libata: improve ata_down_xfermask_limit()
[linux-block.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
fda0efc5
JG
62#define DRV_VERSION "2.10" /* must be exactly four chars */
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
74
75static unsigned int ata_unique_id = 1;
76static struct workqueue_struct *ata_wq;
77
453b07ac
TH
78struct workqueue_struct *ata_aux_wq;
79
418dc1f5 80int atapi_enabled = 1;
1623c81e
JG
81module_param(atapi_enabled, int, 0444);
82MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
95de719a
AL
84int atapi_dmadir = 0;
85module_param(atapi_dmadir, int, 0444);
86MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
c3c013a2
JG
88int libata_fua = 0;
89module_param_named(fua, libata_fua, int, 0444);
90MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
a8601e5f
AM
92static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
93module_param(ata_probe_timeout, int, 0444);
94MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
95
11ef697b
KCA
96int noacpi;
97module_param(noacpi, int, 0444);
98MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
99
1da177e4
LT
100MODULE_AUTHOR("Jeff Garzik");
101MODULE_DESCRIPTION("Library module for ATA devices");
102MODULE_LICENSE("GPL");
103MODULE_VERSION(DRV_VERSION);
104
0baab86b 105
1da177e4
LT
106/**
107 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
108 * @tf: Taskfile to convert
109 * @fis: Buffer into which data will output
110 * @pmp: Port multiplier port
111 *
112 * Converts a standard ATA taskfile to a Serial ATA
113 * FIS structure (Register - Host to Device).
114 *
115 * LOCKING:
116 * Inherited from caller.
117 */
118
057ace5e 119void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
120{
121 fis[0] = 0x27; /* Register - Host to Device FIS */
122 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
123 bit 7 indicates Command FIS */
124 fis[2] = tf->command;
125 fis[3] = tf->feature;
126
127 fis[4] = tf->lbal;
128 fis[5] = tf->lbam;
129 fis[6] = tf->lbah;
130 fis[7] = tf->device;
131
132 fis[8] = tf->hob_lbal;
133 fis[9] = tf->hob_lbam;
134 fis[10] = tf->hob_lbah;
135 fis[11] = tf->hob_feature;
136
137 fis[12] = tf->nsect;
138 fis[13] = tf->hob_nsect;
139 fis[14] = 0;
140 fis[15] = tf->ctl;
141
142 fis[16] = 0;
143 fis[17] = 0;
144 fis[18] = 0;
145 fis[19] = 0;
146}
147
148/**
149 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
150 * @fis: Buffer from which data will be input
151 * @tf: Taskfile to output
152 *
e12a1be6 153 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
154 *
155 * LOCKING:
156 * Inherited from caller.
157 */
158
057ace5e 159void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
160{
161 tf->command = fis[2]; /* status */
162 tf->feature = fis[3]; /* error */
163
164 tf->lbal = fis[4];
165 tf->lbam = fis[5];
166 tf->lbah = fis[6];
167 tf->device = fis[7];
168
169 tf->hob_lbal = fis[8];
170 tf->hob_lbam = fis[9];
171 tf->hob_lbah = fis[10];
172
173 tf->nsect = fis[12];
174 tf->hob_nsect = fis[13];
175}
176
8cbd6df1
AL
177static const u8 ata_rw_cmds[] = {
178 /* pio multi */
179 ATA_CMD_READ_MULTI,
180 ATA_CMD_WRITE_MULTI,
181 ATA_CMD_READ_MULTI_EXT,
182 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
183 0,
184 0,
185 0,
186 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
187 /* pio */
188 ATA_CMD_PIO_READ,
189 ATA_CMD_PIO_WRITE,
190 ATA_CMD_PIO_READ_EXT,
191 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
192 0,
193 0,
194 0,
195 0,
8cbd6df1
AL
196 /* dma */
197 ATA_CMD_READ,
198 ATA_CMD_WRITE,
199 ATA_CMD_READ_EXT,
9a3dccc4
TH
200 ATA_CMD_WRITE_EXT,
201 0,
202 0,
203 0,
204 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 205};
1da177e4
LT
206
207/**
8cbd6df1 208 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
209 * @tf: command to examine and configure
210 * @dev: device tf belongs to
1da177e4 211 *
2e9edbf8 212 * Examine the device configuration and tf->flags to calculate
8cbd6df1 213 * the proper read/write commands and protocol to use.
1da177e4
LT
214 *
215 * LOCKING:
216 * caller.
217 */
bd056d7e 218static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 219{
9a3dccc4 220 u8 cmd;
1da177e4 221
9a3dccc4 222 int index, fua, lba48, write;
2e9edbf8 223
9a3dccc4 224 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
225 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
226 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 227
8cbd6df1
AL
228 if (dev->flags & ATA_DFLAG_PIO) {
229 tf->protocol = ATA_PROT_PIO;
9a3dccc4 230 index = dev->multi_count ? 0 : 8;
bd056d7e 231 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
232 /* Unable to use DMA due to host limitation */
233 tf->protocol = ATA_PROT_PIO;
0565c26d 234 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
235 } else {
236 tf->protocol = ATA_PROT_DMA;
9a3dccc4 237 index = 16;
8cbd6df1 238 }
1da177e4 239
9a3dccc4
TH
240 cmd = ata_rw_cmds[index + fua + lba48 + write];
241 if (cmd) {
242 tf->command = cmd;
243 return 0;
244 }
245 return -1;
1da177e4
LT
246}
247
35b649fe
TH
248/**
249 * ata_tf_read_block - Read block address from ATA taskfile
250 * @tf: ATA taskfile of interest
251 * @dev: ATA device @tf belongs to
252 *
253 * LOCKING:
254 * None.
255 *
256 * Read block address from @tf. This function can handle all
257 * three address formats - LBA, LBA48 and CHS. tf->protocol and
258 * flags select the address format to use.
259 *
260 * RETURNS:
261 * Block address read from @tf.
262 */
263u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
264{
265 u64 block = 0;
266
267 if (tf->flags & ATA_TFLAG_LBA) {
268 if (tf->flags & ATA_TFLAG_LBA48) {
269 block |= (u64)tf->hob_lbah << 40;
270 block |= (u64)tf->hob_lbam << 32;
271 block |= tf->hob_lbal << 24;
272 } else
273 block |= (tf->device & 0xf) << 24;
274
275 block |= tf->lbah << 16;
276 block |= tf->lbam << 8;
277 block |= tf->lbal;
278 } else {
279 u32 cyl, head, sect;
280
281 cyl = tf->lbam | (tf->lbah << 8);
282 head = tf->device & 0xf;
283 sect = tf->lbal;
284
285 block = (cyl * dev->heads + head) * dev->sectors + sect;
286 }
287
288 return block;
289}
290
bd056d7e
TH
291/**
292 * ata_build_rw_tf - Build ATA taskfile for given read/write request
293 * @tf: Target ATA taskfile
294 * @dev: ATA device @tf belongs to
295 * @block: Block address
296 * @n_block: Number of blocks
297 * @tf_flags: RW/FUA etc...
298 * @tag: tag
299 *
300 * LOCKING:
301 * None.
302 *
303 * Build ATA taskfile @tf for read/write request described by
304 * @block, @n_block, @tf_flags and @tag on @dev.
305 *
306 * RETURNS:
307 *
308 * 0 on success, -ERANGE if the request is too large for @dev,
309 * -EINVAL if the request is invalid.
310 */
311int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
312 u64 block, u32 n_block, unsigned int tf_flags,
313 unsigned int tag)
314{
315 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
316 tf->flags |= tf_flags;
317
318 if ((dev->flags & (ATA_DFLAG_PIO | ATA_DFLAG_NCQ_OFF |
70e6ad0c
TH
319 ATA_DFLAG_NCQ)) == ATA_DFLAG_NCQ &&
320 likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
321 /* yay, NCQ */
322 if (!lba_48_ok(block, n_block))
323 return -ERANGE;
324
325 tf->protocol = ATA_PROT_NCQ;
326 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
327
328 if (tf->flags & ATA_TFLAG_WRITE)
329 tf->command = ATA_CMD_FPDMA_WRITE;
330 else
331 tf->command = ATA_CMD_FPDMA_READ;
332
333 tf->nsect = tag << 3;
334 tf->hob_feature = (n_block >> 8) & 0xff;
335 tf->feature = n_block & 0xff;
336
337 tf->hob_lbah = (block >> 40) & 0xff;
338 tf->hob_lbam = (block >> 32) & 0xff;
339 tf->hob_lbal = (block >> 24) & 0xff;
340 tf->lbah = (block >> 16) & 0xff;
341 tf->lbam = (block >> 8) & 0xff;
342 tf->lbal = block & 0xff;
343
344 tf->device = 1 << 6;
345 if (tf->flags & ATA_TFLAG_FUA)
346 tf->device |= 1 << 7;
347 } else if (dev->flags & ATA_DFLAG_LBA) {
348 tf->flags |= ATA_TFLAG_LBA;
349
350 if (lba_28_ok(block, n_block)) {
351 /* use LBA28 */
352 tf->device |= (block >> 24) & 0xf;
353 } else if (lba_48_ok(block, n_block)) {
354 if (!(dev->flags & ATA_DFLAG_LBA48))
355 return -ERANGE;
356
357 /* use LBA48 */
358 tf->flags |= ATA_TFLAG_LBA48;
359
360 tf->hob_nsect = (n_block >> 8) & 0xff;
361
362 tf->hob_lbah = (block >> 40) & 0xff;
363 tf->hob_lbam = (block >> 32) & 0xff;
364 tf->hob_lbal = (block >> 24) & 0xff;
365 } else
366 /* request too large even for LBA48 */
367 return -ERANGE;
368
369 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
370 return -EINVAL;
371
372 tf->nsect = n_block & 0xff;
373
374 tf->lbah = (block >> 16) & 0xff;
375 tf->lbam = (block >> 8) & 0xff;
376 tf->lbal = block & 0xff;
377
378 tf->device |= ATA_LBA;
379 } else {
380 /* CHS */
381 u32 sect, head, cyl, track;
382
383 /* The request -may- be too large for CHS addressing. */
384 if (!lba_28_ok(block, n_block))
385 return -ERANGE;
386
387 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
388 return -EINVAL;
389
390 /* Convert LBA to CHS */
391 track = (u32)block / dev->sectors;
392 cyl = track / dev->heads;
393 head = track % dev->heads;
394 sect = (u32)block % dev->sectors + 1;
395
396 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
397 (u32)block, track, cyl, head, sect);
398
399 /* Check whether the converted CHS can fit.
400 Cylinder: 0-65535
401 Head: 0-15
402 Sector: 1-255*/
403 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
404 return -ERANGE;
405
406 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
407 tf->lbal = sect;
408 tf->lbam = cyl;
409 tf->lbah = cyl >> 8;
410 tf->device |= head;
411 }
412
413 return 0;
414}
415
cb95d562
TH
416/**
417 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
418 * @pio_mask: pio_mask
419 * @mwdma_mask: mwdma_mask
420 * @udma_mask: udma_mask
421 *
422 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
423 * unsigned int xfer_mask.
424 *
425 * LOCKING:
426 * None.
427 *
428 * RETURNS:
429 * Packed xfer_mask.
430 */
431static unsigned int ata_pack_xfermask(unsigned int pio_mask,
432 unsigned int mwdma_mask,
433 unsigned int udma_mask)
434{
435 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
436 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
437 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
438}
439
c0489e4e
TH
440/**
441 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
442 * @xfer_mask: xfer_mask to unpack
443 * @pio_mask: resulting pio_mask
444 * @mwdma_mask: resulting mwdma_mask
445 * @udma_mask: resulting udma_mask
446 *
447 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
448 * Any NULL distination masks will be ignored.
449 */
450static void ata_unpack_xfermask(unsigned int xfer_mask,
451 unsigned int *pio_mask,
452 unsigned int *mwdma_mask,
453 unsigned int *udma_mask)
454{
455 if (pio_mask)
456 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
457 if (mwdma_mask)
458 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
459 if (udma_mask)
460 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
461}
462
cb95d562 463static const struct ata_xfer_ent {
be9a50c8 464 int shift, bits;
cb95d562
TH
465 u8 base;
466} ata_xfer_tbl[] = {
467 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
468 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
469 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
470 { -1, },
471};
472
473/**
474 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
475 * @xfer_mask: xfer_mask of interest
476 *
477 * Return matching XFER_* value for @xfer_mask. Only the highest
478 * bit of @xfer_mask is considered.
479 *
480 * LOCKING:
481 * None.
482 *
483 * RETURNS:
484 * Matching XFER_* value, 0 if no match found.
485 */
486static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
487{
488 int highbit = fls(xfer_mask) - 1;
489 const struct ata_xfer_ent *ent;
490
491 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
492 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
493 return ent->base + highbit - ent->shift;
494 return 0;
495}
496
497/**
498 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
499 * @xfer_mode: XFER_* of interest
500 *
501 * Return matching xfer_mask for @xfer_mode.
502 *
503 * LOCKING:
504 * None.
505 *
506 * RETURNS:
507 * Matching xfer_mask, 0 if no match found.
508 */
509static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
510{
511 const struct ata_xfer_ent *ent;
512
513 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
514 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
515 return 1 << (ent->shift + xfer_mode - ent->base);
516 return 0;
517}
518
519/**
520 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
521 * @xfer_mode: XFER_* of interest
522 *
523 * Return matching xfer_shift for @xfer_mode.
524 *
525 * LOCKING:
526 * None.
527 *
528 * RETURNS:
529 * Matching xfer_shift, -1 if no match found.
530 */
531static int ata_xfer_mode2shift(unsigned int xfer_mode)
532{
533 const struct ata_xfer_ent *ent;
534
535 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
536 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
537 return ent->shift;
538 return -1;
539}
540
1da177e4 541/**
1da7b0d0
TH
542 * ata_mode_string - convert xfer_mask to string
543 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
544 *
545 * Determine string which represents the highest speed
1da7b0d0 546 * (highest bit in @modemask).
1da177e4
LT
547 *
548 * LOCKING:
549 * None.
550 *
551 * RETURNS:
552 * Constant C string representing highest speed listed in
1da7b0d0 553 * @mode_mask, or the constant C string "<n/a>".
1da177e4 554 */
1da7b0d0 555static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 556{
75f554bc
TH
557 static const char * const xfer_mode_str[] = {
558 "PIO0",
559 "PIO1",
560 "PIO2",
561 "PIO3",
562 "PIO4",
b352e57d
AC
563 "PIO5",
564 "PIO6",
75f554bc
TH
565 "MWDMA0",
566 "MWDMA1",
567 "MWDMA2",
b352e57d
AC
568 "MWDMA3",
569 "MWDMA4",
75f554bc
TH
570 "UDMA/16",
571 "UDMA/25",
572 "UDMA/33",
573 "UDMA/44",
574 "UDMA/66",
575 "UDMA/100",
576 "UDMA/133",
577 "UDMA7",
578 };
1da7b0d0 579 int highbit;
1da177e4 580
1da7b0d0
TH
581 highbit = fls(xfer_mask) - 1;
582 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
583 return xfer_mode_str[highbit];
1da177e4 584 return "<n/a>";
1da177e4
LT
585}
586
4c360c81
TH
587static const char *sata_spd_string(unsigned int spd)
588{
589 static const char * const spd_str[] = {
590 "1.5 Gbps",
591 "3.0 Gbps",
592 };
593
594 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
595 return "<unknown>";
596 return spd_str[spd - 1];
597}
598
3373efd8 599void ata_dev_disable(struct ata_device *dev)
0b8efb0a 600{
0dd4b21f 601 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 602 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
603 dev->class++;
604 }
605}
606
1da177e4 607/**
0d5ff566 608 * ata_devchk - PATA device presence detection
1da177e4
LT
609 * @ap: ATA channel to examine
610 * @device: Device to examine (starting at zero)
611 *
612 * This technique was originally described in
613 * Hale Landis's ATADRVR (www.ata-atapi.com), and
614 * later found its way into the ATA/ATAPI spec.
615 *
616 * Write a pattern to the ATA shadow registers,
617 * and if a device is present, it will respond by
618 * correctly storing and echoing back the
619 * ATA shadow register contents.
620 *
621 * LOCKING:
622 * caller.
623 */
624
0d5ff566 625static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
626{
627 struct ata_ioports *ioaddr = &ap->ioaddr;
628 u8 nsect, lbal;
629
630 ap->ops->dev_select(ap, device);
631
0d5ff566
TH
632 iowrite8(0x55, ioaddr->nsect_addr);
633 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 634
0d5ff566
TH
635 iowrite8(0xaa, ioaddr->nsect_addr);
636 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 637
0d5ff566
TH
638 iowrite8(0x55, ioaddr->nsect_addr);
639 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 640
0d5ff566
TH
641 nsect = ioread8(ioaddr->nsect_addr);
642 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
643
644 if ((nsect == 0x55) && (lbal == 0xaa))
645 return 1; /* we found a device */
646
647 return 0; /* nothing found */
648}
649
1da177e4
LT
650/**
651 * ata_dev_classify - determine device type based on ATA-spec signature
652 * @tf: ATA taskfile register set for device to be identified
653 *
654 * Determine from taskfile register contents whether a device is
655 * ATA or ATAPI, as per "Signature and persistence" section
656 * of ATA/PI spec (volume 1, sect 5.14).
657 *
658 * LOCKING:
659 * None.
660 *
661 * RETURNS:
662 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
663 * the event of failure.
664 */
665
057ace5e 666unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
667{
668 /* Apple's open source Darwin code hints that some devices only
669 * put a proper signature into the LBA mid/high registers,
670 * So, we only check those. It's sufficient for uniqueness.
671 */
672
673 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
674 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
675 DPRINTK("found ATA device by sig\n");
676 return ATA_DEV_ATA;
677 }
678
679 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
680 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
681 DPRINTK("found ATAPI device by sig\n");
682 return ATA_DEV_ATAPI;
683 }
684
685 DPRINTK("unknown device\n");
686 return ATA_DEV_UNKNOWN;
687}
688
689/**
690 * ata_dev_try_classify - Parse returned ATA device signature
691 * @ap: ATA channel to examine
692 * @device: Device to examine (starting at zero)
b4dc7623 693 * @r_err: Value of error register on completion
1da177e4
LT
694 *
695 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
696 * an ATA/ATAPI-defined set of values is placed in the ATA
697 * shadow registers, indicating the results of device detection
698 * and diagnostics.
699 *
700 * Select the ATA device, and read the values from the ATA shadow
701 * registers. Then parse according to the Error register value,
702 * and the spec-defined values examined by ata_dev_classify().
703 *
704 * LOCKING:
705 * caller.
b4dc7623
TH
706 *
707 * RETURNS:
708 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
709 */
710
a619f981 711unsigned int
b4dc7623 712ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 713{
1da177e4
LT
714 struct ata_taskfile tf;
715 unsigned int class;
716 u8 err;
717
718 ap->ops->dev_select(ap, device);
719
720 memset(&tf, 0, sizeof(tf));
721
1da177e4 722 ap->ops->tf_read(ap, &tf);
0169e284 723 err = tf.feature;
b4dc7623
TH
724 if (r_err)
725 *r_err = err;
1da177e4 726
93590859
AC
727 /* see if device passed diags: if master then continue and warn later */
728 if (err == 0 && device == 0)
729 /* diagnostic fail : do nothing _YET_ */
730 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
731 else if (err == 1)
1da177e4
LT
732 /* do nothing */ ;
733 else if ((device == 0) && (err == 0x81))
734 /* do nothing */ ;
735 else
b4dc7623 736 return ATA_DEV_NONE;
1da177e4 737
b4dc7623 738 /* determine if device is ATA or ATAPI */
1da177e4 739 class = ata_dev_classify(&tf);
b4dc7623 740
1da177e4 741 if (class == ATA_DEV_UNKNOWN)
b4dc7623 742 return ATA_DEV_NONE;
1da177e4 743 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
744 return ATA_DEV_NONE;
745 return class;
1da177e4
LT
746}
747
748/**
6a62a04d 749 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
750 * @id: IDENTIFY DEVICE results we will examine
751 * @s: string into which data is output
752 * @ofs: offset into identify device page
753 * @len: length of string to return. must be an even number.
754 *
755 * The strings in the IDENTIFY DEVICE page are broken up into
756 * 16-bit chunks. Run through the string, and output each
757 * 8-bit chunk linearly, regardless of platform.
758 *
759 * LOCKING:
760 * caller.
761 */
762
6a62a04d
TH
763void ata_id_string(const u16 *id, unsigned char *s,
764 unsigned int ofs, unsigned int len)
1da177e4
LT
765{
766 unsigned int c;
767
768 while (len > 0) {
769 c = id[ofs] >> 8;
770 *s = c;
771 s++;
772
773 c = id[ofs] & 0xff;
774 *s = c;
775 s++;
776
777 ofs++;
778 len -= 2;
779 }
780}
781
0e949ff3 782/**
6a62a04d 783 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
784 * @id: IDENTIFY DEVICE results we will examine
785 * @s: string into which data is output
786 * @ofs: offset into identify device page
787 * @len: length of string to return. must be an odd number.
788 *
6a62a04d 789 * This function is identical to ata_id_string except that it
0e949ff3
TH
790 * trims trailing spaces and terminates the resulting string with
791 * null. @len must be actual maximum length (even number) + 1.
792 *
793 * LOCKING:
794 * caller.
795 */
6a62a04d
TH
796void ata_id_c_string(const u16 *id, unsigned char *s,
797 unsigned int ofs, unsigned int len)
0e949ff3
TH
798{
799 unsigned char *p;
800
801 WARN_ON(!(len & 1));
802
6a62a04d 803 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
804
805 p = s + strnlen(s, len - 1);
806 while (p > s && p[-1] == ' ')
807 p--;
808 *p = '\0';
809}
0baab86b 810
2940740b
TH
811static u64 ata_id_n_sectors(const u16 *id)
812{
813 if (ata_id_has_lba(id)) {
814 if (ata_id_has_lba48(id))
815 return ata_id_u64(id, 100);
816 else
817 return ata_id_u32(id, 60);
818 } else {
819 if (ata_id_current_chs_valid(id))
820 return ata_id_u32(id, 57);
821 else
822 return id[1] * id[3] * id[6];
823 }
824}
825
0baab86b
EF
826/**
827 * ata_noop_dev_select - Select device 0/1 on ATA bus
828 * @ap: ATA channel to manipulate
829 * @device: ATA device (numbered from zero) to select
830 *
831 * This function performs no actual function.
832 *
833 * May be used as the dev_select() entry in ata_port_operations.
834 *
835 * LOCKING:
836 * caller.
837 */
1da177e4
LT
838void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
839{
840}
841
0baab86b 842
1da177e4
LT
843/**
844 * ata_std_dev_select - Select device 0/1 on ATA bus
845 * @ap: ATA channel to manipulate
846 * @device: ATA device (numbered from zero) to select
847 *
848 * Use the method defined in the ATA specification to
849 * make either device 0, or device 1, active on the
0baab86b
EF
850 * ATA channel. Works with both PIO and MMIO.
851 *
852 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
853 *
854 * LOCKING:
855 * caller.
856 */
857
858void ata_std_dev_select (struct ata_port *ap, unsigned int device)
859{
860 u8 tmp;
861
862 if (device == 0)
863 tmp = ATA_DEVICE_OBS;
864 else
865 tmp = ATA_DEVICE_OBS | ATA_DEV1;
866
0d5ff566 867 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
868 ata_pause(ap); /* needed; also flushes, for mmio */
869}
870
871/**
872 * ata_dev_select - Select device 0/1 on ATA bus
873 * @ap: ATA channel to manipulate
874 * @device: ATA device (numbered from zero) to select
875 * @wait: non-zero to wait for Status register BSY bit to clear
876 * @can_sleep: non-zero if context allows sleeping
877 *
878 * Use the method defined in the ATA specification to
879 * make either device 0, or device 1, active on the
880 * ATA channel.
881 *
882 * This is a high-level version of ata_std_dev_select(),
883 * which additionally provides the services of inserting
884 * the proper pauses and status polling, where needed.
885 *
886 * LOCKING:
887 * caller.
888 */
889
890void ata_dev_select(struct ata_port *ap, unsigned int device,
891 unsigned int wait, unsigned int can_sleep)
892{
88574551 893 if (ata_msg_probe(ap))
0dd4b21f 894 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
88574551 895 "device %u, wait %u\n", ap->id, device, wait);
1da177e4
LT
896
897 if (wait)
898 ata_wait_idle(ap);
899
900 ap->ops->dev_select(ap, device);
901
902 if (wait) {
903 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
904 msleep(150);
905 ata_wait_idle(ap);
906 }
907}
908
909/**
910 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 911 * @id: IDENTIFY DEVICE page to dump
1da177e4 912 *
0bd3300a
TH
913 * Dump selected 16-bit words from the given IDENTIFY DEVICE
914 * page.
