[PATCH] libata: separate out rw ATA taskfile building into ata_build_rw_tf()
[linux-block.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
d7bb4cc7 62/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
63const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 66
3373efd8
TH
67static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
71
72static unsigned int ata_unique_id = 1;
73static struct workqueue_struct *ata_wq;
74
453b07ac
TH
75struct workqueue_struct *ata_aux_wq;
76
418dc1f5 77int atapi_enabled = 1;
1623c81e
JG
78module_param(atapi_enabled, int, 0444);
79MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80
95de719a
AL
81int atapi_dmadir = 0;
82module_param(atapi_dmadir, int, 0444);
83MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
84
c3c013a2
JG
85int libata_fua = 0;
86module_param_named(fua, libata_fua, int, 0444);
87MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
88
a8601e5f
AM
89static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90module_param(ata_probe_timeout, int, 0444);
91MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
92
1da177e4
LT
93MODULE_AUTHOR("Jeff Garzik");
94MODULE_DESCRIPTION("Library module for ATA devices");
95MODULE_LICENSE("GPL");
96MODULE_VERSION(DRV_VERSION);
97
0baab86b 98
1da177e4
LT
99/**
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
104 *
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
107 *
108 * LOCKING:
109 * Inherited from caller.
110 */
111
057ace5e 112void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
113{
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
119
120 fis[4] = tf->lbal;
121 fis[5] = tf->lbam;
122 fis[6] = tf->lbah;
123 fis[7] = tf->device;
124
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
129
130 fis[12] = tf->nsect;
131 fis[13] = tf->hob_nsect;
132 fis[14] = 0;
133 fis[15] = tf->ctl;
134
135 fis[16] = 0;
136 fis[17] = 0;
137 fis[18] = 0;
138 fis[19] = 0;
139}
140
141/**
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
145 *
e12a1be6 146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
147 *
148 * LOCKING:
149 * Inherited from caller.
150 */
151
057ace5e 152void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
153{
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
156
157 tf->lbal = fis[4];
158 tf->lbam = fis[5];
159 tf->lbah = fis[6];
160 tf->device = fis[7];
161
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
165
166 tf->nsect = fis[12];
167 tf->hob_nsect = fis[13];
168}
169
8cbd6df1
AL
170static const u8 ata_rw_cmds[] = {
171 /* pio multi */
172 ATA_CMD_READ_MULTI,
173 ATA_CMD_WRITE_MULTI,
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
176 0,
177 0,
178 0,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
180 /* pio */
181 ATA_CMD_PIO_READ,
182 ATA_CMD_PIO_WRITE,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
185 0,
186 0,
187 0,
188 0,
8cbd6df1
AL
189 /* dma */
190 ATA_CMD_READ,
191 ATA_CMD_WRITE,
192 ATA_CMD_READ_EXT,
9a3dccc4
TH
193 ATA_CMD_WRITE_EXT,
194 0,
195 0,
196 0,
197 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 198};
1da177e4
LT
199
200/**
8cbd6df1 201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
202 * @tf: command to examine and configure
203 * @dev: device tf belongs to
1da177e4 204 *
2e9edbf8 205 * Examine the device configuration and tf->flags to calculate
8cbd6df1 206 * the proper read/write commands and protocol to use.
1da177e4
LT
207 *
208 * LOCKING:
209 * caller.
210 */
bd056d7e 211static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 212{
9a3dccc4 213 u8 cmd;
1da177e4 214
9a3dccc4 215 int index, fua, lba48, write;
2e9edbf8 216
9a3dccc4 217 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
218 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
219 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 220
8cbd6df1
AL
221 if (dev->flags & ATA_DFLAG_PIO) {
222 tf->protocol = ATA_PROT_PIO;
9a3dccc4 223 index = dev->multi_count ? 0 : 8;
bd056d7e 224 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
225 /* Unable to use DMA due to host limitation */
226 tf->protocol = ATA_PROT_PIO;
0565c26d 227 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
228 } else {
229 tf->protocol = ATA_PROT_DMA;
9a3dccc4 230 index = 16;
8cbd6df1 231 }
1da177e4 232
9a3dccc4
TH
233 cmd = ata_rw_cmds[index + fua + lba48 + write];
234 if (cmd) {
235 tf->command = cmd;
236 return 0;
237 }
238 return -1;
1da177e4
LT
239}
240
35b649fe
TH
241/**
242 * ata_tf_read_block - Read block address from ATA taskfile
243 * @tf: ATA taskfile of interest
244 * @dev: ATA device @tf belongs to
245 *
246 * LOCKING:
247 * None.
248 *
249 * Read block address from @tf. This function can handle all
250 * three address formats - LBA, LBA48 and CHS. tf->protocol and
251 * flags select the address format to use.
252 *
253 * RETURNS:
254 * Block address read from @tf.
255 */
256u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
257{
258 u64 block = 0;
259
260 if (tf->flags & ATA_TFLAG_LBA) {
261 if (tf->flags & ATA_TFLAG_LBA48) {
262 block |= (u64)tf->hob_lbah << 40;
263 block |= (u64)tf->hob_lbam << 32;
264 block |= tf->hob_lbal << 24;
265 } else
266 block |= (tf->device & 0xf) << 24;
267
268 block |= tf->lbah << 16;
269 block |= tf->lbam << 8;
270 block |= tf->lbal;
271 } else {
272 u32 cyl, head, sect;
273
274 cyl = tf->lbam | (tf->lbah << 8);
275 head = tf->device & 0xf;
276 sect = tf->lbal;
277
278 block = (cyl * dev->heads + head) * dev->sectors + sect;
279 }
280
281 return block;
282}
283
bd056d7e
TH
284/**
285 * ata_build_rw_tf - Build ATA taskfile for given read/write request
286 * @tf: Target ATA taskfile
287 * @dev: ATA device @tf belongs to
288 * @block: Block address
289 * @n_block: Number of blocks
290 * @tf_flags: RW/FUA etc...
291 * @tag: tag
292 *
293 * LOCKING:
294 * None.
295 *
296 * Build ATA taskfile @tf for read/write request described by
297 * @block, @n_block, @tf_flags and @tag on @dev.
298 *
299 * RETURNS:
300 *
301 * 0 on success, -ERANGE if the request is too large for @dev,
302 * -EINVAL if the request is invalid.
303 */
304int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
305 u64 block, u32 n_block, unsigned int tf_flags,
306 unsigned int tag)
307{
308 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
309 tf->flags |= tf_flags;
310
311 if ((dev->flags & (ATA_DFLAG_PIO | ATA_DFLAG_NCQ_OFF |
312 ATA_DFLAG_NCQ)) == ATA_DFLAG_NCQ) {
313 /* yay, NCQ */
314 if (!lba_48_ok(block, n_block))
315 return -ERANGE;
316
317 tf->protocol = ATA_PROT_NCQ;
318 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
319
320 if (tf->flags & ATA_TFLAG_WRITE)
321 tf->command = ATA_CMD_FPDMA_WRITE;
322 else
323 tf->command = ATA_CMD_FPDMA_READ;
324
325 tf->nsect = tag << 3;
326 tf->hob_feature = (n_block >> 8) & 0xff;
327 tf->feature = n_block & 0xff;
328
329 tf->hob_lbah = (block >> 40) & 0xff;
330 tf->hob_lbam = (block >> 32) & 0xff;
331 tf->hob_lbal = (block >> 24) & 0xff;
332 tf->lbah = (block >> 16) & 0xff;
333 tf->lbam = (block >> 8) & 0xff;
334 tf->lbal = block & 0xff;
335
336 tf->device = 1 << 6;
337 if (tf->flags & ATA_TFLAG_FUA)
338 tf->device |= 1 << 7;
339 } else if (dev->flags & ATA_DFLAG_LBA) {
340 tf->flags |= ATA_TFLAG_LBA;
341
342 if (lba_28_ok(block, n_block)) {
343 /* use LBA28 */
344 tf->device |= (block >> 24) & 0xf;
345 } else if (lba_48_ok(block, n_block)) {
346 if (!(dev->flags & ATA_DFLAG_LBA48))
347 return -ERANGE;
348
349 /* use LBA48 */
350 tf->flags |= ATA_TFLAG_LBA48;
351
352 tf->hob_nsect = (n_block >> 8) & 0xff;
353
354 tf->hob_lbah = (block >> 40) & 0xff;
355 tf->hob_lbam = (block >> 32) & 0xff;
356 tf->hob_lbal = (block >> 24) & 0xff;
357 } else
358 /* request too large even for LBA48 */
359 return -ERANGE;
360
361 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
362 return -EINVAL;
363
364 tf->nsect = n_block & 0xff;
365
366 tf->lbah = (block >> 16) & 0xff;
367 tf->lbam = (block >> 8) & 0xff;
368 tf->lbal = block & 0xff;
369
370 tf->device |= ATA_LBA;
371 } else {
372 /* CHS */
373 u32 sect, head, cyl, track;
374
375 /* The request -may- be too large for CHS addressing. */
376 if (!lba_28_ok(block, n_block))
377 return -ERANGE;
378
379 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
380 return -EINVAL;
381
382 /* Convert LBA to CHS */
383 track = (u32)block / dev->sectors;
384 cyl = track / dev->heads;
385 head = track % dev->heads;
386 sect = (u32)block % dev->sectors + 1;
387
388 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
389 (u32)block, track, cyl, head, sect);
390
391 /* Check whether the converted CHS can fit.
392 Cylinder: 0-65535
393 Head: 0-15
394 Sector: 1-255*/
395 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
396 return -ERANGE;
397
398 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
399 tf->lbal = sect;
400 tf->lbam = cyl;
401 tf->lbah = cyl >> 8;
402 tf->device |= head;
403 }
404
405 return 0;
406}
407
cb95d562
TH
408/**
409 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
410 * @pio_mask: pio_mask
411 * @mwdma_mask: mwdma_mask
412 * @udma_mask: udma_mask
413 *
414 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
415 * unsigned int xfer_mask.
416 *
417 * LOCKING:
418 * None.
419 *
420 * RETURNS:
421 * Packed xfer_mask.
422 */
423static unsigned int ata_pack_xfermask(unsigned int pio_mask,
424 unsigned int mwdma_mask,
425 unsigned int udma_mask)
426{
427 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
428 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
429 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
430}
431
c0489e4e
TH
432/**
433 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
434 * @xfer_mask: xfer_mask to unpack
435 * @pio_mask: resulting pio_mask
436 * @mwdma_mask: resulting mwdma_mask
437 * @udma_mask: resulting udma_mask
438 *
439 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
440 * Any NULL distination masks will be ignored.
441 */
442static void ata_unpack_xfermask(unsigned int xfer_mask,
443 unsigned int *pio_mask,
444 unsigned int *mwdma_mask,
445 unsigned int *udma_mask)
446{
447 if (pio_mask)
448 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
449 if (mwdma_mask)
450 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
451 if (udma_mask)
452 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
453}
454
cb95d562 455static const struct ata_xfer_ent {
be9a50c8 456 int shift, bits;
cb95d562
TH
457 u8 base;
458} ata_xfer_tbl[] = {
459 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
460 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
461 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
462 { -1, },
463};
464
465/**
466 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
467 * @xfer_mask: xfer_mask of interest
468 *
469 * Return matching XFER_* value for @xfer_mask. Only the highest
470 * bit of @xfer_mask is considered.
471 *
472 * LOCKING:
473 * None.
474 *
475 * RETURNS:
476 * Matching XFER_* value, 0 if no match found.
477 */
478static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
479{
480 int highbit = fls(xfer_mask) - 1;
481 const struct ata_xfer_ent *ent;
482
483 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
484 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
485 return ent->base + highbit - ent->shift;
486 return 0;
487}
488
489/**
490 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
491 * @xfer_mode: XFER_* of interest
492 *
493 * Return matching xfer_mask for @xfer_mode.
494 *
495 * LOCKING:
496 * None.
497 *
498 * RETURNS:
499 * Matching xfer_mask, 0 if no match found.
500 */
501static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
502{
503 const struct ata_xfer_ent *ent;
504
505 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
506 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
507 return 1 << (ent->shift + xfer_mode - ent->base);
508 return 0;
509}
510
511/**
512 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
513 * @xfer_mode: XFER_* of interest
514 *
515 * Return matching xfer_shift for @xfer_mode.
516 *
517 * LOCKING:
518 * None.
519 *
520 * RETURNS:
521 * Matching xfer_shift, -1 if no match found.
522 */
523static int ata_xfer_mode2shift(unsigned int xfer_mode)
524{
525 const struct ata_xfer_ent *ent;
526
527 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
528 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
529 return ent->shift;
530 return -1;
531}
532
1da177e4 533/**
1da7b0d0
TH
534 * ata_mode_string - convert xfer_mask to string
535 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
536 *
537 * Determine string which represents the highest speed
1da7b0d0 538 * (highest bit in @modemask).
1da177e4
LT
539 *
540 * LOCKING:
541 * None.
542 *
543 * RETURNS:
544 * Constant C string representing highest speed listed in
1da7b0d0 545 * @mode_mask, or the constant C string "<n/a>".
1da177e4 546 */
1da7b0d0 547static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 548{
75f554bc
TH
549 static const char * const xfer_mode_str[] = {
550 "PIO0",
551 "PIO1",
552 "PIO2",
553 "PIO3",
554 "PIO4",
b352e57d
AC
555 "PIO5",
556 "PIO6",
75f554bc
TH
557 "MWDMA0",
558 "MWDMA1",
559 "MWDMA2",
b352e57d
AC
560 "MWDMA3",
561 "MWDMA4",
75f554bc
TH
562 "UDMA/16",
563 "UDMA/25",
564 "UDMA/33",
565 "UDMA/44",
566 "UDMA/66",
567 "UDMA/100",
568 "UDMA/133",
569 "UDMA7",
570 };
1da7b0d0 571 int highbit;
1da177e4 572
1da7b0d0
TH
573 highbit = fls(xfer_mask) - 1;
574 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
575 return xfer_mode_str[highbit];
1da177e4 576 return "<n/a>";
1da177e4
LT
577}
578
4c360c81
TH
579static const char *sata_spd_string(unsigned int spd)
580{
581 static const char * const spd_str[] = {
582 "1.5 Gbps",
583 "3.0 Gbps",
584 };
585
586 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
587 return "<unknown>";
588 return spd_str[spd - 1];
589}
590
3373efd8 591void ata_dev_disable(struct ata_device *dev)
0b8efb0a 592{
0dd4b21f 593 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 594 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
595 dev->class++;
596 }
597}
598
1da177e4
LT
599/**
600 * ata_pio_devchk - PATA device presence detection
601 * @ap: ATA channel to examine
602 * @device: Device to examine (starting at zero)
603 *
604 * This technique was originally described in
605 * Hale Landis's ATADRVR (www.ata-atapi.com), and
606 * later found its way into the ATA/ATAPI spec.
607 *
608 * Write a pattern to the ATA shadow registers,
609 * and if a device is present, it will respond by
610 * correctly storing and echoing back the
611 * ATA shadow register contents.
612 *
613 * LOCKING:
614 * caller.
615 */
616
617static unsigned int ata_pio_devchk(struct ata_port *ap,
618 unsigned int device)
619{
620 struct ata_ioports *ioaddr = &ap->ioaddr;
621 u8 nsect, lbal;
622
623 ap->ops->dev_select(ap, device);
624
625 outb(0x55, ioaddr->nsect_addr);
626 outb(0xaa, ioaddr->lbal_addr);
627
628 outb(0xaa, ioaddr->nsect_addr);
629 outb(0x55, ioaddr->lbal_addr);
630
631 outb(0x55, ioaddr->nsect_addr);
632 outb(0xaa, ioaddr->lbal_addr);
633
634 nsect = inb(ioaddr->nsect_addr);
635 lbal = inb(ioaddr->lbal_addr);
636
637 if ((nsect == 0x55) && (lbal == 0xaa))
638 return 1; /* we found a device */
639
640 return 0; /* nothing found */
641}
642
643/**
644 * ata_mmio_devchk - PATA device presence detection
645 * @ap: ATA channel to examine
646 * @device: Device to examine (starting at zero)
647 *
648 * This technique was originally described in
649 * Hale Landis's ATADRVR (www.ata-atapi.com), and
650 * later found its way into the ATA/ATAPI spec.
651 *
652 * Write a pattern to the ATA shadow registers,
653 * and if a device is present, it will respond by
654 * correctly storing and echoing back the
655 * ATA shadow register contents.
656 *
657 * LOCKING:
658 * caller.
659 */
660
661static unsigned int ata_mmio_devchk(struct ata_port *ap,
662 unsigned int device)
663{
664 struct ata_ioports *ioaddr = &ap->ioaddr;
665 u8 nsect, lbal;
666
667 ap->ops->dev_select(ap, device);
668
669 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
670 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
671
672 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
673 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
674
675 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
676 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
677
678 nsect = readb((void __iomem *) ioaddr->nsect_addr);
679 lbal = readb((void __iomem *) ioaddr->lbal_addr);
680
681 if ((nsect == 0x55) && (lbal == 0xaa))
682 return 1; /* we found a device */
683
684 return 0; /* nothing found */
685}
686
687/**
688 * ata_devchk - PATA device presence detection
689 * @ap: ATA channel to examine
690 * @device: Device to examine (starting at zero)
691 *
692 * Dispatch ATA device presence detection, depending
693 * on whether we are using PIO or MMIO to talk to the
694 * ATA shadow registers.
695 *
696 * LOCKING:
697 * caller.
698 */
699
700static unsigned int ata_devchk(struct ata_port *ap,
701 unsigned int device)
702{
703 if (ap->flags & ATA_FLAG_MMIO)
704 return ata_mmio_devchk(ap, device);
705 return ata_pio_devchk(ap, device);
706}
707
708/**
709 * ata_dev_classify - determine device type based on ATA-spec signature
710 * @tf: ATA taskfile register set for device to be identified
711 *
712 * Determine from taskfile register contents whether a device is
713 * ATA or ATAPI, as per "Signature and persistence" section
714 * of ATA/PI spec (volume 1, sect 5.14).
715 *
716 * LOCKING:
717 * None.
718 *
719 * RETURNS:
720 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
721 * the event of failure.
722 */
723
057ace5e 724unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
725{
726 /* Apple's open source Darwin code hints that some devices only
727 * put a proper signature into the LBA mid/high registers,
728 * So, we only check those. It's sufficient for uniqueness.
729 */
730
731 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
732 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
733 DPRINTK("found ATA device by sig\n");
734 return ATA_DEV_ATA;
735 }
736
737 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
738 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
739 DPRINTK("found ATAPI device by sig\n");
740 return ATA_DEV_ATAPI;
741 }
742
743 DPRINTK("unknown device\n");
744 return ATA_DEV_UNKNOWN;
745}
746
747/**
748 * ata_dev_try_classify - Parse returned ATA device signature
749 * @ap: ATA channel to examine
750 * @device: Device to examine (starting at zero)
b4dc7623 751 * @r_err: Value of error register on completion
1da177e4
LT
752 *
753 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
754 * an ATA/ATAPI-defined set of values is placed in the ATA
755 * shadow registers, indicating the results of device detection
756 * and diagnostics.
757 *
758 * Select the ATA device, and read the values from the ATA shadow
759 * registers. Then parse according to the Error register value,
760 * and the spec-defined values examined by ata_dev_classify().
761 *
762 * LOCKING:
763 * caller.
b4dc7623
TH
764 *
765 * RETURNS:
766 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
767 */
768
b4dc7623
TH
769static unsigned int
770ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 771{
1da177e4
LT
772 struct ata_taskfile tf;
773 unsigned int class;
774 u8 err;
775
776 ap->ops->dev_select(ap, device);
777
778 memset(&tf, 0, sizeof(tf));
779
1da177e4 780 ap->ops->tf_read(ap, &tf);
0169e284 781 err = tf.feature;
b4dc7623
TH
782 if (r_err)
783 *r_err = err;
1da177e4 784
93590859
AC
785 /* see if device passed diags: if master then continue and warn later */
786 if (err == 0 && device == 0)
787 /* diagnostic fail : do nothing _YET_ */
788 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
789 else if (err == 1)
1da177e4
LT
790 /* do nothing */ ;
791 else if ((device == 0) && (err == 0x81))
792 /* do nothing */ ;
793 else
b4dc7623 794 return ATA_DEV_NONE;
1da177e4 795
b4dc7623 796 /* determine if device is ATA or ATAPI */
1da177e4 797 class = ata_dev_classify(&tf);
b4dc7623 798
1da177e4 799 if (class == ATA_DEV_UNKNOWN)
b4dc7623 800 return ATA_DEV_NONE;
1da177e4 801 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
802 return ATA_DEV_NONE;
803 return class;
1da177e4
LT
804}
805
806/**
6a62a04d 807 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
808 * @id: IDENTIFY DEVICE results we will examine
809 * @s: string into which data is output
810 * @ofs: offset into identify device page
811 * @len: length of string to return. must be an even number.
812 *
813 * The strings in the IDENTIFY DEVICE page are broken up into
814 * 16-bit chunks. Run through the string, and output each
815 * 8-bit chunk linearly, regardless of platform.
816 *
817 * LOCKING:
818 * caller.
819 */
820
6a62a04d
TH
821void ata_id_string(const u16 *id, unsigned char *s,
822 unsigned int ofs, unsigned int len)
1da177e4
LT
823{
824 unsigned int c;
825
826 while (len > 0) {
827 c = id[ofs] >> 8;
828 *s = c;
829 s++;
830
831 c = id[ofs] & 0xff;
832 *s = c;
833 s++;
834
835 ofs++;
836 len -= 2;
837 }
838}
839
0e949ff3 840/**
6a62a04d 841 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
842 * @id: IDENTIFY DEVICE results we will examine
843 * @s: string into which data is output
844 * @ofs: offset into identify device page
845 * @len: length of string to return. must be an odd number.
846 *
6a62a04d 847 * This function is identical to ata_id_string except that it
0e949ff3
TH
848 * trims trailing spaces and terminates the resulting string with
849 * null. @len must be actual maximum length (even number) + 1.
850 *
851 * LOCKING:
852 * caller.
853 */
6a62a04d
TH
854void ata_id_c_string(const u16 *id, unsigned char *s,
855 unsigned int ofs, unsigned int len)
0e949ff3
TH
856{
857 unsigned char *p;
858
859 WARN_ON(!(len & 1));
860
6a62a04d 861 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
862
863 p = s + strnlen(s, len - 1);
864 while (p > s && p[-1] == ' ')
865 p--;
866 *p = '\0';
867}
0baab86b 868
2940740b
TH
869static u64 ata_id_n_sectors(const u16 *id)
870{
871 if (ata_id_has_lba(id)) {
872 if (ata_id_has_lba48(id))
873 return ata_id_u64(id, 100);
874 else
875 return ata_id_u32(id, 60);
876 } else {
877 if (ata_id_current_chs_valid(id))
878 return ata_id_u32(id, 57);
879 else
880 return id[1] * id[3] * id[6];
881 }
882}
883
0baab86b
EF
884/**
885 * ata_noop_dev_select - Select device 0/1 on ATA bus
886 * @ap: ATA channel to manipulate
887 * @device: ATA device (numbered from zero) to select
888 *
889 * This function performs no actual function.
890 *
891 * May be used as the dev_select() entry in ata_port_operations.
892 *
893 * LOCKING:
894 * caller.
895 */
1da177e4
LT
896void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
897{
898}
899
0baab86b 900
1da177e4
LT
901/**
902 * ata_std_dev_select - Select device 0/1 on ATA bus
903 * @ap: ATA channel to manipulate
904 * @device: ATA device (numbered from zero) to select
905 *
906 * Use the method defined in the ATA specification to
907 * make either device 0, or device 1, active on the
0baab86b
EF
908 * ATA channel. Works with both PIO and MMIO.
909 *
910 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
911 *
912 * LOCKING:
913 * caller.
914 */
915
916void ata_std_dev_select (struct ata_port *ap, unsigned int device)
917{
918 u8 tmp;
919
920 if (device == 0)
921 tmp = ATA_DEVICE_OBS;
922 else
923 tmp = ATA_DEVICE_OBS | ATA_DEV1;
924
925 if (ap->flags & ATA_FLAG_MMIO) {
926 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
927 } else {
928 outb(tmp, ap->ioaddr.device_addr);
929 }
930 ata_pause(ap); /* needed; also flushes, for mmio */
931}
932
933/**
934 * ata_dev_select - Select device 0/1 on ATA bus
935 * @ap: ATA channel to manipulate
936 * @device: ATA device (numbered from zero) to select
937 * @wait: non-zero to wait for Status register BSY bit to clear
938 * @can_sleep: non-zero if context allows sleeping
939 *
940 * Use the method defined in the ATA specification to
941 * make either device 0, or device 1, active on the
942 * ATA channel.
943 *
944 * This is a high-level version of ata_std_dev_select(),
945 * which additionally provides the services of inserting
946 * the proper pauses and status polling, where needed.
947 *
948 * LOCKING:
949 * caller.
