libata: use dev_driver_string() instead of "libata" in libata-sff.c
[linux-2.6-block.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
49#include <linux/highmem.h>
50#include <linux/spinlock.h>
51#include <linux/blkdev.h>
52#include <linux/delay.h>
53#include <linux/timer.h>
54#include <linux/interrupt.h>
55#include <linux/completion.h>
56#include <linux/suspend.h>
57#include <linux/workqueue.h>
67846b30 58#include <linux/jiffies.h>
378f058c 59#include <linux/scatterlist.h>
2dcb407e 60#include <linux/io.h>
1da177e4 61#include <scsi/scsi.h>
193515d5 62#include <scsi/scsi_cmnd.h>
1da177e4
LT
63#include <scsi/scsi_host.h>
64#include <linux/libata.h>
1da177e4
LT
65#include <asm/semaphore.h>
66#include <asm/byteorder.h>
140b5e59 67#include <linux/cdrom.h>
1da177e4
LT
68
69#include "libata.h"
70
fda0efc5 71
d7bb4cc7 72/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
73const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
74const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
75const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 76
3373efd8
TH
77static unsigned int ata_dev_init_params(struct ata_device *dev,
78 u16 heads, u16 sectors);
79static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
80static unsigned int ata_dev_set_feature(struct ata_device *dev,
81 u8 enable, u8 feature);
3373efd8 82static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 83static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 84
f3187195 85unsigned int ata_print_id = 1;
1da177e4
LT
86static struct workqueue_struct *ata_wq;
87
453b07ac
TH
88struct workqueue_struct *ata_aux_wq;
89
418dc1f5 90int atapi_enabled = 1;
1623c81e
JG
91module_param(atapi_enabled, int, 0444);
92MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
93
95de719a
AL
94int atapi_dmadir = 0;
95module_param(atapi_dmadir, int, 0444);
96MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
97
baf4fdfa
ML
98int atapi_passthru16 = 1;
99module_param(atapi_passthru16, int, 0444);
100MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
101
c3c013a2
JG
102int libata_fua = 0;
103module_param_named(fua, libata_fua, int, 0444);
104MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
105
2dcb407e 106static int ata_ignore_hpa;
1e999736
AC
107module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
108MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
109
b3a70601
AC
110static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
111module_param_named(dma, libata_dma_mask, int, 0444);
112MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
113
a8601e5f
AM
114static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
115module_param(ata_probe_timeout, int, 0444);
116MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
117
6ebe9d86 118int libata_noacpi = 0;
d7d0dad6 119module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 120MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 121
ae8d4ee7
AC
122int libata_allow_tpm = 0;
123module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
124MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
125
1da177e4
LT
126MODULE_AUTHOR("Jeff Garzik");
127MODULE_DESCRIPTION("Library module for ATA devices");
128MODULE_LICENSE("GPL");
129MODULE_VERSION(DRV_VERSION);
130
0baab86b 131
1da177e4
LT
132/**
133 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
134 * @tf: Taskfile to convert
1da177e4 135 * @pmp: Port multiplier port
9977126c
TH
136 * @is_cmd: This FIS is for command
137 * @fis: Buffer into which data will output
1da177e4
LT
138 *
139 * Converts a standard ATA taskfile to a Serial ATA
140 * FIS structure (Register - Host to Device).
141 *
142 * LOCKING:
143 * Inherited from caller.
144 */
9977126c 145void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 146{
9977126c
TH
147 fis[0] = 0x27; /* Register - Host to Device FIS */
148 fis[1] = pmp & 0xf; /* Port multiplier number*/
149 if (is_cmd)
150 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
151
1da177e4
LT
152 fis[2] = tf->command;
153 fis[3] = tf->feature;
154
155 fis[4] = tf->lbal;
156 fis[5] = tf->lbam;
157 fis[6] = tf->lbah;
158 fis[7] = tf->device;
159
160 fis[8] = tf->hob_lbal;
161 fis[9] = tf->hob_lbam;
162 fis[10] = tf->hob_lbah;
163 fis[11] = tf->hob_feature;
164
165 fis[12] = tf->nsect;
166 fis[13] = tf->hob_nsect;
167 fis[14] = 0;
168 fis[15] = tf->ctl;
169
170 fis[16] = 0;
171 fis[17] = 0;
172 fis[18] = 0;
173 fis[19] = 0;
174}
175
176/**
177 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
178 * @fis: Buffer from which data will be input
179 * @tf: Taskfile to output
180 *
e12a1be6 181 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
182 *
183 * LOCKING:
184 * Inherited from caller.
185 */
186
057ace5e 187void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
188{
189 tf->command = fis[2]; /* status */
190 tf->feature = fis[3]; /* error */
191
192 tf->lbal = fis[4];
193 tf->lbam = fis[5];
194 tf->lbah = fis[6];
195 tf->device = fis[7];
196
197 tf->hob_lbal = fis[8];
198 tf->hob_lbam = fis[9];
199 tf->hob_lbah = fis[10];
200
201 tf->nsect = fis[12];
202 tf->hob_nsect = fis[13];
203}
204
8cbd6df1
AL
205static const u8 ata_rw_cmds[] = {
206 /* pio multi */
207 ATA_CMD_READ_MULTI,
208 ATA_CMD_WRITE_MULTI,
209 ATA_CMD_READ_MULTI_EXT,
210 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
211 0,
212 0,
213 0,
214 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
215 /* pio */
216 ATA_CMD_PIO_READ,
217 ATA_CMD_PIO_WRITE,
218 ATA_CMD_PIO_READ_EXT,
219 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
220 0,
221 0,
222 0,
223 0,
8cbd6df1
AL
224 /* dma */
225 ATA_CMD_READ,
226 ATA_CMD_WRITE,
227 ATA_CMD_READ_EXT,
9a3dccc4
TH
228 ATA_CMD_WRITE_EXT,
229 0,
230 0,
231 0,
232 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 233};
1da177e4
LT
234
235/**
8cbd6df1 236 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
237 * @tf: command to examine and configure
238 * @dev: device tf belongs to
1da177e4 239 *
2e9edbf8 240 * Examine the device configuration and tf->flags to calculate
8cbd6df1 241 * the proper read/write commands and protocol to use.
1da177e4
LT
242 *
243 * LOCKING:
244 * caller.
245 */
bd056d7e 246static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 247{
9a3dccc4 248 u8 cmd;
1da177e4 249
9a3dccc4 250 int index, fua, lba48, write;
2e9edbf8 251
9a3dccc4 252 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
253 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
254 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 255
8cbd6df1
AL
256 if (dev->flags & ATA_DFLAG_PIO) {
257 tf->protocol = ATA_PROT_PIO;
9a3dccc4 258 index = dev->multi_count ? 0 : 8;
9af5c9c9 259 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
260 /* Unable to use DMA due to host limitation */
261 tf->protocol = ATA_PROT_PIO;
0565c26d 262 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
263 } else {
264 tf->protocol = ATA_PROT_DMA;
9a3dccc4 265 index = 16;
8cbd6df1 266 }
1da177e4 267
9a3dccc4
TH
268 cmd = ata_rw_cmds[index + fua + lba48 + write];
269 if (cmd) {
270 tf->command = cmd;
271 return 0;
272 }
273 return -1;
1da177e4
LT
274}
275
35b649fe
TH
276/**
277 * ata_tf_read_block - Read block address from ATA taskfile
278 * @tf: ATA taskfile of interest
279 * @dev: ATA device @tf belongs to
280 *
281 * LOCKING:
282 * None.
283 *
284 * Read block address from @tf. This function can handle all
285 * three address formats - LBA, LBA48 and CHS. tf->protocol and
286 * flags select the address format to use.
287 *
288 * RETURNS:
289 * Block address read from @tf.
290 */
291u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
292{
293 u64 block = 0;
294
295 if (tf->flags & ATA_TFLAG_LBA) {
296 if (tf->flags & ATA_TFLAG_LBA48) {
297 block |= (u64)tf->hob_lbah << 40;
298 block |= (u64)tf->hob_lbam << 32;
299 block |= tf->hob_lbal << 24;
300 } else
301 block |= (tf->device & 0xf) << 24;
302
303 block |= tf->lbah << 16;
304 block |= tf->lbam << 8;
305 block |= tf->lbal;
306 } else {
307 u32 cyl, head, sect;
308
309 cyl = tf->lbam | (tf->lbah << 8);
310 head = tf->device & 0xf;
311 sect = tf->lbal;
312
313 block = (cyl * dev->heads + head) * dev->sectors + sect;
314 }
315
316 return block;
317}
318
bd056d7e
TH
319/**
320 * ata_build_rw_tf - Build ATA taskfile for given read/write request
321 * @tf: Target ATA taskfile
322 * @dev: ATA device @tf belongs to
323 * @block: Block address
324 * @n_block: Number of blocks
325 * @tf_flags: RW/FUA etc...
326 * @tag: tag
327 *
328 * LOCKING:
329 * None.
330 *
331 * Build ATA taskfile @tf for read/write request described by
332 * @block, @n_block, @tf_flags and @tag on @dev.
333 *
334 * RETURNS:
335 *
336 * 0 on success, -ERANGE if the request is too large for @dev,
337 * -EINVAL if the request is invalid.
338 */
339int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
340 u64 block, u32 n_block, unsigned int tf_flags,
341 unsigned int tag)
342{
343 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
344 tf->flags |= tf_flags;
345
6d1245bf 346 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
347 /* yay, NCQ */
348 if (!lba_48_ok(block, n_block))
349 return -ERANGE;
350
351 tf->protocol = ATA_PROT_NCQ;
352 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
353
354 if (tf->flags & ATA_TFLAG_WRITE)
355 tf->command = ATA_CMD_FPDMA_WRITE;
356 else
357 tf->command = ATA_CMD_FPDMA_READ;
358
359 tf->nsect = tag << 3;
360 tf->hob_feature = (n_block >> 8) & 0xff;
361 tf->feature = n_block & 0xff;
362
363 tf->hob_lbah = (block >> 40) & 0xff;
364 tf->hob_lbam = (block >> 32) & 0xff;
365 tf->hob_lbal = (block >> 24) & 0xff;
366 tf->lbah = (block >> 16) & 0xff;
367 tf->lbam = (block >> 8) & 0xff;
368 tf->lbal = block & 0xff;
369
370 tf->device = 1 << 6;
371 if (tf->flags & ATA_TFLAG_FUA)
372 tf->device |= 1 << 7;
373 } else if (dev->flags & ATA_DFLAG_LBA) {
374 tf->flags |= ATA_TFLAG_LBA;
375
376 if (lba_28_ok(block, n_block)) {
377 /* use LBA28 */
378 tf->device |= (block >> 24) & 0xf;
379 } else if (lba_48_ok(block, n_block)) {
380 if (!(dev->flags & ATA_DFLAG_LBA48))
381 return -ERANGE;
382
383 /* use LBA48 */
384 tf->flags |= ATA_TFLAG_LBA48;
385
386 tf->hob_nsect = (n_block >> 8) & 0xff;
387
388 tf->hob_lbah = (block >> 40) & 0xff;
389 tf->hob_lbam = (block >> 32) & 0xff;
390 tf->hob_lbal = (block >> 24) & 0xff;
391 } else
392 /* request too large even for LBA48 */
393 return -ERANGE;
394
395 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
396 return -EINVAL;
397
398 tf->nsect = n_block & 0xff;
399
400 tf->lbah = (block >> 16) & 0xff;
401 tf->lbam = (block >> 8) & 0xff;
402 tf->lbal = block & 0xff;
403
404 tf->device |= ATA_LBA;
405 } else {
406 /* CHS */
407 u32 sect, head, cyl, track;
408
409 /* The request -may- be too large for CHS addressing. */
410 if (!lba_28_ok(block, n_block))
411 return -ERANGE;
412
413 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
414 return -EINVAL;
415
416 /* Convert LBA to CHS */
417 track = (u32)block / dev->sectors;
418 cyl = track / dev->heads;
419 head = track % dev->heads;
420 sect = (u32)block % dev->sectors + 1;
421
422 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
423 (u32)block, track, cyl, head, sect);
424
425 /* Check whether the converted CHS can fit.
426 Cylinder: 0-65535
427 Head: 0-15
428 Sector: 1-255*/
429 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
430 return -ERANGE;
431
432 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
433 tf->lbal = sect;
434 tf->lbam = cyl;
435 tf->lbah = cyl >> 8;
436 tf->device |= head;
437 }
438
439 return 0;
440}
441
cb95d562
TH
442/**
443 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
444 * @pio_mask: pio_mask
445 * @mwdma_mask: mwdma_mask
446 * @udma_mask: udma_mask
447 *
448 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
449 * unsigned int xfer_mask.
450 *
451 * LOCKING:
452 * None.
453 *
454 * RETURNS:
455 * Packed xfer_mask.
456 */
7dc951ae
TH
457unsigned long ata_pack_xfermask(unsigned long pio_mask,
458 unsigned long mwdma_mask,
459 unsigned long udma_mask)
cb95d562
TH
460{
461 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
462 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
463 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
464}
465
c0489e4e
TH
466/**
467 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
468 * @xfer_mask: xfer_mask to unpack
469 * @pio_mask: resulting pio_mask
470 * @mwdma_mask: resulting mwdma_mask
471 * @udma_mask: resulting udma_mask
472 *
473 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
474 * Any NULL distination masks will be ignored.
475 */
7dc951ae
TH
476void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
477 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
478{
479 if (pio_mask)
480 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
481 if (mwdma_mask)
482 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
483 if (udma_mask)
484 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
485}
486
cb95d562 487static const struct ata_xfer_ent {
be9a50c8 488 int shift, bits;
cb95d562
TH
489 u8 base;
490} ata_xfer_tbl[] = {
70cd071e
TH
491 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
492 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
493 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
494 { -1, },
495};
496
497/**
498 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
499 * @xfer_mask: xfer_mask of interest
500 *
501 * Return matching XFER_* value for @xfer_mask. Only the highest
502 * bit of @xfer_mask is considered.
503 *
504 * LOCKING:
505 * None.
506 *
507 * RETURNS:
70cd071e 508 * Matching XFER_* value, 0xff if no match found.
cb95d562 509 */
7dc951ae 510u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
511{
512 int highbit = fls(xfer_mask) - 1;
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
517 return ent->base + highbit - ent->shift;
70cd071e 518 return 0xff;
cb95d562
TH
519}
520
521/**
522 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_mask for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_mask, 0 if no match found.
532 */
7dc951ae 533unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
534{
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
539 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
540 & ~((1 << ent->shift) - 1);
cb95d562
TH
541 return 0;
542}
543
544/**
545 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
546 * @xfer_mode: XFER_* of interest
547 *
548 * Return matching xfer_shift for @xfer_mode.
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Matching xfer_shift, -1 if no match found.
555 */
7dc951ae 556int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
557{
558 const struct ata_xfer_ent *ent;
559
560 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
561 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
562 return ent->shift;
563 return -1;
564}
565
1da177e4 566/**
1da7b0d0
TH
567 * ata_mode_string - convert xfer_mask to string
568 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
569 *
570 * Determine string which represents the highest speed
1da7b0d0 571 * (highest bit in @modemask).
1da177e4
LT
572 *
573 * LOCKING:
574 * None.
575 *
576 * RETURNS:
577 * Constant C string representing highest speed listed in
1da7b0d0 578 * @mode_mask, or the constant C string "<n/a>".
1da177e4 579 */
7dc951ae 580const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 581{
75f554bc
TH
582 static const char * const xfer_mode_str[] = {
583 "PIO0",
584 "PIO1",
585 "PIO2",
586 "PIO3",
587 "PIO4",
b352e57d
AC
588 "PIO5",
589 "PIO6",
75f554bc
TH
590 "MWDMA0",
591 "MWDMA1",
592 "MWDMA2",
b352e57d
AC
593 "MWDMA3",
594 "MWDMA4",
75f554bc
TH
595 "UDMA/16",
596 "UDMA/25",
597 "UDMA/33",
598 "UDMA/44",
599 "UDMA/66",
600 "UDMA/100",
601 "UDMA/133",
602 "UDMA7",
603 };
1da7b0d0 604 int highbit;
1da177e4 605
1da7b0d0
TH
606 highbit = fls(xfer_mask) - 1;
607 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
608 return xfer_mode_str[highbit];
1da177e4 609 return "<n/a>";
1da177e4
LT
610}
611
4c360c81
TH
612static const char *sata_spd_string(unsigned int spd)
613{
614 static const char * const spd_str[] = {
615 "1.5 Gbps",
616 "3.0 Gbps",
617 };
618
619 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
620 return "<unknown>";
621 return spd_str[spd - 1];
622}
623
3373efd8 624void ata_dev_disable(struct ata_device *dev)
0b8efb0a 625{
09d7f9b0 626 if (ata_dev_enabled(dev)) {
9af5c9c9 627 if (ata_msg_drv(dev->link->ap))
09d7f9b0 628 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
562f0c2d 629 ata_acpi_on_disable(dev);
4ae72a1e
TH
630 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
631 ATA_DNXFER_QUIET);
0b8efb0a
TH
632 dev->class++;
633 }
634}
635
ca77329f
KCA
636static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
637{
638 struct ata_link *link = dev->link;
639 struct ata_port *ap = link->ap;
640 u32 scontrol;
641 unsigned int err_mask;
642 int rc;
643
644 /*
645 * disallow DIPM for drivers which haven't set
646 * ATA_FLAG_IPM. This is because when DIPM is enabled,
647 * phy ready will be set in the interrupt status on
648 * state changes, which will cause some drivers to
649 * think there are errors - additionally drivers will
650 * need to disable hot plug.
651 */
652 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
653 ap->pm_policy = NOT_AVAILABLE;
654 return -EINVAL;
655 }
656
657 /*
658 * For DIPM, we will only enable it for the
659 * min_power setting.
660 *
661 * Why? Because Disks are too stupid to know that
662 * If the host rejects a request to go to SLUMBER
663 * they should retry at PARTIAL, and instead it
664 * just would give up. So, for medium_power to
665 * work at all, we need to only allow HIPM.
666 */
667 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
668 if (rc)
669 return rc;
670
671 switch (policy) {
672 case MIN_POWER:
673 /* no restrictions on IPM transitions */
674 scontrol &= ~(0x3 << 8);
675 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
676 if (rc)
677 return rc;
678
679 /* enable DIPM */
680 if (dev->flags & ATA_DFLAG_DIPM)
681 err_mask = ata_dev_set_feature(dev,
682 SETFEATURES_SATA_ENABLE, SATA_DIPM);
683 break;
684 case MEDIUM_POWER:
685 /* allow IPM to PARTIAL */
686 scontrol &= ~(0x1 << 8);
687 scontrol |= (0x2 << 8);
688 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
689 if (rc)
690 return rc;
691
f5456b63
KCA
692 /*
693 * we don't have to disable DIPM since IPM flags
694 * disallow transitions to SLUMBER, which effectively
695 * disable DIPM if it does not support PARTIAL
696 */
ca77329f
KCA
697 break;
698 case NOT_AVAILABLE:
699 case MAX_PERFORMANCE:
700 /* disable all IPM transitions */
701 scontrol |= (0x3 << 8);
702 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
703 if (rc)
704 return rc;
705
f5456b63
KCA
706 /*
707 * we don't have to disable DIPM since IPM flags
708 * disallow all transitions which effectively
709 * disable DIPM anyway.
710 */
ca77329f
KCA
711 break;
712 }
713
714 /* FIXME: handle SET FEATURES failure */
715 (void) err_mask;
716
717 return 0;
718}
719
720/**
721 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
722 * @dev: device to enable power management
723 * @policy: the link power management policy
ca77329f
KCA
724 *
725 * Enable SATA Interface power management. This will enable
726 * Device Interface Power Management (DIPM) for min_power
727 * policy, and then call driver specific callbacks for
728 * enabling Host Initiated Power management.
729 *
730 * Locking: Caller.
731 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
732 */
733void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
734{
735 int rc = 0;
736 struct ata_port *ap = dev->link->ap;
737
738 /* set HIPM first, then DIPM */
739 if (ap->ops->enable_pm)
740 rc = ap->ops->enable_pm(ap, policy);
741 if (rc)
742 goto enable_pm_out;
743 rc = ata_dev_set_dipm(dev, policy);
744
745enable_pm_out:
746 if (rc)
747 ap->pm_policy = MAX_PERFORMANCE;
748 else
749 ap->pm_policy = policy;
750 return /* rc */; /* hopefully we can use 'rc' eventually */
751}
752
1992a5ed 753#ifdef CONFIG_PM
ca77329f
KCA
754/**
755 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 756 * @dev: device to disable power management
ca77329f
KCA
757 *
758 * Disable SATA Interface power management. This will disable
759 * Device Interface Power Management (DIPM) without changing
760 * policy, call driver specific callbacks for disabling Host
761 * Initiated Power management.
762 *
763 * Locking: Caller.
764 * Returns: void
765 */
766static void ata_dev_disable_pm(struct ata_device *dev)
767{
768 struct ata_port *ap = dev->link->ap;
769
770 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
771 if (ap->ops->disable_pm)
772 ap->ops->disable_pm(ap);
773}
1992a5ed 774#endif /* CONFIG_PM */
ca77329f
KCA
775
776void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
777{
778 ap->pm_policy = policy;
779 ap->link.eh_info.action |= ATA_EHI_LPM;
780 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
781 ata_port_schedule_eh(ap);
782}
783
1992a5ed 784#ifdef CONFIG_PM
ca77329f
KCA
785static void ata_lpm_enable(struct ata_host *host)
786{
787 struct ata_link *link;
788 struct ata_port *ap;
789 struct ata_device *dev;
790 int i;
791
792 for (i = 0; i < host->n_ports; i++) {
793 ap = host->ports[i];
794 ata_port_for_each_link(link, ap) {
795 ata_link_for_each_dev(dev, link)
796 ata_dev_disable_pm(dev);
797 }
798 }
799}
800
801static void ata_lpm_disable(struct ata_host *host)
802{
803 int i;
804
805 for (i = 0; i < host->n_ports; i++) {
806 struct ata_port *ap = host->ports[i];
807 ata_lpm_schedule(ap, ap->pm_policy);
808 }
809}
1992a5ed 810#endif /* CONFIG_PM */
ca77329f
KCA
811
812
1da177e4 813/**
0d5ff566 814 * ata_devchk - PATA device presence detection
1da177e4
LT
815 * @ap: ATA channel to examine
816 * @device: Device to examine (starting at zero)
817 *
818 * This technique was originally described in
819 * Hale Landis's ATADRVR (www.ata-atapi.com), and
820 * later found its way into the ATA/ATAPI spec.
821 *
822 * Write a pattern to the ATA shadow registers,
823 * and if a device is present, it will respond by
824 * correctly storing and echoing back the
825 * ATA shadow register contents.
826 *
827 * LOCKING:
828 * caller.
829 */
830
0d5ff566 831static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
832{
833 struct ata_ioports *ioaddr = &ap->ioaddr;
834 u8 nsect, lbal;
835
836 ap->ops->dev_select(ap, device);
837
0d5ff566
TH
838 iowrite8(0x55, ioaddr->nsect_addr);
839 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 840
0d5ff566
TH
841 iowrite8(0xaa, ioaddr->nsect_addr);
842 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 843
0d5ff566
TH
844 iowrite8(0x55, ioaddr->nsect_addr);
845 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 846
0d5ff566
TH
847 nsect = ioread8(ioaddr->nsect_addr);
848 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
849
850 if ((nsect == 0x55) && (lbal == 0xaa))
851 return 1; /* we found a device */
852
853 return 0; /* nothing found */
854}
855
1da177e4
LT
856/**
857 * ata_dev_classify - determine device type based on ATA-spec signature
858 * @tf: ATA taskfile register set for device to be identified
859 *
860 * Determine from taskfile register contents whether a device is
861 * ATA or ATAPI, as per "Signature and persistence" section
862 * of ATA/PI spec (volume 1, sect 5.14).
863 *
864 * LOCKING:
865 * None.
866 *
867 * RETURNS:
633273a3
TH
868 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
869 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 870 */
057ace5e 871unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
872{
873 /* Apple's open source Darwin code hints that some devices only
874 * put a proper signature into the LBA mid/high registers,
875 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
876 *
877 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
878 * signatures for ATA and ATAPI devices attached on SerialATA,
879 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
880 * spec has never mentioned about using different signatures
881 * for ATA/ATAPI devices. Then, Serial ATA II: Port
882 * Multiplier specification began to use 0x69/0x96 to identify
883 * port multpliers and 0x3c/0xc3 to identify SEMB device.
884 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
885 * 0x69/0x96 shortly and described them as reserved for
886 * SerialATA.
887 *
888 * We follow the current spec and consider that 0x69/0x96
889 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 890 */
633273a3 891 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
892 DPRINTK("found ATA device by sig\n");
893 return ATA_DEV_ATA;
894 }
895
633273a3 896 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
897 DPRINTK("found ATAPI device by sig\n");
898 return ATA_DEV_ATAPI;
899 }
900
633273a3
TH
901 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
902 DPRINTK("found PMP device by sig\n");
903 return ATA_DEV_PMP;
904 }
905
906 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
2dcb407e 907 printk(KERN_INFO "ata: SEMB device ignored\n");
633273a3
TH
908 return ATA_DEV_SEMB_UNSUP; /* not yet */
909 }
910
1da177e4
LT
911 DPRINTK("unknown device\n");
912 return ATA_DEV_UNKNOWN;
913}
914
915/**
916 * ata_dev_try_classify - Parse returned ATA device signature
3f19859e
TH
917 * @dev: ATA device to classify (starting at zero)
918 * @present: device seems present
b4dc7623 919 * @r_err: Value of error register on completion
1da177e4
LT
920 *
921 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
922 * an ATA/ATAPI-defined set of values is placed in the ATA
923 * shadow registers, indicating the results of device detection
924 * and diagnostics.
925 *
926 * Select the ATA device, and read the values from the ATA shadow
927 * registers. Then parse according to the Error register value,
928 * and the spec-defined values examined by ata_dev_classify().
929 *
930 * LOCKING:
931 * caller.
b4dc7623
TH
932 *
933 * RETURNS:
934 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4 935 */
3f19859e
TH
936unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
937 u8 *r_err)
1da177e4 938{
3f19859e 939 struct ata_port *ap = dev->link->ap;
1da177e4
LT
940 struct ata_taskfile tf;
941 unsigned int class;
942 u8 err;
943
3f19859e 944 ap->ops->dev_select(ap, dev->devno);
1da177e4
LT
945
946 memset(&tf, 0, sizeof(tf));
947
1da177e4 948 ap->ops->tf_read(ap, &tf);
0169e284 949 err = tf.feature;
b4dc7623
TH
950 if (r_err)
951 *r_err = err;
1da177e4 952
c5038fc0
AC
953 /* see if device passed diags: continue and warn later */
954 if (err == 0)
93590859 955 /* diagnostic fail : do nothing _YET_ */
3f19859e 956 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 957 else if (err == 1)
1da177e4 958 /* do nothing */ ;
3f19859e 959 else if ((dev->devno == 0) && (err == 0x81))
1da177e4
LT
960 /* do nothing */ ;
961 else
b4dc7623 962 return ATA_DEV_NONE;
1da177e4 963
b4dc7623 964 /* determine if device is ATA or ATAPI */
1da177e4 965 class = ata_dev_classify(&tf);
b4dc7623 966
d7fbee05
TH
967 if (class == ATA_DEV_UNKNOWN) {
968 /* If the device failed diagnostic, it's likely to
969 * have reported incorrect device signature too.
970 * Assume ATA device if the device seems present but
971 * device signature is invalid with diagnostic
972 * failure.
973 */
974 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
975 class = ATA_DEV_ATA;
976 else
977 class = ATA_DEV_NONE;
978 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
979 class = ATA_DEV_NONE;
980
b4dc7623 981 return class;
1da177e4
LT
982}
983
984/**
6a62a04d 985 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
986 * @id: IDENTIFY DEVICE results we will examine
987 * @s: string into which data is output
988 * @ofs: offset into identify device page
989 * @len: length of string to return. must be an even number.
