Apply memory policies to top two highest zones when highest zone is ZONE_MOVABLE
[linux-block.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
8bc3fc47 62#define DRV_VERSION "2.21" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 74static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 75
f3187195 76unsigned int ata_print_id = 1;
1da177e4
LT
77static struct workqueue_struct *ata_wq;
78
453b07ac
TH
79struct workqueue_struct *ata_aux_wq;
80
418dc1f5 81int atapi_enabled = 1;
1623c81e
JG
82module_param(atapi_enabled, int, 0444);
83MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
95de719a
AL
85int atapi_dmadir = 0;
86module_param(atapi_dmadir, int, 0444);
87MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
c3c013a2
JG
89int libata_fua = 0;
90module_param_named(fua, libata_fua, int, 0444);
91MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92
1e999736
AC
93static int ata_ignore_hpa = 0;
94module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
95MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96
a8601e5f
AM
97static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
98module_param(ata_probe_timeout, int, 0444);
99MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
100
d7d0dad6
JG
101int libata_noacpi = 1;
102module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
103MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
104
1da177e4
LT
105MODULE_AUTHOR("Jeff Garzik");
106MODULE_DESCRIPTION("Library module for ATA devices");
107MODULE_LICENSE("GPL");
108MODULE_VERSION(DRV_VERSION);
109
0baab86b 110
1da177e4
LT
111/**
112 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
113 * @tf: Taskfile to convert
1da177e4 114 * @pmp: Port multiplier port
9977126c
TH
115 * @is_cmd: This FIS is for command
116 * @fis: Buffer into which data will output
1da177e4
LT
117 *
118 * Converts a standard ATA taskfile to a Serial ATA
119 * FIS structure (Register - Host to Device).
120 *
121 * LOCKING:
122 * Inherited from caller.
123 */
9977126c 124void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 125{
9977126c
TH
126 fis[0] = 0x27; /* Register - Host to Device FIS */
127 fis[1] = pmp & 0xf; /* Port multiplier number*/
128 if (is_cmd)
129 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
130
1da177e4
LT
131 fis[2] = tf->command;
132 fis[3] = tf->feature;
133
134 fis[4] = tf->lbal;
135 fis[5] = tf->lbam;
136 fis[6] = tf->lbah;
137 fis[7] = tf->device;
138
139 fis[8] = tf->hob_lbal;
140 fis[9] = tf->hob_lbam;
141 fis[10] = tf->hob_lbah;
142 fis[11] = tf->hob_feature;
143
144 fis[12] = tf->nsect;
145 fis[13] = tf->hob_nsect;
146 fis[14] = 0;
147 fis[15] = tf->ctl;
148
149 fis[16] = 0;
150 fis[17] = 0;
151 fis[18] = 0;
152 fis[19] = 0;
153}
154
155/**
156 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
157 * @fis: Buffer from which data will be input
158 * @tf: Taskfile to output
159 *
e12a1be6 160 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
161 *
162 * LOCKING:
163 * Inherited from caller.
164 */
165
057ace5e 166void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
167{
168 tf->command = fis[2]; /* status */
169 tf->feature = fis[3]; /* error */
170
171 tf->lbal = fis[4];
172 tf->lbam = fis[5];
173 tf->lbah = fis[6];
174 tf->device = fis[7];
175
176 tf->hob_lbal = fis[8];
177 tf->hob_lbam = fis[9];
178 tf->hob_lbah = fis[10];
179
180 tf->nsect = fis[12];
181 tf->hob_nsect = fis[13];
182}
183
8cbd6df1
AL
184static const u8 ata_rw_cmds[] = {
185 /* pio multi */
186 ATA_CMD_READ_MULTI,
187 ATA_CMD_WRITE_MULTI,
188 ATA_CMD_READ_MULTI_EXT,
189 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
190 0,
191 0,
192 0,
193 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
194 /* pio */
195 ATA_CMD_PIO_READ,
196 ATA_CMD_PIO_WRITE,
197 ATA_CMD_PIO_READ_EXT,
198 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
199 0,
200 0,
201 0,
202 0,
8cbd6df1
AL
203 /* dma */
204 ATA_CMD_READ,
205 ATA_CMD_WRITE,
206 ATA_CMD_READ_EXT,
9a3dccc4
TH
207 ATA_CMD_WRITE_EXT,
208 0,
209 0,
210 0,
211 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 212};
1da177e4
LT
213
214/**
8cbd6df1 215 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
216 * @tf: command to examine and configure
217 * @dev: device tf belongs to
1da177e4 218 *
2e9edbf8 219 * Examine the device configuration and tf->flags to calculate
8cbd6df1 220 * the proper read/write commands and protocol to use.
1da177e4
LT
221 *
222 * LOCKING:
223 * caller.
224 */
bd056d7e 225static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 226{
9a3dccc4 227 u8 cmd;
1da177e4 228
9a3dccc4 229 int index, fua, lba48, write;
2e9edbf8 230
9a3dccc4 231 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
232 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
233 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 234
8cbd6df1
AL
235 if (dev->flags & ATA_DFLAG_PIO) {
236 tf->protocol = ATA_PROT_PIO;
9a3dccc4 237 index = dev->multi_count ? 0 : 8;
bd056d7e 238 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
239 /* Unable to use DMA due to host limitation */
240 tf->protocol = ATA_PROT_PIO;
0565c26d 241 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
242 } else {
243 tf->protocol = ATA_PROT_DMA;
9a3dccc4 244 index = 16;
8cbd6df1 245 }
1da177e4 246
9a3dccc4
TH
247 cmd = ata_rw_cmds[index + fua + lba48 + write];
248 if (cmd) {
249 tf->command = cmd;
250 return 0;
251 }
252 return -1;
1da177e4
LT
253}
254
35b649fe
TH
255/**
256 * ata_tf_read_block - Read block address from ATA taskfile
257 * @tf: ATA taskfile of interest
258 * @dev: ATA device @tf belongs to
259 *
260 * LOCKING:
261 * None.
262 *
263 * Read block address from @tf. This function can handle all
264 * three address formats - LBA, LBA48 and CHS. tf->protocol and
265 * flags select the address format to use.
266 *
267 * RETURNS:
268 * Block address read from @tf.
269 */
270u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
271{
272 u64 block = 0;
273
274 if (tf->flags & ATA_TFLAG_LBA) {
275 if (tf->flags & ATA_TFLAG_LBA48) {
276 block |= (u64)tf->hob_lbah << 40;
277 block |= (u64)tf->hob_lbam << 32;
278 block |= tf->hob_lbal << 24;
279 } else
280 block |= (tf->device & 0xf) << 24;
281
282 block |= tf->lbah << 16;
283 block |= tf->lbam << 8;
284 block |= tf->lbal;
285 } else {
286 u32 cyl, head, sect;
287
288 cyl = tf->lbam | (tf->lbah << 8);
289 head = tf->device & 0xf;
290 sect = tf->lbal;
291
292 block = (cyl * dev->heads + head) * dev->sectors + sect;
293 }
294
295 return block;
296}
297
bd056d7e
TH
298/**
299 * ata_build_rw_tf - Build ATA taskfile for given read/write request
300 * @tf: Target ATA taskfile
301 * @dev: ATA device @tf belongs to
302 * @block: Block address
303 * @n_block: Number of blocks
304 * @tf_flags: RW/FUA etc...
305 * @tag: tag
306 *
307 * LOCKING:
308 * None.
309 *
310 * Build ATA taskfile @tf for read/write request described by
311 * @block, @n_block, @tf_flags and @tag on @dev.
312 *
313 * RETURNS:
314 *
315 * 0 on success, -ERANGE if the request is too large for @dev,
316 * -EINVAL if the request is invalid.
317 */
318int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
319 u64 block, u32 n_block, unsigned int tf_flags,
320 unsigned int tag)
321{
322 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
323 tf->flags |= tf_flags;
324
6d1245bf 325 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
326 /* yay, NCQ */
327 if (!lba_48_ok(block, n_block))
328 return -ERANGE;
329
330 tf->protocol = ATA_PROT_NCQ;
331 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
332
333 if (tf->flags & ATA_TFLAG_WRITE)
334 tf->command = ATA_CMD_FPDMA_WRITE;
335 else
336 tf->command = ATA_CMD_FPDMA_READ;
337
338 tf->nsect = tag << 3;
339 tf->hob_feature = (n_block >> 8) & 0xff;
340 tf->feature = n_block & 0xff;
341
342 tf->hob_lbah = (block >> 40) & 0xff;
343 tf->hob_lbam = (block >> 32) & 0xff;
344 tf->hob_lbal = (block >> 24) & 0xff;
345 tf->lbah = (block >> 16) & 0xff;
346 tf->lbam = (block >> 8) & 0xff;
347 tf->lbal = block & 0xff;
348
349 tf->device = 1 << 6;
350 if (tf->flags & ATA_TFLAG_FUA)
351 tf->device |= 1 << 7;
352 } else if (dev->flags & ATA_DFLAG_LBA) {
353 tf->flags |= ATA_TFLAG_LBA;
354
355 if (lba_28_ok(block, n_block)) {
356 /* use LBA28 */
357 tf->device |= (block >> 24) & 0xf;
358 } else if (lba_48_ok(block, n_block)) {
359 if (!(dev->flags & ATA_DFLAG_LBA48))
360 return -ERANGE;
361
362 /* use LBA48 */
363 tf->flags |= ATA_TFLAG_LBA48;
364
365 tf->hob_nsect = (n_block >> 8) & 0xff;
366
367 tf->hob_lbah = (block >> 40) & 0xff;
368 tf->hob_lbam = (block >> 32) & 0xff;
369 tf->hob_lbal = (block >> 24) & 0xff;
370 } else
371 /* request too large even for LBA48 */
372 return -ERANGE;
373
374 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
375 return -EINVAL;
376
377 tf->nsect = n_block & 0xff;
378
379 tf->lbah = (block >> 16) & 0xff;
380 tf->lbam = (block >> 8) & 0xff;
381 tf->lbal = block & 0xff;
382
383 tf->device |= ATA_LBA;
384 } else {
385 /* CHS */
386 u32 sect, head, cyl, track;
387
388 /* The request -may- be too large for CHS addressing. */
389 if (!lba_28_ok(block, n_block))
390 return -ERANGE;
391
392 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
393 return -EINVAL;
394
395 /* Convert LBA to CHS */
396 track = (u32)block / dev->sectors;
397 cyl = track / dev->heads;
398 head = track % dev->heads;
399 sect = (u32)block % dev->sectors + 1;
400
401 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
402 (u32)block, track, cyl, head, sect);
403
404 /* Check whether the converted CHS can fit.
405 Cylinder: 0-65535
406 Head: 0-15
407 Sector: 1-255*/
408 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
409 return -ERANGE;
410
411 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
412 tf->lbal = sect;
413 tf->lbam = cyl;
414 tf->lbah = cyl >> 8;
415 tf->device |= head;
416 }
417
418 return 0;
419}
420
cb95d562
TH
421/**
422 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
423 * @pio_mask: pio_mask
424 * @mwdma_mask: mwdma_mask
425 * @udma_mask: udma_mask
426 *
427 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
428 * unsigned int xfer_mask.
429 *
430 * LOCKING:
431 * None.
432 *
433 * RETURNS:
434 * Packed xfer_mask.
435 */
436static unsigned int ata_pack_xfermask(unsigned int pio_mask,
437 unsigned int mwdma_mask,
438 unsigned int udma_mask)
439{
440 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
441 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
442 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
443}
444
c0489e4e
TH
445/**
446 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
447 * @xfer_mask: xfer_mask to unpack
448 * @pio_mask: resulting pio_mask
449 * @mwdma_mask: resulting mwdma_mask
450 * @udma_mask: resulting udma_mask
451 *
452 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
453 * Any NULL distination masks will be ignored.
454 */
455static void ata_unpack_xfermask(unsigned int xfer_mask,
456 unsigned int *pio_mask,
457 unsigned int *mwdma_mask,
458 unsigned int *udma_mask)
459{
460 if (pio_mask)
461 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
462 if (mwdma_mask)
463 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
464 if (udma_mask)
465 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
466}
467
cb95d562 468static const struct ata_xfer_ent {
be9a50c8 469 int shift, bits;
cb95d562
TH
470 u8 base;
471} ata_xfer_tbl[] = {
472 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
473 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
474 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
475 { -1, },
476};
477
478/**
479 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
480 * @xfer_mask: xfer_mask of interest
481 *
482 * Return matching XFER_* value for @xfer_mask. Only the highest
483 * bit of @xfer_mask is considered.
484 *
485 * LOCKING:
486 * None.
487 *
488 * RETURNS:
489 * Matching XFER_* value, 0 if no match found.
490 */
491static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
492{
493 int highbit = fls(xfer_mask) - 1;
494 const struct ata_xfer_ent *ent;
495
496 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
497 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
498 return ent->base + highbit - ent->shift;
499 return 0;
500}
501
502/**
503 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
504 * @xfer_mode: XFER_* of interest
505 *
506 * Return matching xfer_mask for @xfer_mode.
507 *
508 * LOCKING:
509 * None.
510 *
511 * RETURNS:
512 * Matching xfer_mask, 0 if no match found.
513 */
514static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
515{
516 const struct ata_xfer_ent *ent;
517
518 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
519 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
520 return 1 << (ent->shift + xfer_mode - ent->base);
521 return 0;
522}
523
524/**
525 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
526 * @xfer_mode: XFER_* of interest
527 *
528 * Return matching xfer_shift for @xfer_mode.
529 *
530 * LOCKING:
531 * None.
532 *
533 * RETURNS:
534 * Matching xfer_shift, -1 if no match found.
535 */
536static int ata_xfer_mode2shift(unsigned int xfer_mode)
537{
538 const struct ata_xfer_ent *ent;
539
540 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
541 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
542 return ent->shift;
543 return -1;
544}
545
1da177e4 546/**
1da7b0d0
TH
547 * ata_mode_string - convert xfer_mask to string
548 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
549 *
550 * Determine string which represents the highest speed
1da7b0d0 551 * (highest bit in @modemask).
1da177e4
LT
552 *
553 * LOCKING:
554 * None.
555 *
556 * RETURNS:
557 * Constant C string representing highest speed listed in
1da7b0d0 558 * @mode_mask, or the constant C string "<n/a>".
1da177e4 559 */
1da7b0d0 560static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 561{
75f554bc
TH
562 static const char * const xfer_mode_str[] = {
563 "PIO0",
564 "PIO1",
565 "PIO2",
566 "PIO3",
567 "PIO4",
b352e57d
AC
568 "PIO5",
569 "PIO6",
75f554bc
TH
570 "MWDMA0",
571 "MWDMA1",
572 "MWDMA2",
b352e57d
AC
573 "MWDMA3",
574 "MWDMA4",
75f554bc
TH
575 "UDMA/16",
576 "UDMA/25",
577 "UDMA/33",
578 "UDMA/44",
579 "UDMA/66",
580 "UDMA/100",
581 "UDMA/133",
582 "UDMA7",
583 };
1da7b0d0 584 int highbit;
1da177e4 585
1da7b0d0
TH
586 highbit = fls(xfer_mask) - 1;
587 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
588 return xfer_mode_str[highbit];
1da177e4 589 return "<n/a>";
1da177e4
LT
590}
591
4c360c81
TH
592static const char *sata_spd_string(unsigned int spd)
593{
594 static const char * const spd_str[] = {
595 "1.5 Gbps",
596 "3.0 Gbps",
597 };
598
599 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
600 return "<unknown>";
601 return spd_str[spd - 1];
602}
603
3373efd8 604void ata_dev_disable(struct ata_device *dev)
0b8efb0a 605{
09d7f9b0
TH
606 if (ata_dev_enabled(dev)) {
607 if (ata_msg_drv(dev->ap))
608 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
609 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
610 ATA_DNXFER_QUIET);
0b8efb0a
TH
611 dev->class++;
612 }
613}
614
1da177e4 615/**
0d5ff566 616 * ata_devchk - PATA device presence detection
1da177e4
LT
617 * @ap: ATA channel to examine
618 * @device: Device to examine (starting at zero)
619 *
620 * This technique was originally described in
621 * Hale Landis's ATADRVR (www.ata-atapi.com), and
622 * later found its way into the ATA/ATAPI spec.
623 *
624 * Write a pattern to the ATA shadow registers,
625 * and if a device is present, it will respond by
626 * correctly storing and echoing back the
627 * ATA shadow register contents.
628 *
629 * LOCKING:
630 * caller.
631 */
632
0d5ff566 633static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
634{
635 struct ata_ioports *ioaddr = &ap->ioaddr;
636 u8 nsect, lbal;
637
638 ap->ops->dev_select(ap, device);
639
0d5ff566
TH
640 iowrite8(0x55, ioaddr->nsect_addr);
641 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 642
0d5ff566
TH
643 iowrite8(0xaa, ioaddr->nsect_addr);
644 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 645
0d5ff566
TH
646 iowrite8(0x55, ioaddr->nsect_addr);
647 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 648
0d5ff566
TH
649 nsect = ioread8(ioaddr->nsect_addr);
650 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
651
652 if ((nsect == 0x55) && (lbal == 0xaa))
653 return 1; /* we found a device */
654
655 return 0; /* nothing found */
656}
657
1da177e4
LT
658/**
659 * ata_dev_classify - determine device type based on ATA-spec signature
660 * @tf: ATA taskfile register set for device to be identified
661 *
662 * Determine from taskfile register contents whether a device is
663 * ATA or ATAPI, as per "Signature and persistence" section
664 * of ATA/PI spec (volume 1, sect 5.14).
665 *
666 * LOCKING:
667 * None.
668 *
669 * RETURNS:
670 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
671 * the event of failure.
672 */
673
057ace5e 674unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
675{
676 /* Apple's open source Darwin code hints that some devices only
677 * put a proper signature into the LBA mid/high registers,
678 * So, we only check those. It's sufficient for uniqueness.
679 */
680
681 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
682 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
683 DPRINTK("found ATA device by sig\n");
684 return ATA_DEV_ATA;
685 }
686
687 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
688 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
689 DPRINTK("found ATAPI device by sig\n");
690 return ATA_DEV_ATAPI;
691 }
692
693 DPRINTK("unknown device\n");
694 return ATA_DEV_UNKNOWN;
695}
696
697/**
698 * ata_dev_try_classify - Parse returned ATA device signature
699 * @ap: ATA channel to examine
700 * @device: Device to examine (starting at zero)
b4dc7623 701 * @r_err: Value of error register on completion
1da177e4
LT
702 *
703 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
704 * an ATA/ATAPI-defined set of values is placed in the ATA
705 * shadow registers, indicating the results of device detection
706 * and diagnostics.
707 *
708 * Select the ATA device, and read the values from the ATA shadow
709 * registers. Then parse according to the Error register value,
710 * and the spec-defined values examined by ata_dev_classify().
711 *
712 * LOCKING:
713 * caller.
b4dc7623
TH
714 *
715 * RETURNS:
716 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
717 */
718
a619f981 719unsigned int
b4dc7623 720ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 721{
1da177e4
LT
722 struct ata_taskfile tf;
723 unsigned int class;
724 u8 err;
725
726 ap->ops->dev_select(ap, device);
727
728 memset(&tf, 0, sizeof(tf));
729
1da177e4 730 ap->ops->tf_read(ap, &tf);
0169e284 731 err = tf.feature;
b4dc7623
TH
732 if (r_err)
733 *r_err = err;
1da177e4 734
93590859
AC
735 /* see if device passed diags: if master then continue and warn later */
736 if (err == 0 && device == 0)
737 /* diagnostic fail : do nothing _YET_ */
738 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
739 else if (err == 1)
1da177e4
LT
740 /* do nothing */ ;
741 else if ((device == 0) && (err == 0x81))
742 /* do nothing */ ;
743 else
b4dc7623 744 return ATA_DEV_NONE;
1da177e4 745
b4dc7623 746 /* determine if device is ATA or ATAPI */
1da177e4 747 class = ata_dev_classify(&tf);
b4dc7623 748
1da177e4 749 if (class == ATA_DEV_UNKNOWN)
b4dc7623 750 return ATA_DEV_NONE;
1da177e4 751 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
752 return ATA_DEV_NONE;
753 return class;
1da177e4
LT
754}
755
756/**
6a62a04d 757 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
758 * @id: IDENTIFY DEVICE results we will examine
759 * @s: string into which data is output
760 * @ofs: offset into identify device page
761 * @len: length of string to return. must be an even number.
762 *
763 * The strings in the IDENTIFY DEVICE page are broken up into
764 * 16-bit chunks. Run through the string, and output each
765 * 8-bit chunk linearly, regardless of platform.
766 *
767 * LOCKING:
768 * caller.
769 */
770
6a62a04d
TH
771void ata_id_string(const u16 *id, unsigned char *s,
772 unsigned int ofs, unsigned int len)
1da177e4
LT
773{
774 unsigned int c;
775
776 while (len > 0) {
777 c = id[ofs] >> 8;
778 *s = c;
779 s++;
780
781 c = id[ofs] & 0xff;
782 *s = c;
783 s++;
784
785 ofs++;
786 len -= 2;
787 }
788}
789
0e949ff3 790/**
6a62a04d 791 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
792 * @id: IDENTIFY DEVICE results we will examine
793 * @s: string into which data is output
794 * @ofs: offset into identify device page
795 * @len: length of string to return. must be an odd number.
796 *
6a62a04d 797 * This function is identical to ata_id_string except that it
0e949ff3
TH
798 * trims trailing spaces and terminates the resulting string with
799 * null. @len must be actual maximum length (even number) + 1.
800 *
801 * LOCKING:
802 * caller.
803 */
6a62a04d
TH
804void ata_id_c_string(const u16 *id, unsigned char *s,
805 unsigned int ofs, unsigned int len)
0e949ff3
TH
806{
807 unsigned char *p;
808
809 WARN_ON(!(len & 1));
810
6a62a04d 811 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
812
813 p = s + strnlen(s, len - 1);
814 while (p > s && p[-1] == ' ')
815 p--;
816 *p = '\0';
817}
0baab86b 818
1e999736
AC
819static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
820{
821 u64 sectors = 0;
822
823 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
824 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
825 sectors |= (tf->hob_lbal & 0xff) << 24;
826 sectors |= (tf->lbah & 0xff) << 16;
827 sectors |= (tf->lbam & 0xff) << 8;
828 sectors |= (tf->lbal & 0xff);
829
830 return ++sectors;
831}
832
833static u64 ata_tf_to_lba(struct ata_taskfile *tf)
834{
835 u64 sectors = 0;
836
837 sectors |= (tf->device & 0x0f) << 24;
838 sectors |= (tf->lbah & 0xff) << 16;
839 sectors |= (tf->lbam & 0xff) << 8;
840 sectors |= (tf->lbal & 0xff);
841
842 return ++sectors;
843}
844
845/**
846 * ata_read_native_max_address_ext - LBA48 native max query
847 * @dev: Device to query
848 *
849 * Perform an LBA48 size query upon the device in question. Return the
850 * actual LBA48 size or zero if the command fails.
851 */
852
853static u64 ata_read_native_max_address_ext(struct ata_device *dev)
854{
855 unsigned int err;
856 struct ata_taskfile tf;
857
858 ata_tf_init(dev, &tf);
859
860 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
861 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
862 tf.protocol |= ATA_PROT_NODATA;
863 tf.device |= 0x40;
864
865 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
866 if (err)
867 return 0;
868
869 return ata_tf_to_lba48(&tf);
870}
871
872/**
873 * ata_read_native_max_address - LBA28 native max query
874 * @dev: Device to query
875 *
876 * Performa an LBA28 size query upon the device in question. Return the
877 * actual LBA28 size or zero if the command fails.
878 */
879
880static u64 ata_read_native_max_address(struct ata_device *dev)
881{
882 unsigned int err;
883 struct ata_taskfile tf;
884
885 ata_tf_init(dev, &tf);
886
887 tf.command = ATA_CMD_READ_NATIVE_MAX;
888 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
889 tf.protocol |= ATA_PROT_NODATA;
890 tf.device |= 0x40;
891
892 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
893 if (err)
894 return 0;
895
896 return ata_tf_to_lba(&tf);
897}
898
899/**
900 * ata_set_native_max_address_ext - LBA48 native max set
901 * @dev: Device to query
6b38d1d1 902 * @new_sectors: new max sectors value to set for the device
1e999736
AC
903 *
904 * Perform an LBA48 size set max upon the device in question. Return the
905 * actual LBA48 size or zero if the command fails.
906 */
907
908static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
909{
910 unsigned int err;
911 struct ata_taskfile tf;
912
913 new_sectors--;
914
915 ata_tf_init(dev, &tf);
916
917 tf.command = ATA_CMD_SET_MAX_EXT;
918 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
919 tf.protocol |= ATA_PROT_NODATA;
920 tf.device |= 0x40;
921
922 tf.lbal = (new_sectors >> 0) & 0xff;
923 tf.lbam = (new_sectors >> 8) & 0xff;
924 tf.lbah = (new_sectors >> 16) & 0xff;
925
926 tf.hob_lbal = (new_sectors >> 24) & 0xff;
927 tf.hob_lbam = (new_sectors >> 32) & 0xff;
928 tf.hob_lbah = (new_sectors >> 40) & 0xff;
929
930 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
931 if (err)
932 return 0;
933
934 return ata_tf_to_lba48(&tf);
935}
936
937/**
938 * ata_set_native_max_address - LBA28 native max set
939 * @dev: Device to query
6b38d1d1 940 * @new_sectors: new max sectors value to set for the device
1e999736
AC
941 *
942 * Perform an LBA28 size set max upon the device in question. Return the
943 * actual LBA28 size or zero if the command fails.
944 */
945
946static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
947{
948 unsigned int err;
949 struct ata_taskfile tf;
950
951 new_sectors--;
952
953 ata_tf_init(dev, &tf);
954
955 tf.command = ATA_CMD_SET_MAX;
956 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
957 tf.protocol |= ATA_PROT_NODATA;
958
959 tf.lbal = (new_sectors >> 0) & 0xff;
960 tf.lbam = (new_sectors >> 8) & 0xff;
961 tf.lbah = (new_sectors >> 16) & 0xff;
962 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
963
964 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
965 if (err)
966 return 0;
967
968 return ata_tf_to_lba(&tf);
969}
970
971/**
972 * ata_hpa_resize - Resize a device with an HPA set
973 * @dev: Device to resize
974 *
975 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
976 * it if required to the full size of the media. The caller must check
977 * the drive has the HPA feature set enabled.