950 */
951
952void ata_dev_select(struct ata_port *ap, unsigned int device,
953 unsigned int wait, unsigned int can_sleep)
954{
88574551 955 if (ata_msg_probe(ap))
0dd4b21f 956 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
88574551 957 "device %u, wait %u\n", ap->id, device, wait);
1da177e4
LT
958
959 if (wait)
960 ata_wait_idle(ap);
961
962 ap->ops->dev_select(ap, device);
963
964 if (wait) {
965 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
966 msleep(150);
967 ata_wait_idle(ap);
968 }
969}
970
971/**
972 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 973 * @id: IDENTIFY DEVICE page to dump
1da177e4 974 *
0bd3300a
TH
975 * Dump selected 16-bit words from the given IDENTIFY DEVICE
976 * page.
1da177e4
LT
977 *
978 * LOCKING:
979 * caller.
980 */
981
0bd3300a 982static inline void ata_dump_id(const u16 *id)
1da177e4
LT
983{
984 DPRINTK("49==0x%04x "
985 "53==0x%04x "
986 "63==0x%04x "
987 "64==0x%04x "
988 "75==0x%04x \n",
0bd3300a
TH
989 id[49],
990 id[53],
991 id[63],
992 id[64],
993 id[75]);
1da177e4
LT
994 DPRINTK("80==0x%04x "
995 "81==0x%04x "
996 "82==0x%04x "
997 "83==0x%04x "
998 "84==0x%04x \n",
0bd3300a
TH
999 id[80],
1000 id[81],
1001 id[82],
1002 id[83],
1003 id[84]);
1da177e4
LT
1004 DPRINTK("88==0x%04x "
1005 "93==0x%04x\n",
0bd3300a
TH
1006 id[88],
1007 id[93]);
1da177e4
LT
1008}
1009
cb95d562
TH
1010/**
1011 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1012 * @id: IDENTIFY data to compute xfer mask from
1013 *
1014 * Compute the xfermask for this device. This is not as trivial
1015 * as it seems if we must consider early devices correctly.
1016 *
1017 * FIXME: pre IDE drive timing (do we care ?).
1018 *
1019 * LOCKING:
1020 * None.
1021 *
1022 * RETURNS:
1023 * Computed xfermask
1024 */
1025static unsigned int ata_id_xfermask(const u16 *id)
1026{
1027 unsigned int pio_mask, mwdma_mask, udma_mask;
1028
1029 /* Usual case. Word 53 indicates word 64 is valid */
1030 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1031 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1032 pio_mask <<= 3;
1033 pio_mask |= 0x7;
1034 } else {
1035 /* If word 64 isn't valid then Word 51 high byte holds
1036 * the PIO timing number for the maximum. Turn it into
1037 * a mask.
1038 */
46767aeb
AC
1039 u8 mode = id[ATA_ID_OLD_PIO_MODES] & 0xFF;
1040 if (mode < 5) /* Valid PIO range */
1041 pio_mask = (2 << mode) - 1;
1042 else
1043 pio_mask = 1;
cb95d562
TH
1044
1045 /* But wait.. there's more. Design your standards by
1046 * committee and you too can get a free iordy field to
1047 * process. However its the speeds not the modes that
1048 * are supported... Note drivers using the timing API
1049 * will get this right anyway
1050 */
1051 }
1052
1053 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1054
b352e57d
AC
1055 if (ata_id_is_cfa(id)) {
1056 /*
1057 * Process compact flash extended modes
1058 */
1059 int pio = id[163] & 0x7;
1060 int dma = (id[163] >> 3) & 7;
1061
1062 if (pio)
1063 pio_mask |= (1 << 5);
1064 if (pio > 1)
1065 pio_mask |= (1 << 6);
1066 if (dma)
1067 mwdma_mask |= (1 << 3);
1068 if (dma > 1)
1069 mwdma_mask |= (1 << 4);
1070 }
1071
fb21f0d0
TH
1072 udma_mask = 0;
1073 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1074 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1075
1076 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1077}
1078
86e45b6b
TH
1079/**
1080 * ata_port_queue_task - Queue port_task
1081 * @ap: The ata_port to queue port_task for
e2a7f77a
RD
1082 * @fn: workqueue function to be scheduled
1083 * @data: data value to pass to workqueue function
1084 * @delay: delay time for workqueue function
86e45b6b
TH
1085 *
1086 * Schedule @fn(@data) for execution after @delay jiffies using
1087 * port_task. There is one port_task per port and it's the
1088 * user(low level driver)'s responsibility to make sure that only
1089 * one task is active at any given time.
1090 *
1091 * libata core layer takes care of synchronization between
1092 * port_task and EH. ata_port_queue_task() may be ignored for EH
1093 * synchronization.
1094 *
1095 * LOCKING:
1096 * Inherited from caller.
1097 */
1098void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
1099 unsigned long delay)
1100{
1101 int rc;
1102
b51e9e5d 1103 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
1104 return;
1105
1106 PREPARE_WORK(&ap->port_task, fn, data);
1107
1108 if (!delay)
1109 rc = queue_work(ata_wq, &ap->port_task);
1110 else
1111 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1112
1113 /* rc == 0 means that another user is using port task */
1114 WARN_ON(rc == 0);
1115}
1116
1117/**
1118 * ata_port_flush_task - Flush port_task
1119 * @ap: The ata_port to flush port_task for
1120 *
1121 * After this function completes, port_task is guranteed not to
1122 * be running or scheduled.
1123 *
1124 * LOCKING:
1125 * Kernel thread context (may sleep)
1126 */
1127void ata_port_flush_task(struct ata_port *ap)
1128{
1129 unsigned long flags;
1130
1131 DPRINTK("ENTER\n");
1132
ba6a1308 1133 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1134 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1135 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
1136
1137 DPRINTK("flush #1\n");
1138 flush_workqueue(ata_wq);
1139
1140 /*
1141 * At this point, if a task is running, it's guaranteed to see
1142 * the FLUSH flag; thus, it will never queue pio tasks again.
1143 * Cancel and flush.
1144 */
1145 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 1146 if (ata_msg_ctl(ap))
88574551
TH
1147 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1148 __FUNCTION__);
86e45b6b
TH
1149 flush_workqueue(ata_wq);
1150 }
1151
ba6a1308 1152 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1153 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1154 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 1155
0dd4b21f
BP
1156 if (ata_msg_ctl(ap))
1157 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1158}
1159
77853bf2 1160void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1161{
77853bf2 1162 struct completion *waiting = qc->private_data;
a2a7a662 1163
a2a7a662 1164 complete(waiting);
a2a7a662
TH
1165}
1166
1167/**
2432697b 1168 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1169 * @dev: Device to which the command is sent
1170 * @tf: Taskfile registers for the command and the result
d69cf37d 1171 * @cdb: CDB for packet command
a2a7a662 1172 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1173 * @sg: sg list for the data buffer of the command
1174 * @n_elem: Number of sg entries
a2a7a662
TH
1175 *
1176 * Executes libata internal command with timeout. @tf contains
1177 * command on entry and result on return. Timeout and error
1178 * conditions are reported via return value. No recovery action
1179 * is taken after a command times out. It's caller's duty to
1180 * clean up after timeout.
1181 *
1182 * LOCKING:
1183 * None. Should be called with kernel context, might sleep.
551e8889
TH
1184 *
1185 * RETURNS:
1186 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1187 */
2432697b
TH
1188unsigned ata_exec_internal_sg(struct ata_device *dev,
1189 struct ata_taskfile *tf, const u8 *cdb,
1190 int dma_dir, struct scatterlist *sg,
1191 unsigned int n_elem)
a2a7a662 1192{
3373efd8 1193 struct ata_port *ap = dev->ap;
a2a7a662
TH
1194 u8 command = tf->command;
1195 struct ata_queued_cmd *qc;
2ab7db1f 1196 unsigned int tag, preempted_tag;
dedaf2b0 1197 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1198 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1199 unsigned long flags;
77853bf2 1200 unsigned int err_mask;
d95a717f 1201 int rc;
a2a7a662 1202
ba6a1308 1203 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1204
e3180499 1205 /* no internal command while frozen */
b51e9e5d 1206 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1207 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1208 return AC_ERR_SYSTEM;
1209 }
1210
2ab7db1f 1211 /* initialize internal qc */
a2a7a662 1212
2ab7db1f
TH
1213 /* XXX: Tag 0 is used for drivers with legacy EH as some
1214 * drivers choke if any other tag is given. This breaks
1215 * ata_tag_internal() test for those drivers. Don't use new
1216 * EH stuff without converting to it.
1217 */
1218 if (ap->ops->error_handler)
1219 tag = ATA_TAG_INTERNAL;
1220 else
1221 tag = 0;
1222
6cec4a39 1223 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1224 BUG();
f69499f4 1225 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1226
1227 qc->tag = tag;
1228 qc->scsicmd = NULL;
1229 qc->ap = ap;
1230 qc->dev = dev;
1231 ata_qc_reinit(qc);
1232
1233 preempted_tag = ap->active_tag;
dedaf2b0
TH
1234 preempted_sactive = ap->sactive;
1235 preempted_qc_active = ap->qc_active;
2ab7db1f 1236 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1237 ap->sactive = 0;
1238 ap->qc_active = 0;
2ab7db1f
TH
1239
1240 /* prepare & issue qc */
a2a7a662 1241 qc->tf = *tf;
d69cf37d
TH
1242 if (cdb)
1243 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1244 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1245 qc->dma_dir = dma_dir;
1246 if (dma_dir != DMA_NONE) {
2432697b
TH
1247 unsigned int i, buflen = 0;
1248
1249 for (i = 0; i < n_elem; i++)
1250 buflen += sg[i].length;
1251
1252 ata_sg_init(qc, sg, n_elem);
a2a7a662
TH
1253 qc->nsect = buflen / ATA_SECT_SIZE;
1254 }
1255
77853bf2 1256 qc->private_data = &wait;
a2a7a662
TH
1257 qc->complete_fn = ata_qc_complete_internal;
1258
8e0e694a 1259 ata_qc_issue(qc);
a2a7a662 1260
ba6a1308 1261 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1262
a8601e5f 1263 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1264
1265 ata_port_flush_task(ap);
41ade50c 1266
d95a717f 1267 if (!rc) {
ba6a1308 1268 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1269
1270 /* We're racing with irq here. If we lose, the
1271 * following test prevents us from completing the qc
d95a717f
TH
1272 * twice. If we win, the port is frozen and will be
1273 * cleaned up by ->post_internal_cmd().
a2a7a662 1274 */
77853bf2 1275 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1276 qc->err_mask |= AC_ERR_TIMEOUT;
1277
1278 if (ap->ops->error_handler)
1279 ata_port_freeze(ap);
1280 else
1281 ata_qc_complete(qc);
f15a1daf 1282
0dd4b21f
BP
1283 if (ata_msg_warn(ap))
1284 ata_dev_printk(dev, KERN_WARNING,
88574551 1285 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1286 }
1287
ba6a1308 1288 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1289 }
1290
d95a717f
TH
1291 /* do post_internal_cmd */
1292 if (ap->ops->post_internal_cmd)
1293 ap->ops->post_internal_cmd(qc);
1294
1295 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
0dd4b21f 1296 if (ata_msg_warn(ap))
88574551 1297 ata_dev_printk(dev, KERN_WARNING,
0dd4b21f 1298 "zero err_mask for failed "
88574551 1299 "internal command, assuming AC_ERR_OTHER\n");
d95a717f
TH
1300 qc->err_mask |= AC_ERR_OTHER;
1301 }
1302
15869303 1303 /* finish up */
ba6a1308 1304 spin_lock_irqsave(ap->lock, flags);
15869303 1305
e61e0672 1306 *tf = qc->result_tf;
77853bf2
TH
1307 err_mask = qc->err_mask;
1308
1309 ata_qc_free(qc);
2ab7db1f 1310 ap->active_tag = preempted_tag;
dedaf2b0
TH
1311 ap->sactive = preempted_sactive;
1312 ap->qc_active = preempted_qc_active;
77853bf2 1313
1f7dd3e9
TH
1314 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1315 * Until those drivers are fixed, we detect the condition
1316 * here, fail the command with AC_ERR_SYSTEM and reenable the
1317 * port.
1318 *
1319 * Note that this doesn't change any behavior as internal
1320 * command failure results in disabling the device in the
1321 * higher layer for LLDDs without new reset/EH callbacks.
1322 *
1323 * Kill the following code as soon as those drivers are fixed.
1324 */
198e0fed 1325 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1326 err_mask |= AC_ERR_SYSTEM;
1327 ata_port_probe(ap);
1328 }
1329
ba6a1308 1330 spin_unlock_irqrestore(ap->lock, flags);
15869303 1331
77853bf2 1332 return err_mask;
a2a7a662
TH
1333}
1334
2432697b
TH
1335/**
1336 * ata_exec_internal_sg - execute libata internal command
1337 * @dev: Device to which the command is sent
1338 * @tf: Taskfile registers for the command and the result
1339 * @cdb: CDB for packet command
1340 * @dma_dir: Data tranfer direction of the command
1341 * @buf: Data buffer of the command
1342 * @buflen: Length of data buffer
1343 *
1344 * Wrapper around ata_exec_internal_sg() which takes simple
1345 * buffer instead of sg list.
1346 *
1347 * LOCKING:
1348 * None. Should be called with kernel context, might sleep.
1349 *
1350 * RETURNS:
1351 * Zero on success, AC_ERR_* mask on failure
1352 */
1353unsigned ata_exec_internal(struct ata_device *dev,
1354 struct ata_taskfile *tf, const u8 *cdb,
1355 int dma_dir, void *buf, unsigned int buflen)
1356{
1357 struct scatterlist sg;
1358
1359 sg_init_one(&sg, buf, buflen);
1360
1361 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, &sg, 1);
1362}
1363
977e6b9f
TH
1364/**
1365 * ata_do_simple_cmd - execute simple internal command
1366 * @dev: Device to which the command is sent
1367 * @cmd: Opcode to execute
1368 *
1369 * Execute a 'simple' command, that only consists of the opcode
1370 * 'cmd' itself, without filling any other registers
1371 *
1372 * LOCKING:
1373 * Kernel thread context (may sleep).
1374 *
1375 * RETURNS:
1376 * Zero on success, AC_ERR_* mask on failure
e58eb583 1377 */
77b08fb5 1378unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1379{
1380 struct ata_taskfile tf;
e58eb583
TH
1381
1382 ata_tf_init(dev, &tf);
1383
1384 tf.command = cmd;
1385 tf.flags |= ATA_TFLAG_DEVICE;
1386 tf.protocol = ATA_PROT_NODATA;
1387
977e6b9f 1388 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1389}
1390
1bc4ccff
AC
1391/**
1392 * ata_pio_need_iordy - check if iordy needed
1393 * @adev: ATA device
1394 *
1395 * Check if the current speed of the device requires IORDY. Used
1396 * by various controllers for chip configuration.
1397 */
1398
1399unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1400{
1401 int pio;
1402 int speed = adev->pio_mode - XFER_PIO_0;
1403
1404 if (speed < 2)
1405 return 0;
1406 if (speed > 2)
1407 return 1;
2e9edbf8 1408
1bc4ccff
AC
1409 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1410
1411 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1412 pio = adev->id[ATA_ID_EIDE_PIO];
1413 /* Is the speed faster than the drive allows non IORDY ? */
1414 if (pio) {
1415 /* This is cycle times not frequency - watch the logic! */
1416 if (pio > 240) /* PIO2 is 240nS per cycle */
1417 return 1;
1418 return 0;
1419 }
1420 }
1421 return 0;
1422}
1423
1da177e4 1424/**
49016aca 1425 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1426 * @dev: target device
1427 * @p_class: pointer to class of the target device (may be changed)
bff04647 1428 * @flags: ATA_READID_* flags
fe635c7e 1429 * @id: buffer to read IDENTIFY data into
1da177e4 1430 *
49016aca
TH
1431 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1432 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1433 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1434 * for pre-ATA4 drives.
1da177e4
LT
1435 *
1436 * LOCKING:
49016aca
TH
1437 * Kernel thread context (may sleep)
1438 *
1439 * RETURNS:
1440 * 0 on success, -errno otherwise.
1da177e4 1441 */
a9beec95 1442int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1443 unsigned int flags, u16 *id)
1da177e4 1444{
3373efd8 1445 struct ata_port *ap = dev->ap;
49016aca 1446 unsigned int class = *p_class;
a0123703 1447 struct ata_taskfile tf;
49016aca
TH
1448 unsigned int err_mask = 0;
1449 const char *reason;
1450 int rc;
1da177e4 1451
0dd4b21f 1452 if (ata_msg_ctl(ap))
88574551
TH
1453 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1454 __FUNCTION__, ap->id, dev->devno);
1da177e4 1455
49016aca 1456 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1457
49016aca 1458 retry:
3373efd8 1459 ata_tf_init(dev, &tf);
a0123703 1460
49016aca
TH
1461 switch (class) {
1462 case ATA_DEV_ATA:
a0123703 1463 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1464 break;
1465 case ATA_DEV_ATAPI:
a0123703 1466 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1467 break;
1468 default:
1469 rc = -ENODEV;
1470 reason = "unsupported class";
1471 goto err_out;
1da177e4
LT
1472 }
1473
a0123703 1474 tf.protocol = ATA_PROT_PIO;
1da177e4 1475
55a8e2c8
TH
1476 /* presence detection using polling IDENTIFY? */
1477 if (flags & ATA_READID_DETECT)
1478 tf.flags |= ATA_TFLAG_POLLING;
1479
3373efd8 1480 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1481 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1482 if (err_mask) {
55a8e2c8
TH
1483 if ((flags & ATA_READID_DETECT) &&
1484 (err_mask & AC_ERR_NODEV_HINT)) {
1485 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1486 ap->id, dev->devno);
1487 return -ENOENT;
1488 }
1489
49016aca
TH
1490 rc = -EIO;
1491 reason = "I/O error";
1da177e4
LT
1492 goto err_out;
1493 }
1494
49016aca 1495 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1496
49016aca 1497 /* sanity check */
a4f5749b
TH
1498 rc = -EINVAL;
1499 reason = "device reports illegal type";
1500
1501 if (class == ATA_DEV_ATA) {
1502 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1503 goto err_out;
1504 } else {
1505 if (ata_id_is_ata(id))
1506 goto err_out;
49016aca
TH
1507 }
1508
bff04647 1509 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1510 /*
1511 * The exact sequence expected by certain pre-ATA4 drives is:
1512 * SRST RESET
1513 * IDENTIFY
1514 * INITIALIZE DEVICE PARAMETERS
1515 * anything else..
1516 * Some drives were very specific about that exact sequence.
1517 */
1518 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1519 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1520 if (err_mask) {
1521 rc = -EIO;
1522 reason = "INIT_DEV_PARAMS failed";
1523 goto err_out;
1524 }
1525
1526 /* current CHS translation info (id[53-58]) might be
1527 * changed. reread the identify device info.
1528 */
bff04647 1529 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1530 goto retry;
1531 }
1532 }
1533
1534 *p_class = class;
fe635c7e 1535
49016aca
TH
1536 return 0;
1537
1538 err_out:
88574551 1539 if (ata_msg_warn(ap))
0dd4b21f 1540 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1541 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1542 return rc;
1543}
1544
3373efd8 1545static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1546{
3373efd8 1547 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1548}
1549
a6e6ce8e
TH
1550static void ata_dev_config_ncq(struct ata_device *dev,
1551 char *desc, size_t desc_sz)
1552{
1553 struct ata_port *ap = dev->ap;
1554 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1555
1556 if (!ata_id_has_ncq(dev->id)) {
1557 desc[0] = '\0';
1558 return;
1559 }
6919a0a6
AC
1560 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1561 snprintf(desc, desc_sz, "NCQ (not used)");
1562 return;
1563 }
a6e6ce8e 1564 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1565 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1566 dev->flags |= ATA_DFLAG_NCQ;
1567 }
1568
1569 if (hdepth >= ddepth)
1570 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1571 else
1572 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1573}
1574
e6d902a3
BK
1575static void ata_set_port_max_cmd_len(struct ata_port *ap)
1576{
1577 int i;
1578
cca3974e
JG
1579 if (ap->scsi_host) {
1580 unsigned int len = 0;
1581
e6d902a3 1582 for (i = 0; i < ATA_MAX_DEVICES; i++)
cca3974e
JG
1583 len = max(len, ap->device[i].cdb_len);
1584
1585 ap->scsi_host->max_cmd_len = len;
e6d902a3
BK
1586 }
1587}
1588
49016aca 1589/**
ffeae418 1590 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1591 * @dev: Target device to configure
1592 *
1593 * Configure @dev according to @dev->id. Generic and low-level
1594 * driver specific fixups are also applied.
49016aca
TH
1595 *
1596 * LOCKING:
ffeae418
TH
1597 * Kernel thread context (may sleep)
1598 *
1599 * RETURNS:
1600 * 0 on success, -errno otherwise
49016aca 1601 */
efdaedc4 1602int ata_dev_configure(struct ata_device *dev)
49016aca 1603{
3373efd8 1604 struct ata_port *ap = dev->ap;
efdaedc4 1605 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1606 const u16 *id = dev->id;
ff8854b2 1607 unsigned int xfer_mask;
b352e57d 1608 char revbuf[7]; /* XYZ-99\0 */
e6d902a3 1609 int rc;
49016aca 1610
0dd4b21f 1611 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
88574551
TH
1612 ata_dev_printk(dev, KERN_INFO,
1613 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1614 __FUNCTION__, ap->id, dev->devno);
ffeae418 1615 return 0;
49016aca
TH
1616 }
1617
0dd4b21f 1618 if (ata_msg_probe(ap))
88574551
TH
1619 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1620 __FUNCTION__, ap->id, dev->devno);
1da177e4 1621
c39f5ebe 1622 /* print device capabilities */
0dd4b21f 1623 if (ata_msg_probe(ap))
88574551
TH
1624 ata_dev_printk(dev, KERN_DEBUG,
1625 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1626 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1627 __FUNCTION__,
f15a1daf
TH
1628 id[49], id[82], id[83], id[84],
1629 id[85], id[86], id[87], id[88]);
c39f5ebe 1630
208a9933 1631 /* initialize to-be-configured parameters */
ea1dd4e1 1632 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1633 dev->max_sectors = 0;
1634 dev->cdb_len = 0;
1635 dev->n_sectors = 0;
1636 dev->cylinders = 0;
1637 dev->heads = 0;
1638 dev->sectors = 0;
1639
1da177e4
LT
1640 /*
1641 * common ATA, ATAPI feature tests
1642 */
1643
ff8854b2 1644 /* find max transfer mode; for printk only */
1148c3a7 1645 xfer_mask = ata_id_xfermask(id);
1da177e4 1646
0dd4b21f
BP
1647 if (ata_msg_probe(ap))
1648 ata_dump_id(id);
1da177e4
LT
1649
1650 /* ATA-specific feature tests */
1651 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1652 if (ata_id_is_cfa(id)) {
1653 if (id[162] & 1) /* CPRM may make this media unusable */
1654 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1655 ap->id, dev->devno);
1656 snprintf(revbuf, 7, "CFA");
1657 }
1658 else
1659 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1660
1148c3a7 1661 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1662
1148c3a7 1663 if (ata_id_has_lba(id)) {
4c2d721a 1664 const char *lba_desc;
a6e6ce8e 1665 char ncq_desc[20];
8bf62ece 1666
4c2d721a
TH
1667 lba_desc = "LBA";
1668 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1669 if (ata_id_has_lba48(id)) {
8bf62ece 1670 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1671 lba_desc = "LBA48";
6fc49adb
TH
1672
1673 if (dev->n_sectors >= (1UL << 28) &&
1674 ata_id_has_flush_ext(id))
1675 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1676 }
8bf62ece 1677
a6e6ce8e
TH
1678 /* config NCQ */
1679 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1680
8bf62ece 1681 /* print device info to dmesg */
5afc8142 1682 if (ata_msg_drv(ap) && print_info)
b352e57d 1683 ata_dev_printk(dev, KERN_INFO, "%s, "
a6e6ce8e 1684 "max %s, %Lu sectors: %s %s\n",
b352e57d 1685 revbuf,
f15a1daf
TH
1686 ata_mode_string(xfer_mask),
1687 (unsigned long long)dev->n_sectors,
a6e6ce8e 1688 lba_desc, ncq_desc);
ffeae418 1689 } else {
8bf62ece
AL
1690 /* CHS */
1691
1692 /* Default translation */
1148c3a7
TH
1693 dev->cylinders = id[1];
1694 dev->heads = id[3];
1695 dev->sectors = id[6];
8bf62ece 1696
1148c3a7 1697 if (ata_id_current_chs_valid(id)) {
8bf62ece 1698 /* Current CHS translation is valid. */
1148c3a7
TH
1699 dev->cylinders = id[54];
1700 dev->heads = id[55];
1701 dev->sectors = id[56];
8bf62ece
AL
1702 }
1703
1704 /* print device info to dmesg */
5afc8142 1705 if (ata_msg_drv(ap) && print_info)
b352e57d 1706 ata_dev_printk(dev, KERN_INFO, "%s, "
f15a1daf 1707 "max %s, %Lu sectors: CHS %u/%u/%u\n",
b352e57d 1708 revbuf,
f15a1daf
TH
1709 ata_mode_string(xfer_mask),
1710 (unsigned long long)dev->n_sectors,
88574551
TH
1711 dev->cylinders, dev->heads,
1712 dev->sectors);
1da177e4
LT
1713 }
1714
07f6f7d0
AL
1715 if (dev->id[59] & 0x100) {
1716 dev->multi_count = dev->id[59] & 0xff;
5afc8142 1717 if (ata_msg_drv(ap) && print_info)
88574551
TH
1718 ata_dev_printk(dev, KERN_INFO,
1719 "ata%u: dev %u multi count %u\n",
1720 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1721 }
1722
6e7846e9 1723 dev->cdb_len = 16;
1da177e4
LT
1724 }
1725
1726 /* ATAPI-specific feature tests */
2c13b7ce 1727 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1728 char *cdb_intr_string = "";
1729
1148c3a7 1730 rc = atapi_cdb_len(id);
1da177e4 1731 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1732 if (ata_msg_warn(ap))
88574551
TH
1733 ata_dev_printk(dev, KERN_WARNING,
1734 "unsupported CDB len\n");
ffeae418 1735 rc = -EINVAL;
1da177e4
LT
1736 goto err_out_nosup;
1737 }
6e7846e9 1738 dev->cdb_len = (unsigned int) rc;
1da177e4 1739
08a556db 1740 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1741 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1742 cdb_intr_string = ", CDB intr";
1743 }
312f7da2 1744
1da177e4 1745 /* print device info to dmesg */
5afc8142 1746 if (ata_msg_drv(ap) && print_info)
12436c30
TH
1747 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1748 ata_mode_string(xfer_mask),
1749 cdb_intr_string);
1da177e4
LT
1750 }
1751
914ed354
TH
1752 /* determine max_sectors */
1753 dev->max_sectors = ATA_MAX_SECTORS;
1754 if (dev->flags & ATA_DFLAG_LBA48)
1755 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1756
93590859
AC
1757 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1758 /* Let the user know. We don't want to disallow opens for
1759 rescue purposes, or in case the vendor is just a blithering
1760 idiot */
1761 if (print_info) {
1762 ata_dev_printk(dev, KERN_WARNING,
1763"Drive reports diagnostics failure. This may indicate a drive\n");
1764 ata_dev_printk(dev, KERN_WARNING,
1765"fault or invalid emulation. Contact drive vendor for information.\n");
1766 }
1767 }
1768
e6d902a3 1769 ata_set_port_max_cmd_len(ap);
6e7846e9 1770
4b2f3ede 1771 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1772 if (ata_dev_knobble(dev)) {
5afc8142 1773 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
1774 ata_dev_printk(dev, KERN_INFO,
1775 "applying bridge limits\n");
5a529139 1776 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1777 dev->max_sectors = ATA_MAX_SECTORS;
1778 }
1779
1780 if (ap->ops->dev_config)
1781 ap->ops->dev_config(ap, dev);
1782
0dd4b21f
BP
1783 if (ata_msg_probe(ap))
1784 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1785 __FUNCTION__, ata_chk_status(ap));
ffeae418 1786 return 0;
1da177e4
LT
1787
1788err_out_nosup:
0dd4b21f 1789 if (ata_msg_probe(ap))
88574551
TH
1790 ata_dev_printk(dev, KERN_DEBUG,
1791 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 1792 return rc;
1da177e4
LT
1793}
1794
1795/**
1796 * ata_bus_probe - Reset and probe ATA bus
1797 * @ap: Bus to probe
1798 *
0cba632b
JG
1799 * Master ATA bus probing function. Initiates a hardware-dependent
1800 * bus reset, then attempts to identify any devices found on
1801 * the bus.