990 *
991 * The strings in the IDENTIFY DEVICE page are broken up into
992 * 16-bit chunks. Run through the string, and output each
993 * 8-bit chunk linearly, regardless of platform.
994 *
995 * LOCKING:
996 * caller.
997 */
998
6a62a04d
TH
999void ata_id_string(const u16 *id, unsigned char *s,
1000 unsigned int ofs, unsigned int len)
1da177e4
LT
1001{
1002 unsigned int c;
1003
1004 while (len > 0) {
1005 c = id[ofs] >> 8;
1006 *s = c;
1007 s++;
1008
1009 c = id[ofs] & 0xff;
1010 *s = c;
1011 s++;
1012
1013 ofs++;
1014 len -= 2;
1015 }
1016}
1017
0e949ff3 1018/**
6a62a04d 1019 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1020 * @id: IDENTIFY DEVICE results we will examine
1021 * @s: string into which data is output
1022 * @ofs: offset into identify device page
1023 * @len: length of string to return. must be an odd number.
1024 *
6a62a04d 1025 * This function is identical to ata_id_string except that it
0e949ff3
TH
1026 * trims trailing spaces and terminates the resulting string with
1027 * null. @len must be actual maximum length (even number) + 1.
1028 *
1029 * LOCKING:
1030 * caller.
1031 */
6a62a04d
TH
1032void ata_id_c_string(const u16 *id, unsigned char *s,
1033 unsigned int ofs, unsigned int len)
0e949ff3
TH
1034{
1035 unsigned char *p;
1036
1037 WARN_ON(!(len & 1));
1038
6a62a04d 1039 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1040
1041 p = s + strnlen(s, len - 1);
1042 while (p > s && p[-1] == ' ')
1043 p--;
1044 *p = '\0';
1045}
0baab86b 1046
db6f8759
TH
1047static u64 ata_id_n_sectors(const u16 *id)
1048{
1049 if (ata_id_has_lba(id)) {
1050 if (ata_id_has_lba48(id))
1051 return ata_id_u64(id, 100);
1052 else
1053 return ata_id_u32(id, 60);
1054 } else {
1055 if (ata_id_current_chs_valid(id))
1056 return ata_id_u32(id, 57);
1057 else
1058 return id[1] * id[3] * id[6];
1059 }
1060}
1061
1e999736
AC
1062static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1063{
1064 u64 sectors = 0;
1065
1066 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1067 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1068 sectors |= (tf->hob_lbal & 0xff) << 24;
1069 sectors |= (tf->lbah & 0xff) << 16;
1070 sectors |= (tf->lbam & 0xff) << 8;
1071 sectors |= (tf->lbal & 0xff);
1072
1073 return ++sectors;
1074}
1075
1076static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1077{
1078 u64 sectors = 0;
1079
1080 sectors |= (tf->device & 0x0f) << 24;
1081 sectors |= (tf->lbah & 0xff) << 16;
1082 sectors |= (tf->lbam & 0xff) << 8;
1083 sectors |= (tf->lbal & 0xff);
1084
1085 return ++sectors;
1086}
1087
1088/**
c728a914
TH
1089 * ata_read_native_max_address - Read native max address
1090 * @dev: target device
1091 * @max_sectors: out parameter for the result native max address
1e999736 1092 *
c728a914
TH
1093 * Perform an LBA48 or LBA28 native size query upon the device in
1094 * question.
1e999736 1095 *
c728a914
TH
1096 * RETURNS:
1097 * 0 on success, -EACCES if command is aborted by the drive.
1098 * -EIO on other errors.
1e999736 1099 */
c728a914 1100static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1101{
c728a914 1102 unsigned int err_mask;
1e999736 1103 struct ata_taskfile tf;
c728a914 1104 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1105
1106 ata_tf_init(dev, &tf);
1107
c728a914 1108 /* always clear all address registers */
1e999736 1109 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1110
c728a914
TH
1111 if (lba48) {
1112 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1113 tf.flags |= ATA_TFLAG_LBA48;
1114 } else
1115 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1116
1e999736 1117 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1118 tf.device |= ATA_LBA;
1119
2b789108 1120 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1121 if (err_mask) {
1122 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1123 "max address (err_mask=0x%x)\n", err_mask);
1124 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1125 return -EACCES;
1126 return -EIO;
1127 }
1e999736 1128
c728a914
TH
1129 if (lba48)
1130 *max_sectors = ata_tf_to_lba48(&tf);
1131 else
1132 *max_sectors = ata_tf_to_lba(&tf);
2dcb407e 1133 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1134 (*max_sectors)--;
c728a914 1135 return 0;
1e999736
AC
1136}
1137
1138/**
c728a914
TH
1139 * ata_set_max_sectors - Set max sectors
1140 * @dev: target device
6b38d1d1 1141 * @new_sectors: new max sectors value to set for the device
1e999736 1142 *
c728a914
TH
1143 * Set max sectors of @dev to @new_sectors.
1144 *
1145 * RETURNS:
1146 * 0 on success, -EACCES if command is aborted or denied (due to
1147 * previous non-volatile SET_MAX) by the drive. -EIO on other
1148 * errors.
1e999736 1149 */
05027adc 1150static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1151{
c728a914 1152 unsigned int err_mask;
1e999736 1153 struct ata_taskfile tf;
c728a914 1154 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1155
1156 new_sectors--;
1157
1158 ata_tf_init(dev, &tf);
1159
1e999736 1160 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1161
1162 if (lba48) {
1163 tf.command = ATA_CMD_SET_MAX_EXT;
1164 tf.flags |= ATA_TFLAG_LBA48;
1165
1166 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1167 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1168 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1169 } else {
c728a914
TH
1170 tf.command = ATA_CMD_SET_MAX;
1171
1e582ba4
TH
1172 tf.device |= (new_sectors >> 24) & 0xf;
1173 }
1174
1e999736 1175 tf.protocol |= ATA_PROT_NODATA;
c728a914 1176 tf.device |= ATA_LBA;
1e999736
AC
1177
1178 tf.lbal = (new_sectors >> 0) & 0xff;
1179 tf.lbam = (new_sectors >> 8) & 0xff;
1180 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1181
2b789108 1182 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1183 if (err_mask) {
1184 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1185 "max address (err_mask=0x%x)\n", err_mask);
1186 if (err_mask == AC_ERR_DEV &&
1187 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1188 return -EACCES;
1189 return -EIO;
1190 }
1191
c728a914 1192 return 0;
1e999736
AC
1193}
1194
1195/**
1196 * ata_hpa_resize - Resize a device with an HPA set
1197 * @dev: Device to resize
1198 *
1199 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1200 * it if required to the full size of the media. The caller must check
1201 * the drive has the HPA feature set enabled.
05027adc
TH
1202 *
1203 * RETURNS:
1204 * 0 on success, -errno on failure.
1e999736 1205 */
05027adc 1206static int ata_hpa_resize(struct ata_device *dev)
1e999736 1207{
05027adc
TH
1208 struct ata_eh_context *ehc = &dev->link->eh_context;
1209 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1210 u64 sectors = ata_id_n_sectors(dev->id);
1211 u64 native_sectors;
c728a914 1212 int rc;
a617c09f 1213
05027adc
TH
1214 /* do we need to do it? */
1215 if (dev->class != ATA_DEV_ATA ||
1216 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1217 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1218 return 0;
1e999736 1219
05027adc
TH
1220 /* read native max address */
1221 rc = ata_read_native_max_address(dev, &native_sectors);
1222 if (rc) {
1223 /* If HPA isn't going to be unlocked, skip HPA
1224 * resizing from the next try.
1225 */
1226 if (!ata_ignore_hpa) {
1227 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1228 "broken, will skip HPA handling\n");
1229 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1230
1231 /* we can continue if device aborted the command */
1232 if (rc == -EACCES)
1233 rc = 0;
1e999736 1234 }
37301a55 1235
05027adc
TH
1236 return rc;
1237 }
1238
1239 /* nothing to do? */
1240 if (native_sectors <= sectors || !ata_ignore_hpa) {
1241 if (!print_info || native_sectors == sectors)
1242 return 0;
1243
1244 if (native_sectors > sectors)
1245 ata_dev_printk(dev, KERN_INFO,
1246 "HPA detected: current %llu, native %llu\n",
1247 (unsigned long long)sectors,
1248 (unsigned long long)native_sectors);
1249 else if (native_sectors < sectors)
1250 ata_dev_printk(dev, KERN_WARNING,
1251 "native sectors (%llu) is smaller than "
1252 "sectors (%llu)\n",
1253 (unsigned long long)native_sectors,
1254 (unsigned long long)sectors);
1255 return 0;
1256 }
1257
1258 /* let's unlock HPA */
1259 rc = ata_set_max_sectors(dev, native_sectors);
1260 if (rc == -EACCES) {
1261 /* if device aborted the command, skip HPA resizing */
1262 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1263 "(%llu -> %llu), skipping HPA handling\n",
1264 (unsigned long long)sectors,
1265 (unsigned long long)native_sectors);
1266 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1267 return 0;
1268 } else if (rc)
1269 return rc;
1270
1271 /* re-read IDENTIFY data */
1272 rc = ata_dev_reread_id(dev, 0);
1273 if (rc) {
1274 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1275 "data after HPA resizing\n");
1276 return rc;
1277 }
1278
1279 if (print_info) {
1280 u64 new_sectors = ata_id_n_sectors(dev->id);
1281 ata_dev_printk(dev, KERN_INFO,
1282 "HPA unlocked: %llu -> %llu, native %llu\n",
1283 (unsigned long long)sectors,
1284 (unsigned long long)new_sectors,
1285 (unsigned long long)native_sectors);
1286 }
1287
1288 return 0;
1e999736
AC
1289}
1290
0baab86b
EF
1291/**
1292 * ata_noop_dev_select - Select device 0/1 on ATA bus
1293 * @ap: ATA channel to manipulate
1294 * @device: ATA device (numbered from zero) to select
1295 *
1296 * This function performs no actual function.
1297 *
1298 * May be used as the dev_select() entry in ata_port_operations.
1299 *
1300 * LOCKING:
1301 * caller.
1302 */
2dcb407e 1303void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1304{
1305}
1306
0baab86b 1307
1da177e4
LT
1308/**
1309 * ata_std_dev_select - Select device 0/1 on ATA bus
1310 * @ap: ATA channel to manipulate
1311 * @device: ATA device (numbered from zero) to select
1312 *
1313 * Use the method defined in the ATA specification to
1314 * make either device 0, or device 1, active on the
0baab86b
EF
1315 * ATA channel. Works with both PIO and MMIO.
1316 *
1317 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1318 *
1319 * LOCKING:
1320 * caller.
1321 */
1322
2dcb407e 1323void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1324{
1325 u8 tmp;
1326
1327 if (device == 0)
1328 tmp = ATA_DEVICE_OBS;
1329 else
1330 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1331
0d5ff566 1332 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1333 ata_pause(ap); /* needed; also flushes, for mmio */
1334}
1335
1336/**
1337 * ata_dev_select - Select device 0/1 on ATA bus
1338 * @ap: ATA channel to manipulate
1339 * @device: ATA device (numbered from zero) to select
1340 * @wait: non-zero to wait for Status register BSY bit to clear
1341 * @can_sleep: non-zero if context allows sleeping
1342 *
1343 * Use the method defined in the ATA specification to
1344 * make either device 0, or device 1, active on the
1345 * ATA channel.
1346 *
1347 * This is a high-level version of ata_std_dev_select(),
1348 * which additionally provides the services of inserting
1349 * the proper pauses and status polling, where needed.
1350 *
1351 * LOCKING:
1352 * caller.
1353 */
1354
1355void ata_dev_select(struct ata_port *ap, unsigned int device,
1356 unsigned int wait, unsigned int can_sleep)
1357{
88574551 1358 if (ata_msg_probe(ap))
44877b4e
TH
1359 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1360 "device %u, wait %u\n", device, wait);
1da177e4
LT
1361
1362 if (wait)
1363 ata_wait_idle(ap);
1364
1365 ap->ops->dev_select(ap, device);
1366
1367 if (wait) {
9af5c9c9 1368 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1369 msleep(150);
1370 ata_wait_idle(ap);
1371 }
1372}
1373
1374/**
1375 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1376 * @id: IDENTIFY DEVICE page to dump
1da177e4 1377 *
0bd3300a
TH
1378 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1379 * page.
1da177e4
LT
1380 *
1381 * LOCKING:
1382 * caller.
1383 */
1384
0bd3300a 1385static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1386{
1387 DPRINTK("49==0x%04x "
1388 "53==0x%04x "
1389 "63==0x%04x "
1390 "64==0x%04x "
1391 "75==0x%04x \n",
0bd3300a
TH
1392 id[49],
1393 id[53],
1394 id[63],
1395 id[64],
1396 id[75]);
1da177e4
LT
1397 DPRINTK("80==0x%04x "
1398 "81==0x%04x "
1399 "82==0x%04x "
1400 "83==0x%04x "
1401 "84==0x%04x \n",
0bd3300a
TH
1402 id[80],
1403 id[81],
1404 id[82],
1405 id[83],
1406 id[84]);
1da177e4
LT
1407 DPRINTK("88==0x%04x "
1408 "93==0x%04x\n",
0bd3300a
TH
1409 id[88],
1410 id[93]);
1da177e4
LT
1411}
1412
cb95d562
TH
1413/**
1414 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1415 * @id: IDENTIFY data to compute xfer mask from
1416 *
1417 * Compute the xfermask for this device. This is not as trivial
1418 * as it seems if we must consider early devices correctly.
1419 *
1420 * FIXME: pre IDE drive timing (do we care ?).
1421 *
1422 * LOCKING:
1423 * None.
1424 *
1425 * RETURNS:
1426 * Computed xfermask
1427 */
7dc951ae 1428unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1429{
7dc951ae 1430 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1431
1432 /* Usual case. Word 53 indicates word 64 is valid */
1433 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1434 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1435 pio_mask <<= 3;
1436 pio_mask |= 0x7;
1437 } else {
1438 /* If word 64 isn't valid then Word 51 high byte holds
1439 * the PIO timing number for the maximum. Turn it into
1440 * a mask.
1441 */
7a0f1c8a 1442 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1443 if (mode < 5) /* Valid PIO range */
2dcb407e 1444 pio_mask = (2 << mode) - 1;
46767aeb
AC
1445 else
1446 pio_mask = 1;
cb95d562
TH
1447
1448 /* But wait.. there's more. Design your standards by
1449 * committee and you too can get a free iordy field to
1450 * process. However its the speeds not the modes that
1451 * are supported... Note drivers using the timing API
1452 * will get this right anyway
1453 */
1454 }
1455
1456 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1457
b352e57d
AC
1458 if (ata_id_is_cfa(id)) {
1459 /*
1460 * Process compact flash extended modes
1461 */
1462 int pio = id[163] & 0x7;
1463 int dma = (id[163] >> 3) & 7;
1464
1465 if (pio)
1466 pio_mask |= (1 << 5);
1467 if (pio > 1)
1468 pio_mask |= (1 << 6);
1469 if (dma)
1470 mwdma_mask |= (1 << 3);
1471 if (dma > 1)
1472 mwdma_mask |= (1 << 4);
1473 }
1474
fb21f0d0
TH
1475 udma_mask = 0;
1476 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1477 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1478
1479 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1480}
1481
86e45b6b 1482/**
442eacc3 1483 * ata_pio_queue_task - Queue port_task
86e45b6b 1484 * @ap: The ata_port to queue port_task for
e2a7f77a 1485 * @fn: workqueue function to be scheduled
65f27f38 1486 * @data: data for @fn to use
e2a7f77a 1487 * @delay: delay time for workqueue function
86e45b6b
TH
1488 *
1489 * Schedule @fn(@data) for execution after @delay jiffies using
1490 * port_task. There is one port_task per port and it's the
1491 * user(low level driver)'s responsibility to make sure that only
1492 * one task is active at any given time.
1493 *
1494 * libata core layer takes care of synchronization between
442eacc3 1495 * port_task and EH. ata_pio_queue_task() may be ignored for EH
86e45b6b
TH
1496 * synchronization.
1497 *
1498 * LOCKING:
1499 * Inherited from caller.
1500 */
442eacc3
JG
1501static void ata_pio_queue_task(struct ata_port *ap, void *data,
1502 unsigned long delay)
86e45b6b 1503{
65f27f38 1504 ap->port_task_data = data;
86e45b6b 1505
45a66c1c
ON
1506 /* may fail if ata_port_flush_task() in progress */
1507 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1508}
1509
1510/**
1511 * ata_port_flush_task - Flush port_task
1512 * @ap: The ata_port to flush port_task for
1513 *
1514 * After this function completes, port_task is guranteed not to
1515 * be running or scheduled.
1516 *
1517 * LOCKING:
1518 * Kernel thread context (may sleep)
1519 */
1520void ata_port_flush_task(struct ata_port *ap)
1521{
86e45b6b
TH
1522 DPRINTK("ENTER\n");
1523
45a66c1c 1524 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1525
0dd4b21f
BP
1526 if (ata_msg_ctl(ap))
1527 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1528}
1529
7102d230 1530static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1531{
77853bf2 1532 struct completion *waiting = qc->private_data;
a2a7a662 1533
a2a7a662 1534 complete(waiting);
a2a7a662
TH
1535}
1536
1537/**
2432697b 1538 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1539 * @dev: Device to which the command is sent
1540 * @tf: Taskfile registers for the command and the result
d69cf37d 1541 * @cdb: CDB for packet command
a2a7a662 1542 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1543 * @sgl: sg list for the data buffer of the command
2432697b 1544 * @n_elem: Number of sg entries
2b789108 1545 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1546 *
1547 * Executes libata internal command with timeout. @tf contains
1548 * command on entry and result on return. Timeout and error
1549 * conditions are reported via return value. No recovery action
1550 * is taken after a command times out. It's caller's duty to
1551 * clean up after timeout.
1552 *
1553 * LOCKING:
1554 * None. Should be called with kernel context, might sleep.
551e8889
TH
1555 *
1556 * RETURNS:
1557 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1558 */
2432697b
TH
1559unsigned ata_exec_internal_sg(struct ata_device *dev,
1560 struct ata_taskfile *tf, const u8 *cdb,
87260216 1561 int dma_dir, struct scatterlist *sgl,
2b789108 1562 unsigned int n_elem, unsigned long timeout)
a2a7a662 1563{
9af5c9c9
TH
1564 struct ata_link *link = dev->link;
1565 struct ata_port *ap = link->ap;
a2a7a662
TH
1566 u8 command = tf->command;
1567 struct ata_queued_cmd *qc;
2ab7db1f 1568 unsigned int tag, preempted_tag;
dedaf2b0 1569 u32 preempted_sactive, preempted_qc_active;
da917d69 1570 int preempted_nr_active_links;
60be6b9a 1571 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1572 unsigned long flags;
77853bf2 1573 unsigned int err_mask;
d95a717f 1574 int rc;
a2a7a662 1575
ba6a1308 1576 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1577
e3180499 1578 /* no internal command while frozen */
b51e9e5d 1579 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1580 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1581 return AC_ERR_SYSTEM;
1582 }
1583
2ab7db1f 1584 /* initialize internal qc */
a2a7a662 1585
2ab7db1f
TH
1586 /* XXX: Tag 0 is used for drivers with legacy EH as some
1587 * drivers choke if any other tag is given. This breaks
1588 * ata_tag_internal() test for those drivers. Don't use new
1589 * EH stuff without converting to it.
1590 */
1591 if (ap->ops->error_handler)
1592 tag = ATA_TAG_INTERNAL;
1593 else
1594 tag = 0;
1595
6cec4a39 1596 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1597 BUG();
f69499f4 1598 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1599
1600 qc->tag = tag;
1601 qc->scsicmd = NULL;
1602 qc->ap = ap;
1603 qc->dev = dev;
1604 ata_qc_reinit(qc);
1605
9af5c9c9
TH
1606 preempted_tag = link->active_tag;
1607 preempted_sactive = link->sactive;
dedaf2b0 1608 preempted_qc_active = ap->qc_active;
da917d69 1609 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1610 link->active_tag = ATA_TAG_POISON;
1611 link->sactive = 0;
dedaf2b0 1612 ap->qc_active = 0;
da917d69 1613 ap->nr_active_links = 0;
2ab7db1f
TH
1614
1615 /* prepare & issue qc */
a2a7a662 1616 qc->tf = *tf;
d69cf37d
TH
1617 if (cdb)
1618 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1619 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1620 qc->dma_dir = dma_dir;
1621 if (dma_dir != DMA_NONE) {
2432697b 1622 unsigned int i, buflen = 0;
87260216 1623 struct scatterlist *sg;
2432697b 1624
87260216
JA
1625 for_each_sg(sgl, sg, n_elem, i)
1626 buflen += sg->length;
2432697b 1627
87260216 1628 ata_sg_init(qc, sgl, n_elem);
49c80429 1629 qc->nbytes = buflen;
a2a7a662
TH
1630 }
1631
77853bf2 1632 qc->private_data = &wait;
a2a7a662
TH
1633 qc->complete_fn = ata_qc_complete_internal;
1634
8e0e694a 1635 ata_qc_issue(qc);
a2a7a662 1636
ba6a1308 1637 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1638
2b789108
TH
1639 if (!timeout)
1640 timeout = ata_probe_timeout * 1000 / HZ;
1641
1642 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1643
1644 ata_port_flush_task(ap);
41ade50c 1645
d95a717f 1646 if (!rc) {
ba6a1308 1647 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1648
1649 /* We're racing with irq here. If we lose, the
1650 * following test prevents us from completing the qc
d95a717f
TH
1651 * twice. If we win, the port is frozen and will be
1652 * cleaned up by ->post_internal_cmd().
a2a7a662 1653 */
77853bf2 1654 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1655 qc->err_mask |= AC_ERR_TIMEOUT;
1656
1657 if (ap->ops->error_handler)
1658 ata_port_freeze(ap);
1659 else
1660 ata_qc_complete(qc);
f15a1daf 1661
0dd4b21f
BP
1662 if (ata_msg_warn(ap))
1663 ata_dev_printk(dev, KERN_WARNING,
88574551 1664 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1665 }
1666
ba6a1308 1667 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1668 }
1669
d95a717f
TH
1670 /* do post_internal_cmd */
1671 if (ap->ops->post_internal_cmd)
1672 ap->ops->post_internal_cmd(qc);
1673
a51d644a
TH
1674 /* perform minimal error analysis */
1675 if (qc->flags & ATA_QCFLAG_FAILED) {
1676 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1677 qc->err_mask |= AC_ERR_DEV;
1678
1679 if (!qc->err_mask)
1680 qc->err_mask |= AC_ERR_OTHER;
1681
1682 if (qc->err_mask & ~AC_ERR_OTHER)
1683 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1684 }
1685
15869303 1686 /* finish up */
ba6a1308 1687 spin_lock_irqsave(ap->lock, flags);
15869303 1688
e61e0672 1689 *tf = qc->result_tf;
77853bf2
TH
1690 err_mask = qc->err_mask;
1691
1692 ata_qc_free(qc);
9af5c9c9
TH
1693 link->active_tag = preempted_tag;
1694 link->sactive = preempted_sactive;
dedaf2b0 1695 ap->qc_active = preempted_qc_active;
da917d69 1696 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1697
1f7dd3e9
TH
1698 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1699 * Until those drivers are fixed, we detect the condition
1700 * here, fail the command with AC_ERR_SYSTEM and reenable the
1701 * port.
1702 *
1703 * Note that this doesn't change any behavior as internal
1704 * command failure results in disabling the device in the
1705 * higher layer for LLDDs without new reset/EH callbacks.
1706 *
1707 * Kill the following code as soon as those drivers are fixed.
1708 */
198e0fed 1709 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1710 err_mask |= AC_ERR_SYSTEM;
1711 ata_port_probe(ap);
1712 }
1713
ba6a1308 1714 spin_unlock_irqrestore(ap->lock, flags);
15869303 1715
77853bf2 1716 return err_mask;
a2a7a662
TH
1717}
1718
2432697b 1719/**
33480a0e 1720 * ata_exec_internal - execute libata internal command
2432697b
TH
1721 * @dev: Device to which the command is sent
1722 * @tf: Taskfile registers for the command and the result
1723 * @cdb: CDB for packet command
1724 * @dma_dir: Data tranfer direction of the command
1725 * @buf: Data buffer of the command
1726 * @buflen: Length of data buffer
2b789108 1727 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1728 *
1729 * Wrapper around ata_exec_internal_sg() which takes simple
1730 * buffer instead of sg list.
1731 *
1732 * LOCKING:
1733 * None. Should be called with kernel context, might sleep.
1734 *
1735 * RETURNS:
1736 * Zero on success, AC_ERR_* mask on failure
1737 */
1738unsigned ata_exec_internal(struct ata_device *dev,
1739 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1740 int dma_dir, void *buf, unsigned int buflen,
1741 unsigned long timeout)
2432697b 1742{
33480a0e
TH
1743 struct scatterlist *psg = NULL, sg;
1744 unsigned int n_elem = 0;
2432697b 1745
33480a0e
TH
1746 if (dma_dir != DMA_NONE) {
1747 WARN_ON(!buf);
1748 sg_init_one(&sg, buf, buflen);
1749 psg = &sg;
1750 n_elem++;
1751 }
2432697b 1752
2b789108
TH
1753 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1754 timeout);
2432697b
TH
1755}
1756
977e6b9f
TH
1757/**
1758 * ata_do_simple_cmd - execute simple internal command
1759 * @dev: Device to which the command is sent
1760 * @cmd: Opcode to execute
1761 *
1762 * Execute a 'simple' command, that only consists of the opcode
1763 * 'cmd' itself, without filling any other registers
1764 *
1765 * LOCKING:
1766 * Kernel thread context (may sleep).
1767 *
1768 * RETURNS:
1769 * Zero on success, AC_ERR_* mask on failure
e58eb583 1770 */
77b08fb5 1771unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1772{
1773 struct ata_taskfile tf;
e58eb583
TH
1774
1775 ata_tf_init(dev, &tf);
1776
1777 tf.command = cmd;
1778 tf.flags |= ATA_TFLAG_DEVICE;
1779 tf.protocol = ATA_PROT_NODATA;
1780
2b789108 1781 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1782}
1783
1bc4ccff
AC
1784/**
1785 * ata_pio_need_iordy - check if iordy needed
1786 * @adev: ATA device
1787 *
1788 * Check if the current speed of the device requires IORDY. Used
1789 * by various controllers for chip configuration.
1790 */
a617c09f 1791
1bc4ccff
AC
1792unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1793{
432729f0
AC
1794 /* Controller doesn't support IORDY. Probably a pointless check
1795 as the caller should know this */
9af5c9c9 1796 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1797 return 0;
432729f0
AC
1798 /* PIO3 and higher it is mandatory */
1799 if (adev->pio_mode > XFER_PIO_2)
1800 return 1;
1801 /* We turn it on when possible */
1802 if (ata_id_has_iordy(adev->id))
1bc4ccff 1803 return 1;
432729f0
AC
1804 return 0;
1805}
2e9edbf8 1806
432729f0
AC
1807/**
1808 * ata_pio_mask_no_iordy - Return the non IORDY mask
1809 * @adev: ATA device
1810 *
1811 * Compute the highest mode possible if we are not using iordy. Return
1812 * -1 if no iordy mode is available.
1813 */
a617c09f 1814
432729f0
AC
1815static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1816{
1bc4ccff 1817 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1818 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1819 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1820 /* Is the speed faster than the drive allows non IORDY ? */
1821 if (pio) {
1822 /* This is cycle times not frequency - watch the logic! */
1823 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1824 return 3 << ATA_SHIFT_PIO;
1825 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1826 }
1827 }
432729f0 1828 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1829}
1830
1da177e4 1831/**
49016aca 1832 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1833 * @dev: target device
1834 * @p_class: pointer to class of the target device (may be changed)
bff04647 1835 * @flags: ATA_READID_* flags
fe635c7e 1836 * @id: buffer to read IDENTIFY data into
1da177e4 1837 *
49016aca
TH
1838 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1839 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1840 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1841 * for pre-ATA4 drives.
1da177e4 1842 *
50a99018 1843 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1844 * now we abort if we hit that case.