978 */
979
980static u64 ata_hpa_resize(struct ata_device *dev)
981{
982 u64 sectors = dev->n_sectors;
983 u64 hpa_sectors;
a617c09f 984
1e999736
AC
985 if (ata_id_has_lba48(dev->id))
986 hpa_sectors = ata_read_native_max_address_ext(dev);
987 else
988 hpa_sectors = ata_read_native_max_address(dev);
989
1e999736
AC
990 if (hpa_sectors > sectors) {
991 ata_dev_printk(dev, KERN_INFO,
992 "Host Protected Area detected:\n"
993 "\tcurrent size: %lld sectors\n"
994 "\tnative size: %lld sectors\n",
bd1d5ec6 995 (long long)sectors, (long long)hpa_sectors);
1e999736
AC
996
997 if (ata_ignore_hpa) {
998 if (ata_id_has_lba48(dev->id))
999 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1000 else
bd1d5ec6
AM
1001 hpa_sectors = ata_set_native_max_address(dev,
1002 hpa_sectors);
1e999736
AC
1003
1004 if (hpa_sectors) {
bd1d5ec6
AM
1005 ata_dev_printk(dev, KERN_INFO, "native size "
1006 "increased to %lld sectors\n",
1007 (long long)hpa_sectors);
1e999736
AC
1008 return hpa_sectors;
1009 }
1010 }
37301a55
TH
1011 } else if (hpa_sectors < sectors)
1012 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1013 "is smaller than sectors (%lld)\n", __FUNCTION__,
1014 (long long)hpa_sectors, (long long)sectors);
1015
1e999736
AC
1016 return sectors;
1017}
1018
2940740b
TH
1019static u64 ata_id_n_sectors(const u16 *id)
1020{
1021 if (ata_id_has_lba(id)) {
1022 if (ata_id_has_lba48(id))
1023 return ata_id_u64(id, 100);
1024 else
1025 return ata_id_u32(id, 60);
1026 } else {
1027 if (ata_id_current_chs_valid(id))
1028 return ata_id_u32(id, 57);
1029 else
1030 return id[1] * id[3] * id[6];
1031 }
1032}
1033
10305f0f
A
1034/**
1035 * ata_id_to_dma_mode - Identify DMA mode from id block
1036 * @dev: device to identify
cc261267 1037 * @unknown: mode to assume if we cannot tell
10305f0f
A
1038 *
1039 * Set up the timing values for the device based upon the identify
1040 * reported values for the DMA mode. This function is used by drivers
1041 * which rely upon firmware configured modes, but wish to report the
1042 * mode correctly when possible.
1043 *
1044 * In addition we emit similarly formatted messages to the default
1045 * ata_dev_set_mode handler, in order to provide consistency of
1046 * presentation.
1047 */
1048
1049void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1050{
1051 unsigned int mask;
1052 u8 mode;
1053
1054 /* Pack the DMA modes */
1055 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1056 if (dev->id[53] & 0x04)
1057 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1058
1059 /* Select the mode in use */
1060 mode = ata_xfer_mask2mode(mask);
1061
1062 if (mode != 0) {
1063 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1064 ata_mode_string(mask));
1065 } else {
1066 /* SWDMA perhaps ? */
1067 mode = unknown;
1068 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1069 }
1070
1071 /* Configure the device reporting */
1072 dev->xfer_mode = mode;
1073 dev->xfer_shift = ata_xfer_mode2shift(mode);
1074}
1075
0baab86b
EF
1076/**
1077 * ata_noop_dev_select - Select device 0/1 on ATA bus
1078 * @ap: ATA channel to manipulate
1079 * @device: ATA device (numbered from zero) to select
1080 *
1081 * This function performs no actual function.
1082 *
1083 * May be used as the dev_select() entry in ata_port_operations.
1084 *
1085 * LOCKING:
1086 * caller.
1087 */
1da177e4
LT
1088void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1089{
1090}
1091
0baab86b 1092
1da177e4
LT
1093/**
1094 * ata_std_dev_select - Select device 0/1 on ATA bus
1095 * @ap: ATA channel to manipulate
1096 * @device: ATA device (numbered from zero) to select
1097 *
1098 * Use the method defined in the ATA specification to
1099 * make either device 0, or device 1, active on the
0baab86b
EF
1100 * ATA channel. Works with both PIO and MMIO.
1101 *
1102 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1103 *
1104 * LOCKING:
1105 * caller.
1106 */
1107
1108void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1109{
1110 u8 tmp;
1111
1112 if (device == 0)
1113 tmp = ATA_DEVICE_OBS;
1114 else
1115 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1116
0d5ff566 1117 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1118 ata_pause(ap); /* needed; also flushes, for mmio */
1119}
1120
1121/**
1122 * ata_dev_select - Select device 0/1 on ATA bus
1123 * @ap: ATA channel to manipulate
1124 * @device: ATA device (numbered from zero) to select
1125 * @wait: non-zero to wait for Status register BSY bit to clear
1126 * @can_sleep: non-zero if context allows sleeping
1127 *
1128 * Use the method defined in the ATA specification to
1129 * make either device 0, or device 1, active on the
1130 * ATA channel.
1131 *
1132 * This is a high-level version of ata_std_dev_select(),
1133 * which additionally provides the services of inserting
1134 * the proper pauses and status polling, where needed.
1135 *
1136 * LOCKING:
1137 * caller.
1138 */
1139
1140void ata_dev_select(struct ata_port *ap, unsigned int device,
1141 unsigned int wait, unsigned int can_sleep)
1142{
88574551 1143 if (ata_msg_probe(ap))
44877b4e
TH
1144 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1145 "device %u, wait %u\n", device, wait);
1da177e4
LT
1146
1147 if (wait)
1148 ata_wait_idle(ap);
1149
1150 ap->ops->dev_select(ap, device);
1151
1152 if (wait) {
1153 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1154 msleep(150);
1155 ata_wait_idle(ap);
1156 }
1157}
1158
1159/**
1160 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1161 * @id: IDENTIFY DEVICE page to dump
1da177e4 1162 *
0bd3300a
TH
1163 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1164 * page.
1da177e4
LT
1165 *
1166 * LOCKING:
1167 * caller.
1168 */
1169
0bd3300a 1170static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1171{
1172 DPRINTK("49==0x%04x "
1173 "53==0x%04x "
1174 "63==0x%04x "
1175 "64==0x%04x "
1176 "75==0x%04x \n",
0bd3300a
TH
1177 id[49],
1178 id[53],
1179 id[63],
1180 id[64],
1181 id[75]);
1da177e4
LT
1182 DPRINTK("80==0x%04x "
1183 "81==0x%04x "
1184 "82==0x%04x "
1185 "83==0x%04x "
1186 "84==0x%04x \n",
0bd3300a
TH
1187 id[80],
1188 id[81],
1189 id[82],
1190 id[83],
1191 id[84]);
1da177e4
LT
1192 DPRINTK("88==0x%04x "
1193 "93==0x%04x\n",
0bd3300a
TH
1194 id[88],
1195 id[93]);
1da177e4
LT
1196}
1197
cb95d562
TH
1198/**
1199 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1200 * @id: IDENTIFY data to compute xfer mask from
1201 *
1202 * Compute the xfermask for this device. This is not as trivial
1203 * as it seems if we must consider early devices correctly.
1204 *
1205 * FIXME: pre IDE drive timing (do we care ?).
1206 *
1207 * LOCKING:
1208 * None.
1209 *
1210 * RETURNS:
1211 * Computed xfermask
1212 */
1213static unsigned int ata_id_xfermask(const u16 *id)
1214{
1215 unsigned int pio_mask, mwdma_mask, udma_mask;
1216
1217 /* Usual case. Word 53 indicates word 64 is valid */
1218 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1219 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1220 pio_mask <<= 3;
1221 pio_mask |= 0x7;
1222 } else {
1223 /* If word 64 isn't valid then Word 51 high byte holds
1224 * the PIO timing number for the maximum. Turn it into
1225 * a mask.
1226 */
7a0f1c8a 1227 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1228 if (mode < 5) /* Valid PIO range */
1229 pio_mask = (2 << mode) - 1;
1230 else
1231 pio_mask = 1;
cb95d562
TH
1232
1233 /* But wait.. there's more. Design your standards by
1234 * committee and you too can get a free iordy field to
1235 * process. However its the speeds not the modes that
1236 * are supported... Note drivers using the timing API
1237 * will get this right anyway
1238 */
1239 }
1240
1241 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1242
b352e57d
AC
1243 if (ata_id_is_cfa(id)) {
1244 /*
1245 * Process compact flash extended modes
1246 */
1247 int pio = id[163] & 0x7;
1248 int dma = (id[163] >> 3) & 7;
1249
1250 if (pio)
1251 pio_mask |= (1 << 5);
1252 if (pio > 1)
1253 pio_mask |= (1 << 6);
1254 if (dma)
1255 mwdma_mask |= (1 << 3);
1256 if (dma > 1)
1257 mwdma_mask |= (1 << 4);
1258 }
1259
fb21f0d0
TH
1260 udma_mask = 0;
1261 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1262 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1263
1264 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1265}
1266
86e45b6b
TH
1267/**
1268 * ata_port_queue_task - Queue port_task
1269 * @ap: The ata_port to queue port_task for
e2a7f77a 1270 * @fn: workqueue function to be scheduled
65f27f38 1271 * @data: data for @fn to use
e2a7f77a 1272 * @delay: delay time for workqueue function
86e45b6b
TH
1273 *
1274 * Schedule @fn(@data) for execution after @delay jiffies using
1275 * port_task. There is one port_task per port and it's the
1276 * user(low level driver)'s responsibility to make sure that only
1277 * one task is active at any given time.
1278 *
1279 * libata core layer takes care of synchronization between
1280 * port_task and EH. ata_port_queue_task() may be ignored for EH
1281 * synchronization.
1282 *
1283 * LOCKING:
1284 * Inherited from caller.
1285 */
65f27f38 1286void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1287 unsigned long delay)
1288{
65f27f38
DH
1289 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1290 ap->port_task_data = data;
86e45b6b 1291
45a66c1c
ON
1292 /* may fail if ata_port_flush_task() in progress */
1293 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1294}
1295
1296/**
1297 * ata_port_flush_task - Flush port_task
1298 * @ap: The ata_port to flush port_task for
1299 *
1300 * After this function completes, port_task is guranteed not to
1301 * be running or scheduled.
1302 *
1303 * LOCKING:
1304 * Kernel thread context (may sleep)
1305 */
1306void ata_port_flush_task(struct ata_port *ap)
1307{
86e45b6b
TH
1308 DPRINTK("ENTER\n");
1309
45a66c1c 1310 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1311
0dd4b21f
BP
1312 if (ata_msg_ctl(ap))
1313 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1314}
1315
7102d230 1316static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1317{
77853bf2 1318 struct completion *waiting = qc->private_data;
a2a7a662 1319
a2a7a662 1320 complete(waiting);
a2a7a662
TH
1321}
1322
1323/**
2432697b 1324 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1325 * @dev: Device to which the command is sent
1326 * @tf: Taskfile registers for the command and the result
d69cf37d 1327 * @cdb: CDB for packet command
a2a7a662 1328 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1329 * @sg: sg list for the data buffer of the command
1330 * @n_elem: Number of sg entries
a2a7a662
TH
1331 *
1332 * Executes libata internal command with timeout. @tf contains
1333 * command on entry and result on return. Timeout and error
1334 * conditions are reported via return value. No recovery action
1335 * is taken after a command times out. It's caller's duty to
1336 * clean up after timeout.
1337 *
1338 * LOCKING:
1339 * None. Should be called with kernel context, might sleep.
551e8889
TH
1340 *
1341 * RETURNS:
1342 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1343 */
2432697b
TH
1344unsigned ata_exec_internal_sg(struct ata_device *dev,
1345 struct ata_taskfile *tf, const u8 *cdb,
1346 int dma_dir, struct scatterlist *sg,
1347 unsigned int n_elem)
a2a7a662 1348{
3373efd8 1349 struct ata_port *ap = dev->ap;
a2a7a662
TH
1350 u8 command = tf->command;
1351 struct ata_queued_cmd *qc;
2ab7db1f 1352 unsigned int tag, preempted_tag;
dedaf2b0 1353 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1354 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1355 unsigned long flags;
77853bf2 1356 unsigned int err_mask;
d95a717f 1357 int rc;
a2a7a662 1358
ba6a1308 1359 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1360
e3180499 1361 /* no internal command while frozen */
b51e9e5d 1362 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1363 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1364 return AC_ERR_SYSTEM;
1365 }
1366
2ab7db1f 1367 /* initialize internal qc */
a2a7a662 1368
2ab7db1f
TH
1369 /* XXX: Tag 0 is used for drivers with legacy EH as some
1370 * drivers choke if any other tag is given. This breaks
1371 * ata_tag_internal() test for those drivers. Don't use new
1372 * EH stuff without converting to it.
1373 */
1374 if (ap->ops->error_handler)
1375 tag = ATA_TAG_INTERNAL;
1376 else
1377 tag = 0;
1378
6cec4a39 1379 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1380 BUG();
f69499f4 1381 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1382
1383 qc->tag = tag;
1384 qc->scsicmd = NULL;
1385 qc->ap = ap;
1386 qc->dev = dev;
1387 ata_qc_reinit(qc);
1388
1389 preempted_tag = ap->active_tag;
dedaf2b0
TH
1390 preempted_sactive = ap->sactive;
1391 preempted_qc_active = ap->qc_active;
2ab7db1f 1392 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1393 ap->sactive = 0;
1394 ap->qc_active = 0;
2ab7db1f
TH
1395
1396 /* prepare & issue qc */
a2a7a662 1397 qc->tf = *tf;
d69cf37d
TH
1398 if (cdb)
1399 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1400 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1401 qc->dma_dir = dma_dir;
1402 if (dma_dir != DMA_NONE) {
2432697b
TH
1403 unsigned int i, buflen = 0;
1404
1405 for (i = 0; i < n_elem; i++)
1406 buflen += sg[i].length;
1407
1408 ata_sg_init(qc, sg, n_elem);
49c80429 1409 qc->nbytes = buflen;
a2a7a662
TH
1410 }
1411
77853bf2 1412 qc->private_data = &wait;
a2a7a662
TH
1413 qc->complete_fn = ata_qc_complete_internal;
1414
8e0e694a 1415 ata_qc_issue(qc);
a2a7a662 1416
ba6a1308 1417 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1418
a8601e5f 1419 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1420
1421 ata_port_flush_task(ap);
41ade50c 1422
d95a717f 1423 if (!rc) {
ba6a1308 1424 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1425
1426 /* We're racing with irq here. If we lose, the
1427 * following test prevents us from completing the qc
d95a717f
TH
1428 * twice. If we win, the port is frozen and will be
1429 * cleaned up by ->post_internal_cmd().
a2a7a662 1430 */
77853bf2 1431 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1432 qc->err_mask |= AC_ERR_TIMEOUT;
1433
1434 if (ap->ops->error_handler)
1435 ata_port_freeze(ap);
1436 else
1437 ata_qc_complete(qc);
f15a1daf 1438
0dd4b21f
BP
1439 if (ata_msg_warn(ap))
1440 ata_dev_printk(dev, KERN_WARNING,
88574551 1441 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1442 }
1443
ba6a1308 1444 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1445 }
1446
d95a717f
TH
1447 /* do post_internal_cmd */
1448 if (ap->ops->post_internal_cmd)
1449 ap->ops->post_internal_cmd(qc);
1450
a51d644a
TH
1451 /* perform minimal error analysis */
1452 if (qc->flags & ATA_QCFLAG_FAILED) {
1453 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1454 qc->err_mask |= AC_ERR_DEV;
1455
1456 if (!qc->err_mask)
1457 qc->err_mask |= AC_ERR_OTHER;
1458
1459 if (qc->err_mask & ~AC_ERR_OTHER)
1460 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1461 }
1462
15869303 1463 /* finish up */
ba6a1308 1464 spin_lock_irqsave(ap->lock, flags);
15869303 1465
e61e0672 1466 *tf = qc->result_tf;
77853bf2
TH
1467 err_mask = qc->err_mask;
1468
1469 ata_qc_free(qc);
2ab7db1f 1470 ap->active_tag = preempted_tag;
dedaf2b0
TH
1471 ap->sactive = preempted_sactive;
1472 ap->qc_active = preempted_qc_active;
77853bf2 1473
1f7dd3e9
TH
1474 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1475 * Until those drivers are fixed, we detect the condition
1476 * here, fail the command with AC_ERR_SYSTEM and reenable the
1477 * port.
1478 *
1479 * Note that this doesn't change any behavior as internal
1480 * command failure results in disabling the device in the
1481 * higher layer for LLDDs without new reset/EH callbacks.
1482 *
1483 * Kill the following code as soon as those drivers are fixed.
1484 */
198e0fed 1485 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1486 err_mask |= AC_ERR_SYSTEM;
1487 ata_port_probe(ap);
1488 }
1489
ba6a1308 1490 spin_unlock_irqrestore(ap->lock, flags);
15869303 1491
77853bf2 1492 return err_mask;
a2a7a662
TH
1493}
1494
2432697b 1495/**
33480a0e 1496 * ata_exec_internal - execute libata internal command
2432697b
TH
1497 * @dev: Device to which the command is sent
1498 * @tf: Taskfile registers for the command and the result
1499 * @cdb: CDB for packet command
1500 * @dma_dir: Data tranfer direction of the command
1501 * @buf: Data buffer of the command
1502 * @buflen: Length of data buffer
1503 *
1504 * Wrapper around ata_exec_internal_sg() which takes simple
1505 * buffer instead of sg list.
1506 *
1507 * LOCKING:
1508 * None. Should be called with kernel context, might sleep.
1509 *
1510 * RETURNS:
1511 * Zero on success, AC_ERR_* mask on failure
1512 */
1513unsigned ata_exec_internal(struct ata_device *dev,
1514 struct ata_taskfile *tf, const u8 *cdb,
1515 int dma_dir, void *buf, unsigned int buflen)
1516{
33480a0e
TH
1517 struct scatterlist *psg = NULL, sg;
1518 unsigned int n_elem = 0;
2432697b 1519
33480a0e
TH
1520 if (dma_dir != DMA_NONE) {
1521 WARN_ON(!buf);
1522 sg_init_one(&sg, buf, buflen);
1523 psg = &sg;
1524 n_elem++;
1525 }
2432697b 1526
33480a0e 1527 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1528}
1529
977e6b9f
TH
1530/**
1531 * ata_do_simple_cmd - execute simple internal command
1532 * @dev: Device to which the command is sent
1533 * @cmd: Opcode to execute
1534 *
1535 * Execute a 'simple' command, that only consists of the opcode
1536 * 'cmd' itself, without filling any other registers
1537 *
1538 * LOCKING:
1539 * Kernel thread context (may sleep).
1540 *
1541 * RETURNS:
1542 * Zero on success, AC_ERR_* mask on failure
e58eb583 1543 */
77b08fb5 1544unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1545{
1546 struct ata_taskfile tf;
e58eb583
TH
1547
1548 ata_tf_init(dev, &tf);
1549
1550 tf.command = cmd;
1551 tf.flags |= ATA_TFLAG_DEVICE;
1552 tf.protocol = ATA_PROT_NODATA;
1553
977e6b9f 1554 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1555}
1556
1bc4ccff
AC
1557/**
1558 * ata_pio_need_iordy - check if iordy needed
1559 * @adev: ATA device
1560 *
1561 * Check if the current speed of the device requires IORDY. Used
1562 * by various controllers for chip configuration.
1563 */
a617c09f 1564
1bc4ccff
AC
1565unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1566{
432729f0
AC
1567 /* Controller doesn't support IORDY. Probably a pointless check
1568 as the caller should know this */
1569 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1570 return 0;
432729f0
AC
1571 /* PIO3 and higher it is mandatory */
1572 if (adev->pio_mode > XFER_PIO_2)
1573 return 1;
1574 /* We turn it on when possible */
1575 if (ata_id_has_iordy(adev->id))
1bc4ccff 1576 return 1;
432729f0
AC
1577 return 0;
1578}
2e9edbf8 1579
432729f0
AC
1580/**
1581 * ata_pio_mask_no_iordy - Return the non IORDY mask
1582 * @adev: ATA device
1583 *
1584 * Compute the highest mode possible if we are not using iordy. Return
1585 * -1 if no iordy mode is available.
1586 */
a617c09f 1587
432729f0
AC
1588static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1589{
1bc4ccff 1590 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1591 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1592 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1593 /* Is the speed faster than the drive allows non IORDY ? */
1594 if (pio) {
1595 /* This is cycle times not frequency - watch the logic! */
1596 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1597 return 3 << ATA_SHIFT_PIO;
1598 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1599 }
1600 }
432729f0 1601 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1602}
1603
1da177e4 1604/**
49016aca 1605 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1606 * @dev: target device
1607 * @p_class: pointer to class of the target device (may be changed)
bff04647 1608 * @flags: ATA_READID_* flags
fe635c7e 1609 * @id: buffer to read IDENTIFY data into
1da177e4 1610 *
49016aca
TH
1611 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1612 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1613 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1614 * for pre-ATA4 drives.
1da177e4
LT
1615 *
1616 * LOCKING:
49016aca
TH
1617 * Kernel thread context (may sleep)
1618 *
1619 * RETURNS:
1620 * 0 on success, -errno otherwise.
1da177e4 1621 */
a9beec95 1622int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1623 unsigned int flags, u16 *id)
1da177e4 1624{
3373efd8 1625 struct ata_port *ap = dev->ap;
49016aca 1626 unsigned int class = *p_class;
a0123703 1627 struct ata_taskfile tf;
49016aca
TH
1628 unsigned int err_mask = 0;
1629 const char *reason;
54936f8b 1630 int may_fallback = 1, tried_spinup = 0;
49016aca 1631 int rc;
1da177e4 1632
0dd4b21f 1633 if (ata_msg_ctl(ap))
44877b4e 1634 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1635
49016aca 1636 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1637 retry:
3373efd8 1638 ata_tf_init(dev, &tf);
a0123703 1639
49016aca
TH
1640 switch (class) {
1641 case ATA_DEV_ATA:
a0123703 1642 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1643 break;
1644 case ATA_DEV_ATAPI:
a0123703 1645 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1646 break;
1647 default:
1648 rc = -ENODEV;
1649 reason = "unsupported class";
1650 goto err_out;
1da177e4
LT
1651 }
1652
a0123703 1653 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1654
1655 /* Some devices choke if TF registers contain garbage. Make
1656 * sure those are properly initialized.
1657 */
1658 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1659
1660 /* Device presence detection is unreliable on some
1661 * controllers. Always poll IDENTIFY if available.
1662 */
1663 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1664
3373efd8 1665 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1666 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1667 if (err_mask) {
800b3996 1668 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1669 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1670 ap->print_id, dev->devno);
55a8e2c8
TH
1671 return -ENOENT;
1672 }
1673
54936f8b
TH
1674 /* Device or controller might have reported the wrong
1675 * device class. Give a shot at the other IDENTIFY if
1676 * the current one is aborted by the device.
1677 */
1678 if (may_fallback &&
1679 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1680 may_fallback = 0;
1681
1682 if (class == ATA_DEV_ATA)
1683 class = ATA_DEV_ATAPI;
1684 else
1685 class = ATA_DEV_ATA;
1686 goto retry;
1687 }
1688
49016aca
TH
1689 rc = -EIO;
1690 reason = "I/O error";
1da177e4
LT
1691 goto err_out;
1692 }
1693
54936f8b
TH
1694 /* Falling back doesn't make sense if ID data was read
1695 * successfully at least once.
1696 */
1697 may_fallback = 0;
1698
49016aca 1699 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1700
49016aca 1701 /* sanity check */
a4f5749b 1702 rc = -EINVAL;
6070068b 1703 reason = "device reports invalid type";
a4f5749b
TH
1704
1705 if (class == ATA_DEV_ATA) {
1706 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1707 goto err_out;
1708 } else {
1709 if (ata_id_is_ata(id))
1710 goto err_out;
49016aca
TH
1711 }
1712
169439c2
ML
1713 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1714 tried_spinup = 1;
1715 /*
1716 * Drive powered-up in standby mode, and requires a specific
1717 * SET_FEATURES spin-up subcommand before it will accept
1718 * anything other than the original IDENTIFY command.
1719 */
1720 ata_tf_init(dev, &tf);
1721 tf.command = ATA_CMD_SET_FEATURES;
1722 tf.feature = SETFEATURES_SPINUP;
1723 tf.protocol = ATA_PROT_NODATA;
1724 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1725 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
fb0582f9 1726 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1727 rc = -EIO;
1728 reason = "SPINUP failed";
1729 goto err_out;
1730 }
1731 /*
1732 * If the drive initially returned incomplete IDENTIFY info,
1733 * we now must reissue the IDENTIFY command.
1734 */
1735 if (id[2] == 0x37c8)
1736 goto retry;
1737 }
1738
bff04647 1739 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1740 /*
1741 * The exact sequence expected by certain pre-ATA4 drives is:
1742 * SRST RESET
1743 * IDENTIFY
1744 * INITIALIZE DEVICE PARAMETERS
1745 * anything else..
1746 * Some drives were very specific about that exact sequence.
1747 */
1748 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1749 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1750 if (err_mask) {
1751 rc = -EIO;
1752 reason = "INIT_DEV_PARAMS failed";
1753 goto err_out;
1754 }
1755
1756 /* current CHS translation info (id[53-58]) might be
1757 * changed. reread the identify device info.
1758 */
bff04647 1759 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1760 goto retry;
1761 }
1762 }
1763
1764 *p_class = class;
fe635c7e 1765
49016aca
TH
1766 return 0;
1767
1768 err_out:
88574551 1769 if (ata_msg_warn(ap))
0dd4b21f 1770 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1771 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1772 return rc;
1773}
1774
3373efd8 1775static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1776{
3373efd8 1777 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1778}
1779
a6e6ce8e
TH
1780static void ata_dev_config_ncq(struct ata_device *dev,
1781 char *desc, size_t desc_sz)
1782{
1783 struct ata_port *ap = dev->ap;
1784 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1785
1786 if (!ata_id_has_ncq(dev->id)) {
1787 desc[0] = '\0';
1788 return;
1789 }
75683fe7 1790 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
1791 snprintf(desc, desc_sz, "NCQ (not used)");
1792 return;
1793 }
a6e6ce8e 1794 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1795 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1796 dev->flags |= ATA_DFLAG_NCQ;
1797 }
1798
1799 if (hdepth >= ddepth)
1800 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1801 else
1802 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1803}
1804
49016aca 1805/**
ffeae418 1806 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1807 * @dev: Target device to configure
1808 *
1809 * Configure @dev according to @dev->id. Generic and low-level
1810 * driver specific fixups are also applied.