1da177e4
LT
915 *
916 * LOCKING:
917 * caller.
918 */
919
0bd3300a 920static inline void ata_dump_id(const u16 *id)
1da177e4
LT
921{
922 DPRINTK("49==0x%04x "
923 "53==0x%04x "
924 "63==0x%04x "
925 "64==0x%04x "
926 "75==0x%04x \n",
0bd3300a
TH
927 id[49],
928 id[53],
929 id[63],
930 id[64],
931 id[75]);
1da177e4
LT
932 DPRINTK("80==0x%04x "
933 "81==0x%04x "
934 "82==0x%04x "
935 "83==0x%04x "
936 "84==0x%04x \n",
0bd3300a
TH
937 id[80],
938 id[81],
939 id[82],
940 id[83],
941 id[84]);
1da177e4
LT
942 DPRINTK("88==0x%04x "
943 "93==0x%04x\n",
0bd3300a
TH
944 id[88],
945 id[93]);
1da177e4
LT
946}
947
cb95d562
TH
948/**
949 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
950 * @id: IDENTIFY data to compute xfer mask from
951 *
952 * Compute the xfermask for this device. This is not as trivial
953 * as it seems if we must consider early devices correctly.
954 *
955 * FIXME: pre IDE drive timing (do we care ?).
956 *
957 * LOCKING:
958 * None.
959 *
960 * RETURNS:
961 * Computed xfermask
962 */
963static unsigned int ata_id_xfermask(const u16 *id)
964{
965 unsigned int pio_mask, mwdma_mask, udma_mask;
966
967 /* Usual case. Word 53 indicates word 64 is valid */
968 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
969 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
970 pio_mask <<= 3;
971 pio_mask |= 0x7;
972 } else {
973 /* If word 64 isn't valid then Word 51 high byte holds
974 * the PIO timing number for the maximum. Turn it into
975 * a mask.
976 */
7a0f1c8a 977 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
978 if (mode < 5) /* Valid PIO range */
979 pio_mask = (2 << mode) - 1;
980 else
981 pio_mask = 1;
cb95d562
TH
982
983 /* But wait.. there's more. Design your standards by
984 * committee and you too can get a free iordy field to
985 * process. However its the speeds not the modes that
986 * are supported... Note drivers using the timing API
987 * will get this right anyway
988 */
989 }
990
991 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 992
b352e57d
AC
993 if (ata_id_is_cfa(id)) {
994 /*
995 * Process compact flash extended modes
996 */
997 int pio = id[163] & 0x7;
998 int dma = (id[163] >> 3) & 7;
999
1000 if (pio)
1001 pio_mask |= (1 << 5);
1002 if (pio > 1)
1003 pio_mask |= (1 << 6);
1004 if (dma)
1005 mwdma_mask |= (1 << 3);
1006 if (dma > 1)
1007 mwdma_mask |= (1 << 4);
1008 }
1009
fb21f0d0
TH
1010 udma_mask = 0;
1011 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1012 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1013
1014 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1015}
1016
86e45b6b
TH
1017/**
1018 * ata_port_queue_task - Queue port_task
1019 * @ap: The ata_port to queue port_task for
e2a7f77a 1020 * @fn: workqueue function to be scheduled
65f27f38 1021 * @data: data for @fn to use
e2a7f77a 1022 * @delay: delay time for workqueue function
86e45b6b
TH
1023 *
1024 * Schedule @fn(@data) for execution after @delay jiffies using
1025 * port_task. There is one port_task per port and it's the
1026 * user(low level driver)'s responsibility to make sure that only
1027 * one task is active at any given time.
1028 *
1029 * libata core layer takes care of synchronization between
1030 * port_task and EH. ata_port_queue_task() may be ignored for EH
1031 * synchronization.
1032 *
1033 * LOCKING:
1034 * Inherited from caller.
1035 */
65f27f38 1036void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1037 unsigned long delay)
1038{
1039 int rc;
1040
b51e9e5d 1041 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
1042 return;
1043
65f27f38
DH
1044 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1045 ap->port_task_data = data;
86e45b6b 1046
52bad64d 1047 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1048
1049 /* rc == 0 means that another user is using port task */
1050 WARN_ON(rc == 0);
1051}
1052
1053/**
1054 * ata_port_flush_task - Flush port_task
1055 * @ap: The ata_port to flush port_task for
1056 *
1057 * After this function completes, port_task is guranteed not to
1058 * be running or scheduled.
1059 *
1060 * LOCKING:
1061 * Kernel thread context (may sleep)
1062 */
1063void ata_port_flush_task(struct ata_port *ap)
1064{
1065 unsigned long flags;
1066
1067 DPRINTK("ENTER\n");
1068
ba6a1308 1069 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1070 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1071 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
1072
1073 DPRINTK("flush #1\n");
1074 flush_workqueue(ata_wq);
1075
1076 /*
1077 * At this point, if a task is running, it's guaranteed to see
1078 * the FLUSH flag; thus, it will never queue pio tasks again.
1079 * Cancel and flush.
1080 */
1081 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 1082 if (ata_msg_ctl(ap))
88574551
TH
1083 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1084 __FUNCTION__);
86e45b6b
TH
1085 flush_workqueue(ata_wq);
1086 }
1087
ba6a1308 1088 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1089 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1090 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 1091
0dd4b21f
BP
1092 if (ata_msg_ctl(ap))
1093 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1094}
1095
7102d230 1096static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1097{
77853bf2 1098 struct completion *waiting = qc->private_data;
a2a7a662 1099
a2a7a662 1100 complete(waiting);
a2a7a662
TH
1101}
1102
1103/**
2432697b 1104 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1105 * @dev: Device to which the command is sent
1106 * @tf: Taskfile registers for the command and the result
d69cf37d 1107 * @cdb: CDB for packet command
a2a7a662 1108 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1109 * @sg: sg list for the data buffer of the command
1110 * @n_elem: Number of sg entries
a2a7a662
TH
1111 *
1112 * Executes libata internal command with timeout. @tf contains
1113 * command on entry and result on return. Timeout and error
1114 * conditions are reported via return value. No recovery action
1115 * is taken after a command times out. It's caller's duty to
1116 * clean up after timeout.
1117 *
1118 * LOCKING:
1119 * None. Should be called with kernel context, might sleep.
551e8889
TH
1120 *
1121 * RETURNS:
1122 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1123 */
2432697b
TH
1124unsigned ata_exec_internal_sg(struct ata_device *dev,
1125 struct ata_taskfile *tf, const u8 *cdb,
1126 int dma_dir, struct scatterlist *sg,
1127 unsigned int n_elem)
a2a7a662 1128{
3373efd8 1129 struct ata_port *ap = dev->ap;
a2a7a662
TH
1130 u8 command = tf->command;
1131 struct ata_queued_cmd *qc;
2ab7db1f 1132 unsigned int tag, preempted_tag;
dedaf2b0 1133 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1134 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1135 unsigned long flags;
77853bf2 1136 unsigned int err_mask;
d95a717f 1137 int rc;
a2a7a662 1138
ba6a1308 1139 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1140
e3180499 1141 /* no internal command while frozen */
b51e9e5d 1142 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1143 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1144 return AC_ERR_SYSTEM;
1145 }
1146
2ab7db1f 1147 /* initialize internal qc */
a2a7a662 1148
2ab7db1f
TH
1149 /* XXX: Tag 0 is used for drivers with legacy EH as some
1150 * drivers choke if any other tag is given. This breaks
1151 * ata_tag_internal() test for those drivers. Don't use new
1152 * EH stuff without converting to it.
1153 */
1154 if (ap->ops->error_handler)
1155 tag = ATA_TAG_INTERNAL;
1156 else
1157 tag = 0;
1158
6cec4a39 1159 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1160 BUG();
f69499f4 1161 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1162
1163 qc->tag = tag;
1164 qc->scsicmd = NULL;
1165 qc->ap = ap;
1166 qc->dev = dev;
1167 ata_qc_reinit(qc);
1168
1169 preempted_tag = ap->active_tag;
dedaf2b0
TH
1170 preempted_sactive = ap->sactive;
1171 preempted_qc_active = ap->qc_active;
2ab7db1f 1172 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1173 ap->sactive = 0;
1174 ap->qc_active = 0;
2ab7db1f
TH
1175
1176 /* prepare & issue qc */
a2a7a662 1177 qc->tf = *tf;
d69cf37d
TH
1178 if (cdb)
1179 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1180 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1181 qc->dma_dir = dma_dir;
1182 if (dma_dir != DMA_NONE) {
2432697b
TH
1183 unsigned int i, buflen = 0;
1184
1185 for (i = 0; i < n_elem; i++)
1186 buflen += sg[i].length;
1187
1188 ata_sg_init(qc, sg, n_elem);
49c80429 1189 qc->nbytes = buflen;
a2a7a662
TH
1190 }
1191
77853bf2 1192 qc->private_data = &wait;
a2a7a662
TH
1193 qc->complete_fn = ata_qc_complete_internal;
1194
8e0e694a 1195 ata_qc_issue(qc);
a2a7a662 1196
ba6a1308 1197 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1198
a8601e5f 1199 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1200
1201 ata_port_flush_task(ap);
41ade50c 1202
d95a717f 1203 if (!rc) {
ba6a1308 1204 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1205
1206 /* We're racing with irq here. If we lose, the
1207 * following test prevents us from completing the qc
d95a717f
TH
1208 * twice. If we win, the port is frozen and will be
1209 * cleaned up by ->post_internal_cmd().
a2a7a662 1210 */
77853bf2 1211 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1212 qc->err_mask |= AC_ERR_TIMEOUT;
1213
1214 if (ap->ops->error_handler)
1215 ata_port_freeze(ap);
1216 else
1217 ata_qc_complete(qc);
f15a1daf 1218
0dd4b21f
BP
1219 if (ata_msg_warn(ap))
1220 ata_dev_printk(dev, KERN_WARNING,
88574551 1221 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1222 }
1223
ba6a1308 1224 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1225 }
1226
d95a717f
TH
1227 /* do post_internal_cmd */
1228 if (ap->ops->post_internal_cmd)
1229 ap->ops->post_internal_cmd(qc);
1230
18d90deb 1231 if ((qc->flags & ATA_QCFLAG_FAILED) && !qc->err_mask) {
0dd4b21f 1232 if (ata_msg_warn(ap))
88574551 1233 ata_dev_printk(dev, KERN_WARNING,
0dd4b21f 1234 "zero err_mask for failed "
88574551 1235 "internal command, assuming AC_ERR_OTHER\n");
d95a717f
TH
1236 qc->err_mask |= AC_ERR_OTHER;
1237 }
1238
15869303 1239 /* finish up */
ba6a1308 1240 spin_lock_irqsave(ap->lock, flags);
15869303 1241
e61e0672 1242 *tf = qc->result_tf;
77853bf2
TH
1243 err_mask = qc->err_mask;
1244
1245 ata_qc_free(qc);
2ab7db1f 1246 ap->active_tag = preempted_tag;
dedaf2b0
TH
1247 ap->sactive = preempted_sactive;
1248 ap->qc_active = preempted_qc_active;
77853bf2 1249
1f7dd3e9
TH
1250 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1251 * Until those drivers are fixed, we detect the condition
1252 * here, fail the command with AC_ERR_SYSTEM and reenable the
1253 * port.
1254 *
1255 * Note that this doesn't change any behavior as internal
1256 * command failure results in disabling the device in the
1257 * higher layer for LLDDs without new reset/EH callbacks.
1258 *
1259 * Kill the following code as soon as those drivers are fixed.
1260 */
198e0fed 1261 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1262 err_mask |= AC_ERR_SYSTEM;
1263 ata_port_probe(ap);
1264 }
1265
ba6a1308 1266 spin_unlock_irqrestore(ap->lock, flags);
15869303 1267
77853bf2 1268 return err_mask;
a2a7a662
TH
1269}
1270
2432697b 1271/**
33480a0e 1272 * ata_exec_internal - execute libata internal command
2432697b
TH
1273 * @dev: Device to which the command is sent
1274 * @tf: Taskfile registers for the command and the result
1275 * @cdb: CDB for packet command
1276 * @dma_dir: Data tranfer direction of the command
1277 * @buf: Data buffer of the command
1278 * @buflen: Length of data buffer
1279 *
1280 * Wrapper around ata_exec_internal_sg() which takes simple
1281 * buffer instead of sg list.
1282 *
1283 * LOCKING:
1284 * None. Should be called with kernel context, might sleep.
1285 *
1286 * RETURNS:
1287 * Zero on success, AC_ERR_* mask on failure
1288 */
1289unsigned ata_exec_internal(struct ata_device *dev,
1290 struct ata_taskfile *tf, const u8 *cdb,
1291 int dma_dir, void *buf, unsigned int buflen)
1292{
33480a0e
TH
1293 struct scatterlist *psg = NULL, sg;
1294 unsigned int n_elem = 0;
2432697b 1295
33480a0e
TH
1296 if (dma_dir != DMA_NONE) {
1297 WARN_ON(!buf);
1298 sg_init_one(&sg, buf, buflen);
1299 psg = &sg;
1300 n_elem++;
1301 }
2432697b 1302
33480a0e 1303 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1304}
1305
977e6b9f
TH
1306/**
1307 * ata_do_simple_cmd - execute simple internal command
1308 * @dev: Device to which the command is sent
1309 * @cmd: Opcode to execute
1310 *
1311 * Execute a 'simple' command, that only consists of the opcode
1312 * 'cmd' itself, without filling any other registers
1313 *
1314 * LOCKING:
1315 * Kernel thread context (may sleep).
1316 *
1317 * RETURNS:
1318 * Zero on success, AC_ERR_* mask on failure
e58eb583 1319 */
77b08fb5 1320unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1321{
1322 struct ata_taskfile tf;
e58eb583
TH
1323
1324 ata_tf_init(dev, &tf);
1325
1326 tf.command = cmd;
1327 tf.flags |= ATA_TFLAG_DEVICE;
1328 tf.protocol = ATA_PROT_NODATA;
1329
977e6b9f 1330 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1331}
1332
1bc4ccff
AC
1333/**
1334 * ata_pio_need_iordy - check if iordy needed
1335 * @adev: ATA device
1336 *
1337 * Check if the current speed of the device requires IORDY. Used
1338 * by various controllers for chip configuration.
1339 */
1340
1341unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1342{
1343 int pio;
1344 int speed = adev->pio_mode - XFER_PIO_0;
1345
1346 if (speed < 2)
1347 return 0;
1348 if (speed > 2)
1349 return 1;
2e9edbf8 1350
1bc4ccff
AC
1351 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1352
1353 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1354 pio = adev->id[ATA_ID_EIDE_PIO];
1355 /* Is the speed faster than the drive allows non IORDY ? */
1356 if (pio) {
1357 /* This is cycle times not frequency - watch the logic! */
1358 if (pio > 240) /* PIO2 is 240nS per cycle */
1359 return 1;
1360 return 0;
1361 }
1362 }
1363 return 0;
1364}
1365
1da177e4 1366/**
49016aca 1367 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1368 * @dev: target device
1369 * @p_class: pointer to class of the target device (may be changed)
bff04647 1370 * @flags: ATA_READID_* flags
fe635c7e 1371 * @id: buffer to read IDENTIFY data into
1da177e4 1372 *
49016aca
TH
1373 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1374 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1375 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1376 * for pre-ATA4 drives.
1da177e4
LT
1377 *
1378 * LOCKING:
49016aca
TH
1379 * Kernel thread context (may sleep)
1380 *
1381 * RETURNS:
1382 * 0 on success, -errno otherwise.
1da177e4 1383 */
a9beec95 1384int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1385 unsigned int flags, u16 *id)
1da177e4 1386{
3373efd8 1387 struct ata_port *ap = dev->ap;
49016aca 1388 unsigned int class = *p_class;
a0123703 1389 struct ata_taskfile tf;
49016aca
TH
1390 unsigned int err_mask = 0;
1391 const char *reason;
1392 int rc;
1da177e4 1393
0dd4b21f 1394 if (ata_msg_ctl(ap))
88574551
TH
1395 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1396 __FUNCTION__, ap->id, dev->devno);
1da177e4 1397
49016aca 1398 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1399
49016aca 1400 retry:
3373efd8 1401 ata_tf_init(dev, &tf);
a0123703 1402
49016aca
TH
1403 switch (class) {
1404 case ATA_DEV_ATA:
a0123703 1405 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1406 break;
1407 case ATA_DEV_ATAPI:
a0123703 1408 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1409 break;
1410 default:
1411 rc = -ENODEV;
1412 reason = "unsupported class";
1413 goto err_out;
1da177e4
LT
1414 }
1415
a0123703 1416 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1417
1418 /* Some devices choke if TF registers contain garbage. Make
1419 * sure those are properly initialized.
1420 */
1421 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1422
1423 /* Device presence detection is unreliable on some
1424 * controllers. Always poll IDENTIFY if available.
1425 */
1426 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1427
3373efd8 1428 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1429 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1430 if (err_mask) {
800b3996 1431 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8
TH
1432 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1433 ap->id, dev->devno);
1434 return -ENOENT;
1435 }
1436
49016aca
TH
1437 rc = -EIO;
1438 reason = "I/O error";
1da177e4
LT
1439 goto err_out;
1440 }
1441
49016aca 1442 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1443
49016aca 1444 /* sanity check */
a4f5749b
TH
1445 rc = -EINVAL;
1446 reason = "device reports illegal type";
1447
1448 if (class == ATA_DEV_ATA) {
1449 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1450 goto err_out;
1451 } else {
1452 if (ata_id_is_ata(id))
1453 goto err_out;
49016aca
TH
1454 }
1455
bff04647 1456 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1457 /*
1458 * The exact sequence expected by certain pre-ATA4 drives is:
1459 * SRST RESET
1460 * IDENTIFY
1461 * INITIALIZE DEVICE PARAMETERS
1462 * anything else..
1463 * Some drives were very specific about that exact sequence.
1464 */
1465 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1466 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1467 if (err_mask) {
1468 rc = -EIO;
1469 reason = "INIT_DEV_PARAMS failed";
1470 goto err_out;
1471 }
1472
1473 /* current CHS translation info (id[53-58]) might be
1474 * changed. reread the identify device info.
1475 */
bff04647 1476 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1477 goto retry;
1478 }
1479 }
1480
1481 *p_class = class;
fe635c7e 1482
49016aca
TH
1483 return 0;
1484
1485 err_out:
88574551 1486 if (ata_msg_warn(ap))
0dd4b21f 1487 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1488 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1489 return rc;
1490}
1491
3373efd8 1492static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1493{
3373efd8 1494 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1495}
1496
a6e6ce8e
TH
1497static void ata_dev_config_ncq(struct ata_device *dev,
1498 char *desc, size_t desc_sz)
1499{
1500 struct ata_port *ap = dev->ap;
1501 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1502
1503 if (!ata_id_has_ncq(dev->id)) {
1504 desc[0] = '\0';
1505 return;
1506 }
6919a0a6
AC
1507 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1508 snprintf(desc, desc_sz, "NCQ (not used)");
1509 return;
1510 }
a6e6ce8e 1511 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1512 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1513 dev->flags |= ATA_DFLAG_NCQ;
1514 }
1515
1516 if (hdepth >= ddepth)
1517 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1518 else
1519 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1520}
1521
e6d902a3
BK
1522static void ata_set_port_max_cmd_len(struct ata_port *ap)
1523{
1524 int i;
1525
cca3974e
JG
1526 if (ap->scsi_host) {
1527 unsigned int len = 0;
1528
e6d902a3 1529 for (i = 0; i < ATA_MAX_DEVICES; i++)
cca3974e
JG
1530 len = max(len, ap->device[i].cdb_len);
1531
1532 ap->scsi_host->max_cmd_len = len;
e6d902a3
BK
1533 }
1534}
1535
49016aca 1536/**
ffeae418 1537 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1538 * @dev: Target device to configure
1539 *
1540 * Configure @dev according to @dev->id. Generic and low-level
1541 * driver specific fixups are also applied.
49016aca
TH
1542 *
1543 * LOCKING:
ffeae418
TH
1544 * Kernel thread context (may sleep)
1545 *
1546 * RETURNS:
1547 * 0 on success, -errno otherwise
49016aca 1548 */
efdaedc4 1549int ata_dev_configure(struct ata_device *dev)
49016aca 1550{
3373efd8 1551 struct ata_port *ap = dev->ap;
efdaedc4 1552 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1553 const u16 *id = dev->id;
ff8854b2 1554 unsigned int xfer_mask;
b352e57d 1555 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1556 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1557 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1558 int rc;
49016aca 1559
0dd4b21f 1560 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
88574551
TH
1561 ata_dev_printk(dev, KERN_INFO,
1562 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1563 __FUNCTION__, ap->id, dev->devno);
ffeae418 1564 return 0;
49016aca
TH
1565 }
1566
0dd4b21f 1567 if (ata_msg_probe(ap))
88574551
TH
1568 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1569 __FUNCTION__, ap->id, dev->devno);
1da177e4 1570
08573a86
KCA
1571 /* set _SDD */
1572 rc = ata_acpi_push_id(ap, dev->devno);
1573 if (rc) {
1574 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1575 rc);
1576 }
1577
1578 /* retrieve and execute the ATA task file of _GTF */
1579 ata_acpi_exec_tfs(ap);
1580
c39f5ebe 1581 /* print device capabilities */
0dd4b21f 1582 if (ata_msg_probe(ap))
88574551
TH
1583 ata_dev_printk(dev, KERN_DEBUG,
1584 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1585 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1586 __FUNCTION__,
f15a1daf
TH
1587 id[49], id[82], id[83], id[84],
1588 id[85], id[86], id[87], id[88]);
c39f5ebe 1589
208a9933 1590 /* initialize to-be-configured parameters */
ea1dd4e1 1591 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1592 dev->max_sectors = 0;
1593 dev->cdb_len = 0;
1594 dev->n_sectors = 0;
1595 dev->cylinders = 0;
1596 dev->heads = 0;
1597 dev->sectors = 0;
1598
1da177e4
LT
1599 /*
1600 * common ATA, ATAPI feature tests
1601 */
1602
ff8854b2 1603 /* find max transfer mode; for printk only */
1148c3a7 1604 xfer_mask = ata_id_xfermask(id);
1da177e4 1605
0dd4b21f
BP
1606 if (ata_msg_probe(ap))
1607 ata_dump_id(id);
1da177e4
LT
1608
1609 /* ATA-specific feature tests */
1610 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1611 if (ata_id_is_cfa(id)) {
1612 if (id[162] & 1) /* CPRM may make this media unusable */
1613 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1614 ap->id, dev->devno);
1615 snprintf(revbuf, 7, "CFA");
1616 }
1617 else
1618 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1619
1148c3a7 1620 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1621
3f64f565 1622 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
591a6e8e 1623 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
3f64f565
EM
1624 sizeof(fwrevbuf));
1625
591a6e8e 1626 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
3f64f565
EM
1627 sizeof(modelbuf));
1628
1629 if (dev->id[59] & 0x100)
1630 dev->multi_count = dev->id[59] & 0xff;
1631
1148c3a7 1632 if (ata_id_has_lba(id)) {
4c2d721a 1633 const char *lba_desc;
a6e6ce8e 1634 char ncq_desc[20];
8bf62ece 1635
4c2d721a
TH
1636 lba_desc = "LBA";
1637 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1638 if (ata_id_has_lba48(id)) {
8bf62ece 1639 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1640 lba_desc = "LBA48";
6fc49adb
TH
1641
1642 if (dev->n_sectors >= (1UL << 28) &&
1643 ata_id_has_flush_ext(id))
1644 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1645 }
8bf62ece 1646
a6e6ce8e
TH
1647 /* config NCQ */
1648 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1649
8bf62ece 1650 /* print device info to dmesg */
3f64f565
EM
1651 if (ata_msg_drv(ap) && print_info) {
1652 ata_dev_printk(dev, KERN_INFO,
1653 "%s: %s, %s, max %s\n",
1654 revbuf, modelbuf, fwrevbuf,
1655 ata_mode_string(xfer_mask));
1656 ata_dev_printk(dev, KERN_INFO,
1657 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1658 (unsigned long long)dev->n_sectors,
3f64f565
EM
1659 dev->multi_count, lba_desc, ncq_desc);
1660 }
ffeae418 1661 } else {
8bf62ece
AL
1662 /* CHS */
1663
1664 /* Default translation */
1148c3a7
TH
1665 dev->cylinders = id[1];
1666 dev->heads = id[3];
1667 dev->sectors = id[6];
8bf62ece 1668
1148c3a7 1669 if (ata_id_current_chs_valid(id)) {
8bf62ece 1670 /* Current CHS translation is valid. */
1148c3a7
TH
1671 dev->cylinders = id[54];
1672 dev->heads = id[55];
1673 dev->sectors = id[56];
8bf62ece
AL
1674 }
1675
1676 /* print device info to dmesg */
3f64f565 1677 if (ata_msg_drv(ap) && print_info) {
88574551 1678 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1679 "%s: %s, %s, max %s\n",
1680 revbuf, modelbuf, fwrevbuf,
1681 ata_mode_string(xfer_mask));
1682 ata_dev_printk(dev, KERN_INFO,
1683 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1684 (unsigned long long)dev->n_sectors,
1685 dev->multi_count, dev->cylinders,
1686 dev->heads, dev->sectors);
1687 }
07f6f7d0
AL
1688 }
1689
6e7846e9 1690 dev->cdb_len = 16;
1da177e4
LT
1691 }
1692
1693 /* ATAPI-specific feature tests */
2c13b7ce 1694 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1695 char *cdb_intr_string = "";
1696
1148c3a7 1697 rc = atapi_cdb_len(id);
1da177e4 1698 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1699 if (ata_msg_warn(ap))
88574551
TH
1700 ata_dev_printk(dev, KERN_WARNING,
1701 "unsupported CDB len\n");
ffeae418 1702 rc = -EINVAL;
1da177e4
LT
1703 goto err_out_nosup;
1704 }
6e7846e9 1705 dev->cdb_len = (unsigned int) rc;
1da177e4 1706
08a556db 1707 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1708 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1709 cdb_intr_string = ", CDB intr";
1710 }
312f7da2 1711
1da177e4 1712 /* print device info to dmesg */
5afc8142 1713 if (ata_msg_drv(ap) && print_info)
12436c30
TH
1714 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1715 ata_mode_string(xfer_mask),
1716 cdb_intr_string);
1da177e4
LT
1717 }
1718
914ed354
TH
1719 /* determine max_sectors */
1720 dev->max_sectors = ATA_MAX_SECTORS;
1721 if (dev->flags & ATA_DFLAG_LBA48)
1722 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1723
93590859
AC
1724 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1725 /* Let the user know. We don't want to disallow opens for
1726 rescue purposes, or in case the vendor is just a blithering
1727 idiot */
1728 if (print_info) {
1729 ata_dev_printk(dev, KERN_WARNING,
1730"Drive reports diagnostics failure. This may indicate a drive\n");
1731 ata_dev_printk(dev, KERN_WARNING,
1732"fault or invalid emulation. Contact drive vendor for information.\n");
1733 }
1734 }
1735
e6d902a3 1736 ata_set_port_max_cmd_len(ap);
6e7846e9 1737
4b2f3ede 1738 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1739 if (ata_dev_knobble(dev)) {
5afc8142 1740 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
1741 ata_dev_printk(dev, KERN_INFO,
1742 "applying bridge limits\n");
5a529139 1743 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1744 dev->max_sectors = ATA_MAX_SECTORS;
1745 }
1746
1747 if (ap->ops->dev_config)
1748 ap->ops->dev_config(ap, dev);
1749
0dd4b21f
BP
1750 if (ata_msg_probe(ap))
1751 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1752 __FUNCTION__, ata_chk_status(ap));
ffeae418 1753 return 0;
1da177e4
LT
1754
1755err_out_nosup:
0dd4b21f 1756 if (ata_msg_probe(ap))
88574551
TH
1757 ata_dev_printk(dev, KERN_DEBUG,
1758 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 1759 return rc;
1da177e4
LT
1760}
1761
1762/**
1763 * ata_bus_probe - Reset and probe ATA bus
1764 * @ap: Bus to probe
1765 *
0cba632b
JG
1766 * Master ATA bus probing function. Initiates a hardware-dependent
1767 * bus reset, then attempts to identify any devices found on
1768 * the bus.