50a99018 1845 *
1da177e4 1846 * LOCKING:
49016aca
TH
1847 * Kernel thread context (may sleep)
1848 *
1849 * RETURNS:
1850 * 0 on success, -errno otherwise.
1da177e4 1851 */
a9beec95 1852int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1853 unsigned int flags, u16 *id)
1da177e4 1854{
9af5c9c9 1855 struct ata_port *ap = dev->link->ap;
49016aca 1856 unsigned int class = *p_class;
a0123703 1857 struct ata_taskfile tf;
49016aca
TH
1858 unsigned int err_mask = 0;
1859 const char *reason;
54936f8b 1860 int may_fallback = 1, tried_spinup = 0;
49016aca 1861 int rc;
1da177e4 1862
0dd4b21f 1863 if (ata_msg_ctl(ap))
44877b4e 1864 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1865
49016aca 1866 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1867 retry:
3373efd8 1868 ata_tf_init(dev, &tf);
a0123703 1869
49016aca
TH
1870 switch (class) {
1871 case ATA_DEV_ATA:
a0123703 1872 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1873 break;
1874 case ATA_DEV_ATAPI:
a0123703 1875 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1876 break;
1877 default:
1878 rc = -ENODEV;
1879 reason = "unsupported class";
1880 goto err_out;
1da177e4
LT
1881 }
1882
a0123703 1883 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1884
1885 /* Some devices choke if TF registers contain garbage. Make
1886 * sure those are properly initialized.
1887 */
1888 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1889
1890 /* Device presence detection is unreliable on some
1891 * controllers. Always poll IDENTIFY if available.
1892 */
1893 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1894
3373efd8 1895 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2b789108 1896 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
a0123703 1897 if (err_mask) {
800b3996 1898 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1899 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1900 ap->print_id, dev->devno);
55a8e2c8
TH
1901 return -ENOENT;
1902 }
1903
54936f8b
TH
1904 /* Device or controller might have reported the wrong
1905 * device class. Give a shot at the other IDENTIFY if
1906 * the current one is aborted by the device.
1907 */
1908 if (may_fallback &&
1909 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1910 may_fallback = 0;
1911
1912 if (class == ATA_DEV_ATA)
1913 class = ATA_DEV_ATAPI;
1914 else
1915 class = ATA_DEV_ATA;
1916 goto retry;
1917 }
1918
49016aca
TH
1919 rc = -EIO;
1920 reason = "I/O error";
1da177e4
LT
1921 goto err_out;
1922 }
1923
54936f8b
TH
1924 /* Falling back doesn't make sense if ID data was read
1925 * successfully at least once.
1926 */
1927 may_fallback = 0;
1928
49016aca 1929 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1930
49016aca 1931 /* sanity check */
a4f5749b 1932 rc = -EINVAL;
6070068b 1933 reason = "device reports invalid type";
a4f5749b
TH
1934
1935 if (class == ATA_DEV_ATA) {
1936 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1937 goto err_out;
1938 } else {
1939 if (ata_id_is_ata(id))
1940 goto err_out;
49016aca
TH
1941 }
1942
169439c2
ML
1943 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1944 tried_spinup = 1;
1945 /*
1946 * Drive powered-up in standby mode, and requires a specific
1947 * SET_FEATURES spin-up subcommand before it will accept
1948 * anything other than the original IDENTIFY command.
1949 */
218f3d30 1950 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1951 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1952 rc = -EIO;
1953 reason = "SPINUP failed";
1954 goto err_out;
1955 }
1956 /*
1957 * If the drive initially returned incomplete IDENTIFY info,
1958 * we now must reissue the IDENTIFY command.
1959 */
1960 if (id[2] == 0x37c8)
1961 goto retry;
1962 }
1963
bff04647 1964 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1965 /*
1966 * The exact sequence expected by certain pre-ATA4 drives is:
1967 * SRST RESET
50a99018
AC
1968 * IDENTIFY (optional in early ATA)
1969 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
1970 * anything else..
1971 * Some drives were very specific about that exact sequence.
50a99018
AC
1972 *
1973 * Note that ATA4 says lba is mandatory so the second check
1974 * shoud never trigger.
49016aca
TH
1975 */
1976 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1977 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1978 if (err_mask) {
1979 rc = -EIO;
1980 reason = "INIT_DEV_PARAMS failed";
1981 goto err_out;
1982 }
1983
1984 /* current CHS translation info (id[53-58]) might be
1985 * changed. reread the identify device info.
1986 */
bff04647 1987 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1988 goto retry;
1989 }
1990 }
1991
1992 *p_class = class;
fe635c7e 1993
49016aca
TH
1994 return 0;
1995
1996 err_out:
88574551 1997 if (ata_msg_warn(ap))
0dd4b21f 1998 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1999 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2000 return rc;
2001}
2002
3373efd8 2003static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2004{
9af5c9c9
TH
2005 struct ata_port *ap = dev->link->ap;
2006 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2007}
2008
a6e6ce8e
TH
2009static void ata_dev_config_ncq(struct ata_device *dev,
2010 char *desc, size_t desc_sz)
2011{
9af5c9c9 2012 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
2013 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2014
2015 if (!ata_id_has_ncq(dev->id)) {
2016 desc[0] = '\0';
2017 return;
2018 }
75683fe7 2019 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
2020 snprintf(desc, desc_sz, "NCQ (not used)");
2021 return;
2022 }
a6e6ce8e 2023 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2024 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2025 dev->flags |= ATA_DFLAG_NCQ;
2026 }
2027
2028 if (hdepth >= ddepth)
2029 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2030 else
2031 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2032}
2033
49016aca 2034/**
ffeae418 2035 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2036 * @dev: Target device to configure
2037 *
2038 * Configure @dev according to @dev->id. Generic and low-level
2039 * driver specific fixups are also applied.
49016aca
TH
2040 *
2041 * LOCKING:
ffeae418
TH
2042 * Kernel thread context (may sleep)
2043 *
2044 * RETURNS:
2045 * 0 on success, -errno otherwise
49016aca 2046 */
efdaedc4 2047int ata_dev_configure(struct ata_device *dev)
49016aca 2048{
9af5c9c9
TH
2049 struct ata_port *ap = dev->link->ap;
2050 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2051 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2052 const u16 *id = dev->id;
7dc951ae 2053 unsigned long xfer_mask;
b352e57d 2054 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2055 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2056 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2057 int rc;
49016aca 2058
0dd4b21f 2059 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
2060 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2061 __FUNCTION__);
ffeae418 2062 return 0;
49016aca
TH
2063 }
2064
0dd4b21f 2065 if (ata_msg_probe(ap))
44877b4e 2066 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 2067
75683fe7
TH
2068 /* set horkage */
2069 dev->horkage |= ata_dev_blacklisted(dev);
2070
6746544c
TH
2071 /* let ACPI work its magic */
2072 rc = ata_acpi_on_devcfg(dev);
2073 if (rc)
2074 return rc;
08573a86 2075
05027adc
TH
2076 /* massage HPA, do it early as it might change IDENTIFY data */
2077 rc = ata_hpa_resize(dev);
2078 if (rc)
2079 return rc;
2080
c39f5ebe 2081 /* print device capabilities */
0dd4b21f 2082 if (ata_msg_probe(ap))
88574551
TH
2083 ata_dev_printk(dev, KERN_DEBUG,
2084 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2085 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 2086 __FUNCTION__,
f15a1daf
TH
2087 id[49], id[82], id[83], id[84],
2088 id[85], id[86], id[87], id[88]);
c39f5ebe 2089
208a9933 2090 /* initialize to-be-configured parameters */
ea1dd4e1 2091 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2092 dev->max_sectors = 0;
2093 dev->cdb_len = 0;
2094 dev->n_sectors = 0;
2095 dev->cylinders = 0;
2096 dev->heads = 0;
2097 dev->sectors = 0;
2098
1da177e4
LT
2099 /*
2100 * common ATA, ATAPI feature tests
2101 */
2102
ff8854b2 2103 /* find max transfer mode; for printk only */
1148c3a7 2104 xfer_mask = ata_id_xfermask(id);
1da177e4 2105
0dd4b21f
BP
2106 if (ata_msg_probe(ap))
2107 ata_dump_id(id);
1da177e4 2108
ef143d57
AL
2109 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2110 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2111 sizeof(fwrevbuf));
2112
2113 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2114 sizeof(modelbuf));
2115
1da177e4
LT
2116 /* ATA-specific feature tests */
2117 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
2118 if (ata_id_is_cfa(id)) {
2119 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
2120 ata_dev_printk(dev, KERN_WARNING,
2121 "supports DRM functions and may "
2122 "not be fully accessable.\n");
b352e57d 2123 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2124 } else {
2dcb407e 2125 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2126 /* Warn the user if the device has TPM extensions */
2127 if (ata_id_has_tpm(id))
2128 ata_dev_printk(dev, KERN_WARNING,
2129 "supports DRM functions and may "
2130 "not be fully accessable.\n");
2131 }
b352e57d 2132
1148c3a7 2133 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2134
3f64f565
EM
2135 if (dev->id[59] & 0x100)
2136 dev->multi_count = dev->id[59] & 0xff;
2137
1148c3a7 2138 if (ata_id_has_lba(id)) {
4c2d721a 2139 const char *lba_desc;
a6e6ce8e 2140 char ncq_desc[20];
8bf62ece 2141
4c2d721a
TH
2142 lba_desc = "LBA";
2143 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2144 if (ata_id_has_lba48(id)) {
8bf62ece 2145 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2146 lba_desc = "LBA48";
6fc49adb
TH
2147
2148 if (dev->n_sectors >= (1UL << 28) &&
2149 ata_id_has_flush_ext(id))
2150 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2151 }
8bf62ece 2152
a6e6ce8e
TH
2153 /* config NCQ */
2154 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2155
8bf62ece 2156 /* print device info to dmesg */
3f64f565
EM
2157 if (ata_msg_drv(ap) && print_info) {
2158 ata_dev_printk(dev, KERN_INFO,
2159 "%s: %s, %s, max %s\n",
2160 revbuf, modelbuf, fwrevbuf,
2161 ata_mode_string(xfer_mask));
2162 ata_dev_printk(dev, KERN_INFO,
2163 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2164 (unsigned long long)dev->n_sectors,
3f64f565
EM
2165 dev->multi_count, lba_desc, ncq_desc);
2166 }
ffeae418 2167 } else {
8bf62ece
AL
2168 /* CHS */
2169
2170 /* Default translation */
1148c3a7
TH
2171 dev->cylinders = id[1];
2172 dev->heads = id[3];
2173 dev->sectors = id[6];
8bf62ece 2174
1148c3a7 2175 if (ata_id_current_chs_valid(id)) {
8bf62ece 2176 /* Current CHS translation is valid. */
1148c3a7
TH
2177 dev->cylinders = id[54];
2178 dev->heads = id[55];
2179 dev->sectors = id[56];
8bf62ece
AL
2180 }
2181
2182 /* print device info to dmesg */
3f64f565 2183 if (ata_msg_drv(ap) && print_info) {
88574551 2184 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2185 "%s: %s, %s, max %s\n",
2186 revbuf, modelbuf, fwrevbuf,
2187 ata_mode_string(xfer_mask));
a84471fe 2188 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2189 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2190 (unsigned long long)dev->n_sectors,
2191 dev->multi_count, dev->cylinders,
2192 dev->heads, dev->sectors);
2193 }
07f6f7d0
AL
2194 }
2195
6e7846e9 2196 dev->cdb_len = 16;
1da177e4
LT
2197 }
2198
2199 /* ATAPI-specific feature tests */
2c13b7ce 2200 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2201 const char *cdb_intr_string = "";
2202 const char *atapi_an_string = "";
7d77b247 2203 u32 sntf;
08a556db 2204
1148c3a7 2205 rc = atapi_cdb_len(id);
1da177e4 2206 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2207 if (ata_msg_warn(ap))
88574551
TH
2208 ata_dev_printk(dev, KERN_WARNING,
2209 "unsupported CDB len\n");
ffeae418 2210 rc = -EINVAL;
1da177e4
LT
2211 goto err_out_nosup;
2212 }
6e7846e9 2213 dev->cdb_len = (unsigned int) rc;
1da177e4 2214
7d77b247
TH
2215 /* Enable ATAPI AN if both the host and device have
2216 * the support. If PMP is attached, SNTF is required
2217 * to enable ATAPI AN to discern between PHY status
2218 * changed notifications and ATAPI ANs.
9f45cbd3 2219 */
7d77b247
TH
2220 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2221 (!ap->nr_pmp_links ||
2222 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2223 unsigned int err_mask;
2224
9f45cbd3 2225 /* issue SET feature command to turn this on */
218f3d30
JG
2226 err_mask = ata_dev_set_feature(dev,
2227 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2228 if (err_mask)
9f45cbd3 2229 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2230 "failed to enable ATAPI AN "
2231 "(err_mask=0x%x)\n", err_mask);
2232 else {
9f45cbd3 2233 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2234 atapi_an_string = ", ATAPI AN";
2235 }
9f45cbd3
KCA
2236 }
2237
08a556db 2238 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2239 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2240 cdb_intr_string = ", CDB intr";
2241 }
312f7da2 2242
1da177e4 2243 /* print device info to dmesg */
5afc8142 2244 if (ata_msg_drv(ap) && print_info)
ef143d57 2245 ata_dev_printk(dev, KERN_INFO,
854c73a2 2246 "ATAPI: %s, %s, max %s%s%s\n",
ef143d57 2247 modelbuf, fwrevbuf,
12436c30 2248 ata_mode_string(xfer_mask),
854c73a2 2249 cdb_intr_string, atapi_an_string);
1da177e4
LT
2250 }
2251
914ed354
TH
2252 /* determine max_sectors */
2253 dev->max_sectors = ATA_MAX_SECTORS;
2254 if (dev->flags & ATA_DFLAG_LBA48)
2255 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2256
ca77329f
KCA
2257 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2258 if (ata_id_has_hipm(dev->id))
2259 dev->flags |= ATA_DFLAG_HIPM;
2260 if (ata_id_has_dipm(dev->id))
2261 dev->flags |= ATA_DFLAG_DIPM;
2262 }
2263
c5038fc0
AC
2264 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2265 200 sectors */
3373efd8 2266 if (ata_dev_knobble(dev)) {
5afc8142 2267 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2268 ata_dev_printk(dev, KERN_INFO,
2269 "applying bridge limits\n");
5a529139 2270 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2271 dev->max_sectors = ATA_MAX_SECTORS;
2272 }
2273
f8d8e579 2274 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2275 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2276 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2277 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2278 }
f8d8e579 2279
75683fe7 2280 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2281 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2282 dev->max_sectors);
18d6e9d5 2283
ca77329f
KCA
2284 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2285 dev->horkage |= ATA_HORKAGE_IPM;
2286
2287 /* reset link pm_policy for this port to no pm */
2288 ap->pm_policy = MAX_PERFORMANCE;
2289 }
2290
4b2f3ede 2291 if (ap->ops->dev_config)
cd0d3bbc 2292 ap->ops->dev_config(dev);
4b2f3ede 2293
c5038fc0
AC
2294 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2295 /* Let the user know. We don't want to disallow opens for
2296 rescue purposes, or in case the vendor is just a blithering
2297 idiot. Do this after the dev_config call as some controllers
2298 with buggy firmware may want to avoid reporting false device
2299 bugs */
2300
2301 if (print_info) {
2302 ata_dev_printk(dev, KERN_WARNING,
2303"Drive reports diagnostics failure. This may indicate a drive\n");
2304 ata_dev_printk(dev, KERN_WARNING,
2305"fault or invalid emulation. Contact drive vendor for information.\n");
2306 }
2307 }
2308
0dd4b21f
BP
2309 if (ata_msg_probe(ap))
2310 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2311 __FUNCTION__, ata_chk_status(ap));
ffeae418 2312 return 0;
1da177e4
LT
2313
2314err_out_nosup:
0dd4b21f 2315 if (ata_msg_probe(ap))
88574551
TH
2316 ata_dev_printk(dev, KERN_DEBUG,
2317 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2318 return rc;
1da177e4
LT
2319}
2320
be0d18df 2321/**
2e41e8e6 2322 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2323 * @ap: port
2324 *
2e41e8e6 2325 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2326 * detection.
2327 */
2328
2329int ata_cable_40wire(struct ata_port *ap)
2330{
2331 return ATA_CBL_PATA40;
2332}
2333
2334/**
2e41e8e6 2335 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2336 * @ap: port
2337 *
2e41e8e6 2338 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2339 * detection.
2340 */
2341
2342int ata_cable_80wire(struct ata_port *ap)
2343{
2344 return ATA_CBL_PATA80;
2345}
2346
2347/**
2348 * ata_cable_unknown - return unknown PATA cable.
2349 * @ap: port
2350 *
2351 * Helper method for drivers which have no PATA cable detection.
2352 */
2353
2354int ata_cable_unknown(struct ata_port *ap)
2355{
2356 return ATA_CBL_PATA_UNK;
2357}
2358
c88f90c3
TH
2359/**
2360 * ata_cable_ignore - return ignored PATA cable.
2361 * @ap: port
2362 *
2363 * Helper method for drivers which don't use cable type to limit
2364 * transfer mode.
2365 */
2366int ata_cable_ignore(struct ata_port *ap)
2367{
2368 return ATA_CBL_PATA_IGN;
2369}
2370
be0d18df
AC
2371/**
2372 * ata_cable_sata - return SATA cable type
2373 * @ap: port
2374 *
2375 * Helper method for drivers which have SATA cables
2376 */
2377
2378int ata_cable_sata(struct ata_port *ap)
2379{
2380 return ATA_CBL_SATA;
2381}
2382
1da177e4
LT
2383/**
2384 * ata_bus_probe - Reset and probe ATA bus
2385 * @ap: Bus to probe
2386 *
0cba632b
JG
2387 * Master ATA bus probing function. Initiates a hardware-dependent
2388 * bus reset, then attempts to identify any devices found on
2389 * the bus.
2390 *
1da177e4 2391 * LOCKING:
0cba632b 2392 * PCI/etc. bus probe sem.
1da177e4
LT
2393 *
2394 * RETURNS:
96072e69 2395 * Zero on success, negative errno otherwise.
1da177e4
LT
2396 */
2397
80289167 2398int ata_bus_probe(struct ata_port *ap)
1da177e4 2399{
28ca5c57 2400 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2401 int tries[ATA_MAX_DEVICES];
f58229f8 2402 int rc;
e82cbdb9 2403 struct ata_device *dev;
1da177e4 2404
28ca5c57 2405 ata_port_probe(ap);
c19ba8af 2406
f58229f8
TH
2407 ata_link_for_each_dev(dev, &ap->link)
2408 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2409
2410 retry:
cdeab114
TH
2411 ata_link_for_each_dev(dev, &ap->link) {
2412 /* If we issue an SRST then an ATA drive (not ATAPI)
2413 * may change configuration and be in PIO0 timing. If
2414 * we do a hard reset (or are coming from power on)
2415 * this is true for ATA or ATAPI. Until we've set a
2416 * suitable controller mode we should not touch the
2417 * bus as we may be talking too fast.
2418 */
2419 dev->pio_mode = XFER_PIO_0;
2420
2421 /* If the controller has a pio mode setup function
2422 * then use it to set the chipset to rights. Don't
2423 * touch the DMA setup as that will be dealt with when
2424 * configuring devices.
2425 */
2426 if (ap->ops->set_piomode)
2427 ap->ops->set_piomode(ap, dev);
2428 }
2429
2044470c 2430 /* reset and determine device classes */
52783c5d 2431 ap->ops->phy_reset(ap);
2061a47a 2432
f58229f8 2433 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2434 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2435 dev->class != ATA_DEV_UNKNOWN)
2436 classes[dev->devno] = dev->class;
2437 else
2438 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2439
52783c5d 2440 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2441 }
1da177e4 2442
52783c5d 2443 ata_port_probe(ap);
2044470c 2444
f31f0cc2
JG
2445 /* read IDENTIFY page and configure devices. We have to do the identify
2446 specific sequence bass-ackwards so that PDIAG- is released by
2447 the slave device */
2448
f58229f8
TH
2449 ata_link_for_each_dev(dev, &ap->link) {
2450 if (tries[dev->devno])
2451 dev->class = classes[dev->devno];
ffeae418 2452
14d2bac1 2453 if (!ata_dev_enabled(dev))
ffeae418 2454 continue;
ffeae418 2455
bff04647
TH
2456 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2457 dev->id);
14d2bac1
TH
2458 if (rc)
2459 goto fail;
f31f0cc2
JG
2460 }
2461
be0d18df
AC
2462 /* Now ask for the cable type as PDIAG- should have been released */
2463 if (ap->ops->cable_detect)
2464 ap->cbl = ap->ops->cable_detect(ap);
2465
614fe29b
AC
2466 /* We may have SATA bridge glue hiding here irrespective of the
2467 reported cable types and sensed types */
2468 ata_link_for_each_dev(dev, &ap->link) {
2469 if (!ata_dev_enabled(dev))
2470 continue;
2471 /* SATA drives indicate we have a bridge. We don't know which
2472 end of the link the bridge is which is a problem */
2473 if (ata_id_is_sata(dev->id))
2474 ap->cbl = ATA_CBL_SATA;
2475 }
2476
f31f0cc2
JG
2477 /* After the identify sequence we can now set up the devices. We do
2478 this in the normal order so that the user doesn't get confused */
2479
f58229f8 2480 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2481 if (!ata_dev_enabled(dev))
2482 continue;
14d2bac1 2483
9af5c9c9 2484 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2485 rc = ata_dev_configure(dev);
9af5c9c9 2486 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2487 if (rc)
2488 goto fail;
1da177e4
LT
2489 }
2490
e82cbdb9 2491 /* configure transfer mode */
0260731f 2492 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2493 if (rc)
51713d35 2494 goto fail;
1da177e4 2495
f58229f8
TH
2496 ata_link_for_each_dev(dev, &ap->link)
2497 if (ata_dev_enabled(dev))
e82cbdb9 2498 return 0;
1da177e4 2499
e82cbdb9
TH
2500 /* no device present, disable port */
2501 ata_port_disable(ap);
96072e69 2502 return -ENODEV;
14d2bac1
TH
2503
2504 fail:
4ae72a1e
TH
2505 tries[dev->devno]--;
2506
14d2bac1
TH
2507 switch (rc) {
2508 case -EINVAL:
4ae72a1e 2509 /* eeek, something went very wrong, give up */
14d2bac1
TH
2510 tries[dev->devno] = 0;
2511 break;
4ae72a1e
TH
2512
2513 case -ENODEV:
2514 /* give it just one more chance */
2515 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2516 case -EIO:
4ae72a1e
TH
2517 if (tries[dev->devno] == 1) {
2518 /* This is the last chance, better to slow
2519 * down than lose it.
2520 */
936fd732 2521 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2522 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2523 }
14d2bac1
TH
2524 }
2525
4ae72a1e 2526 if (!tries[dev->devno])
3373efd8 2527 ata_dev_disable(dev);
ec573755 2528
14d2bac1 2529 goto retry;
1da177e4
LT
2530}
2531
2532/**
0cba632b
JG
2533 * ata_port_probe - Mark port as enabled
2534 * @ap: Port for which we indicate enablement
1da177e4 2535 *
0cba632b
JG
2536 * Modify @ap data structure such that the system
2537 * thinks that the entire port is enabled.
2538 *
cca3974e 2539 * LOCKING: host lock, or some other form of
0cba632b 2540 * serialization.
1da177e4
LT
2541 */
2542
2543void ata_port_probe(struct ata_port *ap)
2544{
198e0fed 2545 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2546}
2547
3be680b7
TH
2548/**
2549 * sata_print_link_status - Print SATA link status
936fd732 2550 * @link: SATA link to printk link status about
3be680b7
TH
2551 *
2552 * This function prints link speed and status of a SATA link.
2553 *
2554 * LOCKING:
2555 * None.
2556 */
936fd732 2557void sata_print_link_status(struct ata_link *link)
3be680b7 2558{
6d5f9732 2559 u32 sstatus, scontrol, tmp;
3be680b7 2560
936fd732 2561 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2562 return;
936fd732 2563 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2564
936fd732 2565 if (ata_link_online(link)) {
3be680b7 2566 tmp = (sstatus >> 4) & 0xf;
936fd732 2567 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2568 "SATA link up %s (SStatus %X SControl %X)\n",
2569 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2570 } else {
936fd732 2571 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2572 "SATA link down (SStatus %X SControl %X)\n",
2573 sstatus, scontrol);
3be680b7
TH
2574 }
2575}
2576
ebdfca6e
AC
2577/**
2578 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2579 * @adev: device
2580 *
2581 * Obtain the other device on the same cable, or if none is
2582 * present NULL is returned
2583 */
2e9edbf8 2584
3373efd8 2585struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2586{
9af5c9c9
TH
2587 struct ata_link *link = adev->link;
2588 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2589 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2590 return NULL;
2591 return pair;
2592}
2593
1da177e4 2594/**
780a87f7
JG
2595 * ata_port_disable - Disable port.
2596 * @ap: Port to be disabled.
1da177e4 2597 *
780a87f7
JG
2598 * Modify @ap data structure such that the system
2599 * thinks that the entire port is disabled, and should
2600 * never attempt to probe or communicate with devices
2601 * on this port.
2602 *
cca3974e 2603 * LOCKING: host lock, or some other form of
780a87f7 2604 * serialization.
1da177e4
LT
2605 */
2606
2607void ata_port_disable(struct ata_port *ap)
2608{
9af5c9c9
TH
2609 ap->link.device[0].class = ATA_DEV_NONE;
2610 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2611 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2612}
2613
1c3fae4d 2614/**
3c567b7d 2615 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2616 * @link: Link to adjust SATA spd limit for
1c3fae4d 2617 *
936fd732 2618 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2619 * function only adjusts the limit. The change must be applied
3c567b7d 2620 * using sata_set_spd().
1c3fae4d
TH
2621 *
2622 * LOCKING:
2623 * Inherited from caller.
2624 *
2625 * RETURNS:
2626 * 0 on success, negative errno on failure
2627 */
936fd732 2628int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2629{
81952c54
TH
2630 u32 sstatus, spd, mask;
2631 int rc, highbit;
1c3fae4d 2632
936fd732 2633 if (!sata_scr_valid(link))
008a7896
TH
2634 return -EOPNOTSUPP;
2635
2636 /* If SCR can be read, use it to determine the current SPD.
936fd732 2637 * If not, use cached value in link->sata_spd.
008a7896 2638 */
936fd732 2639 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2640 if (rc == 0)
2641 spd = (sstatus >> 4) & 0xf;
2642 else
936fd732 2643 spd = link->sata_spd;
1c3fae4d 2644
936fd732 2645 mask = link->sata_spd_limit;
1c3fae4d
TH
2646 if (mask <= 1)
2647 return -EINVAL;
008a7896
TH
2648
2649 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2650 highbit = fls(mask) - 1;
2651 mask &= ~(1 << highbit);
2652
008a7896
TH
2653 /* Mask off all speeds higher than or equal to the current
2654 * one. Force 1.5Gbps if current SPD is not available.
2655 */
2656 if (spd > 1)
2657 mask &= (1 << (spd - 1)) - 1;
2658 else
2659 mask &= 1;
2660
2661 /* were we already at the bottom? */
1c3fae4d
TH
2662 if (!mask)
2663 return -EINVAL;
2664
936fd732 2665 link->sata_spd_limit = mask;
1c3fae4d 2666
936fd732 2667 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2668 sata_spd_string(fls(mask)));
1c3fae4d
TH
2669
2670 return 0;
2671}
2672
936fd732 2673static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2674{
5270222f
TH
2675 struct ata_link *host_link = &link->ap->link;
2676 u32 limit, target, spd;
1c3fae4d 2677
5270222f
TH
2678 limit = link->sata_spd_limit;
2679
2680 /* Don't configure downstream link faster than upstream link.
2681 * It doesn't speed up anything and some PMPs choke on such
2682 * configuration.