1802 *
1da177e4 1803 * LOCKING:
0cba632b 1804 * PCI/etc. bus probe sem.
1da177e4
LT
1805 *
1806 * RETURNS:
96072e69 1807 * Zero on success, negative errno otherwise.
1da177e4
LT
1808 */
1809
80289167 1810int ata_bus_probe(struct ata_port *ap)
1da177e4 1811{
28ca5c57 1812 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1813 int tries[ATA_MAX_DEVICES];
1814 int i, rc, down_xfermask;
e82cbdb9 1815 struct ata_device *dev;
1da177e4 1816
28ca5c57 1817 ata_port_probe(ap);
c19ba8af 1818
14d2bac1
TH
1819 for (i = 0; i < ATA_MAX_DEVICES; i++)
1820 tries[i] = ATA_PROBE_MAX_TRIES;
1821
1822 retry:
1823 down_xfermask = 0;
1824
2044470c 1825 /* reset and determine device classes */
52783c5d 1826 ap->ops->phy_reset(ap);
2061a47a 1827
52783c5d
TH
1828 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1829 dev = &ap->device[i];
c19ba8af 1830
52783c5d
TH
1831 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1832 dev->class != ATA_DEV_UNKNOWN)
1833 classes[dev->devno] = dev->class;
1834 else
1835 classes[dev->devno] = ATA_DEV_NONE;
2044470c 1836
52783c5d 1837 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 1838 }
1da177e4 1839
52783c5d 1840 ata_port_probe(ap);
2044470c 1841
b6079ca4
AC
1842 /* after the reset the device state is PIO 0 and the controller
1843 state is undefined. Record the mode */
1844
1845 for (i = 0; i < ATA_MAX_DEVICES; i++)
1846 ap->device[i].pio_mode = XFER_PIO_0;
1847
28ca5c57 1848 /* read IDENTIFY page and configure devices */
1da177e4 1849 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1850 dev = &ap->device[i];
28ca5c57 1851
ec573755
TH
1852 if (tries[i])
1853 dev->class = classes[i];
ffeae418 1854
14d2bac1 1855 if (!ata_dev_enabled(dev))
ffeae418 1856 continue;
ffeae418 1857
bff04647
TH
1858 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1859 dev->id);
14d2bac1
TH
1860 if (rc)
1861 goto fail;
1862
efdaedc4
TH
1863 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1864 rc = ata_dev_configure(dev);
1865 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
1866 if (rc)
1867 goto fail;
1da177e4
LT
1868 }
1869
e82cbdb9 1870 /* configure transfer mode */
3adcebb2 1871 rc = ata_set_mode(ap, &dev);
51713d35
TH
1872 if (rc) {
1873 down_xfermask = 1;
1874 goto fail;
e82cbdb9 1875 }
1da177e4 1876
e82cbdb9
TH
1877 for (i = 0; i < ATA_MAX_DEVICES; i++)
1878 if (ata_dev_enabled(&ap->device[i]))
1879 return 0;
1da177e4 1880
e82cbdb9
TH
1881 /* no device present, disable port */
1882 ata_port_disable(ap);
1da177e4 1883 ap->ops->port_disable(ap);
96072e69 1884 return -ENODEV;
14d2bac1
TH
1885
1886 fail:
1887 switch (rc) {
1888 case -EINVAL:
1889 case -ENODEV:
1890 tries[dev->devno] = 0;
1891 break;
1892 case -EIO:
3c567b7d 1893 sata_down_spd_limit(ap);
14d2bac1
TH
1894 /* fall through */
1895 default:
1896 tries[dev->devno]--;
1897 if (down_xfermask &&
3373efd8 1898 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1899 tries[dev->devno] = 0;
1900 }
1901
ec573755 1902 if (!tries[dev->devno]) {
3373efd8
TH
1903 ata_down_xfermask_limit(dev, 1);
1904 ata_dev_disable(dev);
ec573755
TH
1905 }
1906
14d2bac1 1907 goto retry;
1da177e4
LT
1908}
1909
1910/**
0cba632b
JG
1911 * ata_port_probe - Mark port as enabled
1912 * @ap: Port for which we indicate enablement
1da177e4 1913 *
0cba632b
JG
1914 * Modify @ap data structure such that the system
1915 * thinks that the entire port is enabled.
1916 *
cca3974e 1917 * LOCKING: host lock, or some other form of
0cba632b 1918 * serialization.
1da177e4
LT
1919 */
1920
1921void ata_port_probe(struct ata_port *ap)
1922{
198e0fed 1923 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1924}
1925
3be680b7
TH
1926/**
1927 * sata_print_link_status - Print SATA link status
1928 * @ap: SATA port to printk link status about
1929 *
1930 * This function prints link speed and status of a SATA link.
1931 *
1932 * LOCKING:
1933 * None.
1934 */
1935static void sata_print_link_status(struct ata_port *ap)
1936{
6d5f9732 1937 u32 sstatus, scontrol, tmp;
3be680b7 1938
81952c54 1939 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1940 return;
81952c54 1941 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1942
81952c54 1943 if (ata_port_online(ap)) {
3be680b7 1944 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1945 ata_port_printk(ap, KERN_INFO,
1946 "SATA link up %s (SStatus %X SControl %X)\n",
1947 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1948 } else {
f15a1daf
TH
1949 ata_port_printk(ap, KERN_INFO,
1950 "SATA link down (SStatus %X SControl %X)\n",
1951 sstatus, scontrol);
3be680b7
TH
1952 }
1953}
1954
1da177e4 1955/**
780a87f7
JG
1956 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1957 * @ap: SATA port associated with target SATA PHY.
1da177e4 1958 *
780a87f7
JG
1959 * This function issues commands to standard SATA Sxxx
1960 * PHY registers, to wake up the phy (and device), and
1961 * clear any reset condition.
1da177e4
LT
1962 *
1963 * LOCKING:
0cba632b 1964 * PCI/etc. bus probe sem.
1da177e4
LT
1965 *
1966 */
1967void __sata_phy_reset(struct ata_port *ap)
1968{
1969 u32 sstatus;
1970 unsigned long timeout = jiffies + (HZ * 5);
1971
1972 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1973 /* issue phy wake/reset */
81952c54 1974 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1975 /* Couldn't find anything in SATA I/II specs, but
1976 * AHCI-1.1 10.4.2 says at least 1 ms. */
1977 mdelay(1);
1da177e4 1978 }
81952c54
TH
1979 /* phy wake/clear reset */
1980 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1981
1982 /* wait for phy to become ready, if necessary */
1983 do {
1984 msleep(200);
81952c54 1985 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1986 if ((sstatus & 0xf) != 1)
1987 break;
1988 } while (time_before(jiffies, timeout));
1989
3be680b7
TH
1990 /* print link status */
1991 sata_print_link_status(ap);
656563e3 1992
3be680b7 1993 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1994 if (!ata_port_offline(ap))
1da177e4 1995 ata_port_probe(ap);
3be680b7 1996 else
1da177e4 1997 ata_port_disable(ap);
1da177e4 1998
198e0fed 1999 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2000 return;
2001
2002 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2003 ata_port_disable(ap);
2004 return;
2005 }
2006
2007 ap->cbl = ATA_CBL_SATA;
2008}
2009
2010/**
780a87f7
JG
2011 * sata_phy_reset - Reset SATA bus.
2012 * @ap: SATA port associated with target SATA PHY.
1da177e4 2013 *
780a87f7
JG
2014 * This function resets the SATA bus, and then probes
2015 * the bus for devices.
1da177e4
LT
2016 *
2017 * LOCKING:
0cba632b 2018 * PCI/etc. bus probe sem.
1da177e4
LT
2019 *
2020 */
2021void sata_phy_reset(struct ata_port *ap)
2022{
2023 __sata_phy_reset(ap);
198e0fed 2024 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2025 return;
2026 ata_bus_reset(ap);
2027}
2028
ebdfca6e
AC
2029/**
2030 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2031 * @adev: device
2032 *
2033 * Obtain the other device on the same cable, or if none is
2034 * present NULL is returned
2035 */
2e9edbf8 2036
3373efd8 2037struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2038{
3373efd8 2039 struct ata_port *ap = adev->ap;
ebdfca6e 2040 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2041 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2042 return NULL;
2043 return pair;
2044}
2045
1da177e4 2046/**
780a87f7
JG
2047 * ata_port_disable - Disable port.
2048 * @ap: Port to be disabled.
1da177e4 2049 *
780a87f7
JG
2050 * Modify @ap data structure such that the system
2051 * thinks that the entire port is disabled, and should
2052 * never attempt to probe or communicate with devices
2053 * on this port.
2054 *
cca3974e 2055 * LOCKING: host lock, or some other form of
780a87f7 2056 * serialization.
1da177e4
LT
2057 */
2058
2059void ata_port_disable(struct ata_port *ap)
2060{
2061 ap->device[0].class = ATA_DEV_NONE;
2062 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2063 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2064}
2065
1c3fae4d 2066/**
3c567b7d 2067 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2068 * @ap: Port to adjust SATA spd limit for
2069 *
2070 * Adjust SATA spd limit of @ap downward. Note that this
2071 * function only adjusts the limit. The change must be applied
3c567b7d 2072 * using sata_set_spd().
1c3fae4d
TH
2073 *
2074 * LOCKING:
2075 * Inherited from caller.
2076 *
2077 * RETURNS:
2078 * 0 on success, negative errno on failure
2079 */
3c567b7d 2080int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2081{
81952c54
TH
2082 u32 sstatus, spd, mask;
2083 int rc, highbit;
1c3fae4d 2084
81952c54
TH
2085 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2086 if (rc)
2087 return rc;
1c3fae4d
TH
2088
2089 mask = ap->sata_spd_limit;
2090 if (mask <= 1)
2091 return -EINVAL;
2092 highbit = fls(mask) - 1;
2093 mask &= ~(1 << highbit);
2094
81952c54 2095 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
2096 if (spd <= 1)
2097 return -EINVAL;
2098 spd--;
2099 mask &= (1 << spd) - 1;
2100 if (!mask)
2101 return -EINVAL;
2102
2103 ap->sata_spd_limit = mask;
2104
f15a1daf
TH
2105 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2106 sata_spd_string(fls(mask)));
1c3fae4d
TH
2107
2108 return 0;
2109}
2110
3c567b7d 2111static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2112{
2113 u32 spd, limit;
2114
2115 if (ap->sata_spd_limit == UINT_MAX)
2116 limit = 0;
2117 else
2118 limit = fls(ap->sata_spd_limit);
2119
2120 spd = (*scontrol >> 4) & 0xf;
2121 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2122
2123 return spd != limit;
2124}
2125
2126/**
3c567b7d 2127 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2128 * @ap: Port in question
2129 *
2130 * Test whether the spd limit in SControl matches
2131 * @ap->sata_spd_limit. This function is used to determine
2132 * whether hardreset is necessary to apply SATA spd
2133 * configuration.
2134 *
2135 * LOCKING:
2136 * Inherited from caller.
2137 *
2138 * RETURNS:
2139 * 1 if SATA spd configuration is needed, 0 otherwise.
2140 */
3c567b7d 2141int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2142{
2143 u32 scontrol;
2144
81952c54 2145 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2146 return 0;
2147
3c567b7d 2148 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2149}
2150
2151/**
3c567b7d 2152 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2153 * @ap: Port to set SATA spd for
2154 *
2155 * Set SATA spd of @ap according to sata_spd_limit.
2156 *
2157 * LOCKING:
2158 * Inherited from caller.
2159 *
2160 * RETURNS:
2161 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2162 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2163 */
3c567b7d 2164int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2165{
2166 u32 scontrol;
81952c54 2167 int rc;
1c3fae4d 2168
81952c54
TH
2169 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2170 return rc;
1c3fae4d 2171
3c567b7d 2172 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2173 return 0;
2174
81952c54
TH
2175 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2176 return rc;
2177
1c3fae4d
TH
2178 return 1;
2179}
2180
452503f9
AC
2181/*
2182 * This mode timing computation functionality is ported over from
2183 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2184 */
2185/*
b352e57d 2186 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2187 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2188 * for UDMA6, which is currently supported only by Maxtor drives.
2189 *
2190 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2191 */
2192
2193static const struct ata_timing ata_timing[] = {
2194
2195 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2196 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2197 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2198 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2199
b352e57d
AC
2200 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2201 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2202 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2203 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2204 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2205
2206/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2207
452503f9
AC
2208 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2209 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2210 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2211
452503f9
AC
2212 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2213 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2214 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2215
b352e57d
AC
2216 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2217 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2218 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2219 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2220
2221 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2222 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2223 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2224
2225/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2226
2227 { 0xFF }
2228};
2229
2230#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2231#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2232
2233static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2234{
2235 q->setup = EZ(t->setup * 1000, T);
2236 q->act8b = EZ(t->act8b * 1000, T);
2237 q->rec8b = EZ(t->rec8b * 1000, T);
2238 q->cyc8b = EZ(t->cyc8b * 1000, T);
2239 q->active = EZ(t->active * 1000, T);
2240 q->recover = EZ(t->recover * 1000, T);
2241 q->cycle = EZ(t->cycle * 1000, T);
2242 q->udma = EZ(t->udma * 1000, UT);
2243}
2244
2245void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2246 struct ata_timing *m, unsigned int what)
2247{
2248 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2249 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2250 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2251 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2252 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2253 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2254 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2255 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2256}
2257
2258static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2259{
2260 const struct ata_timing *t;
2261
2262 for (t = ata_timing; t->mode != speed; t++)
91190758 2263 if (t->mode == 0xFF)
452503f9 2264 return NULL;
2e9edbf8 2265 return t;
452503f9
AC
2266}
2267
2268int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2269 struct ata_timing *t, int T, int UT)
2270{
2271 const struct ata_timing *s;
2272 struct ata_timing p;
2273
2274 /*
2e9edbf8 2275 * Find the mode.
75b1f2f8 2276 */
452503f9
AC
2277
2278 if (!(s = ata_timing_find_mode(speed)))
2279 return -EINVAL;
2280
75b1f2f8
AL
2281 memcpy(t, s, sizeof(*s));
2282
452503f9
AC
2283 /*
2284 * If the drive is an EIDE drive, it can tell us it needs extended
2285 * PIO/MW_DMA cycle timing.
2286 */
2287
2288 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2289 memset(&p, 0, sizeof(p));
2290 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2291 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2292 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2293 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2294 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2295 }
2296 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2297 }
2298
2299 /*
2300 * Convert the timing to bus clock counts.
2301 */
2302
75b1f2f8 2303 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2304
2305 /*
c893a3ae
RD
2306 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2307 * S.M.A.R.T * and some other commands. We have to ensure that the
2308 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2309 */
2310
2311 if (speed > XFER_PIO_4) {
2312 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2313 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2314 }
2315
2316 /*
c893a3ae 2317 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2318 */
2319
2320 if (t->act8b + t->rec8b < t->cyc8b) {
2321 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2322 t->rec8b = t->cyc8b - t->act8b;
2323 }
2324
2325 if (t->active + t->recover < t->cycle) {
2326 t->active += (t->cycle - (t->active + t->recover)) / 2;
2327 t->recover = t->cycle - t->active;
2328 }
2329
2330 return 0;
2331}
2332
cf176e1a
TH
2333/**
2334 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
2335 * @dev: Device to adjust xfer masks
2336 * @force_pio0: Force PIO0
2337 *
2338 * Adjust xfer masks of @dev downward. Note that this function
2339 * does not apply the change. Invoking ata_set_mode() afterwards
2340 * will apply the limit.
2341 *
2342 * LOCKING:
2343 * Inherited from caller.
2344 *
2345 * RETURNS:
2346 * 0 on success, negative errno on failure
2347 */
3373efd8 2348int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
2349{
2350 unsigned long xfer_mask;
2351 int highbit;
2352
2353 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2354 dev->udma_mask);
2355
2356 if (!xfer_mask)
2357 goto fail;
2358 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2359 if (xfer_mask & ATA_MASK_UDMA)
2360 xfer_mask &= ~ATA_MASK_MWDMA;
2361
2362 highbit = fls(xfer_mask) - 1;
2363 xfer_mask &= ~(1 << highbit);
2364 if (force_pio0)
2365 xfer_mask &= 1 << ATA_SHIFT_PIO;
2366 if (!xfer_mask)
2367 goto fail;
2368
2369 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2370 &dev->udma_mask);
2371
f15a1daf
TH
2372 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2373 ata_mode_string(xfer_mask));
cf176e1a
TH
2374
2375 return 0;
2376
2377 fail:
2378 return -EINVAL;
2379}
2380
3373efd8 2381static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2382{
baa1e78a 2383 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2384 unsigned int err_mask;
2385 int rc;
1da177e4 2386
e8384607 2387 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2388 if (dev->xfer_shift == ATA_SHIFT_PIO)
2389 dev->flags |= ATA_DFLAG_PIO;
2390
3373efd8 2391 err_mask = ata_dev_set_xfermode(dev);
83206a29 2392 if (err_mask) {
f15a1daf
TH
2393 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2394 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2395 return -EIO;
2396 }
1da177e4 2397
baa1e78a 2398 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2399 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2400 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2401 if (rc)
83206a29 2402 return rc;
48a8a14f 2403
23e71c3d
TH
2404 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2405 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2406
f15a1daf
TH
2407 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2408 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2409 return 0;
1da177e4
LT
2410}
2411
1da177e4
LT
2412/**
2413 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2414 * @ap: port on which timings will be programmed
e82cbdb9 2415 * @r_failed_dev: out paramter for failed device
1da177e4 2416 *
e82cbdb9
TH
2417 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2418 * ata_set_mode() fails, pointer to the failing device is
2419 * returned in @r_failed_dev.
780a87f7 2420 *
1da177e4 2421 * LOCKING:
0cba632b 2422 * PCI/etc. bus probe sem.
e82cbdb9
TH
2423 *
2424 * RETURNS:
2425 * 0 on success, negative errno otherwise
1da177e4 2426 */
1ad8e7f9 2427int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2428{
e8e0619f 2429 struct ata_device *dev;
e82cbdb9 2430 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2431
3adcebb2
TH
2432 /* has private set_mode? */
2433 if (ap->ops->set_mode) {
2434 /* FIXME: make ->set_mode handle no device case and
2435 * return error code and failing device on failure.
2436 */
2437 for (i = 0; i < ATA_MAX_DEVICES; i++) {
02670bf3 2438 if (ata_dev_ready(&ap->device[i])) {
3adcebb2
TH
2439 ap->ops->set_mode(ap);
2440 break;
2441 }
2442 }
2443 return 0;
2444 }
2445
a6d5a51c
TH
2446 /* step 1: calculate xfer_mask */
2447 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2448 unsigned int pio_mask, dma_mask;
a6d5a51c 2449
e8e0619f
TH
2450 dev = &ap->device[i];
2451
e1211e3f 2452 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2453 continue;
2454
3373efd8 2455 ata_dev_xfermask(dev);
1da177e4 2456
acf356b1
TH
2457 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2458 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2459 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2460 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2461
4f65977d 2462 found = 1;
5444a6f4
AC
2463 if (dev->dma_mode)
2464 used_dma = 1;
a6d5a51c 2465 }
4f65977d 2466 if (!found)
e82cbdb9 2467 goto out;
a6d5a51c
TH
2468
2469 /* step 2: always set host PIO timings */
e8e0619f
TH
2470 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2471 dev = &ap->device[i];
2472 if (!ata_dev_enabled(dev))
2473 continue;
2474
2475 if (!dev->pio_mode) {
f15a1daf 2476 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2477 rc = -EINVAL;
e82cbdb9 2478 goto out;
e8e0619f
TH
2479 }
2480
2481 dev->xfer_mode = dev->pio_mode;
2482 dev->xfer_shift = ATA_SHIFT_PIO;
2483 if (ap->ops->set_piomode)
2484 ap->ops->set_piomode(ap, dev);
2485 }
1da177e4 2486
a6d5a51c 2487 /* step 3: set host DMA timings */
e8e0619f
TH
2488 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2489 dev = &ap->device[i];
2490
2491 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2492 continue;
2493
2494 dev->xfer_mode = dev->dma_mode;
2495 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2496 if (ap->ops->set_dmamode)
2497 ap->ops->set_dmamode(ap, dev);
2498 }
1da177e4
LT
2499
2500 /* step 4: update devices' xfer mode */
83206a29 2501 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2502 dev = &ap->device[i];
1da177e4 2503
02670bf3
TH
2504 /* don't udpate suspended devices' xfer mode */
2505 if (!ata_dev_ready(dev))
83206a29
TH
2506 continue;
2507
3373efd8 2508 rc = ata_dev_set_mode(dev);
5bbc53f4 2509 if (rc)
e82cbdb9 2510 goto out;
83206a29 2511 }
1da177e4 2512
e8e0619f
TH
2513 /* Record simplex status. If we selected DMA then the other
2514 * host channels are not permitted to do so.
5444a6f4 2515 */
cca3974e
JG
2516 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2517 ap->host->simplex_claimed = 1;
5444a6f4 2518
e8e0619f 2519 /* step5: chip specific finalisation */
1da177e4
LT
2520 if (ap->ops->post_set_mode)
2521 ap->ops->post_set_mode(ap);
2522
e82cbdb9
TH
2523 out:
2524 if (rc)
2525 *r_failed_dev = dev;
2526 return rc;
1da177e4
LT
2527}
2528
1fdffbce
JG
2529/**
2530 * ata_tf_to_host - issue ATA taskfile to host controller
2531 * @ap: port to which command is being issued
2532 * @tf: ATA taskfile register set
2533 *
2534 * Issues ATA taskfile register set to ATA host controller,
2535 * with proper synchronization with interrupt handler and
2536 * other threads.