1769 *
1da177e4 1770 * LOCKING:
0cba632b 1771 * PCI/etc. bus probe sem.
1da177e4
LT
1772 *
1773 * RETURNS:
96072e69 1774 * Zero on success, negative errno otherwise.
1da177e4
LT
1775 */
1776
80289167 1777int ata_bus_probe(struct ata_port *ap)
1da177e4 1778{
28ca5c57 1779 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1780 int tries[ATA_MAX_DEVICES];
1781 int i, rc, down_xfermask;
e82cbdb9 1782 struct ata_device *dev;
458337db 1783 int dnxfer_sel;
1da177e4 1784
28ca5c57 1785 ata_port_probe(ap);
c19ba8af 1786
14d2bac1
TH
1787 for (i = 0; i < ATA_MAX_DEVICES; i++)
1788 tries[i] = ATA_PROBE_MAX_TRIES;
1789
1790 retry:
1791 down_xfermask = 0;
1792
2044470c 1793 /* reset and determine device classes */
52783c5d 1794 ap->ops->phy_reset(ap);
2061a47a 1795
52783c5d
TH
1796 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1797 dev = &ap->device[i];
c19ba8af 1798
52783c5d
TH
1799 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1800 dev->class != ATA_DEV_UNKNOWN)
1801 classes[dev->devno] = dev->class;
1802 else
1803 classes[dev->devno] = ATA_DEV_NONE;
2044470c 1804
52783c5d 1805 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 1806 }
1da177e4 1807
52783c5d 1808 ata_port_probe(ap);
2044470c 1809
b6079ca4
AC
1810 /* after the reset the device state is PIO 0 and the controller
1811 state is undefined. Record the mode */
1812
1813 for (i = 0; i < ATA_MAX_DEVICES; i++)
1814 ap->device[i].pio_mode = XFER_PIO_0;
1815
28ca5c57 1816 /* read IDENTIFY page and configure devices */
1da177e4 1817 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1818 dev = &ap->device[i];
28ca5c57 1819
ec573755
TH
1820 if (tries[i])
1821 dev->class = classes[i];
ffeae418 1822
14d2bac1 1823 if (!ata_dev_enabled(dev))
ffeae418 1824 continue;
ffeae418 1825
bff04647
TH
1826 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1827 dev->id);
14d2bac1
TH
1828 if (rc)
1829 goto fail;
1830
efdaedc4
TH
1831 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1832 rc = ata_dev_configure(dev);
1833 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
1834 if (rc)
1835 goto fail;
1da177e4
LT
1836 }
1837
e82cbdb9 1838 /* configure transfer mode */
3adcebb2 1839 rc = ata_set_mode(ap, &dev);
51713d35
TH
1840 if (rc) {
1841 down_xfermask = 1;
1842 goto fail;
e82cbdb9 1843 }
1da177e4 1844
e82cbdb9
TH
1845 for (i = 0; i < ATA_MAX_DEVICES; i++)
1846 if (ata_dev_enabled(&ap->device[i]))
1847 return 0;
1da177e4 1848
e82cbdb9
TH
1849 /* no device present, disable port */
1850 ata_port_disable(ap);
1da177e4 1851 ap->ops->port_disable(ap);
96072e69 1852 return -ENODEV;
14d2bac1
TH
1853
1854 fail:
1855 switch (rc) {
1856 case -EINVAL:
1857 case -ENODEV:
1858 tries[dev->devno] = 0;
1859 break;
1860 case -EIO:
3c567b7d 1861 sata_down_spd_limit(ap);
14d2bac1
TH
1862 /* fall through */
1863 default:
1864 tries[dev->devno]--;
458337db
TH
1865 dnxfer_sel = ATA_DNXFER_ANY;
1866 if (tries[dev->devno] == 1)
1867 dnxfer_sel = ATA_DNXFER_FORCE_PIO0;
1868 if (down_xfermask && ata_down_xfermask_limit(dev, dnxfer_sel))
14d2bac1
TH
1869 tries[dev->devno] = 0;
1870 }
1871
ec573755 1872 if (!tries[dev->devno]) {
458337db 1873 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0);
3373efd8 1874 ata_dev_disable(dev);
ec573755
TH
1875 }
1876
14d2bac1 1877 goto retry;
1da177e4
LT
1878}
1879
1880/**
0cba632b
JG
1881 * ata_port_probe - Mark port as enabled
1882 * @ap: Port for which we indicate enablement
1da177e4 1883 *
0cba632b
JG
1884 * Modify @ap data structure such that the system
1885 * thinks that the entire port is enabled.
1886 *
cca3974e 1887 * LOCKING: host lock, or some other form of
0cba632b 1888 * serialization.
1da177e4
LT
1889 */
1890
1891void ata_port_probe(struct ata_port *ap)
1892{
198e0fed 1893 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1894}
1895
3be680b7
TH
1896/**
1897 * sata_print_link_status - Print SATA link status
1898 * @ap: SATA port to printk link status about
1899 *
1900 * This function prints link speed and status of a SATA link.
1901 *
1902 * LOCKING:
1903 * None.
1904 */
1905static void sata_print_link_status(struct ata_port *ap)
1906{
6d5f9732 1907 u32 sstatus, scontrol, tmp;
3be680b7 1908
81952c54 1909 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1910 return;
81952c54 1911 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1912
81952c54 1913 if (ata_port_online(ap)) {
3be680b7 1914 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1915 ata_port_printk(ap, KERN_INFO,
1916 "SATA link up %s (SStatus %X SControl %X)\n",
1917 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1918 } else {
f15a1daf
TH
1919 ata_port_printk(ap, KERN_INFO,
1920 "SATA link down (SStatus %X SControl %X)\n",
1921 sstatus, scontrol);
3be680b7
TH
1922 }
1923}
1924
1da177e4 1925/**
780a87f7
JG
1926 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1927 * @ap: SATA port associated with target SATA PHY.
1da177e4 1928 *
780a87f7
JG
1929 * This function issues commands to standard SATA Sxxx
1930 * PHY registers, to wake up the phy (and device), and
1931 * clear any reset condition.
1da177e4
LT
1932 *
1933 * LOCKING:
0cba632b 1934 * PCI/etc. bus probe sem.
1da177e4
LT
1935 *
1936 */
1937void __sata_phy_reset(struct ata_port *ap)
1938{
1939 u32 sstatus;
1940 unsigned long timeout = jiffies + (HZ * 5);
1941
1942 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1943 /* issue phy wake/reset */
81952c54 1944 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1945 /* Couldn't find anything in SATA I/II specs, but
1946 * AHCI-1.1 10.4.2 says at least 1 ms. */
1947 mdelay(1);
1da177e4 1948 }
81952c54
TH
1949 /* phy wake/clear reset */
1950 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1951
1952 /* wait for phy to become ready, if necessary */
1953 do {
1954 msleep(200);
81952c54 1955 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1956 if ((sstatus & 0xf) != 1)
1957 break;
1958 } while (time_before(jiffies, timeout));
1959
3be680b7
TH
1960 /* print link status */
1961 sata_print_link_status(ap);
656563e3 1962
3be680b7 1963 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1964 if (!ata_port_offline(ap))
1da177e4 1965 ata_port_probe(ap);
3be680b7 1966 else
1da177e4 1967 ata_port_disable(ap);
1da177e4 1968
198e0fed 1969 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1970 return;
1971
1972 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1973 ata_port_disable(ap);
1974 return;
1975 }
1976
1977 ap->cbl = ATA_CBL_SATA;
1978}
1979
1980/**
780a87f7
JG
1981 * sata_phy_reset - Reset SATA bus.
1982 * @ap: SATA port associated with target SATA PHY.
1da177e4 1983 *
780a87f7
JG
1984 * This function resets the SATA bus, and then probes
1985 * the bus for devices.
1da177e4
LT
1986 *
1987 * LOCKING:
0cba632b 1988 * PCI/etc. bus probe sem.
1da177e4
LT
1989 *
1990 */
1991void sata_phy_reset(struct ata_port *ap)
1992{
1993 __sata_phy_reset(ap);
198e0fed 1994 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1995 return;
1996 ata_bus_reset(ap);
1997}
1998
ebdfca6e
AC
1999/**
2000 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2001 * @adev: device
2002 *
2003 * Obtain the other device on the same cable, or if none is
2004 * present NULL is returned
2005 */
2e9edbf8 2006
3373efd8 2007struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2008{
3373efd8 2009 struct ata_port *ap = adev->ap;
ebdfca6e 2010 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2011 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2012 return NULL;
2013 return pair;
2014}
2015
1da177e4 2016/**
780a87f7
JG
2017 * ata_port_disable - Disable port.
2018 * @ap: Port to be disabled.
1da177e4 2019 *
780a87f7
JG
2020 * Modify @ap data structure such that the system
2021 * thinks that the entire port is disabled, and should
2022 * never attempt to probe or communicate with devices
2023 * on this port.
2024 *
cca3974e 2025 * LOCKING: host lock, or some other form of
780a87f7 2026 * serialization.
1da177e4
LT
2027 */
2028
2029void ata_port_disable(struct ata_port *ap)
2030{
2031 ap->device[0].class = ATA_DEV_NONE;
2032 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2033 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2034}
2035
1c3fae4d 2036/**
3c567b7d 2037 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2038 * @ap: Port to adjust SATA spd limit for
2039 *
2040 * Adjust SATA spd limit of @ap downward. Note that this
2041 * function only adjusts the limit. The change must be applied
3c567b7d 2042 * using sata_set_spd().
1c3fae4d
TH
2043 *
2044 * LOCKING:
2045 * Inherited from caller.
2046 *
2047 * RETURNS:
2048 * 0 on success, negative errno on failure
2049 */
3c567b7d 2050int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2051{
81952c54
TH
2052 u32 sstatus, spd, mask;
2053 int rc, highbit;
1c3fae4d 2054
81952c54
TH
2055 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2056 if (rc)
2057 return rc;
1c3fae4d
TH
2058
2059 mask = ap->sata_spd_limit;
2060 if (mask <= 1)
2061 return -EINVAL;
2062 highbit = fls(mask) - 1;
2063 mask &= ~(1 << highbit);
2064
81952c54 2065 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
2066 if (spd <= 1)
2067 return -EINVAL;
2068 spd--;
2069 mask &= (1 << spd) - 1;
2070 if (!mask)
2071 return -EINVAL;
2072
2073 ap->sata_spd_limit = mask;
2074
f15a1daf
TH
2075 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2076 sata_spd_string(fls(mask)));
1c3fae4d
TH
2077
2078 return 0;
2079}
2080
3c567b7d 2081static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2082{
2083 u32 spd, limit;
2084
2085 if (ap->sata_spd_limit == UINT_MAX)
2086 limit = 0;
2087 else
2088 limit = fls(ap->sata_spd_limit);
2089
2090 spd = (*scontrol >> 4) & 0xf;
2091 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2092
2093 return spd != limit;
2094}
2095
2096/**
3c567b7d 2097 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2098 * @ap: Port in question
2099 *
2100 * Test whether the spd limit in SControl matches
2101 * @ap->sata_spd_limit. This function is used to determine
2102 * whether hardreset is necessary to apply SATA spd
2103 * configuration.
2104 *
2105 * LOCKING:
2106 * Inherited from caller.
2107 *
2108 * RETURNS:
2109 * 1 if SATA spd configuration is needed, 0 otherwise.
2110 */
3c567b7d 2111int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2112{
2113 u32 scontrol;
2114
81952c54 2115 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2116 return 0;
2117
3c567b7d 2118 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2119}
2120
2121/**
3c567b7d 2122 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2123 * @ap: Port to set SATA spd for
2124 *
2125 * Set SATA spd of @ap according to sata_spd_limit.
2126 *
2127 * LOCKING:
2128 * Inherited from caller.
2129 *
2130 * RETURNS:
2131 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2132 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2133 */
3c567b7d 2134int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2135{
2136 u32 scontrol;
81952c54 2137 int rc;
1c3fae4d 2138
81952c54
TH
2139 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2140 return rc;
1c3fae4d 2141
3c567b7d 2142 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2143 return 0;
2144
81952c54
TH
2145 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2146 return rc;
2147
1c3fae4d
TH
2148 return 1;
2149}
2150
452503f9
AC
2151/*
2152 * This mode timing computation functionality is ported over from
2153 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2154 */
2155/*
b352e57d 2156 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2157 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2158 * for UDMA6, which is currently supported only by Maxtor drives.
2159 *
2160 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2161 */
2162
2163static const struct ata_timing ata_timing[] = {
2164
2165 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2166 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2167 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2168 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2169
b352e57d
AC
2170 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2171 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2172 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2173 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2174 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2175
2176/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2177
452503f9
AC
2178 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2179 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2180 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2181
452503f9
AC
2182 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2183 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2184 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2185
b352e57d
AC
2186 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2187 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2188 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2189 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2190
2191 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2192 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2193 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2194
2195/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2196
2197 { 0xFF }
2198};
2199
2200#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2201#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2202
2203static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2204{
2205 q->setup = EZ(t->setup * 1000, T);
2206 q->act8b = EZ(t->act8b * 1000, T);
2207 q->rec8b = EZ(t->rec8b * 1000, T);
2208 q->cyc8b = EZ(t->cyc8b * 1000, T);
2209 q->active = EZ(t->active * 1000, T);
2210 q->recover = EZ(t->recover * 1000, T);
2211 q->cycle = EZ(t->cycle * 1000, T);
2212 q->udma = EZ(t->udma * 1000, UT);
2213}
2214
2215void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2216 struct ata_timing *m, unsigned int what)
2217{
2218 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2219 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2220 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2221 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2222 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2223 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2224 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2225 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2226}
2227
2228static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2229{
2230 const struct ata_timing *t;
2231
2232 for (t = ata_timing; t->mode != speed; t++)
91190758 2233 if (t->mode == 0xFF)
452503f9 2234 return NULL;
2e9edbf8 2235 return t;
452503f9
AC
2236}
2237
2238int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2239 struct ata_timing *t, int T, int UT)
2240{
2241 const struct ata_timing *s;
2242 struct ata_timing p;
2243
2244 /*
2e9edbf8 2245 * Find the mode.
75b1f2f8 2246 */
452503f9
AC
2247
2248 if (!(s = ata_timing_find_mode(speed)))
2249 return -EINVAL;
2250
75b1f2f8
AL
2251 memcpy(t, s, sizeof(*s));
2252
452503f9
AC
2253 /*
2254 * If the drive is an EIDE drive, it can tell us it needs extended
2255 * PIO/MW_DMA cycle timing.
2256 */
2257
2258 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2259 memset(&p, 0, sizeof(p));
2260 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2261 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2262 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2263 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2264 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2265 }
2266 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2267 }
2268
2269 /*
2270 * Convert the timing to bus clock counts.
2271 */
2272
75b1f2f8 2273 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2274
2275 /*
c893a3ae
RD
2276 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2277 * S.M.A.R.T * and some other commands. We have to ensure that the
2278 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2279 */
2280
fd3367af 2281 if (speed > XFER_PIO_6) {
452503f9
AC
2282 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2283 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2284 }
2285
2286 /*
c893a3ae 2287 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2288 */
2289
2290 if (t->act8b + t->rec8b < t->cyc8b) {
2291 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2292 t->rec8b = t->cyc8b - t->act8b;
2293 }
2294
2295 if (t->active + t->recover < t->cycle) {
2296 t->active += (t->cycle - (t->active + t->recover)) / 2;
2297 t->recover = t->cycle - t->active;
2298 }
2299
2300 return 0;
2301}
2302
cf176e1a
TH
2303/**
2304 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2305 * @dev: Device to adjust xfer masks
458337db 2306 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2307 *
2308 * Adjust xfer masks of @dev downward. Note that this function
2309 * does not apply the change. Invoking ata_set_mode() afterwards
2310 * will apply the limit.
2311 *
2312 * LOCKING:
2313 * Inherited from caller.
2314 *
2315 * RETURNS:
2316 * 0 on success, negative errno on failure
2317 */
458337db 2318int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2319{
458337db
TH
2320 char buf[32];
2321 unsigned int orig_mask, xfer_mask;
2322 unsigned int pio_mask, mwdma_mask, udma_mask;
2323 int quiet, highbit;
cf176e1a 2324
458337db
TH
2325 quiet = !!(sel & ATA_DNXFER_QUIET);
2326 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2327
458337db
TH
2328 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2329 dev->mwdma_mask,
2330 dev->udma_mask);
2331 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2332
458337db
TH
2333 switch (sel) {
2334 case ATA_DNXFER_PIO:
2335 highbit = fls(pio_mask) - 1;
2336 pio_mask &= ~(1 << highbit);
2337 break;
2338
2339 case ATA_DNXFER_DMA:
2340 if (udma_mask) {
2341 highbit = fls(udma_mask) - 1;
2342 udma_mask &= ~(1 << highbit);
2343 if (!udma_mask)
2344 return -ENOENT;
2345 } else if (mwdma_mask) {
2346 highbit = fls(mwdma_mask) - 1;
2347 mwdma_mask &= ~(1 << highbit);
2348 if (!mwdma_mask)
2349 return -ENOENT;
2350 }
2351 break;
2352
2353 case ATA_DNXFER_40C:
2354 udma_mask &= ATA_UDMA_MASK_40C;
2355 break;
2356
2357 case ATA_DNXFER_FORCE_PIO0:
2358 pio_mask &= 1;
2359 case ATA_DNXFER_FORCE_PIO:
2360 mwdma_mask = 0;
2361 udma_mask = 0;
2362 break;
2363
2364 case ATA_DNXFER_ANY:
2365 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2366 if (xfer_mask & ATA_MASK_UDMA)
2367 xfer_mask &= ~ATA_MASK_MWDMA;
2368
2369 highbit = fls(xfer_mask) - 1;
2370 xfer_mask &= ~(1 << highbit);
2371 break;
2372
2373 default:
2374 BUG();
2375 }
2376
2377 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2378
2379 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2380 return -ENOENT;
2381
2382 if (!quiet) {
2383 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2384 snprintf(buf, sizeof(buf), "%s:%s",
2385 ata_mode_string(xfer_mask),
2386 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2387 else
2388 snprintf(buf, sizeof(buf), "%s",
2389 ata_mode_string(xfer_mask));
2390
2391 ata_dev_printk(dev, KERN_WARNING,
2392 "limiting speed to %s\n", buf);
2393 }
cf176e1a
TH
2394
2395 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2396 &dev->udma_mask);
2397
cf176e1a 2398 return 0;
cf176e1a
TH
2399}
2400
3373efd8 2401static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2402{
baa1e78a 2403 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2404 unsigned int err_mask;
2405 int rc;
1da177e4 2406
e8384607 2407 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2408 if (dev->xfer_shift == ATA_SHIFT_PIO)
2409 dev->flags |= ATA_DFLAG_PIO;
2410
3373efd8 2411 err_mask = ata_dev_set_xfermode(dev);
11750a40
A
2412 /* Old CFA may refuse this command, which is just fine */
2413 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2414 err_mask &= ~AC_ERR_DEV;
2415
83206a29 2416 if (err_mask) {
f15a1daf
TH
2417 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2418 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2419 return -EIO;
2420 }
1da177e4 2421
baa1e78a 2422 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2423 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2424 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2425 if (rc)
83206a29 2426 return rc;
48a8a14f 2427
23e71c3d
TH
2428 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2429 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2430
f15a1daf
TH
2431 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2432 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2433 return 0;
1da177e4
LT
2434}
2435
1da177e4
LT
2436/**
2437 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2438 * @ap: port on which timings will be programmed
e82cbdb9 2439 * @r_failed_dev: out paramter for failed device
1da177e4 2440 *
e82cbdb9
TH
2441 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2442 * ata_set_mode() fails, pointer to the failing device is
2443 * returned in @r_failed_dev.
780a87f7 2444 *
1da177e4 2445 * LOCKING:
0cba632b 2446 * PCI/etc. bus probe sem.
e82cbdb9
TH
2447 *
2448 * RETURNS:
2449 * 0 on success, negative errno otherwise
1da177e4 2450 */
1ad8e7f9 2451int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2452{
e8e0619f 2453 struct ata_device *dev;
e82cbdb9 2454 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2455
3adcebb2 2456 /* has private set_mode? */
b229a7b0
A
2457 if (ap->ops->set_mode)
2458 return ap->ops->set_mode(ap, r_failed_dev);
3adcebb2 2459
a6d5a51c
TH
2460 /* step 1: calculate xfer_mask */
2461 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2462 unsigned int pio_mask, dma_mask;
a6d5a51c 2463
e8e0619f
TH
2464 dev = &ap->device[i];
2465
e1211e3f 2466 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2467 continue;
2468
3373efd8 2469 ata_dev_xfermask(dev);
1da177e4 2470
acf356b1
TH
2471 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2472 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2473 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2474 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2475
4f65977d 2476 found = 1;
5444a6f4
AC
2477 if (dev->dma_mode)
2478 used_dma = 1;
a6d5a51c 2479 }
4f65977d 2480 if (!found)
e82cbdb9 2481 goto out;
a6d5a51c
TH
2482
2483 /* step 2: always set host PIO timings */
e8e0619f
TH
2484 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2485 dev = &ap->device[i];
2486 if (!ata_dev_enabled(dev))
2487 continue;
2488
2489 if (!dev->pio_mode) {
f15a1daf 2490 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2491 rc = -EINVAL;
e82cbdb9 2492 goto out;
e8e0619f
TH
2493 }
2494
2495 dev->xfer_mode = dev->pio_mode;
2496 dev->xfer_shift = ATA_SHIFT_PIO;
2497 if (ap->ops->set_piomode)
2498 ap->ops->set_piomode(ap, dev);
2499 }
1da177e4 2500
a6d5a51c 2501 /* step 3: set host DMA timings */
e8e0619f
TH
2502 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2503 dev = &ap->device[i];
2504
2505 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2506 continue;
2507
2508 dev->xfer_mode = dev->dma_mode;
2509 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2510 if (ap->ops->set_dmamode)
2511 ap->ops->set_dmamode(ap, dev);
2512 }
1da177e4
LT
2513
2514 /* step 4: update devices' xfer mode */
83206a29 2515 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2516 dev = &ap->device[i];
1da177e4 2517
18d90deb 2518 /* don't update suspended devices' xfer mode */
02670bf3 2519 if (!ata_dev_ready(dev))
83206a29
TH
2520 continue;
2521
3373efd8 2522 rc = ata_dev_set_mode(dev);
5bbc53f4 2523 if (rc)
e82cbdb9 2524 goto out;
83206a29 2525 }
1da177e4 2526
e8e0619f
TH
2527 /* Record simplex status. If we selected DMA then the other
2528 * host channels are not permitted to do so.