2683 */
2684 if (!ata_is_host_link(link) && host_link->sata_spd)
2685 limit &= (1 << host_link->sata_spd) - 1;
2686
2687 if (limit == UINT_MAX)
2688 target = 0;
1c3fae4d 2689 else
5270222f 2690 target = fls(limit);
1c3fae4d
TH
2691
2692 spd = (*scontrol >> 4) & 0xf;
5270222f 2693 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2694
5270222f 2695 return spd != target;
1c3fae4d
TH
2696}
2697
2698/**
3c567b7d 2699 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2700 * @link: Link in question
1c3fae4d
TH
2701 *
2702 * Test whether the spd limit in SControl matches
936fd732 2703 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2704 * whether hardreset is necessary to apply SATA spd
2705 * configuration.
2706 *
2707 * LOCKING:
2708 * Inherited from caller.
2709 *
2710 * RETURNS:
2711 * 1 if SATA spd configuration is needed, 0 otherwise.
2712 */
936fd732 2713int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2714{
2715 u32 scontrol;
2716
936fd732 2717 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2718 return 1;
1c3fae4d 2719
936fd732 2720 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2721}
2722
2723/**
3c567b7d 2724 * sata_set_spd - set SATA spd according to spd limit
936fd732 2725 * @link: Link to set SATA spd for
1c3fae4d 2726 *
936fd732 2727 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2728 *
2729 * LOCKING:
2730 * Inherited from caller.
2731 *
2732 * RETURNS:
2733 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2734 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2735 */
936fd732 2736int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2737{
2738 u32 scontrol;
81952c54 2739 int rc;
1c3fae4d 2740
936fd732 2741 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2742 return rc;
1c3fae4d 2743
936fd732 2744 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2745 return 0;
2746
936fd732 2747 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2748 return rc;
2749
1c3fae4d
TH
2750 return 1;
2751}
2752
452503f9
AC
2753/*
2754 * This mode timing computation functionality is ported over from
2755 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2756 */
2757/*
b352e57d 2758 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2759 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2760 * for UDMA6, which is currently supported only by Maxtor drives.
2761 *
2762 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2763 */
2764
2765static const struct ata_timing ata_timing[] = {
70cd071e
TH
2766/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2767 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2768 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2769 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2770 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2771 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2772 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2773 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
452503f9 2774
70cd071e
TH
2775 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2776 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2777 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
452503f9 2778
70cd071e
TH
2779 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2780 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2781 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
b352e57d 2782 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
70cd071e 2783 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
452503f9
AC
2784
2785/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
70cd071e
TH
2786 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2787 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2788 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2789 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2790 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2791 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2792 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
2793
2794 { 0xFF }
2795};
2796
2dcb407e
JG
2797#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2798#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2799
2800static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2801{
2802 q->setup = EZ(t->setup * 1000, T);
2803 q->act8b = EZ(t->act8b * 1000, T);
2804 q->rec8b = EZ(t->rec8b * 1000, T);
2805 q->cyc8b = EZ(t->cyc8b * 1000, T);
2806 q->active = EZ(t->active * 1000, T);
2807 q->recover = EZ(t->recover * 1000, T);
2808 q->cycle = EZ(t->cycle * 1000, T);
2809 q->udma = EZ(t->udma * 1000, UT);
2810}
2811
2812void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2813 struct ata_timing *m, unsigned int what)
2814{
2815 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2816 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2817 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2818 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2819 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2820 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2821 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2822 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2823}
2824
6357357c 2825const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 2826{
70cd071e
TH
2827 const struct ata_timing *t = ata_timing;
2828
2829 while (xfer_mode > t->mode)
2830 t++;
452503f9 2831
70cd071e
TH
2832 if (xfer_mode == t->mode)
2833 return t;
2834 return NULL;
452503f9
AC
2835}
2836
2837int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2838 struct ata_timing *t, int T, int UT)
2839{
2840 const struct ata_timing *s;
2841 struct ata_timing p;
2842
2843 /*
2e9edbf8 2844 * Find the mode.
75b1f2f8 2845 */
452503f9
AC
2846
2847 if (!(s = ata_timing_find_mode(speed)))
2848 return -EINVAL;
2849
75b1f2f8
AL
2850 memcpy(t, s, sizeof(*s));
2851
452503f9
AC
2852 /*
2853 * If the drive is an EIDE drive, it can tell us it needs extended
2854 * PIO/MW_DMA cycle timing.
2855 */
2856
2857 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2858 memset(&p, 0, sizeof(p));
2dcb407e 2859 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
452503f9
AC
2860 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2861 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2dcb407e 2862 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
452503f9
AC
2863 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2864 }
2865 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2866 }
2867
2868 /*
2869 * Convert the timing to bus clock counts.
2870 */
2871
75b1f2f8 2872 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2873
2874 /*
c893a3ae
RD
2875 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2876 * S.M.A.R.T * and some other commands. We have to ensure that the
2877 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2878 */
2879
fd3367af 2880 if (speed > XFER_PIO_6) {
452503f9
AC
2881 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2882 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2883 }
2884
2885 /*
c893a3ae 2886 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2887 */
2888
2889 if (t->act8b + t->rec8b < t->cyc8b) {
2890 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2891 t->rec8b = t->cyc8b - t->act8b;
2892 }
2893
2894 if (t->active + t->recover < t->cycle) {
2895 t->active += (t->cycle - (t->active + t->recover)) / 2;
2896 t->recover = t->cycle - t->active;
2897 }
a617c09f 2898
4f701d1e
AC
2899 /* In a few cases quantisation may produce enough errors to
2900 leave t->cycle too low for the sum of active and recovery
2901 if so we must correct this */
2902 if (t->active + t->recover > t->cycle)
2903 t->cycle = t->active + t->recover;
452503f9
AC
2904
2905 return 0;
2906}
2907
a0f79b92
TH
2908/**
2909 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
2910 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
2911 * @cycle: cycle duration in ns
2912 *
2913 * Return matching xfer mode for @cycle. The returned mode is of
2914 * the transfer type specified by @xfer_shift. If @cycle is too
2915 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
2916 * than the fastest known mode, the fasted mode is returned.
2917 *
2918 * LOCKING:
2919 * None.
2920 *
2921 * RETURNS:
2922 * Matching xfer_mode, 0xff if no match found.
2923 */
2924u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
2925{
2926 u8 base_mode = 0xff, last_mode = 0xff;
2927 const struct ata_xfer_ent *ent;
2928 const struct ata_timing *t;
2929
2930 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
2931 if (ent->shift == xfer_shift)
2932 base_mode = ent->base;
2933
2934 for (t = ata_timing_find_mode(base_mode);
2935 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
2936 unsigned short this_cycle;
2937
2938 switch (xfer_shift) {
2939 case ATA_SHIFT_PIO:
2940 case ATA_SHIFT_MWDMA:
2941 this_cycle = t->cycle;
2942 break;
2943 case ATA_SHIFT_UDMA:
2944 this_cycle = t->udma;
2945 break;
2946 default:
2947 return 0xff;
2948 }
2949
2950 if (cycle > this_cycle)
2951 break;
2952
2953 last_mode = t->mode;
2954 }
2955
2956 return last_mode;
2957}
2958
cf176e1a
TH
2959/**
2960 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2961 * @dev: Device to adjust xfer masks
458337db 2962 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2963 *
2964 * Adjust xfer masks of @dev downward. Note that this function
2965 * does not apply the change. Invoking ata_set_mode() afterwards
2966 * will apply the limit.
2967 *
2968 * LOCKING:
2969 * Inherited from caller.
2970 *
2971 * RETURNS:
2972 * 0 on success, negative errno on failure
2973 */
458337db 2974int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2975{
458337db 2976 char buf[32];
7dc951ae
TH
2977 unsigned long orig_mask, xfer_mask;
2978 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 2979 int quiet, highbit;
cf176e1a 2980
458337db
TH
2981 quiet = !!(sel & ATA_DNXFER_QUIET);
2982 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2983
458337db
TH
2984 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2985 dev->mwdma_mask,
2986 dev->udma_mask);
2987 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2988
458337db
TH
2989 switch (sel) {
2990 case ATA_DNXFER_PIO:
2991 highbit = fls(pio_mask) - 1;
2992 pio_mask &= ~(1 << highbit);
2993 break;
2994
2995 case ATA_DNXFER_DMA:
2996 if (udma_mask) {
2997 highbit = fls(udma_mask) - 1;
2998 udma_mask &= ~(1 << highbit);
2999 if (!udma_mask)
3000 return -ENOENT;
3001 } else if (mwdma_mask) {
3002 highbit = fls(mwdma_mask) - 1;
3003 mwdma_mask &= ~(1 << highbit);
3004 if (!mwdma_mask)
3005 return -ENOENT;
3006 }
3007 break;
3008
3009 case ATA_DNXFER_40C:
3010 udma_mask &= ATA_UDMA_MASK_40C;
3011 break;
3012
3013 case ATA_DNXFER_FORCE_PIO0:
3014 pio_mask &= 1;
3015 case ATA_DNXFER_FORCE_PIO:
3016 mwdma_mask = 0;
3017 udma_mask = 0;
3018 break;
3019
458337db
TH
3020 default:
3021 BUG();
3022 }
3023
3024 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3025
3026 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3027 return -ENOENT;
3028
3029 if (!quiet) {
3030 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3031 snprintf(buf, sizeof(buf), "%s:%s",
3032 ata_mode_string(xfer_mask),
3033 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3034 else
3035 snprintf(buf, sizeof(buf), "%s",
3036 ata_mode_string(xfer_mask));
3037
3038 ata_dev_printk(dev, KERN_WARNING,
3039 "limiting speed to %s\n", buf);
3040 }
cf176e1a
TH
3041
3042 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3043 &dev->udma_mask);
3044
cf176e1a 3045 return 0;
cf176e1a
TH
3046}
3047
3373efd8 3048static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3049{
9af5c9c9 3050 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
3051 unsigned int err_mask;
3052 int rc;
1da177e4 3053
e8384607 3054 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3055 if (dev->xfer_shift == ATA_SHIFT_PIO)
3056 dev->flags |= ATA_DFLAG_PIO;
3057
3373efd8 3058 err_mask = ata_dev_set_xfermode(dev);
2dcb407e 3059
11750a40
A
3060 /* Old CFA may refuse this command, which is just fine */
3061 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2dcb407e
JG
3062 err_mask &= ~AC_ERR_DEV;
3063
0bc2a79a
AC
3064 /* Some very old devices and some bad newer ones fail any kind of
3065 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3066 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3067 dev->pio_mode <= XFER_PIO_2)
3068 err_mask &= ~AC_ERR_DEV;
2dcb407e 3069
3acaf94b
AC
3070 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3071 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3072 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3073 dev->dma_mode == XFER_MW_DMA_0 &&
3074 (dev->id[63] >> 8) & 1)
3075 err_mask &= ~AC_ERR_DEV;
3076
83206a29 3077 if (err_mask) {
f15a1daf
TH
3078 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3079 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
3080 return -EIO;
3081 }
1da177e4 3082
baa1e78a 3083 ehc->i.flags |= ATA_EHI_POST_SETMODE;
422c9daa 3084 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
baa1e78a 3085 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 3086 if (rc)
83206a29 3087 return rc;
48a8a14f 3088
23e71c3d
TH
3089 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3090 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3091
f15a1daf
TH
3092 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3093 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 3094 return 0;
1da177e4
LT
3095}
3096
1da177e4 3097/**
04351821 3098 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3099 * @link: link on which timings will be programmed
e82cbdb9 3100 * @r_failed_dev: out paramter for failed device
1da177e4 3101 *
04351821
A
3102 * Standard implementation of the function used to tune and set
3103 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3104 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3105 * returned in @r_failed_dev.
780a87f7 3106 *
1da177e4 3107 * LOCKING:
0cba632b 3108 * PCI/etc. bus probe sem.
e82cbdb9
TH
3109 *
3110 * RETURNS:
3111 * 0 on success, negative errno otherwise
1da177e4 3112 */
04351821 3113
0260731f 3114int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3115{
0260731f 3116 struct ata_port *ap = link->ap;
e8e0619f 3117 struct ata_device *dev;
f58229f8 3118 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3119
a6d5a51c 3120 /* step 1: calculate xfer_mask */
f58229f8 3121 ata_link_for_each_dev(dev, link) {
7dc951ae 3122 unsigned long pio_mask, dma_mask;
b3a70601 3123 unsigned int mode_mask;
a6d5a51c 3124
e1211e3f 3125 if (!ata_dev_enabled(dev))
a6d5a51c
TH
3126 continue;
3127
b3a70601
AC
3128 mode_mask = ATA_DMA_MASK_ATA;
3129 if (dev->class == ATA_DEV_ATAPI)
3130 mode_mask = ATA_DMA_MASK_ATAPI;
3131 else if (ata_id_is_cfa(dev->id))
3132 mode_mask = ATA_DMA_MASK_CFA;
3133
3373efd8 3134 ata_dev_xfermask(dev);
1da177e4 3135
acf356b1
TH
3136 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3137 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3138
3139 if (libata_dma_mask & mode_mask)
3140 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3141 else
3142 dma_mask = 0;
3143
acf356b1
TH
3144 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3145 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3146
4f65977d 3147 found = 1;
70cd071e 3148 if (dev->dma_mode != 0xff)
5444a6f4 3149 used_dma = 1;
a6d5a51c 3150 }
4f65977d 3151 if (!found)
e82cbdb9 3152 goto out;
a6d5a51c
TH
3153
3154 /* step 2: always set host PIO timings */
f58229f8 3155 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3156 if (!ata_dev_enabled(dev))
3157 continue;
3158
70cd071e 3159 if (dev->pio_mode == 0xff) {
f15a1daf 3160 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3161 rc = -EINVAL;
e82cbdb9 3162 goto out;
e8e0619f
TH
3163 }
3164
3165 dev->xfer_mode = dev->pio_mode;
3166 dev->xfer_shift = ATA_SHIFT_PIO;
3167 if (ap->ops->set_piomode)
3168 ap->ops->set_piomode(ap, dev);
3169 }
1da177e4 3170
a6d5a51c 3171 /* step 3: set host DMA timings */
f58229f8 3172 ata_link_for_each_dev(dev, link) {
70cd071e 3173 if (!ata_dev_enabled(dev) || dev->dma_mode == 0xff)
e8e0619f
TH
3174 continue;
3175
3176 dev->xfer_mode = dev->dma_mode;
3177 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3178 if (ap->ops->set_dmamode)
3179 ap->ops->set_dmamode(ap, dev);
3180 }
1da177e4
LT
3181
3182 /* step 4: update devices' xfer mode */
f58229f8 3183 ata_link_for_each_dev(dev, link) {
18d90deb 3184 /* don't update suspended devices' xfer mode */
9666f400 3185 if (!ata_dev_enabled(dev))
83206a29
TH
3186 continue;
3187
3373efd8 3188 rc = ata_dev_set_mode(dev);
5bbc53f4 3189 if (rc)
e82cbdb9 3190 goto out;
83206a29 3191 }
1da177e4 3192
e8e0619f
TH
3193 /* Record simplex status. If we selected DMA then the other
3194 * host channels are not permitted to do so.
5444a6f4 3195 */
cca3974e 3196 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3197 ap->host->simplex_claimed = ap;
5444a6f4 3198
e82cbdb9
TH
3199 out:
3200 if (rc)
3201 *r_failed_dev = dev;
3202 return rc;
1da177e4
LT
3203}
3204
1fdffbce
JG
3205/**
3206 * ata_tf_to_host - issue ATA taskfile to host controller
3207 * @ap: port to which command is being issued
3208 * @tf: ATA taskfile register set
3209 *
3210 * Issues ATA taskfile register set to ATA host controller,
3211 * with proper synchronization with interrupt handler and
3212 * other threads.
3213 *
3214 * LOCKING:
cca3974e 3215 * spin_lock_irqsave(host lock)
1fdffbce
JG
3216 */
3217
3218static inline void ata_tf_to_host(struct ata_port *ap,
3219 const struct ata_taskfile *tf)
3220{
3221 ap->ops->tf_load(ap, tf);
3222 ap->ops->exec_command(ap, tf);
3223}
3224
1da177e4
LT
3225/**
3226 * ata_busy_sleep - sleep until BSY clears, or timeout
3227 * @ap: port containing status register to be polled
3228 * @tmout_pat: impatience timeout
3229 * @tmout: overall timeout
3230 *
780a87f7
JG
3231 * Sleep until ATA Status register bit BSY clears,
3232 * or a timeout occurs.
3233 *
d1adc1bb
TH
3234 * LOCKING:
3235 * Kernel thread context (may sleep).
3236 *
3237 * RETURNS:
3238 * 0 on success, -errno otherwise.
1da177e4 3239 */
d1adc1bb
TH
3240int ata_busy_sleep(struct ata_port *ap,
3241 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
3242{
3243 unsigned long timer_start, timeout;
3244 u8 status;
3245
3246 status = ata_busy_wait(ap, ATA_BUSY, 300);
3247 timer_start = jiffies;
3248 timeout = timer_start + tmout_pat;
d1adc1bb
TH
3249 while (status != 0xff && (status & ATA_BUSY) &&
3250 time_before(jiffies, timeout)) {
1da177e4
LT
3251 msleep(50);
3252 status = ata_busy_wait(ap, ATA_BUSY, 3);
3253 }
3254
d1adc1bb 3255 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 3256 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
3257 "port is slow to respond, please be patient "
3258 "(Status 0x%x)\n", status);
1da177e4
LT
3259
3260 timeout = timer_start + tmout;
d1adc1bb
TH
3261 while (status != 0xff && (status & ATA_BUSY) &&
3262 time_before(jiffies, timeout)) {
1da177e4
LT
3263 msleep(50);
3264 status = ata_chk_status(ap);
3265 }
3266
d1adc1bb
TH
3267 if (status == 0xff)
3268 return -ENODEV;
3269
1da177e4 3270 if (status & ATA_BUSY) {
f15a1daf 3271 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
3272 "(%lu secs, Status 0x%x)\n",
3273 tmout / HZ, status);
d1adc1bb 3274 return -EBUSY;
1da177e4
LT
3275 }
3276
3277 return 0;
3278}
3279
88ff6eaf
TH
3280/**
3281 * ata_wait_after_reset - wait before checking status after reset
3282 * @ap: port containing status register to be polled
3283 * @deadline: deadline jiffies for the operation
3284 *
3285 * After reset, we need to pause a while before reading status.
3286 * Also, certain combination of controller and device report 0xff
3287 * for some duration (e.g. until SATA PHY is up and running)
3288 * which is interpreted as empty port in ATA world. This
3289 * function also waits for such devices to get out of 0xff
3290 * status.
3291 *
3292 * LOCKING:
3293 * Kernel thread context (may sleep).
3294 */
3295void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3296{
3297 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3298
3299 if (time_before(until, deadline))
3300 deadline = until;
3301
3302 /* Spec mandates ">= 2ms" before checking status. We wait
3303 * 150ms, because that was the magic delay used for ATAPI
3304 * devices in Hale Landis's ATADRVR, for the period of time
3305 * between when the ATA command register is written, and then
3306 * status is checked. Because waiting for "a while" before
3307 * checking status is fine, post SRST, we perform this magic
3308 * delay here as well.
3309 *
3310 * Old drivers/ide uses the 2mS rule and then waits for ready.
3311 */
3312 msleep(150);
3313
3314 /* Wait for 0xff to clear. Some SATA devices take a long time
3315 * to clear 0xff after reset. For example, HHD424020F7SV00
3316 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3317 * than that.
1974e201
TH
3318 *
3319 * Note that some PATA controllers (pata_ali) explode if
3320 * status register is read more than once when there's no
3321 * device attached.
88ff6eaf 3322 */
1974e201
TH
3323 if (ap->flags & ATA_FLAG_SATA) {
3324 while (1) {
3325 u8 status = ata_chk_status(ap);
88ff6eaf 3326
1974e201
TH
3327 if (status != 0xff || time_after(jiffies, deadline))
3328 return;
88ff6eaf 3329
1974e201
TH
3330 msleep(50);
3331 }
88ff6eaf
TH
3332 }
3333}
3334
d4b2bab4
TH
3335/**
3336 * ata_wait_ready - sleep until BSY clears, or timeout
3337 * @ap: port containing status register to be polled
3338 * @deadline: deadline jiffies for the operation
3339 *
3340 * Sleep until ATA Status register bit BSY clears, or timeout
3341 * occurs.
3342 *
3343 * LOCKING:
3344 * Kernel thread context (may sleep).
3345 *
3346 * RETURNS:
3347 * 0 on success, -errno otherwise.
3348 */
3349int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3350{
3351 unsigned long start = jiffies;
3352 int warned = 0;
3353
3354 while (1) {
3355 u8 status = ata_chk_status(ap);
3356 unsigned long now = jiffies;
3357
3358 if (!(status & ATA_BUSY))
3359 return 0;
936fd732 3360 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3361 return -ENODEV;
3362 if (time_after(now, deadline))
3363 return -EBUSY;
3364
3365 if (!warned && time_after(now, start + 5 * HZ) &&
3366 (deadline - now > 3 * HZ)) {
3367 ata_port_printk(ap, KERN_WARNING,
3368 "port is slow to respond, please be patient "
3369 "(Status 0x%x)\n", status);
3370 warned = 1;
3371 }
3372
3373 msleep(50);
3374 }
3375}
3376
3377static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3378 unsigned long deadline)
1da177e4
LT
3379{
3380 struct ata_ioports *ioaddr = &ap->ioaddr;
3381 unsigned int dev0 = devmask & (1 << 0);
3382 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3383 int rc, ret = 0;
1da177e4
LT
3384
3385 /* if device 0 was found in ata_devchk, wait for its
3386 * BSY bit to clear
3387 */
d4b2bab4
TH
3388 if (dev0) {
3389 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3390 if (rc) {
3391 if (rc != -ENODEV)
3392 return rc;
3393 ret = rc;
3394 }
d4b2bab4 3395 }
1da177e4 3396
e141d999
TH
3397 /* if device 1 was found in ata_devchk, wait for register
3398 * access briefly, then wait for BSY to clear.
1da177e4 3399 */
e141d999
TH
3400 if (dev1) {
3401 int i;
1da177e4
LT
3402
3403 ap->ops->dev_select(ap, 1);
e141d999
TH
3404
3405 /* Wait for register access. Some ATAPI devices fail
3406 * to set nsect/lbal after reset, so don't waste too
3407 * much time on it. We're gonna wait for !BSY anyway.
3408 */
3409 for (i = 0; i < 2; i++) {
3410 u8 nsect, lbal;
3411
3412 nsect = ioread8(ioaddr->nsect_addr);
3413 lbal = ioread8(ioaddr->lbal_addr);
3414 if ((nsect == 1) && (lbal == 1))
3415 break;
3416 msleep(50); /* give drive a breather */
3417 }
3418
d4b2bab4 3419 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3420 if (rc) {
3421 if (rc != -ENODEV)
3422 return rc;
3423 ret = rc;
3424 }
d4b2bab4 3425 }
1da177e4
LT
3426
3427 /* is all this really necessary? */
3428 ap->ops->dev_select(ap, 0);
3429 if (dev1)
3430 ap->ops->dev_select(ap, 1);
3431 if (dev0)
3432 ap->ops->dev_select(ap, 0);
d4b2bab4 3433
9b89391c 3434 return ret;
1da177e4
LT
3435}
3436
d4b2bab4
TH
3437static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3438 unsigned long deadline)
1da177e4
LT
3439{
3440 struct ata_ioports *ioaddr = &ap->ioaddr;
3441
44877b4e 3442 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3443
3444 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3445 iowrite8(ap->ctl, ioaddr->ctl_addr);
3446 udelay(20); /* FIXME: flush */
3447 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3448 udelay(20); /* FIXME: flush */
3449 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4 3450
88ff6eaf
TH
3451 /* wait a while before checking status */
3452 ata_wait_after_reset(ap, deadline);
1da177e4 3453
2e9edbf8 3454 /* Before we perform post reset processing we want to see if
298a41ca
TH
3455 * the bus shows 0xFF because the odd clown forgets the D7
3456 * pulldown resistor.
3457 */
150981b0 3458 if (ata_chk_status(ap) == 0xFF)
9b89391c 3459 return -ENODEV;
09c7ad79 3460
d4b2bab4 3461 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3462}
3463
3464/**
3465 * ata_bus_reset - reset host port and associated ATA channel
3466 * @ap: port to reset
3467 *
3468 * This is typically the first time we actually start issuing
3469 * commands to the ATA channel. We wait for BSY to clear, then
3470 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3471 * result. Determine what devices, if any, are on the channel
3472 * by looking at the device 0/1 error register. Look at the signature
3473 * stored in each device's taskfile registers, to determine if
3474 * the device is ATA or ATAPI.
3475 *
3476 * LOCKING:
0cba632b 3477 * PCI/etc. bus probe sem.
cca3974e 3478 * Obtains host lock.
1da177e4
LT
3479 *
3480 * SIDE EFFECTS:
198e0fed 3481 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3482 */
3483
3484void ata_bus_reset(struct ata_port *ap)
3485{
9af5c9c9 3486 struct ata_device *device = ap->link.device;
1da177e4
LT
3487 struct ata_ioports *ioaddr = &ap->ioaddr;
3488 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3489 u8 err;
aec5c3c1 3490 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3491 int rc;
1da177e4 3492
44877b4e 3493 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3494
3495 /* determine if device 0/1 are present */
3496 if (ap->flags & ATA_FLAG_SATA_RESET)
3497 dev0 = 1;
3498 else {
3499 dev0 = ata_devchk(ap, 0);
3500 if (slave_possible)
3501 dev1 = ata_devchk(ap, 1);
3502 }
3503
3504 if (dev0)
3505 devmask |= (1 << 0);
3506 if (dev1)
3507 devmask |= (1 << 1);
3508
3509 /* select device 0 again */
3510 ap->ops->dev_select(ap, 0);
3511
3512 /* issue bus reset */
9b89391c
TH
3513 if (ap->flags & ATA_FLAG_SRST) {
3514 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3515 if (rc && rc != -ENODEV)
aec5c3c1 3516 goto err_out;
9b89391c 3517 }
1da177e4
LT
3518
3519 /*
3520 * determine by signature whether we have ATA or ATAPI devices
3521 */
3f19859e 3522 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
1da177e4 3523 if ((slave_possible) && (err != 0x81))
3f19859e 3524 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
1da177e4 3525
1da177e4 3526 /* is double-select really necessary? */
9af5c9c9 3527 if (device[1].class != ATA_DEV_NONE)
1da177e4 3528 ap->ops->dev_select(ap, 1);
9af5c9c9 3529 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3530 ap->ops->dev_select(ap, 0);
3531
3532 /* if no devices were detected, disable this port */
9af5c9c9
TH
3533 if ((device[0].class == ATA_DEV_NONE) &&
3534 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3535 goto err_out;
3536
3537 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3538 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3539 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3540 }
3541
3542 DPRINTK("EXIT\n");
3543 return;
3544
3545err_out:
f15a1daf 3546 ata_port_printk(ap, KERN_ERR, "disabling port\n");
ac8869d5 3547 ata_port_disable(ap);
1da177e4
LT
3548
3549 DPRINTK("EXIT\n");
3550}
3551
d7bb4cc7 3552/**
936fd732
TH
3553 * sata_link_debounce - debounce SATA phy status
3554 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3555 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3556 * @deadline: deadline jiffies for the operation
d7bb4cc7 3557 *
936fd732 3558* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3559 * holding the same value where DET is not 1 for @duration polled
3560 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3561 * beginning of the stable state. Because DET gets stuck at 1 on
3562 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3563 * until timeout then returns 0 if DET is stable at 1.
3564 *
d4b2bab4
TH
3565 * @timeout is further limited by @deadline. The sooner of the
3566 * two is used.
3567 *
d7bb4cc7
TH
3568 * LOCKING:
3569 * Kernel thread context (may sleep)
3570 *
3571 * RETURNS:
3572 * 0 on success, -errno on failure.
