LT
4506static void ata_pio_sector(struct ata_queued_cmd *qc)
4507{
4508 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4509 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4510 struct ata_port *ap = qc->ap;
4511 struct page *page;
4512 unsigned int offset;
4513 unsigned char *buf;
4514
5a5dbd18 4515 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4516 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4517
4518 page = sg[qc->cursg].page;
726f0785 4519 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4520
4521 /* get the current page and offset */
4522 page = nth_page(page, (offset >> PAGE_SHIFT));
4523 offset %= PAGE_SIZE;
4524
1da177e4
LT
4525 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4526
91b8b313
AL
4527 if (PageHighMem(page)) {
4528 unsigned long flags;
4529
a6b2c5d4 4530 /* FIXME: use a bounce buffer */
91b8b313
AL
4531 local_irq_save(flags);
4532 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4533
91b8b313 4534 /* do the actual data transfer */
5a5dbd18 4535 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4536
91b8b313
AL
4537 kunmap_atomic(buf, KM_IRQ0);
4538 local_irq_restore(flags);
4539 } else {
4540 buf = page_address(page);
5a5dbd18 4541 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4542 }
1da177e4 4543
5a5dbd18
ML
4544 qc->curbytes += qc->sect_size;
4545 qc->cursg_ofs += qc->sect_size;
1da177e4 4546
726f0785 4547 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4548 qc->cursg++;
4549 qc->cursg_ofs = 0;
4550 }
1da177e4 4551}
1da177e4 4552
07f6f7d0 4553/**
5a5dbd18 4554 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4555 * @qc: Command on going
4556 *
5a5dbd18 4557 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4558 * ATA device for the DRQ request.
4559 *
4560 * LOCKING:
4561 * Inherited from caller.
4562 */
1da177e4 4563
07f6f7d0
AL
4564static void ata_pio_sectors(struct ata_queued_cmd *qc)
4565{
4566 if (is_multi_taskfile(&qc->tf)) {
4567 /* READ/WRITE MULTIPLE */
4568 unsigned int nsect;
4569
587005de 4570 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4571
5a5dbd18 4572 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4573 qc->dev->multi_count);
07f6f7d0
AL
4574 while (nsect--)
4575 ata_pio_sector(qc);
4576 } else
4577 ata_pio_sector(qc);
4578}
4579
c71c1857
AL
4580/**
4581 * atapi_send_cdb - Write CDB bytes to hardware
4582 * @ap: Port to which ATAPI device is attached.
4583 * @qc: Taskfile currently active
4584 *
4585 * When device has indicated its readiness to accept
4586 * a CDB, this function is called. Send the CDB.
4587 *
4588 * LOCKING:
4589 * caller.
4590 */
4591
4592static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4593{
4594 /* send SCSI cdb */
4595 DPRINTK("send cdb\n");
db024d53 4596 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4597
a6b2c5d4 4598 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4599 ata_altstatus(ap); /* flush */
4600
4601 switch (qc->tf.protocol) {
4602 case ATA_PROT_ATAPI:
4603 ap->hsm_task_state = HSM_ST;
4604 break;
4605 case ATA_PROT_ATAPI_NODATA:
4606 ap->hsm_task_state = HSM_ST_LAST;
4607 break;
4608 case ATA_PROT_ATAPI_DMA:
4609 ap->hsm_task_state = HSM_ST_LAST;
4610 /* initiate bmdma */
4611 ap->ops->bmdma_start(qc);
4612 break;
4613 }
1da177e4
LT
4614}
4615
6ae4cfb5
AL
4616/**
4617 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4618 * @qc: Command on going
4619 * @bytes: number of bytes
4620 *
4621 * Transfer Transfer data from/to the ATAPI device.
4622 *
4623 * LOCKING:
4624 * Inherited from caller.
4625 *
4626 */
4627
1da177e4
LT
4628static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4629{
4630 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4631 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4632 struct ata_port *ap = qc->ap;
4633 struct page *page;
4634 unsigned char *buf;
4635 unsigned int offset, count;
4636
563a6e1f 4637 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4638 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4639
4640next_sg:
563a6e1f 4641 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4642 /*
563a6e1f
AL
4643 * The end of qc->sg is reached and the device expects
4644 * more data to transfer. In order not to overrun qc->sg
4645 * and fulfill length specified in the byte count register,
4646 * - for read case, discard trailing data from the device
4647 * - for write case, padding zero data to the device
4648 */
4649 u16 pad_buf[1] = { 0 };
4650 unsigned int words = bytes >> 1;
4651 unsigned int i;
4652
4653 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4654 ata_dev_printk(qc->dev, KERN_WARNING,
4655 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4656
4657 for (i = 0; i < words; i++)
a6b2c5d4 4658 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4659
14be71f4 4660 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4661 return;
4662 }
4663
cedc9a47 4664 sg = &qc->__sg[qc->cursg];
1da177e4 4665
1da177e4
LT
4666 page = sg->page;
4667 offset = sg->offset + qc->cursg_ofs;
4668
4669 /* get the current page and offset */
4670 page = nth_page(page, (offset >> PAGE_SHIFT));
4671 offset %= PAGE_SIZE;
4672
6952df03 4673 /* don't overrun current sg */
32529e01 4674 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4675
4676 /* don't cross page boundaries */
4677 count = min(count, (unsigned int)PAGE_SIZE - offset);
4678
7282aa4b
AL
4679 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4680
91b8b313
AL
4681 if (PageHighMem(page)) {
4682 unsigned long flags;
4683
a6b2c5d4 4684 /* FIXME: use bounce buffer */
91b8b313
AL
4685 local_irq_save(flags);
4686 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4687
91b8b313 4688 /* do the actual data transfer */
a6b2c5d4 4689 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4690
91b8b313
AL
4691 kunmap_atomic(buf, KM_IRQ0);
4692 local_irq_restore(flags);
4693 } else {
4694 buf = page_address(page);
a6b2c5d4 4695 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4696 }
1da177e4
LT
4697
4698 bytes -= count;
4699 qc->curbytes += count;
4700 qc->cursg_ofs += count;
4701
32529e01 4702 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4703 qc->cursg++;
4704 qc->cursg_ofs = 0;
4705 }
4706
563a6e1f 4707 if (bytes)
1da177e4 4708 goto next_sg;
1da177e4
LT
4709}
4710
6ae4cfb5
AL
4711/**
4712 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4713 * @qc: Command on going
4714 *
4715 * Transfer Transfer data from/to the ATAPI device.
4716 *
4717 * LOCKING:
4718 * Inherited from caller.
6ae4cfb5
AL
4719 */
4720
1da177e4
LT
4721static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4722{
4723 struct ata_port *ap = qc->ap;
4724 struct ata_device *dev = qc->dev;
4725 unsigned int ireason, bc_lo, bc_hi, bytes;
4726 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4727
eec4c3f3
AL
4728 /* Abuse qc->result_tf for temp storage of intermediate TF
4729 * here to save some kernel stack usage.
4730 * For normal completion, qc->result_tf is not relevant. For
4731 * error, qc->result_tf is later overwritten by ata_qc_complete().
4732 * So, the correctness of qc->result_tf is not affected.
4733 */
4734 ap->ops->tf_read(ap, &qc->result_tf);
4735 ireason = qc->result_tf.nsect;
4736 bc_lo = qc->result_tf.lbam;
4737 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4738 bytes = (bc_hi << 8) | bc_lo;
4739
4740 /* shall be cleared to zero, indicating xfer of data */
4741 if (ireason & (1 << 0))
4742 goto err_out;
4743
4744 /* make sure transfer direction matches expected */
4745 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4746 if (do_write != i_write)
4747 goto err_out;
4748
44877b4e 4749 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4750
1da177e4
LT
4751 __atapi_pio_bytes(qc, bytes);
4752
4753 return;
4754
4755err_out:
f15a1daf 4756 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4757 qc->err_mask |= AC_ERR_HSM;
14be71f4 4758 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4759}
4760
4761/**
c234fb00
AL
4762 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4763 * @ap: the target ata_port
4764 * @qc: qc on going
1da177e4 4765 *
c234fb00
AL
4766 * RETURNS:
4767 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4768 */
c234fb00
AL
4769
4770static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4771{
c234fb00
AL
4772 if (qc->tf.flags & ATA_TFLAG_POLLING)
4773 return 1;
1da177e4 4774
c234fb00
AL
4775 if (ap->hsm_task_state == HSM_ST_FIRST) {
4776 if (qc->tf.protocol == ATA_PROT_PIO &&
4777 (qc->tf.flags & ATA_TFLAG_WRITE))
4778 return 1;
1da177e4 4779
c234fb00
AL
4780 if (is_atapi_taskfile(&qc->tf) &&
4781 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4782 return 1;
fe79e683
AL
4783 }
4784
c234fb00
AL
4785 return 0;
4786}
1da177e4 4787
c17ea20d
TH
4788/**
4789 * ata_hsm_qc_complete - finish a qc running on standard HSM
4790 * @qc: Command to complete
4791 * @in_wq: 1 if called from workqueue, 0 otherwise
4792 *
4793 * Finish @qc which is running on standard HSM.
4794 *
4795 * LOCKING:
cca3974e 4796 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4797 * Otherwise, none on entry and grabs host lock.