5444a6f4 2529 */
cca3974e
JG
2530 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2531 ap->host->simplex_claimed = 1;
5444a6f4 2532
e8e0619f 2533 /* step5: chip specific finalisation */
1da177e4
LT
2534 if (ap->ops->post_set_mode)
2535 ap->ops->post_set_mode(ap);
2536
e82cbdb9
TH
2537 out:
2538 if (rc)
2539 *r_failed_dev = dev;
2540 return rc;
1da177e4
LT
2541}
2542
1fdffbce
JG
2543/**
2544 * ata_tf_to_host - issue ATA taskfile to host controller
2545 * @ap: port to which command is being issued
2546 * @tf: ATA taskfile register set
2547 *
2548 * Issues ATA taskfile register set to ATA host controller,
2549 * with proper synchronization with interrupt handler and
2550 * other threads.
2551 *
2552 * LOCKING:
cca3974e 2553 * spin_lock_irqsave(host lock)
1fdffbce
JG
2554 */
2555
2556static inline void ata_tf_to_host(struct ata_port *ap,
2557 const struct ata_taskfile *tf)
2558{
2559 ap->ops->tf_load(ap, tf);
2560 ap->ops->exec_command(ap, tf);
2561}
2562
1da177e4
LT
2563/**
2564 * ata_busy_sleep - sleep until BSY clears, or timeout
2565 * @ap: port containing status register to be polled
2566 * @tmout_pat: impatience timeout
2567 * @tmout: overall timeout
2568 *
780a87f7
JG
2569 * Sleep until ATA Status register bit BSY clears,
2570 * or a timeout occurs.
2571 *
d1adc1bb
TH
2572 * LOCKING:
2573 * Kernel thread context (may sleep).
2574 *
2575 * RETURNS:
2576 * 0 on success, -errno otherwise.
1da177e4 2577 */
d1adc1bb
TH
2578int ata_busy_sleep(struct ata_port *ap,
2579 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2580{
2581 unsigned long timer_start, timeout;
2582 u8 status;
2583
2584 status = ata_busy_wait(ap, ATA_BUSY, 300);
2585 timer_start = jiffies;
2586 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2587 while (status != 0xff && (status & ATA_BUSY) &&
2588 time_before(jiffies, timeout)) {
1da177e4
LT
2589 msleep(50);
2590 status = ata_busy_wait(ap, ATA_BUSY, 3);
2591 }
2592
d1adc1bb 2593 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2594 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2595 "port is slow to respond, please be patient "
2596 "(Status 0x%x)\n", status);
1da177e4
LT
2597
2598 timeout = timer_start + tmout;
d1adc1bb
TH
2599 while (status != 0xff && (status & ATA_BUSY) &&
2600 time_before(jiffies, timeout)) {
1da177e4
LT
2601 msleep(50);
2602 status = ata_chk_status(ap);
2603 }
2604
d1adc1bb
TH
2605 if (status == 0xff)
2606 return -ENODEV;
2607
1da177e4 2608 if (status & ATA_BUSY) {
f15a1daf 2609 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2610 "(%lu secs, Status 0x%x)\n",
2611 tmout / HZ, status);
d1adc1bb 2612 return -EBUSY;
1da177e4
LT
2613 }
2614
2615 return 0;
2616}
2617
2618static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2619{
2620 struct ata_ioports *ioaddr = &ap->ioaddr;
2621 unsigned int dev0 = devmask & (1 << 0);
2622 unsigned int dev1 = devmask & (1 << 1);
2623 unsigned long timeout;
2624
2625 /* if device 0 was found in ata_devchk, wait for its
2626 * BSY bit to clear
2627 */
2628 if (dev0)
2629 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2630
2631 /* if device 1 was found in ata_devchk, wait for
2632 * register access, then wait for BSY to clear
2633 */
2634 timeout = jiffies + ATA_TMOUT_BOOT;
2635 while (dev1) {
2636 u8 nsect, lbal;
2637
2638 ap->ops->dev_select(ap, 1);
0d5ff566
TH
2639 nsect = ioread8(ioaddr->nsect_addr);
2640 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
2641 if ((nsect == 1) && (lbal == 1))
2642 break;
2643 if (time_after(jiffies, timeout)) {
2644 dev1 = 0;
2645 break;
2646 }
2647 msleep(50); /* give drive a breather */
2648 }
2649 if (dev1)
2650 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2651
2652 /* is all this really necessary? */
2653 ap->ops->dev_select(ap, 0);
2654 if (dev1)
2655 ap->ops->dev_select(ap, 1);
2656 if (dev0)
2657 ap->ops->dev_select(ap, 0);
2658}
2659
1da177e4
LT
2660static unsigned int ata_bus_softreset(struct ata_port *ap,
2661 unsigned int devmask)
2662{
2663 struct ata_ioports *ioaddr = &ap->ioaddr;
2664
2665 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2666
2667 /* software reset. causes dev0 to be selected */
0d5ff566
TH
2668 iowrite8(ap->ctl, ioaddr->ctl_addr);
2669 udelay(20); /* FIXME: flush */
2670 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2671 udelay(20); /* FIXME: flush */
2672 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
2673
2674 /* spec mandates ">= 2ms" before checking status.
2675 * We wait 150ms, because that was the magic delay used for
2676 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2677 * between when the ATA command register is written, and then
2678 * status is checked. Because waiting for "a while" before
2679 * checking status is fine, post SRST, we perform this magic
2680 * delay here as well.
09c7ad79
AC
2681 *
2682 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2683 */
2684 msleep(150);
2685
2e9edbf8 2686 /* Before we perform post reset processing we want to see if
298a41ca
TH
2687 * the bus shows 0xFF because the odd clown forgets the D7
2688 * pulldown resistor.
2689 */
d1adc1bb
TH
2690 if (ata_check_status(ap) == 0xFF)
2691 return 0;
09c7ad79 2692
1da177e4
LT
2693 ata_bus_post_reset(ap, devmask);
2694
2695 return 0;
2696}
2697
2698/**
2699 * ata_bus_reset - reset host port and associated ATA channel
2700 * @ap: port to reset
2701 *
2702 * This is typically the first time we actually start issuing
2703 * commands to the ATA channel. We wait for BSY to clear, then
2704 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2705 * result. Determine what devices, if any, are on the channel
2706 * by looking at the device 0/1 error register. Look at the signature
2707 * stored in each device's taskfile registers, to determine if
2708 * the device is ATA or ATAPI.
2709 *
2710 * LOCKING:
0cba632b 2711 * PCI/etc. bus probe sem.
cca3974e 2712 * Obtains host lock.
1da177e4
LT
2713 *
2714 * SIDE EFFECTS:
198e0fed 2715 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2716 */
2717
2718void ata_bus_reset(struct ata_port *ap)
2719{
2720 struct ata_ioports *ioaddr = &ap->ioaddr;
2721 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2722 u8 err;
aec5c3c1 2723 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2724
2725 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2726
2727 /* determine if device 0/1 are present */
2728 if (ap->flags & ATA_FLAG_SATA_RESET)
2729 dev0 = 1;
2730 else {
2731 dev0 = ata_devchk(ap, 0);
2732 if (slave_possible)
2733 dev1 = ata_devchk(ap, 1);
2734 }
2735
2736 if (dev0)
2737 devmask |= (1 << 0);
2738 if (dev1)
2739 devmask |= (1 << 1);
2740
2741 /* select device 0 again */
2742 ap->ops->dev_select(ap, 0);
2743
2744 /* issue bus reset */
2745 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2746 if (ata_bus_softreset(ap, devmask))
2747 goto err_out;
1da177e4
LT
2748
2749 /*
2750 * determine by signature whether we have ATA or ATAPI devices
2751 */
b4dc7623 2752 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2753 if ((slave_possible) && (err != 0x81))
b4dc7623 2754 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2755
2756 /* re-enable interrupts */
83625006 2757 ap->ops->irq_on(ap);
1da177e4
LT
2758
2759 /* is double-select really necessary? */
2760 if (ap->device[1].class != ATA_DEV_NONE)
2761 ap->ops->dev_select(ap, 1);
2762 if (ap->device[0].class != ATA_DEV_NONE)
2763 ap->ops->dev_select(ap, 0);
2764
2765 /* if no devices were detected, disable this port */
2766 if ((ap->device[0].class == ATA_DEV_NONE) &&
2767 (ap->device[1].class == ATA_DEV_NONE))
2768 goto err_out;
2769
2770 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2771 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 2772 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
2773 }
2774
2775 DPRINTK("EXIT\n");
2776 return;
2777
2778err_out:
f15a1daf 2779 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2780 ap->ops->port_disable(ap);
2781
2782 DPRINTK("EXIT\n");
2783}
2784
d7bb4cc7
TH
2785/**
2786 * sata_phy_debounce - debounce SATA phy status
2787 * @ap: ATA port to debounce SATA phy status for
2788 * @params: timing parameters { interval, duratinon, timeout } in msec
2789 *
2790 * Make sure SStatus of @ap reaches stable state, determined by
2791 * holding the same value where DET is not 1 for @duration polled
2792 * every @interval, before @timeout. Timeout constraints the
2793 * beginning of the stable state. Because, after hot unplugging,
2794 * DET gets stuck at 1 on some controllers, this functions waits
2795 * until timeout then returns 0 if DET is stable at 1.
2796 *
2797 * LOCKING:
2798 * Kernel thread context (may sleep)
2799 *
2800 * RETURNS:
2801 * 0 on success, -errno on failure.
2802 */
2803int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2804{
d7bb4cc7
TH
2805 unsigned long interval_msec = params[0];
2806 unsigned long duration = params[1] * HZ / 1000;
2807 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2808 unsigned long last_jiffies;
2809 u32 last, cur;
2810 int rc;
2811
2812 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2813 return rc;
2814 cur &= 0xf;
2815
2816 last = cur;
2817 last_jiffies = jiffies;
2818
2819 while (1) {
2820 msleep(interval_msec);
2821 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2822 return rc;
2823 cur &= 0xf;
2824
2825 /* DET stable? */
2826 if (cur == last) {
2827 if (cur == 1 && time_before(jiffies, timeout))
2828 continue;
2829 if (time_after(jiffies, last_jiffies + duration))
2830 return 0;
2831 continue;
2832 }
2833
2834 /* unstable, start over */
2835 last = cur;
2836 last_jiffies = jiffies;
2837
2838 /* check timeout */
2839 if (time_after(jiffies, timeout))
2840 return -EBUSY;
2841 }
2842}
2843
2844/**
2845 * sata_phy_resume - resume SATA phy
2846 * @ap: ATA port to resume SATA phy for
2847 * @params: timing parameters { interval, duratinon, timeout } in msec
2848 *
2849 * Resume SATA phy of @ap and debounce it.
2850 *
2851 * LOCKING:
2852 * Kernel thread context (may sleep)
2853 *
2854 * RETURNS:
2855 * 0 on success, -errno on failure.
2856 */
2857int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2858{
2859 u32 scontrol;
81952c54
TH
2860 int rc;
2861
2862 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2863 return rc;
7a7921e8 2864
852ee16a 2865 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2866
2867 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2868 return rc;
7a7921e8 2869
d7bb4cc7
TH
2870 /* Some PHYs react badly if SStatus is pounded immediately
2871 * after resuming. Delay 200ms before debouncing.
2872 */
2873 msleep(200);
7a7921e8 2874
d7bb4cc7 2875 return sata_phy_debounce(ap, params);
7a7921e8
TH
2876}
2877
f5914a46
TH
2878static void ata_wait_spinup(struct ata_port *ap)
2879{
2880 struct ata_eh_context *ehc = &ap->eh_context;
2881 unsigned long end, secs;
2882 int rc;
2883
2884 /* first, debounce phy if SATA */
2885 if (ap->cbl == ATA_CBL_SATA) {
e9c83914 2886 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
f5914a46
TH
2887
2888 /* if debounced successfully and offline, no need to wait */
2889 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2890 return;
2891 }
2892
2893 /* okay, let's give the drive time to spin up */
2894 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2895 secs = ((end - jiffies) + HZ - 1) / HZ;
2896
2897 if (time_after(jiffies, end))
2898 return;
2899
2900 if (secs > 5)
2901 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2902 "(%lu secs)\n", secs);
2903
2904 schedule_timeout_uninterruptible(end - jiffies);
2905}
2906
2907/**
2908 * ata_std_prereset - prepare for reset
2909 * @ap: ATA port to be reset
2910 *
2911 * @ap is about to be reset. Initialize it.
2912 *
2913 * LOCKING:
2914 * Kernel thread context (may sleep)
2915 *
2916 * RETURNS:
2917 * 0 on success, -errno otherwise.
2918 */
2919int ata_std_prereset(struct ata_port *ap)
2920{
2921 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 2922 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
2923 int rc;
2924
28324304
TH
2925 /* handle link resume & hotplug spinup */
2926 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2927 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2928 ehc->i.action |= ATA_EH_HARDRESET;
2929
2930 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2931 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2932 ata_wait_spinup(ap);
f5914a46
TH
2933
2934 /* if we're about to do hardreset, nothing more to do */
2935 if (ehc->i.action & ATA_EH_HARDRESET)
2936 return 0;
2937
2938 /* if SATA, resume phy */
2939 if (ap->cbl == ATA_CBL_SATA) {
f5914a46
TH
2940 rc = sata_phy_resume(ap, timing);
2941 if (rc && rc != -EOPNOTSUPP) {
2942 /* phy resume failed */
2943 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2944 "link for reset (errno=%d)\n", rc);
2945 return rc;
2946 }
2947 }
2948
2949 /* Wait for !BSY if the controller can wait for the first D2H
2950 * Reg FIS and we don't know that no device is attached.
2951 */
2952 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2953 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2954
2955 return 0;
2956}
2957
c2bd5804
TH
2958/**
2959 * ata_std_softreset - reset host port via ATA SRST
2960 * @ap: port to reset
c2bd5804
TH
2961 * @classes: resulting classes of attached devices
2962 *
52783c5d 2963 * Reset host port using ATA SRST.
c2bd5804
TH
2964 *
2965 * LOCKING:
2966 * Kernel thread context (may sleep)
2967 *
2968 * RETURNS:
2969 * 0 on success, -errno otherwise.
2970 */
2bf2cb26 2971int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2972{
2973 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2974 unsigned int devmask = 0, err_mask;
2975 u8 err;
2976
2977 DPRINTK("ENTER\n");
2978
81952c54 2979 if (ata_port_offline(ap)) {
3a39746a
TH
2980 classes[0] = ATA_DEV_NONE;
2981 goto out;
2982 }
2983
c2bd5804
TH
2984 /* determine if device 0/1 are present */
2985 if (ata_devchk(ap, 0))
2986 devmask |= (1 << 0);
2987 if (slave_possible && ata_devchk(ap, 1))
2988 devmask |= (1 << 1);
2989
c2bd5804
TH
2990 /* select device 0 again */
2991 ap->ops->dev_select(ap, 0);
2992
2993 /* issue bus reset */
2994 DPRINTK("about to softreset, devmask=%x\n", devmask);
2995 err_mask = ata_bus_softreset(ap, devmask);
2996 if (err_mask) {
f15a1daf
TH
2997 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2998 err_mask);
c2bd5804
TH
2999 return -EIO;
3000 }
3001
3002 /* determine by signature whether we have ATA or ATAPI devices */
3003 classes[0] = ata_dev_try_classify(ap, 0, &err);
3004 if (slave_possible && err != 0x81)
3005 classes[1] = ata_dev_try_classify(ap, 1, &err);
3006
3a39746a 3007 out:
c2bd5804
TH
3008 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3009 return 0;
3010}
3011
3012/**
b6103f6d 3013 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3014 * @ap: port to reset
b6103f6d 3015 * @timing: timing parameters { interval, duratinon, timeout } in msec
c2bd5804
TH
3016 *
3017 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3018 *
3019 * LOCKING:
3020 * Kernel thread context (may sleep)
3021 *
3022 * RETURNS:
3023 * 0 on success, -errno otherwise.
3024 */
b6103f6d 3025int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
c2bd5804 3026{
852ee16a 3027 u32 scontrol;
81952c54 3028 int rc;
852ee16a 3029
c2bd5804
TH
3030 DPRINTK("ENTER\n");
3031
3c567b7d 3032 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3033 /* SATA spec says nothing about how to reconfigure
3034 * spd. To be on the safe side, turn off phy during
3035 * reconfiguration. This works for at least ICH7 AHCI
3036 * and Sil3124.
3037 */
81952c54 3038 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3039 goto out;
81952c54 3040
a34b6fc0 3041 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3042
3043 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3044 goto out;
1c3fae4d 3045
3c567b7d 3046 sata_set_spd(ap);
1c3fae4d
TH
3047 }
3048
3049 /* issue phy wake/reset */
81952c54 3050 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3051 goto out;
81952c54 3052
852ee16a 3053 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3054
3055 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3056 goto out;
c2bd5804 3057
1c3fae4d 3058 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3059 * 10.4.2 says at least 1 ms.
3060 */
3061 msleep(1);
3062
1c3fae4d 3063 /* bring phy back */
b6103f6d
TH
3064 rc = sata_phy_resume(ap, timing);
3065 out:
3066 DPRINTK("EXIT, rc=%d\n", rc);
3067 return rc;
3068}
3069
3070/**
3071 * sata_std_hardreset - reset host port via SATA phy reset
3072 * @ap: port to reset
3073 * @class: resulting class of attached device
3074 *
3075 * SATA phy-reset host port using DET bits of SControl register,
3076 * wait for !BSY and classify the attached device.
3077 *
3078 * LOCKING:
3079 * Kernel thread context (may sleep)
3080 *
3081 * RETURNS:
3082 * 0 on success, -errno otherwise.
3083 */
3084int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3085{
3086 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3087 int rc;
3088
3089 DPRINTK("ENTER\n");
3090
3091 /* do hardreset */
3092 rc = sata_port_hardreset(ap, timing);
3093 if (rc) {
3094 ata_port_printk(ap, KERN_ERR,
3095 "COMRESET failed (errno=%d)\n", rc);
3096 return rc;
3097 }
c2bd5804 3098
c2bd5804 3099 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3100 if (ata_port_offline(ap)) {
c2bd5804
TH
3101 *class = ATA_DEV_NONE;
3102 DPRINTK("EXIT, link offline\n");
3103 return 0;
3104 }
3105
34fee227
TH
3106 /* wait a while before checking status, see SRST for more info */
3107 msleep(150);
3108
c2bd5804 3109 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
3110 ata_port_printk(ap, KERN_ERR,
3111 "COMRESET failed (device not ready)\n");
c2bd5804
TH
3112 return -EIO;
3113 }
3114
3a39746a
TH
3115 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3116
c2bd5804
TH
3117 *class = ata_dev_try_classify(ap, 0, NULL);
3118
3119 DPRINTK("EXIT, class=%u\n", *class);
3120 return 0;
3121}
3122
3123/**
3124 * ata_std_postreset - standard postreset callback
3125 * @ap: the target ata_port
3126 * @classes: classes of attached devices
3127 *
3128 * This function is invoked after a successful reset. Note that
3129 * the device might have been reset more than once using
3130 * different reset methods before postreset is invoked.
c2bd5804 3131 *
c2bd5804
TH
3132 * LOCKING:
3133 * Kernel thread context (may sleep)
3134 */
3135void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3136{
dc2b3515
TH
3137 u32 serror;
3138
c2bd5804
TH
3139 DPRINTK("ENTER\n");
3140
c2bd5804 3141 /* print link status */
81952c54 3142 sata_print_link_status(ap);
c2bd5804 3143
dc2b3515
TH
3144 /* clear SError */
3145 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3146 sata_scr_write(ap, SCR_ERROR, serror);
3147
3a39746a 3148 /* re-enable interrupts */
83625006
AI
3149 if (!ap->ops->error_handler)
3150 ap->ops->irq_on(ap);
c2bd5804
TH
3151
3152 /* is double-select really necessary? */
3153 if (classes[0] != ATA_DEV_NONE)
3154 ap->ops->dev_select(ap, 1);
3155 if (classes[1] != ATA_DEV_NONE)
3156 ap->ops->dev_select(ap, 0);
3157
3a39746a
TH
3158 /* bail out if no device is present */
3159 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3160 DPRINTK("EXIT, no device\n");
3161 return;
3162 }
3163
3164 /* set up device control */
0d5ff566
TH
3165 if (ap->ioaddr.ctl_addr)
3166 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3167
3168 DPRINTK("EXIT\n");
3169}
3170
623a3128
TH
3171/**
3172 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3173 * @dev: device to compare against
3174 * @new_class: class of the new device
3175 * @new_id: IDENTIFY page of the new device
3176 *
3177 * Compare @new_class and @new_id against @dev and determine
3178 * whether @dev is the device indicated by @new_class and
3179 * @new_id.
3180 *
3181 * LOCKING:
3182 * None.
3183 *
3184 * RETURNS:
3185 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3186 */
3373efd8
TH
3187static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3188 const u16 *new_id)
623a3128
TH
3189{
3190 const u16 *old_id = dev->id;
a0cf733b
TH
3191 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3192 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3193 u64 new_n_sectors;
3194
3195 if (dev->class != new_class) {
f15a1daf
TH
3196 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3197 dev->class, new_class);
623a3128
TH
3198 return 0;
3199 }
3200
a0cf733b
TH
3201 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3202 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3203 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3204 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3205 new_n_sectors = ata_id_n_sectors(new_id);
3206
3207 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3208 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3209 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3210 return 0;
3211 }
3212
3213 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3214 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3215 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3216 return 0;
3217 }
3218
3219 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
3220 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3221 "%llu != %llu\n",
3222 (unsigned long long)dev->n_sectors,
3223 (unsigned long long)new_n_sectors);
623a3128
TH
3224 return 0;
3225 }
3226
3227 return 1;
3228}
3229
3230/**
3231 * ata_dev_revalidate - Revalidate ATA device
623a3128 3232 * @dev: device to revalidate
bff04647 3233 * @readid_flags: read ID flags
623a3128
TH
3234 *
3235 * Re-read IDENTIFY page and make sure @dev is still attached to
3236 * the port.