3573 */
936fd732
TH
3574int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3575 unsigned long deadline)
7a7921e8 3576{
d7bb4cc7 3577 unsigned long interval_msec = params[0];
d4b2bab4
TH
3578 unsigned long duration = msecs_to_jiffies(params[1]);
3579 unsigned long last_jiffies, t;
d7bb4cc7
TH
3580 u32 last, cur;
3581 int rc;
3582
d4b2bab4
TH
3583 t = jiffies + msecs_to_jiffies(params[2]);
3584 if (time_before(t, deadline))
3585 deadline = t;
3586
936fd732 3587 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3588 return rc;
3589 cur &= 0xf;
3590
3591 last = cur;
3592 last_jiffies = jiffies;
3593
3594 while (1) {
3595 msleep(interval_msec);
936fd732 3596 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3597 return rc;
3598 cur &= 0xf;
3599
3600 /* DET stable? */
3601 if (cur == last) {
d4b2bab4 3602 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3603 continue;
3604 if (time_after(jiffies, last_jiffies + duration))
3605 return 0;
3606 continue;
3607 }
3608
3609 /* unstable, start over */
3610 last = cur;
3611 last_jiffies = jiffies;
3612
f1545154
TH
3613 /* Check deadline. If debouncing failed, return
3614 * -EPIPE to tell upper layer to lower link speed.
3615 */
d4b2bab4 3616 if (time_after(jiffies, deadline))
f1545154 3617 return -EPIPE;
d7bb4cc7
TH
3618 }
3619}
3620
3621/**
936fd732
TH
3622 * sata_link_resume - resume SATA link
3623 * @link: ATA link to resume SATA
d7bb4cc7 3624 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3625 * @deadline: deadline jiffies for the operation
d7bb4cc7 3626 *
936fd732 3627 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3628 *
3629 * LOCKING:
3630 * Kernel thread context (may sleep)
3631 *
3632 * RETURNS:
3633 * 0 on success, -errno on failure.
3634 */
936fd732
TH
3635int sata_link_resume(struct ata_link *link, const unsigned long *params,
3636 unsigned long deadline)
d7bb4cc7
TH
3637{
3638 u32 scontrol;
81952c54
TH
3639 int rc;
3640
936fd732 3641 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3642 return rc;
7a7921e8 3643
852ee16a 3644 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3645
936fd732 3646 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3647 return rc;
7a7921e8 3648
d7bb4cc7
TH
3649 /* Some PHYs react badly if SStatus is pounded immediately
3650 * after resuming. Delay 200ms before debouncing.
3651 */
3652 msleep(200);
7a7921e8 3653
936fd732 3654 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3655}
3656
f5914a46
TH
3657/**
3658 * ata_std_prereset - prepare for reset
cc0680a5 3659 * @link: ATA link to be reset
d4b2bab4 3660 * @deadline: deadline jiffies for the operation
f5914a46 3661 *
cc0680a5 3662 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3663 * prereset makes libata abort whole reset sequence and give up
3664 * that port, so prereset should be best-effort. It does its
3665 * best to prepare for reset sequence but if things go wrong, it
3666 * should just whine, not fail.
f5914a46
TH
3667 *
3668 * LOCKING:
3669 * Kernel thread context (may sleep)
3670 *
3671 * RETURNS:
3672 * 0 on success, -errno otherwise.
3673 */
cc0680a5 3674int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3675{
cc0680a5 3676 struct ata_port *ap = link->ap;
936fd732 3677 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3678 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3679 int rc;
3680
31daabda 3681 /* handle link resume */
28324304 3682 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3683 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3684 ehc->i.action |= ATA_EH_HARDRESET;
3685
633273a3
TH
3686 /* Some PMPs don't work with only SRST, force hardreset if PMP
3687 * is supported.
3688 */
3689 if (ap->flags & ATA_FLAG_PMP)
3690 ehc->i.action |= ATA_EH_HARDRESET;
3691
f5914a46
TH
3692 /* if we're about to do hardreset, nothing more to do */
3693 if (ehc->i.action & ATA_EH_HARDRESET)
3694 return 0;
3695
936fd732 3696 /* if SATA, resume link */
a16abc0b 3697 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3698 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3699 /* whine about phy resume failure but proceed */
3700 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3701 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3702 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3703 }
3704
3705 /* Wait for !BSY if the controller can wait for the first D2H
3706 * Reg FIS and we don't know that no device is attached.
3707 */
0c88758b 3708 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3709 rc = ata_wait_ready(ap, deadline);
6dffaf61 3710 if (rc && rc != -ENODEV) {
cc0680a5 3711 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3712 "(errno=%d), forcing hardreset\n", rc);
3713 ehc->i.action |= ATA_EH_HARDRESET;
3714 }
3715 }
f5914a46
TH
3716
3717 return 0;
3718}
3719
c2bd5804
TH
3720/**
3721 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3722 * @link: ATA link to reset
c2bd5804 3723 * @classes: resulting classes of attached devices
d4b2bab4 3724 * @deadline: deadline jiffies for the operation
c2bd5804 3725 *
52783c5d 3726 * Reset host port using ATA SRST.
c2bd5804
TH
3727 *
3728 * LOCKING:
3729 * Kernel thread context (may sleep)
3730 *
3731 * RETURNS:
3732 * 0 on success, -errno otherwise.
3733 */
cc0680a5 3734int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3735 unsigned long deadline)
c2bd5804 3736{
cc0680a5 3737 struct ata_port *ap = link->ap;
c2bd5804 3738 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3739 unsigned int devmask = 0;
3740 int rc;
c2bd5804
TH
3741 u8 err;
3742
3743 DPRINTK("ENTER\n");
3744
936fd732 3745 if (ata_link_offline(link)) {
3a39746a
TH
3746 classes[0] = ATA_DEV_NONE;
3747 goto out;
3748 }
3749
c2bd5804
TH
3750 /* determine if device 0/1 are present */
3751 if (ata_devchk(ap, 0))
3752 devmask |= (1 << 0);
3753 if (slave_possible && ata_devchk(ap, 1))
3754 devmask |= (1 << 1);
3755
c2bd5804
TH
3756 /* select device 0 again */
3757 ap->ops->dev_select(ap, 0);
3758
3759 /* issue bus reset */
3760 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3761 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3762 /* if link is occupied, -ENODEV too is an error */
936fd732 3763 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3764 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3765 return rc;
c2bd5804
TH
3766 }
3767
3768 /* determine by signature whether we have ATA or ATAPI devices */
3f19859e
TH
3769 classes[0] = ata_dev_try_classify(&link->device[0],
3770 devmask & (1 << 0), &err);
c2bd5804 3771 if (slave_possible && err != 0x81)
3f19859e
TH
3772 classes[1] = ata_dev_try_classify(&link->device[1],
3773 devmask & (1 << 1), &err);
c2bd5804 3774
3a39746a 3775 out:
c2bd5804
TH
3776 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3777 return 0;
3778}
3779
3780/**
cc0680a5
TH
3781 * sata_link_hardreset - reset link via SATA phy reset
3782 * @link: link to reset
b6103f6d 3783 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3784 * @deadline: deadline jiffies for the operation
c2bd5804 3785 *
cc0680a5 3786 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3787 *
3788 * LOCKING:
3789 * Kernel thread context (may sleep)
3790 *
3791 * RETURNS:
3792 * 0 on success, -errno otherwise.
3793 */
cc0680a5 3794int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3795 unsigned long deadline)
c2bd5804 3796{
852ee16a 3797 u32 scontrol;
81952c54 3798 int rc;
852ee16a 3799
c2bd5804
TH
3800 DPRINTK("ENTER\n");
3801
936fd732 3802 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3803 /* SATA spec says nothing about how to reconfigure
3804 * spd. To be on the safe side, turn off phy during
3805 * reconfiguration. This works for at least ICH7 AHCI
3806 * and Sil3124.
3807 */
936fd732 3808 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3809 goto out;
81952c54 3810
a34b6fc0 3811 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3812
936fd732 3813 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3814 goto out;
1c3fae4d 3815
936fd732 3816 sata_set_spd(link);
1c3fae4d
TH
3817 }
3818
3819 /* issue phy wake/reset */
936fd732 3820 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3821 goto out;
81952c54 3822
852ee16a 3823 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3824
936fd732 3825 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3826 goto out;
c2bd5804 3827
1c3fae4d 3828 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3829 * 10.4.2 says at least 1 ms.
3830 */
3831 msleep(1);
3832
936fd732
TH
3833 /* bring link back */
3834 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3835 out:
3836 DPRINTK("EXIT, rc=%d\n", rc);
3837 return rc;
3838}
3839
3840/**
3841 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3842 * @link: link to reset
b6103f6d 3843 * @class: resulting class of attached device
d4b2bab4 3844 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3845 *
3846 * SATA phy-reset host port using DET bits of SControl register,
3847 * wait for !BSY and classify the attached device.
3848 *
3849 * LOCKING:
3850 * Kernel thread context (may sleep)
3851 *
3852 * RETURNS:
3853 * 0 on success, -errno otherwise.
3854 */
cc0680a5 3855int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3856 unsigned long deadline)
b6103f6d 3857{
cc0680a5 3858 struct ata_port *ap = link->ap;
936fd732 3859 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3860 int rc;
3861
3862 DPRINTK("ENTER\n");
3863
3864 /* do hardreset */
cc0680a5 3865 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3866 if (rc) {
cc0680a5 3867 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3868 "COMRESET failed (errno=%d)\n", rc);
3869 return rc;
3870 }
c2bd5804 3871
c2bd5804 3872 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3873 if (ata_link_offline(link)) {
c2bd5804
TH
3874 *class = ATA_DEV_NONE;
3875 DPRINTK("EXIT, link offline\n");
3876 return 0;
3877 }
3878
88ff6eaf
TH
3879 /* wait a while before checking status */
3880 ata_wait_after_reset(ap, deadline);
34fee227 3881
633273a3
TH
3882 /* If PMP is supported, we have to do follow-up SRST. Note
3883 * that some PMPs don't send D2H Reg FIS after hardreset at
3884 * all if the first port is empty. Wait for it just for a
3885 * second and request follow-up SRST.
3886 */
3887 if (ap->flags & ATA_FLAG_PMP) {
3888 ata_wait_ready(ap, jiffies + HZ);
3889 return -EAGAIN;
3890 }
3891
d4b2bab4 3892 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3893 /* link occupied, -ENODEV too is an error */
3894 if (rc) {
cc0680a5 3895 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3896 "COMRESET failed (errno=%d)\n", rc);
3897 return rc;
c2bd5804
TH
3898 }
3899
3a39746a
TH
3900 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3901
3f19859e 3902 *class = ata_dev_try_classify(link->device, 1, NULL);
c2bd5804
TH
3903
3904 DPRINTK("EXIT, class=%u\n", *class);
3905 return 0;
3906}
3907
3908/**
3909 * ata_std_postreset - standard postreset callback
cc0680a5 3910 * @link: the target ata_link
c2bd5804
TH
3911 * @classes: classes of attached devices
3912 *
3913 * This function is invoked after a successful reset. Note that
3914 * the device might have been reset more than once using
3915 * different reset methods before postreset is invoked.
c2bd5804 3916 *
c2bd5804
TH
3917 * LOCKING:
3918 * Kernel thread context (may sleep)
3919 */
cc0680a5 3920void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3921{
cc0680a5 3922 struct ata_port *ap = link->ap;
dc2b3515
TH
3923 u32 serror;
3924
c2bd5804
TH
3925 DPRINTK("ENTER\n");
3926
c2bd5804 3927 /* print link status */
936fd732 3928 sata_print_link_status(link);
c2bd5804 3929
dc2b3515 3930 /* clear SError */
936fd732
TH
3931 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3932 sata_scr_write(link, SCR_ERROR, serror);
f7fe7ad4 3933 link->eh_info.serror = 0;
dc2b3515 3934
c2bd5804
TH
3935 /* is double-select really necessary? */
3936 if (classes[0] != ATA_DEV_NONE)
3937 ap->ops->dev_select(ap, 1);
3938 if (classes[1] != ATA_DEV_NONE)
3939 ap->ops->dev_select(ap, 0);
3940
3a39746a
TH
3941 /* bail out if no device is present */
3942 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3943 DPRINTK("EXIT, no device\n");
3944 return;
3945 }
3946
3947 /* set up device control */
0d5ff566
TH
3948 if (ap->ioaddr.ctl_addr)
3949 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3950
3951 DPRINTK("EXIT\n");
3952}
3953
623a3128
TH
3954/**
3955 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3956 * @dev: device to compare against
3957 * @new_class: class of the new device
3958 * @new_id: IDENTIFY page of the new device
3959 *
3960 * Compare @new_class and @new_id against @dev and determine
3961 * whether @dev is the device indicated by @new_class and
3962 * @new_id.
3963 *
3964 * LOCKING:
3965 * None.
3966 *
3967 * RETURNS:
3968 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3969 */
3373efd8
TH
3970static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3971 const u16 *new_id)
623a3128
TH
3972{
3973 const u16 *old_id = dev->id;
a0cf733b
TH
3974 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3975 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3976
3977 if (dev->class != new_class) {
f15a1daf
TH
3978 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3979 dev->class, new_class);
623a3128
TH
3980 return 0;
3981 }
3982
a0cf733b
TH
3983 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3984 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3985 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3986 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3987
3988 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3989 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3990 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3991 return 0;
3992 }
3993
3994 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3995 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3996 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3997 return 0;
3998 }
3999
623a3128
TH
4000 return 1;
4001}
4002
4003/**
fe30911b 4004 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4005 * @dev: target ATA device
bff04647 4006 * @readid_flags: read ID flags
623a3128
TH
4007 *
4008 * Re-read IDENTIFY page and make sure @dev is still attached to
4009 * the port.
4010 *
4011 * LOCKING:
4012 * Kernel thread context (may sleep)
4013 *
4014 * RETURNS:
4015 * 0 on success, negative errno otherwise
4016 */
fe30911b 4017int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4018{
5eb45c02 4019 unsigned int class = dev->class;
9af5c9c9 4020 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4021 int rc;
4022
fe635c7e 4023 /* read ID data */
bff04647 4024 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4025 if (rc)
fe30911b 4026 return rc;
623a3128
TH
4027
4028 /* is the device still there? */
fe30911b
TH
4029 if (!ata_dev_same_device(dev, class, id))
4030 return -ENODEV;
623a3128 4031
fe635c7e 4032 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4033 return 0;
4034}
4035
4036/**
4037 * ata_dev_revalidate - Revalidate ATA device
4038 * @dev: device to revalidate
422c9daa 4039 * @new_class: new class code
fe30911b
TH
4040 * @readid_flags: read ID flags
4041 *
4042 * Re-read IDENTIFY page, make sure @dev is still attached to the
4043 * port and reconfigure it according to the new IDENTIFY page.
4044 *
4045 * LOCKING:
4046 * Kernel thread context (may sleep)
4047 *
4048 * RETURNS:
4049 * 0 on success, negative errno otherwise
4050 */
422c9daa
TH
4051int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4052 unsigned int readid_flags)
fe30911b 4053{
6ddcd3b0 4054 u64 n_sectors = dev->n_sectors;
fe30911b
TH
4055 int rc;
4056
4057 if (!ata_dev_enabled(dev))
4058 return -ENODEV;
4059
422c9daa
TH
4060 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4061 if (ata_class_enabled(new_class) &&
4062 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4063 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4064 dev->class, new_class);
4065 rc = -ENODEV;
4066 goto fail;
4067 }
4068
fe30911b
TH
4069 /* re-read ID */
4070 rc = ata_dev_reread_id(dev, readid_flags);
4071 if (rc)
4072 goto fail;
623a3128
TH
4073
4074 /* configure device according to the new ID */
efdaedc4 4075 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4076 if (rc)
4077 goto fail;
4078
4079 /* verify n_sectors hasn't changed */
b54eebd6
TH
4080 if (dev->class == ATA_DEV_ATA && n_sectors &&
4081 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
4082 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4083 "%llu != %llu\n",
4084 (unsigned long long)n_sectors,
4085 (unsigned long long)dev->n_sectors);
8270bec4
TH
4086
4087 /* restore original n_sectors */
4088 dev->n_sectors = n_sectors;
4089
6ddcd3b0
TH
4090 rc = -ENODEV;
4091 goto fail;
4092 }
4093
4094 return 0;
623a3128
TH
4095
4096 fail:
f15a1daf 4097 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4098 return rc;
4099}
4100
6919a0a6
AC
4101struct ata_blacklist_entry {
4102 const char *model_num;
4103 const char *model_rev;
4104 unsigned long horkage;
4105};
4106
4107static const struct ata_blacklist_entry ata_device_blacklist [] = {
4108 /* Devices with DMA related problems under Linux */
4109 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4110 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4111 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4112 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4113 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4114 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4115 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4116 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4117 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4118 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4119 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4120 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4121 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4122 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4123 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4124 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4125 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4126 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4127 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4128 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4129 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4130 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4131 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4132 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4133 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4134 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4135 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4136 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4137 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4138 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a
TH
4139 /* Odd clown on sil3726/4726 PMPs */
4140 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4141 ATA_HORKAGE_SKIP_PM },
6919a0a6 4142
18d6e9d5 4143 /* Weird ATAPI devices */
40a1d531 4144 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 4145
6919a0a6
AC
4146 /* Devices we expect to fail diagnostics */
4147
4148 /* Devices where NCQ should be avoided */
4149 /* NCQ is slow */
2dcb407e 4150 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4151 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4152 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4153 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4154 /* NCQ is broken */
539cc7c7 4155 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4156 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
0b0a43e0
DM
4157 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4158 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
da6f0ec2 4159 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4160 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
539cc7c7 4161
36e337d0
RH
4162 /* Blacklist entries taken from Silicon Image 3124/3132
4163 Windows driver .inf file - also several Linux problem reports */
4164 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4165 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4166 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4167
16c55b03
TH
4168 /* devices which puke on READ_NATIVE_MAX */
4169 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4170 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4171 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4172 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4173
93328e11
AC
4174 /* Devices which report 1 sector over size HPA */
4175 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4176 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4177
6bbfd53d
AC
4178 /* Devices which get the IVB wrong */
4179 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4180 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
e9f33406
PM
4181 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4182 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4183 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4184
6919a0a6
AC
4185 /* End Marker */
4186 { }
1da177e4 4187};
2e9edbf8 4188
741b7763 4189static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4190{
4191 const char *p;
4192 int len;
4193
4194 /*
4195 * check for trailing wildcard: *\0
4196 */
4197 p = strchr(patt, wildchar);
4198 if (p && ((*(p + 1)) == 0))
4199 len = p - patt;
317b50b8 4200 else {
539cc7c7 4201 len = strlen(name);
317b50b8
AP
4202 if (!len) {
4203 if (!*patt)
4204 return 0;
4205 return -1;
4206 }
4207 }
539cc7c7
JG
4208
4209 return strncmp(patt, name, len);
4210}
4211
75683fe7 4212static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4213{
8bfa79fc
TH
4214 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4215 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4216 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4217
8bfa79fc
TH
4218 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4219 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4220
6919a0a6 4221 while (ad->model_num) {
539cc7c7 4222 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4223 if (ad->model_rev == NULL)
4224 return ad->horkage;
539cc7c7 4225 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4226 return ad->horkage;
f4b15fef 4227 }
6919a0a6 4228 ad++;
f4b15fef 4229 }
1da177e4
LT
4230 return 0;
4231}
4232
6919a0a6
AC
4233static int ata_dma_blacklisted(const struct ata_device *dev)
4234{
4235 /* We don't support polling DMA.
4236 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4237 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4238 */
9af5c9c9 4239 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4240 (dev->flags & ATA_DFLAG_CDB_INTR))
4241 return 1;
75683fe7 4242 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4243}
4244
6bbfd53d
AC
4245/**
4246 * ata_is_40wire - check drive side detection
4247 * @dev: device
4248 *
4249 * Perform drive side detection decoding, allowing for device vendors
4250 * who can't follow the documentation.
4251 */
4252
4253static int ata_is_40wire(struct ata_device *dev)
4254{
4255 if (dev->horkage & ATA_HORKAGE_IVB)
4256 return ata_drive_40wire_relaxed(dev->id);
4257 return ata_drive_40wire(dev->id);
4258}
4259
a6d5a51c
TH
4260/**
4261 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4262 * @dev: Device to compute xfermask for
4263 *
acf356b1
TH
4264 * Compute supported xfermask of @dev and store it in
4265 * dev->*_mask. This function is responsible for applying all
4266 * known limits including host controller limits, device
4267 * blacklist, etc...
a6d5a51c
TH
4268 *
4269 * LOCKING:
4270 * None.
a6d5a51c 4271 */
3373efd8 4272static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4273{
9af5c9c9
TH
4274 struct ata_link *link = dev->link;
4275 struct ata_port *ap = link->ap;
cca3974e 4276 struct ata_host *host = ap->host;
a6d5a51c 4277 unsigned long xfer_mask;
1da177e4 4278
37deecb5 4279 /* controller modes available */
565083e1
TH
4280 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4281 ap->mwdma_mask, ap->udma_mask);
4282
8343f889 4283 /* drive modes available */
37deecb5
TH
4284 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4285 dev->mwdma_mask, dev->udma_mask);
4286 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4287
b352e57d
AC
4288 /*
4289 * CFA Advanced TrueIDE timings are not allowed on a shared
4290 * cable
4291 */
4292 if (ata_dev_pair(dev)) {
4293 /* No PIO5 or PIO6 */
4294 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4295 /* No MWDMA3 or MWDMA 4 */
4296 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4297 }
4298
37deecb5
TH
4299 if (ata_dma_blacklisted(dev)) {
4300 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4301 ata_dev_printk(dev, KERN_WARNING,
4302 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4303 }
a6d5a51c 4304
14d66ab7 4305 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4306 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4307 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4308 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4309 "other device, disabling DMA\n");
5444a6f4 4310 }
565083e1 4311
e424675f
JG
4312 if (ap->flags & ATA_FLAG_NO_IORDY)
4313 xfer_mask &= ata_pio_mask_no_iordy(dev);
4314
5444a6f4 4315 if (ap->ops->mode_filter)
a76b62ca 4316 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4317
8343f889
RH
4318 /* Apply cable rule here. Don't apply it early because when
4319 * we handle hot plug the cable type can itself change.
4320 * Check this last so that we know if the transfer rate was
4321 * solely limited by the cable.
4322 * Unknown or 80 wire cables reported host side are checked
4323 * drive side as well. Cases where we know a 40wire cable
4324 * is used safely for 80 are not checked here.
4325 */
4326 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4327 /* UDMA/44 or higher would be available */
2dcb407e 4328 if ((ap->cbl == ATA_CBL_PATA40) ||
6bbfd53d 4329 (ata_is_40wire(dev) &&
2dcb407e
JG
4330 (ap->cbl == ATA_CBL_PATA_UNK ||
4331 ap->cbl == ATA_CBL_PATA80))) {
4332 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4333 "limited to UDMA/33 due to 40-wire cable\n");
4334 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4335 }
4336
565083e1
TH
4337 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4338 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4339}
4340
1da177e4
LT
4341/**
4342 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4343 * @dev: Device to which command will be sent
4344 *
780a87f7
JG
4345 * Issue SET FEATURES - XFER MODE command to device @dev
4346 * on port @ap.
4347 *
1da177e4 4348 * LOCKING:
0cba632b 4349 * PCI/etc. bus probe sem.
83206a29
TH
4350 *
4351 * RETURNS:
4352 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4353 */
4354
3373efd8 4355static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4356{
a0123703 4357 struct ata_taskfile tf;
83206a29 4358 unsigned int err_mask;
1da177e4
LT
4359
4360 /* set up set-features taskfile */
4361 DPRINTK("set features - xfer mode\n");
4362
464cf177
TH
4363 /* Some controllers and ATAPI devices show flaky interrupt
4364 * behavior after setting xfer mode. Use polling instead.
4365 */
3373efd8 4366 ata_tf_init(dev, &tf);
a0123703
TH
4367 tf.command = ATA_CMD_SET_FEATURES;
4368 tf.feature = SETFEATURES_XFER;
464cf177 4369 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4370 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4371 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4372 if (ata_pio_need_iordy(dev))
4373 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4374 /* If the device has IORDY and the controller does not - turn it off */
4375 else if (ata_id_has_iordy(dev->id))
11b7becc 4376 tf.nsect = 0x01;
b9f8ab2d
AC
4377 else /* In the ancient relic department - skip all of this */
4378 return 0;
1da177e4 4379
2b789108 4380 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4381
4382 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4383 return err_mask;
4384}
9f45cbd3 4385/**
218f3d30 4386 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4387 * @dev: Device to which command will be sent
4388 * @enable: Whether to enable or disable the feature
218f3d30 4389 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4390 *
4391 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4392 * on port @ap with sector count
9f45cbd3
KCA
4393 *
4394 * LOCKING:
4395 * PCI/etc. bus probe sem.
4396 *
4397 * RETURNS:
4398 * 0 on success, AC_ERR_* mask otherwise.
4399 */
218f3d30
JG
4400static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4401 u8 feature)
9f45cbd3
KCA
4402{
4403 struct ata_taskfile tf;
4404 unsigned int err_mask;
4405
4406 /* set up set-features taskfile */
4407 DPRINTK("set features - SATA features\n");
4408
4409 ata_tf_init(dev, &tf);
4410 tf.command = ATA_CMD_SET_FEATURES;
4411 tf.feature = enable;
4412 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4413 tf.protocol = ATA_PROT_NODATA;
218f3d30 4414 tf.nsect = feature;
9f45cbd3 4415
2b789108 4416 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4417
83206a29
TH
4418 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4419 return err_mask;
1da177e4
LT
4420}
4421
8bf62ece
AL
4422/**
4423 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4424 * @dev: Device to which command will be sent
e2a7f77a
RD
4425 * @heads: Number of heads (taskfile parameter)
4426 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4427 *
4428 * LOCKING:
6aff8f1f
TH
4429 * Kernel thread context (may sleep)
4430 *
4431 * RETURNS:
4432 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4433 */
3373efd8
TH
4434static unsigned int ata_dev_init_params(struct ata_device *dev,
4435 u16 heads, u16 sectors)
8bf62ece 4436{
a0123703 4437 struct ata_taskfile tf;
6aff8f1f 4438 unsigned int err_mask;
8bf62ece
AL
4439
4440 /* Number of sectors per track 1-255. Number of heads 1-16 */
4441 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4442 return AC_ERR_INVALID;
8bf62ece
AL
4443
4444 /* set up init dev params taskfile */
4445 DPRINTK("init dev params \n");
4446
3373efd8 4447 ata_tf_init(dev, &tf);
a0123703
TH
4448 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4449 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4450 tf.protocol = ATA_PROT_NODATA;
4451 tf.nsect = sectors;
4452 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4453
2b789108 4454 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4455 /* A clean abort indicates an original or just out of spec drive
4456 and we should continue as we issue the setup based on the
4457 drive reported working geometry */
4458 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4459 err_mask = 0;
8bf62ece 4460
6aff8f1f
TH
4461 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4462 return err_mask;
8bf62ece
AL
4463}
4464
1da177e4 4465/**
0cba632b
JG
4466 * ata_sg_clean - Unmap DMA memory associated with command
4467 * @qc: Command containing DMA memory to be released
4468 *
4469 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4470 *
4471 * LOCKING:
cca3974e 4472 * spin_lock_irqsave(host lock)
1da177e4 4473 */
70e6ad0c 4474void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4475{
4476 struct ata_port *ap = qc->ap;
ff2aeb1e 4477 struct scatterlist *sg = qc->sg;
1da177e4 4478 int dir = qc->dma_dir;
cedc9a47 4479 void *pad_buf = NULL;
1da177e4 4480
a4631474 4481 WARN_ON(sg == NULL);
1da177e4 4482
ff2aeb1e 4483 VPRINTK("unmapping %u sg elements\n", qc->mapped_n_elem);
1da177e4 4484
cedc9a47
JG
4485 /* if we padded the buffer out to 32-bit bound, and data
4486 * xfer direction is from-device, we must copy from the
4487 * pad buffer back into the supplied buffer
4488 */
4489 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4490 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4491
ff2aeb1e
TH
4492 if (qc->mapped_n_elem)
4493 dma_unmap_sg(ap->dev, sg, qc->mapped_n_elem, dir);
001102d7 4494 /* restore last sg */
ff2aeb1e
TH
4495 if (qc->last_sg)
4496 *qc->last_sg = qc->saved_last_sg;
001102d7 4497 if (pad_buf) {
ff2aeb1e 4498 struct scatterlist *psg = &qc->extra_sg[1];
001102d7
TH
4499 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4500 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4501 kunmap_atomic(addr, KM_IRQ0);
cedc9a47 4502 }
1da177e4
LT
4503
4504 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4505 qc->sg = NULL;
1da177e4
LT
4506}
4507
4508/**
4509 * ata_fill_sg - Fill PCI IDE PRD table
4510 * @qc: Metadata associated with taskfile to be transferred
4511 *
780a87f7
JG
4512 * Fill PCI IDE PRD (scatter-gather) table with segments
4513 * associated with the current disk command.