4798 */
4799static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4800{
4801 struct ata_port *ap = qc->ap;
4802 unsigned long flags;
4803
4804 if (ap->ops->error_handler) {
4805 if (in_wq) {
ba6a1308 4806 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4807
cca3974e
JG
4808 /* EH might have kicked in while host lock is
4809 * released.
c17ea20d
TH
4810 */
4811 qc = ata_qc_from_tag(ap, qc->tag);
4812 if (qc) {
4813 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4814 ap->ops->irq_on(ap);
c17ea20d
TH
4815 ata_qc_complete(qc);
4816 } else
4817 ata_port_freeze(ap);
4818 }
4819
ba6a1308 4820 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4821 } else {
4822 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4823 ata_qc_complete(qc);
4824 else
4825 ata_port_freeze(ap);
4826 }
4827 } else {
4828 if (in_wq) {
ba6a1308 4829 spin_lock_irqsave(ap->lock, flags);
83625006 4830 ap->ops->irq_on(ap);
c17ea20d 4831 ata_qc_complete(qc);
ba6a1308 4832 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4833 } else
4834 ata_qc_complete(qc);
4835 }
4836}
4837
bb5cb290
AL
4838/**
4839 * ata_hsm_move - move the HSM to the next state.
4840 * @ap: the target ata_port
4841 * @qc: qc on going
4842 * @status: current device status
4843 * @in_wq: 1 if called from workqueue, 0 otherwise
4844 *
4845 * RETURNS:
4846 * 1 when poll next status needed, 0 otherwise.
4847 */
9a1004d0
TH
4848int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4849 u8 status, int in_wq)
e2cec771 4850{
bb5cb290
AL
4851 unsigned long flags = 0;
4852 int poll_next;
4853
6912ccd5
AL
4854 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4855
bb5cb290
AL
4856 /* Make sure ata_qc_issue_prot() does not throw things
4857 * like DMA polling into the workqueue. Notice that
4858 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4859 */
c234fb00 4860 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4861
e2cec771 4862fsm_start:
999bb6f4 4863 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4864 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4865
e2cec771
AL
4866 switch (ap->hsm_task_state) {
4867 case HSM_ST_FIRST:
bb5cb290
AL
4868 /* Send first data block or PACKET CDB */
4869
4870 /* If polling, we will stay in the work queue after
4871 * sending the data. Otherwise, interrupt handler
4872 * takes over after sending the data.
4873 */
4874 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4875
e2cec771 4876 /* check device status */
3655d1d3
AL
4877 if (unlikely((status & ATA_DRQ) == 0)) {
4878 /* handle BSY=0, DRQ=0 as error */
4879 if (likely(status & (ATA_ERR | ATA_DF)))
4880 /* device stops HSM for abort/error */
4881 qc->err_mask |= AC_ERR_DEV;
4882 else
4883 /* HSM violation. Let EH handle this */
4884 qc->err_mask |= AC_ERR_HSM;
4885
14be71f4 4886 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4887 goto fsm_start;
1da177e4
LT
4888 }
4889
71601958
AL
4890 /* Device should not ask for data transfer (DRQ=1)
4891 * when it finds something wrong.
eee6c32f
AL
4892 * We ignore DRQ here and stop the HSM by
4893 * changing hsm_task_state to HSM_ST_ERR and
4894 * let the EH abort the command or reset the device.
71601958
AL
4895 */
4896 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4897 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4898 "error, dev_stat 0x%X\n", status);
3655d1d3 4899 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4900 ap->hsm_task_state = HSM_ST_ERR;
4901 goto fsm_start;
71601958 4902 }
1da177e4 4903
bb5cb290
AL
4904 /* Send the CDB (atapi) or the first data block (ata pio out).
4905 * During the state transition, interrupt handler shouldn't
4906 * be invoked before the data transfer is complete and
4907 * hsm_task_state is changed. Hence, the following locking.
4908 */
4909 if (in_wq)
ba6a1308 4910 spin_lock_irqsave(ap->lock, flags);
1da177e4 4911
bb5cb290
AL
4912 if (qc->tf.protocol == ATA_PROT_PIO) {
4913 /* PIO data out protocol.
4914 * send first data block.
4915 */
0565c26d 4916
bb5cb290
AL
4917 /* ata_pio_sectors() might change the state
4918 * to HSM_ST_LAST. so, the state is changed here
4919 * before ata_pio_sectors().
4920 */
4921 ap->hsm_task_state = HSM_ST;
4922 ata_pio_sectors(qc);
4923 ata_altstatus(ap); /* flush */
4924 } else
4925 /* send CDB */
4926 atapi_send_cdb(ap, qc);
4927
4928 if (in_wq)
ba6a1308 4929 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4930
4931 /* if polling, ata_pio_task() handles the rest.
4932 * otherwise, interrupt handler takes over from here.
4933 */
e2cec771 4934 break;
1c848984 4935
e2cec771
AL
4936 case HSM_ST:
4937 /* complete command or read/write the data register */
4938 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4939 /* ATAPI PIO protocol */
4940 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4941 /* No more data to transfer or device error.
4942 * Device error will be tagged in HSM_ST_LAST.
4943 */
e2cec771
AL
4944 ap->hsm_task_state = HSM_ST_LAST;
4945 goto fsm_start;
4946 }
1da177e4 4947
71601958
AL
4948 /* Device should not ask for data transfer (DRQ=1)
4949 * when it finds something wrong.
eee6c32f
AL
4950 * We ignore DRQ here and stop the HSM by
4951 * changing hsm_task_state to HSM_ST_ERR and
4952 * let the EH abort the command or reset the device.
71601958
AL
4953 */
4954 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4955 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4956 "device error, dev_stat 0x%X\n",
4957 status);
3655d1d3 4958 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4959 ap->hsm_task_state = HSM_ST_ERR;
4960 goto fsm_start;
71601958 4961 }
1da177e4 4962
e2cec771 4963 atapi_pio_bytes(qc);
7fb6ec28 4964
e2cec771
AL
4965 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4966 /* bad ireason reported by device */
4967 goto fsm_start;
1da177e4 4968
e2cec771
AL
4969 } else {
4970 /* ATA PIO protocol */
4971 if (unlikely((status & ATA_DRQ) == 0)) {
4972 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4973 if (likely(status & (ATA_ERR | ATA_DF)))
4974 /* device stops HSM for abort/error */
4975 qc->err_mask |= AC_ERR_DEV;
4976 else
55a8e2c8
TH
4977 /* HSM violation. Let EH handle this.
4978 * Phantom devices also trigger this
4979 * condition. Mark hint.
4980 */
4981 qc->err_mask |= AC_ERR_HSM |
4982 AC_ERR_NODEV_HINT;
3655d1d3 4983
e2cec771
AL
4984 ap->hsm_task_state = HSM_ST_ERR;
4985 goto fsm_start;
4986 }
1da177e4 4987
eee6c32f
AL
4988 /* For PIO reads, some devices may ask for
4989 * data transfer (DRQ=1) alone with ERR=1.
4990 * We respect DRQ here and transfer one
4991 * block of junk data before changing the
4992 * hsm_task_state to HSM_ST_ERR.
4993 *
4994 * For PIO writes, ERR=1 DRQ=1 doesn't make
4995 * sense since the data block has been
4996 * transferred to the device.
71601958
AL
4997 */
4998 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4999 /* data might be corrputed */
5000 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5001
5002 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5003 ata_pio_sectors(qc);
5004 ata_altstatus(ap);
5005 status = ata_wait_idle(ap);
5006 }
5007
3655d1d3
AL
5008 if (status & (ATA_BUSY | ATA_DRQ))
5009 qc->err_mask |= AC_ERR_HSM;
5010
eee6c32f
AL
5011 /* ata_pio_sectors() might change the
5012 * state to HSM_ST_LAST. so, the state
5013 * is changed after ata_pio_sectors().
5014 */
5015 ap->hsm_task_state = HSM_ST_ERR;
5016 goto fsm_start;
71601958
AL
5017 }
5018
e2cec771
AL
5019 ata_pio_sectors(qc);
5020
5021 if (ap->hsm_task_state == HSM_ST_LAST &&
5022 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5023 /* all data read */
5024 ata_altstatus(ap);
52a32205 5025 status = ata_wait_idle(ap);
e2cec771
AL
5026 goto fsm_start;
5027 }
5028 }
5029
5030 ata_altstatus(ap); /* flush */
bb5cb290 5031 poll_next = 1;
1da177e4
LT
5032 break;
5033
14be71f4 5034 case HSM_ST_LAST:
6912ccd5
AL
5035 if (unlikely(!ata_ok(status))) {
5036 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5037 ap->hsm_task_state = HSM_ST_ERR;
5038 goto fsm_start;
5039 }
5040
5041 /* no more data to transfer */
4332a771 5042 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5043 ap->print_id, qc->dev->devno, status);
e2cec771 5044
6912ccd5
AL
5045 WARN_ON(qc->err_mask);
5046
e2cec771 5047 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5048
e2cec771 5049 /* complete taskfile transaction */
c17ea20d 5050 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5051
5052 poll_next = 0;
1da177e4
LT
5053 break;
5054
14be71f4 5055 case HSM_ST_ERR:
e2cec771
AL
5056 /* make sure qc->err_mask is available to
5057 * know what's wrong and recover
5058 */
5059 WARN_ON(qc->err_mask == 0);
5060
5061 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5062
999bb6f4 5063 /* complete taskfile transaction */
c17ea20d 5064 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5065
5066 poll_next = 0;
e2cec771
AL
5067 break;
5068 default:
bb5cb290 5069 poll_next = 0;
6912ccd5 5070 BUG();
1da177e4
LT
5071 }
5072
bb5cb290 5073 return poll_next;
1da177e4
LT
5074}
5075
65f27f38 5076static void ata_pio_task(struct work_struct *work)
8061f5f0 5077{
65f27f38
DH
5078 struct ata_port *ap =
5079 container_of(work, struct ata_port, port_task.work);
5080 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5081 u8 status;
a1af3734 5082 int poll_next;
8061f5f0 5083
7fb6ec28 5084fsm_start:
a1af3734 5085 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5086
a1af3734
AL
5087 /*
5088 * This is purely heuristic. This is a fast path.