49016aca
TH
1811 *
1812 * LOCKING:
ffeae418
TH
1813 * Kernel thread context (may sleep)
1814 *
1815 * RETURNS:
1816 * 0 on success, -errno otherwise
49016aca 1817 */
efdaedc4 1818int ata_dev_configure(struct ata_device *dev)
49016aca 1819{
3373efd8 1820 struct ata_port *ap = dev->ap;
6746544c
TH
1821 struct ata_eh_context *ehc = &ap->eh_context;
1822 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1823 const u16 *id = dev->id;
ff8854b2 1824 unsigned int xfer_mask;
b352e57d 1825 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1826 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1827 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1828 int rc;
49016aca 1829
0dd4b21f 1830 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1831 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1832 __FUNCTION__);
ffeae418 1833 return 0;
49016aca
TH
1834 }
1835
0dd4b21f 1836 if (ata_msg_probe(ap))
44877b4e 1837 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1838
75683fe7
TH
1839 /* set horkage */
1840 dev->horkage |= ata_dev_blacklisted(dev);
1841
6746544c
TH
1842 /* let ACPI work its magic */
1843 rc = ata_acpi_on_devcfg(dev);
1844 if (rc)
1845 return rc;
08573a86 1846
c39f5ebe 1847 /* print device capabilities */
0dd4b21f 1848 if (ata_msg_probe(ap))
88574551
TH
1849 ata_dev_printk(dev, KERN_DEBUG,
1850 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1851 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1852 __FUNCTION__,
f15a1daf
TH
1853 id[49], id[82], id[83], id[84],
1854 id[85], id[86], id[87], id[88]);
c39f5ebe 1855
208a9933 1856 /* initialize to-be-configured parameters */
ea1dd4e1 1857 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1858 dev->max_sectors = 0;
1859 dev->cdb_len = 0;
1860 dev->n_sectors = 0;
1861 dev->cylinders = 0;
1862 dev->heads = 0;
1863 dev->sectors = 0;
1864
1da177e4
LT
1865 /*
1866 * common ATA, ATAPI feature tests
1867 */
1868
ff8854b2 1869 /* find max transfer mode; for printk only */
1148c3a7 1870 xfer_mask = ata_id_xfermask(id);
1da177e4 1871
0dd4b21f
BP
1872 if (ata_msg_probe(ap))
1873 ata_dump_id(id);
1da177e4 1874
ef143d57
AL
1875 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1876 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1877 sizeof(fwrevbuf));
1878
1879 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1880 sizeof(modelbuf));
1881
1da177e4
LT
1882 /* ATA-specific feature tests */
1883 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1884 if (ata_id_is_cfa(id)) {
1885 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1886 ata_dev_printk(dev, KERN_WARNING,
1887 "supports DRM functions and may "
1888 "not be fully accessable.\n");
b352e57d
AC
1889 snprintf(revbuf, 7, "CFA");
1890 }
1891 else
1892 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1893
1148c3a7 1894 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1895
3f64f565
EM
1896 if (dev->id[59] & 0x100)
1897 dev->multi_count = dev->id[59] & 0xff;
1898
1148c3a7 1899 if (ata_id_has_lba(id)) {
4c2d721a 1900 const char *lba_desc;
a6e6ce8e 1901 char ncq_desc[20];
8bf62ece 1902
4c2d721a
TH
1903 lba_desc = "LBA";
1904 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1905 if (ata_id_has_lba48(id)) {
8bf62ece 1906 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1907 lba_desc = "LBA48";
6fc49adb
TH
1908
1909 if (dev->n_sectors >= (1UL << 28) &&
1910 ata_id_has_flush_ext(id))
1911 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1912 }
8bf62ece 1913
1e999736
AC
1914 if (ata_id_hpa_enabled(dev->id))
1915 dev->n_sectors = ata_hpa_resize(dev);
1916
a6e6ce8e
TH
1917 /* config NCQ */
1918 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1919
8bf62ece 1920 /* print device info to dmesg */
3f64f565
EM
1921 if (ata_msg_drv(ap) && print_info) {
1922 ata_dev_printk(dev, KERN_INFO,
1923 "%s: %s, %s, max %s\n",
1924 revbuf, modelbuf, fwrevbuf,
1925 ata_mode_string(xfer_mask));
1926 ata_dev_printk(dev, KERN_INFO,
1927 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1928 (unsigned long long)dev->n_sectors,
3f64f565
EM
1929 dev->multi_count, lba_desc, ncq_desc);
1930 }
ffeae418 1931 } else {
8bf62ece
AL
1932 /* CHS */
1933
1934 /* Default translation */
1148c3a7
TH
1935 dev->cylinders = id[1];
1936 dev->heads = id[3];
1937 dev->sectors = id[6];
8bf62ece 1938
1148c3a7 1939 if (ata_id_current_chs_valid(id)) {
8bf62ece 1940 /* Current CHS translation is valid. */
1148c3a7
TH
1941 dev->cylinders = id[54];
1942 dev->heads = id[55];
1943 dev->sectors = id[56];
8bf62ece
AL
1944 }
1945
1946 /* print device info to dmesg */
3f64f565 1947 if (ata_msg_drv(ap) && print_info) {
88574551 1948 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1949 "%s: %s, %s, max %s\n",
1950 revbuf, modelbuf, fwrevbuf,
1951 ata_mode_string(xfer_mask));
a84471fe 1952 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1953 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1954 (unsigned long long)dev->n_sectors,
1955 dev->multi_count, dev->cylinders,
1956 dev->heads, dev->sectors);
1957 }
07f6f7d0
AL
1958 }
1959
6e7846e9 1960 dev->cdb_len = 16;
1da177e4
LT
1961 }
1962
1963 /* ATAPI-specific feature tests */
2c13b7ce 1964 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1965 char *cdb_intr_string = "";
1966
1148c3a7 1967 rc = atapi_cdb_len(id);
1da177e4 1968 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1969 if (ata_msg_warn(ap))
88574551
TH
1970 ata_dev_printk(dev, KERN_WARNING,
1971 "unsupported CDB len\n");
ffeae418 1972 rc = -EINVAL;
1da177e4
LT
1973 goto err_out_nosup;
1974 }
6e7846e9 1975 dev->cdb_len = (unsigned int) rc;
1da177e4 1976
08a556db 1977 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1978 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1979 cdb_intr_string = ", CDB intr";
1980 }
312f7da2 1981
1da177e4 1982 /* print device info to dmesg */
5afc8142 1983 if (ata_msg_drv(ap) && print_info)
ef143d57
AL
1984 ata_dev_printk(dev, KERN_INFO,
1985 "ATAPI: %s, %s, max %s%s\n",
1986 modelbuf, fwrevbuf,
12436c30
TH
1987 ata_mode_string(xfer_mask),
1988 cdb_intr_string);
1da177e4
LT
1989 }
1990
914ed354
TH
1991 /* determine max_sectors */
1992 dev->max_sectors = ATA_MAX_SECTORS;
1993 if (dev->flags & ATA_DFLAG_LBA48)
1994 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1995
93590859
AC
1996 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1997 /* Let the user know. We don't want to disallow opens for
1998 rescue purposes, or in case the vendor is just a blithering
1999 idiot */
2000 if (print_info) {
2001 ata_dev_printk(dev, KERN_WARNING,
2002"Drive reports diagnostics failure. This may indicate a drive\n");
2003 ata_dev_printk(dev, KERN_WARNING,
2004"fault or invalid emulation. Contact drive vendor for information.\n");
2005 }
2006 }
2007
4b2f3ede 2008 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2009 if (ata_dev_knobble(dev)) {
5afc8142 2010 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2011 ata_dev_printk(dev, KERN_INFO,
2012 "applying bridge limits\n");
5a529139 2013 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2014 dev->max_sectors = ATA_MAX_SECTORS;
2015 }
2016
75683fe7 2017 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2018 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2019 dev->max_sectors);
18d6e9d5 2020
4b2f3ede 2021 if (ap->ops->dev_config)
cd0d3bbc 2022 ap->ops->dev_config(dev);
4b2f3ede 2023
0dd4b21f
BP
2024 if (ata_msg_probe(ap))
2025 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2026 __FUNCTION__, ata_chk_status(ap));
ffeae418 2027 return 0;
1da177e4
LT
2028
2029err_out_nosup:
0dd4b21f 2030 if (ata_msg_probe(ap))
88574551
TH
2031 ata_dev_printk(dev, KERN_DEBUG,
2032 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2033 return rc;
1da177e4
LT
2034}
2035
be0d18df 2036/**
2e41e8e6 2037 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2038 * @ap: port
2039 *
2e41e8e6 2040 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2041 * detection.
2042 */
2043
2044int ata_cable_40wire(struct ata_port *ap)
2045{
2046 return ATA_CBL_PATA40;
2047}
2048
2049/**
2e41e8e6 2050 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2051 * @ap: port
2052 *
2e41e8e6 2053 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2054 * detection.
2055 */
2056
2057int ata_cable_80wire(struct ata_port *ap)
2058{
2059 return ATA_CBL_PATA80;
2060}
2061
2062/**
2063 * ata_cable_unknown - return unknown PATA cable.
2064 * @ap: port
2065 *
2066 * Helper method for drivers which have no PATA cable detection.
2067 */
2068
2069int ata_cable_unknown(struct ata_port *ap)
2070{
2071 return ATA_CBL_PATA_UNK;
2072}
2073
2074/**
2075 * ata_cable_sata - return SATA cable type
2076 * @ap: port
2077 *
2078 * Helper method for drivers which have SATA cables
2079 */
2080
2081int ata_cable_sata(struct ata_port *ap)
2082{
2083 return ATA_CBL_SATA;
2084}
2085
1da177e4
LT
2086/**
2087 * ata_bus_probe - Reset and probe ATA bus
2088 * @ap: Bus to probe
2089 *
0cba632b
JG
2090 * Master ATA bus probing function. Initiates a hardware-dependent
2091 * bus reset, then attempts to identify any devices found on
2092 * the bus.
2093 *
1da177e4 2094 * LOCKING:
0cba632b 2095 * PCI/etc. bus probe sem.
1da177e4
LT
2096 *
2097 * RETURNS:
96072e69 2098 * Zero on success, negative errno otherwise.
1da177e4
LT
2099 */
2100
80289167 2101int ata_bus_probe(struct ata_port *ap)
1da177e4 2102{
28ca5c57 2103 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2104 int tries[ATA_MAX_DEVICES];
4ae72a1e 2105 int i, rc;
e82cbdb9 2106 struct ata_device *dev;
1da177e4 2107
28ca5c57 2108 ata_port_probe(ap);
c19ba8af 2109
14d2bac1
TH
2110 for (i = 0; i < ATA_MAX_DEVICES; i++)
2111 tries[i] = ATA_PROBE_MAX_TRIES;
2112
2113 retry:
2044470c 2114 /* reset and determine device classes */
52783c5d 2115 ap->ops->phy_reset(ap);
2061a47a 2116
52783c5d
TH
2117 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2118 dev = &ap->device[i];
c19ba8af 2119
52783c5d
TH
2120 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2121 dev->class != ATA_DEV_UNKNOWN)
2122 classes[dev->devno] = dev->class;
2123 else
2124 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2125
52783c5d 2126 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2127 }
1da177e4 2128
52783c5d 2129 ata_port_probe(ap);
2044470c 2130
b6079ca4
AC
2131 /* after the reset the device state is PIO 0 and the controller
2132 state is undefined. Record the mode */
2133
2134 for (i = 0; i < ATA_MAX_DEVICES; i++)
2135 ap->device[i].pio_mode = XFER_PIO_0;
2136
f31f0cc2
JG
2137 /* read IDENTIFY page and configure devices. We have to do the identify
2138 specific sequence bass-ackwards so that PDIAG- is released by
2139 the slave device */
2140
2141 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
e82cbdb9 2142 dev = &ap->device[i];
28ca5c57 2143
ec573755
TH
2144 if (tries[i])
2145 dev->class = classes[i];
ffeae418 2146
14d2bac1 2147 if (!ata_dev_enabled(dev))
ffeae418 2148 continue;
ffeae418 2149
bff04647
TH
2150 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2151 dev->id);
14d2bac1
TH
2152 if (rc)
2153 goto fail;
f31f0cc2
JG
2154 }
2155
be0d18df
AC
2156 /* Now ask for the cable type as PDIAG- should have been released */
2157 if (ap->ops->cable_detect)
2158 ap->cbl = ap->ops->cable_detect(ap);
2159
f31f0cc2
JG
2160 /* After the identify sequence we can now set up the devices. We do
2161 this in the normal order so that the user doesn't get confused */
2162
2163 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2164 dev = &ap->device[i];
2165 if (!ata_dev_enabled(dev))
2166 continue;
14d2bac1 2167
efdaedc4
TH
2168 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2169 rc = ata_dev_configure(dev);
2170 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2171 if (rc)
2172 goto fail;
1da177e4
LT
2173 }
2174
e82cbdb9 2175 /* configure transfer mode */
3adcebb2 2176 rc = ata_set_mode(ap, &dev);
4ae72a1e 2177 if (rc)
51713d35 2178 goto fail;
1da177e4 2179
e82cbdb9
TH
2180 for (i = 0; i < ATA_MAX_DEVICES; i++)
2181 if (ata_dev_enabled(&ap->device[i]))
2182 return 0;
1da177e4 2183
e82cbdb9
TH
2184 /* no device present, disable port */
2185 ata_port_disable(ap);
1da177e4 2186 ap->ops->port_disable(ap);
96072e69 2187 return -ENODEV;
14d2bac1
TH
2188
2189 fail:
4ae72a1e
TH
2190 tries[dev->devno]--;
2191
14d2bac1
TH
2192 switch (rc) {
2193 case -EINVAL:
4ae72a1e 2194 /* eeek, something went very wrong, give up */
14d2bac1
TH
2195 tries[dev->devno] = 0;
2196 break;
4ae72a1e
TH
2197
2198 case -ENODEV:
2199 /* give it just one more chance */
2200 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2201 case -EIO:
4ae72a1e
TH
2202 if (tries[dev->devno] == 1) {
2203 /* This is the last chance, better to slow
2204 * down than lose it.
2205 */
2206 sata_down_spd_limit(ap);
2207 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2208 }
14d2bac1
TH
2209 }
2210
4ae72a1e 2211 if (!tries[dev->devno])
3373efd8 2212 ata_dev_disable(dev);
ec573755 2213
14d2bac1 2214 goto retry;
1da177e4
LT
2215}
2216
2217/**
0cba632b
JG
2218 * ata_port_probe - Mark port as enabled
2219 * @ap: Port for which we indicate enablement
1da177e4 2220 *
0cba632b
JG
2221 * Modify @ap data structure such that the system
2222 * thinks that the entire port is enabled.
2223 *
cca3974e 2224 * LOCKING: host lock, or some other form of
0cba632b 2225 * serialization.
1da177e4
LT
2226 */
2227
2228void ata_port_probe(struct ata_port *ap)
2229{
198e0fed 2230 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2231}
2232
3be680b7
TH
2233/**
2234 * sata_print_link_status - Print SATA link status
2235 * @ap: SATA port to printk link status about
2236 *
2237 * This function prints link speed and status of a SATA link.
2238 *
2239 * LOCKING:
2240 * None.
2241 */
43727fbc 2242void sata_print_link_status(struct ata_port *ap)
3be680b7 2243{
6d5f9732 2244 u32 sstatus, scontrol, tmp;
3be680b7 2245
81952c54 2246 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 2247 return;
81952c54 2248 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 2249
81952c54 2250 if (ata_port_online(ap)) {
3be680b7 2251 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
2252 ata_port_printk(ap, KERN_INFO,
2253 "SATA link up %s (SStatus %X SControl %X)\n",
2254 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2255 } else {
f15a1daf
TH
2256 ata_port_printk(ap, KERN_INFO,
2257 "SATA link down (SStatus %X SControl %X)\n",
2258 sstatus, scontrol);
3be680b7
TH
2259 }
2260}
2261
1da177e4 2262/**
780a87f7
JG
2263 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2264 * @ap: SATA port associated with target SATA PHY.
1da177e4 2265 *
780a87f7
JG
2266 * This function issues commands to standard SATA Sxxx
2267 * PHY registers, to wake up the phy (and device), and
2268 * clear any reset condition.
1da177e4
LT
2269 *
2270 * LOCKING:
0cba632b 2271 * PCI/etc. bus probe sem.
1da177e4
LT
2272 *
2273 */
2274void __sata_phy_reset(struct ata_port *ap)
2275{
2276 u32 sstatus;
2277 unsigned long timeout = jiffies + (HZ * 5);
2278
2279 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2280 /* issue phy wake/reset */
81952c54 2281 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
2282 /* Couldn't find anything in SATA I/II specs, but
2283 * AHCI-1.1 10.4.2 says at least 1 ms. */
2284 mdelay(1);
1da177e4 2285 }
81952c54
TH
2286 /* phy wake/clear reset */
2287 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
2288
2289 /* wait for phy to become ready, if necessary */
2290 do {
2291 msleep(200);
81952c54 2292 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
2293 if ((sstatus & 0xf) != 1)
2294 break;
2295 } while (time_before(jiffies, timeout));
2296
3be680b7
TH
2297 /* print link status */
2298 sata_print_link_status(ap);
656563e3 2299
3be680b7 2300 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2301 if (!ata_port_offline(ap))
1da177e4 2302 ata_port_probe(ap);
3be680b7 2303 else
1da177e4 2304 ata_port_disable(ap);
1da177e4 2305
198e0fed 2306 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2307 return;
2308
2309 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2310 ata_port_disable(ap);
2311 return;
2312 }
2313
2314 ap->cbl = ATA_CBL_SATA;
2315}
2316
2317/**
780a87f7
JG
2318 * sata_phy_reset - Reset SATA bus.
2319 * @ap: SATA port associated with target SATA PHY.
1da177e4 2320 *
780a87f7
JG
2321 * This function resets the SATA bus, and then probes
2322 * the bus for devices.
1da177e4
LT
2323 *
2324 * LOCKING:
0cba632b 2325 * PCI/etc. bus probe sem.
1da177e4
LT
2326 *
2327 */
2328void sata_phy_reset(struct ata_port *ap)
2329{
2330 __sata_phy_reset(ap);
198e0fed 2331 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2332 return;
2333 ata_bus_reset(ap);
2334}
2335
ebdfca6e
AC
2336/**
2337 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2338 * @adev: device
2339 *
2340 * Obtain the other device on the same cable, or if none is
2341 * present NULL is returned
2342 */
2e9edbf8 2343
3373efd8 2344struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2345{
3373efd8 2346 struct ata_port *ap = adev->ap;
ebdfca6e 2347 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2348 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2349 return NULL;
2350 return pair;
2351}
2352
1da177e4 2353/**
780a87f7
JG
2354 * ata_port_disable - Disable port.
2355 * @ap: Port to be disabled.
1da177e4 2356 *
780a87f7
JG
2357 * Modify @ap data structure such that the system
2358 * thinks that the entire port is disabled, and should
2359 * never attempt to probe or communicate with devices
2360 * on this port.
2361 *
cca3974e 2362 * LOCKING: host lock, or some other form of
780a87f7 2363 * serialization.
1da177e4
LT
2364 */
2365
2366void ata_port_disable(struct ata_port *ap)
2367{
2368 ap->device[0].class = ATA_DEV_NONE;
2369 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2370 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2371}
2372
1c3fae4d 2373/**
3c567b7d 2374 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2375 * @ap: Port to adjust SATA spd limit for
2376 *
2377 * Adjust SATA spd limit of @ap downward. Note that this
2378 * function only adjusts the limit. The change must be applied
3c567b7d 2379 * using sata_set_spd().
1c3fae4d
TH
2380 *
2381 * LOCKING:
2382 * Inherited from caller.
2383 *
2384 * RETURNS:
2385 * 0 on success, negative errno on failure
2386 */
3c567b7d 2387int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2388{
81952c54
TH
2389 u32 sstatus, spd, mask;
2390 int rc, highbit;
1c3fae4d 2391
008a7896
TH
2392 if (!sata_scr_valid(ap))
2393 return -EOPNOTSUPP;
2394
2395 /* If SCR can be read, use it to determine the current SPD.
2396 * If not, use cached value in ap->sata_spd.
2397 */
81952c54 2398 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
008a7896
TH
2399 if (rc == 0)
2400 spd = (sstatus >> 4) & 0xf;
2401 else
2402 spd = ap->sata_spd;
1c3fae4d
TH
2403
2404 mask = ap->sata_spd_limit;
2405 if (mask <= 1)
2406 return -EINVAL;
008a7896
TH
2407
2408 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2409 highbit = fls(mask) - 1;
2410 mask &= ~(1 << highbit);
2411
008a7896
TH
2412 /* Mask off all speeds higher than or equal to the current
2413 * one. Force 1.5Gbps if current SPD is not available.
2414 */
2415 if (spd > 1)
2416 mask &= (1 << (spd - 1)) - 1;
2417 else
2418 mask &= 1;
2419
2420 /* were we already at the bottom? */
1c3fae4d
TH
2421 if (!mask)
2422 return -EINVAL;
2423
2424 ap->sata_spd_limit = mask;
2425
f15a1daf
TH
2426 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2427 sata_spd_string(fls(mask)));
1c3fae4d
TH
2428
2429 return 0;
2430}
2431
3c567b7d 2432static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2433{
2434 u32 spd, limit;
2435
2436 if (ap->sata_spd_limit == UINT_MAX)
2437 limit = 0;
2438 else
2439 limit = fls(ap->sata_spd_limit);
2440
2441 spd = (*scontrol >> 4) & 0xf;
2442 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2443
2444 return spd != limit;
2445}
2446
2447/**
3c567b7d 2448 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2449 * @ap: Port in question
2450 *
2451 * Test whether the spd limit in SControl matches
2452 * @ap->sata_spd_limit. This function is used to determine
2453 * whether hardreset is necessary to apply SATA spd
2454 * configuration.
2455 *
2456 * LOCKING:
2457 * Inherited from caller.
2458 *
2459 * RETURNS:
2460 * 1 if SATA spd configuration is needed, 0 otherwise.
2461 */
3c567b7d 2462int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2463{
2464 u32 scontrol;
2465
81952c54 2466 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2467 return 0;
2468
3c567b7d 2469 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2470}
2471
2472/**
3c567b7d 2473 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2474 * @ap: Port to set SATA spd for
2475 *
2476 * Set SATA spd of @ap according to sata_spd_limit.
2477 *
2478 * LOCKING:
2479 * Inherited from caller.
2480 *
2481 * RETURNS:
2482 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2483 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2484 */
3c567b7d 2485int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2486{
2487 u32 scontrol;
81952c54 2488 int rc;
1c3fae4d 2489
81952c54
TH
2490 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2491 return rc;
1c3fae4d 2492
3c567b7d 2493 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2494 return 0;
2495
81952c54
TH
2496 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2497 return rc;
2498
1c3fae4d
TH
2499 return 1;
2500}
2501
452503f9
AC
2502/*
2503 * This mode timing computation functionality is ported over from
2504 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2505 */
2506/*
b352e57d 2507 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2508 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2509 * for UDMA6, which is currently supported only by Maxtor drives.
2510 *
2511 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2512 */
2513
2514static const struct ata_timing ata_timing[] = {
2515
2516 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2517 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2518 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2519 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2520
b352e57d
AC
2521 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2522 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2523 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2524 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2525 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2526
2527/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2528
452503f9
AC
2529 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2530 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2531 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2532
452503f9
AC
2533 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2534 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2535 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2536
b352e57d
AC
2537 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2538 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2539 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2540 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2541
2542 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2543 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2544 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2545
2546/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2547
2548 { 0xFF }
2549};
2550
2551#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2552#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2553
2554static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2555{
2556 q->setup = EZ(t->setup * 1000, T);
2557 q->act8b = EZ(t->act8b * 1000, T);
2558 q->rec8b = EZ(t->rec8b * 1000, T);
2559 q->cyc8b = EZ(t->cyc8b * 1000, T);
2560 q->active = EZ(t->active * 1000, T);
2561 q->recover = EZ(t->recover * 1000, T);
2562 q->cycle = EZ(t->cycle * 1000, T);
2563 q->udma = EZ(t->udma * 1000, UT);
2564}
2565
2566void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2567 struct ata_timing *m, unsigned int what)
2568{
2569 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2570 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2571 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2572 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2573 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2574 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2575 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2576 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2577}
2578
2579static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2580{
2581 const struct ata_timing *t;
2582
2583 for (t = ata_timing; t->mode != speed; t++)
91190758 2584 if (t->mode == 0xFF)
452503f9 2585 return NULL;
2e9edbf8 2586 return t;
452503f9
AC
2587}
2588
2589int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2590 struct ata_timing *t, int T, int UT)
2591{
2592 const struct ata_timing *s;
2593 struct ata_timing p;
2594
2595 /*
2e9edbf8 2596 * Find the mode.
75b1f2f8 2597 */
452503f9
AC
2598
2599 if (!(s = ata_timing_find_mode(speed)))
2600 return -EINVAL;
2601
75b1f2f8
AL
2602 memcpy(t, s, sizeof(*s));
2603
452503f9
AC
2604 /*
2605 * If the drive is an EIDE drive, it can tell us it needs extended
2606 * PIO/MW_DMA cycle timing.
2607 */
2608
2609 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2610 memset(&p, 0, sizeof(p));
2611 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2612 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2613 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2614 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2615 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2616 }
2617 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2618 }
2619
2620 /*
2621 * Convert the timing to bus clock counts.
2622 */
2623
75b1f2f8 2624 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2625
2626 /*
c893a3ae
RD
2627 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2628 * S.M.A.R.T * and some other commands. We have to ensure that the
2629 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2630 */
2631
fd3367af 2632 if (speed > XFER_PIO_6) {
452503f9
AC
2633 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2634 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2635 }
2636
2637 /*
c893a3ae 2638 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2639 */
2640
2641 if (t->act8b + t->rec8b < t->cyc8b) {
2642 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2643 t->rec8b = t->cyc8b - t->act8b;
2644 }
2645
2646 if (t->active + t->recover < t->cycle) {
2647 t->active += (t->cycle - (t->active + t->recover)) / 2;
2648 t->recover = t->cycle - t->active;
2649 }
a617c09f 2650
4f701d1e
AC
2651 /* In a few cases quantisation may produce enough errors to
2652 leave t->cycle too low for the sum of active and recovery
2653 if so we must correct this */
2654 if (t->active + t->recover > t->cycle)
2655 t->cycle = t->active + t->recover;
452503f9
AC
2656
2657 return 0;
2658}
2659
cf176e1a
TH
2660/**
2661 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2662 * @dev: Device to adjust xfer masks
458337db 2663 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2664 *
2665 * Adjust xfer masks of @dev downward. Note that this function
2666 * does not apply the change. Invoking ata_set_mode() afterwards
2667 * will apply the limit.
2668 *
2669 * LOCKING:
2670 * Inherited from caller.