4514 *
1da177e4 4515 * LOCKING:
cca3974e 4516 * spin_lock_irqsave(host lock)
1da177e4
LT
4517 *
4518 */
4519static void ata_fill_sg(struct ata_queued_cmd *qc)
4520{
1da177e4 4521 struct ata_port *ap = qc->ap;
cedc9a47 4522 struct scatterlist *sg;
ff2aeb1e 4523 unsigned int si, pi;
1da177e4 4524
ff2aeb1e
TH
4525 pi = 0;
4526 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1da177e4
LT
4527 u32 addr, offset;
4528 u32 sg_len, len;
4529
4530 /* determine if physical DMA addr spans 64K boundary.
4531 * Note h/w doesn't support 64-bit, so we unconditionally
4532 * truncate dma_addr_t to u32.
4533 */
4534 addr = (u32) sg_dma_address(sg);
4535 sg_len = sg_dma_len(sg);
4536
4537 while (sg_len) {
4538 offset = addr & 0xffff;
4539 len = sg_len;
4540 if ((offset + sg_len) > 0x10000)
4541 len = 0x10000 - offset;
4542
ff2aeb1e
TH
4543 ap->prd[pi].addr = cpu_to_le32(addr);
4544 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
4545 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
1da177e4 4546
ff2aeb1e 4547 pi++;
1da177e4
LT
4548 sg_len -= len;
4549 addr += len;
4550 }
4551 }
4552
ff2aeb1e 4553 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
1da177e4 4554}
b9a4197e 4555
d26fc955
AC
4556/**
4557 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4558 * @qc: Metadata associated with taskfile to be transferred
4559 *
4560 * Fill PCI IDE PRD (scatter-gather) table with segments
4561 * associated with the current disk command. Perform the fill
4562 * so that we avoid writing any length 64K records for
4563 * controllers that don't follow the spec.
4564 *
4565 * LOCKING:
4566 * spin_lock_irqsave(host lock)
4567 *
4568 */
4569static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4570{
4571 struct ata_port *ap = qc->ap;
4572 struct scatterlist *sg;
ff2aeb1e 4573 unsigned int si, pi;
d26fc955 4574
ff2aeb1e
TH
4575 pi = 0;
4576 for_each_sg(qc->sg, sg, qc->n_elem, si) {
d26fc955
AC
4577 u32 addr, offset;
4578 u32 sg_len, len, blen;
4579
2dcb407e 4580 /* determine if physical DMA addr spans 64K boundary.
d26fc955
AC
4581 * Note h/w doesn't support 64-bit, so we unconditionally
4582 * truncate dma_addr_t to u32.
4583 */
4584 addr = (u32) sg_dma_address(sg);
4585 sg_len = sg_dma_len(sg);
4586
4587 while (sg_len) {
4588 offset = addr & 0xffff;
4589 len = sg_len;
4590 if ((offset + sg_len) > 0x10000)
4591 len = 0x10000 - offset;
4592
4593 blen = len & 0xffff;
ff2aeb1e 4594 ap->prd[pi].addr = cpu_to_le32(addr);
d26fc955
AC
4595 if (blen == 0) {
4596 /* Some PATA chipsets like the CS5530 can't
4597 cope with 0x0000 meaning 64K as the spec says */
ff2aeb1e 4598 ap->prd[pi].flags_len = cpu_to_le32(0x8000);
d26fc955 4599 blen = 0x8000;
ff2aeb1e 4600 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
d26fc955 4601 }
ff2aeb1e
TH
4602 ap->prd[pi].flags_len = cpu_to_le32(blen);
4603 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
d26fc955 4604
ff2aeb1e 4605 pi++;
d26fc955
AC
4606 sg_len -= len;
4607 addr += len;
4608 }
4609 }
4610
ff2aeb1e 4611 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
d26fc955
AC
4612}
4613
1da177e4
LT
4614/**
4615 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4616 * @qc: Metadata associated with taskfile to check
4617 *
780a87f7
JG
4618 * Allow low-level driver to filter ATA PACKET commands, returning
4619 * a status indicating whether or not it is OK to use DMA for the
4620 * supplied PACKET command.
4621 *
1da177e4 4622 * LOCKING:
cca3974e 4623 * spin_lock_irqsave(host lock)
0cba632b 4624 *
1da177e4
LT
4625 * RETURNS: 0 when ATAPI DMA can be used
4626 * nonzero otherwise
4627 */
4628int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4629{
4630 struct ata_port *ap = qc->ap;
b9a4197e
TH
4631
4632 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4633 * few ATAPI devices choke on such DMA requests.
4634 */
4635 if (unlikely(qc->nbytes & 15))
4636 return 1;
6f23a31d 4637
1da177e4 4638 if (ap->ops->check_atapi_dma)
b9a4197e 4639 return ap->ops->check_atapi_dma(qc);
1da177e4 4640
b9a4197e 4641 return 0;
1da177e4 4642}
b9a4197e 4643
140b5e59
TH
4644/**
4645 * atapi_qc_may_overflow - Check whether data transfer may overflow
4646 * @qc: ATA command in question
4647 *
4648 * ATAPI commands which transfer variable length data to host
4649 * might overflow due to application error or hardare bug. This
4650 * function checks whether overflow should be drained and ignored
4651 * for @qc.
4652 *
4653 * LOCKING:
4654 * None.
4655 *
4656 * RETURNS:
4657 * 1 if @qc may overflow; otherwise, 0.
4658 */
4659static int atapi_qc_may_overflow(struct ata_queued_cmd *qc)
4660{
0dc36888
TH
4661 if (qc->tf.protocol != ATAPI_PROT_PIO &&
4662 qc->tf.protocol != ATAPI_PROT_DMA)
140b5e59
TH
4663 return 0;
4664
4665 if (qc->tf.flags & ATA_TFLAG_WRITE)
4666 return 0;
4667
4668 switch (qc->cdb[0]) {
4669 case READ_10:
4670 case READ_12:
4671 case WRITE_10:
4672 case WRITE_12:
4673 case GPCMD_READ_CD:
4674 case GPCMD_READ_CD_MSF:
4675 return 0;
4676 }
4677
4678 return 1;
4679}
4680
31cc23b3
TH
4681/**
4682 * ata_std_qc_defer - Check whether a qc needs to be deferred
4683 * @qc: ATA command in question
4684 *
4685 * Non-NCQ commands cannot run with any other command, NCQ or
4686 * not. As upper layer only knows the queue depth, we are
4687 * responsible for maintaining exclusion. This function checks
4688 * whether a new command @qc can be issued.
4689 *
4690 * LOCKING:
4691 * spin_lock_irqsave(host lock)
4692 *
4693 * RETURNS:
4694 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4695 */
4696int ata_std_qc_defer(struct ata_queued_cmd *qc)
4697{
4698 struct ata_link *link = qc->dev->link;
4699
4700 if (qc->tf.protocol == ATA_PROT_NCQ) {
4701 if (!ata_tag_valid(link->active_tag))
4702 return 0;
4703 } else {
4704 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4705 return 0;
4706 }
4707
4708 return ATA_DEFER_LINK;
4709}
4710
1da177e4
LT
4711/**
4712 * ata_qc_prep - Prepare taskfile for submission
4713 * @qc: Metadata associated with taskfile to be prepared
4714 *
780a87f7
JG
4715 * Prepare ATA taskfile for submission.
4716 *
1da177e4 4717 * LOCKING:
cca3974e 4718 * spin_lock_irqsave(host lock)
1da177e4
LT
4719 */
4720void ata_qc_prep(struct ata_queued_cmd *qc)
4721{
4722 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4723 return;
4724
4725 ata_fill_sg(qc);
4726}
4727
d26fc955
AC
4728/**
4729 * ata_dumb_qc_prep - Prepare taskfile for submission
4730 * @qc: Metadata associated with taskfile to be prepared
4731 *
4732 * Prepare ATA taskfile for submission.
4733 *
4734 * LOCKING:
4735 * spin_lock_irqsave(host lock)
4736 */
4737void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4738{
4739 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4740 return;
4741
4742 ata_fill_sg_dumb(qc);
4743}
4744
e46834cd
BK
4745void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4746
0cba632b
JG
4747/**
4748 * ata_sg_init - Associate command with scatter-gather table.
4749 * @qc: Command to be associated
4750 * @sg: Scatter-gather table.
4751 * @n_elem: Number of elements in s/g table.
4752 *
4753 * Initialize the data-related elements of queued_cmd @qc
4754 * to point to a scatter-gather table @sg, containing @n_elem
4755 * elements.
4756 *
4757 * LOCKING:
cca3974e 4758 * spin_lock_irqsave(host lock)
0cba632b 4759 */
1da177e4
LT
4760void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4761 unsigned int n_elem)
4762{
ff2aeb1e 4763 qc->sg = sg;
1da177e4 4764 qc->n_elem = n_elem;
ff2aeb1e 4765 qc->cursg = qc->sg;
1da177e4
LT
4766}
4767
ff2aeb1e 4768static unsigned int ata_sg_setup_extra(struct ata_queued_cmd *qc,
0bcc65ad
TH
4769 unsigned int *n_elem_extra,
4770 unsigned int *nbytes_extra)
1da177e4
LT
4771{
4772 struct ata_port *ap = qc->ap;
ff2aeb1e
TH
4773 unsigned int n_elem = qc->n_elem;
4774 struct scatterlist *lsg, *copy_lsg = NULL, *tsg = NULL, *esg = NULL;
1da177e4 4775
ff2aeb1e 4776 *n_elem_extra = 0;
0bcc65ad 4777 *nbytes_extra = 0;
ff2aeb1e
TH
4778
4779 /* needs padding? */
4780 qc->pad_len = qc->nbytes & 3;
4781
4782 if (likely(!qc->pad_len))
4783 return n_elem;
4784
4785 /* locate last sg and save it */
4786 lsg = sg_last(qc->sg, n_elem);
4787 qc->last_sg = lsg;
4788 qc->saved_last_sg = *lsg;
4789
4790 sg_init_table(qc->extra_sg, ARRAY_SIZE(qc->extra_sg));
1da177e4 4791
cedc9a47 4792 if (qc->pad_len) {
ff2aeb1e 4793 struct scatterlist *psg = &qc->extra_sg[1];
cedc9a47 4794 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
cedc9a47
JG
4795 unsigned int offset;
4796
a4631474 4797 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4798
4799 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4800
ff2aeb1e 4801 /* psg->page/offset are used to copy to-be-written
cedc9a47
JG
4802 * data in this function or read data in ata_sg_clean.
4803 */
4804 offset = lsg->offset + lsg->length - qc->pad_len;
642f1490 4805 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
ff2aeb1e 4806 qc->pad_len, offset_in_page(offset));
cedc9a47
JG
4807
4808 if (qc->tf.flags & ATA_TFLAG_WRITE) {
45711f1a 4809 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4810 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4811 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4812 }
4813
4814 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4815 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
ff2aeb1e
TH
4816
4817 /* Trim the last sg entry and chain the original and
4818 * padding sg lists.
4819 *
4820 * Because chaining consumes one sg entry, one extra
4821 * sg entry is allocated and the last sg entry is
4822 * copied to it if the length isn't zero after padded
4823 * amount is removed.
4824 *
4825 * If the last sg entry is completely replaced by
4826 * padding sg entry, the first sg entry is skipped
4827 * while chaining.
4828 */
cedc9a47 4829 lsg->length -= qc->pad_len;
ff2aeb1e
TH
4830 if (lsg->length) {
4831 copy_lsg = &qc->extra_sg[0];
4832 tsg = &qc->extra_sg[0];
4833 } else {
4834 n_elem--;
4835 tsg = &qc->extra_sg[1];
4836 }
4837
4838 esg = &qc->extra_sg[1];
cedc9a47 4839
ff2aeb1e 4840 (*n_elem_extra)++;
0bcc65ad 4841 (*nbytes_extra) += 4 - qc->pad_len;
cedc9a47
JG
4842 }
4843
ff2aeb1e
TH
4844 if (copy_lsg)
4845 sg_set_page(copy_lsg, sg_page(lsg), lsg->length, lsg->offset);
e1410f2d 4846
ff2aeb1e
TH
4847 sg_chain(lsg, 1, tsg);
4848 sg_mark_end(esg);
4849
4850 /* sglist can't start with chaining sg entry, fast forward */
4851 if (qc->sg == lsg) {
4852 qc->sg = tsg;
4853 qc->cursg = tsg;
e1410f2d
JG
4854 }
4855
ff2aeb1e
TH
4856 return n_elem;
4857}
4858
4859/**
4860 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4861 * @qc: Command with scatter-gather table to be mapped.
4862 *
4863 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4864 *
4865 * LOCKING:
4866 * spin_lock_irqsave(host lock)
4867 *
4868 * RETURNS:
4869 * Zero on success, negative on error.
4870 *
4871 */
4872static int ata_sg_setup(struct ata_queued_cmd *qc)
4873{
4874 struct ata_port *ap = qc->ap;
0bcc65ad 4875 unsigned int n_elem, n_elem_extra, nbytes_extra;
ff2aeb1e
TH
4876
4877 VPRINTK("ENTER, ata%u\n", ap->print_id);
4878
0bcc65ad 4879 n_elem = ata_sg_setup_extra(qc, &n_elem_extra, &nbytes_extra);
ff2aeb1e
TH
4880
4881 if (n_elem) {
4882 n_elem = dma_map_sg(ap->dev, qc->sg, n_elem, qc->dma_dir);
4883 if (n_elem < 1) {
4884 /* restore last sg */
4885 if (qc->last_sg)
4886 *qc->last_sg = qc->saved_last_sg;
4887 return -1;
4888 }
4889 DPRINTK("%d sg elements mapped\n", n_elem);
537a95d9 4890 }
1da177e4 4891
ff2aeb1e
TH
4892 qc->n_elem = qc->mapped_n_elem = n_elem;
4893 qc->n_elem += n_elem_extra;
0bcc65ad 4894 qc->nbytes += nbytes_extra;
f92a2636 4895 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4
LT
4896
4897 return 0;
4898}
4899
0baab86b 4900/**
c893a3ae 4901 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4902 * @buf: Buffer to swap
4903 * @buf_words: Number of 16-bit words in buffer.
4904 *
4905 * Swap halves of 16-bit words if needed to convert from
4906 * little-endian byte order to native cpu byte order, or
4907 * vice-versa.
4908 *
4909 * LOCKING:
6f0ef4fa 4910 * Inherited from caller.
0baab86b 4911 */
1da177e4
LT
4912void swap_buf_le16(u16 *buf, unsigned int buf_words)
4913{
4914#ifdef __BIG_ENDIAN
4915 unsigned int i;
4916
4917 for (i = 0; i < buf_words; i++)
4918 buf[i] = le16_to_cpu(buf[i]);
4919#endif /* __BIG_ENDIAN */
4920}
4921
6ae4cfb5 4922/**
0d5ff566 4923 * ata_data_xfer - Transfer data by PIO
55dba312 4924 * @dev: device to target
6ae4cfb5
AL
4925 * @buf: data buffer
4926 * @buflen: buffer length
344babaa 4927 * @write_data: read/write
6ae4cfb5
AL
4928 *
4929 * Transfer data from/to the device data register by PIO.
4930 *
4931 * LOCKING:
4932 * Inherited from caller.
55dba312
TH
4933 *
4934 * RETURNS:
4935 * Bytes consumed.
6ae4cfb5 4936 */
55dba312
TH
4937unsigned int ata_data_xfer(struct ata_device *dev, unsigned char *buf,
4938 unsigned int buflen, int rw)
1da177e4 4939{
55dba312
TH
4940 struct ata_port *ap = dev->link->ap;
4941 void __iomem *data_addr = ap->ioaddr.data_addr;
6ae4cfb5 4942 unsigned int words = buflen >> 1;
1da177e4 4943
6ae4cfb5 4944 /* Transfer multiple of 2 bytes */
55dba312
TH
4945 if (rw == READ)
4946 ioread16_rep(data_addr, buf, words);
1da177e4 4947 else
55dba312 4948 iowrite16_rep(data_addr, buf, words);
6ae4cfb5
AL
4949
4950 /* Transfer trailing 1 byte, if any. */
4951 if (unlikely(buflen & 0x01)) {
4952 u16 align_buf[1] = { 0 };
4953 unsigned char *trailing_buf = buf + buflen - 1;
4954
55dba312
TH
4955 if (rw == READ) {
4956 align_buf[0] = cpu_to_le16(ioread16(data_addr));
6ae4cfb5 4957 memcpy(trailing_buf, align_buf, 1);
55dba312
TH
4958 } else {
4959 memcpy(align_buf, trailing_buf, 1);
4960 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
6ae4cfb5 4961 }
55dba312 4962 words++;
6ae4cfb5 4963 }
55dba312
TH
4964
4965 return words << 1;
1da177e4
LT
4966}
4967
75e99585 4968/**
0d5ff566 4969 * ata_data_xfer_noirq - Transfer data by PIO
55dba312 4970 * @dev: device to target
75e99585
AC
4971 * @buf: data buffer
4972 * @buflen: buffer length
4973 * @write_data: read/write
4974 *
88574551 4975 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4976 * transfer with interrupts disabled.
4977 *
4978 * LOCKING:
4979 * Inherited from caller.
55dba312
TH
4980 *
4981 * RETURNS:
4982 * Bytes consumed.
75e99585 4983 */
55dba312
TH
4984unsigned int ata_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
4985 unsigned int buflen, int rw)
75e99585
AC
4986{
4987 unsigned long flags;
55dba312
TH
4988 unsigned int consumed;
4989
75e99585 4990 local_irq_save(flags);
55dba312 4991 consumed = ata_data_xfer(dev, buf, buflen, rw);
75e99585 4992 local_irq_restore(flags);
55dba312
TH
4993
4994 return consumed;
75e99585
AC
4995}
4996
4997
6ae4cfb5 4998/**
5a5dbd18 4999 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
5000 * @qc: Command on going
5001 *
5a5dbd18 5002 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
5003 *
5004 * LOCKING:
5005 * Inherited from caller.
5006 */
5007
1da177e4
LT
5008static void ata_pio_sector(struct ata_queued_cmd *qc)
5009{
5010 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4
LT
5011 struct ata_port *ap = qc->ap;
5012 struct page *page;
5013 unsigned int offset;
5014 unsigned char *buf;
5015
5a5dbd18 5016 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 5017 ap->hsm_task_state = HSM_ST_LAST;
1da177e4 5018
45711f1a 5019 page = sg_page(qc->cursg);
87260216 5020 offset = qc->cursg->offset + qc->cursg_ofs;
1da177e4
LT
5021
5022 /* get the current page and offset */
5023 page = nth_page(page, (offset >> PAGE_SHIFT));
5024 offset %= PAGE_SIZE;
5025
1da177e4
LT
5026 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5027
91b8b313
AL
5028 if (PageHighMem(page)) {
5029 unsigned long flags;
5030
a6b2c5d4 5031 /* FIXME: use a bounce buffer */
91b8b313
AL
5032 local_irq_save(flags);
5033 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5034
91b8b313 5035 /* do the actual data transfer */
5a5dbd18 5036 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 5037
91b8b313
AL
5038 kunmap_atomic(buf, KM_IRQ0);
5039 local_irq_restore(flags);
5040 } else {
5041 buf = page_address(page);
5a5dbd18 5042 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 5043 }
1da177e4 5044
5a5dbd18
ML
5045 qc->curbytes += qc->sect_size;
5046 qc->cursg_ofs += qc->sect_size;
1da177e4 5047
87260216
JA
5048 if (qc->cursg_ofs == qc->cursg->length) {
5049 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5050 qc->cursg_ofs = 0;
5051 }
1da177e4 5052}
1da177e4 5053
07f6f7d0 5054/**
5a5dbd18 5055 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
5056 * @qc: Command on going
5057 *
5a5dbd18 5058 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
5059 * ATA device for the DRQ request.
5060 *
5061 * LOCKING:
5062 * Inherited from caller.
5063 */
1da177e4 5064
07f6f7d0
AL
5065static void ata_pio_sectors(struct ata_queued_cmd *qc)
5066{
5067 if (is_multi_taskfile(&qc->tf)) {
5068 /* READ/WRITE MULTIPLE */
5069 unsigned int nsect;
5070
587005de 5071 WARN_ON(qc->dev->multi_count == 0);
1da177e4 5072
5a5dbd18 5073 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 5074 qc->dev->multi_count);
07f6f7d0
AL
5075 while (nsect--)
5076 ata_pio_sector(qc);
5077 } else
5078 ata_pio_sector(qc);
4cc980b3
AL
5079
5080 ata_altstatus(qc->ap); /* flush */
07f6f7d0
AL
5081}
5082
c71c1857
AL
5083/**
5084 * atapi_send_cdb - Write CDB bytes to hardware
5085 * @ap: Port to which ATAPI device is attached.
5086 * @qc: Taskfile currently active
5087 *
5088 * When device has indicated its readiness to accept
5089 * a CDB, this function is called. Send the CDB.
5090 *
5091 * LOCKING:
5092 * caller.
5093 */
5094
5095static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5096{
5097 /* send SCSI cdb */
5098 DPRINTK("send cdb\n");
db024d53 5099 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 5100
a6b2c5d4 5101 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
5102 ata_altstatus(ap); /* flush */
5103
5104 switch (qc->tf.protocol) {
0dc36888 5105 case ATAPI_PROT_PIO:
c71c1857
AL
5106 ap->hsm_task_state = HSM_ST;
5107 break;
0dc36888 5108 case ATAPI_PROT_NODATA:
c71c1857
AL
5109 ap->hsm_task_state = HSM_ST_LAST;
5110 break;
0dc36888 5111 case ATAPI_PROT_DMA:
c71c1857
AL
5112 ap->hsm_task_state = HSM_ST_LAST;
5113 /* initiate bmdma */
5114 ap->ops->bmdma_start(qc);
5115 break;
5116 }
1da177e4
LT
5117}
5118
6ae4cfb5
AL
5119/**
5120 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5121 * @qc: Command on going
5122 * @bytes: number of bytes
5123 *
5124 * Transfer Transfer data from/to the ATAPI device.
5125 *
5126 * LOCKING:
5127 * Inherited from caller.
5128 *
5129 */
140b5e59 5130static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
1da177e4
LT
5131{
5132 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4 5133 struct ata_port *ap = qc->ap;
140b5e59
TH
5134 struct ata_eh_info *ehi = &qc->dev->link->eh_info;
5135 struct scatterlist *sg;
1da177e4
LT
5136 struct page *page;
5137 unsigned char *buf;
5138 unsigned int offset, count;
1da177e4
LT
5139
5140next_sg:
140b5e59
TH
5141 sg = qc->cursg;
5142 if (unlikely(!sg)) {
7fb6ec28 5143 /*
563a6e1f
AL
5144 * The end of qc->sg is reached and the device expects
5145 * more data to transfer. In order not to overrun qc->sg
5146 * and fulfill length specified in the byte count register,
5147 * - for read case, discard trailing data from the device
5148 * - for write case, padding zero data to the device
5149 */
5150 u16 pad_buf[1] = { 0 };
563a6e1f
AL
5151 unsigned int i;
5152
140b5e59
TH
5153 if (bytes > qc->curbytes - qc->nbytes + ATAPI_MAX_DRAIN) {
5154 ata_ehi_push_desc(ehi, "too much trailing data "
5155 "buf=%u cur=%u bytes=%u",
5156 qc->nbytes, qc->curbytes, bytes);
5157 return -1;
5158 }
5159
5160 /* overflow is exptected for misc ATAPI commands */
5161 if (bytes && !atapi_qc_may_overflow(qc))
5162 ata_dev_printk(qc->dev, KERN_WARNING, "ATAPI %u bytes "
5163 "trailing data (cdb=%02x nbytes=%u)\n",
5164 bytes, qc->cdb[0], qc->nbytes);
563a6e1f 5165
140b5e59 5166 for (i = 0; i < (bytes + 1) / 2; i++)
2dcb407e 5167 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
563a6e1f 5168
140b5e59 5169 qc->curbytes += bytes;
563a6e1f 5170
140b5e59
TH
5171 return 0;
5172 }
1da177e4 5173
45711f1a 5174 page = sg_page(sg);
1da177e4
LT
5175 offset = sg->offset + qc->cursg_ofs;
5176
5177 /* get the current page and offset */
5178 page = nth_page(page, (offset >> PAGE_SHIFT));
5179 offset %= PAGE_SIZE;
5180
6952df03 5181 /* don't overrun current sg */
32529e01 5182 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
5183
5184 /* don't cross page boundaries */
5185 count = min(count, (unsigned int)PAGE_SIZE - offset);
5186
7282aa4b
AL
5187 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5188
91b8b313
AL
5189 if (PageHighMem(page)) {
5190 unsigned long flags;
5191
a6b2c5d4 5192 /* FIXME: use bounce buffer */
91b8b313
AL
5193 local_irq_save(flags);
5194 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5195
91b8b313 5196 /* do the actual data transfer */
a6b2c5d4 5197 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 5198
91b8b313
AL
5199 kunmap_atomic(buf, KM_IRQ0);
5200 local_irq_restore(flags);
5201 } else {
5202 buf = page_address(page);
a6b2c5d4 5203 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 5204 }
1da177e4
LT
5205
5206 bytes -= count;
140b5e59
TH
5207 if ((count & 1) && bytes)
5208 bytes--;
1da177e4
LT
5209 qc->curbytes += count;
5210 qc->cursg_ofs += count;
5211
32529e01 5212 if (qc->cursg_ofs == sg->length) {
87260216 5213 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5214 qc->cursg_ofs = 0;
5215 }
5216
563a6e1f 5217 if (bytes)
1da177e4 5218 goto next_sg;
140b5e59
TH
5219
5220 return 0;
1da177e4
LT
5221}
5222
6ae4cfb5
AL
5223/**
5224 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5225 * @qc: Command on going
5226 *
5227 * Transfer Transfer data from/to the ATAPI device.
5228 *
5229 * LOCKING:
5230 * Inherited from caller.
6ae4cfb5
AL
5231 */
5232
1da177e4
LT
5233static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5234{
5235 struct ata_port *ap = qc->ap;
5236 struct ata_device *dev = qc->dev;
5237 unsigned int ireason, bc_lo, bc_hi, bytes;
5238 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5239
eec4c3f3
AL
5240 /* Abuse qc->result_tf for temp storage of intermediate TF
5241 * here to save some kernel stack usage.
5242 * For normal completion, qc->result_tf is not relevant. For
5243 * error, qc->result_tf is later overwritten by ata_qc_complete().
5244 * So, the correctness of qc->result_tf is not affected.
5245 */
5246 ap->ops->tf_read(ap, &qc->result_tf);
5247 ireason = qc->result_tf.nsect;
5248 bc_lo = qc->result_tf.lbam;
5249 bc_hi = qc->result_tf.lbah;
1da177e4
LT
5250 bytes = (bc_hi << 8) | bc_lo;
5251
5252 /* shall be cleared to zero, indicating xfer of data */
0106372d 5253 if (unlikely(ireason & (1 << 0)))
1da177e4
LT
5254 goto err_out;
5255
5256 /* make sure transfer direction matches expected */
5257 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
0106372d
AL
5258 if (unlikely(do_write != i_write))
5259 goto err_out;
5260
5261 if (unlikely(!bytes))
1da177e4
LT
5262 goto err_out;
5263
44877b4e 5264 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 5265
140b5e59
TH
5266 if (__atapi_pio_bytes(qc, bytes))
5267 goto err_out;
4cc980b3 5268 ata_altstatus(ap); /* flush */
1da177e4
LT
5269
5270 return;
5271
5272err_out:
f15a1daf 5273 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 5274 qc->err_mask |= AC_ERR_HSM;
14be71f4 5275 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
5276}
5277
5278/**
c234fb00
AL
5279 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5280 * @ap: the target ata_port
5281 * @qc: qc on going
1da177e4 5282 *
c234fb00
AL
5283 * RETURNS:
5284 * 1 if ok in workqueue, 0 otherwise.