5089 * Sometimes when we enter, BSY will be cleared in
5090 * a chk-status or two. If not, the drive is probably seeking
5091 * or something. Snooze for a couple msecs, then
5092 * chk-status again. If still busy, queue delayed work.
5093 */
5094 status = ata_busy_wait(ap, ATA_BUSY, 5);
5095 if (status & ATA_BUSY) {
5096 msleep(2);
5097 status = ata_busy_wait(ap, ATA_BUSY, 10);
5098 if (status & ATA_BUSY) {
31ce6dae 5099 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5100 return;
5101 }
8061f5f0
TH
5102 }
5103
a1af3734
AL
5104 /* move the HSM */
5105 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5106
a1af3734
AL
5107 /* another command or interrupt handler
5108 * may be running at this point.
5109 */
5110 if (poll_next)
7fb6ec28 5111 goto fsm_start;
8061f5f0
TH
5112}
5113
1da177e4
LT
5114/**
5115 * ata_qc_new - Request an available ATA command, for queueing
5116 * @ap: Port associated with device @dev
5117 * @dev: Device from whom we request an available command structure
5118 *
5119 * LOCKING:
0cba632b 5120 * None.
1da177e4
LT
5121 */
5122
5123static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5124{
5125 struct ata_queued_cmd *qc = NULL;
5126 unsigned int i;
5127
e3180499 5128 /* no command while frozen */
b51e9e5d 5129 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5130 return NULL;
5131
2ab7db1f
TH
5132 /* the last tag is reserved for internal command. */
5133 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5134 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5135 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5136 break;
5137 }
5138
5139 if (qc)
5140 qc->tag = i;
5141
5142 return qc;
5143}
5144
5145/**
5146 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5147 * @dev: Device from whom we request an available command structure
5148 *
5149 * LOCKING:
0cba632b 5150 * None.
1da177e4
LT
5151 */
5152
3373efd8 5153struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5154{
3373efd8 5155 struct ata_port *ap = dev->ap;
1da177e4
LT
5156 struct ata_queued_cmd *qc;
5157
5158 qc = ata_qc_new(ap);
5159 if (qc) {
1da177e4
LT
5160 qc->scsicmd = NULL;
5161 qc->ap = ap;
5162 qc->dev = dev;
1da177e4 5163
2c13b7ce 5164 ata_qc_reinit(qc);
1da177e4
LT
5165 }
5166
5167 return qc;
5168}
5169
1da177e4
LT
5170/**
5171 * ata_qc_free - free unused ata_queued_cmd
5172 * @qc: Command to complete
5173 *
5174 * Designed to free unused ata_queued_cmd object
5175 * in case something prevents using it.
5176 *
5177 * LOCKING:
cca3974e 5178 * spin_lock_irqsave(host lock)
1da177e4
LT
5179 */
5180void ata_qc_free(struct ata_queued_cmd *qc)
5181{
4ba946e9
TH
5182 struct ata_port *ap = qc->ap;
5183 unsigned int tag;
5184
a4631474 5185 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5186
4ba946e9
TH
5187 qc->flags = 0;
5188 tag = qc->tag;
5189 if (likely(ata_tag_valid(tag))) {
4ba946e9 5190 qc->tag = ATA_TAG_POISON;
6cec4a39 5191 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5192 }
1da177e4
LT
5193}
5194
76014427 5195void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5196{
dedaf2b0
TH
5197 struct ata_port *ap = qc->ap;
5198
a4631474
TH
5199 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5200 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5201
5202 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5203 ata_sg_clean(qc);
5204
7401abf2 5205 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
5206 if (qc->tf.protocol == ATA_PROT_NCQ)
5207 ap->sactive &= ~(1 << qc->tag);
5208 else
5209 ap->active_tag = ATA_TAG_POISON;
7401abf2 5210
3f3791d3
AL
5211 /* atapi: mark qc as inactive to prevent the interrupt handler
5212 * from completing the command twice later, before the error handler
5213 * is called. (when rc != 0 and atapi request sense is needed)
5214 */
5215 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5216 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5217
1da177e4 5218 /* call completion callback */
77853bf2 5219 qc->complete_fn(qc);
1da177e4
LT
5220}
5221
39599a53
TH
5222static void fill_result_tf(struct ata_queued_cmd *qc)
5223{
5224 struct ata_port *ap = qc->ap;
5225
39599a53 5226 qc->result_tf.flags = qc->tf.flags;
4742d54f 5227 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5228}
5229
f686bcb8
TH
5230/**
5231 * ata_qc_complete - Complete an active ATA command
5232 * @qc: Command to complete
5233 * @err_mask: ATA Status register contents
5234 *
5235 * Indicate to the mid and upper layers that an ATA
5236 * command has completed, with either an ok or not-ok status.
5237 *
5238 * LOCKING:
cca3974e 5239 * spin_lock_irqsave(host lock)
f686bcb8
TH
5240 */
5241void ata_qc_complete(struct ata_queued_cmd *qc)
5242{
5243 struct ata_port *ap = qc->ap;
5244
5245 /* XXX: New EH and old EH use different mechanisms to
5246 * synchronize EH with regular execution path.
5247 *
5248 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5249 * Normal execution path is responsible for not accessing a
5250 * failed qc. libata core enforces the rule by returning NULL
5251 * from ata_qc_from_tag() for failed qcs.
5252 *
5253 * Old EH depends on ata_qc_complete() nullifying completion
5254 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5255 * not synchronize with interrupt handler. Only PIO task is
5256 * taken care of.
5257 */
5258 if (ap->ops->error_handler) {
b51e9e5d 5259 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5260
5261 if (unlikely(qc->err_mask))
5262 qc->flags |= ATA_QCFLAG_FAILED;
5263
5264 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5265 if (!ata_tag_internal(qc->tag)) {
5266 /* always fill result TF for failed qc */
39599a53 5267 fill_result_tf(qc);
f686bcb8
TH
5268 ata_qc_schedule_eh(qc);
5269 return;
5270 }
5271 }
5272
5273 /* read result TF if requested */
5274 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5275 fill_result_tf(qc);
f686bcb8
TH
5276
5277 __ata_qc_complete(qc);
5278 } else {
5279 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5280 return;
5281
5282 /* read result TF if failed or requested */
5283 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5284 fill_result_tf(qc);
f686bcb8
TH
5285
5286 __ata_qc_complete(qc);
5287 }
5288}
5289
dedaf2b0
TH
5290/**
5291 * ata_qc_complete_multiple - Complete multiple qcs successfully
5292 * @ap: port in question
5293 * @qc_active: new qc_active mask
5294 * @finish_qc: LLDD callback invoked before completing a qc
5295 *
5296 * Complete in-flight commands. This functions is meant to be
5297 * called from low-level driver's interrupt routine to complete
5298 * requests normally. ap->qc_active and @qc_active is compared
5299 * and commands are completed accordingly.
5300 *
5301 * LOCKING:
cca3974e 5302 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5303 *
5304 * RETURNS:
5305 * Number of completed commands on success, -errno otherwise.
5306 */
5307int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5308 void (*finish_qc)(struct ata_queued_cmd *))
5309{
5310 int nr_done = 0;
5311 u32 done_mask;
5312 int i;
5313
5314 done_mask = ap->qc_active ^ qc_active;
5315
5316 if (unlikely(done_mask & qc_active)) {
5317 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5318 "(%08x->%08x)\n", ap->qc_active, qc_active);
5319 return -EINVAL;
5320 }
5321
5322 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5323 struct ata_queued_cmd *qc;
5324
5325 if (!(done_mask & (1 << i)))
5326 continue;
5327
5328 if ((qc = ata_qc_from_tag(ap, i))) {
5329 if (finish_qc)
5330 finish_qc(qc);
5331 ata_qc_complete(qc);
5332 nr_done++;
5333 }
5334 }
5335
5336 return nr_done;
5337}
5338
1da177e4
LT
5339static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5340{
5341 struct ata_port *ap = qc->ap;
5342
5343 switch (qc->tf.protocol) {
3dc1d881 5344 case ATA_PROT_NCQ:
1da177e4
LT
5345 case ATA_PROT_DMA:
5346 case ATA_PROT_ATAPI_DMA:
5347 return 1;
5348
5349 case ATA_PROT_ATAPI:
5350 case ATA_PROT_PIO:
1da177e4
LT
5351 if (ap->flags & ATA_FLAG_PIO_DMA)
5352 return 1;
5353
5354 /* fall through */
5355
5356 default:
5357 return 0;
5358 }
5359
5360 /* never reached */
5361}
5362
5363/**
5364 * ata_qc_issue - issue taskfile to device
5365 * @qc: command to issue to device
5366 *
5367 * Prepare an ATA command to submission to device.
5368 * This includes mapping the data into a DMA-able
5369 * area, filling in the S/G table, and finally
5370 * writing the taskfile to hardware, starting the command.
5371 *
5372 * LOCKING:
cca3974e 5373 * spin_lock_irqsave(host lock)
1da177e4 5374 */
8e0e694a 5375void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5376{
5377 struct ata_port *ap = qc->ap;
5378
dedaf2b0
TH
5379 /* Make sure only one non-NCQ command is outstanding. The
5380 * check is skipped for old EH because it reuses active qc to
5381 * request ATAPI sense.