2537 *
2538 * LOCKING:
cca3974e 2539 * spin_lock_irqsave(host lock)
1fdffbce
JG
2540 */
2541
2542static inline void ata_tf_to_host(struct ata_port *ap,
2543 const struct ata_taskfile *tf)
2544{
2545 ap->ops->tf_load(ap, tf);
2546 ap->ops->exec_command(ap, tf);
2547}
2548
1da177e4
LT
2549/**
2550 * ata_busy_sleep - sleep until BSY clears, or timeout
2551 * @ap: port containing status register to be polled
2552 * @tmout_pat: impatience timeout
2553 * @tmout: overall timeout
2554 *
780a87f7
JG
2555 * Sleep until ATA Status register bit BSY clears,
2556 * or a timeout occurs.
2557 *
d1adc1bb
TH
2558 * LOCKING:
2559 * Kernel thread context (may sleep).
2560 *
2561 * RETURNS:
2562 * 0 on success, -errno otherwise.
1da177e4 2563 */
d1adc1bb
TH
2564int ata_busy_sleep(struct ata_port *ap,
2565 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2566{
2567 unsigned long timer_start, timeout;
2568 u8 status;
2569
2570 status = ata_busy_wait(ap, ATA_BUSY, 300);
2571 timer_start = jiffies;
2572 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2573 while (status != 0xff && (status & ATA_BUSY) &&
2574 time_before(jiffies, timeout)) {
1da177e4
LT
2575 msleep(50);
2576 status = ata_busy_wait(ap, ATA_BUSY, 3);
2577 }
2578
d1adc1bb 2579 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2580 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2581 "port is slow to respond, please be patient "
2582 "(Status 0x%x)\n", status);
1da177e4
LT
2583
2584 timeout = timer_start + tmout;
d1adc1bb
TH
2585 while (status != 0xff && (status & ATA_BUSY) &&
2586 time_before(jiffies, timeout)) {
1da177e4
LT
2587 msleep(50);
2588 status = ata_chk_status(ap);
2589 }
2590
d1adc1bb
TH
2591 if (status == 0xff)
2592 return -ENODEV;
2593
1da177e4 2594 if (status & ATA_BUSY) {
f15a1daf 2595 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2596 "(%lu secs, Status 0x%x)\n",
2597 tmout / HZ, status);
d1adc1bb 2598 return -EBUSY;
1da177e4
LT
2599 }
2600
2601 return 0;
2602}
2603
2604static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2605{
2606 struct ata_ioports *ioaddr = &ap->ioaddr;
2607 unsigned int dev0 = devmask & (1 << 0);
2608 unsigned int dev1 = devmask & (1 << 1);
2609 unsigned long timeout;
2610
2611 /* if device 0 was found in ata_devchk, wait for its
2612 * BSY bit to clear
2613 */
2614 if (dev0)
2615 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2616
2617 /* if device 1 was found in ata_devchk, wait for
2618 * register access, then wait for BSY to clear
2619 */
2620 timeout = jiffies + ATA_TMOUT_BOOT;
2621 while (dev1) {
2622 u8 nsect, lbal;
2623
2624 ap->ops->dev_select(ap, 1);
2625 if (ap->flags & ATA_FLAG_MMIO) {
2626 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2627 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2628 } else {
2629 nsect = inb(ioaddr->nsect_addr);
2630 lbal = inb(ioaddr->lbal_addr);
2631 }
2632 if ((nsect == 1) && (lbal == 1))
2633 break;
2634 if (time_after(jiffies, timeout)) {
2635 dev1 = 0;
2636 break;
2637 }
2638 msleep(50); /* give drive a breather */
2639 }
2640 if (dev1)
2641 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2642
2643 /* is all this really necessary? */
2644 ap->ops->dev_select(ap, 0);
2645 if (dev1)
2646 ap->ops->dev_select(ap, 1);
2647 if (dev0)
2648 ap->ops->dev_select(ap, 0);
2649}
2650
1da177e4
LT
2651static unsigned int ata_bus_softreset(struct ata_port *ap,
2652 unsigned int devmask)
2653{
2654 struct ata_ioports *ioaddr = &ap->ioaddr;
2655
2656 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2657
2658 /* software reset. causes dev0 to be selected */
2659 if (ap->flags & ATA_FLAG_MMIO) {
2660 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2661 udelay(20); /* FIXME: flush */
2662 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2663 udelay(20); /* FIXME: flush */
2664 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2665 } else {
2666 outb(ap->ctl, ioaddr->ctl_addr);
2667 udelay(10);
2668 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2669 udelay(10);
2670 outb(ap->ctl, ioaddr->ctl_addr);
2671 }
2672
2673 /* spec mandates ">= 2ms" before checking status.
2674 * We wait 150ms, because that was the magic delay used for
2675 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2676 * between when the ATA command register is written, and then
2677 * status is checked. Because waiting for "a while" before
2678 * checking status is fine, post SRST, we perform this magic
2679 * delay here as well.
09c7ad79
AC
2680 *
2681 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2682 */
2683 msleep(150);
2684
2e9edbf8 2685 /* Before we perform post reset processing we want to see if
298a41ca
TH
2686 * the bus shows 0xFF because the odd clown forgets the D7
2687 * pulldown resistor.
2688 */
d1adc1bb
TH
2689 if (ata_check_status(ap) == 0xFF)
2690 return 0;
09c7ad79 2691
1da177e4
LT
2692 ata_bus_post_reset(ap, devmask);
2693
2694 return 0;
2695}
2696
2697/**
2698 * ata_bus_reset - reset host port and associated ATA channel
2699 * @ap: port to reset
2700 *
2701 * This is typically the first time we actually start issuing
2702 * commands to the ATA channel. We wait for BSY to clear, then
2703 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2704 * result. Determine what devices, if any, are on the channel
2705 * by looking at the device 0/1 error register. Look at the signature
2706 * stored in each device's taskfile registers, to determine if
2707 * the device is ATA or ATAPI.
2708 *
2709 * LOCKING:
0cba632b 2710 * PCI/etc. bus probe sem.
cca3974e 2711 * Obtains host lock.
1da177e4
LT
2712 *
2713 * SIDE EFFECTS:
198e0fed 2714 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2715 */
2716
2717void ata_bus_reset(struct ata_port *ap)
2718{
2719 struct ata_ioports *ioaddr = &ap->ioaddr;
2720 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2721 u8 err;
aec5c3c1 2722 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2723
2724 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2725
2726 /* determine if device 0/1 are present */
2727 if (ap->flags & ATA_FLAG_SATA_RESET)
2728 dev0 = 1;
2729 else {
2730 dev0 = ata_devchk(ap, 0);
2731 if (slave_possible)
2732 dev1 = ata_devchk(ap, 1);
2733 }
2734
2735 if (dev0)
2736 devmask |= (1 << 0);
2737 if (dev1)
2738 devmask |= (1 << 1);
2739
2740 /* select device 0 again */
2741 ap->ops->dev_select(ap, 0);
2742
2743 /* issue bus reset */
2744 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2745 if (ata_bus_softreset(ap, devmask))
2746 goto err_out;
1da177e4
LT
2747
2748 /*
2749 * determine by signature whether we have ATA or ATAPI devices
2750 */
b4dc7623 2751 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2752 if ((slave_possible) && (err != 0x81))
b4dc7623 2753 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2754
2755 /* re-enable interrupts */
2756 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2757 ata_irq_on(ap);
2758
2759 /* is double-select really necessary? */
2760 if (ap->device[1].class != ATA_DEV_NONE)
2761 ap->ops->dev_select(ap, 1);
2762 if (ap->device[0].class != ATA_DEV_NONE)
2763 ap->ops->dev_select(ap, 0);
2764
2765 /* if no devices were detected, disable this port */
2766 if ((ap->device[0].class == ATA_DEV_NONE) &&
2767 (ap->device[1].class == ATA_DEV_NONE))
2768 goto err_out;
2769
2770 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2771 /* set up device control for ATA_FLAG_SATA_RESET */
2772 if (ap->flags & ATA_FLAG_MMIO)
2773 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2774 else
2775 outb(ap->ctl, ioaddr->ctl_addr);
2776 }
2777
2778 DPRINTK("EXIT\n");
2779 return;
2780
2781err_out:
f15a1daf 2782 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2783 ap->ops->port_disable(ap);
2784
2785 DPRINTK("EXIT\n");
2786}
2787
d7bb4cc7
TH
2788/**
2789 * sata_phy_debounce - debounce SATA phy status
2790 * @ap: ATA port to debounce SATA phy status for
2791 * @params: timing parameters { interval, duratinon, timeout } in msec
2792 *
2793 * Make sure SStatus of @ap reaches stable state, determined by
2794 * holding the same value where DET is not 1 for @duration polled
2795 * every @interval, before @timeout. Timeout constraints the
2796 * beginning of the stable state. Because, after hot unplugging,
2797 * DET gets stuck at 1 on some controllers, this functions waits
2798 * until timeout then returns 0 if DET is stable at 1.
2799 *
2800 * LOCKING:
2801 * Kernel thread context (may sleep)
2802 *
2803 * RETURNS:
2804 * 0 on success, -errno on failure.
2805 */
2806int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2807{
d7bb4cc7
TH
2808 unsigned long interval_msec = params[0];
2809 unsigned long duration = params[1] * HZ / 1000;
2810 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2811 unsigned long last_jiffies;
2812 u32 last, cur;
2813 int rc;
2814
2815 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2816 return rc;
2817 cur &= 0xf;
2818
2819 last = cur;
2820 last_jiffies = jiffies;
2821
2822 while (1) {
2823 msleep(interval_msec);
2824 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2825 return rc;
2826 cur &= 0xf;
2827
2828 /* DET stable? */
2829 if (cur == last) {
2830 if (cur == 1 && time_before(jiffies, timeout))
2831 continue;
2832 if (time_after(jiffies, last_jiffies + duration))
2833 return 0;
2834 continue;
2835 }
2836
2837 /* unstable, start over */
2838 last = cur;
2839 last_jiffies = jiffies;
2840
2841 /* check timeout */
2842 if (time_after(jiffies, timeout))
2843 return -EBUSY;
2844 }
2845}
2846
2847/**
2848 * sata_phy_resume - resume SATA phy
2849 * @ap: ATA port to resume SATA phy for
2850 * @params: timing parameters { interval, duratinon, timeout } in msec
2851 *
2852 * Resume SATA phy of @ap and debounce it.
2853 *
2854 * LOCKING:
2855 * Kernel thread context (may sleep)
2856 *
2857 * RETURNS:
2858 * 0 on success, -errno on failure.
2859 */
2860int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2861{
2862 u32 scontrol;
81952c54
TH
2863 int rc;
2864
2865 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2866 return rc;
7a7921e8 2867
852ee16a 2868 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2869
2870 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2871 return rc;
7a7921e8 2872
d7bb4cc7
TH
2873 /* Some PHYs react badly if SStatus is pounded immediately
2874 * after resuming. Delay 200ms before debouncing.
2875 */
2876 msleep(200);
7a7921e8 2877
d7bb4cc7 2878 return sata_phy_debounce(ap, params);
7a7921e8
TH
2879}
2880
f5914a46
TH
2881static void ata_wait_spinup(struct ata_port *ap)
2882{
2883 struct ata_eh_context *ehc = &ap->eh_context;
2884 unsigned long end, secs;
2885 int rc;
2886
2887 /* first, debounce phy if SATA */
2888 if (ap->cbl == ATA_CBL_SATA) {
e9c83914 2889 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
f5914a46
TH
2890
2891 /* if debounced successfully and offline, no need to wait */
2892 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2893 return;
2894 }
2895
2896 /* okay, let's give the drive time to spin up */
2897 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2898 secs = ((end - jiffies) + HZ - 1) / HZ;
2899
2900 if (time_after(jiffies, end))
2901 return;
2902
2903 if (secs > 5)
2904 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2905 "(%lu secs)\n", secs);
2906
2907 schedule_timeout_uninterruptible(end - jiffies);
2908}
2909
2910/**
2911 * ata_std_prereset - prepare for reset
2912 * @ap: ATA port to be reset
2913 *
2914 * @ap is about to be reset. Initialize it.
2915 *
2916 * LOCKING:
2917 * Kernel thread context (may sleep)
2918 *
2919 * RETURNS:
2920 * 0 on success, -errno otherwise.
2921 */
2922int ata_std_prereset(struct ata_port *ap)
2923{
2924 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 2925 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
2926 int rc;
2927
28324304
TH
2928 /* handle link resume & hotplug spinup */
2929 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2930 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2931 ehc->i.action |= ATA_EH_HARDRESET;
2932
2933 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2934 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2935 ata_wait_spinup(ap);
f5914a46
TH
2936
2937 /* if we're about to do hardreset, nothing more to do */
2938 if (ehc->i.action & ATA_EH_HARDRESET)
2939 return 0;
2940
2941 /* if SATA, resume phy */
2942 if (ap->cbl == ATA_CBL_SATA) {
f5914a46
TH
2943 rc = sata_phy_resume(ap, timing);
2944 if (rc && rc != -EOPNOTSUPP) {
2945 /* phy resume failed */
2946 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2947 "link for reset (errno=%d)\n", rc);
2948 return rc;
2949 }
2950 }
2951
2952 /* Wait for !BSY if the controller can wait for the first D2H
2953 * Reg FIS and we don't know that no device is attached.
2954 */
2955 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2956 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2957
2958 return 0;
2959}
2960
c2bd5804
TH
2961/**
2962 * ata_std_softreset - reset host port via ATA SRST
2963 * @ap: port to reset
c2bd5804
TH
2964 * @classes: resulting classes of attached devices
2965 *
52783c5d 2966 * Reset host port using ATA SRST.
c2bd5804
TH
2967 *
2968 * LOCKING:
2969 * Kernel thread context (may sleep)
2970 *
2971 * RETURNS:
2972 * 0 on success, -errno otherwise.
2973 */
2bf2cb26 2974int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2975{
2976 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2977 unsigned int devmask = 0, err_mask;
2978 u8 err;
2979
2980 DPRINTK("ENTER\n");
2981
81952c54 2982 if (ata_port_offline(ap)) {
3a39746a
TH
2983 classes[0] = ATA_DEV_NONE;
2984 goto out;
2985 }
2986
c2bd5804
TH
2987 /* determine if device 0/1 are present */
2988 if (ata_devchk(ap, 0))
2989 devmask |= (1 << 0);
2990 if (slave_possible && ata_devchk(ap, 1))
2991 devmask |= (1 << 1);
2992
c2bd5804
TH
2993 /* select device 0 again */
2994 ap->ops->dev_select(ap, 0);
2995
2996 /* issue bus reset */
2997 DPRINTK("about to softreset, devmask=%x\n", devmask);
2998 err_mask = ata_bus_softreset(ap, devmask);
2999 if (err_mask) {
f15a1daf
TH
3000 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
3001 err_mask);
c2bd5804
TH
3002 return -EIO;
3003 }
3004
3005 /* determine by signature whether we have ATA or ATAPI devices */
3006 classes[0] = ata_dev_try_classify(ap, 0, &err);
3007 if (slave_possible && err != 0x81)
3008 classes[1] = ata_dev_try_classify(ap, 1, &err);
3009
3a39746a 3010 out:
c2bd5804
TH
3011 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3012 return 0;
3013}
3014
3015/**
b6103f6d 3016 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3017 * @ap: port to reset
b6103f6d 3018 * @timing: timing parameters { interval, duratinon, timeout } in msec
c2bd5804
TH
3019 *
3020 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3021 *
3022 * LOCKING:
3023 * Kernel thread context (may sleep)
3024 *
3025 * RETURNS:
3026 * 0 on success, -errno otherwise.
3027 */
b6103f6d 3028int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
c2bd5804 3029{
852ee16a 3030 u32 scontrol;
81952c54 3031 int rc;
852ee16a 3032
c2bd5804
TH
3033 DPRINTK("ENTER\n");
3034
3c567b7d 3035 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3036 /* SATA spec says nothing about how to reconfigure
3037 * spd. To be on the safe side, turn off phy during
3038 * reconfiguration. This works for at least ICH7 AHCI
3039 * and Sil3124.
3040 */
81952c54 3041 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3042 goto out;
81952c54 3043
a34b6fc0 3044 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3045
3046 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3047 goto out;
1c3fae4d 3048
3c567b7d 3049 sata_set_spd(ap);
1c3fae4d
TH
3050 }
3051
3052 /* issue phy wake/reset */
81952c54 3053 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3054 goto out;
81952c54 3055
852ee16a 3056 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3057
3058 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3059 goto out;
c2bd5804 3060
1c3fae4d 3061 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3062 * 10.4.2 says at least 1 ms.
3063 */
3064 msleep(1);
3065
1c3fae4d 3066 /* bring phy back */
b6103f6d
TH
3067 rc = sata_phy_resume(ap, timing);
3068 out:
3069 DPRINTK("EXIT, rc=%d\n", rc);
3070 return rc;
3071}
3072
3073/**
3074 * sata_std_hardreset - reset host port via SATA phy reset
3075 * @ap: port to reset
3076 * @class: resulting class of attached device
3077 *
3078 * SATA phy-reset host port using DET bits of SControl register,
3079 * wait for !BSY and classify the attached device.
3080 *
3081 * LOCKING:
3082 * Kernel thread context (may sleep)
3083 *
3084 * RETURNS:
3085 * 0 on success, -errno otherwise.
3086 */
3087int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3088{
3089 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3090 int rc;
3091
3092 DPRINTK("ENTER\n");
3093
3094 /* do hardreset */
3095 rc = sata_port_hardreset(ap, timing);
3096 if (rc) {
3097 ata_port_printk(ap, KERN_ERR,
3098 "COMRESET failed (errno=%d)\n", rc);
3099 return rc;
3100 }
c2bd5804 3101
c2bd5804 3102 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3103 if (ata_port_offline(ap)) {
c2bd5804
TH
3104 *class = ATA_DEV_NONE;
3105 DPRINTK("EXIT, link offline\n");
3106 return 0;
3107 }
3108
3109 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
3110 ata_port_printk(ap, KERN_ERR,
3111 "COMRESET failed (device not ready)\n");
c2bd5804
TH
3112 return -EIO;
3113 }
3114
3a39746a
TH
3115 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3116
c2bd5804
TH
3117 *class = ata_dev_try_classify(ap, 0, NULL);
3118
3119 DPRINTK("EXIT, class=%u\n", *class);
3120 return 0;
3121}
3122
3123/**
3124 * ata_std_postreset - standard postreset callback
3125 * @ap: the target ata_port
3126 * @classes: classes of attached devices
3127 *
3128 * This function is invoked after a successful reset. Note that
3129 * the device might have been reset more than once using
3130 * different reset methods before postreset is invoked.
c2bd5804 3131 *
c2bd5804
TH
3132 * LOCKING:
3133 * Kernel thread context (may sleep)
3134 */
3135void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3136{
dc2b3515
TH
3137 u32 serror;
3138
c2bd5804
TH
3139 DPRINTK("ENTER\n");
3140
c2bd5804 3141 /* print link status */
81952c54 3142 sata_print_link_status(ap);
c2bd5804 3143
dc2b3515
TH
3144 /* clear SError */
3145 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3146 sata_scr_write(ap, SCR_ERROR, serror);
3147
3a39746a 3148 /* re-enable interrupts */
e3180499
TH
3149 if (!ap->ops->error_handler) {
3150 /* FIXME: hack. create a hook instead */
3151 if (ap->ioaddr.ctl_addr)
3152 ata_irq_on(ap);
3153 }
c2bd5804
TH
3154
3155 /* is double-select really necessary? */
3156 if (classes[0] != ATA_DEV_NONE)
3157 ap->ops->dev_select(ap, 1);
3158 if (classes[1] != ATA_DEV_NONE)
3159 ap->ops->dev_select(ap, 0);
3160
3a39746a
TH
3161 /* bail out if no device is present */
3162 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3163 DPRINTK("EXIT, no device\n");
3164 return;
3165 }
3166
3167 /* set up device control */
3168 if (ap->ioaddr.ctl_addr) {
3169 if (ap->flags & ATA_FLAG_MMIO)
3170 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
3171 else
3172 outb(ap->ctl, ap->ioaddr.ctl_addr);
3173 }
c2bd5804
TH
3174
3175 DPRINTK("EXIT\n");
3176}
3177
623a3128
TH
3178/**
3179 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3180 * @dev: device to compare against
3181 * @new_class: class of the new device
3182 * @new_id: IDENTIFY page of the new device
3183 *
3184 * Compare @new_class and @new_id against @dev and determine
3185 * whether @dev is the device indicated by @new_class and
3186 * @new_id.
3187 *
3188 * LOCKING:
3189 * None.
3190 *
3191 * RETURNS:
3192 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3193 */
3373efd8
TH
3194static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3195 const u16 *new_id)
623a3128
TH
3196{
3197 const u16 *old_id = dev->id;
3198 unsigned char model[2][41], serial[2][21];
3199 u64 new_n_sectors;
3200
3201 if (dev->class != new_class) {
f15a1daf
TH
3202 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3203 dev->class, new_class);
623a3128
TH
3204 return 0;
3205 }
3206
3207 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
3208 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
3209 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
3210 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
3211 new_n_sectors = ata_id_n_sectors(new_id);
3212
3213 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3214 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3215 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3216 return 0;
3217 }
3218
3219 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3220 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3221 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3222 return 0;
3223 }
3224
3225 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
3226 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3227 "%llu != %llu\n",
3228 (unsigned long long)dev->n_sectors,
3229 (unsigned long long)new_n_sectors);
623a3128
TH
3230 return 0;
3231 }
3232
3233 return 1;
3234}
3235
3236/**
3237 * ata_dev_revalidate - Revalidate ATA device
623a3128 3238 * @dev: device to revalidate
bff04647 3239 * @readid_flags: read ID flags
623a3128
TH
3240 *
3241 * Re-read IDENTIFY page and make sure @dev is still attached to
3242 * the port.
3243 *
3244 * LOCKING:
3245 * Kernel thread context (may sleep)
3246 *
3247 * RETURNS:
3248 * 0 on success, negative errno otherwise
3249 */
bff04647 3250int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
623a3128 3251{
5eb45c02 3252 unsigned int class = dev->class;
f15a1daf 3253 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3254 int rc;
3255
5eb45c02
TH
3256 if (!ata_dev_enabled(dev)) {
3257 rc = -ENODEV;
3258 goto fail;
3259 }
623a3128 3260
fe635c7e 3261 /* read ID data */
bff04647 3262 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128
TH
3263 if (rc)
3264 goto fail;
3265
3266 /* is the device still there? */
3373efd8 3267 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
3268 rc = -ENODEV;
3269 goto fail;
3270 }
3271
fe635c7e 3272 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
3273
3274 /* configure device according to the new ID */
efdaedc4 3275 rc = ata_dev_configure(dev);
5eb45c02
TH
3276 if (rc == 0)
3277 return 0;
623a3128
TH
3278
3279 fail:
f15a1daf 3280 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3281 return rc;
3282}
3283
6919a0a6
AC
3284struct ata_blacklist_entry {
3285 const char *model_num;
3286 const char *model_rev;
3287 unsigned long horkage;
3288};
3289
3290static const struct ata_blacklist_entry ata_device_blacklist [] = {
3291 /* Devices with DMA related problems under Linux */
3292 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3293 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3294 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3295 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3296 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3297 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3298 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3299 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3300 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3301 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3302 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3303 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3304 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3305 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3306 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3307 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3308 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3309 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3310 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3311 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3312 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3313 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3314 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3315 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3316 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3317 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3318 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3319 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3320 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3321 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3322
3323 /* Devices we expect to fail diagnostics */
3324
3325 /* Devices where NCQ should be avoided */
3326 /* NCQ is slow */
3327 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3328
3329 /* Devices with NCQ limits */
3330
3331 /* End Marker */
3332 { }
1da177e4 3333};
2e9edbf8 3334
f4b15fef
AC
3335static int ata_strim(char *s, size_t len)
3336{
3337 len = strnlen(s, len);
3338
3339 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3340 while ((len > 0) && (s[len - 1] == ' ')) {
3341 len--;
3342 s[len] = 0;
3343 }
3344 return len;
3345}
1da177e4 3346
6919a0a6 3347unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3348{
f4b15fef
AC
3349 unsigned char model_num[40];
3350 unsigned char model_rev[16];
3351 unsigned int nlen, rlen;
6919a0a6 3352 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3353
f4b15fef
AC
3354 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3355 sizeof(model_num));
3356 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3357 sizeof(model_rev));
3358 nlen = ata_strim(model_num, sizeof(model_num));
3359 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 3360
6919a0a6
AC
3361 while (ad->model_num) {
3362 if (!strncmp(ad->model_num, model_num, nlen)) {
3363 if (ad->model_rev == NULL)
3364 return ad->horkage;
3365 if (!strncmp(ad->model_rev, model_rev, rlen))
3366 return ad->horkage;
f4b15fef 3367 }
6919a0a6 3368 ad++;
f4b15fef 3369 }
1da177e4
LT
3370 return 0;
3371}
3372
6919a0a6
AC
3373static int ata_dma_blacklisted(const struct ata_device *dev)
3374{
3375 /* We don't support polling DMA.