3237 *
3238 * LOCKING:
3239 * Kernel thread context (may sleep)
3240 *
3241 * RETURNS:
3242 * 0 on success, negative errno otherwise
3243 */
bff04647 3244int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
623a3128 3245{
5eb45c02 3246 unsigned int class = dev->class;
f15a1daf 3247 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3248 int rc;
3249
5eb45c02
TH
3250 if (!ata_dev_enabled(dev)) {
3251 rc = -ENODEV;
3252 goto fail;
3253 }
623a3128 3254
fe635c7e 3255 /* read ID data */
bff04647 3256 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128
TH
3257 if (rc)
3258 goto fail;
3259
3260 /* is the device still there? */
3373efd8 3261 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
3262 rc = -ENODEV;
3263 goto fail;
3264 }
3265
fe635c7e 3266 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
3267
3268 /* configure device according to the new ID */
efdaedc4 3269 rc = ata_dev_configure(dev);
5eb45c02
TH
3270 if (rc == 0)
3271 return 0;
623a3128
TH
3272
3273 fail:
f15a1daf 3274 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3275 return rc;
3276}
3277
6919a0a6
AC
3278struct ata_blacklist_entry {
3279 const char *model_num;
3280 const char *model_rev;
3281 unsigned long horkage;
3282};
3283
3284static const struct ata_blacklist_entry ata_device_blacklist [] = {
3285 /* Devices with DMA related problems under Linux */
3286 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3287 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3288 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3289 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3290 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3291 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3292 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3293 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3294 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3295 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3296 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3297 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3298 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3299 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3300 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3301 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3302 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3303 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3304 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3305 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3306 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3307 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3308 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3309 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3310 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3311 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3312 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3313 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3314 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3315 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3316
3317 /* Devices we expect to fail diagnostics */
3318
3319 /* Devices where NCQ should be avoided */
3320 /* NCQ is slow */
3321 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3322
3323 /* Devices with NCQ limits */
3324
3325 /* End Marker */
3326 { }
1da177e4 3327};
2e9edbf8 3328
6919a0a6 3329unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3330{
8bfa79fc
TH
3331 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3332 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3333 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3334
8bfa79fc
TH
3335 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3336 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3337
6919a0a6 3338 while (ad->model_num) {
8bfa79fc 3339 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3340 if (ad->model_rev == NULL)
3341 return ad->horkage;
8bfa79fc 3342 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3343 return ad->horkage;
f4b15fef 3344 }
6919a0a6 3345 ad++;
f4b15fef 3346 }
1da177e4
LT
3347 return 0;
3348}
3349
6919a0a6
AC
3350static int ata_dma_blacklisted(const struct ata_device *dev)
3351{
3352 /* We don't support polling DMA.
3353 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3354 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3355 */
3356 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3357 (dev->flags & ATA_DFLAG_CDB_INTR))
3358 return 1;
3359 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3360}
3361
a6d5a51c
TH
3362/**
3363 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3364 * @dev: Device to compute xfermask for
3365 *
acf356b1
TH
3366 * Compute supported xfermask of @dev and store it in
3367 * dev->*_mask. This function is responsible for applying all
3368 * known limits including host controller limits, device
3369 * blacklist, etc...
a6d5a51c
TH
3370 *
3371 * LOCKING:
3372 * None.
a6d5a51c 3373 */
3373efd8 3374static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3375{
3373efd8 3376 struct ata_port *ap = dev->ap;
cca3974e 3377 struct ata_host *host = ap->host;
a6d5a51c 3378 unsigned long xfer_mask;
1da177e4 3379
37deecb5 3380 /* controller modes available */
565083e1
TH
3381 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3382 ap->mwdma_mask, ap->udma_mask);
3383
3384 /* Apply cable rule here. Don't apply it early because when
3385 * we handle hot plug the cable type can itself change.
3386 */
3387 if (ap->cbl == ATA_CBL_PATA40)
3388 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
fc085150
AC
3389 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3390 * host side are checked drive side as well. Cases where we know a
3391 * 40wire cable is used safely for 80 are not checked here.
3392 */
3393 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3394 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3395
1da177e4 3396
37deecb5
TH
3397 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3398 dev->mwdma_mask, dev->udma_mask);
3399 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3400
b352e57d
AC
3401 /*
3402 * CFA Advanced TrueIDE timings are not allowed on a shared
3403 * cable
3404 */
3405 if (ata_dev_pair(dev)) {
3406 /* No PIO5 or PIO6 */
3407 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3408 /* No MWDMA3 or MWDMA 4 */
3409 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3410 }
3411
37deecb5
TH
3412 if (ata_dma_blacklisted(dev)) {
3413 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3414 ata_dev_printk(dev, KERN_WARNING,
3415 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3416 }
a6d5a51c 3417
cca3974e 3418 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
37deecb5
TH
3419 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3420 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3421 "other device, disabling DMA\n");
5444a6f4 3422 }
565083e1 3423
5444a6f4
AC
3424 if (ap->ops->mode_filter)
3425 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3426
565083e1
TH
3427 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3428 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3429}
3430
1da177e4
LT
3431/**
3432 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3433 * @dev: Device to which command will be sent
3434 *
780a87f7
JG
3435 * Issue SET FEATURES - XFER MODE command to device @dev
3436 * on port @ap.
3437 *
1da177e4 3438 * LOCKING:
0cba632b 3439 * PCI/etc. bus probe sem.
83206a29
TH
3440 *
3441 * RETURNS:
3442 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3443 */
3444
3373efd8 3445static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3446{
a0123703 3447 struct ata_taskfile tf;
83206a29 3448 unsigned int err_mask;
1da177e4
LT
3449
3450 /* set up set-features taskfile */
3451 DPRINTK("set features - xfer mode\n");
3452
3373efd8 3453 ata_tf_init(dev, &tf);
a0123703
TH
3454 tf.command = ATA_CMD_SET_FEATURES;
3455 tf.feature = SETFEATURES_XFER;
3456 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3457 tf.protocol = ATA_PROT_NODATA;
3458 tf.nsect = dev->xfer_mode;
1da177e4 3459
3373efd8 3460 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3461
83206a29
TH
3462 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3463 return err_mask;
1da177e4
LT
3464}
3465
8bf62ece
AL
3466/**
3467 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3468 * @dev: Device to which command will be sent
e2a7f77a
RD
3469 * @heads: Number of heads (taskfile parameter)
3470 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3471 *
3472 * LOCKING:
6aff8f1f
TH
3473 * Kernel thread context (may sleep)
3474 *
3475 * RETURNS:
3476 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3477 */
3373efd8
TH
3478static unsigned int ata_dev_init_params(struct ata_device *dev,
3479 u16 heads, u16 sectors)
8bf62ece 3480{
a0123703 3481 struct ata_taskfile tf;
6aff8f1f 3482 unsigned int err_mask;
8bf62ece
AL
3483
3484 /* Number of sectors per track 1-255. Number of heads 1-16 */
3485 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3486 return AC_ERR_INVALID;
8bf62ece
AL
3487
3488 /* set up init dev params taskfile */
3489 DPRINTK("init dev params \n");
3490
3373efd8 3491 ata_tf_init(dev, &tf);
a0123703
TH
3492 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3493 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3494 tf.protocol = ATA_PROT_NODATA;
3495 tf.nsect = sectors;
3496 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3497
3373efd8 3498 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3499
6aff8f1f
TH
3500 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3501 return err_mask;
8bf62ece
AL
3502}
3503
1da177e4 3504/**
0cba632b
JG
3505 * ata_sg_clean - Unmap DMA memory associated with command
3506 * @qc: Command containing DMA memory to be released
3507 *
3508 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3509 *
3510 * LOCKING:
cca3974e 3511 * spin_lock_irqsave(host lock)
1da177e4 3512 */
70e6ad0c 3513void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
3514{
3515 struct ata_port *ap = qc->ap;
cedc9a47 3516 struct scatterlist *sg = qc->__sg;
1da177e4 3517 int dir = qc->dma_dir;
cedc9a47 3518 void *pad_buf = NULL;
1da177e4 3519
a4631474
TH
3520 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3521 WARN_ON(sg == NULL);
1da177e4
LT
3522
3523 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3524 WARN_ON(qc->n_elem > 1);
1da177e4 3525
2c13b7ce 3526 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3527
cedc9a47
JG
3528 /* if we padded the buffer out to 32-bit bound, and data
3529 * xfer direction is from-device, we must copy from the
3530 * pad buffer back into the supplied buffer
3531 */
3532 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3533 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3534
3535 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3536 if (qc->n_elem)
2f1f610b 3537 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3538 /* restore last sg */
3539 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3540 if (pad_buf) {
3541 struct scatterlist *psg = &qc->pad_sgent;
3542 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3543 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3544 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3545 }
3546 } else {
2e242fa9 3547 if (qc->n_elem)
2f1f610b 3548 dma_unmap_single(ap->dev,
e1410f2d
JG
3549 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3550 dir);
cedc9a47
JG
3551 /* restore sg */
3552 sg->length += qc->pad_len;
3553 if (pad_buf)
3554 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3555 pad_buf, qc->pad_len);
3556 }
1da177e4
LT
3557
3558 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3559 qc->__sg = NULL;
1da177e4
LT
3560}
3561
3562/**
3563 * ata_fill_sg - Fill PCI IDE PRD table
3564 * @qc: Metadata associated with taskfile to be transferred
3565 *
780a87f7
JG
3566 * Fill PCI IDE PRD (scatter-gather) table with segments
3567 * associated with the current disk command.
3568 *
1da177e4 3569 * LOCKING:
cca3974e 3570 * spin_lock_irqsave(host lock)
1da177e4
LT
3571 *
3572 */
3573static void ata_fill_sg(struct ata_queued_cmd *qc)
3574{
1da177e4 3575 struct ata_port *ap = qc->ap;
cedc9a47
JG
3576 struct scatterlist *sg;
3577 unsigned int idx;
1da177e4 3578
a4631474 3579 WARN_ON(qc->__sg == NULL);
f131883e 3580 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3581
3582 idx = 0;
cedc9a47 3583 ata_for_each_sg(sg, qc) {
1da177e4
LT
3584 u32 addr, offset;
3585 u32 sg_len, len;
3586
3587 /* determine if physical DMA addr spans 64K boundary.
3588 * Note h/w doesn't support 64-bit, so we unconditionally
3589 * truncate dma_addr_t to u32.
3590 */
3591 addr = (u32) sg_dma_address(sg);
3592 sg_len = sg_dma_len(sg);
3593
3594 while (sg_len) {
3595 offset = addr & 0xffff;
3596 len = sg_len;
3597 if ((offset + sg_len) > 0x10000)
3598 len = 0x10000 - offset;
3599
3600 ap->prd[idx].addr = cpu_to_le32(addr);
3601 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3602 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3603
3604 idx++;
3605 sg_len -= len;
3606 addr += len;
3607 }
3608 }
3609
3610 if (idx)
3611 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3612}
3613/**
3614 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3615 * @qc: Metadata associated with taskfile to check
3616 *
780a87f7
JG
3617 * Allow low-level driver to filter ATA PACKET commands, returning
3618 * a status indicating whether or not it is OK to use DMA for the
3619 * supplied PACKET command.
3620 *
1da177e4 3621 * LOCKING:
cca3974e 3622 * spin_lock_irqsave(host lock)
0cba632b 3623 *
1da177e4
LT
3624 * RETURNS: 0 when ATAPI DMA can be used
3625 * nonzero otherwise
3626 */
3627int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3628{
3629 struct ata_port *ap = qc->ap;
3630 int rc = 0; /* Assume ATAPI DMA is OK by default */
3631
3632 if (ap->ops->check_atapi_dma)
3633 rc = ap->ops->check_atapi_dma(qc);
3634
3635 return rc;
3636}
3637/**
3638 * ata_qc_prep - Prepare taskfile for submission
3639 * @qc: Metadata associated with taskfile to be prepared
3640 *
780a87f7
JG
3641 * Prepare ATA taskfile for submission.
3642 *
1da177e4 3643 * LOCKING:
cca3974e 3644 * spin_lock_irqsave(host lock)
1da177e4
LT
3645 */
3646void ata_qc_prep(struct ata_queued_cmd *qc)
3647{
3648 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3649 return;
3650
3651 ata_fill_sg(qc);
3652}
3653
e46834cd
BK
3654void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3655
0cba632b
JG
3656/**
3657 * ata_sg_init_one - Associate command with memory buffer
3658 * @qc: Command to be associated
3659 * @buf: Memory buffer
3660 * @buflen: Length of memory buffer, in bytes.
3661 *
3662 * Initialize the data-related elements of queued_cmd @qc
3663 * to point to a single memory buffer, @buf of byte length @buflen.
3664 *
3665 * LOCKING:
cca3974e 3666 * spin_lock_irqsave(host lock)
0cba632b
JG
3667 */
3668
1da177e4
LT
3669void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3670{
1da177e4
LT
3671 qc->flags |= ATA_QCFLAG_SINGLE;
3672
cedc9a47 3673 qc->__sg = &qc->sgent;
1da177e4 3674 qc->n_elem = 1;
cedc9a47 3675 qc->orig_n_elem = 1;
1da177e4 3676 qc->buf_virt = buf;
233277ca 3677 qc->nbytes = buflen;
1da177e4 3678
61c0596c 3679 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
3680}
3681
0cba632b
JG
3682/**
3683 * ata_sg_init - Associate command with scatter-gather table.
3684 * @qc: Command to be associated
3685 * @sg: Scatter-gather table.
3686 * @n_elem: Number of elements in s/g table.
3687 *
3688 * Initialize the data-related elements of queued_cmd @qc
3689 * to point to a scatter-gather table @sg, containing @n_elem
3690 * elements.
3691 *
3692 * LOCKING:
cca3974e 3693 * spin_lock_irqsave(host lock)
0cba632b
JG
3694 */
3695
1da177e4
LT
3696void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3697 unsigned int n_elem)
3698{
3699 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3700 qc->__sg = sg;
1da177e4 3701 qc->n_elem = n_elem;
cedc9a47 3702 qc->orig_n_elem = n_elem;
1da177e4
LT
3703}
3704
3705/**
0cba632b
JG
3706 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3707 * @qc: Command with memory buffer to be mapped.
3708 *
3709 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3710 *
3711 * LOCKING:
cca3974e 3712 * spin_lock_irqsave(host lock)
1da177e4
LT
3713 *
3714 * RETURNS:
0cba632b 3715 * Zero on success, negative on error.
1da177e4
LT
3716 */
3717
3718static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3719{
3720 struct ata_port *ap = qc->ap;
3721 int dir = qc->dma_dir;
cedc9a47 3722 struct scatterlist *sg = qc->__sg;
1da177e4 3723 dma_addr_t dma_address;
2e242fa9 3724 int trim_sg = 0;
1da177e4 3725
cedc9a47
JG
3726 /* we must lengthen transfers to end on a 32-bit boundary */
3727 qc->pad_len = sg->length & 3;
3728 if (qc->pad_len) {
3729 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3730 struct scatterlist *psg = &qc->pad_sgent;
3731
a4631474 3732 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3733
3734 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3735
3736 if (qc->tf.flags & ATA_TFLAG_WRITE)
3737 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3738 qc->pad_len);
3739
3740 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3741 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3742 /* trim sg */
3743 sg->length -= qc->pad_len;
2e242fa9
TH
3744 if (sg->length == 0)
3745 trim_sg = 1;
cedc9a47
JG
3746
3747 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3748 sg->length, qc->pad_len);
3749 }
3750
2e242fa9
TH
3751 if (trim_sg) {
3752 qc->n_elem--;
e1410f2d
JG
3753 goto skip_map;
3754 }
3755
2f1f610b 3756 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3757 sg->length, dir);
537a95d9
TH
3758 if (dma_mapping_error(dma_address)) {
3759 /* restore sg */
3760 sg->length += qc->pad_len;
1da177e4 3761 return -1;
537a95d9 3762 }
1da177e4
LT
3763
3764 sg_dma_address(sg) = dma_address;
32529e01 3765 sg_dma_len(sg) = sg->length;
1da177e4 3766
2e242fa9 3767skip_map:
1da177e4
LT
3768 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3769 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3770
3771 return 0;
3772}
3773
3774/**
0cba632b
JG
3775 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3776 * @qc: Command with scatter-gather table to be mapped.
3777 *
3778 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3779 *
3780 * LOCKING:
cca3974e 3781 * spin_lock_irqsave(host lock)
1da177e4
LT
3782 *
3783 * RETURNS:
0cba632b 3784 * Zero on success, negative on error.
1da177e4
LT
3785 *
3786 */
3787
3788static int ata_sg_setup(struct ata_queued_cmd *qc)
3789{
3790 struct ata_port *ap = qc->ap;
cedc9a47
JG
3791 struct scatterlist *sg = qc->__sg;
3792 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3793 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3794
3795 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3796 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3797
cedc9a47
JG
3798 /* we must lengthen transfers to end on a 32-bit boundary */
3799 qc->pad_len = lsg->length & 3;
3800 if (qc->pad_len) {
3801 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3802 struct scatterlist *psg = &qc->pad_sgent;
3803 unsigned int offset;
3804
a4631474 3805 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3806
3807 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3808
3809 /*
3810 * psg->page/offset are used to copy to-be-written
3811 * data in this function or read data in ata_sg_clean.
3812 */
3813 offset = lsg->offset + lsg->length - qc->pad_len;
3814 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3815 psg->offset = offset_in_page(offset);
3816
3817 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3818 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3819 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3820 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3821 }
3822
3823 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3824 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3825 /* trim last sg */
3826 lsg->length -= qc->pad_len;
e1410f2d
JG
3827 if (lsg->length == 0)
3828 trim_sg = 1;
cedc9a47
JG
3829
3830 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3831 qc->n_elem - 1, lsg->length, qc->pad_len);
3832 }
3833
e1410f2d
JG
3834 pre_n_elem = qc->n_elem;
3835 if (trim_sg && pre_n_elem)
3836 pre_n_elem--;
3837
3838 if (!pre_n_elem) {
3839 n_elem = 0;
3840 goto skip_map;
3841 }
3842
1da177e4 3843 dir = qc->dma_dir;
2f1f610b 3844 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3845 if (n_elem < 1) {
3846 /* restore last sg */
3847 lsg->length += qc->pad_len;
1da177e4 3848 return -1;
537a95d9 3849 }
1da177e4
LT
3850
3851 DPRINTK("%d sg elements mapped\n", n_elem);
3852
e1410f2d 3853skip_map:
1da177e4
LT
3854 qc->n_elem = n_elem;
3855
3856 return 0;
3857}
3858
0baab86b 3859/**
c893a3ae 3860 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3861 * @buf: Buffer to swap
3862 * @buf_words: Number of 16-bit words in buffer.
3863 *
3864 * Swap halves of 16-bit words if needed to convert from
3865 * little-endian byte order to native cpu byte order, or
3866 * vice-versa.
3867 *
3868 * LOCKING:
6f0ef4fa 3869 * Inherited from caller.
0baab86b 3870 */
1da177e4
LT
3871void swap_buf_le16(u16 *buf, unsigned int buf_words)
3872{
3873#ifdef __BIG_ENDIAN
3874 unsigned int i;
3875
3876 for (i = 0; i < buf_words; i++)
3877 buf[i] = le16_to_cpu(buf[i]);
3878#endif /* __BIG_ENDIAN */
3879}
3880
6ae4cfb5 3881/**
0d5ff566 3882 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 3883 * @adev: device to target
6ae4cfb5
AL
3884 * @buf: data buffer
3885 * @buflen: buffer length
344babaa 3886 * @write_data: read/write
6ae4cfb5
AL
3887 *
3888 * Transfer data from/to the device data register by PIO.
3889 *
3890 * LOCKING:
3891 * Inherited from caller.
6ae4cfb5 3892 */
0d5ff566
TH
3893void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
3894 unsigned int buflen, int write_data)
1da177e4 3895{
a6b2c5d4 3896 struct ata_port *ap = adev->ap;
6ae4cfb5 3897 unsigned int words = buflen >> 1;
1da177e4 3898
6ae4cfb5 3899 /* Transfer multiple of 2 bytes */
1da177e4 3900 if (write_data)
0d5ff566 3901 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 3902 else
0d5ff566 3903 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
3904
3905 /* Transfer trailing 1 byte, if any. */
3906 if (unlikely(buflen & 0x01)) {
3907 u16 align_buf[1] = { 0 };
3908 unsigned char *trailing_buf = buf + buflen - 1;
3909
3910 if (write_data) {
3911 memcpy(align_buf, trailing_buf, 1);
0d5ff566 3912 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 3913 } else {
0d5ff566 3914 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
3915 memcpy(trailing_buf, align_buf, 1);
3916 }
3917 }
1da177e4
LT
3918}
3919
75e99585 3920/**
0d5ff566 3921 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
3922 * @adev: device to target
3923 * @buf: data buffer
3924 * @buflen: buffer length
3925 * @write_data: read/write
3926 *
88574551 3927 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
3928 * transfer with interrupts disabled.
3929 *
3930 * LOCKING:
3931 * Inherited from caller.
3932 */
0d5ff566
TH
3933void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3934 unsigned int buflen, int write_data)
75e99585
AC
3935{
3936 unsigned long flags;
3937 local_irq_save(flags);
0d5ff566 3938 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
3939 local_irq_restore(flags);
3940}
3941
3942
6ae4cfb5
AL
3943/**
3944 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3945 * @qc: Command on going
3946 *
3947 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3948 *
3949 * LOCKING:
3950 * Inherited from caller.
3951 */
3952
1da177e4
LT
3953static void ata_pio_sector(struct ata_queued_cmd *qc)
3954{
3955 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3956 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3957 struct ata_port *ap = qc->ap;
3958 struct page *page;
3959 unsigned int offset;
3960 unsigned char *buf;
3961
726f0785 3962 if (qc->curbytes == qc->nbytes - ATA_SECT_SIZE)
14be71f4 3963 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3964
3965 page = sg[qc->cursg].page;
726f0785 3966 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
3967
3968 /* get the current page and offset */
3969 page = nth_page(page, (offset >> PAGE_SHIFT));
3970 offset %= PAGE_SIZE;
3971
1da177e4
LT
3972 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3973
91b8b313
AL
3974 if (PageHighMem(page)) {
3975 unsigned long flags;
3976
a6b2c5d4 3977 /* FIXME: use a bounce buffer */
91b8b313
AL
3978 local_irq_save(flags);
3979 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3980
91b8b313 3981 /* do the actual data transfer */
a6b2c5d4 3982 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 3983
91b8b313
AL
3984 kunmap_atomic(buf, KM_IRQ0);
3985 local_irq_restore(flags);
3986 } else {
3987 buf = page_address(page);
a6b2c5d4 3988 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
91b8b313 3989 }
1da177e4 3990
726f0785
TH
3991 qc->curbytes += ATA_SECT_SIZE;
3992 qc->cursg_ofs += ATA_SECT_SIZE;
1da177e4 3993
726f0785 3994 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
3995 qc->cursg++;
3996 qc->cursg_ofs = 0;
3997 }
1da177e4 3998}
1da177e4 3999
07f6f7d0
AL
4000/**
4001 * ata_pio_sectors - Transfer one or many 512-byte sectors.
4002 * @qc: Command on going
4003 *
c81e29b4 4004 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
4005 * ATA device for the DRQ request.
4006 *
4007 * LOCKING:
4008 * Inherited from caller.
4009 */
1da177e4 4010
07f6f7d0
AL
4011static void ata_pio_sectors(struct ata_queued_cmd *qc)
4012{
4013 if (is_multi_taskfile(&qc->tf)) {
4014 /* READ/WRITE MULTIPLE */
4015 unsigned int nsect;
4016
587005de 4017 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4018
726f0785
TH
4019 nsect = min((qc->nbytes - qc->curbytes) / ATA_SECT_SIZE,
4020 qc->dev->multi_count);
07f6f7d0
AL
4021 while (nsect--)
4022 ata_pio_sector(qc);
4023 } else
4024 ata_pio_sector(qc);
4025}
4026
c71c1857
AL
4027/**
4028 * atapi_send_cdb - Write CDB bytes to hardware
4029 * @ap: Port to which ATAPI device is attached.
4030 * @qc: Taskfile currently active
4031 *
4032 * When device has indicated its readiness to accept
4033 * a CDB, this function is called. Send the CDB.
4034 *
4035 * LOCKING:
4036 * caller.
4037 */
4038
4039static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4040{
4041 /* send SCSI cdb */
4042 DPRINTK("send cdb\n");
db024d53 4043 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4044
a6b2c5d4 4045 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4046 ata_altstatus(ap); /* flush */
4047
4048 switch (qc->tf.protocol) {
4049 case ATA_PROT_ATAPI:
4050 ap->hsm_task_state = HSM_ST;
4051 break;
4052 case ATA_PROT_ATAPI_NODATA:
4053 ap->hsm_task_state = HSM_ST_LAST;
4054 break;
4055 case ATA_PROT_ATAPI_DMA:
4056 ap->hsm_task_state = HSM_ST_LAST;
4057 /* initiate bmdma */
4058 ap->ops->bmdma_start(qc);
4059 break;
4060 }
1da177e4
LT
4061}
4062
6ae4cfb5
AL
4063/**
4064 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4065 * @qc: Command on going
4066 * @bytes: number of bytes
4067 *
4068 * Transfer Transfer data from/to the ATAPI device.
4069 *
4070 * LOCKING:
4071 * Inherited from caller.