5382 */
5383 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5384
5385 if (qc->tf.protocol == ATA_PROT_NCQ) {
5386 WARN_ON(ap->sactive & (1 << qc->tag));
5387 ap->sactive |= 1 << qc->tag;
5388 } else {
5389 WARN_ON(ap->sactive);
5390 ap->active_tag = qc->tag;
5391 }
5392
e4a70e76 5393 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5394 ap->qc_active |= 1 << qc->tag;
e4a70e76 5395
1da177e4
LT
5396 if (ata_should_dma_map(qc)) {
5397 if (qc->flags & ATA_QCFLAG_SG) {
5398 if (ata_sg_setup(qc))
8e436af9 5399 goto sg_err;
1da177e4
LT
5400 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5401 if (ata_sg_setup_one(qc))
8e436af9 5402 goto sg_err;
1da177e4
LT
5403 }
5404 } else {
5405 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5406 }
5407
5408 ap->ops->qc_prep(qc);
5409
8e0e694a
TH
5410 qc->err_mask |= ap->ops->qc_issue(qc);
5411 if (unlikely(qc->err_mask))
5412 goto err;
5413 return;
1da177e4 5414
8e436af9
TH
5415sg_err:
5416 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5417 qc->err_mask |= AC_ERR_SYSTEM;
5418err:
5419 ata_qc_complete(qc);
1da177e4
LT
5420}
5421
5422/**
5423 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5424 * @qc: command to issue to device
5425 *
5426 * Using various libata functions and hooks, this function
5427 * starts an ATA command. ATA commands are grouped into
5428 * classes called "protocols", and issuing each type of protocol
5429 * is slightly different.
5430 *
0baab86b
EF
5431 * May be used as the qc_issue() entry in ata_port_operations.
5432 *
1da177e4 5433 * LOCKING:
cca3974e 5434 * spin_lock_irqsave(host lock)
1da177e4
LT
5435 *
5436 * RETURNS:
9a3d9eb0 5437 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5438 */
5439
9a3d9eb0 5440unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5441{
5442 struct ata_port *ap = qc->ap;
5443
e50362ec
AL
5444 /* Use polling pio if the LLD doesn't handle
5445 * interrupt driven pio and atapi CDB interrupt.
5446 */
5447 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5448 switch (qc->tf.protocol) {
5449 case ATA_PROT_PIO:
e3472cbe 5450 case ATA_PROT_NODATA:
e50362ec
AL
5451 case ATA_PROT_ATAPI:
5452 case ATA_PROT_ATAPI_NODATA:
5453 qc->tf.flags |= ATA_TFLAG_POLLING;
5454 break;
5455 case ATA_PROT_ATAPI_DMA:
5456 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5457 /* see ata_dma_blacklisted() */
e50362ec
AL
5458 BUG();
5459 break;
5460 default:
5461 break;
5462 }
5463 }
5464
312f7da2 5465 /* select the device */
1da177e4
LT
5466 ata_dev_select(ap, qc->dev->devno, 1, 0);
5467
312f7da2 5468 /* start the command */
1da177e4
LT
5469 switch (qc->tf.protocol) {
5470 case ATA_PROT_NODATA:
312f7da2
AL
5471 if (qc->tf.flags & ATA_TFLAG_POLLING)
5472 ata_qc_set_polling(qc);
5473
e5338254 5474 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5475 ap->hsm_task_state = HSM_ST_LAST;
5476
5477 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5478 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5479
1da177e4
LT
5480 break;
5481
5482 case ATA_PROT_DMA:
587005de 5483 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5484
1da177e4
LT
5485 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5486 ap->ops->bmdma_setup(qc); /* set up bmdma */
5487 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5488 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5489 break;
5490
312f7da2
AL
5491 case ATA_PROT_PIO:
5492 if (qc->tf.flags & ATA_TFLAG_POLLING)
5493 ata_qc_set_polling(qc);
1da177e4 5494
e5338254 5495 ata_tf_to_host(ap, &qc->tf);
312f7da2 5496
54f00389
AL
5497 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5498 /* PIO data out protocol */
5499 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5500 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5501
5502 /* always send first data block using
e27486db 5503 * the ata_pio_task() codepath.
54f00389 5504 */
312f7da2 5505 } else {
54f00389
AL
5506 /* PIO data in protocol */
5507 ap->hsm_task_state = HSM_ST;
5508
5509 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5510 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5511
5512 /* if polling, ata_pio_task() handles the rest.
5513 * otherwise, interrupt handler takes over from here.
5514 */
312f7da2
AL
5515 }
5516
1da177e4
LT
5517 break;
5518
1da177e4 5519 case ATA_PROT_ATAPI:
1da177e4 5520 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5521 if (qc->tf.flags & ATA_TFLAG_POLLING)
5522 ata_qc_set_polling(qc);
5523
e5338254 5524 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5525
312f7da2
AL
5526 ap->hsm_task_state = HSM_ST_FIRST;
5527
5528 /* send cdb by polling if no cdb interrupt */
5529 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5530 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5531 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5532 break;
5533
5534 case ATA_PROT_ATAPI_DMA:
587005de 5535 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5536
1da177e4
LT
5537 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5538 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5539 ap->hsm_task_state = HSM_ST_FIRST;
5540
5541 /* send cdb by polling if no cdb interrupt */
5542 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5543 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5544 break;
5545
5546 default:
5547 WARN_ON(1);
9a3d9eb0 5548 return AC_ERR_SYSTEM;
1da177e4
LT
5549 }
5550
5551 return 0;
5552}
5553
1da177e4
LT
5554/**
5555 * ata_host_intr - Handle host interrupt for given (port, task)
5556 * @ap: Port on which interrupt arrived (possibly...)
5557 * @qc: Taskfile currently active in engine
5558 *
5559 * Handle host interrupt for given queued command. Currently,
5560 * only DMA interrupts are handled. All other commands are
5561 * handled via polling with interrupts disabled (nIEN bit).
5562 *
5563 * LOCKING:
cca3974e 5564 * spin_lock_irqsave(host lock)
1da177e4
LT
5565 *
5566 * RETURNS:
5567 * One if interrupt was handled, zero if not (shared irq).
5568 */
5569
5570inline unsigned int ata_host_intr (struct ata_port *ap,
5571 struct ata_queued_cmd *qc)
5572{
ea54763f 5573 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5574 u8 status, host_stat = 0;
1da177e4 5575
312f7da2 5576 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5577 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5578
312f7da2
AL
5579 /* Check whether we are expecting interrupt in this state */
5580 switch (ap->hsm_task_state) {
5581 case HSM_ST_FIRST:
6912ccd5
AL
5582 /* Some pre-ATAPI-4 devices assert INTRQ
5583 * at this state when ready to receive CDB.
5584 */
1da177e4 5585
312f7da2
AL
5586 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5587 * The flag was turned on only for atapi devices.
5588 * No need to check is_atapi_taskfile(&qc->tf) again.
5589 */
5590 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5591 goto idle_irq;
1da177e4 5592 break;
312f7da2
AL
5593 case HSM_ST_LAST:
5594 if (qc->tf.protocol == ATA_PROT_DMA ||
5595 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5596 /* check status of DMA engine */
5597 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5598 VPRINTK("ata%u: host_stat 0x%X\n",
5599 ap->print_id, host_stat);
312f7da2
AL
5600
5601 /* if it's not our irq... */
5602 if (!(host_stat & ATA_DMA_INTR))
5603 goto idle_irq;
5604
5605 /* before we do anything else, clear DMA-Start bit */
5606 ap->ops->bmdma_stop(qc);
a4f16610
AL
5607
5608 if (unlikely(host_stat & ATA_DMA_ERR)) {
5609 /* error when transfering data to/from memory */
5610 qc->err_mask |= AC_ERR_HOST_BUS;
5611 ap->hsm_task_state = HSM_ST_ERR;
5612 }
312f7da2
AL
5613 }
5614 break;
5615 case HSM_ST:
5616 break;
1da177e4
LT
5617 default:
5618 goto idle_irq;
5619 }
5620
312f7da2
AL
5621 /* check altstatus */
5622 status = ata_altstatus(ap);
5623 if (status & ATA_BUSY)
5624 goto idle_irq;
1da177e4 5625
312f7da2
AL
5626 /* check main status, clearing INTRQ */
5627 status = ata_chk_status(ap);
5628 if (unlikely(status & ATA_BUSY))
5629 goto idle_irq;
1da177e4 5630
312f7da2
AL
5631 /* ack bmdma irq events */
5632 ap->ops->irq_clear(ap);
1da177e4 5633
bb5cb290 5634 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5635
5636 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5637 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5638 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5639
1da177e4
LT
5640 return 1; /* irq handled */
5641
5642idle_irq:
5643 ap->stats.idle_irq++;
5644
5645#ifdef ATA_IRQ_TRAP
5646 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5647 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5648 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5649 return 1;
1da177e4
LT
5650 }
5651#endif
5652 return 0; /* irq not handled */
5653}
5654
5655/**
5656 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5657 * @irq: irq line (unused)
cca3974e 5658 * @dev_instance: pointer to our ata_host information structure
1da177e4 5659 *
0cba632b
JG
5660 * Default interrupt handler for PCI IDE devices. Calls
5661 * ata_host_intr() for each port that is not disabled.
5662 *
1da177e4 5663 * LOCKING:
cca3974e 5664 * Obtains host lock during operation.
1da177e4
LT
5665 *
5666 * RETURNS:
0cba632b 5667 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5668 */
5669
7d12e780 5670irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5671{
cca3974e 5672 struct ata_host *host = dev_instance;
1da177e4
LT
5673 unsigned int i;
5674 unsigned int handled = 0;
5675 unsigned long flags;
5676
5677 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5678 spin_lock_irqsave(&host->lock, flags);
1da177e4 5679
cca3974e 5680 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5681 struct ata_port *ap;
5682
cca3974e 5683 ap = host->ports[i];
c1389503 5684 if (ap &&
029f5468 5685 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5686 struct ata_queued_cmd *qc;
5687
5688 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5689 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5690 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5691 handled |= ata_host_intr(ap, qc);
5692 }
5693 }
5694
cca3974e 5695 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5696
5697 return IRQ_RETVAL(handled);
5698}
5699
34bf2170
TH
5700/**
5701 * sata_scr_valid - test whether SCRs are accessible
5702 * @ap: ATA port to test SCR accessibility for
5703 *
5704 * Test whether SCRs are accessible for @ap.