2671 *
2672 * RETURNS:
2673 * 0 on success, negative errno on failure
2674 */
458337db 2675int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2676{
458337db
TH
2677 char buf[32];
2678 unsigned int orig_mask, xfer_mask;
2679 unsigned int pio_mask, mwdma_mask, udma_mask;
2680 int quiet, highbit;
cf176e1a 2681
458337db
TH
2682 quiet = !!(sel & ATA_DNXFER_QUIET);
2683 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2684
458337db
TH
2685 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2686 dev->mwdma_mask,
2687 dev->udma_mask);
2688 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2689
458337db
TH
2690 switch (sel) {
2691 case ATA_DNXFER_PIO:
2692 highbit = fls(pio_mask) - 1;
2693 pio_mask &= ~(1 << highbit);
2694 break;
2695
2696 case ATA_DNXFER_DMA:
2697 if (udma_mask) {
2698 highbit = fls(udma_mask) - 1;
2699 udma_mask &= ~(1 << highbit);
2700 if (!udma_mask)
2701 return -ENOENT;
2702 } else if (mwdma_mask) {
2703 highbit = fls(mwdma_mask) - 1;
2704 mwdma_mask &= ~(1 << highbit);
2705 if (!mwdma_mask)
2706 return -ENOENT;
2707 }
2708 break;
2709
2710 case ATA_DNXFER_40C:
2711 udma_mask &= ATA_UDMA_MASK_40C;
2712 break;
2713
2714 case ATA_DNXFER_FORCE_PIO0:
2715 pio_mask &= 1;
2716 case ATA_DNXFER_FORCE_PIO:
2717 mwdma_mask = 0;
2718 udma_mask = 0;
2719 break;
2720
458337db
TH
2721 default:
2722 BUG();
2723 }
2724
2725 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2726
2727 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2728 return -ENOENT;
2729
2730 if (!quiet) {
2731 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2732 snprintf(buf, sizeof(buf), "%s:%s",
2733 ata_mode_string(xfer_mask),
2734 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2735 else
2736 snprintf(buf, sizeof(buf), "%s",
2737 ata_mode_string(xfer_mask));
2738
2739 ata_dev_printk(dev, KERN_WARNING,
2740 "limiting speed to %s\n", buf);
2741 }
cf176e1a
TH
2742
2743 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2744 &dev->udma_mask);
2745
cf176e1a 2746 return 0;
cf176e1a
TH
2747}
2748
3373efd8 2749static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2750{
baa1e78a 2751 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2752 unsigned int err_mask;
2753 int rc;
1da177e4 2754
e8384607 2755 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2756 if (dev->xfer_shift == ATA_SHIFT_PIO)
2757 dev->flags |= ATA_DFLAG_PIO;
2758
3373efd8 2759 err_mask = ata_dev_set_xfermode(dev);
11750a40
A
2760 /* Old CFA may refuse this command, which is just fine */
2761 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2762 err_mask &= ~AC_ERR_DEV;
2763
83206a29 2764 if (err_mask) {
f15a1daf
TH
2765 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2766 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2767 return -EIO;
2768 }
1da177e4 2769
baa1e78a 2770 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2771 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2772 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2773 if (rc)
83206a29 2774 return rc;
48a8a14f 2775
23e71c3d
TH
2776 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2777 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2778
f15a1daf
TH
2779 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2780 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2781 return 0;
1da177e4
LT
2782}
2783
1da177e4 2784/**
04351821 2785 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
1da177e4 2786 * @ap: port on which timings will be programmed
e82cbdb9 2787 * @r_failed_dev: out paramter for failed device
1da177e4 2788 *
04351821
A
2789 * Standard implementation of the function used to tune and set
2790 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2791 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2792 * returned in @r_failed_dev.
780a87f7 2793 *
1da177e4 2794 * LOCKING:
0cba632b 2795 * PCI/etc. bus probe sem.
e82cbdb9
TH
2796 *
2797 * RETURNS:
2798 * 0 on success, negative errno otherwise
1da177e4 2799 */
04351821
A
2800
2801int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2802{
e8e0619f 2803 struct ata_device *dev;
e82cbdb9 2804 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2805
3adcebb2 2806
a6d5a51c
TH
2807 /* step 1: calculate xfer_mask */
2808 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2809 unsigned int pio_mask, dma_mask;
a6d5a51c 2810
e8e0619f
TH
2811 dev = &ap->device[i];
2812
e1211e3f 2813 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2814 continue;
2815
3373efd8 2816 ata_dev_xfermask(dev);
1da177e4 2817
acf356b1
TH
2818 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2819 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2820 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2821 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2822
4f65977d 2823 found = 1;
5444a6f4
AC
2824 if (dev->dma_mode)
2825 used_dma = 1;
a6d5a51c 2826 }
4f65977d 2827 if (!found)
e82cbdb9 2828 goto out;
a6d5a51c
TH
2829
2830 /* step 2: always set host PIO timings */
e8e0619f
TH
2831 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2832 dev = &ap->device[i];
2833 if (!ata_dev_enabled(dev))
2834 continue;
2835
2836 if (!dev->pio_mode) {
f15a1daf 2837 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2838 rc = -EINVAL;
e82cbdb9 2839 goto out;
e8e0619f
TH
2840 }
2841
2842 dev->xfer_mode = dev->pio_mode;
2843 dev->xfer_shift = ATA_SHIFT_PIO;
2844 if (ap->ops->set_piomode)
2845 ap->ops->set_piomode(ap, dev);
2846 }
1da177e4 2847
a6d5a51c 2848 /* step 3: set host DMA timings */
e8e0619f
TH
2849 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2850 dev = &ap->device[i];
2851
2852 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2853 continue;
2854
2855 dev->xfer_mode = dev->dma_mode;
2856 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2857 if (ap->ops->set_dmamode)
2858 ap->ops->set_dmamode(ap, dev);
2859 }
1da177e4
LT
2860
2861 /* step 4: update devices' xfer mode */
83206a29 2862 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2863 dev = &ap->device[i];
1da177e4 2864
18d90deb 2865 /* don't update suspended devices' xfer mode */
9666f400 2866 if (!ata_dev_enabled(dev))
83206a29
TH
2867 continue;
2868
3373efd8 2869 rc = ata_dev_set_mode(dev);
5bbc53f4 2870 if (rc)
e82cbdb9 2871 goto out;
83206a29 2872 }
1da177e4 2873
e8e0619f
TH
2874 /* Record simplex status. If we selected DMA then the other
2875 * host channels are not permitted to do so.
5444a6f4 2876 */
cca3974e 2877 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2878 ap->host->simplex_claimed = ap;
5444a6f4 2879
e82cbdb9
TH
2880 out:
2881 if (rc)
2882 *r_failed_dev = dev;
2883 return rc;
1da177e4
LT
2884}
2885
04351821
A
2886/**
2887 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2888 * @ap: port on which timings will be programmed
2889 * @r_failed_dev: out paramter for failed device
2890 *
2891 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2892 * ata_set_mode() fails, pointer to the failing device is
2893 * returned in @r_failed_dev.
2894 *
2895 * LOCKING:
2896 * PCI/etc. bus probe sem.
2897 *
2898 * RETURNS:
2899 * 0 on success, negative errno otherwise
2900 */
2901int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2902{
2903 /* has private set_mode? */
2904 if (ap->ops->set_mode)
2905 return ap->ops->set_mode(ap, r_failed_dev);
2906 return ata_do_set_mode(ap, r_failed_dev);
2907}
2908
1fdffbce
JG
2909/**
2910 * ata_tf_to_host - issue ATA taskfile to host controller
2911 * @ap: port to which command is being issued
2912 * @tf: ATA taskfile register set
2913 *
2914 * Issues ATA taskfile register set to ATA host controller,
2915 * with proper synchronization with interrupt handler and
2916 * other threads.
2917 *
2918 * LOCKING:
cca3974e 2919 * spin_lock_irqsave(host lock)
1fdffbce
JG
2920 */
2921
2922static inline void ata_tf_to_host(struct ata_port *ap,
2923 const struct ata_taskfile *tf)
2924{
2925 ap->ops->tf_load(ap, tf);
2926 ap->ops->exec_command(ap, tf);
2927}
2928
1da177e4
LT
2929/**
2930 * ata_busy_sleep - sleep until BSY clears, or timeout
2931 * @ap: port containing status register to be polled
2932 * @tmout_pat: impatience timeout
2933 * @tmout: overall timeout
2934 *
780a87f7
JG
2935 * Sleep until ATA Status register bit BSY clears,
2936 * or a timeout occurs.
2937 *
d1adc1bb
TH
2938 * LOCKING:
2939 * Kernel thread context (may sleep).
2940 *
2941 * RETURNS:
2942 * 0 on success, -errno otherwise.
1da177e4 2943 */
d1adc1bb
TH
2944int ata_busy_sleep(struct ata_port *ap,
2945 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2946{
2947 unsigned long timer_start, timeout;
2948 u8 status;
2949
2950 status = ata_busy_wait(ap, ATA_BUSY, 300);
2951 timer_start = jiffies;
2952 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2953 while (status != 0xff && (status & ATA_BUSY) &&
2954 time_before(jiffies, timeout)) {
1da177e4
LT
2955 msleep(50);
2956 status = ata_busy_wait(ap, ATA_BUSY, 3);
2957 }
2958
d1adc1bb 2959 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2960 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2961 "port is slow to respond, please be patient "
2962 "(Status 0x%x)\n", status);
1da177e4
LT
2963
2964 timeout = timer_start + tmout;
d1adc1bb
TH
2965 while (status != 0xff && (status & ATA_BUSY) &&
2966 time_before(jiffies, timeout)) {
1da177e4
LT
2967 msleep(50);
2968 status = ata_chk_status(ap);
2969 }
2970
d1adc1bb
TH
2971 if (status == 0xff)
2972 return -ENODEV;
2973
1da177e4 2974 if (status & ATA_BUSY) {
f15a1daf 2975 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2976 "(%lu secs, Status 0x%x)\n",
2977 tmout / HZ, status);
d1adc1bb 2978 return -EBUSY;
1da177e4
LT
2979 }
2980
2981 return 0;
2982}
2983
d4b2bab4
TH
2984/**
2985 * ata_wait_ready - sleep until BSY clears, or timeout
2986 * @ap: port containing status register to be polled
2987 * @deadline: deadline jiffies for the operation
2988 *
2989 * Sleep until ATA Status register bit BSY clears, or timeout
2990 * occurs.
2991 *
2992 * LOCKING:
2993 * Kernel thread context (may sleep).
2994 *
2995 * RETURNS:
2996 * 0 on success, -errno otherwise.
2997 */
2998int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
2999{
3000 unsigned long start = jiffies;
3001 int warned = 0;
3002
3003 while (1) {
3004 u8 status = ata_chk_status(ap);
3005 unsigned long now = jiffies;
3006
3007 if (!(status & ATA_BUSY))
3008 return 0;
fd7fe701 3009 if (!ata_port_online(ap) && status == 0xff)
d4b2bab4
TH
3010 return -ENODEV;
3011 if (time_after(now, deadline))
3012 return -EBUSY;
3013
3014 if (!warned && time_after(now, start + 5 * HZ) &&
3015 (deadline - now > 3 * HZ)) {
3016 ata_port_printk(ap, KERN_WARNING,
3017 "port is slow to respond, please be patient "
3018 "(Status 0x%x)\n", status);
3019 warned = 1;
3020 }
3021
3022 msleep(50);
3023 }
3024}
3025
3026static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3027 unsigned long deadline)
1da177e4
LT
3028{
3029 struct ata_ioports *ioaddr = &ap->ioaddr;
3030 unsigned int dev0 = devmask & (1 << 0);
3031 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3032 int rc, ret = 0;
1da177e4
LT
3033
3034 /* if device 0 was found in ata_devchk, wait for its
3035 * BSY bit to clear
3036 */
d4b2bab4
TH
3037 if (dev0) {
3038 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3039 if (rc) {
3040 if (rc != -ENODEV)
3041 return rc;
3042 ret = rc;
3043 }
d4b2bab4 3044 }
1da177e4 3045
e141d999
TH
3046 /* if device 1 was found in ata_devchk, wait for register
3047 * access briefly, then wait for BSY to clear.
1da177e4 3048 */
e141d999
TH
3049 if (dev1) {
3050 int i;
1da177e4
LT
3051
3052 ap->ops->dev_select(ap, 1);
e141d999
TH
3053
3054 /* Wait for register access. Some ATAPI devices fail
3055 * to set nsect/lbal after reset, so don't waste too
3056 * much time on it. We're gonna wait for !BSY anyway.
3057 */
3058 for (i = 0; i < 2; i++) {
3059 u8 nsect, lbal;
3060
3061 nsect = ioread8(ioaddr->nsect_addr);
3062 lbal = ioread8(ioaddr->lbal_addr);
3063 if ((nsect == 1) && (lbal == 1))
3064 break;
3065 msleep(50); /* give drive a breather */
3066 }
3067
d4b2bab4 3068 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3069 if (rc) {
3070 if (rc != -ENODEV)
3071 return rc;
3072 ret = rc;
3073 }
d4b2bab4 3074 }
1da177e4
LT
3075
3076 /* is all this really necessary? */
3077 ap->ops->dev_select(ap, 0);
3078 if (dev1)
3079 ap->ops->dev_select(ap, 1);
3080 if (dev0)
3081 ap->ops->dev_select(ap, 0);
d4b2bab4 3082
9b89391c 3083 return ret;
1da177e4
LT
3084}
3085
d4b2bab4
TH
3086static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3087 unsigned long deadline)
1da177e4
LT
3088{
3089 struct ata_ioports *ioaddr = &ap->ioaddr;
3090
44877b4e 3091 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3092
3093 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3094 iowrite8(ap->ctl, ioaddr->ctl_addr);
3095 udelay(20); /* FIXME: flush */
3096 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3097 udelay(20); /* FIXME: flush */
3098 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3099
3100 /* spec mandates ">= 2ms" before checking status.
3101 * We wait 150ms, because that was the magic delay used for
3102 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3103 * between when the ATA command register is written, and then
3104 * status is checked. Because waiting for "a while" before
3105 * checking status is fine, post SRST, we perform this magic
3106 * delay here as well.
09c7ad79
AC
3107 *
3108 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3109 */
3110 msleep(150);
3111
2e9edbf8 3112 /* Before we perform post reset processing we want to see if
298a41ca
TH
3113 * the bus shows 0xFF because the odd clown forgets the D7
3114 * pulldown resistor.
3115 */
d1adc1bb 3116 if (ata_check_status(ap) == 0xFF)
9b89391c 3117 return -ENODEV;
09c7ad79 3118
d4b2bab4 3119 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3120}
3121
3122/**
3123 * ata_bus_reset - reset host port and associated ATA channel
3124 * @ap: port to reset
3125 *
3126 * This is typically the first time we actually start issuing
3127 * commands to the ATA channel. We wait for BSY to clear, then
3128 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3129 * result. Determine what devices, if any, are on the channel
3130 * by looking at the device 0/1 error register. Look at the signature
3131 * stored in each device's taskfile registers, to determine if
3132 * the device is ATA or ATAPI.
3133 *
3134 * LOCKING:
0cba632b 3135 * PCI/etc. bus probe sem.
cca3974e 3136 * Obtains host lock.
1da177e4
LT
3137 *
3138 * SIDE EFFECTS:
198e0fed 3139 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3140 */
3141
3142void ata_bus_reset(struct ata_port *ap)
3143{
3144 struct ata_ioports *ioaddr = &ap->ioaddr;
3145 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3146 u8 err;
aec5c3c1 3147 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3148 int rc;
1da177e4 3149
44877b4e 3150 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3151
3152 /* determine if device 0/1 are present */
3153 if (ap->flags & ATA_FLAG_SATA_RESET)
3154 dev0 = 1;
3155 else {
3156 dev0 = ata_devchk(ap, 0);
3157 if (slave_possible)
3158 dev1 = ata_devchk(ap, 1);
3159 }
3160
3161 if (dev0)
3162 devmask |= (1 << 0);
3163 if (dev1)
3164 devmask |= (1 << 1);
3165
3166 /* select device 0 again */
3167 ap->ops->dev_select(ap, 0);
3168
3169 /* issue bus reset */
9b89391c
TH
3170 if (ap->flags & ATA_FLAG_SRST) {
3171 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3172 if (rc && rc != -ENODEV)
aec5c3c1 3173 goto err_out;
9b89391c 3174 }
1da177e4
LT
3175
3176 /*
3177 * determine by signature whether we have ATA or ATAPI devices
3178 */
b4dc7623 3179 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 3180 if ((slave_possible) && (err != 0x81))
b4dc7623 3181 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4 3182
1da177e4
LT
3183 /* is double-select really necessary? */
3184 if (ap->device[1].class != ATA_DEV_NONE)
3185 ap->ops->dev_select(ap, 1);
3186 if (ap->device[0].class != ATA_DEV_NONE)
3187 ap->ops->dev_select(ap, 0);
3188
3189 /* if no devices were detected, disable this port */
3190 if ((ap->device[0].class == ATA_DEV_NONE) &&
3191 (ap->device[1].class == ATA_DEV_NONE))
3192 goto err_out;
3193
3194 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3195 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3196 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3197 }
3198
3199 DPRINTK("EXIT\n");
3200 return;
3201
3202err_out:
f15a1daf 3203 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
3204 ap->ops->port_disable(ap);
3205
3206 DPRINTK("EXIT\n");
3207}
3208
d7bb4cc7
TH
3209/**
3210 * sata_phy_debounce - debounce SATA phy status
3211 * @ap: ATA port to debounce SATA phy status for
3212 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3213 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3214 *
3215 * Make sure SStatus of @ap reaches stable state, determined by
3216 * holding the same value where DET is not 1 for @duration polled
3217 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3218 * beginning of the stable state. Because DET gets stuck at 1 on
3219 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3220 * until timeout then returns 0 if DET is stable at 1.
3221 *
d4b2bab4
TH
3222 * @timeout is further limited by @deadline. The sooner of the
3223 * two is used.
3224 *
d7bb4cc7
TH
3225 * LOCKING:
3226 * Kernel thread context (may sleep)
3227 *
3228 * RETURNS:
3229 * 0 on success, -errno on failure.
3230 */
d4b2bab4
TH
3231int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3232 unsigned long deadline)
7a7921e8 3233{
d7bb4cc7 3234 unsigned long interval_msec = params[0];
d4b2bab4
TH
3235 unsigned long duration = msecs_to_jiffies(params[1]);
3236 unsigned long last_jiffies, t;
d7bb4cc7
TH
3237 u32 last, cur;
3238 int rc;
3239
d4b2bab4
TH
3240 t = jiffies + msecs_to_jiffies(params[2]);
3241 if (time_before(t, deadline))
3242 deadline = t;
3243
d7bb4cc7
TH
3244 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3245 return rc;
3246 cur &= 0xf;
3247
3248 last = cur;
3249 last_jiffies = jiffies;
3250
3251 while (1) {
3252 msleep(interval_msec);
3253 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3254 return rc;
3255 cur &= 0xf;
3256
3257 /* DET stable? */
3258 if (cur == last) {
d4b2bab4 3259 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3260 continue;
3261 if (time_after(jiffies, last_jiffies + duration))
3262 return 0;
3263 continue;
3264 }
3265
3266 /* unstable, start over */
3267 last = cur;
3268 last_jiffies = jiffies;
3269
f1545154
TH
3270 /* Check deadline. If debouncing failed, return
3271 * -EPIPE to tell upper layer to lower link speed.
3272 */
d4b2bab4 3273 if (time_after(jiffies, deadline))
f1545154 3274 return -EPIPE;
d7bb4cc7
TH
3275 }
3276}
3277
3278/**
3279 * sata_phy_resume - resume SATA phy
3280 * @ap: ATA port to resume SATA phy for
3281 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3282 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3283 *
3284 * Resume SATA phy of @ap and debounce it.
3285 *
3286 * LOCKING:
3287 * Kernel thread context (may sleep)
3288 *
3289 * RETURNS:
3290 * 0 on success, -errno on failure.
3291 */
d4b2bab4
TH
3292int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3293 unsigned long deadline)
d7bb4cc7
TH
3294{
3295 u32 scontrol;
81952c54
TH
3296 int rc;
3297
3298 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3299 return rc;
7a7921e8 3300
852ee16a 3301 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
3302
3303 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3304 return rc;
7a7921e8 3305
d7bb4cc7
TH
3306 /* Some PHYs react badly if SStatus is pounded immediately
3307 * after resuming. Delay 200ms before debouncing.
3308 */
3309 msleep(200);
7a7921e8 3310
d4b2bab4 3311 return sata_phy_debounce(ap, params, deadline);
7a7921e8
TH
3312}
3313
f5914a46
TH
3314/**
3315 * ata_std_prereset - prepare for reset
3316 * @ap: ATA port to be reset
d4b2bab4 3317 * @deadline: deadline jiffies for the operation
f5914a46 3318 *
b8cffc6a
TH
3319 * @ap is about to be reset. Initialize it. Failure from
3320 * prereset makes libata abort whole reset sequence and give up
3321 * that port, so prereset should be best-effort. It does its
3322 * best to prepare for reset sequence but if things go wrong, it
3323 * should just whine, not fail.
f5914a46
TH
3324 *
3325 * LOCKING:
3326 * Kernel thread context (may sleep)
3327 *
3328 * RETURNS:
3329 * 0 on success, -errno otherwise.
3330 */
d4b2bab4 3331int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
f5914a46
TH
3332{
3333 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 3334 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3335 int rc;
3336
31daabda 3337 /* handle link resume */
28324304
TH
3338 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3339 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3340 ehc->i.action |= ATA_EH_HARDRESET;
3341
f5914a46
TH
3342 /* if we're about to do hardreset, nothing more to do */
3343 if (ehc->i.action & ATA_EH_HARDRESET)
3344 return 0;
3345
3346 /* if SATA, resume phy */
a16abc0b 3347 if (ap->flags & ATA_FLAG_SATA) {
d4b2bab4 3348 rc = sata_phy_resume(ap, timing, deadline);
b8cffc6a
TH
3349 /* whine about phy resume failure but proceed */
3350 if (rc && rc != -EOPNOTSUPP)
f5914a46
TH
3351 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3352 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3353 }
3354
3355 /* Wait for !BSY if the controller can wait for the first D2H
3356 * Reg FIS and we don't know that no device is attached.
3357 */
b8cffc6a
TH
3358 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3359 rc = ata_wait_ready(ap, deadline);
6dffaf61 3360 if (rc && rc != -ENODEV) {
b8cffc6a
TH
3361 ata_port_printk(ap, KERN_WARNING, "device not ready "
3362 "(errno=%d), forcing hardreset\n", rc);
3363 ehc->i.action |= ATA_EH_HARDRESET;
3364 }
3365 }
f5914a46
TH
3366
3367 return 0;
3368}
3369
c2bd5804
TH
3370/**
3371 * ata_std_softreset - reset host port via ATA SRST
3372 * @ap: port to reset
c2bd5804 3373 * @classes: resulting classes of attached devices
d4b2bab4 3374 * @deadline: deadline jiffies for the operation
c2bd5804 3375 *
52783c5d 3376 * Reset host port using ATA SRST.
c2bd5804
TH
3377 *
3378 * LOCKING:
3379 * Kernel thread context (may sleep)
3380 *
3381 * RETURNS:
3382 * 0 on success, -errno otherwise.
3383 */
d4b2bab4
TH
3384int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3385 unsigned long deadline)
c2bd5804
TH
3386{
3387 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3388 unsigned int devmask = 0;
3389 int rc;
c2bd5804
TH
3390 u8 err;
3391
3392 DPRINTK("ENTER\n");
3393
81952c54 3394 if (ata_port_offline(ap)) {
3a39746a
TH
3395 classes[0] = ATA_DEV_NONE;
3396 goto out;
3397 }
3398
c2bd5804
TH
3399 /* determine if device 0/1 are present */
3400 if (ata_devchk(ap, 0))
3401 devmask |= (1 << 0);
3402 if (slave_possible && ata_devchk(ap, 1))
3403 devmask |= (1 << 1);
3404
c2bd5804
TH
3405 /* select device 0 again */
3406 ap->ops->dev_select(ap, 0);
3407
3408 /* issue bus reset */
3409 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3410 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c
TH
3411 /* if link is occupied, -ENODEV too is an error */
3412 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
d4b2bab4
TH
3413 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3414 return rc;
c2bd5804
TH
3415 }
3416
3417 /* determine by signature whether we have ATA or ATAPI devices */
3418 classes[0] = ata_dev_try_classify(ap, 0, &err);
3419 if (slave_possible && err != 0x81)
3420 classes[1] = ata_dev_try_classify(ap, 1, &err);
3421
3a39746a 3422 out:
c2bd5804
TH
3423 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3424 return 0;
3425}
3426
3427/**
b6103f6d 3428 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3429 * @ap: port to reset
b6103f6d 3430 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3431 * @deadline: deadline jiffies for the operation
c2bd5804
TH
3432 *
3433 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3434 *
3435 * LOCKING:
3436 * Kernel thread context (may sleep)
3437 *
3438 * RETURNS:
3439 * 0 on success, -errno otherwise.
3440 */
d4b2bab4
TH
3441int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3442 unsigned long deadline)
c2bd5804 3443{
852ee16a 3444 u32 scontrol;
81952c54 3445 int rc;
852ee16a 3446
c2bd5804
TH
3447 DPRINTK("ENTER\n");
3448
3c567b7d 3449 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3450 /* SATA spec says nothing about how to reconfigure
3451 * spd. To be on the safe side, turn off phy during
3452 * reconfiguration. This works for at least ICH7 AHCI
3453 * and Sil3124.
3454 */
81952c54 3455 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3456 goto out;
81952c54 3457
a34b6fc0 3458 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3459
3460 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3461 goto out;
1c3fae4d 3462
3c567b7d 3463 sata_set_spd(ap);
1c3fae4d
TH
3464 }
3465
3466 /* issue phy wake/reset */
81952c54 3467 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3468 goto out;
81952c54 3469
852ee16a 3470 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3471
3472 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3473 goto out;
c2bd5804 3474
1c3fae4d 3475 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3476 * 10.4.2 says at least 1 ms.
3477 */
3478 msleep(1);
3479
1c3fae4d 3480 /* bring phy back */
d4b2bab4 3481 rc = sata_phy_resume(ap, timing, deadline);
b6103f6d
TH
3482 out:
3483 DPRINTK("EXIT, rc=%d\n", rc);
3484 return rc;
3485}
3486
3487/**
3488 * sata_std_hardreset - reset host port via SATA phy reset
3489 * @ap: port to reset
3490 * @class: resulting class of attached device
d4b2bab4 3491 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3492 *
3493 * SATA phy-reset host port using DET bits of SControl register,
3494 * wait for !BSY and classify the attached device.
3495 *
3496 * LOCKING:
3497 * Kernel thread context (may sleep)
3498 *
3499 * RETURNS:
3500 * 0 on success, -errno otherwise.