4072 *
4073 */
4074
1da177e4
LT
4075static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4076{
4077 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4078 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4079 struct ata_port *ap = qc->ap;
4080 struct page *page;
4081 unsigned char *buf;
4082 unsigned int offset, count;
4083
563a6e1f 4084 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4085 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4086
4087next_sg:
563a6e1f 4088 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4089 /*
563a6e1f
AL
4090 * The end of qc->sg is reached and the device expects
4091 * more data to transfer. In order not to overrun qc->sg
4092 * and fulfill length specified in the byte count register,
4093 * - for read case, discard trailing data from the device
4094 * - for write case, padding zero data to the device
4095 */
4096 u16 pad_buf[1] = { 0 };
4097 unsigned int words = bytes >> 1;
4098 unsigned int i;
4099
4100 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4101 ata_dev_printk(qc->dev, KERN_WARNING,
4102 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4103
4104 for (i = 0; i < words; i++)
a6b2c5d4 4105 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4106
14be71f4 4107 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4108 return;
4109 }
4110
cedc9a47 4111 sg = &qc->__sg[qc->cursg];
1da177e4 4112
1da177e4
LT
4113 page = sg->page;
4114 offset = sg->offset + qc->cursg_ofs;
4115
4116 /* get the current page and offset */
4117 page = nth_page(page, (offset >> PAGE_SHIFT));
4118 offset %= PAGE_SIZE;
4119
6952df03 4120 /* don't overrun current sg */
32529e01 4121 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4122
4123 /* don't cross page boundaries */
4124 count = min(count, (unsigned int)PAGE_SIZE - offset);
4125
7282aa4b
AL
4126 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4127
91b8b313
AL
4128 if (PageHighMem(page)) {
4129 unsigned long flags;
4130
a6b2c5d4 4131 /* FIXME: use bounce buffer */
91b8b313
AL
4132 local_irq_save(flags);
4133 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4134
91b8b313 4135 /* do the actual data transfer */
a6b2c5d4 4136 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4137
91b8b313
AL
4138 kunmap_atomic(buf, KM_IRQ0);
4139 local_irq_restore(flags);
4140 } else {
4141 buf = page_address(page);
a6b2c5d4 4142 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4143 }
1da177e4
LT
4144
4145 bytes -= count;
4146 qc->curbytes += count;
4147 qc->cursg_ofs += count;
4148
32529e01 4149 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4150 qc->cursg++;
4151 qc->cursg_ofs = 0;
4152 }
4153
563a6e1f 4154 if (bytes)
1da177e4 4155 goto next_sg;
1da177e4
LT
4156}
4157
6ae4cfb5
AL
4158/**
4159 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4160 * @qc: Command on going
4161 *
4162 * Transfer Transfer data from/to the ATAPI device.
4163 *
4164 * LOCKING:
4165 * Inherited from caller.
6ae4cfb5
AL
4166 */
4167
1da177e4
LT
4168static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4169{
4170 struct ata_port *ap = qc->ap;
4171 struct ata_device *dev = qc->dev;
4172 unsigned int ireason, bc_lo, bc_hi, bytes;
4173 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4174
eec4c3f3
AL
4175 /* Abuse qc->result_tf for temp storage of intermediate TF
4176 * here to save some kernel stack usage.
4177 * For normal completion, qc->result_tf is not relevant. For
4178 * error, qc->result_tf is later overwritten by ata_qc_complete().
4179 * So, the correctness of qc->result_tf is not affected.
4180 */
4181 ap->ops->tf_read(ap, &qc->result_tf);
4182 ireason = qc->result_tf.nsect;
4183 bc_lo = qc->result_tf.lbam;
4184 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4185 bytes = (bc_hi << 8) | bc_lo;
4186
4187 /* shall be cleared to zero, indicating xfer of data */
4188 if (ireason & (1 << 0))
4189 goto err_out;
4190
4191 /* make sure transfer direction matches expected */
4192 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4193 if (do_write != i_write)
4194 goto err_out;
4195
312f7da2
AL
4196 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4197
1da177e4
LT
4198 __atapi_pio_bytes(qc, bytes);
4199
4200 return;
4201
4202err_out:
f15a1daf 4203 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4204 qc->err_mask |= AC_ERR_HSM;
14be71f4 4205 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4206}
4207
4208/**
c234fb00
AL
4209 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4210 * @ap: the target ata_port
4211 * @qc: qc on going
1da177e4 4212 *
c234fb00
AL
4213 * RETURNS:
4214 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4215 */
c234fb00
AL
4216
4217static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4218{
c234fb00
AL
4219 if (qc->tf.flags & ATA_TFLAG_POLLING)
4220 return 1;
1da177e4 4221
c234fb00
AL
4222 if (ap->hsm_task_state == HSM_ST_FIRST) {
4223 if (qc->tf.protocol == ATA_PROT_PIO &&
4224 (qc->tf.flags & ATA_TFLAG_WRITE))
4225 return 1;
1da177e4 4226
c234fb00
AL
4227 if (is_atapi_taskfile(&qc->tf) &&
4228 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4229 return 1;
fe79e683
AL
4230 }
4231
c234fb00
AL
4232 return 0;
4233}
1da177e4 4234
c17ea20d
TH
4235/**
4236 * ata_hsm_qc_complete - finish a qc running on standard HSM
4237 * @qc: Command to complete
4238 * @in_wq: 1 if called from workqueue, 0 otherwise
4239 *
4240 * Finish @qc which is running on standard HSM.
4241 *
4242 * LOCKING:
cca3974e 4243 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4244 * Otherwise, none on entry and grabs host lock.
4245 */
4246static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4247{
4248 struct ata_port *ap = qc->ap;
4249 unsigned long flags;
4250
4251 if (ap->ops->error_handler) {
4252 if (in_wq) {
ba6a1308 4253 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4254
cca3974e
JG
4255 /* EH might have kicked in while host lock is
4256 * released.
c17ea20d
TH
4257 */
4258 qc = ata_qc_from_tag(ap, qc->tag);
4259 if (qc) {
4260 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4261 ap->ops->irq_on(ap);
c17ea20d
TH
4262 ata_qc_complete(qc);
4263 } else
4264 ata_port_freeze(ap);
4265 }
4266
ba6a1308 4267 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4268 } else {
4269 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4270 ata_qc_complete(qc);
4271 else
4272 ata_port_freeze(ap);
4273 }
4274 } else {
4275 if (in_wq) {
ba6a1308 4276 spin_lock_irqsave(ap->lock, flags);
83625006 4277 ap->ops->irq_on(ap);
c17ea20d 4278 ata_qc_complete(qc);
ba6a1308 4279 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4280 } else
4281 ata_qc_complete(qc);
4282 }
1da177e4 4283
c81e29b4 4284 ata_altstatus(ap); /* flush */
c17ea20d
TH
4285}
4286
bb5cb290
AL
4287/**
4288 * ata_hsm_move - move the HSM to the next state.
4289 * @ap: the target ata_port
4290 * @qc: qc on going
4291 * @status: current device status
4292 * @in_wq: 1 if called from workqueue, 0 otherwise
4293 *
4294 * RETURNS:
4295 * 1 when poll next status needed, 0 otherwise.
4296 */
9a1004d0
TH
4297int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4298 u8 status, int in_wq)
e2cec771 4299{
bb5cb290
AL
4300 unsigned long flags = 0;
4301 int poll_next;
4302
6912ccd5
AL
4303 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4304
bb5cb290
AL
4305 /* Make sure ata_qc_issue_prot() does not throw things
4306 * like DMA polling into the workqueue. Notice that
4307 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4308 */
c234fb00 4309 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4310
e2cec771 4311fsm_start:
999bb6f4
AL
4312 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4313 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4314
e2cec771
AL
4315 switch (ap->hsm_task_state) {
4316 case HSM_ST_FIRST:
bb5cb290
AL
4317 /* Send first data block or PACKET CDB */
4318
4319 /* If polling, we will stay in the work queue after
4320 * sending the data. Otherwise, interrupt handler
4321 * takes over after sending the data.
4322 */
4323 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4324
e2cec771 4325 /* check device status */
3655d1d3
AL
4326 if (unlikely((status & ATA_DRQ) == 0)) {
4327 /* handle BSY=0, DRQ=0 as error */
4328 if (likely(status & (ATA_ERR | ATA_DF)))
4329 /* device stops HSM for abort/error */
4330 qc->err_mask |= AC_ERR_DEV;
4331 else
4332 /* HSM violation. Let EH handle this */
4333 qc->err_mask |= AC_ERR_HSM;
4334
14be71f4 4335 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4336 goto fsm_start;
1da177e4
LT
4337 }
4338
71601958
AL
4339 /* Device should not ask for data transfer (DRQ=1)
4340 * when it finds something wrong.
eee6c32f
AL
4341 * We ignore DRQ here and stop the HSM by
4342 * changing hsm_task_state to HSM_ST_ERR and
4343 * let the EH abort the command or reset the device.
71601958
AL
4344 */
4345 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4346 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4347 ap->id, status);
3655d1d3 4348 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4349 ap->hsm_task_state = HSM_ST_ERR;
4350 goto fsm_start;
71601958 4351 }
1da177e4 4352
bb5cb290
AL
4353 /* Send the CDB (atapi) or the first data block (ata pio out).
4354 * During the state transition, interrupt handler shouldn't
4355 * be invoked before the data transfer is complete and
4356 * hsm_task_state is changed. Hence, the following locking.
4357 */
4358 if (in_wq)
ba6a1308 4359 spin_lock_irqsave(ap->lock, flags);
1da177e4 4360
bb5cb290
AL
4361 if (qc->tf.protocol == ATA_PROT_PIO) {
4362 /* PIO data out protocol.
4363 * send first data block.
4364 */
0565c26d 4365
bb5cb290
AL
4366 /* ata_pio_sectors() might change the state
4367 * to HSM_ST_LAST. so, the state is changed here
4368 * before ata_pio_sectors().
4369 */
4370 ap->hsm_task_state = HSM_ST;
4371 ata_pio_sectors(qc);
4372 ata_altstatus(ap); /* flush */
4373 } else
4374 /* send CDB */
4375 atapi_send_cdb(ap, qc);
4376
4377 if (in_wq)
ba6a1308 4378 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4379
4380 /* if polling, ata_pio_task() handles the rest.
4381 * otherwise, interrupt handler takes over from here.
4382 */
e2cec771 4383 break;
1c848984 4384
e2cec771
AL
4385 case HSM_ST:
4386 /* complete command or read/write the data register */
4387 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4388 /* ATAPI PIO protocol */
4389 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4390 /* No more data to transfer or device error.
4391 * Device error will be tagged in HSM_ST_LAST.
4392 */
e2cec771
AL
4393 ap->hsm_task_state = HSM_ST_LAST;
4394 goto fsm_start;
4395 }
1da177e4 4396
71601958
AL
4397 /* Device should not ask for data transfer (DRQ=1)
4398 * when it finds something wrong.
eee6c32f
AL
4399 * We ignore DRQ here and stop the HSM by
4400 * changing hsm_task_state to HSM_ST_ERR and
4401 * let the EH abort the command or reset the device.
71601958
AL
4402 */
4403 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4404 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4405 ap->id, status);
3655d1d3 4406 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4407 ap->hsm_task_state = HSM_ST_ERR;
4408 goto fsm_start;
71601958 4409 }
1da177e4 4410
e2cec771 4411 atapi_pio_bytes(qc);
7fb6ec28 4412
e2cec771
AL
4413 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4414 /* bad ireason reported by device */
4415 goto fsm_start;
1da177e4 4416
e2cec771
AL
4417 } else {
4418 /* ATA PIO protocol */
4419 if (unlikely((status & ATA_DRQ) == 0)) {
4420 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4421 if (likely(status & (ATA_ERR | ATA_DF)))
4422 /* device stops HSM for abort/error */
4423 qc->err_mask |= AC_ERR_DEV;
4424 else
55a8e2c8
TH
4425 /* HSM violation. Let EH handle this.
4426 * Phantom devices also trigger this
4427 * condition. Mark hint.
4428 */
4429 qc->err_mask |= AC_ERR_HSM |
4430 AC_ERR_NODEV_HINT;
3655d1d3 4431
e2cec771
AL
4432 ap->hsm_task_state = HSM_ST_ERR;
4433 goto fsm_start;
4434 }
1da177e4 4435
eee6c32f
AL
4436 /* For PIO reads, some devices may ask for
4437 * data transfer (DRQ=1) alone with ERR=1.
4438 * We respect DRQ here and transfer one
4439 * block of junk data before changing the
4440 * hsm_task_state to HSM_ST_ERR.
4441 *
4442 * For PIO writes, ERR=1 DRQ=1 doesn't make
4443 * sense since the data block has been
4444 * transferred to the device.
71601958
AL
4445 */
4446 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4447 /* data might be corrputed */
4448 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4449
4450 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4451 ata_pio_sectors(qc);
4452 ata_altstatus(ap);
4453 status = ata_wait_idle(ap);
4454 }
4455
3655d1d3
AL
4456 if (status & (ATA_BUSY | ATA_DRQ))
4457 qc->err_mask |= AC_ERR_HSM;
4458
eee6c32f
AL
4459 /* ata_pio_sectors() might change the
4460 * state to HSM_ST_LAST. so, the state
4461 * is changed after ata_pio_sectors().
4462 */
4463 ap->hsm_task_state = HSM_ST_ERR;
4464 goto fsm_start;
71601958
AL
4465 }
4466
e2cec771
AL
4467 ata_pio_sectors(qc);
4468
4469 if (ap->hsm_task_state == HSM_ST_LAST &&
4470 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4471 /* all data read */
4472 ata_altstatus(ap);
52a32205 4473 status = ata_wait_idle(ap);
e2cec771
AL
4474 goto fsm_start;
4475 }
4476 }
4477
4478 ata_altstatus(ap); /* flush */
bb5cb290 4479 poll_next = 1;
1da177e4
LT
4480 break;
4481
14be71f4 4482 case HSM_ST_LAST:
6912ccd5
AL
4483 if (unlikely(!ata_ok(status))) {
4484 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4485 ap->hsm_task_state = HSM_ST_ERR;
4486 goto fsm_start;
4487 }
4488
4489 /* no more data to transfer */
4332a771
AL
4490 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4491 ap->id, qc->dev->devno, status);
e2cec771 4492
6912ccd5
AL
4493 WARN_ON(qc->err_mask);
4494
e2cec771 4495 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4496
e2cec771 4497 /* complete taskfile transaction */
c17ea20d 4498 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4499
4500 poll_next = 0;
1da177e4
LT
4501 break;
4502
14be71f4 4503 case HSM_ST_ERR:
e2cec771
AL
4504 /* make sure qc->err_mask is available to
4505 * know what's wrong and recover
4506 */
4507 WARN_ON(qc->err_mask == 0);
4508
4509 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4510
999bb6f4 4511 /* complete taskfile transaction */
c17ea20d 4512 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4513
4514 poll_next = 0;
e2cec771
AL
4515 break;
4516 default:
bb5cb290 4517 poll_next = 0;
6912ccd5 4518 BUG();
1da177e4
LT
4519 }
4520
bb5cb290 4521 return poll_next;
1da177e4
LT
4522}
4523
65f27f38 4524static void ata_pio_task(struct work_struct *work)
8061f5f0 4525{
65f27f38
DH
4526 struct ata_port *ap =
4527 container_of(work, struct ata_port, port_task.work);
4528 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 4529 u8 status;
a1af3734 4530 int poll_next;
8061f5f0 4531
7fb6ec28 4532fsm_start:
a1af3734 4533 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4534
a1af3734
AL
4535 /*
4536 * This is purely heuristic. This is a fast path.
4537 * Sometimes when we enter, BSY will be cleared in
4538 * a chk-status or two. If not, the drive is probably seeking
4539 * or something. Snooze for a couple msecs, then
4540 * chk-status again. If still busy, queue delayed work.
4541 */
4542 status = ata_busy_wait(ap, ATA_BUSY, 5);
4543 if (status & ATA_BUSY) {
4544 msleep(2);
4545 status = ata_busy_wait(ap, ATA_BUSY, 10);
4546 if (status & ATA_BUSY) {
31ce6dae 4547 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4548 return;
4549 }
8061f5f0
TH
4550 }
4551
a1af3734
AL
4552 /* move the HSM */
4553 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4554
a1af3734
AL
4555 /* another command or interrupt handler
4556 * may be running at this point.
4557 */
4558 if (poll_next)
7fb6ec28 4559 goto fsm_start;
8061f5f0
TH
4560}
4561
1da177e4
LT
4562/**
4563 * ata_qc_new - Request an available ATA command, for queueing
4564 * @ap: Port associated with device @dev
4565 * @dev: Device from whom we request an available command structure
4566 *
4567 * LOCKING:
0cba632b 4568 * None.
1da177e4
LT
4569 */
4570
4571static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4572{
4573 struct ata_queued_cmd *qc = NULL;
4574 unsigned int i;
4575
e3180499 4576 /* no command while frozen */
b51e9e5d 4577 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
4578 return NULL;
4579
2ab7db1f
TH
4580 /* the last tag is reserved for internal command. */
4581 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4582 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4583 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4584 break;
4585 }
4586
4587 if (qc)
4588 qc->tag = i;
4589
4590 return qc;
4591}
4592
4593/**
4594 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4595 * @dev: Device from whom we request an available command structure
4596 *
4597 * LOCKING:
0cba632b 4598 * None.
1da177e4
LT
4599 */
4600
3373efd8 4601struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4602{
3373efd8 4603 struct ata_port *ap = dev->ap;
1da177e4
LT
4604 struct ata_queued_cmd *qc;
4605
4606 qc = ata_qc_new(ap);
4607 if (qc) {
1da177e4
LT
4608 qc->scsicmd = NULL;
4609 qc->ap = ap;
4610 qc->dev = dev;
1da177e4 4611
2c13b7ce 4612 ata_qc_reinit(qc);
1da177e4
LT
4613 }
4614
4615 return qc;
4616}
4617
1da177e4
LT
4618/**
4619 * ata_qc_free - free unused ata_queued_cmd
4620 * @qc: Command to complete
4621 *
4622 * Designed to free unused ata_queued_cmd object
4623 * in case something prevents using it.
4624 *
4625 * LOCKING:
cca3974e 4626 * spin_lock_irqsave(host lock)
1da177e4
LT
4627 */
4628void ata_qc_free(struct ata_queued_cmd *qc)
4629{
4ba946e9
TH
4630 struct ata_port *ap = qc->ap;
4631 unsigned int tag;
4632
a4631474 4633 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4634
4ba946e9
TH
4635 qc->flags = 0;
4636 tag = qc->tag;
4637 if (likely(ata_tag_valid(tag))) {
4ba946e9 4638 qc->tag = ATA_TAG_POISON;
6cec4a39 4639 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4640 }
1da177e4
LT
4641}
4642
76014427 4643void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4644{
dedaf2b0
TH
4645 struct ata_port *ap = qc->ap;
4646
a4631474
TH
4647 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4648 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4649
4650 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4651 ata_sg_clean(qc);
4652
7401abf2 4653 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4654 if (qc->tf.protocol == ATA_PROT_NCQ)
4655 ap->sactive &= ~(1 << qc->tag);
4656 else
4657 ap->active_tag = ATA_TAG_POISON;
7401abf2 4658
3f3791d3
AL
4659 /* atapi: mark qc as inactive to prevent the interrupt handler
4660 * from completing the command twice later, before the error handler
4661 * is called. (when rc != 0 and atapi request sense is needed)
4662 */
4663 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4664 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4665
1da177e4 4666 /* call completion callback */
77853bf2 4667 qc->complete_fn(qc);
1da177e4
LT
4668}
4669
39599a53
TH
4670static void fill_result_tf(struct ata_queued_cmd *qc)
4671{
4672 struct ata_port *ap = qc->ap;
4673
4674 ap->ops->tf_read(ap, &qc->result_tf);
4675 qc->result_tf.flags = qc->tf.flags;
4676}
4677
f686bcb8
TH
4678/**
4679 * ata_qc_complete - Complete an active ATA command
4680 * @qc: Command to complete
4681 * @err_mask: ATA Status register contents
4682 *
4683 * Indicate to the mid and upper layers that an ATA
4684 * command has completed, with either an ok or not-ok status.
4685 *
4686 * LOCKING:
cca3974e 4687 * spin_lock_irqsave(host lock)
f686bcb8
TH
4688 */
4689void ata_qc_complete(struct ata_queued_cmd *qc)
4690{
4691 struct ata_port *ap = qc->ap;
4692
4693 /* XXX: New EH and old EH use different mechanisms to
4694 * synchronize EH with regular execution path.
4695 *
4696 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4697 * Normal execution path is responsible for not accessing a
4698 * failed qc. libata core enforces the rule by returning NULL
4699 * from ata_qc_from_tag() for failed qcs.
4700 *
4701 * Old EH depends on ata_qc_complete() nullifying completion
4702 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4703 * not synchronize with interrupt handler. Only PIO task is
4704 * taken care of.
4705 */
4706 if (ap->ops->error_handler) {
b51e9e5d 4707 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
4708
4709 if (unlikely(qc->err_mask))
4710 qc->flags |= ATA_QCFLAG_FAILED;
4711
4712 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4713 if (!ata_tag_internal(qc->tag)) {
4714 /* always fill result TF for failed qc */
39599a53 4715 fill_result_tf(qc);
f686bcb8
TH
4716 ata_qc_schedule_eh(qc);
4717 return;
4718 }
4719 }
4720
4721 /* read result TF if requested */
4722 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4723 fill_result_tf(qc);
f686bcb8
TH
4724
4725 __ata_qc_complete(qc);
4726 } else {
4727 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4728 return;
4729
4730 /* read result TF if failed or requested */
4731 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4732 fill_result_tf(qc);
f686bcb8
TH
4733
4734 __ata_qc_complete(qc);
4735 }
4736}
4737
dedaf2b0
TH
4738/**
4739 * ata_qc_complete_multiple - Complete multiple qcs successfully
4740 * @ap: port in question
4741 * @qc_active: new qc_active mask
4742 * @finish_qc: LLDD callback invoked before completing a qc
4743 *
4744 * Complete in-flight commands. This functions is meant to be
4745 * called from low-level driver's interrupt routine to complete
4746 * requests normally. ap->qc_active and @qc_active is compared
4747 * and commands are completed accordingly.
4748 *
4749 * LOCKING:
cca3974e 4750 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4751 *
4752 * RETURNS:
4753 * Number of completed commands on success, -errno otherwise.
4754 */
4755int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4756 void (*finish_qc)(struct ata_queued_cmd *))
4757{
4758 int nr_done = 0;
4759 u32 done_mask;
4760 int i;
4761
4762 done_mask = ap->qc_active ^ qc_active;
4763
4764 if (unlikely(done_mask & qc_active)) {
4765 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4766 "(%08x->%08x)\n", ap->qc_active, qc_active);
4767 return -EINVAL;
4768 }
4769
4770 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4771 struct ata_queued_cmd *qc;
4772
4773 if (!(done_mask & (1 << i)))
4774 continue;
4775
4776 if ((qc = ata_qc_from_tag(ap, i))) {
4777 if (finish_qc)
4778 finish_qc(qc);
4779 ata_qc_complete(qc);
4780 nr_done++;
4781 }
4782 }
4783
4784 return nr_done;
4785}
4786
1da177e4
LT
4787static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4788{
4789 struct ata_port *ap = qc->ap;
4790
4791 switch (qc->tf.protocol) {
3dc1d881 4792 case ATA_PROT_NCQ:
1da177e4
LT
4793 case ATA_PROT_DMA:
4794 case ATA_PROT_ATAPI_DMA:
4795 return 1;
4796
4797 case ATA_PROT_ATAPI:
4798 case ATA_PROT_PIO:
1da177e4
LT
4799 if (ap->flags & ATA_FLAG_PIO_DMA)
4800 return 1;
4801
4802 /* fall through */
4803
4804 default:
4805 return 0;
4806 }
4807
4808 /* never reached */
4809}
4810
4811/**
4812 * ata_qc_issue - issue taskfile to device
4813 * @qc: command to issue to device
4814 *
4815 * Prepare an ATA command to submission to device.
4816 * This includes mapping the data into a DMA-able
4817 * area, filling in the S/G table, and finally
4818 * writing the taskfile to hardware, starting the command.
4819 *
4820 * LOCKING:
cca3974e 4821 * spin_lock_irqsave(host lock)
1da177e4 4822 */
8e0e694a 4823void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4824{
4825 struct ata_port *ap = qc->ap;
4826
dedaf2b0
TH
4827 /* Make sure only one non-NCQ command is outstanding. The
4828 * check is skipped for old EH because it reuses active qc to
4829 * request ATAPI sense.