5705 *
5706 * LOCKING:
5707 * None.
5708 *
5709 * RETURNS:
5710 * 1 if SCRs are accessible, 0 otherwise.
5711 */
5712int sata_scr_valid(struct ata_port *ap)
5713{
a16abc0b 5714 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5715}
5716
5717/**
5718 * sata_scr_read - read SCR register of the specified port
5719 * @ap: ATA port to read SCR for
5720 * @reg: SCR to read
5721 * @val: Place to store read value
5722 *
5723 * Read SCR register @reg of @ap into *@val. This function is
5724 * guaranteed to succeed if the cable type of the port is SATA
5725 * and the port implements ->scr_read.
5726 *
5727 * LOCKING:
5728 * None.
5729 *
5730 * RETURNS:
5731 * 0 on success, negative errno on failure.
5732 */
5733int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5734{
da3dbb17
TH
5735 if (sata_scr_valid(ap))
5736 return ap->ops->scr_read(ap, reg, val);
34bf2170
TH
5737 return -EOPNOTSUPP;
5738}
5739
5740/**
5741 * sata_scr_write - write SCR register of the specified port
5742 * @ap: ATA port to write SCR for
5743 * @reg: SCR to write
5744 * @val: value to write
5745 *
5746 * Write @val to SCR register @reg of @ap. This function is
5747 * guaranteed to succeed if the cable type of the port is SATA
5748 * and the port implements ->scr_read.
5749 *
5750 * LOCKING:
5751 * None.
5752 *
5753 * RETURNS:
5754 * 0 on success, negative errno on failure.
5755 */
5756int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5757{
da3dbb17
TH
5758 if (sata_scr_valid(ap))
5759 return ap->ops->scr_write(ap, reg, val);
34bf2170
TH
5760 return -EOPNOTSUPP;
5761}
5762
5763/**
5764 * sata_scr_write_flush - write SCR register of the specified port and flush
5765 * @ap: ATA port to write SCR for
5766 * @reg: SCR to write
5767 * @val: value to write
5768 *
5769 * This function is identical to sata_scr_write() except that this
5770 * function performs flush after writing to the register.
5771 *
5772 * LOCKING:
5773 * None.
5774 *
5775 * RETURNS:
5776 * 0 on success, negative errno on failure.
5777 */
5778int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5779{
da3dbb17
TH
5780 int rc;
5781
34bf2170 5782 if (sata_scr_valid(ap)) {
da3dbb17
TH
5783 rc = ap->ops->scr_write(ap, reg, val);
5784 if (rc == 0)
5785 rc = ap->ops->scr_read(ap, reg, &val);
5786 return rc;
34bf2170
TH
5787 }
5788 return -EOPNOTSUPP;
5789}
5790
5791/**
5792 * ata_port_online - test whether the given port is online
5793 * @ap: ATA port to test
5794 *
5795 * Test whether @ap is online. Note that this function returns 0
5796 * if online status of @ap cannot be obtained, so
5797 * ata_port_online(ap) != !ata_port_offline(ap).
5798 *
5799 * LOCKING:
5800 * None.
5801 *
5802 * RETURNS:
5803 * 1 if the port online status is available and online.
5804 */
5805int ata_port_online(struct ata_port *ap)
5806{
5807 u32 sstatus;
5808
5809 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5810 return 1;
5811 return 0;
5812}
5813
5814/**
5815 * ata_port_offline - test whether the given port is offline
5816 * @ap: ATA port to test
5817 *
5818 * Test whether @ap is offline. Note that this function returns
5819 * 0 if offline status of @ap cannot be obtained, so
5820 * ata_port_online(ap) != !ata_port_offline(ap).
5821 *
5822 * LOCKING:
5823 * None.
5824 *
5825 * RETURNS:
5826 * 1 if the port offline status is available and offline.
5827 */
5828int ata_port_offline(struct ata_port *ap)
5829{
5830 u32 sstatus;
5831
5832 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5833 return 1;
5834 return 0;
5835}
0baab86b 5836
77b08fb5 5837int ata_flush_cache(struct ata_device *dev)
9b847548 5838{
977e6b9f 5839 unsigned int err_mask;
9b847548
JA
5840 u8 cmd;
5841
5842 if (!ata_try_flush_cache(dev))
5843 return 0;
5844
6fc49adb 5845 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5846 cmd = ATA_CMD_FLUSH_EXT;
5847 else
5848 cmd = ATA_CMD_FLUSH;
5849
977e6b9f
TH
5850 err_mask = ata_do_simple_cmd(dev, cmd);
5851 if (err_mask) {
5852 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5853 return -EIO;
5854 }
5855
5856 return 0;
9b847548
JA
5857}
5858
6ffa01d8 5859#ifdef CONFIG_PM
cca3974e
JG
5860static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5861 unsigned int action, unsigned int ehi_flags,
5862 int wait)
500530f6
TH
5863{
5864 unsigned long flags;
5865 int i, rc;
5866
cca3974e
JG
5867 for (i = 0; i < host->n_ports; i++) {
5868 struct ata_port *ap = host->ports[i];
500530f6
TH
5869
5870 /* Previous resume operation might still be in
5871 * progress. Wait for PM_PENDING to clear.
5872 */
5873 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5874 ata_port_wait_eh(ap);
5875 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5876 }
5877
5878 /* request PM ops to EH */
5879 spin_lock_irqsave(ap->lock, flags);
5880
5881 ap->pm_mesg = mesg;
5882 if (wait) {
5883 rc = 0;
5884 ap->pm_result = &rc;
5885 }
5886
5887 ap->pflags |= ATA_PFLAG_PM_PENDING;
5888 ap->eh_info.action |= action;
5889 ap->eh_info.flags |= ehi_flags;
5890
5891 ata_port_schedule_eh(ap);
5892
5893 spin_unlock_irqrestore(ap->lock, flags);
5894
5895 /* wait and check result */
5896 if (wait) {
5897 ata_port_wait_eh(ap);
5898 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5899 if (rc)
5900 return rc;
5901 }
5902 }
5903
5904 return 0;
5905}
5906
5907/**
cca3974e
JG
5908 * ata_host_suspend - suspend host
5909 * @host: host to suspend
500530f6
TH
5910 * @mesg: PM message
5911 *
cca3974e 5912 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5913 * function requests EH to perform PM operations and waits for EH
5914 * to finish.
5915 *
5916 * LOCKING:
5917 * Kernel thread context (may sleep).
5918 *
5919 * RETURNS:
5920 * 0 on success, -errno on failure.
5921 */
cca3974e 5922int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5923{
9666f400 5924 int rc;
500530f6 5925
cca3974e 5926 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
5927 if (rc == 0)
5928 host->dev->power.power_state = mesg;
500530f6
TH
5929 return rc;
5930}
5931
5932/**
cca3974e
JG
5933 * ata_host_resume - resume host
5934 * @host: host to resume
500530f6 5935 *
cca3974e 5936 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5937 * function requests EH to perform PM operations and returns.
5938 * Note that all resume operations are performed parallely.
5939 *
5940 * LOCKING:
5941 * Kernel thread context (may sleep).
5942 */
cca3974e 5943void ata_host_resume(struct ata_host *host)
500530f6 5944{
cca3974e
JG
5945 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5946 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5947 host->dev->power.power_state = PMSG_ON;
500530f6 5948}
6ffa01d8 5949#endif
500530f6 5950
c893a3ae
RD
5951/**
5952 * ata_port_start - Set port up for dma.
5953 * @ap: Port to initialize
5954 *
5955 * Called just after data structures for each port are
5956 * initialized. Allocates space for PRD table.
5957 *
5958 * May be used as the port_start() entry in ata_port_operations.
5959 *
5960 * LOCKING:
5961 * Inherited from caller.
5962 */
f0d36efd 5963int ata_port_start(struct ata_port *ap)
1da177e4 5964{
2f1f610b 5965 struct device *dev = ap->dev;
6037d6bb 5966 int rc;
1da177e4 5967
f0d36efd
TH
5968 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5969 GFP_KERNEL);
1da177e4
LT
5970 if (!ap->prd)
5971 return -ENOMEM;
5972
6037d6bb 5973 rc = ata_pad_alloc(ap, dev);
f0d36efd 5974 if (rc)
6037d6bb 5975 return rc;
1da177e4 5976
f0d36efd
TH
5977 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5978 (unsigned long long)ap->prd_dma);
1da177e4
LT
5979 return 0;
5980}
5981
3ef3b43d
TH
5982/**
5983 * ata_dev_init - Initialize an ata_device structure
5984 * @dev: Device structure to initialize
5985 *
5986 * Initialize @dev in preparation for probing.
5987 *
5988 * LOCKING:
5989 * Inherited from caller.
5990 */
5991void ata_dev_init(struct ata_device *dev)
5992{
5993 struct ata_port *ap = dev->ap;
72fa4b74
TH
5994 unsigned long flags;
5995
5a04bf4b
TH
5996 /* SATA spd limit is bound to the first device */
5997 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5998
72fa4b74
TH
5999 /* High bits of dev->flags are used to record warm plug
6000 * requests which occur asynchronously. Synchronize using
cca3974e 6001 * host lock.
72fa4b74 6002 */
ba6a1308 6003 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6004 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 6005 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6006
72fa4b74
TH
6007 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6008 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6009 dev->pio_mask = UINT_MAX;
6010 dev->mwdma_mask = UINT_MAX;
6011 dev->udma_mask = UINT_MAX;
6012}
6013
1da177e4 6014/**
f3187195
TH
6015 * ata_port_alloc - allocate and initialize basic ATA port resources
6016 * @host: ATA host this allocated port belongs to
1da177e4 6017 *
f3187195
TH
6018 * Allocate and initialize basic ATA port resources.