3376 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3377 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3378 */
3379 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3380 (dev->flags & ATA_DFLAG_CDB_INTR))
3381 return 1;
3382 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3383}
3384
a6d5a51c
TH
3385/**
3386 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3387 * @dev: Device to compute xfermask for
3388 *
acf356b1
TH
3389 * Compute supported xfermask of @dev and store it in
3390 * dev->*_mask. This function is responsible for applying all
3391 * known limits including host controller limits, device
3392 * blacklist, etc...
a6d5a51c
TH
3393 *
3394 * LOCKING:
3395 * None.
a6d5a51c 3396 */
3373efd8 3397static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3398{
3373efd8 3399 struct ata_port *ap = dev->ap;
cca3974e 3400 struct ata_host *host = ap->host;
a6d5a51c 3401 unsigned long xfer_mask;
1da177e4 3402
37deecb5 3403 /* controller modes available */
565083e1
TH
3404 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3405 ap->mwdma_mask, ap->udma_mask);
3406
3407 /* Apply cable rule here. Don't apply it early because when
3408 * we handle hot plug the cable type can itself change.
3409 */
3410 if (ap->cbl == ATA_CBL_PATA40)
3411 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
fc085150
AC
3412 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3413 * host side are checked drive side as well. Cases where we know a
3414 * 40wire cable is used safely for 80 are not checked here.
3415 */
3416 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3417 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3418
1da177e4 3419
37deecb5
TH
3420 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3421 dev->mwdma_mask, dev->udma_mask);
3422 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3423
b352e57d
AC
3424 /*
3425 * CFA Advanced TrueIDE timings are not allowed on a shared
3426 * cable
3427 */
3428 if (ata_dev_pair(dev)) {
3429 /* No PIO5 or PIO6 */
3430 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3431 /* No MWDMA3 or MWDMA 4 */
3432 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3433 }
3434
37deecb5
TH
3435 if (ata_dma_blacklisted(dev)) {
3436 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3437 ata_dev_printk(dev, KERN_WARNING,
3438 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3439 }
a6d5a51c 3440
cca3974e 3441 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
37deecb5
TH
3442 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3443 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3444 "other device, disabling DMA\n");
5444a6f4 3445 }
565083e1 3446
5444a6f4
AC
3447 if (ap->ops->mode_filter)
3448 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3449
565083e1
TH
3450 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3451 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3452}
3453
1da177e4
LT
3454/**
3455 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3456 * @dev: Device to which command will be sent
3457 *
780a87f7
JG
3458 * Issue SET FEATURES - XFER MODE command to device @dev
3459 * on port @ap.
3460 *
1da177e4 3461 * LOCKING:
0cba632b 3462 * PCI/etc. bus probe sem.
83206a29
TH
3463 *
3464 * RETURNS:
3465 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3466 */
3467
3373efd8 3468static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3469{
a0123703 3470 struct ata_taskfile tf;
83206a29 3471 unsigned int err_mask;
1da177e4
LT
3472
3473 /* set up set-features taskfile */
3474 DPRINTK("set features - xfer mode\n");
3475
3373efd8 3476 ata_tf_init(dev, &tf);
a0123703
TH
3477 tf.command = ATA_CMD_SET_FEATURES;
3478 tf.feature = SETFEATURES_XFER;
3479 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3480 tf.protocol = ATA_PROT_NODATA;
3481 tf.nsect = dev->xfer_mode;
1da177e4 3482
3373efd8 3483 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3484
83206a29
TH
3485 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3486 return err_mask;
1da177e4
LT
3487}
3488
8bf62ece
AL
3489/**
3490 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3491 * @dev: Device to which command will be sent
e2a7f77a
RD
3492 * @heads: Number of heads (taskfile parameter)
3493 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3494 *
3495 * LOCKING:
6aff8f1f
TH
3496 * Kernel thread context (may sleep)
3497 *
3498 * RETURNS:
3499 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3500 */
3373efd8
TH
3501static unsigned int ata_dev_init_params(struct ata_device *dev,
3502 u16 heads, u16 sectors)
8bf62ece 3503{
a0123703 3504 struct ata_taskfile tf;
6aff8f1f 3505 unsigned int err_mask;
8bf62ece
AL
3506
3507 /* Number of sectors per track 1-255. Number of heads 1-16 */
3508 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3509 return AC_ERR_INVALID;
8bf62ece
AL
3510
3511 /* set up init dev params taskfile */
3512 DPRINTK("init dev params \n");
3513
3373efd8 3514 ata_tf_init(dev, &tf);
a0123703
TH
3515 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3516 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3517 tf.protocol = ATA_PROT_NODATA;
3518 tf.nsect = sectors;
3519 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3520
3373efd8 3521 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3522
6aff8f1f
TH
3523 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3524 return err_mask;
8bf62ece
AL
3525}
3526
1da177e4 3527/**
0cba632b
JG
3528 * ata_sg_clean - Unmap DMA memory associated with command
3529 * @qc: Command containing DMA memory to be released
3530 *
3531 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3532 *
3533 * LOCKING:
cca3974e 3534 * spin_lock_irqsave(host lock)
1da177e4
LT
3535 */
3536
3537static void ata_sg_clean(struct ata_queued_cmd *qc)
3538{
3539 struct ata_port *ap = qc->ap;
cedc9a47 3540 struct scatterlist *sg = qc->__sg;
1da177e4 3541 int dir = qc->dma_dir;
cedc9a47 3542 void *pad_buf = NULL;
1da177e4 3543
a4631474
TH
3544 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3545 WARN_ON(sg == NULL);
1da177e4
LT
3546
3547 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3548 WARN_ON(qc->n_elem > 1);
1da177e4 3549
2c13b7ce 3550 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3551
cedc9a47
JG
3552 /* if we padded the buffer out to 32-bit bound, and data
3553 * xfer direction is from-device, we must copy from the
3554 * pad buffer back into the supplied buffer
3555 */
3556 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3557 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3558
3559 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3560 if (qc->n_elem)
2f1f610b 3561 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3562 /* restore last sg */
3563 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3564 if (pad_buf) {
3565 struct scatterlist *psg = &qc->pad_sgent;
3566 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3567 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3568 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3569 }
3570 } else {
2e242fa9 3571 if (qc->n_elem)
2f1f610b 3572 dma_unmap_single(ap->dev,
e1410f2d
JG
3573 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3574 dir);
cedc9a47
JG
3575 /* restore sg */
3576 sg->length += qc->pad_len;
3577 if (pad_buf)
3578 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3579 pad_buf, qc->pad_len);
3580 }
1da177e4
LT
3581
3582 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3583 qc->__sg = NULL;
1da177e4
LT
3584}
3585
3586/**
3587 * ata_fill_sg - Fill PCI IDE PRD table
3588 * @qc: Metadata associated with taskfile to be transferred
3589 *
780a87f7
JG
3590 * Fill PCI IDE PRD (scatter-gather) table with segments
3591 * associated with the current disk command.
3592 *
1da177e4 3593 * LOCKING:
cca3974e 3594 * spin_lock_irqsave(host lock)
1da177e4
LT
3595 *
3596 */
3597static void ata_fill_sg(struct ata_queued_cmd *qc)
3598{
1da177e4 3599 struct ata_port *ap = qc->ap;
cedc9a47
JG
3600 struct scatterlist *sg;
3601 unsigned int idx;
1da177e4 3602
a4631474 3603 WARN_ON(qc->__sg == NULL);
f131883e 3604 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3605
3606 idx = 0;
cedc9a47 3607 ata_for_each_sg(sg, qc) {
1da177e4
LT
3608 u32 addr, offset;
3609 u32 sg_len, len;
3610
3611 /* determine if physical DMA addr spans 64K boundary.
3612 * Note h/w doesn't support 64-bit, so we unconditionally
3613 * truncate dma_addr_t to u32.
3614 */
3615 addr = (u32) sg_dma_address(sg);
3616 sg_len = sg_dma_len(sg);
3617
3618 while (sg_len) {
3619 offset = addr & 0xffff;
3620 len = sg_len;
3621 if ((offset + sg_len) > 0x10000)
3622 len = 0x10000 - offset;
3623
3624 ap->prd[idx].addr = cpu_to_le32(addr);
3625 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3626 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3627
3628 idx++;
3629 sg_len -= len;
3630 addr += len;
3631 }
3632 }
3633
3634 if (idx)
3635 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3636}
3637/**
3638 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3639 * @qc: Metadata associated with taskfile to check
3640 *
780a87f7
JG
3641 * Allow low-level driver to filter ATA PACKET commands, returning
3642 * a status indicating whether or not it is OK to use DMA for the
3643 * supplied PACKET command.
3644 *
1da177e4 3645 * LOCKING:
cca3974e 3646 * spin_lock_irqsave(host lock)
0cba632b 3647 *
1da177e4
LT
3648 * RETURNS: 0 when ATAPI DMA can be used
3649 * nonzero otherwise
3650 */
3651int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3652{
3653 struct ata_port *ap = qc->ap;
3654 int rc = 0; /* Assume ATAPI DMA is OK by default */
3655
3656 if (ap->ops->check_atapi_dma)
3657 rc = ap->ops->check_atapi_dma(qc);
3658
3659 return rc;
3660}
3661/**
3662 * ata_qc_prep - Prepare taskfile for submission
3663 * @qc: Metadata associated with taskfile to be prepared
3664 *
780a87f7
JG
3665 * Prepare ATA taskfile for submission.
3666 *
1da177e4 3667 * LOCKING:
cca3974e 3668 * spin_lock_irqsave(host lock)
1da177e4
LT
3669 */
3670void ata_qc_prep(struct ata_queued_cmd *qc)
3671{
3672 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3673 return;
3674
3675 ata_fill_sg(qc);
3676}
3677
e46834cd
BK
3678void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3679
0cba632b
JG
3680/**
3681 * ata_sg_init_one - Associate command with memory buffer
3682 * @qc: Command to be associated
3683 * @buf: Memory buffer
3684 * @buflen: Length of memory buffer, in bytes.
3685 *
3686 * Initialize the data-related elements of queued_cmd @qc
3687 * to point to a single memory buffer, @buf of byte length @buflen.
3688 *
3689 * LOCKING:
cca3974e 3690 * spin_lock_irqsave(host lock)
0cba632b
JG
3691 */
3692
1da177e4
LT
3693void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3694{
1da177e4
LT
3695 qc->flags |= ATA_QCFLAG_SINGLE;
3696
cedc9a47 3697 qc->__sg = &qc->sgent;
1da177e4 3698 qc->n_elem = 1;
cedc9a47 3699 qc->orig_n_elem = 1;
1da177e4 3700 qc->buf_virt = buf;
233277ca 3701 qc->nbytes = buflen;
1da177e4 3702
61c0596c 3703 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
3704}
3705
0cba632b
JG
3706/**
3707 * ata_sg_init - Associate command with scatter-gather table.
3708 * @qc: Command to be associated
3709 * @sg: Scatter-gather table.
3710 * @n_elem: Number of elements in s/g table.
3711 *
3712 * Initialize the data-related elements of queued_cmd @qc
3713 * to point to a scatter-gather table @sg, containing @n_elem
3714 * elements.
3715 *
3716 * LOCKING:
cca3974e 3717 * spin_lock_irqsave(host lock)
0cba632b
JG
3718 */
3719
1da177e4
LT
3720void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3721 unsigned int n_elem)
3722{
3723 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3724 qc->__sg = sg;
1da177e4 3725 qc->n_elem = n_elem;
cedc9a47 3726 qc->orig_n_elem = n_elem;
1da177e4
LT
3727}
3728
3729/**
0cba632b
JG
3730 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3731 * @qc: Command with memory buffer to be mapped.
3732 *
3733 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3734 *
3735 * LOCKING:
cca3974e 3736 * spin_lock_irqsave(host lock)
1da177e4
LT
3737 *
3738 * RETURNS:
0cba632b 3739 * Zero on success, negative on error.
1da177e4
LT
3740 */
3741
3742static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3743{
3744 struct ata_port *ap = qc->ap;
3745 int dir = qc->dma_dir;
cedc9a47 3746 struct scatterlist *sg = qc->__sg;
1da177e4 3747 dma_addr_t dma_address;
2e242fa9 3748 int trim_sg = 0;
1da177e4 3749
cedc9a47
JG
3750 /* we must lengthen transfers to end on a 32-bit boundary */
3751 qc->pad_len = sg->length & 3;
3752 if (qc->pad_len) {
3753 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3754 struct scatterlist *psg = &qc->pad_sgent;
3755
a4631474 3756 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3757
3758 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3759
3760 if (qc->tf.flags & ATA_TFLAG_WRITE)
3761 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3762 qc->pad_len);
3763
3764 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3765 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3766 /* trim sg */
3767 sg->length -= qc->pad_len;
2e242fa9
TH
3768 if (sg->length == 0)
3769 trim_sg = 1;
cedc9a47
JG
3770
3771 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3772 sg->length, qc->pad_len);
3773 }
3774
2e242fa9
TH
3775 if (trim_sg) {
3776 qc->n_elem--;
e1410f2d
JG
3777 goto skip_map;
3778 }
3779
2f1f610b 3780 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3781 sg->length, dir);
537a95d9
TH
3782 if (dma_mapping_error(dma_address)) {
3783 /* restore sg */
3784 sg->length += qc->pad_len;
1da177e4 3785 return -1;
537a95d9 3786 }
1da177e4
LT
3787
3788 sg_dma_address(sg) = dma_address;
32529e01 3789 sg_dma_len(sg) = sg->length;
1da177e4 3790
2e242fa9 3791skip_map:
1da177e4
LT
3792 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3793 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3794
3795 return 0;
3796}
3797
3798/**
0cba632b
JG
3799 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3800 * @qc: Command with scatter-gather table to be mapped.
3801 *
3802 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3803 *
3804 * LOCKING:
cca3974e 3805 * spin_lock_irqsave(host lock)
1da177e4
LT
3806 *
3807 * RETURNS:
0cba632b 3808 * Zero on success, negative on error.
1da177e4
LT
3809 *
3810 */
3811
3812static int ata_sg_setup(struct ata_queued_cmd *qc)
3813{
3814 struct ata_port *ap = qc->ap;
cedc9a47
JG
3815 struct scatterlist *sg = qc->__sg;
3816 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3817 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3818
3819 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3820 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3821
cedc9a47
JG
3822 /* we must lengthen transfers to end on a 32-bit boundary */
3823 qc->pad_len = lsg->length & 3;
3824 if (qc->pad_len) {
3825 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3826 struct scatterlist *psg = &qc->pad_sgent;
3827 unsigned int offset;
3828
a4631474 3829 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3830
3831 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3832
3833 /*
3834 * psg->page/offset are used to copy to-be-written
3835 * data in this function or read data in ata_sg_clean.
3836 */
3837 offset = lsg->offset + lsg->length - qc->pad_len;
3838 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3839 psg->offset = offset_in_page(offset);
3840
3841 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3842 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3843 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3844 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3845 }
3846
3847 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3848 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3849 /* trim last sg */
3850 lsg->length -= qc->pad_len;
e1410f2d
JG
3851 if (lsg->length == 0)
3852 trim_sg = 1;
cedc9a47
JG
3853
3854 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3855 qc->n_elem - 1, lsg->length, qc->pad_len);
3856 }
3857
e1410f2d
JG
3858 pre_n_elem = qc->n_elem;
3859 if (trim_sg && pre_n_elem)
3860 pre_n_elem--;
3861
3862 if (!pre_n_elem) {
3863 n_elem = 0;
3864 goto skip_map;
3865 }
3866
1da177e4 3867 dir = qc->dma_dir;
2f1f610b 3868 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3869 if (n_elem < 1) {
3870 /* restore last sg */
3871 lsg->length += qc->pad_len;
1da177e4 3872 return -1;
537a95d9 3873 }
1da177e4
LT
3874
3875 DPRINTK("%d sg elements mapped\n", n_elem);
3876
e1410f2d 3877skip_map:
1da177e4
LT
3878 qc->n_elem = n_elem;
3879
3880 return 0;
3881}
3882
0baab86b 3883/**
c893a3ae 3884 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3885 * @buf: Buffer to swap
3886 * @buf_words: Number of 16-bit words in buffer.
3887 *
3888 * Swap halves of 16-bit words if needed to convert from
3889 * little-endian byte order to native cpu byte order, or
3890 * vice-versa.
3891 *
3892 * LOCKING:
6f0ef4fa 3893 * Inherited from caller.
0baab86b 3894 */
1da177e4
LT
3895void swap_buf_le16(u16 *buf, unsigned int buf_words)
3896{
3897#ifdef __BIG_ENDIAN
3898 unsigned int i;
3899
3900 for (i = 0; i < buf_words; i++)
3901 buf[i] = le16_to_cpu(buf[i]);
3902#endif /* __BIG_ENDIAN */
3903}
3904
6ae4cfb5
AL
3905/**
3906 * ata_mmio_data_xfer - Transfer data by MMIO
bf717b11 3907 * @adev: device for this I/O
6ae4cfb5
AL
3908 * @buf: data buffer
3909 * @buflen: buffer length
344babaa 3910 * @write_data: read/write
6ae4cfb5
AL
3911 *
3912 * Transfer data from/to the device data register by MMIO.
3913 *
3914 * LOCKING:
3915 * Inherited from caller.
6ae4cfb5
AL
3916 */
3917
88574551 3918void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3919 unsigned int buflen, int write_data)
1da177e4 3920{
a6b2c5d4 3921 struct ata_port *ap = adev->ap;
1da177e4
LT
3922 unsigned int i;
3923 unsigned int words = buflen >> 1;
3924 u16 *buf16 = (u16 *) buf;
3925 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3926
6ae4cfb5 3927 /* Transfer multiple of 2 bytes */
1da177e4
LT
3928 if (write_data) {
3929 for (i = 0; i < words; i++)
3930 writew(le16_to_cpu(buf16[i]), mmio);
3931 } else {
3932 for (i = 0; i < words; i++)
3933 buf16[i] = cpu_to_le16(readw(mmio));
3934 }
6ae4cfb5
AL
3935
3936 /* Transfer trailing 1 byte, if any. */
3937 if (unlikely(buflen & 0x01)) {
3938 u16 align_buf[1] = { 0 };
3939 unsigned char *trailing_buf = buf + buflen - 1;
3940
3941 if (write_data) {
3942 memcpy(align_buf, trailing_buf, 1);
3943 writew(le16_to_cpu(align_buf[0]), mmio);
3944 } else {
3945 align_buf[0] = cpu_to_le16(readw(mmio));
3946 memcpy(trailing_buf, align_buf, 1);
3947 }
3948 }
1da177e4
LT
3949}
3950
6ae4cfb5
AL
3951/**
3952 * ata_pio_data_xfer - Transfer data by PIO
a6b2c5d4 3953 * @adev: device to target
6ae4cfb5
AL
3954 * @buf: data buffer
3955 * @buflen: buffer length
344babaa 3956 * @write_data: read/write
6ae4cfb5
AL
3957 *
3958 * Transfer data from/to the device data register by PIO.
3959 *
3960 * LOCKING:
3961 * Inherited from caller.
6ae4cfb5
AL
3962 */
3963
88574551 3964void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3965 unsigned int buflen, int write_data)
1da177e4 3966{
a6b2c5d4 3967 struct ata_port *ap = adev->ap;
6ae4cfb5 3968 unsigned int words = buflen >> 1;
1da177e4 3969
6ae4cfb5 3970 /* Transfer multiple of 2 bytes */
1da177e4 3971 if (write_data)
6ae4cfb5 3972 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3973 else
6ae4cfb5
AL
3974 insw(ap->ioaddr.data_addr, buf, words);
3975
3976 /* Transfer trailing 1 byte, if any. */
3977 if (unlikely(buflen & 0x01)) {
3978 u16 align_buf[1] = { 0 };
3979 unsigned char *trailing_buf = buf + buflen - 1;
3980
3981 if (write_data) {
3982 memcpy(align_buf, trailing_buf, 1);
3983 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3984 } else {
3985 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3986 memcpy(trailing_buf, align_buf, 1);
3987 }
3988 }
1da177e4
LT
3989}
3990
75e99585
AC
3991/**
3992 * ata_pio_data_xfer_noirq - Transfer data by PIO
3993 * @adev: device to target
3994 * @buf: data buffer
3995 * @buflen: buffer length
3996 * @write_data: read/write
3997 *
88574551 3998 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
3999 * transfer with interrupts disabled.
4000 *
4001 * LOCKING:
4002 * Inherited from caller.
4003 */
4004
4005void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4006 unsigned int buflen, int write_data)
4007{
4008 unsigned long flags;
4009 local_irq_save(flags);
4010 ata_pio_data_xfer(adev, buf, buflen, write_data);
4011 local_irq_restore(flags);
4012}
4013
4014
6ae4cfb5
AL
4015/**
4016 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
4017 * @qc: Command on going
4018 *
4019 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
4020 *
4021 * LOCKING:
4022 * Inherited from caller.
4023 */
4024
1da177e4
LT
4025static void ata_pio_sector(struct ata_queued_cmd *qc)
4026{
4027 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4028 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4029 struct ata_port *ap = qc->ap;
4030 struct page *page;
4031 unsigned int offset;
4032 unsigned char *buf;
4033
4034 if (qc->cursect == (qc->nsect - 1))
14be71f4 4035 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4036
4037 page = sg[qc->cursg].page;
4038 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
4039
4040 /* get the current page and offset */
4041 page = nth_page(page, (offset >> PAGE_SHIFT));
4042 offset %= PAGE_SIZE;
4043
1da177e4
LT
4044 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4045
91b8b313
AL
4046 if (PageHighMem(page)) {
4047 unsigned long flags;
4048
a6b2c5d4 4049 /* FIXME: use a bounce buffer */
91b8b313
AL
4050 local_irq_save(flags);
4051 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4052
91b8b313 4053 /* do the actual data transfer */
a6b2c5d4 4054 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 4055
91b8b313
AL
4056 kunmap_atomic(buf, KM_IRQ0);
4057 local_irq_restore(flags);
4058 } else {
4059 buf = page_address(page);
a6b2c5d4 4060 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
91b8b313 4061 }
1da177e4
LT
4062
4063 qc->cursect++;
4064 qc->cursg_ofs++;
4065
32529e01 4066 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
4067 qc->cursg++;
4068 qc->cursg_ofs = 0;
4069 }
1da177e4 4070}
1da177e4 4071
07f6f7d0
AL
4072/**
4073 * ata_pio_sectors - Transfer one or many 512-byte sectors.
4074 * @qc: Command on going
4075 *
c81e29b4 4076 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
4077 * ATA device for the DRQ request.
4078 *
4079 * LOCKING:
4080 * Inherited from caller.
4081 */
1da177e4 4082
07f6f7d0
AL
4083static void ata_pio_sectors(struct ata_queued_cmd *qc)
4084{
4085 if (is_multi_taskfile(&qc->tf)) {
4086 /* READ/WRITE MULTIPLE */
4087 unsigned int nsect;
4088
587005de 4089 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4090
07f6f7d0
AL
4091 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
4092 while (nsect--)
4093 ata_pio_sector(qc);
4094 } else
4095 ata_pio_sector(qc);
4096}
4097
c71c1857
AL
4098/**
4099 * atapi_send_cdb - Write CDB bytes to hardware
4100 * @ap: Port to which ATAPI device is attached.
4101 * @qc: Taskfile currently active
4102 *
4103 * When device has indicated its readiness to accept
4104 * a CDB, this function is called. Send the CDB.
4105 *
4106 * LOCKING:
4107 * caller.
4108 */
4109
4110static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4111{
4112 /* send SCSI cdb */
4113 DPRINTK("send cdb\n");
db024d53 4114 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4115
a6b2c5d4 4116 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4117 ata_altstatus(ap); /* flush */
4118
4119 switch (qc->tf.protocol) {
4120 case ATA_PROT_ATAPI:
4121 ap->hsm_task_state = HSM_ST;
4122 break;
4123 case ATA_PROT_ATAPI_NODATA:
4124 ap->hsm_task_state = HSM_ST_LAST;
4125 break;
4126 case ATA_PROT_ATAPI_DMA:
4127 ap->hsm_task_state = HSM_ST_LAST;
4128 /* initiate bmdma */
4129 ap->ops->bmdma_start(qc);
4130 break;
4131 }
1da177e4
LT
4132}
4133
6ae4cfb5
AL
4134/**
4135 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4136 * @qc: Command on going
4137 * @bytes: number of bytes
4138 *
4139 * Transfer Transfer data from/to the ATAPI device.
4140 *
4141 * LOCKING:
4142 * Inherited from caller.