4830 */
4831 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4832
4833 if (qc->tf.protocol == ATA_PROT_NCQ) {
4834 WARN_ON(ap->sactive & (1 << qc->tag));
4835 ap->sactive |= 1 << qc->tag;
4836 } else {
4837 WARN_ON(ap->sactive);
4838 ap->active_tag = qc->tag;
4839 }
4840
e4a70e76 4841 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4842 ap->qc_active |= 1 << qc->tag;
e4a70e76 4843
1da177e4
LT
4844 if (ata_should_dma_map(qc)) {
4845 if (qc->flags & ATA_QCFLAG_SG) {
4846 if (ata_sg_setup(qc))
8e436af9 4847 goto sg_err;
1da177e4
LT
4848 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4849 if (ata_sg_setup_one(qc))
8e436af9 4850 goto sg_err;
1da177e4
LT
4851 }
4852 } else {
4853 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4854 }
4855
4856 ap->ops->qc_prep(qc);
4857
8e0e694a
TH
4858 qc->err_mask |= ap->ops->qc_issue(qc);
4859 if (unlikely(qc->err_mask))
4860 goto err;
4861 return;
1da177e4 4862
8e436af9
TH
4863sg_err:
4864 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4865 qc->err_mask |= AC_ERR_SYSTEM;
4866err:
4867 ata_qc_complete(qc);
1da177e4
LT
4868}
4869
4870/**
4871 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4872 * @qc: command to issue to device
4873 *
4874 * Using various libata functions and hooks, this function
4875 * starts an ATA command. ATA commands are grouped into
4876 * classes called "protocols", and issuing each type of protocol
4877 * is slightly different.
4878 *
0baab86b
EF
4879 * May be used as the qc_issue() entry in ata_port_operations.
4880 *
1da177e4 4881 * LOCKING:
cca3974e 4882 * spin_lock_irqsave(host lock)
1da177e4
LT
4883 *
4884 * RETURNS:
9a3d9eb0 4885 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4886 */
4887
9a3d9eb0 4888unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4889{
4890 struct ata_port *ap = qc->ap;
4891
e50362ec
AL
4892 /* Use polling pio if the LLD doesn't handle
4893 * interrupt driven pio and atapi CDB interrupt.
4894 */
4895 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4896 switch (qc->tf.protocol) {
4897 case ATA_PROT_PIO:
e3472cbe 4898 case ATA_PROT_NODATA:
e50362ec
AL
4899 case ATA_PROT_ATAPI:
4900 case ATA_PROT_ATAPI_NODATA:
4901 qc->tf.flags |= ATA_TFLAG_POLLING;
4902 break;
4903 case ATA_PROT_ATAPI_DMA:
4904 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 4905 /* see ata_dma_blacklisted() */
e50362ec
AL
4906 BUG();
4907 break;
4908 default:
4909 break;
4910 }
4911 }
4912
3d3cca37
TH
4913 /* Some controllers show flaky interrupt behavior after
4914 * setting xfer mode. Use polling instead.
4915 */
4916 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4917 qc->tf.feature == SETFEATURES_XFER) &&
4918 (ap->flags & ATA_FLAG_SETXFER_POLLING))
4919 qc->tf.flags |= ATA_TFLAG_POLLING;
4920
312f7da2 4921 /* select the device */
1da177e4
LT
4922 ata_dev_select(ap, qc->dev->devno, 1, 0);
4923
312f7da2 4924 /* start the command */
1da177e4
LT
4925 switch (qc->tf.protocol) {
4926 case ATA_PROT_NODATA:
312f7da2
AL
4927 if (qc->tf.flags & ATA_TFLAG_POLLING)
4928 ata_qc_set_polling(qc);
4929
e5338254 4930 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4931 ap->hsm_task_state = HSM_ST_LAST;
4932
4933 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4934 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 4935
1da177e4
LT
4936 break;
4937
4938 case ATA_PROT_DMA:
587005de 4939 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4940
1da177e4
LT
4941 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4942 ap->ops->bmdma_setup(qc); /* set up bmdma */
4943 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4944 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4945 break;
4946
312f7da2
AL
4947 case ATA_PROT_PIO:
4948 if (qc->tf.flags & ATA_TFLAG_POLLING)
4949 ata_qc_set_polling(qc);
1da177e4 4950
e5338254 4951 ata_tf_to_host(ap, &qc->tf);
312f7da2 4952
54f00389
AL
4953 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4954 /* PIO data out protocol */
4955 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 4956 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4957
4958 /* always send first data block using
e27486db 4959 * the ata_pio_task() codepath.
54f00389 4960 */
312f7da2 4961 } else {
54f00389
AL
4962 /* PIO data in protocol */
4963 ap->hsm_task_state = HSM_ST;
4964
4965 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4966 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4967
4968 /* if polling, ata_pio_task() handles the rest.
4969 * otherwise, interrupt handler takes over from here.
4970 */
312f7da2
AL
4971 }
4972
1da177e4
LT
4973 break;
4974
1da177e4 4975 case ATA_PROT_ATAPI:
1da177e4 4976 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
4977 if (qc->tf.flags & ATA_TFLAG_POLLING)
4978 ata_qc_set_polling(qc);
4979
e5338254 4980 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 4981
312f7da2
AL
4982 ap->hsm_task_state = HSM_ST_FIRST;
4983
4984 /* send cdb by polling if no cdb interrupt */
4985 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4986 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 4987 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4988 break;
4989
4990 case ATA_PROT_ATAPI_DMA:
587005de 4991 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4992
1da177e4
LT
4993 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4994 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
4995 ap->hsm_task_state = HSM_ST_FIRST;
4996
4997 /* send cdb by polling if no cdb interrupt */
4998 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 4999 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5000 break;
5001
5002 default:
5003 WARN_ON(1);
9a3d9eb0 5004 return AC_ERR_SYSTEM;
1da177e4
LT
5005 }
5006
5007 return 0;
5008}
5009
1da177e4
LT
5010/**
5011 * ata_host_intr - Handle host interrupt for given (port, task)
5012 * @ap: Port on which interrupt arrived (possibly...)
5013 * @qc: Taskfile currently active in engine
5014 *
5015 * Handle host interrupt for given queued command. Currently,
5016 * only DMA interrupts are handled. All other commands are
5017 * handled via polling with interrupts disabled (nIEN bit).
5018 *
5019 * LOCKING:
cca3974e 5020 * spin_lock_irqsave(host lock)
1da177e4
LT
5021 *
5022 * RETURNS:
5023 * One if interrupt was handled, zero if not (shared irq).
5024 */
5025
5026inline unsigned int ata_host_intr (struct ata_port *ap,
5027 struct ata_queued_cmd *qc)
5028{
ea54763f 5029 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5030 u8 status, host_stat = 0;
1da177e4 5031
312f7da2
AL
5032 VPRINTK("ata%u: protocol %d task_state %d\n",
5033 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5034
312f7da2
AL
5035 /* Check whether we are expecting interrupt in this state */
5036 switch (ap->hsm_task_state) {
5037 case HSM_ST_FIRST:
6912ccd5
AL
5038 /* Some pre-ATAPI-4 devices assert INTRQ
5039 * at this state when ready to receive CDB.
5040 */
1da177e4 5041
312f7da2
AL
5042 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5043 * The flag was turned on only for atapi devices.
5044 * No need to check is_atapi_taskfile(&qc->tf) again.
5045 */
5046 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5047 goto idle_irq;
1da177e4 5048 break;
312f7da2
AL
5049 case HSM_ST_LAST:
5050 if (qc->tf.protocol == ATA_PROT_DMA ||
5051 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5052 /* check status of DMA engine */
5053 host_stat = ap->ops->bmdma_status(ap);
5054 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
5055
5056 /* if it's not our irq... */
5057 if (!(host_stat & ATA_DMA_INTR))
5058 goto idle_irq;
5059
5060 /* before we do anything else, clear DMA-Start bit */
5061 ap->ops->bmdma_stop(qc);
a4f16610
AL
5062
5063 if (unlikely(host_stat & ATA_DMA_ERR)) {
5064 /* error when transfering data to/from memory */
5065 qc->err_mask |= AC_ERR_HOST_BUS;
5066 ap->hsm_task_state = HSM_ST_ERR;
5067 }
312f7da2
AL
5068 }
5069 break;
5070 case HSM_ST:
5071 break;
1da177e4
LT
5072 default:
5073 goto idle_irq;
5074 }
5075
312f7da2
AL
5076 /* check altstatus */
5077 status = ata_altstatus(ap);
5078 if (status & ATA_BUSY)
5079 goto idle_irq;
1da177e4 5080
312f7da2
AL
5081 /* check main status, clearing INTRQ */
5082 status = ata_chk_status(ap);
5083 if (unlikely(status & ATA_BUSY))
5084 goto idle_irq;
1da177e4 5085
312f7da2
AL
5086 /* ack bmdma irq events */
5087 ap->ops->irq_clear(ap);
1da177e4 5088
bb5cb290 5089 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5090
5091 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5092 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5093 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5094
1da177e4
LT
5095 return 1; /* irq handled */
5096
5097idle_irq:
5098 ap->stats.idle_irq++;
5099
5100#ifdef ATA_IRQ_TRAP
5101 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5102 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5103 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5104 return 1;
1da177e4
LT
5105 }
5106#endif
5107 return 0; /* irq not handled */
5108}
5109
5110/**
5111 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5112 * @irq: irq line (unused)
cca3974e 5113 * @dev_instance: pointer to our ata_host information structure
1da177e4 5114 *
0cba632b
JG
5115 * Default interrupt handler for PCI IDE devices. Calls
5116 * ata_host_intr() for each port that is not disabled.
5117 *
1da177e4 5118 * LOCKING:
cca3974e 5119 * Obtains host lock during operation.
1da177e4
LT
5120 *
5121 * RETURNS:
0cba632b 5122 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5123 */
5124
7d12e780 5125irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5126{
cca3974e 5127 struct ata_host *host = dev_instance;
1da177e4
LT
5128 unsigned int i;
5129 unsigned int handled = 0;
5130 unsigned long flags;
5131
5132 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5133 spin_lock_irqsave(&host->lock, flags);
1da177e4 5134
cca3974e 5135 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5136 struct ata_port *ap;
5137
cca3974e 5138 ap = host->ports[i];
c1389503 5139 if (ap &&
029f5468 5140 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5141 struct ata_queued_cmd *qc;
5142
5143 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5144 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5145 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5146 handled |= ata_host_intr(ap, qc);
5147 }
5148 }
5149
cca3974e 5150 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5151
5152 return IRQ_RETVAL(handled);
5153}
5154
34bf2170
TH
5155/**
5156 * sata_scr_valid - test whether SCRs are accessible
5157 * @ap: ATA port to test SCR accessibility for
5158 *
5159 * Test whether SCRs are accessible for @ap.
5160 *
5161 * LOCKING:
5162 * None.
5163 *
5164 * RETURNS:
5165 * 1 if SCRs are accessible, 0 otherwise.
5166 */
5167int sata_scr_valid(struct ata_port *ap)
5168{
5169 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5170}
5171
5172/**
5173 * sata_scr_read - read SCR register of the specified port
5174 * @ap: ATA port to read SCR for
5175 * @reg: SCR to read
5176 * @val: Place to store read value
5177 *
5178 * Read SCR register @reg of @ap into *@val. This function is
5179 * guaranteed to succeed if the cable type of the port is SATA
5180 * and the port implements ->scr_read.
5181 *
5182 * LOCKING:
5183 * None.
5184 *
5185 * RETURNS:
5186 * 0 on success, negative errno on failure.
5187 */
5188int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5189{
5190 if (sata_scr_valid(ap)) {
5191 *val = ap->ops->scr_read(ap, reg);
5192 return 0;
5193 }
5194 return -EOPNOTSUPP;
5195}
5196
5197/**
5198 * sata_scr_write - write SCR register of the specified port
5199 * @ap: ATA port to write SCR for
5200 * @reg: SCR to write
5201 * @val: value to write
5202 *
5203 * Write @val to SCR register @reg of @ap. This function is
5204 * guaranteed to succeed if the cable type of the port is SATA
5205 * and the port implements ->scr_read.
5206 *
5207 * LOCKING:
5208 * None.
5209 *
5210 * RETURNS:
5211 * 0 on success, negative errno on failure.
5212 */
5213int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5214{
5215 if (sata_scr_valid(ap)) {
5216 ap->ops->scr_write(ap, reg, val);
5217 return 0;
5218 }
5219 return -EOPNOTSUPP;
5220}
5221
5222/**
5223 * sata_scr_write_flush - write SCR register of the specified port and flush
5224 * @ap: ATA port to write SCR for
5225 * @reg: SCR to write
5226 * @val: value to write
5227 *
5228 * This function is identical to sata_scr_write() except that this
5229 * function performs flush after writing to the register.
5230 *
5231 * LOCKING:
5232 * None.
5233 *
5234 * RETURNS:
5235 * 0 on success, negative errno on failure.
5236 */
5237int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5238{
5239 if (sata_scr_valid(ap)) {
5240 ap->ops->scr_write(ap, reg, val);
5241 ap->ops->scr_read(ap, reg);
5242 return 0;
5243 }
5244 return -EOPNOTSUPP;
5245}
5246
5247/**
5248 * ata_port_online - test whether the given port is online
5249 * @ap: ATA port to test
5250 *
5251 * Test whether @ap is online. Note that this function returns 0
5252 * if online status of @ap cannot be obtained, so
5253 * ata_port_online(ap) != !ata_port_offline(ap).
5254 *
5255 * LOCKING:
5256 * None.
5257 *
5258 * RETURNS:
5259 * 1 if the port online status is available and online.
5260 */
5261int ata_port_online(struct ata_port *ap)
5262{
5263 u32 sstatus;
5264
5265 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5266 return 1;
5267 return 0;
5268}
5269
5270/**
5271 * ata_port_offline - test whether the given port is offline
5272 * @ap: ATA port to test
5273 *
5274 * Test whether @ap is offline. Note that this function returns
5275 * 0 if offline status of @ap cannot be obtained, so
5276 * ata_port_online(ap) != !ata_port_offline(ap).
5277 *
5278 * LOCKING:
5279 * None.
5280 *
5281 * RETURNS:
5282 * 1 if the port offline status is available and offline.
5283 */
5284int ata_port_offline(struct ata_port *ap)
5285{
5286 u32 sstatus;
5287
5288 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5289 return 1;
5290 return 0;
5291}
0baab86b 5292
77b08fb5 5293int ata_flush_cache(struct ata_device *dev)
9b847548 5294{
977e6b9f 5295 unsigned int err_mask;
9b847548
JA
5296 u8 cmd;
5297
5298 if (!ata_try_flush_cache(dev))
5299 return 0;
5300
6fc49adb 5301 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5302 cmd = ATA_CMD_FLUSH_EXT;
5303 else
5304 cmd = ATA_CMD_FLUSH;
5305
977e6b9f
TH
5306 err_mask = ata_do_simple_cmd(dev, cmd);
5307 if (err_mask) {
5308 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5309 return -EIO;
5310 }
5311
5312 return 0;
9b847548
JA
5313}
5314
cca3974e
JG
5315static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5316 unsigned int action, unsigned int ehi_flags,
5317 int wait)
500530f6
TH
5318{
5319 unsigned long flags;
5320 int i, rc;
5321
cca3974e
JG
5322 for (i = 0; i < host->n_ports; i++) {
5323 struct ata_port *ap = host->ports[i];
500530f6
TH
5324
5325 /* Previous resume operation might still be in
5326 * progress. Wait for PM_PENDING to clear.
5327 */
5328 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5329 ata_port_wait_eh(ap);
5330 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5331 }
5332
5333 /* request PM ops to EH */
5334 spin_lock_irqsave(ap->lock, flags);
5335
5336 ap->pm_mesg = mesg;
5337 if (wait) {
5338 rc = 0;
5339 ap->pm_result = &rc;
5340 }
5341
5342 ap->pflags |= ATA_PFLAG_PM_PENDING;
5343 ap->eh_info.action |= action;
5344 ap->eh_info.flags |= ehi_flags;
5345
5346 ata_port_schedule_eh(ap);
5347
5348 spin_unlock_irqrestore(ap->lock, flags);
5349
5350 /* wait and check result */
5351 if (wait) {
5352 ata_port_wait_eh(ap);
5353 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5354 if (rc)
5355 return rc;
5356 }
5357 }
5358
5359 return 0;
5360}
5361
5362/**
cca3974e
JG
5363 * ata_host_suspend - suspend host
5364 * @host: host to suspend
500530f6
TH
5365 * @mesg: PM message
5366 *
cca3974e 5367 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5368 * function requests EH to perform PM operations and waits for EH
5369 * to finish.
5370 *
5371 * LOCKING:
5372 * Kernel thread context (may sleep).
5373 *
5374 * RETURNS:
5375 * 0 on success, -errno on failure.
5376 */
cca3974e 5377int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6
TH
5378{
5379 int i, j, rc;
5380
cca3974e 5381 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
500530f6
TH
5382 if (rc)
5383 goto fail;
5384
5385 /* EH is quiescent now. Fail if we have any ready device.
5386 * This happens if hotplug occurs between completion of device
5387 * suspension and here.
5388 */
cca3974e
JG
5389 for (i = 0; i < host->n_ports; i++) {
5390 struct ata_port *ap = host->ports[i];
500530f6
TH
5391
5392 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5393 struct ata_device *dev = &ap->device[j];
5394
5395 if (ata_dev_ready(dev)) {
5396 ata_port_printk(ap, KERN_WARNING,
5397 "suspend failed, device %d "
5398 "still active\n", dev->devno);
5399 rc = -EBUSY;
5400 goto fail;
5401 }
5402 }
5403 }
5404
cca3974e 5405 host->dev->power.power_state = mesg;
500530f6
TH
5406 return 0;
5407
5408 fail:
cca3974e 5409 ata_host_resume(host);
500530f6
TH
5410 return rc;
5411}
5412
5413/**
cca3974e
JG
5414 * ata_host_resume - resume host
5415 * @host: host to resume
500530f6 5416 *
cca3974e 5417 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5418 * function requests EH to perform PM operations and returns.
5419 * Note that all resume operations are performed parallely.
5420 *
5421 * LOCKING:
5422 * Kernel thread context (may sleep).
5423 */
cca3974e 5424void ata_host_resume(struct ata_host *host)
500530f6 5425{
cca3974e
JG
5426 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5427 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5428 host->dev->power.power_state = PMSG_ON;
500530f6
TH
5429}
5430
c893a3ae
RD
5431/**
5432 * ata_port_start - Set port up for dma.
5433 * @ap: Port to initialize
5434 *
5435 * Called just after data structures for each port are
5436 * initialized. Allocates space for PRD table.
5437 *
5438 * May be used as the port_start() entry in ata_port_operations.
5439 *
5440 * LOCKING:
5441 * Inherited from caller.
5442 */
f0d36efd 5443int ata_port_start(struct ata_port *ap)
1da177e4 5444{
2f1f610b 5445 struct device *dev = ap->dev;
6037d6bb 5446 int rc;
1da177e4 5447
f0d36efd
TH
5448 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5449 GFP_KERNEL);
1da177e4
LT
5450 if (!ap->prd)
5451 return -ENOMEM;
5452
6037d6bb 5453 rc = ata_pad_alloc(ap, dev);
f0d36efd 5454 if (rc)
6037d6bb 5455 return rc;
1da177e4 5456
f0d36efd
TH
5457 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5458 (unsigned long long)ap->prd_dma);
1da177e4
LT
5459 return 0;
5460}
5461
3ef3b43d
TH
5462/**
5463 * ata_dev_init - Initialize an ata_device structure
5464 * @dev: Device structure to initialize
5465 *
5466 * Initialize @dev in preparation for probing.
5467 *
5468 * LOCKING:
5469 * Inherited from caller.
5470 */
5471void ata_dev_init(struct ata_device *dev)
5472{
5473 struct ata_port *ap = dev->ap;
72fa4b74
TH
5474 unsigned long flags;
5475
5a04bf4b
TH
5476 /* SATA spd limit is bound to the first device */
5477 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5478
72fa4b74
TH
5479 /* High bits of dev->flags are used to record warm plug
5480 * requests which occur asynchronously. Synchronize using
cca3974e 5481 * host lock.
72fa4b74 5482 */
ba6a1308 5483 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5484 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5485 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5486
72fa4b74
TH
5487 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5488 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5489 dev->pio_mask = UINT_MAX;
5490 dev->mwdma_mask = UINT_MAX;
5491 dev->udma_mask = UINT_MAX;
5492}
5493
1da177e4 5494/**
155a8a9c 5495 * ata_port_init - Initialize an ata_port structure
1da177e4 5496 * @ap: Structure to initialize
cca3974e 5497 * @host: Collection of hosts to which @ap belongs
1da177e4
LT
5498 * @ent: Probe information provided by low-level driver
5499 * @port_no: Port number associated with this ata_port
5500 *
155a8a9c 5501 * Initialize a new ata_port structure.
0cba632b 5502 *
1da177e4 5503 * LOCKING:
0cba632b 5504 * Inherited from caller.
1da177e4 5505 */
cca3974e 5506void ata_port_init(struct ata_port *ap, struct ata_host *host,
155a8a9c 5507 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5508{
5509 unsigned int i;
5510
cca3974e 5511 ap->lock = &host->lock;
198e0fed 5512 ap->flags = ATA_FLAG_DISABLED;
155a8a9c 5513 ap->id = ata_unique_id++;
1da177e4 5514 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5515 ap->host = host;
2f1f610b 5516 ap->dev = ent->dev;
1da177e4 5517 ap->port_no = port_no;
fea63e38
TH
5518 if (port_no == 1 && ent->pinfo2) {
5519 ap->pio_mask = ent->pinfo2->pio_mask;
5520 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5521 ap->udma_mask = ent->pinfo2->udma_mask;
5522 ap->flags |= ent->pinfo2->flags;
5523 ap->ops = ent->pinfo2->port_ops;
5524 } else {
5525 ap->pio_mask = ent->pio_mask;
5526 ap->mwdma_mask = ent->mwdma_mask;
5527 ap->udma_mask = ent->udma_mask;
5528 ap->flags |= ent->port_flags;
5529 ap->ops = ent->port_ops;
5530 }
5a04bf4b 5531 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5532 ap->active_tag = ATA_TAG_POISON;
5533 ap->last_ctl = 0xFF;
bd5d825c
BP
5534
5535#if defined(ATA_VERBOSE_DEBUG)
5536 /* turn on all debugging levels */
5537 ap->msg_enable = 0x00FF;
5538#elif defined(ATA_DEBUG)
5539 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5540#else
0dd4b21f 5541 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5542#endif
1da177e4 5543
65f27f38
DH
5544 INIT_DELAYED_WORK(&ap->port_task, NULL);
5545 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5546 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5547 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5548 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5549
838df628
TH
5550 /* set cable type */
5551 ap->cbl = ATA_CBL_NONE;
5552 if (ap->flags & ATA_FLAG_SATA)
5553 ap->cbl = ATA_CBL_SATA;
5554
acf356b1
TH
5555 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5556 struct ata_device *dev = &ap->device[i];
38d87234 5557 dev->ap = ap;
72fa4b74 5558 dev->devno = i;
3ef3b43d 5559 ata_dev_init(dev);
acf356b1 5560 }
1da177e4
LT
5561
5562#ifdef ATA_IRQ_TRAP
5563 ap->stats.unhandled_irq = 1;
5564 ap->stats.idle_irq = 1;
5565#endif
5566
5567 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5568}
5569
155a8a9c 5570/**
4608c160
TH
5571 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5572 * @ap: ATA port to initialize SCSI host for
5573 * @shost: SCSI host associated with @ap
155a8a9c 5574 *
4608c160 5575 * Initialize SCSI host @shost associated with ATA port @ap.
155a8a9c
BK
5576 *
5577 * LOCKING:
5578 * Inherited from caller.
5579 */
4608c160 5580static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
155a8a9c 5581{
cca3974e 5582 ap->scsi_host = shost;
155a8a9c 5583
4608c160
TH
5584 shost->unique_id = ap->id;
5585 shost->max_id = 16;
5586 shost->max_lun = 1;
5587 shost->max_channel = 1;
5588 shost->max_cmd_len = 12;
155a8a9c
BK
5589}
5590
1da177e4 5591/**
996139f1 5592 * ata_port_add - Attach low-level ATA driver to system
1da177e4 5593 * @ent: Information provided by low-level driver
cca3974e 5594 * @host: Collections of ports to which we add
1da177e4
LT
5595 * @port_no: Port number associated with this host
5596 *
0cba632b
JG
5597 * Attach low-level ATA driver to system.
5598 *
1da177e4 5599 * LOCKING:
0cba632b 5600 * PCI/etc. bus probe sem.
1da177e4
LT
5601 *
5602 * RETURNS:
0cba632b 5603 * New ata_port on success, for NULL on error.