6019 *
6020 * RETURNS:
6021 * Allocate ATA port on success, NULL on failure.
0cba632b 6022 *
1da177e4 6023 * LOCKING:
f3187195 6024 * Inherited from calling layer (may sleep).
1da177e4 6025 */
f3187195 6026struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6027{
f3187195 6028 struct ata_port *ap;
1da177e4
LT
6029 unsigned int i;
6030
f3187195
TH
6031 DPRINTK("ENTER\n");
6032
6033 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6034 if (!ap)
6035 return NULL;
6036
f4d6d004 6037 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6038 ap->lock = &host->lock;
198e0fed 6039 ap->flags = ATA_FLAG_DISABLED;
f3187195 6040 ap->print_id = -1;
1da177e4 6041 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6042 ap->host = host;
f3187195
TH
6043 ap->dev = host->dev;
6044
5a04bf4b 6045 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
6046 ap->active_tag = ATA_TAG_POISON;
6047 ap->last_ctl = 0xFF;
bd5d825c
BP
6048
6049#if defined(ATA_VERBOSE_DEBUG)
6050 /* turn on all debugging levels */
6051 ap->msg_enable = 0x00FF;
6052#elif defined(ATA_DEBUG)
6053 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6054#else
0dd4b21f 6055 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6056#endif
1da177e4 6057
65f27f38
DH
6058 INIT_DELAYED_WORK(&ap->port_task, NULL);
6059 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6060 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6061 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6062 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 6063
838df628 6064 ap->cbl = ATA_CBL_NONE;
838df628 6065
acf356b1
TH
6066 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6067 struct ata_device *dev = &ap->device[i];
38d87234 6068 dev->ap = ap;
72fa4b74 6069 dev->devno = i;
3ef3b43d 6070 ata_dev_init(dev);
acf356b1 6071 }
1da177e4
LT
6072
6073#ifdef ATA_IRQ_TRAP
6074 ap->stats.unhandled_irq = 1;
6075 ap->stats.idle_irq = 1;
6076#endif
1da177e4 6077 return ap;
1da177e4
LT
6078}
6079
f0d36efd
TH
6080static void ata_host_release(struct device *gendev, void *res)
6081{
6082 struct ata_host *host = dev_get_drvdata(gendev);
6083 int i;
6084
6085 for (i = 0; i < host->n_ports; i++) {
6086 struct ata_port *ap = host->ports[i];
6087
ecef7253
TH
6088 if (!ap)
6089 continue;
6090
6091 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6092 ap->ops->port_stop(ap);
f0d36efd
TH
6093 }
6094
ecef7253 6095 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6096 host->ops->host_stop(host);
1aa56cca 6097
1aa506e4
TH
6098 for (i = 0; i < host->n_ports; i++) {
6099 struct ata_port *ap = host->ports[i];
6100
4911487a
TH
6101 if (!ap)
6102 continue;
6103
6104 if (ap->scsi_host)
1aa506e4
TH
6105 scsi_host_put(ap->scsi_host);
6106
4911487a 6107 kfree(ap);
1aa506e4
TH
6108 host->ports[i] = NULL;
6109 }
6110
1aa56cca 6111 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6112}
6113
f3187195
TH
6114/**
6115 * ata_host_alloc - allocate and init basic ATA host resources
6116 * @dev: generic device this host is associated with
6117 * @max_ports: maximum number of ATA ports associated with this host
6118 *
6119 * Allocate and initialize basic ATA host resources. LLD calls
6120 * this function to allocate a host, initializes it fully and
6121 * attaches it using ata_host_register().
6122 *
6123 * @max_ports ports are allocated and host->n_ports is
6124 * initialized to @max_ports. The caller is allowed to decrease
6125 * host->n_ports before calling ata_host_register(). The unused
6126 * ports will be automatically freed on registration.
6127 *
6128 * RETURNS:
6129 * Allocate ATA host on success, NULL on failure.
6130 *
6131 * LOCKING:
6132 * Inherited from calling layer (may sleep).
6133 */
6134struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6135{
6136 struct ata_host *host;
6137 size_t sz;
6138 int i;
6139
6140 DPRINTK("ENTER\n");
6141
6142 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6143 return NULL;
6144
6145 /* alloc a container for our list of ATA ports (buses) */
6146 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6147 /* alloc a container for our list of ATA ports (buses) */
6148 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6149 if (!host)
6150 goto err_out;
6151
6152 devres_add(dev, host);
6153 dev_set_drvdata(dev, host);
6154
6155 spin_lock_init(&host->lock);
6156 host->dev = dev;
6157 host->n_ports = max_ports;
6158
6159 /* allocate ports bound to this host */
6160 for (i = 0; i < max_ports; i++) {
6161 struct ata_port *ap;
6162
6163 ap = ata_port_alloc(host);
6164 if (!ap)
6165 goto err_out;
6166
6167 ap->port_no = i;
6168 host->ports[i] = ap;
6169 }
6170
6171 devres_remove_group(dev, NULL);
6172 return host;
6173
6174 err_out:
6175 devres_release_group(dev, NULL);
6176 return NULL;
6177}
6178
f5cda257
TH
6179/**
6180 * ata_host_alloc_pinfo - alloc host and init with port_info array
6181 * @dev: generic device this host is associated with
6182 * @ppi: array of ATA port_info to initialize host with
6183 * @n_ports: number of ATA ports attached to this host
6184 *
6185 * Allocate ATA host and initialize with info from @ppi. If NULL
6186 * terminated, @ppi may contain fewer entries than @n_ports. The
6187 * last entry will be used for the remaining ports.
6188 *
6189 * RETURNS:
6190 * Allocate ATA host on success, NULL on failure.
6191 *
6192 * LOCKING:
6193 * Inherited from calling layer (may sleep).
6194 */
6195struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6196 const struct ata_port_info * const * ppi,
6197 int n_ports)
6198{
6199 const struct ata_port_info *pi;
6200 struct ata_host *host;
6201 int i, j;
6202
6203 host = ata_host_alloc(dev, n_ports);
6204 if (!host)
6205 return NULL;
6206
6207 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6208 struct ata_port *ap = host->ports[i];
6209
6210 if (ppi[j])
6211 pi = ppi[j++];
6212
6213 ap->pio_mask = pi->pio_mask;
6214 ap->mwdma_mask = pi->mwdma_mask;
6215 ap->udma_mask = pi->udma_mask;
6216 ap->flags |= pi->flags;
6217 ap->ops = pi->port_ops;
6218
6219 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6220 host->ops = pi->port_ops;
6221 if (!host->private_data && pi->private_data)
6222 host->private_data = pi->private_data;
6223 }
6224
6225 return host;
6226}
6227
ecef7253
TH
6228/**
6229 * ata_host_start - start and freeze ports of an ATA host
6230 * @host: ATA host to start ports for
6231 *
6232 * Start and then freeze ports of @host. Started status is
6233 * recorded in host->flags, so this function can be called
6234 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6235 * once. If host->ops isn't initialized yet, its set to the
6236 * first non-dummy port ops.
ecef7253
TH
6237 *
6238 * LOCKING:
6239 * Inherited from calling layer (may sleep).
6240 *
6241 * RETURNS:
6242 * 0 if all ports are started successfully, -errno otherwise.
6243 */
6244int ata_host_start(struct ata_host *host)
6245{
6246 int i, rc;
6247
6248 if (host->flags & ATA_HOST_STARTED)
6249 return 0;
6250
6251 for (i = 0; i < host->n_ports; i++) {
6252 struct ata_port *ap = host->ports[i];
6253
f3187195
TH
6254 if (!host->ops && !ata_port_is_dummy(ap))
6255 host->ops = ap->ops;
6256
ecef7253
TH
6257 if (ap->ops->port_start) {
6258 rc = ap->ops->port_start(ap);
6259 if (rc) {
6260 ata_port_printk(ap, KERN_ERR, "failed to "
6261 "start port (errno=%d)\n", rc);
6262 goto err_out;
6263 }
6264 }
6265
6266 ata_eh_freeze_port(ap);
6267 }
6268
6269 host->flags |= ATA_HOST_STARTED;
6270 return 0;
6271
6272 err_out:
6273 while (--i >= 0) {
6274 struct ata_port *ap = host->ports[i];
6275
6276 if (ap->ops->port_stop)
6277 ap->ops->port_stop(ap);
6278 }
6279 return rc;
6280}
6281
b03732f0 6282/**
cca3974e
JG
6283 * ata_sas_host_init - Initialize a host struct
6284 * @host: host to initialize
6285 * @dev: device host is attached to
6286 * @flags: host flags
6287 * @ops: port_ops
b03732f0
BK
6288 *
6289 * LOCKING:
6290 * PCI/etc. bus probe sem.
6291 *
6292 */
f3187195 6293/* KILLME - the only user left is ipr */
cca3974e
JG
6294void ata_host_init(struct ata_host *host, struct device *dev,
6295 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6296{
cca3974e
JG
6297 spin_lock_init(&host->lock);
6298 host->dev = dev;
6299 host->flags = flags;
6300 host->ops = ops;
b03732f0
BK
6301}
6302
f3187195
TH
6303/**
6304 * ata_host_register - register initialized ATA host
6305 * @host: ATA host to register
6306 * @sht: template for SCSI host
6307 *
6308 * Register initialized ATA host. @host is allocated using
6309 * ata_host_alloc() and fully initialized by LLD. This function
6310 * starts ports, registers @host with ATA and SCSI layers and
6311 * probe registered devices.
6312 *
6313 * LOCKING:
6314 * Inherited from calling layer (may sleep).
6315 *
6316 * RETURNS:
6317 * 0 on success, -errno otherwise.