3501 */
d4b2bab4
TH
3502int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3503 unsigned long deadline)
b6103f6d
TH
3504{
3505 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3506 int rc;
3507
3508 DPRINTK("ENTER\n");
3509
3510 /* do hardreset */
d4b2bab4 3511 rc = sata_port_hardreset(ap, timing, deadline);
b6103f6d
TH
3512 if (rc) {
3513 ata_port_printk(ap, KERN_ERR,
3514 "COMRESET failed (errno=%d)\n", rc);
3515 return rc;
3516 }
c2bd5804 3517
c2bd5804 3518 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3519 if (ata_port_offline(ap)) {
c2bd5804
TH
3520 *class = ATA_DEV_NONE;
3521 DPRINTK("EXIT, link offline\n");
3522 return 0;
3523 }
3524
34fee227
TH
3525 /* wait a while before checking status, see SRST for more info */
3526 msleep(150);
3527
d4b2bab4 3528 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3529 /* link occupied, -ENODEV too is an error */
3530 if (rc) {
f15a1daf 3531 ata_port_printk(ap, KERN_ERR,
d4b2bab4
TH
3532 "COMRESET failed (errno=%d)\n", rc);
3533 return rc;
c2bd5804
TH
3534 }
3535
3a39746a
TH
3536 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3537
c2bd5804
TH
3538 *class = ata_dev_try_classify(ap, 0, NULL);
3539
3540 DPRINTK("EXIT, class=%u\n", *class);
3541 return 0;
3542}
3543
3544/**
3545 * ata_std_postreset - standard postreset callback
3546 * @ap: the target ata_port
3547 * @classes: classes of attached devices
3548 *
3549 * This function is invoked after a successful reset. Note that
3550 * the device might have been reset more than once using
3551 * different reset methods before postreset is invoked.
c2bd5804 3552 *
c2bd5804
TH
3553 * LOCKING:
3554 * Kernel thread context (may sleep)
3555 */
3556void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3557{
dc2b3515
TH
3558 u32 serror;
3559
c2bd5804
TH
3560 DPRINTK("ENTER\n");
3561
c2bd5804 3562 /* print link status */
81952c54 3563 sata_print_link_status(ap);
c2bd5804 3564
dc2b3515
TH
3565 /* clear SError */
3566 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3567 sata_scr_write(ap, SCR_ERROR, serror);
3568
c2bd5804
TH
3569 /* is double-select really necessary? */
3570 if (classes[0] != ATA_DEV_NONE)
3571 ap->ops->dev_select(ap, 1);
3572 if (classes[1] != ATA_DEV_NONE)
3573 ap->ops->dev_select(ap, 0);
3574
3a39746a
TH
3575 /* bail out if no device is present */
3576 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3577 DPRINTK("EXIT, no device\n");
3578 return;
3579 }
3580
3581 /* set up device control */
0d5ff566
TH
3582 if (ap->ioaddr.ctl_addr)
3583 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3584
3585 DPRINTK("EXIT\n");
3586}
3587
623a3128
TH
3588/**
3589 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3590 * @dev: device to compare against
3591 * @new_class: class of the new device
3592 * @new_id: IDENTIFY page of the new device
3593 *
3594 * Compare @new_class and @new_id against @dev and determine
3595 * whether @dev is the device indicated by @new_class and
3596 * @new_id.
3597 *
3598 * LOCKING:
3599 * None.
3600 *
3601 * RETURNS:
3602 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3603 */
3373efd8
TH
3604static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3605 const u16 *new_id)
623a3128
TH
3606{
3607 const u16 *old_id = dev->id;
a0cf733b
TH
3608 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3609 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3610
3611 if (dev->class != new_class) {
f15a1daf
TH
3612 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3613 dev->class, new_class);
623a3128
TH
3614 return 0;
3615 }
3616
a0cf733b
TH
3617 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3618 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3619 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3620 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3621
3622 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3623 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3624 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3625 return 0;
3626 }
3627
3628 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3629 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3630 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3631 return 0;
3632 }
3633
623a3128
TH
3634 return 1;
3635}
3636
3637/**
fe30911b 3638 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3639 * @dev: target ATA device
bff04647 3640 * @readid_flags: read ID flags
623a3128
TH
3641 *
3642 * Re-read IDENTIFY page and make sure @dev is still attached to
3643 * the port.
3644 *
3645 * LOCKING:
3646 * Kernel thread context (may sleep)
3647 *
3648 * RETURNS:
3649 * 0 on success, negative errno otherwise
3650 */
fe30911b 3651int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3652{
5eb45c02 3653 unsigned int class = dev->class;
f15a1daf 3654 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3655 int rc;
3656
fe635c7e 3657 /* read ID data */
bff04647 3658 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3659 if (rc)
fe30911b 3660 return rc;
623a3128
TH
3661
3662 /* is the device still there? */
fe30911b
TH
3663 if (!ata_dev_same_device(dev, class, id))
3664 return -ENODEV;
623a3128 3665
fe635c7e 3666 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3667 return 0;
3668}
3669
3670/**
3671 * ata_dev_revalidate - Revalidate ATA device
3672 * @dev: device to revalidate
3673 * @readid_flags: read ID flags
3674 *
3675 * Re-read IDENTIFY page, make sure @dev is still attached to the
3676 * port and reconfigure it according to the new IDENTIFY page.
3677 *
3678 * LOCKING:
3679 * Kernel thread context (may sleep)
3680 *
3681 * RETURNS:
3682 * 0 on success, negative errno otherwise
3683 */
3684int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3685{
6ddcd3b0 3686 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3687 int rc;
3688
3689 if (!ata_dev_enabled(dev))
3690 return -ENODEV;
3691
3692 /* re-read ID */
3693 rc = ata_dev_reread_id(dev, readid_flags);
3694 if (rc)
3695 goto fail;
623a3128
TH
3696
3697 /* configure device according to the new ID */
efdaedc4 3698 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3699 if (rc)
3700 goto fail;
3701
3702 /* verify n_sectors hasn't changed */
3703 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3704 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3705 "%llu != %llu\n",
3706 (unsigned long long)n_sectors,
3707 (unsigned long long)dev->n_sectors);
3708 rc = -ENODEV;
3709 goto fail;
3710 }
3711
3712 return 0;
623a3128
TH
3713
3714 fail:
f15a1daf 3715 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3716 return rc;
3717}
3718
6919a0a6
AC
3719struct ata_blacklist_entry {
3720 const char *model_num;
3721 const char *model_rev;
3722 unsigned long horkage;
3723};
3724
3725static const struct ata_blacklist_entry ata_device_blacklist [] = {
3726 /* Devices with DMA related problems under Linux */
3727 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3728 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3729 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3730 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3731 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3732 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3733 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3734 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3735 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3736 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3737 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3738 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3739 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3740 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3741 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3742 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3743 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3744 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3745 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3746 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3747 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3748 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3749 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3750 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3751 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3752 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3753 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3754 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3755 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
39f19886 3756 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
5acd50f6 3757 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
39ce7128
TH
3758 { "IOMEGA ZIP 250 ATAPI Floppy",
3759 NULL, ATA_HORKAGE_NODMA },
6919a0a6 3760
18d6e9d5 3761 /* Weird ATAPI devices */
40a1d531 3762 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 3763
6919a0a6
AC
3764 /* Devices we expect to fail diagnostics */
3765
3766 /* Devices where NCQ should be avoided */
3767 /* NCQ is slow */
3768 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3769 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3770 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30
PR
3771 /* NCQ is broken */
3772 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
e8361fc4 3773 { "Maxtor 6B200M0", "BANC1BM0", ATA_HORKAGE_NONCQ },
471e44b2 3774 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
2f8d90ab
PB
3775 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
3776 ATA_HORKAGE_NONCQ },
96442925
JA
3777 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3778 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
36e337d0
RH
3779 /* Blacklist entries taken from Silicon Image 3124/3132
3780 Windows driver .inf file - also several Linux problem reports */
3781 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3782 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3783 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
3784 /* Drives which do spurious command completion */
3785 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 3786 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
e14cbfa6 3787 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
2f8fcebb 3788 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
a520f261 3789 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3fb6589c 3790 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
5d6aca8d 3791 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
6919a0a6
AC
3792
3793 /* Devices with NCQ limits */
3794
3795 /* End Marker */
3796 { }
1da177e4 3797};
2e9edbf8 3798
75683fe7 3799static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 3800{
8bfa79fc
TH
3801 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3802 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3803 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3804
8bfa79fc
TH
3805 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3806 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3807
6919a0a6 3808 while (ad->model_num) {
8bfa79fc 3809 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3810 if (ad->model_rev == NULL)
3811 return ad->horkage;
8bfa79fc 3812 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3813 return ad->horkage;
f4b15fef 3814 }
6919a0a6 3815 ad++;
f4b15fef 3816 }
1da177e4
LT
3817 return 0;
3818}
3819
6919a0a6
AC
3820static int ata_dma_blacklisted(const struct ata_device *dev)
3821{
3822 /* We don't support polling DMA.
3823 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3824 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3825 */
3826 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3827 (dev->flags & ATA_DFLAG_CDB_INTR))
3828 return 1;
75683fe7 3829 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
3830}
3831
a6d5a51c
TH
3832/**
3833 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3834 * @dev: Device to compute xfermask for
3835 *
acf356b1
TH
3836 * Compute supported xfermask of @dev and store it in
3837 * dev->*_mask. This function is responsible for applying all
3838 * known limits including host controller limits, device
3839 * blacklist, etc...
a6d5a51c
TH
3840 *
3841 * LOCKING:
3842 * None.
a6d5a51c 3843 */
3373efd8 3844static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3845{
3373efd8 3846 struct ata_port *ap = dev->ap;
cca3974e 3847 struct ata_host *host = ap->host;
a6d5a51c 3848 unsigned long xfer_mask;
1da177e4 3849
37deecb5 3850 /* controller modes available */
565083e1
TH
3851 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3852 ap->mwdma_mask, ap->udma_mask);
3853
8343f889 3854 /* drive modes available */
37deecb5
TH
3855 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3856 dev->mwdma_mask, dev->udma_mask);
3857 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3858
b352e57d
AC
3859 /*
3860 * CFA Advanced TrueIDE timings are not allowed on a shared
3861 * cable
3862 */
3863 if (ata_dev_pair(dev)) {
3864 /* No PIO5 or PIO6 */
3865 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3866 /* No MWDMA3 or MWDMA 4 */
3867 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3868 }
3869
37deecb5
TH
3870 if (ata_dma_blacklisted(dev)) {
3871 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3872 ata_dev_printk(dev, KERN_WARNING,
3873 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3874 }
a6d5a51c 3875
14d66ab7
PV
3876 if ((host->flags & ATA_HOST_SIMPLEX) &&
3877 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3878 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3879 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3880 "other device, disabling DMA\n");
5444a6f4 3881 }
565083e1 3882
e424675f
JG
3883 if (ap->flags & ATA_FLAG_NO_IORDY)
3884 xfer_mask &= ata_pio_mask_no_iordy(dev);
3885
5444a6f4 3886 if (ap->ops->mode_filter)
a76b62ca 3887 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3888
8343f889
RH
3889 /* Apply cable rule here. Don't apply it early because when
3890 * we handle hot plug the cable type can itself change.
3891 * Check this last so that we know if the transfer rate was
3892 * solely limited by the cable.
3893 * Unknown or 80 wire cables reported host side are checked
3894 * drive side as well. Cases where we know a 40wire cable
3895 * is used safely for 80 are not checked here.
3896 */
3897 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3898 /* UDMA/44 or higher would be available */
3899 if((ap->cbl == ATA_CBL_PATA40) ||
3900 (ata_drive_40wire(dev->id) &&
3901 (ap->cbl == ATA_CBL_PATA_UNK ||
3902 ap->cbl == ATA_CBL_PATA80))) {
3903 ata_dev_printk(dev, KERN_WARNING,
3904 "limited to UDMA/33 due to 40-wire cable\n");
3905 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3906 }
3907
565083e1
TH
3908 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3909 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3910}
3911
1da177e4
LT
3912/**
3913 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3914 * @dev: Device to which command will be sent
3915 *
780a87f7
JG
3916 * Issue SET FEATURES - XFER MODE command to device @dev
3917 * on port @ap.
3918 *
1da177e4 3919 * LOCKING:
0cba632b 3920 * PCI/etc. bus probe sem.
83206a29
TH
3921 *
3922 * RETURNS:
3923 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3924 */
3925
3373efd8 3926static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3927{
a0123703 3928 struct ata_taskfile tf;
83206a29 3929 unsigned int err_mask;
1da177e4
LT
3930
3931 /* set up set-features taskfile */
3932 DPRINTK("set features - xfer mode\n");
3933
464cf177
TH
3934 /* Some controllers and ATAPI devices show flaky interrupt
3935 * behavior after setting xfer mode. Use polling instead.
3936 */
3373efd8 3937 ata_tf_init(dev, &tf);
a0123703
TH
3938 tf.command = ATA_CMD_SET_FEATURES;
3939 tf.feature = SETFEATURES_XFER;
464cf177 3940 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
3941 tf.protocol = ATA_PROT_NODATA;
3942 tf.nsect = dev->xfer_mode;
1da177e4 3943
3373efd8 3944 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3945
83206a29
TH
3946 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3947 return err_mask;
1da177e4
LT
3948}
3949
8bf62ece
AL
3950/**
3951 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3952 * @dev: Device to which command will be sent
e2a7f77a
RD
3953 * @heads: Number of heads (taskfile parameter)
3954 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3955 *
3956 * LOCKING:
6aff8f1f
TH
3957 * Kernel thread context (may sleep)
3958 *
3959 * RETURNS:
3960 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3961 */
3373efd8
TH
3962static unsigned int ata_dev_init_params(struct ata_device *dev,
3963 u16 heads, u16 sectors)
8bf62ece 3964{
a0123703 3965 struct ata_taskfile tf;
6aff8f1f 3966 unsigned int err_mask;
8bf62ece
AL
3967
3968 /* Number of sectors per track 1-255. Number of heads 1-16 */
3969 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3970 return AC_ERR_INVALID;
8bf62ece
AL
3971
3972 /* set up init dev params taskfile */
3973 DPRINTK("init dev params \n");
3974
3373efd8 3975 ata_tf_init(dev, &tf);
a0123703
TH
3976 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3977 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3978 tf.protocol = ATA_PROT_NODATA;
3979 tf.nsect = sectors;
3980 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3981
3373efd8 3982 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3983
6aff8f1f
TH
3984 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3985 return err_mask;
8bf62ece
AL
3986}
3987
1da177e4 3988/**
0cba632b
JG
3989 * ata_sg_clean - Unmap DMA memory associated with command
3990 * @qc: Command containing DMA memory to be released
3991 *
3992 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3993 *
3994 * LOCKING:
cca3974e 3995 * spin_lock_irqsave(host lock)
1da177e4 3996 */
70e6ad0c 3997void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
3998{
3999 struct ata_port *ap = qc->ap;
cedc9a47 4000 struct scatterlist *sg = qc->__sg;
1da177e4 4001 int dir = qc->dma_dir;
cedc9a47 4002 void *pad_buf = NULL;
1da177e4 4003
a4631474
TH
4004 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4005 WARN_ON(sg == NULL);
1da177e4
LT
4006
4007 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4008 WARN_ON(qc->n_elem > 1);
1da177e4 4009
2c13b7ce 4010 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4011
cedc9a47
JG
4012 /* if we padded the buffer out to 32-bit bound, and data
4013 * xfer direction is from-device, we must copy from the
4014 * pad buffer back into the supplied buffer
4015 */
4016 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4017 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4018
4019 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4020 if (qc->n_elem)
2f1f610b 4021 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
4022 /* restore last sg */
4023 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4024 if (pad_buf) {
4025 struct scatterlist *psg = &qc->pad_sgent;
4026 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4027 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4028 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4029 }
4030 } else {
2e242fa9 4031 if (qc->n_elem)
2f1f610b 4032 dma_unmap_single(ap->dev,
e1410f2d
JG
4033 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4034 dir);
cedc9a47
JG
4035 /* restore sg */
4036 sg->length += qc->pad_len;
4037 if (pad_buf)
4038 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4039 pad_buf, qc->pad_len);
4040 }
1da177e4
LT
4041
4042 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4043 qc->__sg = NULL;
1da177e4
LT
4044}
4045
4046/**
4047 * ata_fill_sg - Fill PCI IDE PRD table
4048 * @qc: Metadata associated with taskfile to be transferred
4049 *
780a87f7
JG
4050 * Fill PCI IDE PRD (scatter-gather) table with segments
4051 * associated with the current disk command.
4052 *
1da177e4 4053 * LOCKING:
cca3974e 4054 * spin_lock_irqsave(host lock)
1da177e4
LT
4055 *
4056 */
4057static void ata_fill_sg(struct ata_queued_cmd *qc)
4058{
1da177e4 4059 struct ata_port *ap = qc->ap;
cedc9a47
JG
4060 struct scatterlist *sg;
4061 unsigned int idx;
1da177e4 4062
a4631474 4063 WARN_ON(qc->__sg == NULL);
f131883e 4064 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4065
4066 idx = 0;
cedc9a47 4067 ata_for_each_sg(sg, qc) {
1da177e4
LT
4068 u32 addr, offset;
4069 u32 sg_len, len;
4070
4071 /* determine if physical DMA addr spans 64K boundary.
4072 * Note h/w doesn't support 64-bit, so we unconditionally
4073 * truncate dma_addr_t to u32.
4074 */
4075 addr = (u32) sg_dma_address(sg);
4076 sg_len = sg_dma_len(sg);
4077
4078 while (sg_len) {
4079 offset = addr & 0xffff;
4080 len = sg_len;
4081 if ((offset + sg_len) > 0x10000)
4082 len = 0x10000 - offset;
4083
4084 ap->prd[idx].addr = cpu_to_le32(addr);
4085 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4086 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4087
4088 idx++;
4089 sg_len -= len;
4090 addr += len;
4091 }
4092 }
4093
4094 if (idx)
4095 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4096}
b9a4197e 4097
d26fc955
AC
4098/**
4099 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4100 * @qc: Metadata associated with taskfile to be transferred
4101 *
4102 * Fill PCI IDE PRD (scatter-gather) table with segments
4103 * associated with the current disk command. Perform the fill
4104 * so that we avoid writing any length 64K records for
4105 * controllers that don't follow the spec.
4106 *
4107 * LOCKING:
4108 * spin_lock_irqsave(host lock)
4109 *
4110 */
4111static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4112{
4113 struct ata_port *ap = qc->ap;
4114 struct scatterlist *sg;
4115 unsigned int idx;
4116
4117 WARN_ON(qc->__sg == NULL);
4118 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4119
4120 idx = 0;
4121 ata_for_each_sg(sg, qc) {
4122 u32 addr, offset;
4123 u32 sg_len, len, blen;
4124
4125 /* determine if physical DMA addr spans 64K boundary.
4126 * Note h/w doesn't support 64-bit, so we unconditionally
4127 * truncate dma_addr_t to u32.
4128 */
4129 addr = (u32) sg_dma_address(sg);
4130 sg_len = sg_dma_len(sg);
4131
4132 while (sg_len) {
4133 offset = addr & 0xffff;
4134 len = sg_len;
4135 if ((offset + sg_len) > 0x10000)
4136 len = 0x10000 - offset;
4137
4138 blen = len & 0xffff;
4139 ap->prd[idx].addr = cpu_to_le32(addr);
4140 if (blen == 0) {
4141 /* Some PATA chipsets like the CS5530 can't
4142 cope with 0x0000 meaning 64K as the spec says */
4143 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4144 blen = 0x8000;
4145 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4146 }
4147 ap->prd[idx].flags_len = cpu_to_le32(blen);
4148 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4149
4150 idx++;
4151 sg_len -= len;
4152 addr += len;
4153 }
4154 }
4155
4156 if (idx)
4157 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4158}
4159
1da177e4
LT
4160/**
4161 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4162 * @qc: Metadata associated with taskfile to check
4163 *
780a87f7
JG
4164 * Allow low-level driver to filter ATA PACKET commands, returning
4165 * a status indicating whether or not it is OK to use DMA for the
4166 * supplied PACKET command.
4167 *
1da177e4 4168 * LOCKING:
cca3974e 4169 * spin_lock_irqsave(host lock)
0cba632b 4170 *
1da177e4
LT
4171 * RETURNS: 0 when ATAPI DMA can be used
4172 * nonzero otherwise
4173 */
4174int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4175{
4176 struct ata_port *ap = qc->ap;
b9a4197e
TH
4177
4178 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4179 * few ATAPI devices choke on such DMA requests.
4180 */
4181 if (unlikely(qc->nbytes & 15))
4182 return 1;
6f23a31d 4183
1da177e4 4184 if (ap->ops->check_atapi_dma)
b9a4197e 4185 return ap->ops->check_atapi_dma(qc);
1da177e4 4186
b9a4197e 4187 return 0;
1da177e4 4188}
b9a4197e 4189
1da177e4
LT
4190/**
4191 * ata_qc_prep - Prepare taskfile for submission
4192 * @qc: Metadata associated with taskfile to be prepared
4193 *
780a87f7
JG
4194 * Prepare ATA taskfile for submission.
4195 *
1da177e4 4196 * LOCKING:
cca3974e 4197 * spin_lock_irqsave(host lock)
1da177e4
LT
4198 */
4199void ata_qc_prep(struct ata_queued_cmd *qc)
4200{
4201 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4202 return;
4203
4204 ata_fill_sg(qc);
4205}
4206
d26fc955
AC
4207/**
4208 * ata_dumb_qc_prep - Prepare taskfile for submission
4209 * @qc: Metadata associated with taskfile to be prepared
4210 *
4211 * Prepare ATA taskfile for submission.
4212 *
4213 * LOCKING:
4214 * spin_lock_irqsave(host lock)
4215 */
4216void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4217{
4218 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4219 return;
4220
4221 ata_fill_sg_dumb(qc);
4222}
4223
e46834cd
BK
4224void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4225
0cba632b
JG
4226/**
4227 * ata_sg_init_one - Associate command with memory buffer
4228 * @qc: Command to be associated
4229 * @buf: Memory buffer
4230 * @buflen: Length of memory buffer, in bytes.
4231 *
4232 * Initialize the data-related elements of queued_cmd @qc
4233 * to point to a single memory buffer, @buf of byte length @buflen.
4234 *
4235 * LOCKING:
cca3974e 4236 * spin_lock_irqsave(host lock)
0cba632b
JG
4237 */
4238
1da177e4
LT
4239void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4240{
1da177e4
LT
4241 qc->flags |= ATA_QCFLAG_SINGLE;
4242
cedc9a47 4243 qc->__sg = &qc->sgent;
1da177e4 4244 qc->n_elem = 1;
cedc9a47 4245 qc->orig_n_elem = 1;
1da177e4 4246 qc->buf_virt = buf;
233277ca 4247 qc->nbytes = buflen;
1da177e4 4248
61c0596c 4249 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4250}
4251
0cba632b
JG
4252/**
4253 * ata_sg_init - Associate command with scatter-gather table.
4254 * @qc: Command to be associated
4255 * @sg: Scatter-gather table.
4256 * @n_elem: Number of elements in s/g table.
4257 *
4258 * Initialize the data-related elements of queued_cmd @qc
4259 * to point to a scatter-gather table @sg, containing @n_elem
4260 * elements.
4261 *
4262 * LOCKING:
cca3974e 4263 * spin_lock_irqsave(host lock)
0cba632b
JG
4264 */
4265
1da177e4
LT
4266void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4267 unsigned int n_elem)
4268{
4269 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4270 qc->__sg = sg;
1da177e4 4271 qc->n_elem = n_elem;
cedc9a47 4272 qc->orig_n_elem = n_elem;
1da177e4
LT
4273}
4274
4275/**
0cba632b
JG
4276 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4277 * @qc: Command with memory buffer to be mapped.
4278 *
4279 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4280 *
4281 * LOCKING:
cca3974e 4282 * spin_lock_irqsave(host lock)
1da177e4
LT
4283 *
4284 * RETURNS:
0cba632b 4285 * Zero on success, negative on error.
1da177e4
LT
4286 */
4287
4288static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4289{
4290 struct ata_port *ap = qc->ap;
4291 int dir = qc->dma_dir;
cedc9a47 4292 struct scatterlist *sg = qc->__sg;
1da177e4 4293 dma_addr_t dma_address;
2e242fa9 4294 int trim_sg = 0;
1da177e4 4295
cedc9a47
JG
4296 /* we must lengthen transfers to end on a 32-bit boundary */
4297 qc->pad_len = sg->length & 3;
4298 if (qc->pad_len) {
4299 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4300 struct scatterlist *psg = &qc->pad_sgent;
4301
a4631474 4302 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4303
4304 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4305
4306 if (qc->tf.flags & ATA_TFLAG_WRITE)
4307 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4308 qc->pad_len);
4309
4310 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4311 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4312 /* trim sg */
4313 sg->length -= qc->pad_len;
2e242fa9
TH
4314 if (sg->length == 0)
4315 trim_sg = 1;
cedc9a47
JG
4316
4317 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4318 sg->length, qc->pad_len);
4319 }
4320
2e242fa9
TH
4321 if (trim_sg) {
4322 qc->n_elem--;
e1410f2d
JG
4323 goto skip_map;
4324 }
4325
2f1f610b 4326 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4327 sg->length, dir);
537a95d9
TH
4328 if (dma_mapping_error(dma_address)) {
4329 /* restore sg */
4330 sg->length += qc->pad_len;
1da177e4 4331 return -1;
537a95d9 4332 }
1da177e4
LT
4333
4334 sg_dma_address(sg) = dma_address;
32529e01 4335 sg_dma_len(sg) = sg->length;
1da177e4 4336
2e242fa9 4337skip_map:
1da177e4
LT
4338 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4339 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4340
4341 return 0;
4342}
4343
4344/**
0cba632b
JG
4345 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4346 * @qc: Command with scatter-gather table to be mapped.
4347 *
4348 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4349 *
4350 * LOCKING:
cca3974e 4351 * spin_lock_irqsave(host lock)
1da177e4
LT
4352 *
4353 * RETURNS:
0cba632b 4354 * Zero on success, negative on error.
1da177e4
LT
4355 *
4356 */
4357
4358static int ata_sg_setup(struct ata_queued_cmd *qc)
4359{
4360 struct ata_port *ap = qc->ap;
cedc9a47
JG
4361 struct scatterlist *sg = qc->__sg;
4362 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4363 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4364
44877b4e 4365 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4366 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4367
cedc9a47
JG
4368 /* we must lengthen transfers to end on a 32-bit boundary */
4369 qc->pad_len = lsg->length & 3;
4370 if (qc->pad_len) {
4371 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4372 struct scatterlist *psg = &qc->pad_sgent;
4373 unsigned int offset;
4374
a4631474 4375 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4376
4377 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4378
4379 /*
4380 * psg->page/offset are used to copy to-be-written
4381 * data in this function or read data in ata_sg_clean.