4143 *
4144 */
4145
1da177e4
LT
4146static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4147{
4148 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4149 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4150 struct ata_port *ap = qc->ap;
4151 struct page *page;
4152 unsigned char *buf;
4153 unsigned int offset, count;
4154
563a6e1f 4155 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4156 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4157
4158next_sg:
563a6e1f 4159 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4160 /*
563a6e1f
AL
4161 * The end of qc->sg is reached and the device expects
4162 * more data to transfer. In order not to overrun qc->sg
4163 * and fulfill length specified in the byte count register,
4164 * - for read case, discard trailing data from the device
4165 * - for write case, padding zero data to the device
4166 */
4167 u16 pad_buf[1] = { 0 };
4168 unsigned int words = bytes >> 1;
4169 unsigned int i;
4170
4171 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4172 ata_dev_printk(qc->dev, KERN_WARNING,
4173 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4174
4175 for (i = 0; i < words; i++)
a6b2c5d4 4176 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4177
14be71f4 4178 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4179 return;
4180 }
4181
cedc9a47 4182 sg = &qc->__sg[qc->cursg];
1da177e4 4183
1da177e4
LT
4184 page = sg->page;
4185 offset = sg->offset + qc->cursg_ofs;
4186
4187 /* get the current page and offset */
4188 page = nth_page(page, (offset >> PAGE_SHIFT));
4189 offset %= PAGE_SIZE;
4190
6952df03 4191 /* don't overrun current sg */
32529e01 4192 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4193
4194 /* don't cross page boundaries */
4195 count = min(count, (unsigned int)PAGE_SIZE - offset);
4196
7282aa4b
AL
4197 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4198
91b8b313
AL
4199 if (PageHighMem(page)) {
4200 unsigned long flags;
4201
a6b2c5d4 4202 /* FIXME: use bounce buffer */
91b8b313
AL
4203 local_irq_save(flags);
4204 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4205
91b8b313 4206 /* do the actual data transfer */
a6b2c5d4 4207 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4208
91b8b313
AL
4209 kunmap_atomic(buf, KM_IRQ0);
4210 local_irq_restore(flags);
4211 } else {
4212 buf = page_address(page);
a6b2c5d4 4213 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4214 }
1da177e4
LT
4215
4216 bytes -= count;
4217 qc->curbytes += count;
4218 qc->cursg_ofs += count;
4219
32529e01 4220 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4221 qc->cursg++;
4222 qc->cursg_ofs = 0;
4223 }
4224
563a6e1f 4225 if (bytes)
1da177e4 4226 goto next_sg;
1da177e4
LT
4227}
4228
6ae4cfb5
AL
4229/**
4230 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4231 * @qc: Command on going
4232 *
4233 * Transfer Transfer data from/to the ATAPI device.
4234 *
4235 * LOCKING:
4236 * Inherited from caller.
6ae4cfb5
AL
4237 */
4238
1da177e4
LT
4239static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4240{
4241 struct ata_port *ap = qc->ap;
4242 struct ata_device *dev = qc->dev;
4243 unsigned int ireason, bc_lo, bc_hi, bytes;
4244 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4245
eec4c3f3
AL
4246 /* Abuse qc->result_tf for temp storage of intermediate TF
4247 * here to save some kernel stack usage.
4248 * For normal completion, qc->result_tf is not relevant. For
4249 * error, qc->result_tf is later overwritten by ata_qc_complete().
4250 * So, the correctness of qc->result_tf is not affected.
4251 */
4252 ap->ops->tf_read(ap, &qc->result_tf);
4253 ireason = qc->result_tf.nsect;
4254 bc_lo = qc->result_tf.lbam;
4255 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4256 bytes = (bc_hi << 8) | bc_lo;
4257
4258 /* shall be cleared to zero, indicating xfer of data */
4259 if (ireason & (1 << 0))
4260 goto err_out;
4261
4262 /* make sure transfer direction matches expected */
4263 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4264 if (do_write != i_write)
4265 goto err_out;
4266
312f7da2
AL
4267 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4268
1da177e4
LT
4269 __atapi_pio_bytes(qc, bytes);
4270
4271 return;
4272
4273err_out:
f15a1daf 4274 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4275 qc->err_mask |= AC_ERR_HSM;
14be71f4 4276 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4277}
4278
4279/**
c234fb00
AL
4280 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4281 * @ap: the target ata_port
4282 * @qc: qc on going
1da177e4 4283 *
c234fb00
AL
4284 * RETURNS:
4285 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4286 */
c234fb00
AL
4287
4288static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4289{
c234fb00
AL
4290 if (qc->tf.flags & ATA_TFLAG_POLLING)
4291 return 1;
1da177e4 4292
c234fb00
AL
4293 if (ap->hsm_task_state == HSM_ST_FIRST) {
4294 if (qc->tf.protocol == ATA_PROT_PIO &&
4295 (qc->tf.flags & ATA_TFLAG_WRITE))
4296 return 1;
1da177e4 4297
c234fb00
AL
4298 if (is_atapi_taskfile(&qc->tf) &&
4299 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4300 return 1;
fe79e683
AL
4301 }
4302
c234fb00
AL
4303 return 0;
4304}
1da177e4 4305
c17ea20d
TH
4306/**
4307 * ata_hsm_qc_complete - finish a qc running on standard HSM
4308 * @qc: Command to complete
4309 * @in_wq: 1 if called from workqueue, 0 otherwise
4310 *
4311 * Finish @qc which is running on standard HSM.
4312 *
4313 * LOCKING:
cca3974e 4314 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4315 * Otherwise, none on entry and grabs host lock.
4316 */
4317static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4318{
4319 struct ata_port *ap = qc->ap;
4320 unsigned long flags;
4321
4322 if (ap->ops->error_handler) {
4323 if (in_wq) {
ba6a1308 4324 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4325
cca3974e
JG
4326 /* EH might have kicked in while host lock is
4327 * released.
c17ea20d
TH
4328 */
4329 qc = ata_qc_from_tag(ap, qc->tag);
4330 if (qc) {
4331 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4332 ata_irq_on(ap);
4333 ata_qc_complete(qc);
4334 } else
4335 ata_port_freeze(ap);
4336 }
4337
ba6a1308 4338 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4339 } else {
4340 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4341 ata_qc_complete(qc);
4342 else
4343 ata_port_freeze(ap);
4344 }
4345 } else {
4346 if (in_wq) {
ba6a1308 4347 spin_lock_irqsave(ap->lock, flags);
c17ea20d
TH
4348 ata_irq_on(ap);
4349 ata_qc_complete(qc);
ba6a1308 4350 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4351 } else
4352 ata_qc_complete(qc);
4353 }
1da177e4 4354
c81e29b4 4355 ata_altstatus(ap); /* flush */
c17ea20d
TH
4356}
4357
bb5cb290
AL
4358/**
4359 * ata_hsm_move - move the HSM to the next state.
4360 * @ap: the target ata_port
4361 * @qc: qc on going
4362 * @status: current device status
4363 * @in_wq: 1 if called from workqueue, 0 otherwise
4364 *
4365 * RETURNS:
4366 * 1 when poll next status needed, 0 otherwise.
4367 */
9a1004d0
TH
4368int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4369 u8 status, int in_wq)
e2cec771 4370{
bb5cb290
AL
4371 unsigned long flags = 0;
4372 int poll_next;
4373
6912ccd5
AL
4374 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4375
bb5cb290
AL
4376 /* Make sure ata_qc_issue_prot() does not throw things
4377 * like DMA polling into the workqueue. Notice that
4378 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4379 */
c234fb00 4380 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4381
e2cec771 4382fsm_start:
999bb6f4
AL
4383 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4384 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4385
e2cec771
AL
4386 switch (ap->hsm_task_state) {
4387 case HSM_ST_FIRST:
bb5cb290
AL
4388 /* Send first data block or PACKET CDB */
4389
4390 /* If polling, we will stay in the work queue after
4391 * sending the data. Otherwise, interrupt handler
4392 * takes over after sending the data.
4393 */
4394 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4395
e2cec771 4396 /* check device status */
3655d1d3
AL
4397 if (unlikely((status & ATA_DRQ) == 0)) {
4398 /* handle BSY=0, DRQ=0 as error */
4399 if (likely(status & (ATA_ERR | ATA_DF)))
4400 /* device stops HSM for abort/error */
4401 qc->err_mask |= AC_ERR_DEV;
4402 else
4403 /* HSM violation. Let EH handle this */
4404 qc->err_mask |= AC_ERR_HSM;
4405
14be71f4 4406 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4407 goto fsm_start;
1da177e4
LT
4408 }
4409
71601958
AL
4410 /* Device should not ask for data transfer (DRQ=1)
4411 * when it finds something wrong.
eee6c32f
AL
4412 * We ignore DRQ here and stop the HSM by
4413 * changing hsm_task_state to HSM_ST_ERR and
4414 * let the EH abort the command or reset the device.
71601958
AL
4415 */
4416 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4417 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4418 ap->id, status);
3655d1d3 4419 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4420 ap->hsm_task_state = HSM_ST_ERR;
4421 goto fsm_start;
71601958 4422 }
1da177e4 4423
bb5cb290
AL
4424 /* Send the CDB (atapi) or the first data block (ata pio out).
4425 * During the state transition, interrupt handler shouldn't
4426 * be invoked before the data transfer is complete and
4427 * hsm_task_state is changed. Hence, the following locking.
4428 */
4429 if (in_wq)
ba6a1308 4430 spin_lock_irqsave(ap->lock, flags);
1da177e4 4431
bb5cb290
AL
4432 if (qc->tf.protocol == ATA_PROT_PIO) {
4433 /* PIO data out protocol.
4434 * send first data block.
4435 */
0565c26d 4436
bb5cb290
AL
4437 /* ata_pio_sectors() might change the state
4438 * to HSM_ST_LAST. so, the state is changed here
4439 * before ata_pio_sectors().
4440 */
4441 ap->hsm_task_state = HSM_ST;
4442 ata_pio_sectors(qc);
4443 ata_altstatus(ap); /* flush */
4444 } else
4445 /* send CDB */
4446 atapi_send_cdb(ap, qc);
4447
4448 if (in_wq)
ba6a1308 4449 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4450
4451 /* if polling, ata_pio_task() handles the rest.
4452 * otherwise, interrupt handler takes over from here.
4453 */
e2cec771 4454 break;
1c848984 4455
e2cec771
AL
4456 case HSM_ST:
4457 /* complete command or read/write the data register */
4458 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4459 /* ATAPI PIO protocol */
4460 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4461 /* No more data to transfer or device error.
4462 * Device error will be tagged in HSM_ST_LAST.
4463 */
e2cec771
AL
4464 ap->hsm_task_state = HSM_ST_LAST;
4465 goto fsm_start;
4466 }
1da177e4 4467
71601958
AL
4468 /* Device should not ask for data transfer (DRQ=1)
4469 * when it finds something wrong.
eee6c32f
AL
4470 * We ignore DRQ here and stop the HSM by
4471 * changing hsm_task_state to HSM_ST_ERR and
4472 * let the EH abort the command or reset the device.
71601958
AL
4473 */
4474 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4475 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4476 ap->id, status);
3655d1d3 4477 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4478 ap->hsm_task_state = HSM_ST_ERR;
4479 goto fsm_start;
71601958 4480 }
1da177e4 4481
e2cec771 4482 atapi_pio_bytes(qc);
7fb6ec28 4483
e2cec771
AL
4484 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4485 /* bad ireason reported by device */
4486 goto fsm_start;
1da177e4 4487
e2cec771
AL
4488 } else {
4489 /* ATA PIO protocol */
4490 if (unlikely((status & ATA_DRQ) == 0)) {
4491 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4492 if (likely(status & (ATA_ERR | ATA_DF)))
4493 /* device stops HSM for abort/error */
4494 qc->err_mask |= AC_ERR_DEV;
4495 else
55a8e2c8
TH
4496 /* HSM violation. Let EH handle this.
4497 * Phantom devices also trigger this
4498 * condition. Mark hint.
4499 */
4500 qc->err_mask |= AC_ERR_HSM |
4501 AC_ERR_NODEV_HINT;
3655d1d3 4502
e2cec771
AL
4503 ap->hsm_task_state = HSM_ST_ERR;
4504 goto fsm_start;
4505 }
1da177e4 4506
eee6c32f
AL
4507 /* For PIO reads, some devices may ask for
4508 * data transfer (DRQ=1) alone with ERR=1.
4509 * We respect DRQ here and transfer one
4510 * block of junk data before changing the
4511 * hsm_task_state to HSM_ST_ERR.
4512 *
4513 * For PIO writes, ERR=1 DRQ=1 doesn't make
4514 * sense since the data block has been
4515 * transferred to the device.
71601958
AL
4516 */
4517 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4518 /* data might be corrputed */
4519 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4520
4521 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4522 ata_pio_sectors(qc);
4523 ata_altstatus(ap);
4524 status = ata_wait_idle(ap);
4525 }
4526
3655d1d3
AL
4527 if (status & (ATA_BUSY | ATA_DRQ))
4528 qc->err_mask |= AC_ERR_HSM;
4529
eee6c32f
AL
4530 /* ata_pio_sectors() might change the
4531 * state to HSM_ST_LAST. so, the state
4532 * is changed after ata_pio_sectors().
4533 */
4534 ap->hsm_task_state = HSM_ST_ERR;
4535 goto fsm_start;
71601958
AL
4536 }
4537
e2cec771
AL
4538 ata_pio_sectors(qc);
4539
4540 if (ap->hsm_task_state == HSM_ST_LAST &&
4541 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4542 /* all data read */
4543 ata_altstatus(ap);
52a32205 4544 status = ata_wait_idle(ap);
e2cec771
AL
4545 goto fsm_start;
4546 }
4547 }
4548
4549 ata_altstatus(ap); /* flush */
bb5cb290 4550 poll_next = 1;
1da177e4
LT
4551 break;
4552
14be71f4 4553 case HSM_ST_LAST:
6912ccd5
AL
4554 if (unlikely(!ata_ok(status))) {
4555 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4556 ap->hsm_task_state = HSM_ST_ERR;
4557 goto fsm_start;
4558 }
4559
4560 /* no more data to transfer */
4332a771
AL
4561 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4562 ap->id, qc->dev->devno, status);
e2cec771 4563
6912ccd5
AL
4564 WARN_ON(qc->err_mask);
4565
e2cec771 4566 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4567
e2cec771 4568 /* complete taskfile transaction */
c17ea20d 4569 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4570
4571 poll_next = 0;
1da177e4
LT
4572 break;
4573
14be71f4 4574 case HSM_ST_ERR:
e2cec771
AL
4575 /* make sure qc->err_mask is available to
4576 * know what's wrong and recover
4577 */
4578 WARN_ON(qc->err_mask == 0);
4579
4580 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4581
999bb6f4 4582 /* complete taskfile transaction */
c17ea20d 4583 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4584
4585 poll_next = 0;
e2cec771
AL
4586 break;
4587 default:
bb5cb290 4588 poll_next = 0;
6912ccd5 4589 BUG();
1da177e4
LT
4590 }
4591
bb5cb290 4592 return poll_next;
1da177e4
LT
4593}
4594
1da177e4 4595static void ata_pio_task(void *_data)
8061f5f0 4596{
c91af2c8
TH
4597 struct ata_queued_cmd *qc = _data;
4598 struct ata_port *ap = qc->ap;
8061f5f0 4599 u8 status;
a1af3734 4600 int poll_next;
8061f5f0 4601
7fb6ec28 4602fsm_start:
a1af3734 4603 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4604
a1af3734
AL
4605 /*
4606 * This is purely heuristic. This is a fast path.
4607 * Sometimes when we enter, BSY will be cleared in
4608 * a chk-status or two. If not, the drive is probably seeking
4609 * or something. Snooze for a couple msecs, then
4610 * chk-status again. If still busy, queue delayed work.
4611 */
4612 status = ata_busy_wait(ap, ATA_BUSY, 5);
4613 if (status & ATA_BUSY) {
4614 msleep(2);
4615 status = ata_busy_wait(ap, ATA_BUSY, 10);
4616 if (status & ATA_BUSY) {
31ce6dae 4617 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4618 return;
4619 }
8061f5f0
TH
4620 }
4621
a1af3734
AL
4622 /* move the HSM */
4623 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4624
a1af3734
AL
4625 /* another command or interrupt handler
4626 * may be running at this point.
4627 */
4628 if (poll_next)
7fb6ec28 4629 goto fsm_start;
8061f5f0
TH
4630}
4631
1da177e4
LT
4632/**
4633 * ata_qc_new - Request an available ATA command, for queueing
4634 * @ap: Port associated with device @dev
4635 * @dev: Device from whom we request an available command structure
4636 *
4637 * LOCKING:
0cba632b 4638 * None.
1da177e4
LT
4639 */
4640
4641static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4642{
4643 struct ata_queued_cmd *qc = NULL;
4644 unsigned int i;
4645
e3180499 4646 /* no command while frozen */
b51e9e5d 4647 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
4648 return NULL;
4649
2ab7db1f
TH
4650 /* the last tag is reserved for internal command. */
4651 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4652 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4653 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4654 break;
4655 }
4656
4657 if (qc)
4658 qc->tag = i;
4659
4660 return qc;
4661}
4662
4663/**
4664 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4665 * @dev: Device from whom we request an available command structure
4666 *
4667 * LOCKING:
0cba632b 4668 * None.
1da177e4
LT
4669 */
4670
3373efd8 4671struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4672{
3373efd8 4673 struct ata_port *ap = dev->ap;
1da177e4
LT
4674 struct ata_queued_cmd *qc;
4675
4676 qc = ata_qc_new(ap);
4677 if (qc) {
1da177e4
LT
4678 qc->scsicmd = NULL;
4679 qc->ap = ap;
4680 qc->dev = dev;
1da177e4 4681
2c13b7ce 4682 ata_qc_reinit(qc);
1da177e4
LT
4683 }
4684
4685 return qc;
4686}
4687
1da177e4
LT
4688/**
4689 * ata_qc_free - free unused ata_queued_cmd
4690 * @qc: Command to complete
4691 *
4692 * Designed to free unused ata_queued_cmd object
4693 * in case something prevents using it.
4694 *
4695 * LOCKING:
cca3974e 4696 * spin_lock_irqsave(host lock)
1da177e4
LT
4697 */
4698void ata_qc_free(struct ata_queued_cmd *qc)
4699{
4ba946e9
TH
4700 struct ata_port *ap = qc->ap;
4701 unsigned int tag;
4702
a4631474 4703 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4704
4ba946e9
TH
4705 qc->flags = 0;
4706 tag = qc->tag;
4707 if (likely(ata_tag_valid(tag))) {
4ba946e9 4708 qc->tag = ATA_TAG_POISON;
6cec4a39 4709 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4710 }
1da177e4
LT
4711}
4712
76014427 4713void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4714{
dedaf2b0
TH
4715 struct ata_port *ap = qc->ap;
4716
a4631474
TH
4717 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4718 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4719
4720 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4721 ata_sg_clean(qc);
4722
7401abf2 4723 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4724 if (qc->tf.protocol == ATA_PROT_NCQ)
4725 ap->sactive &= ~(1 << qc->tag);
4726 else
4727 ap->active_tag = ATA_TAG_POISON;
7401abf2 4728
3f3791d3
AL
4729 /* atapi: mark qc as inactive to prevent the interrupt handler
4730 * from completing the command twice later, before the error handler
4731 * is called. (when rc != 0 and atapi request sense is needed)
4732 */
4733 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4734 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4735
1da177e4 4736 /* call completion callback */
77853bf2 4737 qc->complete_fn(qc);
1da177e4
LT
4738}
4739
39599a53
TH
4740static void fill_result_tf(struct ata_queued_cmd *qc)
4741{
4742 struct ata_port *ap = qc->ap;
4743
4744 ap->ops->tf_read(ap, &qc->result_tf);
4745 qc->result_tf.flags = qc->tf.flags;
4746}
4747
f686bcb8
TH
4748/**
4749 * ata_qc_complete - Complete an active ATA command
4750 * @qc: Command to complete
4751 * @err_mask: ATA Status register contents
4752 *
4753 * Indicate to the mid and upper layers that an ATA
4754 * command has completed, with either an ok or not-ok status.
4755 *
4756 * LOCKING:
cca3974e 4757 * spin_lock_irqsave(host lock)
f686bcb8
TH
4758 */
4759void ata_qc_complete(struct ata_queued_cmd *qc)
4760{
4761 struct ata_port *ap = qc->ap;
4762
4763 /* XXX: New EH and old EH use different mechanisms to
4764 * synchronize EH with regular execution path.
4765 *
4766 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4767 * Normal execution path is responsible for not accessing a
4768 * failed qc. libata core enforces the rule by returning NULL
4769 * from ata_qc_from_tag() for failed qcs.
4770 *
4771 * Old EH depends on ata_qc_complete() nullifying completion
4772 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4773 * not synchronize with interrupt handler. Only PIO task is
4774 * taken care of.
4775 */
4776 if (ap->ops->error_handler) {
b51e9e5d 4777 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
4778
4779 if (unlikely(qc->err_mask))
4780 qc->flags |= ATA_QCFLAG_FAILED;
4781
4782 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4783 if (!ata_tag_internal(qc->tag)) {
4784 /* always fill result TF for failed qc */
39599a53 4785 fill_result_tf(qc);
f686bcb8
TH
4786 ata_qc_schedule_eh(qc);
4787 return;
4788 }
4789 }
4790
4791 /* read result TF if requested */
4792 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4793 fill_result_tf(qc);
f686bcb8
TH
4794
4795 __ata_qc_complete(qc);
4796 } else {
4797 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4798 return;
4799
4800 /* read result TF if failed or requested */
4801 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4802 fill_result_tf(qc);
f686bcb8
TH
4803
4804 __ata_qc_complete(qc);
4805 }
4806}
4807
dedaf2b0
TH
4808/**
4809 * ata_qc_complete_multiple - Complete multiple qcs successfully
4810 * @ap: port in question
4811 * @qc_active: new qc_active mask
4812 * @finish_qc: LLDD callback invoked before completing a qc
4813 *
4814 * Complete in-flight commands. This functions is meant to be
4815 * called from low-level driver's interrupt routine to complete
4816 * requests normally. ap->qc_active and @qc_active is compared
4817 * and commands are completed accordingly.
4818 *
4819 * LOCKING:
cca3974e 4820 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4821 *
4822 * RETURNS:
4823 * Number of completed commands on success, -errno otherwise.
4824 */
4825int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4826 void (*finish_qc)(struct ata_queued_cmd *))
4827{
4828 int nr_done = 0;
4829 u32 done_mask;
4830 int i;
4831
4832 done_mask = ap->qc_active ^ qc_active;
4833
4834 if (unlikely(done_mask & qc_active)) {
4835 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4836 "(%08x->%08x)\n", ap->qc_active, qc_active);
4837 return -EINVAL;
4838 }
4839
4840 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4841 struct ata_queued_cmd *qc;
4842
4843 if (!(done_mask & (1 << i)))
4844 continue;
4845
4846 if ((qc = ata_qc_from_tag(ap, i))) {
4847 if (finish_qc)
4848 finish_qc(qc);
4849 ata_qc_complete(qc);
4850 nr_done++;
4851 }
4852 }
4853
4854 return nr_done;
4855}
4856
1da177e4
LT
4857static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4858{
4859 struct ata_port *ap = qc->ap;
4860
4861 switch (qc->tf.protocol) {
3dc1d881 4862 case ATA_PROT_NCQ:
1da177e4
LT
4863 case ATA_PROT_DMA:
4864 case ATA_PROT_ATAPI_DMA:
4865 return 1;
4866
4867 case ATA_PROT_ATAPI:
4868 case ATA_PROT_PIO:
1da177e4
LT
4869 if (ap->flags & ATA_FLAG_PIO_DMA)
4870 return 1;
4871
4872 /* fall through */
4873
4874 default:
4875 return 0;
4876 }
4877
4878 /* never reached */
4879}
4880
4881/**
4882 * ata_qc_issue - issue taskfile to device
4883 * @qc: command to issue to device
4884 *
4885 * Prepare an ATA command to submission to device.
4886 * This includes mapping the data into a DMA-able
4887 * area, filling in the S/G table, and finally
4888 * writing the taskfile to hardware, starting the command.
4889 *
4890 * LOCKING:
cca3974e 4891 * spin_lock_irqsave(host lock)
1da177e4 4892 */
8e0e694a 4893void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4894{
4895 struct ata_port *ap = qc->ap;
4896
dedaf2b0
TH
4897 /* Make sure only one non-NCQ command is outstanding. The
4898 * check is skipped for old EH because it reuses active qc to
4899 * request ATAPI sense.
4900 */
4901 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4902
4903 if (qc->tf.protocol == ATA_PROT_NCQ) {
4904 WARN_ON(ap->sactive & (1 << qc->tag));
4905 ap->sactive |= 1 << qc->tag;
4906 } else {
4907 WARN_ON(ap->sactive);
4908 ap->active_tag = qc->tag;
4909 }
4910
e4a70e76 4911 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4912 ap->qc_active |= 1 << qc->tag;
e4a70e76 4913
1da177e4
LT
4914 if (ata_should_dma_map(qc)) {
4915 if (qc->flags & ATA_QCFLAG_SG) {
4916 if (ata_sg_setup(qc))
8e436af9 4917 goto sg_err;
1da177e4
LT
4918 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4919 if (ata_sg_setup_one(qc))
8e436af9 4920 goto sg_err;
1da177e4
LT
4921 }
4922 } else {
4923 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4924 }
4925
4926 ap->ops->qc_prep(qc);
4927
8e0e694a
TH
4928 qc->err_mask |= ap->ops->qc_issue(qc);
4929 if (unlikely(qc->err_mask))
4930 goto err;
4931 return;
1da177e4 4932
8e436af9
TH
4933sg_err:
4934 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4935 qc->err_mask |= AC_ERR_SYSTEM;
4936err:
4937 ata_qc_complete(qc);
1da177e4
LT
4938}
4939
4940/**
4941 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4942 * @qc: command to issue to device
4943 *
4944 * Using various libata functions and hooks, this function
4945 * starts an ATA command. ATA commands are grouped into
4946 * classes called "protocols", and issuing each type of protocol
4947 * is slightly different.
4948 *
0baab86b
EF
4949 * May be used as the qc_issue() entry in ata_port_operations.