6318 */
6319int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6320{
6321 int i, rc;
6322
6323 /* host must have been started */
6324 if (!(host->flags & ATA_HOST_STARTED)) {
6325 dev_printk(KERN_ERR, host->dev,
6326 "BUG: trying to register unstarted host\n");
6327 WARN_ON(1);
6328 return -EINVAL;
6329 }
6330
6331 /* Blow away unused ports. This happens when LLD can't
6332 * determine the exact number of ports to allocate at
6333 * allocation time.
6334 */
6335 for (i = host->n_ports; host->ports[i]; i++)
6336 kfree(host->ports[i]);
6337
6338 /* give ports names and add SCSI hosts */
6339 for (i = 0; i < host->n_ports; i++)
6340 host->ports[i]->print_id = ata_print_id++;
6341
6342 rc = ata_scsi_add_hosts(host, sht);
6343 if (rc)
6344 return rc;
6345
fafbae87
TH
6346 /* associate with ACPI nodes */
6347 ata_acpi_associate(host);
6348
f3187195
TH
6349 /* set cable, sata_spd_limit and report */
6350 for (i = 0; i < host->n_ports; i++) {
6351 struct ata_port *ap = host->ports[i];
6352 int irq_line;
6353 u32 scontrol;
6354 unsigned long xfer_mask;
6355
6356 /* set SATA cable type if still unset */
6357 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6358 ap->cbl = ATA_CBL_SATA;
6359
6360 /* init sata_spd_limit to the current value */
6361 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6362 int spd = (scontrol >> 4) & 0xf;
afe3cc51
TH
6363 if (spd)
6364 ap->hw_sata_spd_limit &= (1 << spd) - 1;
f3187195
TH
6365 }
6366 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6367
6368 /* report the secondary IRQ for second channel legacy */
6369 irq_line = host->irq;
6370 if (i == 1 && host->irq2)
6371 irq_line = host->irq2;
6372
6373 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6374 ap->udma_mask);
6375
6376 /* print per-port info to dmesg */
6377 if (!ata_port_is_dummy(ap))
6378 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6379 "ctl 0x%p bmdma 0x%p irq %d\n",
a16abc0b 6380 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195
TH
6381 ata_mode_string(xfer_mask),
6382 ap->ioaddr.cmd_addr,
6383 ap->ioaddr.ctl_addr,
6384 ap->ioaddr.bmdma_addr,
6385 irq_line);
6386 else
6387 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6388 }
6389
6390 /* perform each probe synchronously */
6391 DPRINTK("probe begin\n");
6392 for (i = 0; i < host->n_ports; i++) {
6393 struct ata_port *ap = host->ports[i];
6394 int rc;
6395
6396 /* probe */
6397 if (ap->ops->error_handler) {
6398 struct ata_eh_info *ehi = &ap->eh_info;
6399 unsigned long flags;
6400
6401 ata_port_probe(ap);
6402
6403 /* kick EH for boot probing */
6404 spin_lock_irqsave(ap->lock, flags);
6405
6406 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6407 ehi->action |= ATA_EH_SOFTRESET;
6408 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6409
f4d6d004 6410 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6411 ap->pflags |= ATA_PFLAG_LOADING;
6412 ata_port_schedule_eh(ap);
6413
6414 spin_unlock_irqrestore(ap->lock, flags);
6415
6416 /* wait for EH to finish */
6417 ata_port_wait_eh(ap);
6418 } else {
6419 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6420 rc = ata_bus_probe(ap);
6421 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6422
6423 if (rc) {
6424 /* FIXME: do something useful here?
6425 * Current libata behavior will
6426 * tear down everything when
6427 * the module is removed
6428 * or the h/w is unplugged.
6429 */
6430 }
6431 }
6432 }
6433
6434 /* probes are done, now scan each port's disk(s) */
6435 DPRINTK("host probe begin\n");
6436 for (i = 0; i < host->n_ports; i++) {
6437 struct ata_port *ap = host->ports[i];
6438
6439 ata_scsi_scan_host(ap);
6440 }
6441
6442 return 0;
6443}
6444
f5cda257
TH
6445/**
6446 * ata_host_activate - start host, request IRQ and register it
6447 * @host: target ATA host
6448 * @irq: IRQ to request
6449 * @irq_handler: irq_handler used when requesting IRQ
6450 * @irq_flags: irq_flags used when requesting IRQ
6451 * @sht: scsi_host_template to use when registering the host
6452 *
6453 * After allocating an ATA host and initializing it, most libata
6454 * LLDs perform three steps to activate the host - start host,
6455 * request IRQ and register it. This helper takes necessasry
6456 * arguments and performs the three steps in one go.
6457 *
6458 * LOCKING:
6459 * Inherited from calling layer (may sleep).
6460 *
6461 * RETURNS:
6462 * 0 on success, -errno otherwise.
6463 */
6464int ata_host_activate(struct ata_host *host, int irq,
6465 irq_handler_t irq_handler, unsigned long irq_flags,
6466 struct scsi_host_template *sht)
6467{
6468 int rc;
6469
6470 rc = ata_host_start(host);
6471 if (rc)
6472 return rc;
6473
6474 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6475 dev_driver_string(host->dev), host);
6476 if (rc)
6477 return rc;
6478
4031826b
TH
6479 /* Used to print device info at probe */
6480 host->irq = irq;
6481
f5cda257
TH
6482 rc = ata_host_register(host, sht);
6483 /* if failed, just free the IRQ and leave ports alone */
6484 if (rc)
6485 devm_free_irq(host->dev, irq, host);
6486
6487 return rc;
6488}
6489
720ba126
TH
6490/**
6491 * ata_port_detach - Detach ATA port in prepration of device removal
6492 * @ap: ATA port to be detached
6493 *
6494 * Detach all ATA devices and the associated SCSI devices of @ap;
6495 * then, remove the associated SCSI host. @ap is guaranteed to
6496 * be quiescent on return from this function.
6497 *
6498 * LOCKING:
6499 * Kernel thread context (may sleep).
6500 */
6501void ata_port_detach(struct ata_port *ap)
6502{
6503 unsigned long flags;
6504 int i;
6505
6506 if (!ap->ops->error_handler)
c3cf30a9 6507 goto skip_eh;
720ba126
TH
6508
6509 /* tell EH we're leaving & flush EH */
ba6a1308 6510 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6511 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6512 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6513
6514 ata_port_wait_eh(ap);
6515
6516 /* EH is now guaranteed to see UNLOADING, so no new device
6517 * will be attached. Disable all existing devices.
6518 */
ba6a1308 6519 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
6520
6521 for (i = 0; i < ATA_MAX_DEVICES; i++)
6522 ata_dev_disable(&ap->device[i]);
6523
ba6a1308 6524 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6525
6526 /* Final freeze & EH. All in-flight commands are aborted. EH
6527 * will be skipped and retrials will be terminated with bad
6528 * target.
6529 */
ba6a1308 6530 spin_lock_irqsave(ap->lock, flags);
720ba126 6531 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6532 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6533
6534 ata_port_wait_eh(ap);
45a66c1c 6535 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6536
c3cf30a9 6537 skip_eh:
720ba126 6538 /* remove the associated SCSI host */
cca3974e 6539 scsi_remove_host(ap->scsi_host);
720ba126
TH
6540}
6541
0529c159
TH
6542/**
6543 * ata_host_detach - Detach all ports of an ATA host
6544 * @host: Host to detach
6545 *
6546 * Detach all ports of @host.
6547 *
6548 * LOCKING:
6549 * Kernel thread context (may sleep).
6550 */
6551void ata_host_detach(struct ata_host *host)
6552{
6553 int i;
6554
6555 for (i = 0; i < host->n_ports; i++)
6556 ata_port_detach(host->ports[i]);
6557}
6558
1da177e4
LT
6559/**
6560 * ata_std_ports - initialize ioaddr with standard port offsets.
6561 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6562 *
6563 * Utility function which initializes data_addr, error_addr,
6564 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6565 * device_addr, status_addr, and command_addr to standard offsets
6566 * relative to cmd_addr.
6567 *
6568 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6569 */
0baab86b 6570
1da177e4
LT
6571void ata_std_ports(struct ata_ioports *ioaddr)
6572{
6573 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6574 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6575 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6576 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6577 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6578 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6579 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6580 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6581 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6582 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6583}
6584
0baab86b 6585
374b1873
JG
6586#ifdef CONFIG_PCI
6587
1da177e4
LT
6588/**
6589 * ata_pci_remove_one - PCI layer callback for device removal
6590 * @pdev: PCI device that was removed
6591 *
b878ca5d
TH
6592 * PCI layer indicates to libata via this hook that hot-unplug or
6593 * module unload event has occurred. Detach all ports. Resource
6594 * release is handled via devres.
1da177e4
LT
6595 *
6596 * LOCKING:
6597 * Inherited from PCI layer (may sleep).