4382 */
4383 offset = lsg->offset + lsg->length - qc->pad_len;
4384 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4385 psg->offset = offset_in_page(offset);
4386
4387 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4388 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4389 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4390 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4391 }
4392
4393 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4394 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4395 /* trim last sg */
4396 lsg->length -= qc->pad_len;
e1410f2d
JG
4397 if (lsg->length == 0)
4398 trim_sg = 1;
cedc9a47
JG
4399
4400 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4401 qc->n_elem - 1, lsg->length, qc->pad_len);
4402 }
4403
e1410f2d
JG
4404 pre_n_elem = qc->n_elem;
4405 if (trim_sg && pre_n_elem)
4406 pre_n_elem--;
4407
4408 if (!pre_n_elem) {
4409 n_elem = 0;
4410 goto skip_map;
4411 }
4412
1da177e4 4413 dir = qc->dma_dir;
2f1f610b 4414 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4415 if (n_elem < 1) {
4416 /* restore last sg */
4417 lsg->length += qc->pad_len;
1da177e4 4418 return -1;
537a95d9 4419 }
1da177e4
LT
4420
4421 DPRINTK("%d sg elements mapped\n", n_elem);
4422
e1410f2d 4423skip_map:
1da177e4
LT
4424 qc->n_elem = n_elem;
4425
4426 return 0;
4427}
4428
0baab86b 4429/**
c893a3ae 4430 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4431 * @buf: Buffer to swap
4432 * @buf_words: Number of 16-bit words in buffer.
4433 *
4434 * Swap halves of 16-bit words if needed to convert from
4435 * little-endian byte order to native cpu byte order, or
4436 * vice-versa.
4437 *
4438 * LOCKING:
6f0ef4fa 4439 * Inherited from caller.
0baab86b 4440 */
1da177e4
LT
4441void swap_buf_le16(u16 *buf, unsigned int buf_words)
4442{
4443#ifdef __BIG_ENDIAN
4444 unsigned int i;
4445
4446 for (i = 0; i < buf_words; i++)
4447 buf[i] = le16_to_cpu(buf[i]);
4448#endif /* __BIG_ENDIAN */
4449}
4450
6ae4cfb5 4451/**
0d5ff566 4452 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4453 * @adev: device to target
6ae4cfb5
AL
4454 * @buf: data buffer
4455 * @buflen: buffer length
344babaa 4456 * @write_data: read/write
6ae4cfb5
AL
4457 *
4458 * Transfer data from/to the device data register by PIO.
4459 *
4460 * LOCKING:
4461 * Inherited from caller.
6ae4cfb5 4462 */
0d5ff566
TH
4463void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4464 unsigned int buflen, int write_data)
1da177e4 4465{
a6b2c5d4 4466 struct ata_port *ap = adev->ap;
6ae4cfb5 4467 unsigned int words = buflen >> 1;
1da177e4 4468
6ae4cfb5 4469 /* Transfer multiple of 2 bytes */
1da177e4 4470 if (write_data)
0d5ff566 4471 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4472 else
0d5ff566 4473 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4474
4475 /* Transfer trailing 1 byte, if any. */
4476 if (unlikely(buflen & 0x01)) {
4477 u16 align_buf[1] = { 0 };
4478 unsigned char *trailing_buf = buf + buflen - 1;
4479
4480 if (write_data) {
4481 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4482 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4483 } else {
0d5ff566 4484 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4485 memcpy(trailing_buf, align_buf, 1);
4486 }
4487 }
1da177e4
LT
4488}
4489
75e99585 4490/**
0d5ff566 4491 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4492 * @adev: device to target
4493 * @buf: data buffer
4494 * @buflen: buffer length
4495 * @write_data: read/write
4496 *
88574551 4497 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4498 * transfer with interrupts disabled.
4499 *
4500 * LOCKING:
4501 * Inherited from caller.
4502 */
0d5ff566
TH
4503void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4504 unsigned int buflen, int write_data)
75e99585
AC
4505{
4506 unsigned long flags;
4507 local_irq_save(flags);
0d5ff566 4508 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4509 local_irq_restore(flags);
4510}
4511
4512
6ae4cfb5 4513/**
5a5dbd18 4514 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4515 * @qc: Command on going
4516 *
5a5dbd18 4517 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4518 *
4519 * LOCKING:
4520 * Inherited from caller.
4521 */
4522
1da177e4
LT
4523static void ata_pio_sector(struct ata_queued_cmd *qc)
4524{
4525 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4526 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4527 struct ata_port *ap = qc->ap;
4528 struct page *page;
4529 unsigned int offset;
4530 unsigned char *buf;
4531
5a5dbd18 4532 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4533 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4534
4535 page = sg[qc->cursg].page;
726f0785 4536 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4537
4538 /* get the current page and offset */
4539 page = nth_page(page, (offset >> PAGE_SHIFT));
4540 offset %= PAGE_SIZE;
4541
1da177e4
LT
4542 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4543
91b8b313
AL
4544 if (PageHighMem(page)) {
4545 unsigned long flags;
4546
a6b2c5d4 4547 /* FIXME: use a bounce buffer */
91b8b313
AL
4548 local_irq_save(flags);
4549 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4550
91b8b313 4551 /* do the actual data transfer */
5a5dbd18 4552 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4553
91b8b313
AL
4554 kunmap_atomic(buf, KM_IRQ0);
4555 local_irq_restore(flags);
4556 } else {
4557 buf = page_address(page);
5a5dbd18 4558 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4559 }
1da177e4 4560
5a5dbd18
ML
4561 qc->curbytes += qc->sect_size;
4562 qc->cursg_ofs += qc->sect_size;
1da177e4 4563
726f0785 4564 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4565 qc->cursg++;
4566 qc->cursg_ofs = 0;
4567 }
1da177e4 4568}
1da177e4 4569
07f6f7d0 4570/**
5a5dbd18 4571 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4572 * @qc: Command on going
4573 *
5a5dbd18 4574 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4575 * ATA device for the DRQ request.
4576 *
4577 * LOCKING:
4578 * Inherited from caller.
4579 */
1da177e4 4580
07f6f7d0
AL
4581static void ata_pio_sectors(struct ata_queued_cmd *qc)
4582{
4583 if (is_multi_taskfile(&qc->tf)) {
4584 /* READ/WRITE MULTIPLE */
4585 unsigned int nsect;
4586
587005de 4587 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4588
5a5dbd18 4589 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4590 qc->dev->multi_count);
07f6f7d0
AL
4591 while (nsect--)
4592 ata_pio_sector(qc);
4593 } else
4594 ata_pio_sector(qc);
4595}
4596
c71c1857
AL
4597/**
4598 * atapi_send_cdb - Write CDB bytes to hardware
4599 * @ap: Port to which ATAPI device is attached.
4600 * @qc: Taskfile currently active
4601 *
4602 * When device has indicated its readiness to accept
4603 * a CDB, this function is called. Send the CDB.
4604 *
4605 * LOCKING:
4606 * caller.
4607 */
4608
4609static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4610{
4611 /* send SCSI cdb */
4612 DPRINTK("send cdb\n");
db024d53 4613 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4614
a6b2c5d4 4615 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4616 ata_altstatus(ap); /* flush */
4617
4618 switch (qc->tf.protocol) {
4619 case ATA_PROT_ATAPI:
4620 ap->hsm_task_state = HSM_ST;
4621 break;
4622 case ATA_PROT_ATAPI_NODATA:
4623 ap->hsm_task_state = HSM_ST_LAST;
4624 break;
4625 case ATA_PROT_ATAPI_DMA:
4626 ap->hsm_task_state = HSM_ST_LAST;
4627 /* initiate bmdma */
4628 ap->ops->bmdma_start(qc);
4629 break;
4630 }
1da177e4
LT
4631}
4632
6ae4cfb5
AL
4633/**
4634 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4635 * @qc: Command on going
4636 * @bytes: number of bytes
4637 *
4638 * Transfer Transfer data from/to the ATAPI device.
4639 *
4640 * LOCKING:
4641 * Inherited from caller.
4642 *
4643 */
4644
1da177e4
LT
4645static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4646{
4647 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4648 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4649 struct ata_port *ap = qc->ap;
4650 struct page *page;
4651 unsigned char *buf;
4652 unsigned int offset, count;
4653
563a6e1f 4654 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4655 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4656
4657next_sg:
563a6e1f 4658 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4659 /*
563a6e1f
AL
4660 * The end of qc->sg is reached and the device expects
4661 * more data to transfer. In order not to overrun qc->sg
4662 * and fulfill length specified in the byte count register,
4663 * - for read case, discard trailing data from the device
4664 * - for write case, padding zero data to the device
4665 */
4666 u16 pad_buf[1] = { 0 };
4667 unsigned int words = bytes >> 1;
4668 unsigned int i;
4669
4670 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4671 ata_dev_printk(qc->dev, KERN_WARNING,
4672 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4673
4674 for (i = 0; i < words; i++)
a6b2c5d4 4675 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4676
14be71f4 4677 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4678 return;
4679 }
4680
cedc9a47 4681 sg = &qc->__sg[qc->cursg];
1da177e4 4682
1da177e4
LT
4683 page = sg->page;
4684 offset = sg->offset + qc->cursg_ofs;
4685
4686 /* get the current page and offset */
4687 page = nth_page(page, (offset >> PAGE_SHIFT));
4688 offset %= PAGE_SIZE;
4689
6952df03 4690 /* don't overrun current sg */
32529e01 4691 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4692
4693 /* don't cross page boundaries */
4694 count = min(count, (unsigned int)PAGE_SIZE - offset);
4695
7282aa4b
AL
4696 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4697
91b8b313
AL
4698 if (PageHighMem(page)) {
4699 unsigned long flags;
4700
a6b2c5d4 4701 /* FIXME: use bounce buffer */
91b8b313
AL
4702 local_irq_save(flags);
4703 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4704
91b8b313 4705 /* do the actual data transfer */
a6b2c5d4 4706 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4707
91b8b313
AL
4708 kunmap_atomic(buf, KM_IRQ0);
4709 local_irq_restore(flags);
4710 } else {
4711 buf = page_address(page);
a6b2c5d4 4712 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4713 }
1da177e4
LT
4714
4715 bytes -= count;
4716 qc->curbytes += count;
4717 qc->cursg_ofs += count;
4718
32529e01 4719 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4720 qc->cursg++;
4721 qc->cursg_ofs = 0;
4722 }
4723
563a6e1f 4724 if (bytes)
1da177e4 4725 goto next_sg;
1da177e4
LT
4726}
4727
6ae4cfb5
AL
4728/**
4729 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4730 * @qc: Command on going
4731 *
4732 * Transfer Transfer data from/to the ATAPI device.
4733 *
4734 * LOCKING:
4735 * Inherited from caller.
6ae4cfb5
AL
4736 */
4737
1da177e4
LT
4738static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4739{
4740 struct ata_port *ap = qc->ap;
4741 struct ata_device *dev = qc->dev;
4742 unsigned int ireason, bc_lo, bc_hi, bytes;
4743 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4744
eec4c3f3
AL
4745 /* Abuse qc->result_tf for temp storage of intermediate TF
4746 * here to save some kernel stack usage.
4747 * For normal completion, qc->result_tf is not relevant. For
4748 * error, qc->result_tf is later overwritten by ata_qc_complete().
4749 * So, the correctness of qc->result_tf is not affected.
4750 */
4751 ap->ops->tf_read(ap, &qc->result_tf);
4752 ireason = qc->result_tf.nsect;
4753 bc_lo = qc->result_tf.lbam;
4754 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4755 bytes = (bc_hi << 8) | bc_lo;
4756
4757 /* shall be cleared to zero, indicating xfer of data */
4758 if (ireason & (1 << 0))
4759 goto err_out;
4760
4761 /* make sure transfer direction matches expected */
4762 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4763 if (do_write != i_write)
4764 goto err_out;
4765
44877b4e 4766 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4767
1da177e4
LT
4768 __atapi_pio_bytes(qc, bytes);
4769
4770 return;
4771
4772err_out:
f15a1daf 4773 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4774 qc->err_mask |= AC_ERR_HSM;
14be71f4 4775 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4776}
4777
4778/**
c234fb00
AL
4779 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4780 * @ap: the target ata_port
4781 * @qc: qc on going
1da177e4 4782 *
c234fb00
AL
4783 * RETURNS:
4784 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4785 */
c234fb00
AL
4786
4787static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4788{
c234fb00
AL
4789 if (qc->tf.flags & ATA_TFLAG_POLLING)
4790 return 1;
1da177e4 4791
c234fb00
AL
4792 if (ap->hsm_task_state == HSM_ST_FIRST) {
4793 if (qc->tf.protocol == ATA_PROT_PIO &&
4794 (qc->tf.flags & ATA_TFLAG_WRITE))
4795 return 1;
1da177e4 4796
c234fb00
AL
4797 if (is_atapi_taskfile(&qc->tf) &&
4798 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4799 return 1;
fe79e683
AL
4800 }
4801
c234fb00
AL
4802 return 0;
4803}
1da177e4 4804
c17ea20d
TH
4805/**
4806 * ata_hsm_qc_complete - finish a qc running on standard HSM
4807 * @qc: Command to complete
4808 * @in_wq: 1 if called from workqueue, 0 otherwise
4809 *
4810 * Finish @qc which is running on standard HSM.
4811 *
4812 * LOCKING:
cca3974e 4813 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4814 * Otherwise, none on entry and grabs host lock.
4815 */
4816static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4817{
4818 struct ata_port *ap = qc->ap;
4819 unsigned long flags;
4820
4821 if (ap->ops->error_handler) {
4822 if (in_wq) {
ba6a1308 4823 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4824
cca3974e
JG
4825 /* EH might have kicked in while host lock is
4826 * released.
c17ea20d
TH
4827 */
4828 qc = ata_qc_from_tag(ap, qc->tag);
4829 if (qc) {
4830 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4831 ap->ops->irq_on(ap);
c17ea20d
TH
4832 ata_qc_complete(qc);
4833 } else
4834 ata_port_freeze(ap);
4835 }
4836
ba6a1308 4837 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4838 } else {
4839 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4840 ata_qc_complete(qc);
4841 else
4842 ata_port_freeze(ap);
4843 }
4844 } else {
4845 if (in_wq) {
ba6a1308 4846 spin_lock_irqsave(ap->lock, flags);
83625006 4847 ap->ops->irq_on(ap);
c17ea20d 4848 ata_qc_complete(qc);
ba6a1308 4849 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4850 } else
4851 ata_qc_complete(qc);
4852 }
4853}
4854
bb5cb290
AL
4855/**
4856 * ata_hsm_move - move the HSM to the next state.
4857 * @ap: the target ata_port
4858 * @qc: qc on going
4859 * @status: current device status
4860 * @in_wq: 1 if called from workqueue, 0 otherwise
4861 *
4862 * RETURNS:
4863 * 1 when poll next status needed, 0 otherwise.
4864 */
9a1004d0
TH
4865int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4866 u8 status, int in_wq)
e2cec771 4867{
bb5cb290
AL
4868 unsigned long flags = 0;
4869 int poll_next;
4870
6912ccd5
AL
4871 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4872
bb5cb290
AL
4873 /* Make sure ata_qc_issue_prot() does not throw things
4874 * like DMA polling into the workqueue. Notice that
4875 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4876 */
c234fb00 4877 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4878
e2cec771 4879fsm_start:
999bb6f4 4880 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4881 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4882
e2cec771
AL
4883 switch (ap->hsm_task_state) {
4884 case HSM_ST_FIRST:
bb5cb290
AL
4885 /* Send first data block or PACKET CDB */
4886
4887 /* If polling, we will stay in the work queue after
4888 * sending the data. Otherwise, interrupt handler
4889 * takes over after sending the data.
4890 */
4891 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4892
e2cec771 4893 /* check device status */
3655d1d3
AL
4894 if (unlikely((status & ATA_DRQ) == 0)) {
4895 /* handle BSY=0, DRQ=0 as error */
4896 if (likely(status & (ATA_ERR | ATA_DF)))
4897 /* device stops HSM for abort/error */
4898 qc->err_mask |= AC_ERR_DEV;
4899 else
4900 /* HSM violation. Let EH handle this */
4901 qc->err_mask |= AC_ERR_HSM;
4902
14be71f4 4903 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4904 goto fsm_start;
1da177e4
LT
4905 }
4906
71601958
AL
4907 /* Device should not ask for data transfer (DRQ=1)
4908 * when it finds something wrong.
eee6c32f
AL
4909 * We ignore DRQ here and stop the HSM by
4910 * changing hsm_task_state to HSM_ST_ERR and
4911 * let the EH abort the command or reset the device.
71601958
AL
4912 */
4913 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4914 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4915 "error, dev_stat 0x%X\n", status);
3655d1d3 4916 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4917 ap->hsm_task_state = HSM_ST_ERR;
4918 goto fsm_start;
71601958 4919 }
1da177e4 4920
bb5cb290
AL
4921 /* Send the CDB (atapi) or the first data block (ata pio out).
4922 * During the state transition, interrupt handler shouldn't
4923 * be invoked before the data transfer is complete and
4924 * hsm_task_state is changed. Hence, the following locking.
4925 */
4926 if (in_wq)
ba6a1308 4927 spin_lock_irqsave(ap->lock, flags);
1da177e4 4928
bb5cb290
AL
4929 if (qc->tf.protocol == ATA_PROT_PIO) {
4930 /* PIO data out protocol.
4931 * send first data block.
4932 */
0565c26d 4933
bb5cb290
AL
4934 /* ata_pio_sectors() might change the state
4935 * to HSM_ST_LAST. so, the state is changed here
4936 * before ata_pio_sectors().
4937 */
4938 ap->hsm_task_state = HSM_ST;
4939 ata_pio_sectors(qc);
4940 ata_altstatus(ap); /* flush */
4941 } else
4942 /* send CDB */
4943 atapi_send_cdb(ap, qc);
4944
4945 if (in_wq)
ba6a1308 4946 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4947
4948 /* if polling, ata_pio_task() handles the rest.
4949 * otherwise, interrupt handler takes over from here.
4950 */
e2cec771 4951 break;
1c848984 4952
e2cec771
AL
4953 case HSM_ST:
4954 /* complete command or read/write the data register */
4955 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4956 /* ATAPI PIO protocol */
4957 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4958 /* No more data to transfer or device error.
4959 * Device error will be tagged in HSM_ST_LAST.
4960 */
e2cec771
AL
4961 ap->hsm_task_state = HSM_ST_LAST;
4962 goto fsm_start;
4963 }
1da177e4 4964
71601958
AL
4965 /* Device should not ask for data transfer (DRQ=1)
4966 * when it finds something wrong.
eee6c32f
AL
4967 * We ignore DRQ here and stop the HSM by
4968 * changing hsm_task_state to HSM_ST_ERR and
4969 * let the EH abort the command or reset the device.
71601958
AL
4970 */
4971 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4972 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4973 "device error, dev_stat 0x%X\n",
4974 status);
3655d1d3 4975 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4976 ap->hsm_task_state = HSM_ST_ERR;
4977 goto fsm_start;
71601958 4978 }
1da177e4 4979
e2cec771 4980 atapi_pio_bytes(qc);
7fb6ec28 4981
e2cec771
AL
4982 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4983 /* bad ireason reported by device */
4984 goto fsm_start;
1da177e4 4985
e2cec771
AL
4986 } else {
4987 /* ATA PIO protocol */
4988 if (unlikely((status & ATA_DRQ) == 0)) {
4989 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4990 if (likely(status & (ATA_ERR | ATA_DF)))
4991 /* device stops HSM for abort/error */
4992 qc->err_mask |= AC_ERR_DEV;
4993 else
55a8e2c8
TH
4994 /* HSM violation. Let EH handle this.
4995 * Phantom devices also trigger this
4996 * condition. Mark hint.
4997 */
4998 qc->err_mask |= AC_ERR_HSM |
4999 AC_ERR_NODEV_HINT;
3655d1d3 5000
e2cec771
AL
5001 ap->hsm_task_state = HSM_ST_ERR;
5002 goto fsm_start;
5003 }
1da177e4 5004
eee6c32f
AL
5005 /* For PIO reads, some devices may ask for
5006 * data transfer (DRQ=1) alone with ERR=1.
5007 * We respect DRQ here and transfer one
5008 * block of junk data before changing the
5009 * hsm_task_state to HSM_ST_ERR.
5010 *
5011 * For PIO writes, ERR=1 DRQ=1 doesn't make
5012 * sense since the data block has been
5013 * transferred to the device.
71601958
AL
5014 */
5015 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5016 /* data might be corrputed */
5017 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5018
5019 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5020 ata_pio_sectors(qc);
5021 ata_altstatus(ap);
5022 status = ata_wait_idle(ap);
5023 }
5024
3655d1d3
AL
5025 if (status & (ATA_BUSY | ATA_DRQ))
5026 qc->err_mask |= AC_ERR_HSM;
5027
eee6c32f
AL
5028 /* ata_pio_sectors() might change the
5029 * state to HSM_ST_LAST. so, the state
5030 * is changed after ata_pio_sectors().
5031 */
5032 ap->hsm_task_state = HSM_ST_ERR;
5033 goto fsm_start;
71601958
AL
5034 }
5035
e2cec771
AL
5036 ata_pio_sectors(qc);
5037
5038 if (ap->hsm_task_state == HSM_ST_LAST &&
5039 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5040 /* all data read */
5041 ata_altstatus(ap);
52a32205 5042 status = ata_wait_idle(ap);
e2cec771
AL
5043 goto fsm_start;
5044 }
5045 }
5046
5047 ata_altstatus(ap); /* flush */
bb5cb290 5048 poll_next = 1;
1da177e4
LT
5049 break;
5050
14be71f4 5051 case HSM_ST_LAST:
6912ccd5
AL
5052 if (unlikely(!ata_ok(status))) {
5053 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5054 ap->hsm_task_state = HSM_ST_ERR;
5055 goto fsm_start;
5056 }
5057
5058 /* no more data to transfer */
4332a771 5059 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5060 ap->print_id, qc->dev->devno, status);
e2cec771 5061
6912ccd5
AL
5062 WARN_ON(qc->err_mask);
5063
e2cec771 5064 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5065
e2cec771 5066 /* complete taskfile transaction */
c17ea20d 5067 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5068
5069 poll_next = 0;
1da177e4
LT
5070 break;
5071
14be71f4 5072 case HSM_ST_ERR:
e2cec771
AL
5073 /* make sure qc->err_mask is available to
5074 * know what's wrong and recover
5075 */
5076 WARN_ON(qc->err_mask == 0);
5077
5078 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5079
999bb6f4 5080 /* complete taskfile transaction */
c17ea20d 5081 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5082
5083 poll_next = 0;
e2cec771
AL
5084 break;
5085 default:
bb5cb290 5086 poll_next = 0;
6912ccd5 5087 BUG();
1da177e4
LT
5088 }
5089
bb5cb290 5090 return poll_next;
1da177e4
LT
5091}
5092
65f27f38 5093static void ata_pio_task(struct work_struct *work)
8061f5f0 5094{
65f27f38
DH
5095 struct ata_port *ap =
5096 container_of(work, struct ata_port, port_task.work);
5097 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5098 u8 status;
a1af3734 5099 int poll_next;
8061f5f0 5100
7fb6ec28 5101fsm_start:
a1af3734 5102 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5103
a1af3734
AL
5104 /*
5105 * This is purely heuristic. This is a fast path.
5106 * Sometimes when we enter, BSY will be cleared in
5107 * a chk-status or two. If not, the drive is probably seeking
5108 * or something. Snooze for a couple msecs, then
5109 * chk-status again. If still busy, queue delayed work.
5110 */
5111 status = ata_busy_wait(ap, ATA_BUSY, 5);
5112 if (status & ATA_BUSY) {
5113 msleep(2);
5114 status = ata_busy_wait(ap, ATA_BUSY, 10);
5115 if (status & ATA_BUSY) {
31ce6dae 5116 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5117 return;
5118 }
8061f5f0
TH
5119 }
5120
a1af3734
AL
5121 /* move the HSM */
5122 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5123
a1af3734
AL
5124 /* another command or interrupt handler
5125 * may be running at this point.
5126 */
5127 if (poll_next)
7fb6ec28 5128 goto fsm_start;
8061f5f0
TH
5129}
5130
1da177e4
LT
5131/**
5132 * ata_qc_new - Request an available ATA command, for queueing
5133 * @ap: Port associated with device @dev
5134 * @dev: Device from whom we request an available command structure
5135 *
5136 * LOCKING:
0cba632b 5137 * None.
1da177e4
LT
5138 */
5139
5140static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5141{
5142 struct ata_queued_cmd *qc = NULL;
5143 unsigned int i;
5144
e3180499 5145 /* no command while frozen */
b51e9e5d 5146 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5147 return NULL;
5148
2ab7db1f
TH
5149 /* the last tag is reserved for internal command. */
5150 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5151 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5152 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5153 break;
5154 }
5155
5156 if (qc)
5157 qc->tag = i;
5158
5159 return qc;
5160}
5161
5162/**
5163 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5164 * @dev: Device from whom we request an available command structure
5165 *
5166 * LOCKING:
0cba632b 5167 * None.
1da177e4
LT
5168 */
5169
3373efd8 5170struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5171{
3373efd8 5172 struct ata_port *ap = dev->ap;
1da177e4
LT
5173 struct ata_queued_cmd *qc;
5174
5175 qc = ata_qc_new(ap);
5176 if (qc) {
1da177e4
LT
5177 qc->scsicmd = NULL;
5178 qc->ap = ap;
5179 qc->dev = dev;
1da177e4 5180
2c13b7ce 5181 ata_qc_reinit(qc);
1da177e4
LT
5182 }
5183
5184 return qc;
5185}
5186
1da177e4
LT
5187/**
5188 * ata_qc_free - free unused ata_queued_cmd
5189 * @qc: Command to complete
5190 *
5191 * Designed to free unused ata_queued_cmd object
5192 * in case something prevents using it.
5193 *
5194 * LOCKING:
cca3974e 5195 * spin_lock_irqsave(host lock)
1da177e4
LT
5196 */
5197void ata_qc_free(struct ata_queued_cmd *qc)
5198{
4ba946e9
TH
5199 struct ata_port *ap = qc->ap;
5200 unsigned int tag;
5201
a4631474 5202 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5203
4ba946e9
TH
5204 qc->flags = 0;
5205 tag = qc->tag;
5206 if (likely(ata_tag_valid(tag))) {
4ba946e9 5207 qc->tag = ATA_TAG_POISON;
6cec4a39 5208 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5209 }
1da177e4
LT
5210}
5211
76014427 5212void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5213{
dedaf2b0
TH
5214 struct ata_port *ap = qc->ap;
5215
a4631474
TH
5216 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5217 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5218
5219 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5220 ata_sg_clean(qc);
5221
7401abf2 5222 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
5223 if (qc->tf.protocol == ATA_PROT_NCQ)
5224 ap->sactive &= ~(1 << qc->tag);
5225 else
5226 ap->active_tag = ATA_TAG_POISON;
7401abf2 5227
3f3791d3
AL
5228 /* atapi: mark qc as inactive to prevent the interrupt handler
5229 * from completing the command twice later, before the error handler
5230 * is called. (when rc != 0 and atapi request sense is needed)
5231 */
5232 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5233 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5234
1da177e4 5235 /* call completion callback */
77853bf2 5236 qc->complete_fn(qc);
1da177e4
LT
5237}
5238
39599a53
TH
5239static void fill_result_tf(struct ata_queued_cmd *qc)
5240{
5241 struct ata_port *ap = qc->ap;
5242
39599a53 5243 qc->result_tf.flags = qc->tf.flags;
4742d54f 5244 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5245}
5246
f686bcb8
TH
5247/**
5248 * ata_qc_complete - Complete an active ATA command
5249 * @qc: Command to complete
5250 * @err_mask: ATA Status register contents
5251 *
5252 * Indicate to the mid and upper layers that an ATA
5253 * command has completed, with either an ok or not-ok status.