1da177e4 5285 */
c234fb00
AL
5286
5287static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 5288{
c234fb00
AL
5289 if (qc->tf.flags & ATA_TFLAG_POLLING)
5290 return 1;
1da177e4 5291
c234fb00
AL
5292 if (ap->hsm_task_state == HSM_ST_FIRST) {
5293 if (qc->tf.protocol == ATA_PROT_PIO &&
5294 (qc->tf.flags & ATA_TFLAG_WRITE))
5295 return 1;
1da177e4 5296
405e66b3 5297 if (ata_is_atapi(qc->tf.protocol) &&
c234fb00
AL
5298 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5299 return 1;
fe79e683
AL
5300 }
5301
c234fb00
AL
5302 return 0;
5303}
1da177e4 5304
c17ea20d
TH
5305/**
5306 * ata_hsm_qc_complete - finish a qc running on standard HSM
5307 * @qc: Command to complete
5308 * @in_wq: 1 if called from workqueue, 0 otherwise
5309 *
5310 * Finish @qc which is running on standard HSM.
5311 *
5312 * LOCKING:
cca3974e 5313 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
5314 * Otherwise, none on entry and grabs host lock.
5315 */
5316static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5317{
5318 struct ata_port *ap = qc->ap;
5319 unsigned long flags;
5320
5321 if (ap->ops->error_handler) {
5322 if (in_wq) {
ba6a1308 5323 spin_lock_irqsave(ap->lock, flags);
c17ea20d 5324
cca3974e
JG
5325 /* EH might have kicked in while host lock is
5326 * released.
c17ea20d
TH
5327 */
5328 qc = ata_qc_from_tag(ap, qc->tag);
5329 if (qc) {
5330 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 5331 ap->ops->irq_on(ap);
c17ea20d
TH
5332 ata_qc_complete(qc);
5333 } else
5334 ata_port_freeze(ap);
5335 }
5336
ba6a1308 5337 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5338 } else {
5339 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5340 ata_qc_complete(qc);
5341 else
5342 ata_port_freeze(ap);
5343 }
5344 } else {
5345 if (in_wq) {
ba6a1308 5346 spin_lock_irqsave(ap->lock, flags);
83625006 5347 ap->ops->irq_on(ap);
c17ea20d 5348 ata_qc_complete(qc);
ba6a1308 5349 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5350 } else
5351 ata_qc_complete(qc);
5352 }
5353}
5354
bb5cb290
AL
5355/**
5356 * ata_hsm_move - move the HSM to the next state.
5357 * @ap: the target ata_port
5358 * @qc: qc on going
5359 * @status: current device status
5360 * @in_wq: 1 if called from workqueue, 0 otherwise
5361 *
5362 * RETURNS:
5363 * 1 when poll next status needed, 0 otherwise.
5364 */
9a1004d0
TH
5365int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5366 u8 status, int in_wq)
e2cec771 5367{
bb5cb290
AL
5368 unsigned long flags = 0;
5369 int poll_next;
5370
6912ccd5
AL
5371 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5372
bb5cb290
AL
5373 /* Make sure ata_qc_issue_prot() does not throw things
5374 * like DMA polling into the workqueue. Notice that
5375 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5376 */
c234fb00 5377 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 5378
e2cec771 5379fsm_start:
999bb6f4 5380 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 5381 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 5382
e2cec771
AL
5383 switch (ap->hsm_task_state) {
5384 case HSM_ST_FIRST:
bb5cb290
AL
5385 /* Send first data block or PACKET CDB */
5386
5387 /* If polling, we will stay in the work queue after
5388 * sending the data. Otherwise, interrupt handler
5389 * takes over after sending the data.
5390 */
5391 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5392
e2cec771 5393 /* check device status */
3655d1d3
AL
5394 if (unlikely((status & ATA_DRQ) == 0)) {
5395 /* handle BSY=0, DRQ=0 as error */
5396 if (likely(status & (ATA_ERR | ATA_DF)))
5397 /* device stops HSM for abort/error */
5398 qc->err_mask |= AC_ERR_DEV;
5399 else
5400 /* HSM violation. Let EH handle this */
5401 qc->err_mask |= AC_ERR_HSM;
5402
14be71f4 5403 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 5404 goto fsm_start;
1da177e4
LT
5405 }
5406
71601958
AL
5407 /* Device should not ask for data transfer (DRQ=1)
5408 * when it finds something wrong.
eee6c32f
AL
5409 * We ignore DRQ here and stop the HSM by
5410 * changing hsm_task_state to HSM_ST_ERR and
5411 * let the EH abort the command or reset the device.
71601958
AL
5412 */
5413 if (unlikely(status & (ATA_ERR | ATA_DF))) {
2d3b8eea
AL
5414 /* Some ATAPI tape drives forget to clear the ERR bit
5415 * when doing the next command (mostly request sense).
5416 * We ignore ERR here to workaround and proceed sending
5417 * the CDB.
5418 */
5419 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
5420 ata_port_printk(ap, KERN_WARNING,
5421 "DRQ=1 with device error, "
5422 "dev_stat 0x%X\n", status);
5423 qc->err_mask |= AC_ERR_HSM;
5424 ap->hsm_task_state = HSM_ST_ERR;
5425 goto fsm_start;
5426 }
71601958 5427 }
1da177e4 5428
bb5cb290
AL
5429 /* Send the CDB (atapi) or the first data block (ata pio out).
5430 * During the state transition, interrupt handler shouldn't
5431 * be invoked before the data transfer is complete and
5432 * hsm_task_state is changed. Hence, the following locking.
5433 */
5434 if (in_wq)
ba6a1308 5435 spin_lock_irqsave(ap->lock, flags);
1da177e4 5436
bb5cb290
AL
5437 if (qc->tf.protocol == ATA_PROT_PIO) {
5438 /* PIO data out protocol.
5439 * send first data block.
5440 */
0565c26d 5441
bb5cb290
AL
5442 /* ata_pio_sectors() might change the state
5443 * to HSM_ST_LAST. so, the state is changed here
5444 * before ata_pio_sectors().
5445 */
5446 ap->hsm_task_state = HSM_ST;
5447 ata_pio_sectors(qc);
bb5cb290
AL
5448 } else
5449 /* send CDB */
5450 atapi_send_cdb(ap, qc);
5451
5452 if (in_wq)
ba6a1308 5453 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
5454
5455 /* if polling, ata_pio_task() handles the rest.
5456 * otherwise, interrupt handler takes over from here.
5457 */
e2cec771 5458 break;
1c848984 5459
e2cec771
AL
5460 case HSM_ST:
5461 /* complete command or read/write the data register */
0dc36888 5462 if (qc->tf.protocol == ATAPI_PROT_PIO) {
e2cec771
AL
5463 /* ATAPI PIO protocol */
5464 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
5465 /* No more data to transfer or device error.
5466 * Device error will be tagged in HSM_ST_LAST.
5467 */
e2cec771
AL
5468 ap->hsm_task_state = HSM_ST_LAST;
5469 goto fsm_start;
5470 }
1da177e4 5471
71601958
AL
5472 /* Device should not ask for data transfer (DRQ=1)
5473 * when it finds something wrong.
eee6c32f
AL
5474 * We ignore DRQ here and stop the HSM by
5475 * changing hsm_task_state to HSM_ST_ERR and
5476 * let the EH abort the command or reset the device.
71601958
AL
5477 */
5478 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5479 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5480 "device error, dev_stat 0x%X\n",
5481 status);
3655d1d3 5482 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5483 ap->hsm_task_state = HSM_ST_ERR;
5484 goto fsm_start;
71601958 5485 }
1da177e4 5486
e2cec771 5487 atapi_pio_bytes(qc);
7fb6ec28 5488
e2cec771
AL
5489 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5490 /* bad ireason reported by device */
5491 goto fsm_start;
1da177e4 5492
e2cec771
AL
5493 } else {
5494 /* ATA PIO protocol */
5495 if (unlikely((status & ATA_DRQ) == 0)) {
5496 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5497 if (likely(status & (ATA_ERR | ATA_DF)))
5498 /* device stops HSM for abort/error */
5499 qc->err_mask |= AC_ERR_DEV;
5500 else
55a8e2c8
TH
5501 /* HSM violation. Let EH handle this.
5502 * Phantom devices also trigger this
5503 * condition. Mark hint.
5504 */
5505 qc->err_mask |= AC_ERR_HSM |
5506 AC_ERR_NODEV_HINT;
3655d1d3 5507
e2cec771
AL
5508 ap->hsm_task_state = HSM_ST_ERR;
5509 goto fsm_start;
5510 }
1da177e4 5511
eee6c32f
AL
5512 /* For PIO reads, some devices may ask for
5513 * data transfer (DRQ=1) alone with ERR=1.
5514 * We respect DRQ here and transfer one
5515 * block of junk data before changing the
5516 * hsm_task_state to HSM_ST_ERR.
5517 *
5518 * For PIO writes, ERR=1 DRQ=1 doesn't make
5519 * sense since the data block has been
5520 * transferred to the device.
71601958
AL
5521 */
5522 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5523 /* data might be corrputed */
5524 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5525
5526 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5527 ata_pio_sectors(qc);
eee6c32f
AL
5528 status = ata_wait_idle(ap);
5529 }
5530
3655d1d3
AL
5531 if (status & (ATA_BUSY | ATA_DRQ))
5532 qc->err_mask |= AC_ERR_HSM;
5533
eee6c32f
AL
5534 /* ata_pio_sectors() might change the
5535 * state to HSM_ST_LAST. so, the state
5536 * is changed after ata_pio_sectors().
5537 */
5538 ap->hsm_task_state = HSM_ST_ERR;
5539 goto fsm_start;
71601958
AL
5540 }
5541
e2cec771
AL
5542 ata_pio_sectors(qc);
5543
5544 if (ap->hsm_task_state == HSM_ST_LAST &&
5545 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5546 /* all data read */
52a32205 5547 status = ata_wait_idle(ap);
e2cec771
AL
5548 goto fsm_start;
5549 }
5550 }
5551
bb5cb290 5552 poll_next = 1;
1da177e4
LT
5553 break;
5554
14be71f4 5555 case HSM_ST_LAST:
6912ccd5
AL
5556 if (unlikely(!ata_ok(status))) {
5557 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5558 ap->hsm_task_state = HSM_ST_ERR;
5559 goto fsm_start;
5560 }
5561
5562 /* no more data to transfer */
4332a771 5563 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5564 ap->print_id, qc->dev->devno, status);
e2cec771 5565
6912ccd5
AL
5566 WARN_ON(qc->err_mask);
5567
e2cec771 5568 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5569
e2cec771 5570 /* complete taskfile transaction */
c17ea20d 5571 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5572
5573 poll_next = 0;
1da177e4
LT
5574 break;
5575
14be71f4 5576 case HSM_ST_ERR:
e2cec771
AL
5577 /* make sure qc->err_mask is available to
5578 * know what's wrong and recover
5579 */
5580 WARN_ON(qc->err_mask == 0);
5581
5582 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5583
999bb6f4 5584 /* complete taskfile transaction */
c17ea20d 5585 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5586
5587 poll_next = 0;
e2cec771
AL
5588 break;
5589 default:
bb5cb290 5590 poll_next = 0;
6912ccd5 5591 BUG();
1da177e4
LT
5592 }
5593
bb5cb290 5594 return poll_next;
1da177e4
LT
5595}
5596
65f27f38 5597static void ata_pio_task(struct work_struct *work)
8061f5f0 5598{
65f27f38
DH
5599 struct ata_port *ap =
5600 container_of(work, struct ata_port, port_task.work);
5601 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5602 u8 status;
a1af3734 5603 int poll_next;
8061f5f0 5604
7fb6ec28 5605fsm_start:
a1af3734 5606 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5607
a1af3734
AL
5608 /*
5609 * This is purely heuristic. This is a fast path.
5610 * Sometimes when we enter, BSY will be cleared in
5611 * a chk-status or two. If not, the drive is probably seeking
5612 * or something. Snooze for a couple msecs, then
5613 * chk-status again. If still busy, queue delayed work.
5614 */
5615 status = ata_busy_wait(ap, ATA_BUSY, 5);
5616 if (status & ATA_BUSY) {
5617 msleep(2);
5618 status = ata_busy_wait(ap, ATA_BUSY, 10);
5619 if (status & ATA_BUSY) {
442eacc3 5620 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5621 return;
5622 }
8061f5f0
TH
5623 }
5624
a1af3734
AL
5625 /* move the HSM */
5626 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5627
a1af3734
AL
5628 /* another command or interrupt handler
5629 * may be running at this point.
5630 */
5631 if (poll_next)
7fb6ec28 5632 goto fsm_start;
8061f5f0
TH
5633}
5634
1da177e4
LT
5635/**
5636 * ata_qc_new - Request an available ATA command, for queueing
5637 * @ap: Port associated with device @dev
5638 * @dev: Device from whom we request an available command structure
5639 *
5640 * LOCKING:
0cba632b 5641 * None.
1da177e4
LT
5642 */
5643
5644static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5645{
5646 struct ata_queued_cmd *qc = NULL;
5647 unsigned int i;
5648
e3180499 5649 /* no command while frozen */
b51e9e5d 5650 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5651 return NULL;
5652
2ab7db1f
TH
5653 /* the last tag is reserved for internal command. */
5654 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5655 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5656 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5657 break;
5658 }
5659
5660 if (qc)
5661 qc->tag = i;
5662
5663 return qc;
5664}
5665
5666/**
5667 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5668 * @dev: Device from whom we request an available command structure
5669 *
5670 * LOCKING:
0cba632b 5671 * None.
1da177e4
LT
5672 */
5673
3373efd8 5674struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5675{
9af5c9c9 5676 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5677 struct ata_queued_cmd *qc;
5678
5679 qc = ata_qc_new(ap);
5680 if (qc) {
1da177e4
LT
5681 qc->scsicmd = NULL;
5682 qc->ap = ap;
5683 qc->dev = dev;
1da177e4 5684
2c13b7ce 5685 ata_qc_reinit(qc);
1da177e4
LT
5686 }
5687
5688 return qc;
5689}
5690
1da177e4
LT
5691/**
5692 * ata_qc_free - free unused ata_queued_cmd
5693 * @qc: Command to complete
5694 *
5695 * Designed to free unused ata_queued_cmd object
5696 * in case something prevents using it.
5697 *
5698 * LOCKING:
cca3974e 5699 * spin_lock_irqsave(host lock)
1da177e4
LT
5700 */
5701void ata_qc_free(struct ata_queued_cmd *qc)
5702{
4ba946e9
TH
5703 struct ata_port *ap = qc->ap;
5704 unsigned int tag;
5705
a4631474 5706 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5707
4ba946e9
TH
5708 qc->flags = 0;
5709 tag = qc->tag;
5710 if (likely(ata_tag_valid(tag))) {
4ba946e9 5711 qc->tag = ATA_TAG_POISON;
6cec4a39 5712 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5713 }
1da177e4
LT
5714}
5715
76014427 5716void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5717{
dedaf2b0 5718 struct ata_port *ap = qc->ap;
9af5c9c9 5719 struct ata_link *link = qc->dev->link;
dedaf2b0 5720
a4631474
TH
5721 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5722 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5723
5724 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5725 ata_sg_clean(qc);
5726
7401abf2 5727 /* command should be marked inactive atomically with qc completion */
da917d69 5728 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5729 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5730 if (!link->sactive)
5731 ap->nr_active_links--;
5732 } else {
9af5c9c9 5733 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5734 ap->nr_active_links--;
5735 }
5736
5737 /* clear exclusive status */
5738 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5739 ap->excl_link == link))
5740 ap->excl_link = NULL;
7401abf2 5741
3f3791d3
AL
5742 /* atapi: mark qc as inactive to prevent the interrupt handler
5743 * from completing the command twice later, before the error handler
5744 * is called. (when rc != 0 and atapi request sense is needed)
5745 */
5746 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5747 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5748
1da177e4 5749 /* call completion callback */
77853bf2 5750 qc->complete_fn(qc);
1da177e4
LT
5751}
5752
39599a53
TH
5753static void fill_result_tf(struct ata_queued_cmd *qc)
5754{
5755 struct ata_port *ap = qc->ap;
5756
39599a53 5757 qc->result_tf.flags = qc->tf.flags;
4742d54f 5758 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5759}
5760
00115e0f
TH
5761static void ata_verify_xfer(struct ata_queued_cmd *qc)
5762{
5763 struct ata_device *dev = qc->dev;
5764
5765 if (ata_tag_internal(qc->tag))
5766 return;
5767
5768 if (ata_is_nodata(qc->tf.protocol))
5769 return;
5770
5771 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5772 return;
5773
5774 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5775}
5776
f686bcb8
TH
5777/**
5778 * ata_qc_complete - Complete an active ATA command
5779 * @qc: Command to complete
5780 * @err_mask: ATA Status register contents
5781 *
5782 * Indicate to the mid and upper layers that an ATA
5783 * command has completed, with either an ok or not-ok status.
5784 *
5785 * LOCKING:
cca3974e 5786 * spin_lock_irqsave(host lock)
f686bcb8
TH
5787 */
5788void ata_qc_complete(struct ata_queued_cmd *qc)
5789{
5790 struct ata_port *ap = qc->ap;
5791
5792 /* XXX: New EH and old EH use different mechanisms to
5793 * synchronize EH with regular execution path.
5794 *
5795 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5796 * Normal execution path is responsible for not accessing a
5797 * failed qc. libata core enforces the rule by returning NULL
5798 * from ata_qc_from_tag() for failed qcs.
5799 *
5800 * Old EH depends on ata_qc_complete() nullifying completion
5801 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5802 * not synchronize with interrupt handler. Only PIO task is
5803 * taken care of.
5804 */
5805 if (ap->ops->error_handler) {
4dbfa39b
TH
5806 struct ata_device *dev = qc->dev;
5807 struct ata_eh_info *ehi = &dev->link->eh_info;
5808
b51e9e5d 5809 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5810
5811 if (unlikely(qc->err_mask))
5812 qc->flags |= ATA_QCFLAG_FAILED;
5813
5814 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5815 if (!ata_tag_internal(qc->tag)) {
5816 /* always fill result TF for failed qc */
39599a53 5817 fill_result_tf(qc);
f686bcb8
TH
5818 ata_qc_schedule_eh(qc);
5819 return;
5820 }
5821 }
5822
5823 /* read result TF if requested */
5824 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5825 fill_result_tf(qc);
f686bcb8 5826
4dbfa39b
TH
5827 /* Some commands need post-processing after successful
5828 * completion.
5829 */
5830 switch (qc->tf.command) {
5831 case ATA_CMD_SET_FEATURES:
5832 if (qc->tf.feature != SETFEATURES_WC_ON &&
5833 qc->tf.feature != SETFEATURES_WC_OFF)
5834 break;
5835 /* fall through */
5836 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5837 case ATA_CMD_SET_MULTI: /* multi_count changed */
5838 /* revalidate device */
5839 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5840 ata_port_schedule_eh(ap);
5841 break;
054a5fba
TH
5842
5843 case ATA_CMD_SLEEP:
5844 dev->flags |= ATA_DFLAG_SLEEPING;
5845 break;
4dbfa39b
TH
5846 }
5847
00115e0f
TH
5848 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5849 ata_verify_xfer(qc);
5850
f686bcb8
TH
5851 __ata_qc_complete(qc);
5852 } else {
5853 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5854 return;
5855
5856 /* read result TF if failed or requested */
5857 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5858 fill_result_tf(qc);
f686bcb8
TH
5859
5860 __ata_qc_complete(qc);
5861 }
5862}
5863
dedaf2b0
TH
5864/**
5865 * ata_qc_complete_multiple - Complete multiple qcs successfully
5866 * @ap: port in question
5867 * @qc_active: new qc_active mask
5868 * @finish_qc: LLDD callback invoked before completing a qc
5869 *
5870 * Complete in-flight commands. This functions is meant to be
5871 * called from low-level driver's interrupt routine to complete
5872 * requests normally. ap->qc_active and @qc_active is compared
5873 * and commands are completed accordingly.
5874 *
5875 * LOCKING:
cca3974e 5876 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5877 *
5878 * RETURNS:
5879 * Number of completed commands on success, -errno otherwise.
5880 */
5881int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5882 void (*finish_qc)(struct ata_queued_cmd *))
5883{
5884 int nr_done = 0;
5885 u32 done_mask;
5886 int i;
5887
5888 done_mask = ap->qc_active ^ qc_active;
5889
5890 if (unlikely(done_mask & qc_active)) {
5891 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5892 "(%08x->%08x)\n", ap->qc_active, qc_active);
5893 return -EINVAL;
5894 }
5895
5896 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5897 struct ata_queued_cmd *qc;
5898
5899 if (!(done_mask & (1 << i)))
5900 continue;
5901
5902 if ((qc = ata_qc_from_tag(ap, i))) {
5903 if (finish_qc)
5904 finish_qc(qc);
5905 ata_qc_complete(qc);
5906 nr_done++;
5907 }
5908 }
5909
5910 return nr_done;
5911}
5912
1da177e4
LT
5913/**
5914 * ata_qc_issue - issue taskfile to device
5915 * @qc: command to issue to device
5916 *
5917 * Prepare an ATA command to submission to device.
5918 * This includes mapping the data into a DMA-able
5919 * area, filling in the S/G table, and finally
5920 * writing the taskfile to hardware, starting the command.
5921 *
5922 * LOCKING:
cca3974e 5923 * spin_lock_irqsave(host lock)
1da177e4 5924 */
8e0e694a 5925void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5926{
5927 struct ata_port *ap = qc->ap;
9af5c9c9 5928 struct ata_link *link = qc->dev->link;
405e66b3 5929 u8 prot = qc->tf.protocol;
1da177e4 5930
dedaf2b0
TH
5931 /* Make sure only one non-NCQ command is outstanding. The
5932 * check is skipped for old EH because it reuses active qc to
5933 * request ATAPI sense.
5934 */
9af5c9c9 5935 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5936
1973a023 5937 if (ata_is_ncq(prot)) {
9af5c9c9 5938 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
5939
5940 if (!link->sactive)
5941 ap->nr_active_links++;
9af5c9c9 5942 link->sactive |= 1 << qc->tag;
dedaf2b0 5943 } else {
9af5c9c9 5944 WARN_ON(link->sactive);
da917d69
TH
5945
5946 ap->nr_active_links++;
9af5c9c9 5947 link->active_tag = qc->tag;
dedaf2b0
TH
5948 }
5949
e4a70e76 5950 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5951 ap->qc_active |= 1 << qc->tag;
e4a70e76 5952
f92a2636
TH
5953 /* We guarantee to LLDs that they will have at least one
5954 * non-zero sg if the command is a data command.
5955 */
ff2aeb1e 5956 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
f92a2636 5957
0bcc65ad
TH
5958 /* ata_sg_setup() may update nbytes */
5959 qc->raw_nbytes = qc->nbytes;
5960
405e66b3 5961 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5962 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7
TH
5963 if (ata_sg_setup(qc))
5964 goto sg_err;
1da177e4 5965
054a5fba
TH
5966 /* if device is sleeping, schedule softreset and abort the link */
5967 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5968 link->eh_info.action |= ATA_EH_SOFTRESET;
5969 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5970 ata_link_abort(link);
5971 return;
5972 }
5973
1da177e4
LT
5974 ap->ops->qc_prep(qc);
5975
8e0e694a
TH
5976 qc->err_mask |= ap->ops->qc_issue(qc);
5977 if (unlikely(qc->err_mask))
5978 goto err;
5979 return;
1da177e4 5980
8e436af9 5981sg_err:
8e0e694a
TH
5982 qc->err_mask |= AC_ERR_SYSTEM;
5983err:
5984 ata_qc_complete(qc);
1da177e4
LT
5985}
5986
5987/**
5988 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5989 * @qc: command to issue to device
5990 *
5991 * Using various libata functions and hooks, this function
5992 * starts an ATA command. ATA commands are grouped into
5993 * classes called "protocols", and issuing each type of protocol
5994 * is slightly different.
5995 *
0baab86b
EF
5996 * May be used as the qc_issue() entry in ata_port_operations.
5997 *
1da177e4 5998 * LOCKING:
cca3974e 5999 * spin_lock_irqsave(host lock)
1da177e4
LT
6000 *
6001 * RETURNS:
9a3d9eb0 6002 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
6003 */
6004
9a3d9eb0 6005unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
6006{
6007 struct ata_port *ap = qc->ap;
6008
e50362ec
AL
6009 /* Use polling pio if the LLD doesn't handle
6010 * interrupt driven pio and atapi CDB interrupt.
6011 */
6012 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6013 switch (qc->tf.protocol) {
6014 case ATA_PROT_PIO:
e3472cbe 6015 case ATA_PROT_NODATA:
0dc36888
TH
6016 case ATAPI_PROT_PIO:
6017 case ATAPI_PROT_NODATA:
e50362ec
AL
6018 qc->tf.flags |= ATA_TFLAG_POLLING;
6019 break;
0dc36888 6020 case ATAPI_PROT_DMA:
e50362ec 6021 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 6022 /* see ata_dma_blacklisted() */
e50362ec
AL
6023 BUG();
6024 break;
6025 default:
6026 break;
6027 }
6028 }
6029
312f7da2 6030 /* select the device */
1da177e4
LT
6031 ata_dev_select(ap, qc->dev->devno, 1, 0);
6032
312f7da2 6033 /* start the command */
1da177e4
LT
6034 switch (qc->tf.protocol) {
6035 case ATA_PROT_NODATA:
312f7da2
AL
6036 if (qc->tf.flags & ATA_TFLAG_POLLING)
6037 ata_qc_set_polling(qc);
6038
e5338254 6039 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
6040 ap->hsm_task_state = HSM_ST_LAST;
6041
6042 if (qc->tf.flags & ATA_TFLAG_POLLING)
442eacc3 6043 ata_pio_queue_task(ap, qc, 0);
312f7da2 6044
1da177e4
LT
6045 break;
6046
6047 case ATA_PROT_DMA:
587005de 6048 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6049
1da177e4
LT
6050 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6051 ap->ops->bmdma_setup(qc); /* set up bmdma */
6052 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 6053 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
6054 break;
6055
312f7da2
AL
6056 case ATA_PROT_PIO:
6057 if (qc->tf.flags & ATA_TFLAG_POLLING)
6058 ata_qc_set_polling(qc);
1da177e4 6059
e5338254 6060 ata_tf_to_host(ap, &qc->tf);
312f7da2 6061
54f00389
AL
6062 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6063 /* PIO data out protocol */
6064 ap->hsm_task_state = HSM_ST_FIRST;
442eacc3 6065 ata_pio_queue_task(ap, qc, 0);
54f00389
AL
6066
6067 /* always send first data block using
e27486db 6068 * the ata_pio_task() codepath.
54f00389 6069 */
312f7da2 6070 } else {
54f00389
AL
6071 /* PIO data in protocol */
6072 ap->hsm_task_state = HSM_ST;
6073
6074 if (qc->tf.flags & ATA_TFLAG_POLLING)
442eacc3 6075 ata_pio_queue_task(ap, qc, 0);
54f00389
AL
6076
6077 /* if polling, ata_pio_task() handles the rest.
6078 * otherwise, interrupt handler takes over from here.