6598 */
f0d36efd 6599void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6600{
6601 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6602 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6603
b878ca5d 6604 ata_host_detach(host);
1da177e4
LT
6605}
6606
6607/* move to PCI subsystem */
057ace5e 6608int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6609{
6610 unsigned long tmp = 0;
6611
6612 switch (bits->width) {
6613 case 1: {
6614 u8 tmp8 = 0;
6615 pci_read_config_byte(pdev, bits->reg, &tmp8);
6616 tmp = tmp8;
6617 break;
6618 }
6619 case 2: {
6620 u16 tmp16 = 0;
6621 pci_read_config_word(pdev, bits->reg, &tmp16);
6622 tmp = tmp16;
6623 break;
6624 }
6625 case 4: {
6626 u32 tmp32 = 0;
6627 pci_read_config_dword(pdev, bits->reg, &tmp32);
6628 tmp = tmp32;
6629 break;
6630 }
6631
6632 default:
6633 return -EINVAL;
6634 }
6635
6636 tmp &= bits->mask;
6637
6638 return (tmp == bits->val) ? 1 : 0;
6639}
9b847548 6640
6ffa01d8 6641#ifdef CONFIG_PM
3c5100c1 6642void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6643{
6644 pci_save_state(pdev);
4c90d971 6645 pci_disable_device(pdev);
500530f6 6646
4c90d971 6647 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6648 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6649}
6650
553c4aa6 6651int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6652{
553c4aa6
TH
6653 int rc;
6654
9b847548
JA
6655 pci_set_power_state(pdev, PCI_D0);
6656 pci_restore_state(pdev);
553c4aa6 6657
b878ca5d 6658 rc = pcim_enable_device(pdev);
553c4aa6
TH
6659 if (rc) {
6660 dev_printk(KERN_ERR, &pdev->dev,
6661 "failed to enable device after resume (%d)\n", rc);
6662 return rc;
6663 }
6664
9b847548 6665 pci_set_master(pdev);
553c4aa6 6666 return 0;
500530f6
TH
6667}
6668
3c5100c1 6669int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6670{
cca3974e 6671 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6672 int rc = 0;
6673
cca3974e 6674 rc = ata_host_suspend(host, mesg);
500530f6
TH
6675 if (rc)
6676 return rc;
6677
3c5100c1 6678 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6679
6680 return 0;
6681}
6682
6683int ata_pci_device_resume(struct pci_dev *pdev)
6684{
cca3974e 6685 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6686 int rc;
500530f6 6687
553c4aa6
TH
6688 rc = ata_pci_device_do_resume(pdev);
6689 if (rc == 0)
6690 ata_host_resume(host);
6691 return rc;
9b847548 6692}
6ffa01d8
TH
6693#endif /* CONFIG_PM */
6694
1da177e4
LT
6695#endif /* CONFIG_PCI */
6696
6697
1da177e4
LT
6698static int __init ata_init(void)
6699{
a8601e5f 6700 ata_probe_timeout *= HZ;
1da177e4
LT
6701 ata_wq = create_workqueue("ata");
6702 if (!ata_wq)
6703 return -ENOMEM;
6704
453b07ac
TH
6705 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6706 if (!ata_aux_wq) {
6707 destroy_workqueue(ata_wq);
6708 return -ENOMEM;
6709 }
6710
1da177e4
LT
6711 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6712 return 0;
6713}
6714
6715static void __exit ata_exit(void)
6716{
6717 destroy_workqueue(ata_wq);
453b07ac 6718 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6719}
6720
a4625085 6721subsys_initcall(ata_init);
1da177e4
LT
6722module_exit(ata_exit);
6723
67846b30 6724static unsigned long ratelimit_time;
34af946a 6725static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6726
6727int ata_ratelimit(void)
6728{
6729 int rc;
6730 unsigned long flags;
6731
6732 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6733
6734 if (time_after(jiffies, ratelimit_time)) {
6735 rc = 1;
6736 ratelimit_time = jiffies + (HZ/5);
6737 } else
6738 rc = 0;
6739
6740 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6741
6742 return rc;
6743}
6744
c22daff4
TH
6745/**
6746 * ata_wait_register - wait until register value changes
6747 * @reg: IO-mapped register
6748 * @mask: Mask to apply to read register value
6749 * @val: Wait condition
6750 * @interval_msec: polling interval in milliseconds
6751 * @timeout_msec: timeout in milliseconds
6752 *
6753 * Waiting for some bits of register to change is a common
6754 * operation for ATA controllers. This function reads 32bit LE
6755 * IO-mapped register @reg and tests for the following condition.
6756 *
6757 * (*@reg & mask) != val
6758 *
6759 * If the condition is met, it returns; otherwise, the process is
6760 * repeated after @interval_msec until timeout.
6761 *
6762 * LOCKING:
6763 * Kernel thread context (may sleep)
6764 *
6765 * RETURNS:
6766 * The final register value.
6767 */
6768u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6769 unsigned long interval_msec,
6770 unsigned long timeout_msec)
6771{
6772 unsigned long timeout;
6773 u32 tmp;
6774
6775 tmp = ioread32(reg);
6776
6777 /* Calculate timeout _after_ the first read to make sure
6778 * preceding writes reach the controller before starting to
6779 * eat away the timeout.
6780 */
6781 timeout = jiffies + (timeout_msec * HZ) / 1000;
6782
6783 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6784 msleep(interval_msec);
6785 tmp = ioread32(reg);
6786 }
6787
6788 return tmp;
6789}
6790
dd5b06c4
TH
6791/*
6792 * Dummy port_ops
6793 */
6794static void ata_dummy_noret(struct ata_port *ap) { }
6795static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6796static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6797
6798static u8 ata_dummy_check_status(struct ata_port *ap)
6799{
6800 return ATA_DRDY;
6801}
6802
6803static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6804{
6805 return AC_ERR_SYSTEM;
6806}
6807
6808const struct ata_port_operations ata_dummy_port_ops = {
6809 .port_disable = ata_port_disable,
6810 .check_status = ata_dummy_check_status,
6811 .check_altstatus = ata_dummy_check_status,
6812 .dev_select = ata_noop_dev_select,
6813 .qc_prep = ata_noop_qc_prep,
6814 .qc_issue = ata_dummy_qc_issue,
6815 .freeze = ata_dummy_noret,
6816 .thaw = ata_dummy_noret,
6817 .error_handler = ata_dummy_noret,
6818 .post_internal_cmd = ata_dummy_qc_noret,
6819 .irq_clear = ata_dummy_noret,
6820 .port_start = ata_dummy_ret0,
6821 .port_stop = ata_dummy_noret,
6822};
6823
21b0ad4f
TH
6824const struct ata_port_info ata_dummy_port_info = {
6825 .port_ops = &ata_dummy_port_ops,
6826};
6827
1da177e4
LT
6828/*
6829 * libata is essentially a library of internal helper functions for
6830 * low-level ATA host controller drivers. As such, the API/ABI is
6831 * likely to change as new drivers are added and updated.
6832 * Do not depend on ABI/API stability.
6833 */
6834
e9c83914
TH
6835EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6836EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6837EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6838EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6839EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
6840EXPORT_SYMBOL_GPL(ata_std_bios_param);
6841EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6842EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6843EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6844EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 6845EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6846EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6847EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6848EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6849EXPORT_SYMBOL_GPL(ata_sg_init);
6850EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6851EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6852EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6853EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6854EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6855EXPORT_SYMBOL_GPL(ata_tf_load);
6856EXPORT_SYMBOL_GPL(ata_tf_read);
6857EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6858EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 6859EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
6860EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6861EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6862EXPORT_SYMBOL_GPL(ata_check_status);
6863EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6864EXPORT_SYMBOL_GPL(ata_exec_command);
6865EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 6866EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 6867EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 6868EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
6869EXPORT_SYMBOL_GPL(ata_data_xfer);
6870EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6871EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 6872EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 6873EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6874EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6875EXPORT_SYMBOL_GPL(ata_bmdma_start);
6876EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6877EXPORT_SYMBOL_GPL(ata_bmdma_status);
6878EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6879EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6880EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6881EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6882EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6883EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6884EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6885EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6886EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6887EXPORT_SYMBOL_GPL(sata_phy_debounce);
6888EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6889EXPORT_SYMBOL_GPL(sata_phy_reset);
6890EXPORT_SYMBOL_GPL(__sata_phy_reset);
6891EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6892EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6893EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6894EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6895EXPORT_SYMBOL_GPL(sata_std_hardreset);
6896EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6897EXPORT_SYMBOL_GPL(ata_dev_classify);
6898EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6899EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6900EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6901EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6902EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 6903EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 6904EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6905EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6906EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6907EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6908EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6909EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 6910EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6911EXPORT_SYMBOL_GPL(sata_scr_valid);
6912EXPORT_SYMBOL_GPL(sata_scr_read);
6913EXPORT_SYMBOL_GPL(sata_scr_write);
6914EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6915EXPORT_SYMBOL_GPL(ata_port_online);
6916EXPORT_SYMBOL_GPL(ata_port_offline);
6ffa01d8 6917#ifdef CONFIG_PM
cca3974e
JG
6918EXPORT_SYMBOL_GPL(ata_host_suspend);
6919EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6920#endif /* CONFIG_PM */
6a62a04d
TH
6921EXPORT_SYMBOL_GPL(ata_id_string);
6922EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 6923EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
6924EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6925
1bc4ccff 6926EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6927EXPORT_SYMBOL_GPL(ata_timing_compute);
6928EXPORT_SYMBOL_GPL(ata_timing_merge);
6929
1da177e4
LT
6930#ifdef CONFIG_PCI
6931EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 6932EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 6933EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 6934EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
6935EXPORT_SYMBOL_GPL(ata_pci_init_one);
6936EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6937#ifdef CONFIG_PM
500530f6
TH
6938EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6939EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6940EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6941EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6942#endif /* CONFIG_PM */
67951ade
AC
6943EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6944EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6945#endif /* CONFIG_PCI */
9b847548 6946
b64bbc39
TH
6947EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6948EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6949EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
ece1d636 6950EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6951EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6952EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6953EXPORT_SYMBOL_GPL(ata_port_freeze);
6954EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6955EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6956EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6957EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6958EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
6959EXPORT_SYMBOL_GPL(ata_irq_on);
6960EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6961EXPORT_SYMBOL_GPL(ata_irq_ack);
6962EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 6963EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
6964
6965EXPORT_SYMBOL_GPL(ata_cable_40wire);
6966EXPORT_SYMBOL_GPL(ata_cable_80wire);
6967EXPORT_SYMBOL_GPL(ata_cable_unknown);
6968EXPORT_SYMBOL_GPL(ata_cable_sata);