4950 *
1da177e4 4951 * LOCKING:
cca3974e 4952 * spin_lock_irqsave(host lock)
1da177e4
LT
4953 *
4954 * RETURNS:
9a3d9eb0 4955 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4956 */
4957
9a3d9eb0 4958unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4959{
4960 struct ata_port *ap = qc->ap;
4961
e50362ec
AL
4962 /* Use polling pio if the LLD doesn't handle
4963 * interrupt driven pio and atapi CDB interrupt.
4964 */
4965 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4966 switch (qc->tf.protocol) {
4967 case ATA_PROT_PIO:
4968 case ATA_PROT_ATAPI:
4969 case ATA_PROT_ATAPI_NODATA:
4970 qc->tf.flags |= ATA_TFLAG_POLLING;
4971 break;
4972 case ATA_PROT_ATAPI_DMA:
4973 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 4974 /* see ata_dma_blacklisted() */
e50362ec
AL
4975 BUG();
4976 break;
4977 default:
4978 break;
4979 }
4980 }
4981
3d3cca37
TH
4982 /* Some controllers show flaky interrupt behavior after
4983 * setting xfer mode. Use polling instead.
4984 */
4985 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4986 qc->tf.feature == SETFEATURES_XFER) &&
4987 (ap->flags & ATA_FLAG_SETXFER_POLLING))
4988 qc->tf.flags |= ATA_TFLAG_POLLING;
4989
312f7da2 4990 /* select the device */
1da177e4
LT
4991 ata_dev_select(ap, qc->dev->devno, 1, 0);
4992
312f7da2 4993 /* start the command */
1da177e4
LT
4994 switch (qc->tf.protocol) {
4995 case ATA_PROT_NODATA:
312f7da2
AL
4996 if (qc->tf.flags & ATA_TFLAG_POLLING)
4997 ata_qc_set_polling(qc);
4998
e5338254 4999 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5000 ap->hsm_task_state = HSM_ST_LAST;
5001
5002 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5003 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5004
1da177e4
LT
5005 break;
5006
5007 case ATA_PROT_DMA:
587005de 5008 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5009
1da177e4
LT
5010 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5011 ap->ops->bmdma_setup(qc); /* set up bmdma */
5012 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5013 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5014 break;
5015
312f7da2
AL
5016 case ATA_PROT_PIO:
5017 if (qc->tf.flags & ATA_TFLAG_POLLING)
5018 ata_qc_set_polling(qc);
1da177e4 5019
e5338254 5020 ata_tf_to_host(ap, &qc->tf);
312f7da2 5021
54f00389
AL
5022 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5023 /* PIO data out protocol */
5024 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5025 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5026
5027 /* always send first data block using
e27486db 5028 * the ata_pio_task() codepath.
54f00389 5029 */
312f7da2 5030 } else {
54f00389
AL
5031 /* PIO data in protocol */
5032 ap->hsm_task_state = HSM_ST;
5033
5034 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5035 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5036
5037 /* if polling, ata_pio_task() handles the rest.
5038 * otherwise, interrupt handler takes over from here.
5039 */
312f7da2
AL
5040 }
5041
1da177e4
LT
5042 break;
5043
1da177e4 5044 case ATA_PROT_ATAPI:
1da177e4 5045 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5046 if (qc->tf.flags & ATA_TFLAG_POLLING)
5047 ata_qc_set_polling(qc);
5048
e5338254 5049 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5050
312f7da2
AL
5051 ap->hsm_task_state = HSM_ST_FIRST;
5052
5053 /* send cdb by polling if no cdb interrupt */
5054 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5055 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5056 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5057 break;
5058
5059 case ATA_PROT_ATAPI_DMA:
587005de 5060 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5061
1da177e4
LT
5062 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5063 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5064 ap->hsm_task_state = HSM_ST_FIRST;
5065
5066 /* send cdb by polling if no cdb interrupt */
5067 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5068 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5069 break;
5070
5071 default:
5072 WARN_ON(1);
9a3d9eb0 5073 return AC_ERR_SYSTEM;
1da177e4
LT
5074 }
5075
5076 return 0;
5077}
5078
1da177e4
LT
5079/**
5080 * ata_host_intr - Handle host interrupt for given (port, task)
5081 * @ap: Port on which interrupt arrived (possibly...)
5082 * @qc: Taskfile currently active in engine
5083 *
5084 * Handle host interrupt for given queued command. Currently,
5085 * only DMA interrupts are handled. All other commands are
5086 * handled via polling with interrupts disabled (nIEN bit).
5087 *
5088 * LOCKING:
cca3974e 5089 * spin_lock_irqsave(host lock)
1da177e4
LT
5090 *
5091 * RETURNS:
5092 * One if interrupt was handled, zero if not (shared irq).
5093 */
5094
5095inline unsigned int ata_host_intr (struct ata_port *ap,
5096 struct ata_queued_cmd *qc)
5097{
ea54763f 5098 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5099 u8 status, host_stat = 0;
1da177e4 5100
312f7da2
AL
5101 VPRINTK("ata%u: protocol %d task_state %d\n",
5102 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5103
312f7da2
AL
5104 /* Check whether we are expecting interrupt in this state */
5105 switch (ap->hsm_task_state) {
5106 case HSM_ST_FIRST:
6912ccd5
AL
5107 /* Some pre-ATAPI-4 devices assert INTRQ
5108 * at this state when ready to receive CDB.
5109 */
1da177e4 5110
312f7da2
AL
5111 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5112 * The flag was turned on only for atapi devices.
5113 * No need to check is_atapi_taskfile(&qc->tf) again.
5114 */
5115 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5116 goto idle_irq;
1da177e4 5117 break;
312f7da2
AL
5118 case HSM_ST_LAST:
5119 if (qc->tf.protocol == ATA_PROT_DMA ||
5120 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5121 /* check status of DMA engine */
5122 host_stat = ap->ops->bmdma_status(ap);
5123 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
5124
5125 /* if it's not our irq... */
5126 if (!(host_stat & ATA_DMA_INTR))
5127 goto idle_irq;
5128
5129 /* before we do anything else, clear DMA-Start bit */
5130 ap->ops->bmdma_stop(qc);
a4f16610
AL
5131
5132 if (unlikely(host_stat & ATA_DMA_ERR)) {
5133 /* error when transfering data to/from memory */
5134 qc->err_mask |= AC_ERR_HOST_BUS;
5135 ap->hsm_task_state = HSM_ST_ERR;
5136 }
312f7da2
AL
5137 }
5138 break;
5139 case HSM_ST:
5140 break;
1da177e4
LT
5141 default:
5142 goto idle_irq;
5143 }
5144
312f7da2
AL
5145 /* check altstatus */
5146 status = ata_altstatus(ap);
5147 if (status & ATA_BUSY)
5148 goto idle_irq;
1da177e4 5149
312f7da2
AL
5150 /* check main status, clearing INTRQ */
5151 status = ata_chk_status(ap);
5152 if (unlikely(status & ATA_BUSY))
5153 goto idle_irq;
1da177e4 5154
312f7da2
AL
5155 /* ack bmdma irq events */
5156 ap->ops->irq_clear(ap);
1da177e4 5157
bb5cb290 5158 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5159
5160 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5161 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5162 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5163
1da177e4
LT
5164 return 1; /* irq handled */
5165
5166idle_irq:
5167 ap->stats.idle_irq++;
5168
5169#ifdef ATA_IRQ_TRAP
5170 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 5171 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 5172 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5173 return 1;
1da177e4
LT
5174 }
5175#endif
5176 return 0; /* irq not handled */
5177}
5178
5179/**
5180 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5181 * @irq: irq line (unused)
cca3974e 5182 * @dev_instance: pointer to our ata_host information structure
1da177e4 5183 *
0cba632b
JG
5184 * Default interrupt handler for PCI IDE devices. Calls
5185 * ata_host_intr() for each port that is not disabled.
5186 *
1da177e4 5187 * LOCKING:
cca3974e 5188 * Obtains host lock during operation.
1da177e4
LT
5189 *
5190 * RETURNS:
0cba632b 5191 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5192 */
5193
7d12e780 5194irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5195{
cca3974e 5196 struct ata_host *host = dev_instance;
1da177e4
LT
5197 unsigned int i;
5198 unsigned int handled = 0;
5199 unsigned long flags;
5200
5201 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5202 spin_lock_irqsave(&host->lock, flags);
1da177e4 5203
cca3974e 5204 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5205 struct ata_port *ap;
5206
cca3974e 5207 ap = host->ports[i];
c1389503 5208 if (ap &&
029f5468 5209 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5210 struct ata_queued_cmd *qc;
5211
5212 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5213 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5214 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5215 handled |= ata_host_intr(ap, qc);
5216 }
5217 }
5218
cca3974e 5219 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5220
5221 return IRQ_RETVAL(handled);
5222}
5223
34bf2170
TH
5224/**
5225 * sata_scr_valid - test whether SCRs are accessible
5226 * @ap: ATA port to test SCR accessibility for
5227 *
5228 * Test whether SCRs are accessible for @ap.
5229 *
5230 * LOCKING:
5231 * None.
5232 *
5233 * RETURNS:
5234 * 1 if SCRs are accessible, 0 otherwise.
5235 */
5236int sata_scr_valid(struct ata_port *ap)
5237{
5238 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5239}
5240
5241/**
5242 * sata_scr_read - read SCR register of the specified port
5243 * @ap: ATA port to read SCR for
5244 * @reg: SCR to read
5245 * @val: Place to store read value
5246 *
5247 * Read SCR register @reg of @ap into *@val. This function is
5248 * guaranteed to succeed if the cable type of the port is SATA
5249 * and the port implements ->scr_read.
5250 *
5251 * LOCKING:
5252 * None.
5253 *
5254 * RETURNS:
5255 * 0 on success, negative errno on failure.
5256 */
5257int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5258{
5259 if (sata_scr_valid(ap)) {
5260 *val = ap->ops->scr_read(ap, reg);
5261 return 0;
5262 }
5263 return -EOPNOTSUPP;
5264}
5265
5266/**
5267 * sata_scr_write - write SCR register of the specified port
5268 * @ap: ATA port to write SCR for
5269 * @reg: SCR to write
5270 * @val: value to write
5271 *
5272 * Write @val to SCR register @reg of @ap. This function is
5273 * guaranteed to succeed if the cable type of the port is SATA
5274 * and the port implements ->scr_read.
5275 *
5276 * LOCKING:
5277 * None.
5278 *
5279 * RETURNS:
5280 * 0 on success, negative errno on failure.
5281 */
5282int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5283{
5284 if (sata_scr_valid(ap)) {
5285 ap->ops->scr_write(ap, reg, val);
5286 return 0;
5287 }
5288 return -EOPNOTSUPP;
5289}
5290
5291/**
5292 * sata_scr_write_flush - write SCR register of the specified port and flush
5293 * @ap: ATA port to write SCR for
5294 * @reg: SCR to write
5295 * @val: value to write
5296 *
5297 * This function is identical to sata_scr_write() except that this
5298 * function performs flush after writing to the register.
5299 *
5300 * LOCKING:
5301 * None.
5302 *
5303 * RETURNS:
5304 * 0 on success, negative errno on failure.
5305 */
5306int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5307{
5308 if (sata_scr_valid(ap)) {
5309 ap->ops->scr_write(ap, reg, val);
5310 ap->ops->scr_read(ap, reg);
5311 return 0;
5312 }
5313 return -EOPNOTSUPP;
5314}
5315
5316/**
5317 * ata_port_online - test whether the given port is online
5318 * @ap: ATA port to test
5319 *
5320 * Test whether @ap is online. Note that this function returns 0
5321 * if online status of @ap cannot be obtained, so
5322 * ata_port_online(ap) != !ata_port_offline(ap).
5323 *
5324 * LOCKING:
5325 * None.
5326 *
5327 * RETURNS:
5328 * 1 if the port online status is available and online.
5329 */
5330int ata_port_online(struct ata_port *ap)
5331{
5332 u32 sstatus;
5333
5334 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5335 return 1;
5336 return 0;
5337}
5338
5339/**
5340 * ata_port_offline - test whether the given port is offline
5341 * @ap: ATA port to test
5342 *
5343 * Test whether @ap is offline. Note that this function returns
5344 * 0 if offline status of @ap cannot be obtained, so
5345 * ata_port_online(ap) != !ata_port_offline(ap).
5346 *
5347 * LOCKING:
5348 * None.
5349 *
5350 * RETURNS:
5351 * 1 if the port offline status is available and offline.
5352 */
5353int ata_port_offline(struct ata_port *ap)
5354{
5355 u32 sstatus;
5356
5357 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5358 return 1;
5359 return 0;
5360}
0baab86b 5361
77b08fb5 5362int ata_flush_cache(struct ata_device *dev)
9b847548 5363{
977e6b9f 5364 unsigned int err_mask;
9b847548
JA
5365 u8 cmd;
5366
5367 if (!ata_try_flush_cache(dev))
5368 return 0;
5369
6fc49adb 5370 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5371 cmd = ATA_CMD_FLUSH_EXT;
5372 else
5373 cmd = ATA_CMD_FLUSH;
5374
977e6b9f
TH
5375 err_mask = ata_do_simple_cmd(dev, cmd);
5376 if (err_mask) {
5377 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5378 return -EIO;
5379 }
5380
5381 return 0;
9b847548
JA
5382}
5383
cca3974e
JG
5384static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5385 unsigned int action, unsigned int ehi_flags,
5386 int wait)
500530f6
TH
5387{
5388 unsigned long flags;
5389 int i, rc;
5390
cca3974e
JG
5391 for (i = 0; i < host->n_ports; i++) {
5392 struct ata_port *ap = host->ports[i];
500530f6
TH
5393
5394 /* Previous resume operation might still be in
5395 * progress. Wait for PM_PENDING to clear.
5396 */
5397 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5398 ata_port_wait_eh(ap);
5399 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5400 }
5401
5402 /* request PM ops to EH */
5403 spin_lock_irqsave(ap->lock, flags);
5404
5405 ap->pm_mesg = mesg;
5406 if (wait) {
5407 rc = 0;
5408 ap->pm_result = &rc;
5409 }
5410
5411 ap->pflags |= ATA_PFLAG_PM_PENDING;
5412 ap->eh_info.action |= action;
5413 ap->eh_info.flags |= ehi_flags;
5414
5415 ata_port_schedule_eh(ap);
5416
5417 spin_unlock_irqrestore(ap->lock, flags);
5418
5419 /* wait and check result */
5420 if (wait) {
5421 ata_port_wait_eh(ap);
5422 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5423 if (rc)
5424 return rc;
5425 }
5426 }
5427
5428 return 0;
5429}
5430
5431/**
cca3974e
JG
5432 * ata_host_suspend - suspend host
5433 * @host: host to suspend
500530f6
TH
5434 * @mesg: PM message
5435 *
cca3974e 5436 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5437 * function requests EH to perform PM operations and waits for EH
5438 * to finish.
5439 *
5440 * LOCKING:
5441 * Kernel thread context (may sleep).
5442 *
5443 * RETURNS:
5444 * 0 on success, -errno on failure.
5445 */
cca3974e 5446int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6
TH
5447{
5448 int i, j, rc;
5449
cca3974e 5450 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
500530f6
TH
5451 if (rc)
5452 goto fail;
5453
5454 /* EH is quiescent now. Fail if we have any ready device.
5455 * This happens if hotplug occurs between completion of device
5456 * suspension and here.
5457 */
cca3974e
JG
5458 for (i = 0; i < host->n_ports; i++) {
5459 struct ata_port *ap = host->ports[i];
500530f6
TH
5460
5461 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5462 struct ata_device *dev = &ap->device[j];
5463
5464 if (ata_dev_ready(dev)) {
5465 ata_port_printk(ap, KERN_WARNING,
5466 "suspend failed, device %d "
5467 "still active\n", dev->devno);
5468 rc = -EBUSY;
5469 goto fail;
5470 }
5471 }
5472 }
5473
cca3974e 5474 host->dev->power.power_state = mesg;
500530f6
TH
5475 return 0;
5476
5477 fail:
cca3974e 5478 ata_host_resume(host);
500530f6
TH
5479 return rc;
5480}
5481
5482/**
cca3974e
JG
5483 * ata_host_resume - resume host
5484 * @host: host to resume
500530f6 5485 *
cca3974e 5486 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5487 * function requests EH to perform PM operations and returns.
5488 * Note that all resume operations are performed parallely.
5489 *
5490 * LOCKING:
5491 * Kernel thread context (may sleep).
5492 */
cca3974e 5493void ata_host_resume(struct ata_host *host)
500530f6 5494{
cca3974e
JG
5495 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5496 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5497 host->dev->power.power_state = PMSG_ON;
500530f6
TH
5498}
5499
c893a3ae
RD
5500/**
5501 * ata_port_start - Set port up for dma.
5502 * @ap: Port to initialize
5503 *
5504 * Called just after data structures for each port are
5505 * initialized. Allocates space for PRD table.
5506 *
5507 * May be used as the port_start() entry in ata_port_operations.
5508 *
5509 * LOCKING:
5510 * Inherited from caller.
5511 */
5512
1da177e4
LT
5513int ata_port_start (struct ata_port *ap)
5514{
2f1f610b 5515 struct device *dev = ap->dev;
6037d6bb 5516 int rc;
1da177e4
LT
5517
5518 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5519 if (!ap->prd)
5520 return -ENOMEM;
5521
6037d6bb
JG
5522 rc = ata_pad_alloc(ap, dev);
5523 if (rc) {
cedc9a47 5524 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5525 return rc;
cedc9a47
JG
5526 }
5527
1da177e4
LT
5528 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5529
5530 return 0;
5531}
5532
0baab86b
EF
5533
5534/**
5535 * ata_port_stop - Undo ata_port_start()
5536 * @ap: Port to shut down
5537 *
5538 * Frees the PRD table.
5539 *
5540 * May be used as the port_stop() entry in ata_port_operations.
5541 *
5542 * LOCKING:
6f0ef4fa 5543 * Inherited from caller.
0baab86b
EF
5544 */
5545
1da177e4
LT
5546void ata_port_stop (struct ata_port *ap)
5547{
2f1f610b 5548 struct device *dev = ap->dev;
1da177e4
LT
5549
5550 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5551 ata_pad_free(ap, dev);
1da177e4
LT
5552}
5553
cca3974e 5554void ata_host_stop (struct ata_host *host)
aa8f0dc6 5555{
cca3974e
JG
5556 if (host->mmio_base)
5557 iounmap(host->mmio_base);
aa8f0dc6
JG
5558}
5559
3ef3b43d
TH
5560/**
5561 * ata_dev_init - Initialize an ata_device structure
5562 * @dev: Device structure to initialize
5563 *
5564 * Initialize @dev in preparation for probing.
5565 *
5566 * LOCKING:
5567 * Inherited from caller.
5568 */
5569void ata_dev_init(struct ata_device *dev)
5570{
5571 struct ata_port *ap = dev->ap;
72fa4b74
TH
5572 unsigned long flags;
5573
5a04bf4b
TH
5574 /* SATA spd limit is bound to the first device */
5575 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5576
72fa4b74
TH
5577 /* High bits of dev->flags are used to record warm plug
5578 * requests which occur asynchronously. Synchronize using
cca3974e 5579 * host lock.
72fa4b74 5580 */
ba6a1308 5581 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5582 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5583 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5584
72fa4b74
TH
5585 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5586 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5587 dev->pio_mask = UINT_MAX;
5588 dev->mwdma_mask = UINT_MAX;
5589 dev->udma_mask = UINT_MAX;
5590}
5591
1da177e4 5592/**
155a8a9c 5593 * ata_port_init - Initialize an ata_port structure
1da177e4 5594 * @ap: Structure to initialize
cca3974e 5595 * @host: Collection of hosts to which @ap belongs
1da177e4
LT
5596 * @ent: Probe information provided by low-level driver
5597 * @port_no: Port number associated with this ata_port
5598 *
155a8a9c 5599 * Initialize a new ata_port structure.
0cba632b 5600 *
1da177e4 5601 * LOCKING:
0cba632b 5602 * Inherited from caller.
1da177e4 5603 */
cca3974e 5604void ata_port_init(struct ata_port *ap, struct ata_host *host,
155a8a9c 5605 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5606{
5607 unsigned int i;
5608
cca3974e 5609 ap->lock = &host->lock;
198e0fed 5610 ap->flags = ATA_FLAG_DISABLED;
155a8a9c 5611 ap->id = ata_unique_id++;
1da177e4 5612 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5613 ap->host = host;
2f1f610b 5614 ap->dev = ent->dev;
1da177e4 5615 ap->port_no = port_no;
fea63e38
TH
5616 if (port_no == 1 && ent->pinfo2) {
5617 ap->pio_mask = ent->pinfo2->pio_mask;
5618 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5619 ap->udma_mask = ent->pinfo2->udma_mask;
5620 ap->flags |= ent->pinfo2->flags;
5621 ap->ops = ent->pinfo2->port_ops;
5622 } else {
5623 ap->pio_mask = ent->pio_mask;
5624 ap->mwdma_mask = ent->mwdma_mask;
5625 ap->udma_mask = ent->udma_mask;
5626 ap->flags |= ent->port_flags;
5627 ap->ops = ent->port_ops;
5628 }
5a04bf4b 5629 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5630 ap->active_tag = ATA_TAG_POISON;
5631 ap->last_ctl = 0xFF;
bd5d825c
BP
5632
5633#if defined(ATA_VERBOSE_DEBUG)
5634 /* turn on all debugging levels */
5635 ap->msg_enable = 0x00FF;
5636#elif defined(ATA_DEBUG)
5637 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5638#else
0dd4b21f 5639 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5640#endif
1da177e4 5641
86e45b6b 5642 INIT_WORK(&ap->port_task, NULL, NULL);
580b2102 5643 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
3057ac3c 5644 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
a72ec4ce 5645 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5646 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5647
838df628
TH
5648 /* set cable type */
5649 ap->cbl = ATA_CBL_NONE;
5650 if (ap->flags & ATA_FLAG_SATA)
5651 ap->cbl = ATA_CBL_SATA;
5652
acf356b1
TH
5653 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5654 struct ata_device *dev = &ap->device[i];
38d87234 5655 dev->ap = ap;
72fa4b74 5656 dev->devno = i;
3ef3b43d 5657 ata_dev_init(dev);
acf356b1 5658 }
1da177e4
LT
5659
5660#ifdef ATA_IRQ_TRAP
5661 ap->stats.unhandled_irq = 1;
5662 ap->stats.idle_irq = 1;
5663#endif
5664
5665 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5666}
5667
155a8a9c 5668/**
4608c160
TH
5669 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5670 * @ap: ATA port to initialize SCSI host for
5671 * @shost: SCSI host associated with @ap
155a8a9c 5672 *
4608c160 5673 * Initialize SCSI host @shost associated with ATA port @ap.
155a8a9c
BK
5674 *
5675 * LOCKING:
5676 * Inherited from caller.
5677 */
4608c160 5678static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
155a8a9c 5679{
cca3974e 5680 ap->scsi_host = shost;
155a8a9c 5681
4608c160
TH
5682 shost->unique_id = ap->id;
5683 shost->max_id = 16;
5684 shost->max_lun = 1;
5685 shost->max_channel = 1;
5686 shost->max_cmd_len = 12;
155a8a9c
BK
5687}
5688
1da177e4 5689/**
996139f1 5690 * ata_port_add - Attach low-level ATA driver to system
1da177e4 5691 * @ent: Information provided by low-level driver
cca3974e 5692 * @host: Collections of ports to which we add
1da177e4
LT
5693 * @port_no: Port number associated with this host
5694 *
0cba632b
JG
5695 * Attach low-level ATA driver to system.
5696 *
1da177e4 5697 * LOCKING:
0cba632b 5698 * PCI/etc. bus probe sem.
1da177e4
LT
5699 *
5700 * RETURNS:
0cba632b 5701 * New ata_port on success, for NULL on error.
1da177e4 5702 */
996139f1 5703static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
cca3974e 5704 struct ata_host *host,
1da177e4
LT
5705 unsigned int port_no)
5706{
996139f1 5707 struct Scsi_Host *shost;
1da177e4 5708 struct ata_port *ap;
1da177e4
LT
5709
5710 DPRINTK("ENTER\n");
aec5c3c1 5711
52783c5d 5712 if (!ent->port_ops->error_handler &&
cca3974e 5713 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
aec5c3c1
TH
5714 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5715 port_no);
5716 return NULL;
5717 }
5718
996139f1
JG
5719 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5720 if (!shost)
1da177e4
LT
5721 return NULL;
5722
996139f1 5723 shost->transportt = &ata_scsi_transport_template;
30afc84c 5724
996139f1 5725 ap = ata_shost_to_port(shost);
1da177e4 5726
cca3974e 5727 ata_port_init(ap, host, ent, port_no);
996139f1 5728 ata_port_init_shost(ap, shost);
1da177e4 5729
1da177e4 5730 return ap;
1da177e4
LT
5731}
5732
b03732f0 5733/**
cca3974e
JG
5734 * ata_sas_host_init - Initialize a host struct
5735 * @host: host to initialize
5736 * @dev: device host is attached to
5737 * @flags: host flags
5738 * @ops: port_ops
b03732f0
BK
5739 *
5740 * LOCKING:
5741 * PCI/etc. bus probe sem.