1da177e4 5604 */
996139f1 5605static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
cca3974e 5606 struct ata_host *host,
1da177e4
LT
5607 unsigned int port_no)
5608{
996139f1 5609 struct Scsi_Host *shost;
1da177e4 5610 struct ata_port *ap;
1da177e4
LT
5611
5612 DPRINTK("ENTER\n");
aec5c3c1 5613
52783c5d 5614 if (!ent->port_ops->error_handler &&
cca3974e 5615 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
aec5c3c1
TH
5616 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5617 port_no);
5618 return NULL;
5619 }
5620
996139f1
JG
5621 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5622 if (!shost)
1da177e4
LT
5623 return NULL;
5624
996139f1 5625 shost->transportt = &ata_scsi_transport_template;
30afc84c 5626
996139f1 5627 ap = ata_shost_to_port(shost);
1da177e4 5628
cca3974e 5629 ata_port_init(ap, host, ent, port_no);
996139f1 5630 ata_port_init_shost(ap, shost);
1da177e4 5631
1da177e4 5632 return ap;
1da177e4
LT
5633}
5634
f0d36efd
TH
5635static void ata_host_release(struct device *gendev, void *res)
5636{
5637 struct ata_host *host = dev_get_drvdata(gendev);
5638 int i;
5639
5640 for (i = 0; i < host->n_ports; i++) {
5641 struct ata_port *ap = host->ports[i];
5642
5643 if (!ap)
5644 continue;
5645
5646 if (ap->ops->port_stop)
5647 ap->ops->port_stop(ap);
5648
5649 scsi_host_put(ap->scsi_host);
5650 }
5651
5652 if (host->ops->host_stop)
5653 host->ops->host_stop(host);
5654}
5655
b03732f0 5656/**
cca3974e
JG
5657 * ata_sas_host_init - Initialize a host struct
5658 * @host: host to initialize
5659 * @dev: device host is attached to
5660 * @flags: host flags
5661 * @ops: port_ops
b03732f0
BK
5662 *
5663 * LOCKING:
5664 * PCI/etc. bus probe sem.
5665 *
5666 */
5667
cca3974e
JG
5668void ata_host_init(struct ata_host *host, struct device *dev,
5669 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 5670{
cca3974e
JG
5671 spin_lock_init(&host->lock);
5672 host->dev = dev;
5673 host->flags = flags;
5674 host->ops = ops;
b03732f0
BK
5675}
5676
1da177e4 5677/**
0cba632b
JG
5678 * ata_device_add - Register hardware device with ATA and SCSI layers
5679 * @ent: Probe information describing hardware device to be registered
5680 *
5681 * This function processes the information provided in the probe
5682 * information struct @ent, allocates the necessary ATA and SCSI
5683 * host information structures, initializes them, and registers
5684 * everything with requisite kernel subsystems.
5685 *
5686 * This function requests irqs, probes the ATA bus, and probes
5687 * the SCSI bus.
1da177e4
LT
5688 *
5689 * LOCKING:
0cba632b 5690 * PCI/etc. bus probe sem.
1da177e4
LT
5691 *
5692 * RETURNS:
0cba632b 5693 * Number of ports registered. Zero on error (no ports registered).
1da177e4 5694 */
057ace5e 5695int ata_device_add(const struct ata_probe_ent *ent)
1da177e4 5696{
6d0500df 5697 unsigned int i;
1da177e4 5698 struct device *dev = ent->dev;
cca3974e 5699 struct ata_host *host;
39b07ce6 5700 int rc;
1da177e4
LT
5701
5702 DPRINTK("ENTER\n");
f20b16ff 5703
02f076aa
AC
5704 if (ent->irq == 0) {
5705 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5706 return 0;
5707 }
f0d36efd
TH
5708
5709 if (!devres_open_group(dev, ata_device_add, GFP_KERNEL))
5710 return 0;
5711
1da177e4 5712 /* alloc a container for our list of ATA ports (buses) */
f0d36efd
TH
5713 host = devres_alloc(ata_host_release, sizeof(struct ata_host) +
5714 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
cca3974e 5715 if (!host)
f0d36efd
TH
5716 goto err_out;
5717 devres_add(dev, host);
5718 dev_set_drvdata(dev, host);
1da177e4 5719
cca3974e
JG
5720 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5721 host->n_ports = ent->n_ports;
5722 host->irq = ent->irq;
5723 host->irq2 = ent->irq2;
0d5ff566 5724 host->iomap = ent->iomap;
cca3974e 5725 host->private_data = ent->private_data;
1da177e4
LT
5726
5727 /* register each port bound to this device */
cca3974e 5728 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5729 struct ata_port *ap;
5730 unsigned long xfer_mode_mask;
2ec7df04 5731 int irq_line = ent->irq;
1da177e4 5732
cca3974e 5733 ap = ata_port_add(ent, host, i);
c38778c3 5734 host->ports[i] = ap;
1da177e4
LT
5735 if (!ap)
5736 goto err_out;
5737
dd5b06c4
TH
5738 /* dummy? */
5739 if (ent->dummy_port_mask & (1 << i)) {
5740 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5741 ap->ops = &ata_dummy_port_ops;
5742 continue;
5743 }
5744
5745 /* start port */
5746 rc = ap->ops->port_start(ap);
5747 if (rc) {
cca3974e
JG
5748 host->ports[i] = NULL;
5749 scsi_host_put(ap->scsi_host);
dd5b06c4
TH
5750 goto err_out;
5751 }
5752
2ec7df04
AC
5753 /* Report the secondary IRQ for second channel legacy */
5754 if (i == 1 && ent->irq2)
5755 irq_line = ent->irq2;
5756
1da177e4
LT
5757 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5758 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5759 (ap->pio_mask << ATA_SHIFT_PIO);
5760
5761 /* print per-port info to dmesg */
0d5ff566
TH
5762 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
5763 "ctl 0x%p bmdma 0x%p irq %d\n",
f15a1daf
TH
5764 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5765 ata_mode_string(xfer_mode_mask),
5766 ap->ioaddr.cmd_addr,
5767 ap->ioaddr.ctl_addr,
5768 ap->ioaddr.bmdma_addr,
2ec7df04 5769 irq_line);
1da177e4 5770
0f0a3ad3
TH
5771 /* freeze port before requesting IRQ */
5772 ata_eh_freeze_port(ap);
1da177e4
LT
5773 }
5774
2ec7df04 5775 /* obtain irq, that may be shared between channels */
f0d36efd
TH
5776 rc = devm_request_irq(dev, ent->irq, ent->port_ops->irq_handler,
5777 ent->irq_flags, DRV_NAME, host);
39b07ce6
JG
5778 if (rc) {
5779 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5780 ent->irq, rc);
1da177e4 5781 goto err_out;
39b07ce6 5782 }
1da177e4 5783
2ec7df04
AC
5784 /* do we have a second IRQ for the other channel, eg legacy mode */
5785 if (ent->irq2) {
5786 /* We will get weird core code crashes later if this is true
5787 so trap it now */
5788 BUG_ON(ent->irq == ent->irq2);
5789
f0d36efd
TH
5790 rc = devm_request_irq(dev, ent->irq2,
5791 ent->port_ops->irq_handler, ent->irq_flags,
5792 DRV_NAME, host);
2ec7df04
AC
5793 if (rc) {
5794 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5795 ent->irq2, rc);
f0d36efd 5796 goto err_out;
2ec7df04
AC
5797 }
5798 }
5799
f0d36efd 5800 /* resource acquisition complete */
b878ca5d 5801 devres_remove_group(dev, ata_device_add);
f0d36efd 5802
1da177e4
LT
5803 /* perform each probe synchronously */
5804 DPRINTK("probe begin\n");
cca3974e
JG
5805 for (i = 0; i < host->n_ports; i++) {
5806 struct ata_port *ap = host->ports[i];
5a04bf4b 5807 u32 scontrol;
1da177e4
LT
5808 int rc;
5809
5a04bf4b
TH
5810 /* init sata_spd_limit to the current value */
5811 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5812 int spd = (scontrol >> 4) & 0xf;
5813 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5814 }
5815 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5816
cca3974e 5817 rc = scsi_add_host(ap->scsi_host, dev);
1da177e4 5818 if (rc) {
f15a1daf 5819 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5820 /* FIXME: do something useful here */
5821 /* FIXME: handle unconditional calls to
5822 * scsi_scan_host and ata_host_remove, below,
5823 * at the very least
5824 */
5825 }
3e706399 5826
52783c5d 5827 if (ap->ops->error_handler) {
1cdaf534 5828 struct ata_eh_info *ehi = &ap->eh_info;
3e706399
TH
5829 unsigned long flags;
5830
5831 ata_port_probe(ap);
5832
5833 /* kick EH for boot probing */
ba6a1308 5834 spin_lock_irqsave(ap->lock, flags);
3e706399 5835
1cdaf534
TH
5836 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5837 ehi->action |= ATA_EH_SOFTRESET;
5838 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
3e706399 5839
b51e9e5d 5840 ap->pflags |= ATA_PFLAG_LOADING;
3e706399
TH
5841 ata_port_schedule_eh(ap);
5842
ba6a1308 5843 spin_unlock_irqrestore(ap->lock, flags);
3e706399
TH
5844
5845 /* wait for EH to finish */
5846 ata_port_wait_eh(ap);
5847 } else {
5848 DPRINTK("ata%u: bus probe begin\n", ap->id);
5849 rc = ata_bus_probe(ap);
5850 DPRINTK("ata%u: bus probe end\n", ap->id);
5851
5852 if (rc) {
5853 /* FIXME: do something useful here?
5854 * Current libata behavior will
5855 * tear down everything when
5856 * the module is removed
5857 * or the h/w is unplugged.
5858 */
5859 }
5860 }
1da177e4
LT
5861 }
5862
5863 /* probes are done, now scan each port's disk(s) */
c893a3ae 5864 DPRINTK("host probe begin\n");
cca3974e
JG
5865 for (i = 0; i < host->n_ports; i++) {
5866 struct ata_port *ap = host->ports[i];
1da177e4 5867
644dd0cc 5868 ata_scsi_scan_host(ap);
1da177e4
LT
5869 }
5870
1da177e4
LT
5871 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5872 return ent->n_ports; /* success */
5873
f0d36efd
TH
5874 err_out:
5875 devres_release_group(dev, ata_device_add);
5876 dev_set_drvdata(dev, NULL);
5877 VPRINTK("EXIT, returning %d\n", rc);
1da177e4
LT
5878 return 0;
5879}
5880
720ba126
TH
5881/**
5882 * ata_port_detach - Detach ATA port in prepration of device removal
5883 * @ap: ATA port to be detached
5884 *
5885 * Detach all ATA devices and the associated SCSI devices of @ap;
5886 * then, remove the associated SCSI host. @ap is guaranteed to
5887 * be quiescent on return from this function.
5888 *
5889 * LOCKING:
5890 * Kernel thread context (may sleep).
5891 */
5892void ata_port_detach(struct ata_port *ap)
5893{
5894 unsigned long flags;
5895 int i;
5896
5897 if (!ap->ops->error_handler)
c3cf30a9 5898 goto skip_eh;
720ba126
TH
5899
5900 /* tell EH we're leaving & flush EH */
ba6a1308 5901 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 5902 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 5903 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5904
5905 ata_port_wait_eh(ap);
5906
5907 /* EH is now guaranteed to see UNLOADING, so no new device
5908 * will be attached. Disable all existing devices.
5909 */
ba6a1308 5910 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
5911
5912 for (i = 0; i < ATA_MAX_DEVICES; i++)
5913 ata_dev_disable(&ap->device[i]);
5914
ba6a1308 5915 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5916
5917 /* Final freeze & EH. All in-flight commands are aborted. EH
5918 * will be skipped and retrials will be terminated with bad
5919 * target.
5920 */
ba6a1308 5921 spin_lock_irqsave(ap->lock, flags);
720ba126 5922 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 5923 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5924
5925 ata_port_wait_eh(ap);
5926
5927 /* Flush hotplug task. The sequence is similar to
5928 * ata_port_flush_task().
5929 */
5930 flush_workqueue(ata_aux_wq);
5931 cancel_delayed_work(&ap->hotplug_task);
5932 flush_workqueue(ata_aux_wq);
5933
c3cf30a9 5934 skip_eh:
720ba126 5935 /* remove the associated SCSI host */
cca3974e 5936 scsi_remove_host(ap->scsi_host);
720ba126
TH
5937}
5938
0529c159
TH
5939/**
5940 * ata_host_detach - Detach all ports of an ATA host
5941 * @host: Host to detach
5942 *
5943 * Detach all ports of @host.
5944 *
5945 * LOCKING:
5946 * Kernel thread context (may sleep).
5947 */
5948void ata_host_detach(struct ata_host *host)
5949{
5950 int i;
5951
5952 for (i = 0; i < host->n_ports; i++)
5953 ata_port_detach(host->ports[i]);
5954}
5955
f6d950e2
BK
5956struct ata_probe_ent *
5957ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5958{
5959 struct ata_probe_ent *probe_ent;
5960
f0d36efd
TH
5961 /* XXX - the following if can go away once all LLDs are managed */
5962 if (!list_empty(&dev->devres_head))
5963 probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
5964 else
5965 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
f6d950e2
BK
5966 if (!probe_ent) {
5967 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5968 kobject_name(&(dev->kobj)));
5969 return NULL;
5970 }
5971
5972 INIT_LIST_HEAD(&probe_ent->node);
5973 probe_ent->dev = dev;
5974
5975 probe_ent->sht = port->sht;
cca3974e 5976 probe_ent->port_flags = port->flags;
f6d950e2
BK
5977 probe_ent->pio_mask = port->pio_mask;
5978 probe_ent->mwdma_mask = port->mwdma_mask;
5979 probe_ent->udma_mask = port->udma_mask;
5980 probe_ent->port_ops = port->port_ops;
d639ca94 5981 probe_ent->private_data = port->private_data;
f6d950e2
BK
5982
5983 return probe_ent;
5984}
5985
1da177e4
LT
5986/**
5987 * ata_std_ports - initialize ioaddr with standard port offsets.
5988 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5989 *
5990 * Utility function which initializes data_addr, error_addr,
5991 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5992 * device_addr, status_addr, and command_addr to standard offsets
5993 * relative to cmd_addr.
5994 *
5995 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5996 */
0baab86b 5997
1da177e4
LT
5998void ata_std_ports(struct ata_ioports *ioaddr)
5999{
6000 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6001 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6002 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6003 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6004 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6005 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6006 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6007 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6008 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6009 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6010}
6011
0baab86b 6012
374b1873
JG
6013#ifdef CONFIG_PCI
6014
1da177e4
LT
6015/**
6016 * ata_pci_remove_one - PCI layer callback for device removal
6017 * @pdev: PCI device that was removed
6018 *
b878ca5d
TH
6019 * PCI layer indicates to libata via this hook that hot-unplug or
6020 * module unload event has occurred. Detach all ports. Resource
6021 * release is handled via devres.
1da177e4
LT
6022 *
6023 * LOCKING:
6024 * Inherited from PCI layer (may sleep).
6025 */
f0d36efd 6026void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6027{
6028 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6029 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6030
b878ca5d 6031 ata_host_detach(host);
1da177e4
LT
6032}
6033
6034/* move to PCI subsystem */
057ace5e 6035int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6036{
6037 unsigned long tmp = 0;
6038
6039 switch (bits->width) {
6040 case 1: {
6041 u8 tmp8 = 0;
6042 pci_read_config_byte(pdev, bits->reg, &tmp8);
6043 tmp = tmp8;
6044 break;
6045 }
6046 case 2: {
6047 u16 tmp16 = 0;
6048 pci_read_config_word(pdev, bits->reg, &tmp16);
6049 tmp = tmp16;
6050 break;
6051 }
6052 case 4: {
6053 u32 tmp32 = 0;
6054 pci_read_config_dword(pdev, bits->reg, &tmp32);
6055 tmp = tmp32;
6056 break;
6057 }
6058
6059 default:
6060 return -EINVAL;
6061 }
6062
6063 tmp &= bits->mask;
6064
6065 return (tmp == bits->val) ? 1 : 0;
6066}
9b847548 6067
3c5100c1 6068void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6069{
6070 pci_save_state(pdev);
500530f6 6071
3c5100c1 6072 if (mesg.event == PM_EVENT_SUSPEND) {
500530f6
TH
6073 pci_disable_device(pdev);
6074 pci_set_power_state(pdev, PCI_D3hot);
6075 }
9b847548
JA
6076}
6077
553c4aa6 6078int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6079{
553c4aa6
TH
6080 int rc;
6081
9b847548
JA
6082 pci_set_power_state(pdev, PCI_D0);
6083 pci_restore_state(pdev);
553c4aa6 6084
b878ca5d 6085 rc = pcim_enable_device(pdev);
553c4aa6
TH
6086 if (rc) {
6087 dev_printk(KERN_ERR, &pdev->dev,
6088 "failed to enable device after resume (%d)\n", rc);
6089 return rc;
6090 }
6091
9b847548 6092 pci_set_master(pdev);
553c4aa6 6093 return 0;
500530f6
TH
6094}
6095
3c5100c1 6096int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6097{
cca3974e 6098 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6099 int rc = 0;
6100
cca3974e 6101 rc = ata_host_suspend(host, mesg);
500530f6
TH
6102 if (rc)
6103 return rc;
6104
3c5100c1 6105 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6106
6107 return 0;
6108}
6109
6110int ata_pci_device_resume(struct pci_dev *pdev)
6111{
cca3974e 6112 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6113 int rc;
500530f6 6114
553c4aa6
TH
6115 rc = ata_pci_device_do_resume(pdev);
6116 if (rc == 0)
6117 ata_host_resume(host);
6118 return rc;
9b847548 6119}
1da177e4
LT
6120#endif /* CONFIG_PCI */
6121
6122
1da177e4
LT
6123static int __init ata_init(void)
6124{
a8601e5f 6125 ata_probe_timeout *= HZ;
1da177e4
LT
6126 ata_wq = create_workqueue("ata");
6127 if (!ata_wq)
6128 return -ENOMEM;
6129
453b07ac
TH
6130 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6131 if (!ata_aux_wq) {
6132 destroy_workqueue(ata_wq);
6133 return -ENOMEM;
6134 }
6135
1da177e4
LT
6136 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6137 return 0;
6138}
6139
6140static void __exit ata_exit(void)
6141{
6142 destroy_workqueue(ata_wq);
453b07ac 6143 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6144}
6145
a4625085 6146subsys_initcall(ata_init);
1da177e4
LT
6147module_exit(ata_exit);
6148
67846b30 6149static unsigned long ratelimit_time;
34af946a 6150static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6151
6152int ata_ratelimit(void)
6153{
6154 int rc;
6155 unsigned long flags;
6156
6157 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6158
6159 if (time_after(jiffies, ratelimit_time)) {
6160 rc = 1;
6161 ratelimit_time = jiffies + (HZ/5);
6162 } else
6163 rc = 0;
6164
6165 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6166
6167 return rc;
6168}
6169
c22daff4
TH
6170/**
6171 * ata_wait_register - wait until register value changes
6172 * @reg: IO-mapped register
6173 * @mask: Mask to apply to read register value
6174 * @val: Wait condition
6175 * @interval_msec: polling interval in milliseconds
6176 * @timeout_msec: timeout in milliseconds
6177 *
6178 * Waiting for some bits of register to change is a common
6179 * operation for ATA controllers. This function reads 32bit LE
6180 * IO-mapped register @reg and tests for the following condition.
6181 *
6182 * (*@reg & mask) != val
6183 *
6184 * If the condition is met, it returns; otherwise, the process is
6185 * repeated after @interval_msec until timeout.
6186 *
6187 * LOCKING:
6188 * Kernel thread context (may sleep)
6189 *
6190 * RETURNS:
6191 * The final register value.
6192 */
6193u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6194 unsigned long interval_msec,
6195 unsigned long timeout_msec)
6196{
6197 unsigned long timeout;
6198 u32 tmp;
6199
6200 tmp = ioread32(reg);
6201
6202 /* Calculate timeout _after_ the first read to make sure
6203 * preceding writes reach the controller before starting to
6204 * eat away the timeout.
6205 */
6206 timeout = jiffies + (timeout_msec * HZ) / 1000;
6207
6208 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6209 msleep(interval_msec);
6210 tmp = ioread32(reg);
6211 }
6212
6213 return tmp;
6214}
6215
dd5b06c4
TH
6216/*
6217 * Dummy port_ops
6218 */
6219static void ata_dummy_noret(struct ata_port *ap) { }
6220static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6221static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6222
6223static u8 ata_dummy_check_status(struct ata_port *ap)
6224{
6225 return ATA_DRDY;
6226}
6227
6228static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6229{
6230 return AC_ERR_SYSTEM;
6231}
6232
6233const struct ata_port_operations ata_dummy_port_ops = {
6234 .port_disable = ata_port_disable,
6235 .check_status = ata_dummy_check_status,
6236 .check_altstatus = ata_dummy_check_status,
6237 .dev_select = ata_noop_dev_select,
6238 .qc_prep = ata_noop_qc_prep,
6239 .qc_issue = ata_dummy_qc_issue,
6240 .freeze = ata_dummy_noret,
6241 .thaw = ata_dummy_noret,
6242 .error_handler = ata_dummy_noret,
6243 .post_internal_cmd = ata_dummy_qc_noret,
6244 .irq_clear = ata_dummy_noret,
6245 .port_start = ata_dummy_ret0,
6246 .port_stop = ata_dummy_noret,
6247};
6248
1da177e4
LT
6249/*
6250 * libata is essentially a library of internal helper functions for
6251 * low-level ATA host controller drivers. As such, the API/ABI is
6252 * likely to change as new drivers are added and updated.
6253 * Do not depend on ABI/API stability.
6254 */
6255
e9c83914
TH
6256EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6257EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6258EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6259EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
1da177e4
LT
6260EXPORT_SYMBOL_GPL(ata_std_bios_param);
6261EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6262EXPORT_SYMBOL_GPL(ata_host_init);
1da177e4 6263EXPORT_SYMBOL_GPL(ata_device_add);
0529c159 6264EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6265EXPORT_SYMBOL_GPL(ata_sg_init);
6266EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6267EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6268EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6269EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6270EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6271EXPORT_SYMBOL_GPL(ata_tf_load);
6272EXPORT_SYMBOL_GPL(ata_tf_read);
6273EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6274EXPORT_SYMBOL_GPL(ata_std_dev_select);
6275EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6276EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6277EXPORT_SYMBOL_GPL(ata_check_status);
6278EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6279EXPORT_SYMBOL_GPL(ata_exec_command);
6280EXPORT_SYMBOL_GPL(ata_port_start);
1da177e4 6281EXPORT_SYMBOL_GPL(ata_interrupt);
0d5ff566
TH
6282EXPORT_SYMBOL_GPL(ata_data_xfer);
6283EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6284EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 6285EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6286EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6287EXPORT_SYMBOL_GPL(ata_bmdma_start);
6288EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6289EXPORT_SYMBOL_GPL(ata_bmdma_status);
6290EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6291EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6292EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6293EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6294EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6295EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6296EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 6297EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6298EXPORT_SYMBOL_GPL(sata_phy_debounce);
6299EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6300EXPORT_SYMBOL_GPL(sata_phy_reset);
6301EXPORT_SYMBOL_GPL(__sata_phy_reset);
6302EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6303EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6304EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6305EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6306EXPORT_SYMBOL_GPL(sata_std_hardreset);
6307EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6308EXPORT_SYMBOL_GPL(ata_dev_classify);
6309EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6310EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6311EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6312EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6313EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 6314EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6315EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6316EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6317EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6318EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6319EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 6320EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6321EXPORT_SYMBOL_GPL(sata_scr_valid);
6322EXPORT_SYMBOL_GPL(sata_scr_read);
6323EXPORT_SYMBOL_GPL(sata_scr_write);
6324EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6325EXPORT_SYMBOL_GPL(ata_port_online);
6326EXPORT_SYMBOL_GPL(ata_port_offline);
cca3974e
JG
6327EXPORT_SYMBOL_GPL(ata_host_suspend);
6328EXPORT_SYMBOL_GPL(ata_host_resume);
6a62a04d
TH
6329EXPORT_SYMBOL_GPL(ata_id_string);
6330EXPORT_SYMBOL_GPL(ata_id_c_string);
6919a0a6 6331EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6332EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6333
1bc4ccff 6334EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6335EXPORT_SYMBOL_GPL(ata_timing_compute);
6336EXPORT_SYMBOL_GPL(ata_timing_merge);
6337
1da177e4
LT
6338#ifdef CONFIG_PCI
6339EXPORT_SYMBOL_GPL(pci_test_config_bits);
6340EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6341EXPORT_SYMBOL_GPL(ata_pci_init_one);
6342EXPORT_SYMBOL_GPL(ata_pci_remove_one);
500530f6
TH
6343EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6344EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6345EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6346EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
6347EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6348EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6349#endif /* CONFIG_PCI */
9b847548 6350
9b847548
JA
6351EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6352EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 6353
ece1d636 6354EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6355EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6356EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6357EXPORT_SYMBOL_GPL(ata_port_freeze);
6358EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6359EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6360EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6361EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6362EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
6363EXPORT_SYMBOL_GPL(ata_irq_on);
6364EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6365EXPORT_SYMBOL_GPL(ata_irq_ack);
6366EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 6367EXPORT_SYMBOL_GPL(ata_dev_try_classify);