5254 *
5255 * LOCKING:
cca3974e 5256 * spin_lock_irqsave(host lock)
f686bcb8
TH
5257 */
5258void ata_qc_complete(struct ata_queued_cmd *qc)
5259{
5260 struct ata_port *ap = qc->ap;
5261
5262 /* XXX: New EH and old EH use different mechanisms to
5263 * synchronize EH with regular execution path.
5264 *
5265 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5266 * Normal execution path is responsible for not accessing a
5267 * failed qc. libata core enforces the rule by returning NULL
5268 * from ata_qc_from_tag() for failed qcs.
5269 *
5270 * Old EH depends on ata_qc_complete() nullifying completion
5271 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5272 * not synchronize with interrupt handler. Only PIO task is
5273 * taken care of.
5274 */
5275 if (ap->ops->error_handler) {
b51e9e5d 5276 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5277
5278 if (unlikely(qc->err_mask))
5279 qc->flags |= ATA_QCFLAG_FAILED;
5280
5281 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5282 if (!ata_tag_internal(qc->tag)) {
5283 /* always fill result TF for failed qc */
39599a53 5284 fill_result_tf(qc);
f686bcb8
TH
5285 ata_qc_schedule_eh(qc);
5286 return;
5287 }
5288 }
5289
5290 /* read result TF if requested */
5291 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5292 fill_result_tf(qc);
f686bcb8
TH
5293
5294 __ata_qc_complete(qc);
5295 } else {
5296 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5297 return;
5298
5299 /* read result TF if failed or requested */
5300 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5301 fill_result_tf(qc);
f686bcb8
TH
5302
5303 __ata_qc_complete(qc);
5304 }
5305}
5306
dedaf2b0
TH
5307/**
5308 * ata_qc_complete_multiple - Complete multiple qcs successfully
5309 * @ap: port in question
5310 * @qc_active: new qc_active mask
5311 * @finish_qc: LLDD callback invoked before completing a qc
5312 *
5313 * Complete in-flight commands. This functions is meant to be
5314 * called from low-level driver's interrupt routine to complete
5315 * requests normally. ap->qc_active and @qc_active is compared
5316 * and commands are completed accordingly.
5317 *
5318 * LOCKING:
cca3974e 5319 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5320 *
5321 * RETURNS:
5322 * Number of completed commands on success, -errno otherwise.
5323 */
5324int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5325 void (*finish_qc)(struct ata_queued_cmd *))
5326{
5327 int nr_done = 0;
5328 u32 done_mask;
5329 int i;
5330
5331 done_mask = ap->qc_active ^ qc_active;
5332
5333 if (unlikely(done_mask & qc_active)) {
5334 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5335 "(%08x->%08x)\n", ap->qc_active, qc_active);
5336 return -EINVAL;
5337 }
5338
5339 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5340 struct ata_queued_cmd *qc;
5341
5342 if (!(done_mask & (1 << i)))
5343 continue;
5344
5345 if ((qc = ata_qc_from_tag(ap, i))) {
5346 if (finish_qc)
5347 finish_qc(qc);
5348 ata_qc_complete(qc);
5349 nr_done++;
5350 }
5351 }
5352
5353 return nr_done;
5354}
5355
1da177e4
LT
5356static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5357{
5358 struct ata_port *ap = qc->ap;
5359
5360 switch (qc->tf.protocol) {
3dc1d881 5361 case ATA_PROT_NCQ:
1da177e4
LT
5362 case ATA_PROT_DMA:
5363 case ATA_PROT_ATAPI_DMA:
5364 return 1;
5365
5366 case ATA_PROT_ATAPI:
5367 case ATA_PROT_PIO:
1da177e4
LT
5368 if (ap->flags & ATA_FLAG_PIO_DMA)
5369 return 1;
5370
5371 /* fall through */
5372
5373 default:
5374 return 0;
5375 }
5376
5377 /* never reached */
5378}
5379
5380/**
5381 * ata_qc_issue - issue taskfile to device
5382 * @qc: command to issue to device
5383 *
5384 * Prepare an ATA command to submission to device.
5385 * This includes mapping the data into a DMA-able
5386 * area, filling in the S/G table, and finally
5387 * writing the taskfile to hardware, starting the command.
5388 *
5389 * LOCKING:
cca3974e 5390 * spin_lock_irqsave(host lock)
1da177e4 5391 */
8e0e694a 5392void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5393{
5394 struct ata_port *ap = qc->ap;
5395
dedaf2b0
TH
5396 /* Make sure only one non-NCQ command is outstanding. The
5397 * check is skipped for old EH because it reuses active qc to
5398 * request ATAPI sense.
5399 */
5400 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5401
5402 if (qc->tf.protocol == ATA_PROT_NCQ) {
5403 WARN_ON(ap->sactive & (1 << qc->tag));
5404 ap->sactive |= 1 << qc->tag;
5405 } else {
5406 WARN_ON(ap->sactive);
5407 ap->active_tag = qc->tag;
5408 }
5409
e4a70e76 5410 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5411 ap->qc_active |= 1 << qc->tag;
e4a70e76 5412
1da177e4
LT
5413 if (ata_should_dma_map(qc)) {
5414 if (qc->flags & ATA_QCFLAG_SG) {
5415 if (ata_sg_setup(qc))
8e436af9 5416 goto sg_err;
1da177e4
LT
5417 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5418 if (ata_sg_setup_one(qc))
8e436af9 5419 goto sg_err;
1da177e4
LT
5420 }
5421 } else {
5422 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5423 }
5424
5425 ap->ops->qc_prep(qc);
5426
8e0e694a
TH
5427 qc->err_mask |= ap->ops->qc_issue(qc);
5428 if (unlikely(qc->err_mask))
5429 goto err;
5430 return;
1da177e4 5431
8e436af9
TH
5432sg_err:
5433 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5434 qc->err_mask |= AC_ERR_SYSTEM;
5435err:
5436 ata_qc_complete(qc);
1da177e4
LT
5437}
5438
5439/**
5440 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5441 * @qc: command to issue to device
5442 *
5443 * Using various libata functions and hooks, this function
5444 * starts an ATA command. ATA commands are grouped into
5445 * classes called "protocols", and issuing each type of protocol
5446 * is slightly different.
5447 *
0baab86b
EF
5448 * May be used as the qc_issue() entry in ata_port_operations.
5449 *
1da177e4 5450 * LOCKING:
cca3974e 5451 * spin_lock_irqsave(host lock)
1da177e4
LT
5452 *
5453 * RETURNS:
9a3d9eb0 5454 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5455 */
5456
9a3d9eb0 5457unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5458{
5459 struct ata_port *ap = qc->ap;
5460
e50362ec
AL
5461 /* Use polling pio if the LLD doesn't handle
5462 * interrupt driven pio and atapi CDB interrupt.
5463 */
5464 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5465 switch (qc->tf.protocol) {
5466 case ATA_PROT_PIO:
e3472cbe 5467 case ATA_PROT_NODATA:
e50362ec
AL
5468 case ATA_PROT_ATAPI:
5469 case ATA_PROT_ATAPI_NODATA:
5470 qc->tf.flags |= ATA_TFLAG_POLLING;
5471 break;
5472 case ATA_PROT_ATAPI_DMA:
5473 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5474 /* see ata_dma_blacklisted() */
e50362ec
AL
5475 BUG();
5476 break;
5477 default:
5478 break;
5479 }
5480 }
5481
312f7da2 5482 /* select the device */
1da177e4
LT
5483 ata_dev_select(ap, qc->dev->devno, 1, 0);
5484
312f7da2 5485 /* start the command */
1da177e4
LT
5486 switch (qc->tf.protocol) {
5487 case ATA_PROT_NODATA:
312f7da2
AL
5488 if (qc->tf.flags & ATA_TFLAG_POLLING)
5489 ata_qc_set_polling(qc);
5490
e5338254 5491 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5492 ap->hsm_task_state = HSM_ST_LAST;
5493
5494 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5495 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5496
1da177e4
LT
5497 break;
5498
5499 case ATA_PROT_DMA:
587005de 5500 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5501
1da177e4
LT
5502 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5503 ap->ops->bmdma_setup(qc); /* set up bmdma */
5504 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5505 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5506 break;
5507
312f7da2
AL
5508 case ATA_PROT_PIO:
5509 if (qc->tf.flags & ATA_TFLAG_POLLING)
5510 ata_qc_set_polling(qc);
1da177e4 5511
e5338254 5512 ata_tf_to_host(ap, &qc->tf);
312f7da2 5513
54f00389
AL
5514 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5515 /* PIO data out protocol */
5516 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5517 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5518
5519 /* always send first data block using
e27486db 5520 * the ata_pio_task() codepath.
54f00389 5521 */
312f7da2 5522 } else {
54f00389
AL
5523 /* PIO data in protocol */
5524 ap->hsm_task_state = HSM_ST;
5525
5526 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5527 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5528
5529 /* if polling, ata_pio_task() handles the rest.
5530 * otherwise, interrupt handler takes over from here.
5531 */
312f7da2
AL
5532 }
5533
1da177e4
LT
5534 break;
5535
1da177e4 5536 case ATA_PROT_ATAPI:
1da177e4 5537 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5538 if (qc->tf.flags & ATA_TFLAG_POLLING)
5539 ata_qc_set_polling(qc);
5540
e5338254 5541 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5542
312f7da2
AL
5543 ap->hsm_task_state = HSM_ST_FIRST;
5544
5545 /* send cdb by polling if no cdb interrupt */
5546 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5547 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5548 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5549 break;
5550
5551 case ATA_PROT_ATAPI_DMA:
587005de 5552 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5553
1da177e4
LT
5554 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5555 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5556 ap->hsm_task_state = HSM_ST_FIRST;
5557
5558 /* send cdb by polling if no cdb interrupt */
5559 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5560 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5561 break;
5562
5563 default:
5564 WARN_ON(1);
9a3d9eb0 5565 return AC_ERR_SYSTEM;
1da177e4
LT
5566 }
5567
5568 return 0;
5569}
5570
1da177e4
LT
5571/**
5572 * ata_host_intr - Handle host interrupt for given (port, task)
5573 * @ap: Port on which interrupt arrived (possibly...)
5574 * @qc: Taskfile currently active in engine
5575 *
5576 * Handle host interrupt for given queued command. Currently,
5577 * only DMA interrupts are handled. All other commands are
5578 * handled via polling with interrupts disabled (nIEN bit).
5579 *
5580 * LOCKING:
cca3974e 5581 * spin_lock_irqsave(host lock)
1da177e4
LT
5582 *
5583 * RETURNS:
5584 * One if interrupt was handled, zero if not (shared irq).
5585 */
5586
5587inline unsigned int ata_host_intr (struct ata_port *ap,
5588 struct ata_queued_cmd *qc)
5589{
ea54763f 5590 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5591 u8 status, host_stat = 0;
1da177e4 5592
312f7da2 5593 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5594 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5595
312f7da2
AL
5596 /* Check whether we are expecting interrupt in this state */
5597 switch (ap->hsm_task_state) {
5598 case HSM_ST_FIRST:
6912ccd5
AL
5599 /* Some pre-ATAPI-4 devices assert INTRQ
5600 * at this state when ready to receive CDB.
5601 */
1da177e4 5602
312f7da2
AL
5603 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5604 * The flag was turned on only for atapi devices.
5605 * No need to check is_atapi_taskfile(&qc->tf) again.
5606 */
5607 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5608 goto idle_irq;
1da177e4 5609 break;
312f7da2
AL
5610 case HSM_ST_LAST:
5611 if (qc->tf.protocol == ATA_PROT_DMA ||
5612 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5613 /* check status of DMA engine */
5614 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5615 VPRINTK("ata%u: host_stat 0x%X\n",
5616 ap->print_id, host_stat);
312f7da2
AL
5617
5618 /* if it's not our irq... */
5619 if (!(host_stat & ATA_DMA_INTR))
5620 goto idle_irq;
5621
5622 /* before we do anything else, clear DMA-Start bit */
5623 ap->ops->bmdma_stop(qc);
a4f16610
AL
5624
5625 if (unlikely(host_stat & ATA_DMA_ERR)) {
5626 /* error when transfering data to/from memory */
5627 qc->err_mask |= AC_ERR_HOST_BUS;
5628 ap->hsm_task_state = HSM_ST_ERR;
5629 }
312f7da2
AL
5630 }
5631 break;
5632 case HSM_ST:
5633 break;
1da177e4
LT
5634 default:
5635 goto idle_irq;
5636 }
5637
312f7da2
AL
5638 /* check altstatus */
5639 status = ata_altstatus(ap);
5640 if (status & ATA_BUSY)
5641 goto idle_irq;
1da177e4 5642
312f7da2
AL
5643 /* check main status, clearing INTRQ */
5644 status = ata_chk_status(ap);
5645 if (unlikely(status & ATA_BUSY))
5646 goto idle_irq;
1da177e4 5647
312f7da2
AL
5648 /* ack bmdma irq events */
5649 ap->ops->irq_clear(ap);
1da177e4 5650
bb5cb290 5651 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5652
5653 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5654 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5655 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5656
1da177e4
LT
5657 return 1; /* irq handled */
5658
5659idle_irq:
5660 ap->stats.idle_irq++;
5661
5662#ifdef ATA_IRQ_TRAP
5663 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5664 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5665 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5666 return 1;
1da177e4
LT
5667 }
5668#endif
5669 return 0; /* irq not handled */
5670}
5671
5672/**
5673 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5674 * @irq: irq line (unused)
cca3974e 5675 * @dev_instance: pointer to our ata_host information structure
1da177e4 5676 *
0cba632b
JG
5677 * Default interrupt handler for PCI IDE devices. Calls
5678 * ata_host_intr() for each port that is not disabled.
5679 *
1da177e4 5680 * LOCKING:
cca3974e 5681 * Obtains host lock during operation.
1da177e4
LT
5682 *
5683 * RETURNS:
0cba632b 5684 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5685 */
5686
7d12e780 5687irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5688{
cca3974e 5689 struct ata_host *host = dev_instance;
1da177e4
LT
5690 unsigned int i;
5691 unsigned int handled = 0;
5692 unsigned long flags;
5693
5694 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5695 spin_lock_irqsave(&host->lock, flags);
1da177e4 5696
cca3974e 5697 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5698 struct ata_port *ap;
5699
cca3974e 5700 ap = host->ports[i];
c1389503 5701 if (ap &&
029f5468 5702 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5703 struct ata_queued_cmd *qc;
5704
5705 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5706 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5707 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5708 handled |= ata_host_intr(ap, qc);
5709 }
5710 }
5711
cca3974e 5712 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5713
5714 return IRQ_RETVAL(handled);
5715}
5716
34bf2170
TH
5717/**
5718 * sata_scr_valid - test whether SCRs are accessible
5719 * @ap: ATA port to test SCR accessibility for
5720 *
5721 * Test whether SCRs are accessible for @ap.
5722 *
5723 * LOCKING:
5724 * None.
5725 *
5726 * RETURNS:
5727 * 1 if SCRs are accessible, 0 otherwise.
5728 */
5729int sata_scr_valid(struct ata_port *ap)
5730{
a16abc0b 5731 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5732}
5733
5734/**
5735 * sata_scr_read - read SCR register of the specified port
5736 * @ap: ATA port to read SCR for
5737 * @reg: SCR to read
5738 * @val: Place to store read value
5739 *
5740 * Read SCR register @reg of @ap into *@val. This function is
5741 * guaranteed to succeed if the cable type of the port is SATA
5742 * and the port implements ->scr_read.
5743 *
5744 * LOCKING:
5745 * None.
5746 *
5747 * RETURNS:
5748 * 0 on success, negative errno on failure.
5749 */
5750int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5751{
da3dbb17
TH
5752 if (sata_scr_valid(ap))
5753 return ap->ops->scr_read(ap, reg, val);
34bf2170
TH
5754 return -EOPNOTSUPP;
5755}
5756
5757/**
5758 * sata_scr_write - write SCR register of the specified port
5759 * @ap: ATA port to write SCR for
5760 * @reg: SCR to write
5761 * @val: value to write
5762 *
5763 * Write @val to SCR register @reg of @ap. This function is
5764 * guaranteed to succeed if the cable type of the port is SATA
5765 * and the port implements ->scr_read.
5766 *
5767 * LOCKING:
5768 * None.
5769 *
5770 * RETURNS:
5771 * 0 on success, negative errno on failure.
5772 */
5773int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5774{
da3dbb17
TH
5775 if (sata_scr_valid(ap))
5776 return ap->ops->scr_write(ap, reg, val);
34bf2170
TH
5777 return -EOPNOTSUPP;
5778}
5779
5780/**
5781 * sata_scr_write_flush - write SCR register of the specified port and flush
5782 * @ap: ATA port to write SCR for
5783 * @reg: SCR to write
5784 * @val: value to write
5785 *
5786 * This function is identical to sata_scr_write() except that this
5787 * function performs flush after writing to the register.
5788 *
5789 * LOCKING:
5790 * None.
5791 *
5792 * RETURNS:
5793 * 0 on success, negative errno on failure.
5794 */
5795int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5796{
da3dbb17
TH
5797 int rc;
5798
34bf2170 5799 if (sata_scr_valid(ap)) {
da3dbb17
TH
5800 rc = ap->ops->scr_write(ap, reg, val);
5801 if (rc == 0)
5802 rc = ap->ops->scr_read(ap, reg, &val);
5803 return rc;
34bf2170
TH
5804 }
5805 return -EOPNOTSUPP;
5806}
5807
5808/**
5809 * ata_port_online - test whether the given port is online
5810 * @ap: ATA port to test
5811 *
5812 * Test whether @ap is online. Note that this function returns 0
5813 * if online status of @ap cannot be obtained, so
5814 * ata_port_online(ap) != !ata_port_offline(ap).
5815 *
5816 * LOCKING:
5817 * None.
5818 *
5819 * RETURNS:
5820 * 1 if the port online status is available and online.
5821 */
5822int ata_port_online(struct ata_port *ap)
5823{
5824 u32 sstatus;
5825
5826 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5827 return 1;
5828 return 0;
5829}
5830
5831/**
5832 * ata_port_offline - test whether the given port is offline
5833 * @ap: ATA port to test
5834 *
5835 * Test whether @ap is offline. Note that this function returns
5836 * 0 if offline status of @ap cannot be obtained, so
5837 * ata_port_online(ap) != !ata_port_offline(ap).
5838 *
5839 * LOCKING:
5840 * None.
5841 *
5842 * RETURNS:
5843 * 1 if the port offline status is available and offline.
5844 */
5845int ata_port_offline(struct ata_port *ap)
5846{
5847 u32 sstatus;
5848
5849 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5850 return 1;
5851 return 0;
5852}
0baab86b 5853
77b08fb5 5854int ata_flush_cache(struct ata_device *dev)
9b847548 5855{
977e6b9f 5856 unsigned int err_mask;
9b847548
JA
5857 u8 cmd;
5858
5859 if (!ata_try_flush_cache(dev))
5860 return 0;
5861
6fc49adb 5862 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5863 cmd = ATA_CMD_FLUSH_EXT;
5864 else
5865 cmd = ATA_CMD_FLUSH;
5866
977e6b9f
TH
5867 err_mask = ata_do_simple_cmd(dev, cmd);
5868 if (err_mask) {
5869 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5870 return -EIO;
5871 }
5872
5873 return 0;
9b847548
JA
5874}
5875
6ffa01d8 5876#ifdef CONFIG_PM
cca3974e
JG
5877static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5878 unsigned int action, unsigned int ehi_flags,
5879 int wait)
500530f6
TH
5880{
5881 unsigned long flags;
5882 int i, rc;
5883
cca3974e
JG
5884 for (i = 0; i < host->n_ports; i++) {
5885 struct ata_port *ap = host->ports[i];
500530f6
TH
5886
5887 /* Previous resume operation might still be in
5888 * progress. Wait for PM_PENDING to clear.
5889 */
5890 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5891 ata_port_wait_eh(ap);
5892 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5893 }
5894
5895 /* request PM ops to EH */
5896 spin_lock_irqsave(ap->lock, flags);
5897
5898 ap->pm_mesg = mesg;
5899 if (wait) {
5900 rc = 0;
5901 ap->pm_result = &rc;
5902 }
5903
5904 ap->pflags |= ATA_PFLAG_PM_PENDING;
5905 ap->eh_info.action |= action;
5906 ap->eh_info.flags |= ehi_flags;
5907
5908 ata_port_schedule_eh(ap);
5909
5910 spin_unlock_irqrestore(ap->lock, flags);
5911
5912 /* wait and check result */
5913 if (wait) {
5914 ata_port_wait_eh(ap);
5915 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5916 if (rc)
5917 return rc;
5918 }
5919 }
5920
5921 return 0;
5922}
5923
5924/**
cca3974e
JG
5925 * ata_host_suspend - suspend host
5926 * @host: host to suspend
500530f6
TH
5927 * @mesg: PM message
5928 *
cca3974e 5929 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5930 * function requests EH to perform PM operations and waits for EH
5931 * to finish.
5932 *
5933 * LOCKING:
5934 * Kernel thread context (may sleep).
5935 *
5936 * RETURNS:
5937 * 0 on success, -errno on failure.
5938 */
cca3974e 5939int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5940{
9666f400 5941 int rc;
500530f6 5942
cca3974e 5943 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
5944 if (rc == 0)
5945 host->dev->power.power_state = mesg;
500530f6
TH
5946 return rc;
5947}
5948
5949/**
cca3974e
JG
5950 * ata_host_resume - resume host
5951 * @host: host to resume
500530f6 5952 *
cca3974e 5953 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5954 * function requests EH to perform PM operations and returns.
5955 * Note that all resume operations are performed parallely.
5956 *
5957 * LOCKING:
5958 * Kernel thread context (may sleep).
5959 */
cca3974e 5960void ata_host_resume(struct ata_host *host)
500530f6 5961{
cca3974e
JG
5962 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5963 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5964 host->dev->power.power_state = PMSG_ON;
500530f6 5965}
6ffa01d8 5966#endif
500530f6 5967
c893a3ae
RD
5968/**
5969 * ata_port_start - Set port up for dma.
5970 * @ap: Port to initialize
5971 *
5972 * Called just after data structures for each port are
5973 * initialized. Allocates space for PRD table.
5974 *
5975 * May be used as the port_start() entry in ata_port_operations.
5976 *
5977 * LOCKING:
5978 * Inherited from caller.
5979 */
f0d36efd 5980int ata_port_start(struct ata_port *ap)
1da177e4 5981{
2f1f610b 5982 struct device *dev = ap->dev;
6037d6bb 5983 int rc;
1da177e4 5984
f0d36efd
TH
5985 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5986 GFP_KERNEL);
1da177e4
LT
5987 if (!ap->prd)
5988 return -ENOMEM;
5989
6037d6bb 5990 rc = ata_pad_alloc(ap, dev);
f0d36efd 5991 if (rc)
6037d6bb 5992 return rc;
1da177e4 5993
f0d36efd
TH
5994 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5995 (unsigned long long)ap->prd_dma);
1da177e4
LT
5996 return 0;
5997}
5998
3ef3b43d
TH
5999/**
6000 * ata_dev_init - Initialize an ata_device structure
6001 * @dev: Device structure to initialize
6002 *
6003 * Initialize @dev in preparation for probing.
6004 *
6005 * LOCKING:
6006 * Inherited from caller.
6007 */
6008void ata_dev_init(struct ata_device *dev)
6009{
6010 struct ata_port *ap = dev->ap;
72fa4b74
TH
6011 unsigned long flags;
6012
5a04bf4b
TH
6013 /* SATA spd limit is bound to the first device */
6014 ap->sata_spd_limit = ap->hw_sata_spd_limit;
008a7896 6015 ap->sata_spd = 0;
5a04bf4b 6016
72fa4b74
TH
6017 /* High bits of dev->flags are used to record warm plug
6018 * requests which occur asynchronously. Synchronize using
cca3974e 6019 * host lock.
72fa4b74 6020 */
ba6a1308 6021 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6022 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 6023 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6024
72fa4b74
TH
6025 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6026 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6027 dev->pio_mask = UINT_MAX;
6028 dev->mwdma_mask = UINT_MAX;
6029 dev->udma_mask = UINT_MAX;
6030}
6031
1da177e4 6032/**
f3187195
TH
6033 * ata_port_alloc - allocate and initialize basic ATA port resources
6034 * @host: ATA host this allocated port belongs to
1da177e4 6035 *
f3187195
TH
6036 * Allocate and initialize basic ATA port resources.
6037 *
6038 * RETURNS:
6039 * Allocate ATA port on success, NULL on failure.
0cba632b 6040 *
1da177e4 6041 * LOCKING:
f3187195 6042 * Inherited from calling layer (may sleep).
1da177e4 6043 */
f3187195 6044struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6045{
f3187195 6046 struct ata_port *ap;
1da177e4
LT
6047 unsigned int i;
6048
f3187195
TH
6049 DPRINTK("ENTER\n");
6050
6051 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6052 if (!ap)
6053 return NULL;
6054
f4d6d004 6055 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6056 ap->lock = &host->lock;
198e0fed 6057 ap->flags = ATA_FLAG_DISABLED;
f3187195 6058 ap->print_id = -1;
1da177e4 6059 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6060 ap->host = host;
f3187195
TH
6061 ap->dev = host->dev;
6062
5a04bf4b 6063 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
6064 ap->active_tag = ATA_TAG_POISON;
6065 ap->last_ctl = 0xFF;
bd5d825c
BP
6066
6067#if defined(ATA_VERBOSE_DEBUG)
6068 /* turn on all debugging levels */
6069 ap->msg_enable = 0x00FF;
6070#elif defined(ATA_DEBUG)
6071 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6072#else
0dd4b21f 6073 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6074#endif
1da177e4 6075
65f27f38
DH
6076 INIT_DELAYED_WORK(&ap->port_task, NULL);
6077 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6078 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6079 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6080 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6081 init_timer_deferrable(&ap->fastdrain_timer);
6082 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6083 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6084
838df628 6085 ap->cbl = ATA_CBL_NONE;
838df628 6086
acf356b1
TH
6087 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6088 struct ata_device *dev = &ap->device[i];
38d87234 6089 dev->ap = ap;
72fa4b74 6090 dev->devno = i;
3ef3b43d 6091 ata_dev_init(dev);
acf356b1 6092 }
1da177e4
LT
6093
6094#ifdef ATA_IRQ_TRAP
6095 ap->stats.unhandled_irq = 1;
6096 ap->stats.idle_irq = 1;
6097#endif
1da177e4 6098 return ap;
1da177e4
LT
6099}
6100
f0d36efd
TH
6101static void ata_host_release(struct device *gendev, void *res)
6102{
6103 struct ata_host *host = dev_get_drvdata(gendev);
6104 int i;
6105
6106 for (i = 0; i < host->n_ports; i++) {
6107 struct ata_port *ap = host->ports[i];
6108
ecef7253
TH
6109 if (!ap)
6110 continue;
6111
6112 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6113 ap->ops->port_stop(ap);
f0d36efd
TH
6114 }
6115
ecef7253 6116 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6117 host->ops->host_stop(host);
1aa56cca 6118
1aa506e4
TH
6119 for (i = 0; i < host->n_ports; i++) {
6120 struct ata_port *ap = host->ports[i];
6121
4911487a
TH
6122 if (!ap)
6123 continue;
6124
6125 if (ap->scsi_host)
1aa506e4
TH
6126 scsi_host_put(ap->scsi_host);
6127
4911487a 6128 kfree(ap);
1aa506e4
TH
6129 host->ports[i] = NULL;
6130 }
6131
1aa56cca 6132 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6133}
6134
f3187195
TH
6135/**
6136 * ata_host_alloc - allocate and init basic ATA host resources
6137 * @dev: generic device this host is associated with
6138 * @max_ports: maximum number of ATA ports associated with this host
6139 *
6140 * Allocate and initialize basic ATA host resources. LLD calls
6141 * this function to allocate a host, initializes it fully and
6142 * attaches it using ata_host_register().