5742 *
5743 */
5744
cca3974e
JG
5745void ata_host_init(struct ata_host *host, struct device *dev,
5746 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 5747{
cca3974e
JG
5748 spin_lock_init(&host->lock);
5749 host->dev = dev;
5750 host->flags = flags;
5751 host->ops = ops;
b03732f0
BK
5752}
5753
1da177e4 5754/**
0cba632b
JG
5755 * ata_device_add - Register hardware device with ATA and SCSI layers
5756 * @ent: Probe information describing hardware device to be registered
5757 *
5758 * This function processes the information provided in the probe
5759 * information struct @ent, allocates the necessary ATA and SCSI
5760 * host information structures, initializes them, and registers
5761 * everything with requisite kernel subsystems.
5762 *
5763 * This function requests irqs, probes the ATA bus, and probes
5764 * the SCSI bus.
1da177e4
LT
5765 *
5766 * LOCKING:
0cba632b 5767 * PCI/etc. bus probe sem.
1da177e4
LT
5768 *
5769 * RETURNS:
0cba632b 5770 * Number of ports registered. Zero on error (no ports registered).
1da177e4 5771 */
057ace5e 5772int ata_device_add(const struct ata_probe_ent *ent)
1da177e4 5773{
6d0500df 5774 unsigned int i;
1da177e4 5775 struct device *dev = ent->dev;
cca3974e 5776 struct ata_host *host;
39b07ce6 5777 int rc;
1da177e4
LT
5778
5779 DPRINTK("ENTER\n");
02f076aa
AC
5780
5781 if (ent->irq == 0) {
5782 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5783 return 0;
5784 }
1da177e4 5785 /* alloc a container for our list of ATA ports (buses) */
cca3974e
JG
5786 host = kzalloc(sizeof(struct ata_host) +
5787 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5788 if (!host)
1da177e4 5789 return 0;
1da177e4 5790
cca3974e
JG
5791 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5792 host->n_ports = ent->n_ports;
5793 host->irq = ent->irq;
5794 host->irq2 = ent->irq2;
5795 host->mmio_base = ent->mmio_base;
5796 host->private_data = ent->private_data;
1da177e4
LT
5797
5798 /* register each port bound to this device */
cca3974e 5799 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5800 struct ata_port *ap;
5801 unsigned long xfer_mode_mask;
2ec7df04 5802 int irq_line = ent->irq;
1da177e4 5803
cca3974e 5804 ap = ata_port_add(ent, host, i);
c38778c3 5805 host->ports[i] = ap;
1da177e4
LT
5806 if (!ap)
5807 goto err_out;
5808
dd5b06c4
TH
5809 /* dummy? */
5810 if (ent->dummy_port_mask & (1 << i)) {
5811 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5812 ap->ops = &ata_dummy_port_ops;
5813 continue;
5814 }
5815
5816 /* start port */
5817 rc = ap->ops->port_start(ap);
5818 if (rc) {
cca3974e
JG
5819 host->ports[i] = NULL;
5820 scsi_host_put(ap->scsi_host);
dd5b06c4
TH
5821 goto err_out;
5822 }
5823
2ec7df04
AC
5824 /* Report the secondary IRQ for second channel legacy */
5825 if (i == 1 && ent->irq2)
5826 irq_line = ent->irq2;
5827
1da177e4
LT
5828 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5829 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5830 (ap->pio_mask << ATA_SHIFT_PIO);
5831
5832 /* print per-port info to dmesg */
f15a1daf 5833 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
2ec7df04 5834 "ctl 0x%lX bmdma 0x%lX irq %d\n",
f15a1daf
TH
5835 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5836 ata_mode_string(xfer_mode_mask),
5837 ap->ioaddr.cmd_addr,
5838 ap->ioaddr.ctl_addr,
5839 ap->ioaddr.bmdma_addr,
2ec7df04 5840 irq_line);
1da177e4 5841
0f0a3ad3
TH
5842 /* freeze port before requesting IRQ */
5843 ata_eh_freeze_port(ap);
1da177e4
LT
5844 }
5845
2ec7df04 5846 /* obtain irq, that may be shared between channels */
39b07ce6 5847 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
cca3974e 5848 DRV_NAME, host);
39b07ce6
JG
5849 if (rc) {
5850 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5851 ent->irq, rc);
1da177e4 5852 goto err_out;
39b07ce6 5853 }
1da177e4 5854
2ec7df04
AC
5855 /* do we have a second IRQ for the other channel, eg legacy mode */
5856 if (ent->irq2) {
5857 /* We will get weird core code crashes later if this is true
5858 so trap it now */
5859 BUG_ON(ent->irq == ent->irq2);
5860
5861 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
cca3974e 5862 DRV_NAME, host);
2ec7df04
AC
5863 if (rc) {
5864 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5865 ent->irq2, rc);
5866 goto err_out_free_irq;
5867 }
5868 }
5869
1da177e4
LT
5870 /* perform each probe synchronously */
5871 DPRINTK("probe begin\n");
cca3974e
JG
5872 for (i = 0; i < host->n_ports; i++) {
5873 struct ata_port *ap = host->ports[i];
5a04bf4b 5874 u32 scontrol;
1da177e4
LT
5875 int rc;
5876
5a04bf4b
TH
5877 /* init sata_spd_limit to the current value */
5878 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5879 int spd = (scontrol >> 4) & 0xf;
5880 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5881 }
5882 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5883
cca3974e 5884 rc = scsi_add_host(ap->scsi_host, dev);
1da177e4 5885 if (rc) {
f15a1daf 5886 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5887 /* FIXME: do something useful here */
5888 /* FIXME: handle unconditional calls to
5889 * scsi_scan_host and ata_host_remove, below,
5890 * at the very least
5891 */
5892 }
3e706399 5893
52783c5d 5894 if (ap->ops->error_handler) {
1cdaf534 5895 struct ata_eh_info *ehi = &ap->eh_info;
3e706399
TH
5896 unsigned long flags;
5897
5898 ata_port_probe(ap);
5899
5900 /* kick EH for boot probing */
ba6a1308 5901 spin_lock_irqsave(ap->lock, flags);
3e706399 5902
1cdaf534
TH
5903 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5904 ehi->action |= ATA_EH_SOFTRESET;
5905 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
3e706399 5906
b51e9e5d 5907 ap->pflags |= ATA_PFLAG_LOADING;
3e706399
TH
5908 ata_port_schedule_eh(ap);
5909
ba6a1308 5910 spin_unlock_irqrestore(ap->lock, flags);
3e706399
TH
5911
5912 /* wait for EH to finish */
5913 ata_port_wait_eh(ap);
5914 } else {
5915 DPRINTK("ata%u: bus probe begin\n", ap->id);
5916 rc = ata_bus_probe(ap);
5917 DPRINTK("ata%u: bus probe end\n", ap->id);
5918
5919 if (rc) {
5920 /* FIXME: do something useful here?
5921 * Current libata behavior will
5922 * tear down everything when
5923 * the module is removed
5924 * or the h/w is unplugged.
5925 */
5926 }
5927 }
1da177e4
LT
5928 }
5929
5930 /* probes are done, now scan each port's disk(s) */
c893a3ae 5931 DPRINTK("host probe begin\n");
cca3974e
JG
5932 for (i = 0; i < host->n_ports; i++) {
5933 struct ata_port *ap = host->ports[i];
1da177e4 5934
644dd0cc 5935 ata_scsi_scan_host(ap);
1da177e4
LT
5936 }
5937
cca3974e 5938 dev_set_drvdata(dev, host);
1da177e4
LT
5939
5940 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5941 return ent->n_ports; /* success */
5942
2ec7df04 5943err_out_free_irq:
cca3974e 5944 free_irq(ent->irq, host);
1da177e4 5945err_out:
cca3974e
JG
5946 for (i = 0; i < host->n_ports; i++) {
5947 struct ata_port *ap = host->ports[i];
77f3f879
TH
5948 if (ap) {
5949 ap->ops->port_stop(ap);
cca3974e 5950 scsi_host_put(ap->scsi_host);
77f3f879 5951 }
1da177e4 5952 }
6d0500df 5953
cca3974e 5954 kfree(host);
1da177e4
LT
5955 VPRINTK("EXIT, returning 0\n");
5956 return 0;
5957}
5958
720ba126
TH
5959/**
5960 * ata_port_detach - Detach ATA port in prepration of device removal
5961 * @ap: ATA port to be detached
5962 *
5963 * Detach all ATA devices and the associated SCSI devices of @ap;
5964 * then, remove the associated SCSI host. @ap is guaranteed to
5965 * be quiescent on return from this function.
5966 *
5967 * LOCKING:
5968 * Kernel thread context (may sleep).
5969 */
5970void ata_port_detach(struct ata_port *ap)
5971{
5972 unsigned long flags;
5973 int i;
5974
5975 if (!ap->ops->error_handler)
c3cf30a9 5976 goto skip_eh;
720ba126
TH
5977
5978 /* tell EH we're leaving & flush EH */
ba6a1308 5979 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 5980 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 5981 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5982
5983 ata_port_wait_eh(ap);
5984
5985 /* EH is now guaranteed to see UNLOADING, so no new device
5986 * will be attached. Disable all existing devices.
5987 */
ba6a1308 5988 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
5989
5990 for (i = 0; i < ATA_MAX_DEVICES; i++)
5991 ata_dev_disable(&ap->device[i]);
5992
ba6a1308 5993 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5994
5995 /* Final freeze & EH. All in-flight commands are aborted. EH
5996 * will be skipped and retrials will be terminated with bad
5997 * target.
5998 */
ba6a1308 5999 spin_lock_irqsave(ap->lock, flags);
720ba126 6000 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6001 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6002
6003 ata_port_wait_eh(ap);
6004
6005 /* Flush hotplug task. The sequence is similar to
6006 * ata_port_flush_task().
6007 */
6008 flush_workqueue(ata_aux_wq);
6009 cancel_delayed_work(&ap->hotplug_task);
6010 flush_workqueue(ata_aux_wq);
6011
c3cf30a9 6012 skip_eh:
720ba126 6013 /* remove the associated SCSI host */
cca3974e 6014 scsi_remove_host(ap->scsi_host);
720ba126
TH
6015}
6016
17b14451 6017/**
cca3974e
JG
6018 * ata_host_remove - PCI layer callback for device removal
6019 * @host: ATA host set that was removed
17b14451 6020 *
2e9edbf8 6021 * Unregister all objects associated with this host set. Free those
17b14451
AC
6022 * objects.
6023 *
6024 * LOCKING:
6025 * Inherited from calling layer (may sleep).
6026 */
6027
cca3974e 6028void ata_host_remove(struct ata_host *host)
17b14451 6029{
17b14451
AC
6030 unsigned int i;
6031
cca3974e
JG
6032 for (i = 0; i < host->n_ports; i++)
6033 ata_port_detach(host->ports[i]);
17b14451 6034
cca3974e
JG
6035 free_irq(host->irq, host);
6036 if (host->irq2)
6037 free_irq(host->irq2, host);
17b14451 6038
cca3974e
JG
6039 for (i = 0; i < host->n_ports; i++) {
6040 struct ata_port *ap = host->ports[i];
17b14451 6041
cca3974e 6042 ata_scsi_release(ap->scsi_host);
17b14451
AC
6043
6044 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
6045 struct ata_ioports *ioaddr = &ap->ioaddr;
6046
2ec7df04
AC
6047 /* FIXME: Add -ac IDE pci mods to remove these special cases */
6048 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
6049 release_region(ATA_PRIMARY_CMD, 8);
6050 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
6051 release_region(ATA_SECONDARY_CMD, 8);
17b14451
AC
6052 }
6053
cca3974e 6054 scsi_host_put(ap->scsi_host);
17b14451
AC
6055 }
6056
cca3974e
JG
6057 if (host->ops->host_stop)
6058 host->ops->host_stop(host);
17b14451 6059
cca3974e 6060 kfree(host);
17b14451
AC
6061}
6062
1da177e4
LT
6063/**
6064 * ata_scsi_release - SCSI layer callback hook for host unload
4f931374 6065 * @shost: libata host to be unloaded
1da177e4
LT
6066 *
6067 * Performs all duties necessary to shut down a libata port...
6068 * Kill port kthread, disable port, and release resources.
6069 *
6070 * LOCKING:
6071 * Inherited from SCSI layer.
6072 *
6073 * RETURNS:
6074 * One.
6075 */
6076
cca3974e 6077int ata_scsi_release(struct Scsi_Host *shost)
1da177e4 6078{
cca3974e 6079 struct ata_port *ap = ata_shost_to_port(shost);
1da177e4
LT
6080
6081 DPRINTK("ENTER\n");
6082
6083 ap->ops->port_disable(ap);
6543bc07 6084 ap->ops->port_stop(ap);
1da177e4
LT
6085
6086 DPRINTK("EXIT\n");
6087 return 1;
6088}
6089
f6d950e2
BK
6090struct ata_probe_ent *
6091ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
6092{
6093 struct ata_probe_ent *probe_ent;
6094
6095 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
6096 if (!probe_ent) {
6097 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
6098 kobject_name(&(dev->kobj)));
6099 return NULL;
6100 }
6101
6102 INIT_LIST_HEAD(&probe_ent->node);
6103 probe_ent->dev = dev;
6104
6105 probe_ent->sht = port->sht;
cca3974e 6106 probe_ent->port_flags = port->flags;
f6d950e2
BK
6107 probe_ent->pio_mask = port->pio_mask;
6108 probe_ent->mwdma_mask = port->mwdma_mask;
6109 probe_ent->udma_mask = port->udma_mask;
6110 probe_ent->port_ops = port->port_ops;
d639ca94 6111 probe_ent->private_data = port->private_data;
f6d950e2
BK
6112
6113 return probe_ent;
6114}
6115
1da177e4
LT
6116/**
6117 * ata_std_ports - initialize ioaddr with standard port offsets.
6118 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6119 *
6120 * Utility function which initializes data_addr, error_addr,
6121 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6122 * device_addr, status_addr, and command_addr to standard offsets
6123 * relative to cmd_addr.
6124 *
6125 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6126 */
0baab86b 6127
1da177e4
LT
6128void ata_std_ports(struct ata_ioports *ioaddr)
6129{
6130 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6131 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6132 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6133 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6134 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6135 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6136 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6137 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6138 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6139 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6140}
6141
0baab86b 6142
374b1873
JG
6143#ifdef CONFIG_PCI
6144
cca3974e 6145void ata_pci_host_stop (struct ata_host *host)
374b1873 6146{
cca3974e 6147 struct pci_dev *pdev = to_pci_dev(host->dev);
374b1873 6148
cca3974e 6149 pci_iounmap(pdev, host->mmio_base);
374b1873
JG
6150}
6151
1da177e4
LT
6152/**
6153 * ata_pci_remove_one - PCI layer callback for device removal
6154 * @pdev: PCI device that was removed
6155 *
6156 * PCI layer indicates to libata via this hook that
6f0ef4fa 6157 * hot-unplug or module unload event has occurred.
1da177e4
LT
6158 * Handle this by unregistering all objects associated
6159 * with this PCI device. Free those objects. Then finally
6160 * release PCI resources and disable device.
6161 *
6162 * LOCKING:
6163 * Inherited from PCI layer (may sleep).
6164 */
6165
6166void ata_pci_remove_one (struct pci_dev *pdev)
6167{
6168 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6169 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6170
cca3974e 6171 ata_host_remove(host);
f0eb62b8 6172
1da177e4
LT
6173 pci_release_regions(pdev);
6174 pci_disable_device(pdev);
6175 dev_set_drvdata(dev, NULL);
6176}
6177
6178/* move to PCI subsystem */
057ace5e 6179int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6180{
6181 unsigned long tmp = 0;
6182
6183 switch (bits->width) {
6184 case 1: {
6185 u8 tmp8 = 0;
6186 pci_read_config_byte(pdev, bits->reg, &tmp8);
6187 tmp = tmp8;
6188 break;
6189 }
6190 case 2: {
6191 u16 tmp16 = 0;
6192 pci_read_config_word(pdev, bits->reg, &tmp16);
6193 tmp = tmp16;
6194 break;
6195 }
6196 case 4: {
6197 u32 tmp32 = 0;
6198 pci_read_config_dword(pdev, bits->reg, &tmp32);
6199 tmp = tmp32;
6200 break;
6201 }
6202
6203 default:
6204 return -EINVAL;
6205 }
6206
6207 tmp &= bits->mask;
6208
6209 return (tmp == bits->val) ? 1 : 0;
6210}
9b847548 6211
3c5100c1 6212void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6213{
6214 pci_save_state(pdev);
500530f6 6215
3c5100c1 6216 if (mesg.event == PM_EVENT_SUSPEND) {
500530f6
TH
6217 pci_disable_device(pdev);
6218 pci_set_power_state(pdev, PCI_D3hot);
6219 }
9b847548
JA
6220}
6221
500530f6 6222void ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548
JA
6223{
6224 pci_set_power_state(pdev, PCI_D0);
6225 pci_restore_state(pdev);
6226 pci_enable_device(pdev);
6227 pci_set_master(pdev);
500530f6
TH
6228}
6229
3c5100c1 6230int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6231{
cca3974e 6232 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6233 int rc = 0;
6234
cca3974e 6235 rc = ata_host_suspend(host, mesg);
500530f6
TH
6236 if (rc)
6237 return rc;
6238
3c5100c1 6239 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6240
6241 return 0;
6242}
6243
6244int ata_pci_device_resume(struct pci_dev *pdev)
6245{
cca3974e 6246 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6247
6248 ata_pci_device_do_resume(pdev);
cca3974e 6249 ata_host_resume(host);
9b847548
JA
6250 return 0;
6251}
1da177e4
LT
6252#endif /* CONFIG_PCI */
6253
6254
1da177e4
LT
6255static int __init ata_init(void)
6256{
a8601e5f 6257 ata_probe_timeout *= HZ;
1da177e4
LT
6258 ata_wq = create_workqueue("ata");
6259 if (!ata_wq)
6260 return -ENOMEM;
6261
453b07ac
TH
6262 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6263 if (!ata_aux_wq) {
6264 destroy_workqueue(ata_wq);
6265 return -ENOMEM;
6266 }
6267
1da177e4
LT
6268 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6269 return 0;
6270}
6271
6272static void __exit ata_exit(void)
6273{
6274 destroy_workqueue(ata_wq);
453b07ac 6275 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6276}
6277
a4625085 6278subsys_initcall(ata_init);
1da177e4
LT
6279module_exit(ata_exit);
6280
67846b30 6281static unsigned long ratelimit_time;
34af946a 6282static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6283
6284int ata_ratelimit(void)
6285{
6286 int rc;
6287 unsigned long flags;
6288
6289 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6290
6291 if (time_after(jiffies, ratelimit_time)) {
6292 rc = 1;
6293 ratelimit_time = jiffies + (HZ/5);
6294 } else
6295 rc = 0;
6296
6297 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6298
6299 return rc;
6300}
6301
c22daff4
TH
6302/**
6303 * ata_wait_register - wait until register value changes
6304 * @reg: IO-mapped register
6305 * @mask: Mask to apply to read register value
6306 * @val: Wait condition
6307 * @interval_msec: polling interval in milliseconds
6308 * @timeout_msec: timeout in milliseconds
6309 *
6310 * Waiting for some bits of register to change is a common
6311 * operation for ATA controllers. This function reads 32bit LE
6312 * IO-mapped register @reg and tests for the following condition.
6313 *
6314 * (*@reg & mask) != val
6315 *
6316 * If the condition is met, it returns; otherwise, the process is
6317 * repeated after @interval_msec until timeout.
6318 *
6319 * LOCKING:
6320 * Kernel thread context (may sleep)
6321 *
6322 * RETURNS:
6323 * The final register value.
6324 */
6325u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6326 unsigned long interval_msec,
6327 unsigned long timeout_msec)
6328{
6329 unsigned long timeout;
6330 u32 tmp;
6331
6332 tmp = ioread32(reg);
6333
6334 /* Calculate timeout _after_ the first read to make sure
6335 * preceding writes reach the controller before starting to
6336 * eat away the timeout.
6337 */
6338 timeout = jiffies + (timeout_msec * HZ) / 1000;
6339
6340 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6341 msleep(interval_msec);
6342 tmp = ioread32(reg);
6343 }
6344
6345 return tmp;
6346}
6347
dd5b06c4
TH
6348/*
6349 * Dummy port_ops
6350 */
6351static void ata_dummy_noret(struct ata_port *ap) { }
6352static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6353static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6354
6355static u8 ata_dummy_check_status(struct ata_port *ap)
6356{
6357 return ATA_DRDY;
6358}
6359
6360static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6361{
6362 return AC_ERR_SYSTEM;
6363}
6364
6365const struct ata_port_operations ata_dummy_port_ops = {
6366 .port_disable = ata_port_disable,
6367 .check_status = ata_dummy_check_status,
6368 .check_altstatus = ata_dummy_check_status,
6369 .dev_select = ata_noop_dev_select,
6370 .qc_prep = ata_noop_qc_prep,
6371 .qc_issue = ata_dummy_qc_issue,
6372 .freeze = ata_dummy_noret,
6373 .thaw = ata_dummy_noret,
6374 .error_handler = ata_dummy_noret,
6375 .post_internal_cmd = ata_dummy_qc_noret,
6376 .irq_clear = ata_dummy_noret,
6377 .port_start = ata_dummy_ret0,
6378 .port_stop = ata_dummy_noret,
6379};
6380
1da177e4
LT
6381/*
6382 * libata is essentially a library of internal helper functions for
6383 * low-level ATA host controller drivers. As such, the API/ABI is
6384 * likely to change as new drivers are added and updated.
6385 * Do not depend on ABI/API stability.
6386 */
6387
e9c83914
TH
6388EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6389EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6390EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6391EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
1da177e4
LT
6392EXPORT_SYMBOL_GPL(ata_std_bios_param);
6393EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6394EXPORT_SYMBOL_GPL(ata_host_init);
1da177e4 6395EXPORT_SYMBOL_GPL(ata_device_add);
720ba126 6396EXPORT_SYMBOL_GPL(ata_port_detach);
cca3974e 6397EXPORT_SYMBOL_GPL(ata_host_remove);
1da177e4
LT
6398EXPORT_SYMBOL_GPL(ata_sg_init);
6399EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6400EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6401EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6402EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6403EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6404EXPORT_SYMBOL_GPL(ata_tf_load);
6405EXPORT_SYMBOL_GPL(ata_tf_read);
6406EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6407EXPORT_SYMBOL_GPL(ata_std_dev_select);
6408EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6409EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6410EXPORT_SYMBOL_GPL(ata_check_status);
6411EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6412EXPORT_SYMBOL_GPL(ata_exec_command);
6413EXPORT_SYMBOL_GPL(ata_port_start);
6414EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 6415EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4 6416EXPORT_SYMBOL_GPL(ata_interrupt);
a6b2c5d4
AC
6417EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6418EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
75e99585 6419EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
1da177e4 6420EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 6421EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6422EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6423EXPORT_SYMBOL_GPL(ata_bmdma_start);
6424EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6425EXPORT_SYMBOL_GPL(ata_bmdma_status);
6426EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6427EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6428EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6429EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6430EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6431EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6432EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 6433EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6434EXPORT_SYMBOL_GPL(sata_phy_debounce);
6435EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6436EXPORT_SYMBOL_GPL(sata_phy_reset);
6437EXPORT_SYMBOL_GPL(__sata_phy_reset);
6438EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6439EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6440EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6441EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6442EXPORT_SYMBOL_GPL(sata_std_hardreset);
6443EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6444EXPORT_SYMBOL_GPL(ata_dev_classify);
6445EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6446EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6447EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6448EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6449EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 6450EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6451EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6452EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6453EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6454EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6455EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4
LT
6456EXPORT_SYMBOL_GPL(ata_scsi_release);
6457EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6458EXPORT_SYMBOL_GPL(sata_scr_valid);
6459EXPORT_SYMBOL_GPL(sata_scr_read);
6460EXPORT_SYMBOL_GPL(sata_scr_write);
6461EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6462EXPORT_SYMBOL_GPL(ata_port_online);
6463EXPORT_SYMBOL_GPL(ata_port_offline);
cca3974e
JG
6464EXPORT_SYMBOL_GPL(ata_host_suspend);
6465EXPORT_SYMBOL_GPL(ata_host_resume);
6a62a04d
TH
6466EXPORT_SYMBOL_GPL(ata_id_string);
6467EXPORT_SYMBOL_GPL(ata_id_c_string);
6919a0a6 6468EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6469EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6470
1bc4ccff 6471EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6472EXPORT_SYMBOL_GPL(ata_timing_compute);
6473EXPORT_SYMBOL_GPL(ata_timing_merge);
6474
1da177e4
LT
6475#ifdef CONFIG_PCI
6476EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 6477EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
6478EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6479EXPORT_SYMBOL_GPL(ata_pci_init_one);
6480EXPORT_SYMBOL_GPL(ata_pci_remove_one);
500530f6
TH
6481EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6482EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6483EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6484EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
6485EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6486EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6487#endif /* CONFIG_PCI */
9b847548 6488
9b847548
JA
6489EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6490EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 6491
ece1d636 6492EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6493EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6494EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6495EXPORT_SYMBOL_GPL(ata_port_freeze);
6496EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6497EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6498EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6499EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6500EXPORT_SYMBOL_GPL(ata_do_eh);