6143 *
6144 * @max_ports ports are allocated and host->n_ports is
6145 * initialized to @max_ports. The caller is allowed to decrease
6146 * host->n_ports before calling ata_host_register(). The unused
6147 * ports will be automatically freed on registration.
6148 *
6149 * RETURNS:
6150 * Allocate ATA host on success, NULL on failure.
6151 *
6152 * LOCKING:
6153 * Inherited from calling layer (may sleep).
6154 */
6155struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6156{
6157 struct ata_host *host;
6158 size_t sz;
6159 int i;
6160
6161 DPRINTK("ENTER\n");
6162
6163 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6164 return NULL;
6165
6166 /* alloc a container for our list of ATA ports (buses) */
6167 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6168 /* alloc a container for our list of ATA ports (buses) */
6169 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6170 if (!host)
6171 goto err_out;
6172
6173 devres_add(dev, host);
6174 dev_set_drvdata(dev, host);
6175
6176 spin_lock_init(&host->lock);
6177 host->dev = dev;
6178 host->n_ports = max_ports;
6179
6180 /* allocate ports bound to this host */
6181 for (i = 0; i < max_ports; i++) {
6182 struct ata_port *ap;
6183
6184 ap = ata_port_alloc(host);
6185 if (!ap)
6186 goto err_out;
6187
6188 ap->port_no = i;
6189 host->ports[i] = ap;
6190 }
6191
6192 devres_remove_group(dev, NULL);
6193 return host;
6194
6195 err_out:
6196 devres_release_group(dev, NULL);
6197 return NULL;
6198}
6199
f5cda257
TH
6200/**
6201 * ata_host_alloc_pinfo - alloc host and init with port_info array
6202 * @dev: generic device this host is associated with
6203 * @ppi: array of ATA port_info to initialize host with
6204 * @n_ports: number of ATA ports attached to this host
6205 *
6206 * Allocate ATA host and initialize with info from @ppi. If NULL
6207 * terminated, @ppi may contain fewer entries than @n_ports. The
6208 * last entry will be used for the remaining ports.
6209 *
6210 * RETURNS:
6211 * Allocate ATA host on success, NULL on failure.
6212 *
6213 * LOCKING:
6214 * Inherited from calling layer (may sleep).
6215 */
6216struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6217 const struct ata_port_info * const * ppi,
6218 int n_ports)
6219{
6220 const struct ata_port_info *pi;
6221 struct ata_host *host;
6222 int i, j;
6223
6224 host = ata_host_alloc(dev, n_ports);
6225 if (!host)
6226 return NULL;
6227
6228 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6229 struct ata_port *ap = host->ports[i];
6230
6231 if (ppi[j])
6232 pi = ppi[j++];
6233
6234 ap->pio_mask = pi->pio_mask;
6235 ap->mwdma_mask = pi->mwdma_mask;
6236 ap->udma_mask = pi->udma_mask;
6237 ap->flags |= pi->flags;
6238 ap->ops = pi->port_ops;
6239
6240 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6241 host->ops = pi->port_ops;
6242 if (!host->private_data && pi->private_data)
6243 host->private_data = pi->private_data;
6244 }
6245
6246 return host;
6247}
6248
ecef7253
TH
6249/**
6250 * ata_host_start - start and freeze ports of an ATA host
6251 * @host: ATA host to start ports for
6252 *
6253 * Start and then freeze ports of @host. Started status is
6254 * recorded in host->flags, so this function can be called
6255 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6256 * once. If host->ops isn't initialized yet, its set to the
6257 * first non-dummy port ops.
ecef7253
TH
6258 *
6259 * LOCKING:
6260 * Inherited from calling layer (may sleep).
6261 *
6262 * RETURNS:
6263 * 0 if all ports are started successfully, -errno otherwise.
6264 */
6265int ata_host_start(struct ata_host *host)
6266{
6267 int i, rc;
6268
6269 if (host->flags & ATA_HOST_STARTED)
6270 return 0;
6271
6272 for (i = 0; i < host->n_ports; i++) {
6273 struct ata_port *ap = host->ports[i];
6274
f3187195
TH
6275 if (!host->ops && !ata_port_is_dummy(ap))
6276 host->ops = ap->ops;
6277
ecef7253
TH
6278 if (ap->ops->port_start) {
6279 rc = ap->ops->port_start(ap);
6280 if (rc) {
6281 ata_port_printk(ap, KERN_ERR, "failed to "
6282 "start port (errno=%d)\n", rc);
6283 goto err_out;
6284 }
6285 }
6286
6287 ata_eh_freeze_port(ap);
6288 }
6289
6290 host->flags |= ATA_HOST_STARTED;
6291 return 0;
6292
6293 err_out:
6294 while (--i >= 0) {
6295 struct ata_port *ap = host->ports[i];
6296
6297 if (ap->ops->port_stop)
6298 ap->ops->port_stop(ap);
6299 }
6300 return rc;
6301}
6302
b03732f0 6303/**
cca3974e
JG
6304 * ata_sas_host_init - Initialize a host struct
6305 * @host: host to initialize
6306 * @dev: device host is attached to
6307 * @flags: host flags
6308 * @ops: port_ops
b03732f0
BK
6309 *
6310 * LOCKING:
6311 * PCI/etc. bus probe sem.
6312 *
6313 */
f3187195 6314/* KILLME - the only user left is ipr */
cca3974e
JG
6315void ata_host_init(struct ata_host *host, struct device *dev,
6316 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6317{
cca3974e
JG
6318 spin_lock_init(&host->lock);
6319 host->dev = dev;
6320 host->flags = flags;
6321 host->ops = ops;
b03732f0
BK
6322}
6323
f3187195
TH
6324/**
6325 * ata_host_register - register initialized ATA host
6326 * @host: ATA host to register
6327 * @sht: template for SCSI host
6328 *
6329 * Register initialized ATA host. @host is allocated using
6330 * ata_host_alloc() and fully initialized by LLD. This function
6331 * starts ports, registers @host with ATA and SCSI layers and
6332 * probe registered devices.
6333 *
6334 * LOCKING:
6335 * Inherited from calling layer (may sleep).
6336 *
6337 * RETURNS:
6338 * 0 on success, -errno otherwise.
6339 */
6340int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6341{
6342 int i, rc;
6343
6344 /* host must have been started */
6345 if (!(host->flags & ATA_HOST_STARTED)) {
6346 dev_printk(KERN_ERR, host->dev,
6347 "BUG: trying to register unstarted host\n");
6348 WARN_ON(1);
6349 return -EINVAL;
6350 }
6351
6352 /* Blow away unused ports. This happens when LLD can't
6353 * determine the exact number of ports to allocate at
6354 * allocation time.
6355 */
6356 for (i = host->n_ports; host->ports[i]; i++)
6357 kfree(host->ports[i]);
6358
6359 /* give ports names and add SCSI hosts */
6360 for (i = 0; i < host->n_ports; i++)
6361 host->ports[i]->print_id = ata_print_id++;
6362
6363 rc = ata_scsi_add_hosts(host, sht);
6364 if (rc)
6365 return rc;
6366
fafbae87
TH
6367 /* associate with ACPI nodes */
6368 ata_acpi_associate(host);
6369
f3187195
TH
6370 /* set cable, sata_spd_limit and report */
6371 for (i = 0; i < host->n_ports; i++) {
6372 struct ata_port *ap = host->ports[i];
6373 int irq_line;
6374 u32 scontrol;
6375 unsigned long xfer_mask;
6376
6377 /* set SATA cable type if still unset */
6378 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6379 ap->cbl = ATA_CBL_SATA;
6380
6381 /* init sata_spd_limit to the current value */
6382 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6383 int spd = (scontrol >> 4) & 0xf;
afe3cc51
TH
6384 if (spd)
6385 ap->hw_sata_spd_limit &= (1 << spd) - 1;
f3187195
TH
6386 }
6387 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6388
6389 /* report the secondary IRQ for second channel legacy */
6390 irq_line = host->irq;
6391 if (i == 1 && host->irq2)
6392 irq_line = host->irq2;
6393
6394 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6395 ap->udma_mask);
6396
6397 /* print per-port info to dmesg */
6398 if (!ata_port_is_dummy(ap))
6399 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6400 "ctl 0x%p bmdma 0x%p irq %d\n",
a16abc0b 6401 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195
TH
6402 ata_mode_string(xfer_mask),
6403 ap->ioaddr.cmd_addr,
6404 ap->ioaddr.ctl_addr,
6405 ap->ioaddr.bmdma_addr,
6406 irq_line);
6407 else
6408 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6409 }
6410
6411 /* perform each probe synchronously */
6412 DPRINTK("probe begin\n");
6413 for (i = 0; i < host->n_ports; i++) {
6414 struct ata_port *ap = host->ports[i];
6415 int rc;
6416
6417 /* probe */
6418 if (ap->ops->error_handler) {
6419 struct ata_eh_info *ehi = &ap->eh_info;
6420 unsigned long flags;
6421
6422 ata_port_probe(ap);
6423
6424 /* kick EH for boot probing */
6425 spin_lock_irqsave(ap->lock, flags);
6426
6427 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6428 ehi->action |= ATA_EH_SOFTRESET;
6429 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6430
f4d6d004 6431 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6432 ap->pflags |= ATA_PFLAG_LOADING;
6433 ata_port_schedule_eh(ap);
6434
6435 spin_unlock_irqrestore(ap->lock, flags);
6436
6437 /* wait for EH to finish */
6438 ata_port_wait_eh(ap);
6439 } else {
6440 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6441 rc = ata_bus_probe(ap);
6442 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6443
6444 if (rc) {
6445 /* FIXME: do something useful here?
6446 * Current libata behavior will
6447 * tear down everything when
6448 * the module is removed
6449 * or the h/w is unplugged.
6450 */
6451 }
6452 }
6453 }
6454
6455 /* probes are done, now scan each port's disk(s) */
6456 DPRINTK("host probe begin\n");
6457 for (i = 0; i < host->n_ports; i++) {
6458 struct ata_port *ap = host->ports[i];
6459
1ae46317 6460 ata_scsi_scan_host(ap, 1);
f3187195
TH
6461 }
6462
6463 return 0;
6464}
6465
f5cda257
TH
6466/**
6467 * ata_host_activate - start host, request IRQ and register it
6468 * @host: target ATA host
6469 * @irq: IRQ to request
6470 * @irq_handler: irq_handler used when requesting IRQ
6471 * @irq_flags: irq_flags used when requesting IRQ
6472 * @sht: scsi_host_template to use when registering the host
6473 *
6474 * After allocating an ATA host and initializing it, most libata
6475 * LLDs perform three steps to activate the host - start host,
6476 * request IRQ and register it. This helper takes necessasry
6477 * arguments and performs the three steps in one go.
6478 *
6479 * LOCKING:
6480 * Inherited from calling layer (may sleep).
6481 *
6482 * RETURNS:
6483 * 0 on success, -errno otherwise.
6484 */
6485int ata_host_activate(struct ata_host *host, int irq,
6486 irq_handler_t irq_handler, unsigned long irq_flags,
6487 struct scsi_host_template *sht)
6488{
6489 int rc;
6490
6491 rc = ata_host_start(host);
6492 if (rc)
6493 return rc;
6494
6495 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6496 dev_driver_string(host->dev), host);
6497 if (rc)
6498 return rc;
6499
4031826b
TH
6500 /* Used to print device info at probe */
6501 host->irq = irq;
6502
f5cda257
TH
6503 rc = ata_host_register(host, sht);
6504 /* if failed, just free the IRQ and leave ports alone */
6505 if (rc)
6506 devm_free_irq(host->dev, irq, host);
6507
6508 return rc;
6509}
6510
720ba126
TH
6511/**
6512 * ata_port_detach - Detach ATA port in prepration of device removal
6513 * @ap: ATA port to be detached
6514 *
6515 * Detach all ATA devices and the associated SCSI devices of @ap;
6516 * then, remove the associated SCSI host. @ap is guaranteed to
6517 * be quiescent on return from this function.
6518 *
6519 * LOCKING:
6520 * Kernel thread context (may sleep).
6521 */
6522void ata_port_detach(struct ata_port *ap)
6523{
6524 unsigned long flags;
6525 int i;
6526
6527 if (!ap->ops->error_handler)
c3cf30a9 6528 goto skip_eh;
720ba126
TH
6529
6530 /* tell EH we're leaving & flush EH */
ba6a1308 6531 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6532 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6533 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6534
6535 ata_port_wait_eh(ap);
6536
6537 /* EH is now guaranteed to see UNLOADING, so no new device
6538 * will be attached. Disable all existing devices.
6539 */
ba6a1308 6540 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
6541
6542 for (i = 0; i < ATA_MAX_DEVICES; i++)
6543 ata_dev_disable(&ap->device[i]);
6544
ba6a1308 6545 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6546
6547 /* Final freeze & EH. All in-flight commands are aborted. EH
6548 * will be skipped and retrials will be terminated with bad
6549 * target.
6550 */
ba6a1308 6551 spin_lock_irqsave(ap->lock, flags);
720ba126 6552 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6553 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6554
6555 ata_port_wait_eh(ap);
45a66c1c 6556 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6557
c3cf30a9 6558 skip_eh:
720ba126 6559 /* remove the associated SCSI host */
cca3974e 6560 scsi_remove_host(ap->scsi_host);
720ba126
TH
6561}
6562
0529c159
TH
6563/**
6564 * ata_host_detach - Detach all ports of an ATA host
6565 * @host: Host to detach
6566 *
6567 * Detach all ports of @host.
6568 *
6569 * LOCKING:
6570 * Kernel thread context (may sleep).
6571 */
6572void ata_host_detach(struct ata_host *host)
6573{
6574 int i;
6575
6576 for (i = 0; i < host->n_ports; i++)
6577 ata_port_detach(host->ports[i]);
6578}
6579
1da177e4
LT
6580/**
6581 * ata_std_ports - initialize ioaddr with standard port offsets.
6582 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6583 *
6584 * Utility function which initializes data_addr, error_addr,
6585 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6586 * device_addr, status_addr, and command_addr to standard offsets
6587 * relative to cmd_addr.
6588 *
6589 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6590 */
0baab86b 6591
1da177e4
LT
6592void ata_std_ports(struct ata_ioports *ioaddr)
6593{
6594 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6595 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6596 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6597 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6598 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6599 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6600 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6601 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6602 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6603 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6604}
6605
0baab86b 6606
374b1873
JG
6607#ifdef CONFIG_PCI
6608
1da177e4
LT
6609/**
6610 * ata_pci_remove_one - PCI layer callback for device removal
6611 * @pdev: PCI device that was removed
6612 *
b878ca5d
TH
6613 * PCI layer indicates to libata via this hook that hot-unplug or
6614 * module unload event has occurred. Detach all ports. Resource
6615 * release is handled via devres.
1da177e4
LT
6616 *
6617 * LOCKING:
6618 * Inherited from PCI layer (may sleep).
6619 */
f0d36efd 6620void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6621{
6622 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6623 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6624
b878ca5d 6625 ata_host_detach(host);
1da177e4
LT
6626}
6627
6628/* move to PCI subsystem */
057ace5e 6629int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6630{
6631 unsigned long tmp = 0;
6632
6633 switch (bits->width) {
6634 case 1: {
6635 u8 tmp8 = 0;
6636 pci_read_config_byte(pdev, bits->reg, &tmp8);
6637 tmp = tmp8;
6638 break;
6639 }
6640 case 2: {
6641 u16 tmp16 = 0;
6642 pci_read_config_word(pdev, bits->reg, &tmp16);
6643 tmp = tmp16;
6644 break;
6645 }
6646 case 4: {
6647 u32 tmp32 = 0;
6648 pci_read_config_dword(pdev, bits->reg, &tmp32);
6649 tmp = tmp32;
6650 break;
6651 }
6652
6653 default:
6654 return -EINVAL;
6655 }
6656
6657 tmp &= bits->mask;
6658
6659 return (tmp == bits->val) ? 1 : 0;
6660}
9b847548 6661
6ffa01d8 6662#ifdef CONFIG_PM
3c5100c1 6663void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6664{
6665 pci_save_state(pdev);
4c90d971 6666 pci_disable_device(pdev);
500530f6 6667
4c90d971 6668 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6669 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6670}
6671
553c4aa6 6672int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6673{
553c4aa6
TH
6674 int rc;
6675
9b847548
JA
6676 pci_set_power_state(pdev, PCI_D0);
6677 pci_restore_state(pdev);
553c4aa6 6678
b878ca5d 6679 rc = pcim_enable_device(pdev);
553c4aa6
TH
6680 if (rc) {
6681 dev_printk(KERN_ERR, &pdev->dev,
6682 "failed to enable device after resume (%d)\n", rc);
6683 return rc;
6684 }
6685
9b847548 6686 pci_set_master(pdev);
553c4aa6 6687 return 0;
500530f6
TH
6688}
6689
3c5100c1 6690int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6691{
cca3974e 6692 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6693 int rc = 0;
6694
cca3974e 6695 rc = ata_host_suspend(host, mesg);
500530f6
TH
6696 if (rc)
6697 return rc;
6698
3c5100c1 6699 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6700
6701 return 0;
6702}
6703
6704int ata_pci_device_resume(struct pci_dev *pdev)
6705{
cca3974e 6706 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6707 int rc;
500530f6 6708
553c4aa6
TH
6709 rc = ata_pci_device_do_resume(pdev);
6710 if (rc == 0)
6711 ata_host_resume(host);
6712 return rc;
9b847548 6713}
6ffa01d8
TH
6714#endif /* CONFIG_PM */
6715
1da177e4
LT
6716#endif /* CONFIG_PCI */
6717
6718
1da177e4
LT
6719static int __init ata_init(void)
6720{
a8601e5f 6721 ata_probe_timeout *= HZ;
1da177e4
LT
6722 ata_wq = create_workqueue("ata");
6723 if (!ata_wq)
6724 return -ENOMEM;
6725
453b07ac
TH
6726 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6727 if (!ata_aux_wq) {
6728 destroy_workqueue(ata_wq);
6729 return -ENOMEM;
6730 }
6731
1da177e4
LT
6732 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6733 return 0;
6734}
6735
6736static void __exit ata_exit(void)
6737{
6738 destroy_workqueue(ata_wq);
453b07ac 6739 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6740}
6741
a4625085 6742subsys_initcall(ata_init);
1da177e4
LT
6743module_exit(ata_exit);
6744
67846b30 6745static unsigned long ratelimit_time;
34af946a 6746static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6747
6748int ata_ratelimit(void)
6749{
6750 int rc;
6751 unsigned long flags;
6752
6753 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6754
6755 if (time_after(jiffies, ratelimit_time)) {
6756 rc = 1;
6757 ratelimit_time = jiffies + (HZ/5);
6758 } else
6759 rc = 0;
6760
6761 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6762
6763 return rc;
6764}
6765
c22daff4
TH
6766/**
6767 * ata_wait_register - wait until register value changes
6768 * @reg: IO-mapped register
6769 * @mask: Mask to apply to read register value
6770 * @val: Wait condition
6771 * @interval_msec: polling interval in milliseconds
6772 * @timeout_msec: timeout in milliseconds
6773 *
6774 * Waiting for some bits of register to change is a common
6775 * operation for ATA controllers. This function reads 32bit LE
6776 * IO-mapped register @reg and tests for the following condition.
6777 *
6778 * (*@reg & mask) != val
6779 *
6780 * If the condition is met, it returns; otherwise, the process is
6781 * repeated after @interval_msec until timeout.
6782 *
6783 * LOCKING:
6784 * Kernel thread context (may sleep)
6785 *
6786 * RETURNS:
6787 * The final register value.
6788 */
6789u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6790 unsigned long interval_msec,
6791 unsigned long timeout_msec)
6792{
6793 unsigned long timeout;
6794 u32 tmp;
6795
6796 tmp = ioread32(reg);
6797
6798 /* Calculate timeout _after_ the first read to make sure
6799 * preceding writes reach the controller before starting to
6800 * eat away the timeout.
6801 */
6802 timeout = jiffies + (timeout_msec * HZ) / 1000;
6803
6804 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6805 msleep(interval_msec);
6806 tmp = ioread32(reg);
6807 }
6808
6809 return tmp;
6810}
6811
dd5b06c4
TH
6812/*
6813 * Dummy port_ops
6814 */
6815static void ata_dummy_noret(struct ata_port *ap) { }
6816static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6817static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6818
6819static u8 ata_dummy_check_status(struct ata_port *ap)
6820{
6821 return ATA_DRDY;
6822}
6823
6824static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6825{
6826 return AC_ERR_SYSTEM;
6827}
6828
6829const struct ata_port_operations ata_dummy_port_ops = {
6830 .port_disable = ata_port_disable,
6831 .check_status = ata_dummy_check_status,
6832 .check_altstatus = ata_dummy_check_status,
6833 .dev_select = ata_noop_dev_select,
6834 .qc_prep = ata_noop_qc_prep,
6835 .qc_issue = ata_dummy_qc_issue,
6836 .freeze = ata_dummy_noret,
6837 .thaw = ata_dummy_noret,
6838 .error_handler = ata_dummy_noret,
6839 .post_internal_cmd = ata_dummy_qc_noret,
6840 .irq_clear = ata_dummy_noret,
6841 .port_start = ata_dummy_ret0,
6842 .port_stop = ata_dummy_noret,
6843};
6844
21b0ad4f
TH
6845const struct ata_port_info ata_dummy_port_info = {
6846 .port_ops = &ata_dummy_port_ops,
6847};
6848
1da177e4
LT
6849/*
6850 * libata is essentially a library of internal helper functions for
6851 * low-level ATA host controller drivers. As such, the API/ABI is
6852 * likely to change as new drivers are added and updated.
6853 * Do not depend on ABI/API stability.
6854 */
6855
e9c83914
TH
6856EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6857EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6858EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6859EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6860EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
6861EXPORT_SYMBOL_GPL(ata_std_bios_param);
6862EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6863EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6864EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6865EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 6866EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6867EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6868EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6869EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6870EXPORT_SYMBOL_GPL(ata_sg_init);
6871EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6872EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6873EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6874EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6875EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6876EXPORT_SYMBOL_GPL(ata_tf_load);
6877EXPORT_SYMBOL_GPL(ata_tf_read);
6878EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6879EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 6880EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
6881EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6882EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6883EXPORT_SYMBOL_GPL(ata_check_status);
6884EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6885EXPORT_SYMBOL_GPL(ata_exec_command);
6886EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 6887EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 6888EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 6889EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
6890EXPORT_SYMBOL_GPL(ata_data_xfer);
6891EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6892EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 6893EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 6894EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6895EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6896EXPORT_SYMBOL_GPL(ata_bmdma_start);
6897EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6898EXPORT_SYMBOL_GPL(ata_bmdma_status);
6899EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6900EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6901EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6902EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6903EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6904EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6905EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6906EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6907EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6908EXPORT_SYMBOL_GPL(sata_phy_debounce);
6909EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6910EXPORT_SYMBOL_GPL(sata_phy_reset);
6911EXPORT_SYMBOL_GPL(__sata_phy_reset);
6912EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6913EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6914EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6915EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6916EXPORT_SYMBOL_GPL(sata_std_hardreset);
6917EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6918EXPORT_SYMBOL_GPL(ata_dev_classify);
6919EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6920EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6921EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6922EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6923EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 6924EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 6925EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6926EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6927EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6928EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6929EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6930EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 6931EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6932EXPORT_SYMBOL_GPL(sata_scr_valid);
6933EXPORT_SYMBOL_GPL(sata_scr_read);
6934EXPORT_SYMBOL_GPL(sata_scr_write);
6935EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6936EXPORT_SYMBOL_GPL(ata_port_online);
6937EXPORT_SYMBOL_GPL(ata_port_offline);
6ffa01d8 6938#ifdef CONFIG_PM
cca3974e
JG
6939EXPORT_SYMBOL_GPL(ata_host_suspend);
6940EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6941#endif /* CONFIG_PM */
6a62a04d
TH
6942EXPORT_SYMBOL_GPL(ata_id_string);
6943EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 6944EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
6945EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6946
1bc4ccff 6947EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6948EXPORT_SYMBOL_GPL(ata_timing_compute);
6949EXPORT_SYMBOL_GPL(ata_timing_merge);
6950
1da177e4
LT
6951#ifdef CONFIG_PCI
6952EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 6953EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 6954EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 6955EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
6956EXPORT_SYMBOL_GPL(ata_pci_init_one);
6957EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6958#ifdef CONFIG_PM
500530f6
TH
6959EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6960EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6961EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6962EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6963#endif /* CONFIG_PM */
67951ade
AC
6964EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6965EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6966#endif /* CONFIG_PCI */
9b847548 6967
b64bbc39
TH
6968EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6969EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6970EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
ece1d636 6971EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6972EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6973EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6974EXPORT_SYMBOL_GPL(ata_port_freeze);
6975EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6976EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6977EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6978EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6979EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
6980EXPORT_SYMBOL_GPL(ata_irq_on);
6981EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6982EXPORT_SYMBOL_GPL(ata_irq_ack);
6983EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 6984EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
6985
6986EXPORT_SYMBOL_GPL(ata_cable_40wire);
6987EXPORT_SYMBOL_GPL(ata_cable_80wire);
6988EXPORT_SYMBOL_GPL(ata_cable_unknown);
6989EXPORT_SYMBOL_GPL(ata_cable_sata);