6079 */
312f7da2
AL
6080 }
6081
1da177e4
LT
6082 break;
6083
0dc36888
TH
6084 case ATAPI_PROT_PIO:
6085 case ATAPI_PROT_NODATA:
312f7da2
AL
6086 if (qc->tf.flags & ATA_TFLAG_POLLING)
6087 ata_qc_set_polling(qc);
6088
e5338254 6089 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 6090
312f7da2
AL
6091 ap->hsm_task_state = HSM_ST_FIRST;
6092
6093 /* send cdb by polling if no cdb interrupt */
6094 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6095 (qc->tf.flags & ATA_TFLAG_POLLING))
442eacc3 6096 ata_pio_queue_task(ap, qc, 0);
1da177e4
LT
6097 break;
6098
0dc36888 6099 case ATAPI_PROT_DMA:
587005de 6100 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6101
1da177e4
LT
6102 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6103 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
6104 ap->hsm_task_state = HSM_ST_FIRST;
6105
6106 /* send cdb by polling if no cdb interrupt */
6107 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
442eacc3 6108 ata_pio_queue_task(ap, qc, 0);
1da177e4
LT
6109 break;
6110
6111 default:
6112 WARN_ON(1);
9a3d9eb0 6113 return AC_ERR_SYSTEM;
1da177e4
LT
6114 }
6115
6116 return 0;
6117}
6118
1da177e4
LT
6119/**
6120 * ata_host_intr - Handle host interrupt for given (port, task)
6121 * @ap: Port on which interrupt arrived (possibly...)
6122 * @qc: Taskfile currently active in engine
6123 *
6124 * Handle host interrupt for given queued command. Currently,
6125 * only DMA interrupts are handled. All other commands are
6126 * handled via polling with interrupts disabled (nIEN bit).
6127 *
6128 * LOCKING:
cca3974e 6129 * spin_lock_irqsave(host lock)
1da177e4
LT
6130 *
6131 * RETURNS:
6132 * One if interrupt was handled, zero if not (shared irq).
6133 */
6134
2dcb407e
JG
6135inline unsigned int ata_host_intr(struct ata_port *ap,
6136 struct ata_queued_cmd *qc)
1da177e4 6137{
9af5c9c9 6138 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 6139 u8 status, host_stat = 0;
1da177e4 6140
312f7da2 6141 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 6142 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 6143
312f7da2
AL
6144 /* Check whether we are expecting interrupt in this state */
6145 switch (ap->hsm_task_state) {
6146 case HSM_ST_FIRST:
6912ccd5
AL
6147 /* Some pre-ATAPI-4 devices assert INTRQ
6148 * at this state when ready to receive CDB.
6149 */
1da177e4 6150
312f7da2 6151 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
405e66b3
TH
6152 * The flag was turned on only for atapi devices. No
6153 * need to check ata_is_atapi(qc->tf.protocol) again.
312f7da2
AL
6154 */
6155 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 6156 goto idle_irq;
1da177e4 6157 break;
312f7da2
AL
6158 case HSM_ST_LAST:
6159 if (qc->tf.protocol == ATA_PROT_DMA ||
0dc36888 6160 qc->tf.protocol == ATAPI_PROT_DMA) {
312f7da2
AL
6161 /* check status of DMA engine */
6162 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
6163 VPRINTK("ata%u: host_stat 0x%X\n",
6164 ap->print_id, host_stat);
312f7da2
AL
6165
6166 /* if it's not our irq... */
6167 if (!(host_stat & ATA_DMA_INTR))
6168 goto idle_irq;
6169
6170 /* before we do anything else, clear DMA-Start bit */
6171 ap->ops->bmdma_stop(qc);
a4f16610
AL
6172
6173 if (unlikely(host_stat & ATA_DMA_ERR)) {
6174 /* error when transfering data to/from memory */
6175 qc->err_mask |= AC_ERR_HOST_BUS;
6176 ap->hsm_task_state = HSM_ST_ERR;
6177 }
312f7da2
AL
6178 }
6179 break;
6180 case HSM_ST:
6181 break;
1da177e4
LT
6182 default:
6183 goto idle_irq;
6184 }
6185
312f7da2
AL
6186 /* check altstatus */
6187 status = ata_altstatus(ap);
6188 if (status & ATA_BUSY)
6189 goto idle_irq;
1da177e4 6190
312f7da2
AL
6191 /* check main status, clearing INTRQ */
6192 status = ata_chk_status(ap);
6193 if (unlikely(status & ATA_BUSY))
6194 goto idle_irq;
1da177e4 6195
312f7da2
AL
6196 /* ack bmdma irq events */
6197 ap->ops->irq_clear(ap);
1da177e4 6198
bb5cb290 6199 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
6200
6201 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
0dc36888 6202 qc->tf.protocol == ATAPI_PROT_DMA))
ea54763f
TH
6203 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6204
1da177e4
LT
6205 return 1; /* irq handled */
6206
6207idle_irq:
6208 ap->stats.idle_irq++;
6209
6210#ifdef ATA_IRQ_TRAP
6211 if ((ap->stats.idle_irq % 1000) == 0) {
6d32d30f
JG
6212 ata_chk_status(ap);
6213 ap->ops->irq_clear(ap);
f15a1daf 6214 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 6215 return 1;
1da177e4
LT
6216 }
6217#endif
6218 return 0; /* irq not handled */
6219}
6220
6221/**
6222 * ata_interrupt - Default ATA host interrupt handler
0cba632b 6223 * @irq: irq line (unused)
cca3974e 6224 * @dev_instance: pointer to our ata_host information structure
1da177e4 6225 *
0cba632b
JG
6226 * Default interrupt handler for PCI IDE devices. Calls
6227 * ata_host_intr() for each port that is not disabled.
6228 *
1da177e4 6229 * LOCKING:
cca3974e 6230 * Obtains host lock during operation.
1da177e4
LT
6231 *
6232 * RETURNS:
0cba632b 6233 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
6234 */
6235
2dcb407e 6236irqreturn_t ata_interrupt(int irq, void *dev_instance)
1da177e4 6237{
cca3974e 6238 struct ata_host *host = dev_instance;
1da177e4
LT
6239 unsigned int i;
6240 unsigned int handled = 0;
6241 unsigned long flags;
6242
6243 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 6244 spin_lock_irqsave(&host->lock, flags);
1da177e4 6245
cca3974e 6246 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
6247 struct ata_port *ap;
6248
cca3974e 6249 ap = host->ports[i];
c1389503 6250 if (ap &&
029f5468 6251 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
6252 struct ata_queued_cmd *qc;
6253
9af5c9c9 6254 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 6255 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 6256 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
6257 handled |= ata_host_intr(ap, qc);
6258 }
6259 }
6260
cca3974e 6261 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
6262
6263 return IRQ_RETVAL(handled);
6264}
6265
34bf2170
TH
6266/**
6267 * sata_scr_valid - test whether SCRs are accessible
936fd732 6268 * @link: ATA link to test SCR accessibility for
34bf2170 6269 *
936fd732 6270 * Test whether SCRs are accessible for @link.
34bf2170
TH
6271 *
6272 * LOCKING:
6273 * None.
6274 *
6275 * RETURNS:
6276 * 1 if SCRs are accessible, 0 otherwise.
6277 */
936fd732 6278int sata_scr_valid(struct ata_link *link)
34bf2170 6279{
936fd732
TH
6280 struct ata_port *ap = link->ap;
6281
a16abc0b 6282 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
6283}
6284
6285/**
6286 * sata_scr_read - read SCR register of the specified port
936fd732 6287 * @link: ATA link to read SCR for
34bf2170
TH
6288 * @reg: SCR to read
6289 * @val: Place to store read value
6290 *
936fd732 6291 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
6292 * guaranteed to succeed if @link is ap->link, the cable type of
6293 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6294 *
6295 * LOCKING:
633273a3 6296 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6297 *
6298 * RETURNS:
6299 * 0 on success, negative errno on failure.
6300 */
936fd732 6301int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 6302{
633273a3
TH
6303 if (ata_is_host_link(link)) {
6304 struct ata_port *ap = link->ap;
936fd732 6305
633273a3
TH
6306 if (sata_scr_valid(link))
6307 return ap->ops->scr_read(ap, reg, val);
6308 return -EOPNOTSUPP;
6309 }
6310
6311 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
6312}
6313
6314/**
6315 * sata_scr_write - write SCR register of the specified port
936fd732 6316 * @link: ATA link to write SCR for
34bf2170
TH
6317 * @reg: SCR to write
6318 * @val: value to write
6319 *
936fd732 6320 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
6321 * guaranteed to succeed if @link is ap->link, the cable type of
6322 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6323 *
6324 * LOCKING:
633273a3 6325 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6326 *
6327 * RETURNS:
6328 * 0 on success, negative errno on failure.
6329 */
936fd732 6330int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 6331{
633273a3
TH
6332 if (ata_is_host_link(link)) {
6333 struct ata_port *ap = link->ap;
6334
6335 if (sata_scr_valid(link))
6336 return ap->ops->scr_write(ap, reg, val);
6337 return -EOPNOTSUPP;
6338 }
936fd732 6339
633273a3 6340 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6341}
6342
6343/**
6344 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 6345 * @link: ATA link to write SCR for
34bf2170
TH
6346 * @reg: SCR to write
6347 * @val: value to write
6348 *
6349 * This function is identical to sata_scr_write() except that this
6350 * function performs flush after writing to the register.
6351 *
6352 * LOCKING:
633273a3 6353 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6354 *
6355 * RETURNS:
6356 * 0 on success, negative errno on failure.
6357 */
936fd732 6358int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 6359{
633273a3
TH
6360 if (ata_is_host_link(link)) {
6361 struct ata_port *ap = link->ap;
6362 int rc;
da3dbb17 6363
633273a3
TH
6364 if (sata_scr_valid(link)) {
6365 rc = ap->ops->scr_write(ap, reg, val);
6366 if (rc == 0)
6367 rc = ap->ops->scr_read(ap, reg, &val);
6368 return rc;
6369 }
6370 return -EOPNOTSUPP;
34bf2170 6371 }
633273a3
TH
6372
6373 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6374}
6375
6376/**
936fd732
TH
6377 * ata_link_online - test whether the given link is online
6378 * @link: ATA link to test
34bf2170 6379 *
936fd732
TH
6380 * Test whether @link is online. Note that this function returns
6381 * 0 if online status of @link cannot be obtained, so
6382 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6383 *
6384 * LOCKING:
6385 * None.
6386 *
6387 * RETURNS:
6388 * 1 if the port online status is available and online.
6389 */
936fd732 6390int ata_link_online(struct ata_link *link)
34bf2170
TH
6391{
6392 u32 sstatus;
6393
936fd732
TH
6394 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6395 (sstatus & 0xf) == 0x3)
34bf2170
TH
6396 return 1;
6397 return 0;
6398}
6399
6400/**
936fd732
TH
6401 * ata_link_offline - test whether the given link is offline
6402 * @link: ATA link to test
34bf2170 6403 *
936fd732
TH
6404 * Test whether @link is offline. Note that this function
6405 * returns 0 if offline status of @link cannot be obtained, so
6406 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6407 *
6408 * LOCKING:
6409 * None.
6410 *
6411 * RETURNS:
6412 * 1 if the port offline status is available and offline.
6413 */
936fd732 6414int ata_link_offline(struct ata_link *link)
34bf2170
TH
6415{
6416 u32 sstatus;
6417
936fd732
TH
6418 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6419 (sstatus & 0xf) != 0x3)
34bf2170
TH
6420 return 1;
6421 return 0;
6422}
0baab86b 6423
77b08fb5 6424int ata_flush_cache(struct ata_device *dev)
9b847548 6425{
977e6b9f 6426 unsigned int err_mask;
9b847548
JA
6427 u8 cmd;
6428
6429 if (!ata_try_flush_cache(dev))
6430 return 0;
6431
6fc49adb 6432 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
6433 cmd = ATA_CMD_FLUSH_EXT;
6434 else
6435 cmd = ATA_CMD_FLUSH;
6436
4f34337b
AC
6437 /* This is wrong. On a failed flush we get back the LBA of the lost
6438 sector and we should (assuming it wasn't aborted as unknown) issue
2dcb407e 6439 a further flush command to continue the writeback until it
4f34337b 6440 does not error */
977e6b9f
TH
6441 err_mask = ata_do_simple_cmd(dev, cmd);
6442 if (err_mask) {
6443 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6444 return -EIO;
6445 }
6446
6447 return 0;
9b847548
JA
6448}
6449
6ffa01d8 6450#ifdef CONFIG_PM
cca3974e
JG
6451static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6452 unsigned int action, unsigned int ehi_flags,
6453 int wait)
500530f6
TH
6454{
6455 unsigned long flags;
6456 int i, rc;
6457
cca3974e
JG
6458 for (i = 0; i < host->n_ports; i++) {
6459 struct ata_port *ap = host->ports[i];
e3667ebf 6460 struct ata_link *link;
500530f6
TH
6461
6462 /* Previous resume operation might still be in
6463 * progress. Wait for PM_PENDING to clear.
6464 */
6465 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6466 ata_port_wait_eh(ap);
6467 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6468 }
6469
6470 /* request PM ops to EH */
6471 spin_lock_irqsave(ap->lock, flags);
6472
6473 ap->pm_mesg = mesg;
6474 if (wait) {
6475 rc = 0;
6476 ap->pm_result = &rc;
6477 }
6478
6479 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
6480 __ata_port_for_each_link(link, ap) {
6481 link->eh_info.action |= action;
6482 link->eh_info.flags |= ehi_flags;
6483 }
500530f6
TH
6484
6485 ata_port_schedule_eh(ap);
6486
6487 spin_unlock_irqrestore(ap->lock, flags);
6488
6489 /* wait and check result */
6490 if (wait) {
6491 ata_port_wait_eh(ap);
6492 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6493 if (rc)
6494 return rc;
6495 }
6496 }
6497
6498 return 0;
6499}
6500
6501/**
cca3974e
JG
6502 * ata_host_suspend - suspend host
6503 * @host: host to suspend
500530f6
TH
6504 * @mesg: PM message
6505 *
cca3974e 6506 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
6507 * function requests EH to perform PM operations and waits for EH
6508 * to finish.
6509 *
6510 * LOCKING:
6511 * Kernel thread context (may sleep).
6512 *
6513 * RETURNS:
6514 * 0 on success, -errno on failure.
6515 */
cca3974e 6516int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 6517{
9666f400 6518 int rc;
500530f6 6519
ca77329f
KCA
6520 /*
6521 * disable link pm on all ports before requesting
6522 * any pm activity
6523 */
6524 ata_lpm_enable(host);
6525
cca3974e 6526 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
6527 if (rc == 0)
6528 host->dev->power.power_state = mesg;
500530f6
TH
6529 return rc;
6530}
6531
6532/**
cca3974e
JG
6533 * ata_host_resume - resume host
6534 * @host: host to resume
500530f6 6535 *
cca3974e 6536 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
6537 * function requests EH to perform PM operations and returns.
6538 * Note that all resume operations are performed parallely.
6539 *
6540 * LOCKING:
6541 * Kernel thread context (may sleep).
6542 */
cca3974e 6543void ata_host_resume(struct ata_host *host)
500530f6 6544{
cca3974e
JG
6545 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6546 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6547 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
6548
6549 /* reenable link pm */
6550 ata_lpm_disable(host);
500530f6 6551}
6ffa01d8 6552#endif
500530f6 6553
c893a3ae
RD
6554/**
6555 * ata_port_start - Set port up for dma.
6556 * @ap: Port to initialize
6557 *
6558 * Called just after data structures for each port are
6559 * initialized. Allocates space for PRD table.
6560 *
6561 * May be used as the port_start() entry in ata_port_operations.
6562 *
6563 * LOCKING:
6564 * Inherited from caller.
6565 */
f0d36efd 6566int ata_port_start(struct ata_port *ap)
1da177e4 6567{
2f1f610b 6568 struct device *dev = ap->dev;
6037d6bb 6569 int rc;
1da177e4 6570
f0d36efd
TH
6571 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6572 GFP_KERNEL);
1da177e4
LT
6573 if (!ap->prd)
6574 return -ENOMEM;
6575
6037d6bb 6576 rc = ata_pad_alloc(ap, dev);
f0d36efd 6577 if (rc)
6037d6bb 6578 return rc;
1da177e4 6579
f0d36efd
TH
6580 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6581 (unsigned long long)ap->prd_dma);
1da177e4
LT
6582 return 0;
6583}
6584
3ef3b43d
TH
6585/**
6586 * ata_dev_init - Initialize an ata_device structure
6587 * @dev: Device structure to initialize
6588 *
6589 * Initialize @dev in preparation for probing.
6590 *
6591 * LOCKING:
6592 * Inherited from caller.
6593 */
6594void ata_dev_init(struct ata_device *dev)
6595{
9af5c9c9
TH
6596 struct ata_link *link = dev->link;
6597 struct ata_port *ap = link->ap;
72fa4b74
TH
6598 unsigned long flags;
6599
5a04bf4b 6600 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6601 link->sata_spd_limit = link->hw_sata_spd_limit;
6602 link->sata_spd = 0;
5a04bf4b 6603
72fa4b74
TH
6604 /* High bits of dev->flags are used to record warm plug
6605 * requests which occur asynchronously. Synchronize using
cca3974e 6606 * host lock.
72fa4b74 6607 */
ba6a1308 6608 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6609 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6610 dev->horkage = 0;
ba6a1308 6611 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6612
72fa4b74
TH
6613 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6614 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6615 dev->pio_mask = UINT_MAX;
6616 dev->mwdma_mask = UINT_MAX;
6617 dev->udma_mask = UINT_MAX;
6618}
6619
4fb37a25
TH
6620/**
6621 * ata_link_init - Initialize an ata_link structure
6622 * @ap: ATA port link is attached to
6623 * @link: Link structure to initialize
8989805d 6624 * @pmp: Port multiplier port number
4fb37a25
TH
6625 *
6626 * Initialize @link.
6627 *
6628 * LOCKING:
6629 * Kernel thread context (may sleep)
6630 */
fb7fd614 6631void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6632{
6633 int i;
6634
6635 /* clear everything except for devices */
6636 memset(link, 0, offsetof(struct ata_link, device[0]));
6637
6638 link->ap = ap;
8989805d 6639 link->pmp = pmp;
4fb37a25
TH
6640 link->active_tag = ATA_TAG_POISON;
6641 link->hw_sata_spd_limit = UINT_MAX;
6642
6643 /* can't use iterator, ap isn't initialized yet */
6644 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6645 struct ata_device *dev = &link->device[i];
6646
6647 dev->link = link;
6648 dev->devno = dev - link->device;
6649 ata_dev_init(dev);
6650 }
6651}
6652
6653/**
6654 * sata_link_init_spd - Initialize link->sata_spd_limit
6655 * @link: Link to configure sata_spd_limit for
6656 *
6657 * Initialize @link->[hw_]sata_spd_limit to the currently
6658 * configured value.
6659 *
6660 * LOCKING:
6661 * Kernel thread context (may sleep).
6662 *
6663 * RETURNS:
6664 * 0 on success, -errno on failure.
6665 */
fb7fd614 6666int sata_link_init_spd(struct ata_link *link)
4fb37a25
TH
6667{
6668 u32 scontrol, spd;
6669 int rc;
6670
6671 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6672 if (rc)
6673 return rc;
6674
6675 spd = (scontrol >> 4) & 0xf;
6676 if (spd)
6677 link->hw_sata_spd_limit &= (1 << spd) - 1;
6678
6679 link->sata_spd_limit = link->hw_sata_spd_limit;
6680
6681 return 0;
6682}
6683
1da177e4 6684/**
f3187195
TH
6685 * ata_port_alloc - allocate and initialize basic ATA port resources
6686 * @host: ATA host this allocated port belongs to
1da177e4 6687 *
f3187195
TH
6688 * Allocate and initialize basic ATA port resources.
6689 *
6690 * RETURNS:
6691 * Allocate ATA port on success, NULL on failure.
0cba632b 6692 *
1da177e4 6693 * LOCKING:
f3187195 6694 * Inherited from calling layer (may sleep).
1da177e4 6695 */
f3187195 6696struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6697{
f3187195 6698 struct ata_port *ap;
1da177e4 6699
f3187195
TH
6700 DPRINTK("ENTER\n");
6701
6702 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6703 if (!ap)
6704 return NULL;
6705
f4d6d004 6706 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6707 ap->lock = &host->lock;
198e0fed 6708 ap->flags = ATA_FLAG_DISABLED;
f3187195 6709 ap->print_id = -1;
1da177e4 6710 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6711 ap->host = host;
f3187195 6712 ap->dev = host->dev;
1da177e4 6713 ap->last_ctl = 0xFF;
bd5d825c
BP
6714
6715#if defined(ATA_VERBOSE_DEBUG)
6716 /* turn on all debugging levels */
6717 ap->msg_enable = 0x00FF;
6718#elif defined(ATA_DEBUG)
6719 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6720#else
0dd4b21f 6721 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6722#endif
1da177e4 6723
442eacc3 6724 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
65f27f38
DH
6725 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6726 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6727 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6728 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6729 init_timer_deferrable(&ap->fastdrain_timer);
6730 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6731 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6732
838df628 6733 ap->cbl = ATA_CBL_NONE;
838df628 6734
8989805d 6735 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6736
6737#ifdef ATA_IRQ_TRAP
6738 ap->stats.unhandled_irq = 1;
6739 ap->stats.idle_irq = 1;
6740#endif
1da177e4 6741 return ap;
1da177e4
LT
6742}
6743
f0d36efd
TH
6744static void ata_host_release(struct device *gendev, void *res)
6745{
6746 struct ata_host *host = dev_get_drvdata(gendev);
6747 int i;
6748
1aa506e4
TH
6749 for (i = 0; i < host->n_ports; i++) {
6750 struct ata_port *ap = host->ports[i];
6751
4911487a
TH
6752 if (!ap)
6753 continue;
6754
6755 if (ap->scsi_host)
1aa506e4
TH
6756 scsi_host_put(ap->scsi_host);
6757
633273a3 6758 kfree(ap->pmp_link);
4911487a 6759 kfree(ap);
1aa506e4
TH
6760 host->ports[i] = NULL;
6761 }
6762
1aa56cca 6763 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6764}
6765
f3187195
TH
6766/**
6767 * ata_host_alloc - allocate and init basic ATA host resources
6768 * @dev: generic device this host is associated with
6769 * @max_ports: maximum number of ATA ports associated with this host
6770 *
6771 * Allocate and initialize basic ATA host resources. LLD calls
6772 * this function to allocate a host, initializes it fully and
6773 * attaches it using ata_host_register().
6774 *
6775 * @max_ports ports are allocated and host->n_ports is
6776 * initialized to @max_ports. The caller is allowed to decrease
6777 * host->n_ports before calling ata_host_register(). The unused
6778 * ports will be automatically freed on registration.
6779 *
6780 * RETURNS:
6781 * Allocate ATA host on success, NULL on failure.
6782 *
6783 * LOCKING:
6784 * Inherited from calling layer (may sleep).
6785 */
6786struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6787{
6788 struct ata_host *host;
6789 size_t sz;
6790 int i;
6791
6792 DPRINTK("ENTER\n");
6793
6794 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6795 return NULL;
6796
6797 /* alloc a container for our list of ATA ports (buses) */
6798 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6799 /* alloc a container for our list of ATA ports (buses) */
6800 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6801 if (!host)
6802 goto err_out;
6803
6804 devres_add(dev, host);
6805 dev_set_drvdata(dev, host);
6806
6807 spin_lock_init(&host->lock);
6808 host->dev = dev;
6809 host->n_ports = max_ports;
6810
6811 /* allocate ports bound to this host */
6812 for (i = 0; i < max_ports; i++) {
6813 struct ata_port *ap;
6814
6815 ap = ata_port_alloc(host);
6816 if (!ap)
6817 goto err_out;
6818
6819 ap->port_no = i;
6820 host->ports[i] = ap;
6821 }
6822
6823 devres_remove_group(dev, NULL);
6824 return host;
6825
6826 err_out:
6827 devres_release_group(dev, NULL);
6828 return NULL;
6829}
6830
f5cda257
TH
6831/**
6832 * ata_host_alloc_pinfo - alloc host and init with port_info array
6833 * @dev: generic device this host is associated with
6834 * @ppi: array of ATA port_info to initialize host with
6835 * @n_ports: number of ATA ports attached to this host
6836 *
6837 * Allocate ATA host and initialize with info from @ppi. If NULL
6838 * terminated, @ppi may contain fewer entries than @n_ports. The
6839 * last entry will be used for the remaining ports.
6840 *
6841 * RETURNS:
6842 * Allocate ATA host on success, NULL on failure.
6843 *
6844 * LOCKING:
6845 * Inherited from calling layer (may sleep).
6846 */
6847struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6848 const struct ata_port_info * const * ppi,
6849 int n_ports)
6850{
6851 const struct ata_port_info *pi;
6852 struct ata_host *host;
6853 int i, j;
6854
6855 host = ata_host_alloc(dev, n_ports);
6856 if (!host)
6857 return NULL;
6858
6859 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6860 struct ata_port *ap = host->ports[i];
6861
6862 if (ppi[j])
6863 pi = ppi[j++];
6864
6865 ap->pio_mask = pi->pio_mask;
6866 ap->mwdma_mask = pi->mwdma_mask;
6867 ap->udma_mask = pi->udma_mask;
6868 ap->flags |= pi->flags;
0c88758b 6869 ap->link.flags |= pi->link_flags;
f5cda257
TH
6870 ap->ops = pi->port_ops;
6871
6872 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6873 host->ops = pi->port_ops;
6874 if (!host->private_data && pi->private_data)
6875 host->private_data = pi->private_data;
6876 }
6877
6878 return host;
6879}
6880
32ebbc0c
TH
6881static void ata_host_stop(struct device *gendev, void *res)
6882{
6883 struct ata_host *host = dev_get_drvdata(gendev);
6884 int i;
6885
6886 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6887
6888 for (i = 0; i < host->n_ports; i++) {
6889 struct ata_port *ap = host->ports[i];
6890
6891 if (ap->ops->port_stop)
6892 ap->ops->port_stop(ap);
6893 }
6894
6895 if (host->ops->host_stop)
6896 host->ops->host_stop(host);
6897}
6898
ecef7253
TH
6899/**
6900 * ata_host_start - start and freeze ports of an ATA host
6901 * @host: ATA host to start ports for
6902 *
6903 * Start and then freeze ports of @host. Started status is
6904 * recorded in host->flags, so this function can be called
6905 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6906 * once. If host->ops isn't initialized yet, its set to the
6907 * first non-dummy port ops.
ecef7253
TH
6908 *
6909 * LOCKING:
6910 * Inherited from calling layer (may sleep).
6911 *
6912 * RETURNS:
6913 * 0 if all ports are started successfully, -errno otherwise.
6914 */
6915int ata_host_start(struct ata_host *host)
6916{
32ebbc0c
TH
6917 int have_stop = 0;
6918 void *start_dr = NULL;
ecef7253
TH
6919 int i, rc;
6920
6921 if (host->flags & ATA_HOST_STARTED)
6922 return 0;
6923
6924 for (i = 0; i < host->n_ports; i++) {
6925 struct ata_port *ap = host->ports[i];
6926
f3187195
TH
6927 if (!host->ops && !ata_port_is_dummy(ap))
6928 host->ops = ap->ops;
6929
32ebbc0c
TH
6930 if (ap->ops->port_stop)
6931 have_stop = 1;
6932 }
6933
6934 if (host->ops->host_stop)
6935 have_stop = 1;
6936
6937 if (have_stop) {
6938 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6939 if (!start_dr)
6940 return -ENOMEM;
6941 }
6942
6943 for (i = 0; i < host->n_ports; i++) {
6944 struct ata_port *ap = host->ports[i];
6945
ecef7253
TH
6946 if (ap->ops->port_start) {
6947 rc = ap->ops->port_start(ap);
6948 if (rc) {
0f9fe9b7 6949 if (rc != -ENODEV)
0f757743
AM
6950 dev_printk(KERN_ERR, host->dev,
6951 "failed to start port %d "
6952 "(errno=%d)\n", i, rc);
ecef7253
TH
6953 goto err_out;
6954 }
6955 }
ecef7253
TH
6956 ata_eh_freeze_port(ap);
6957 }
6958
32ebbc0c
TH
6959 if (start_dr)
6960 devres_add(host->dev, start_dr);
ecef7253
TH
6961 host->flags |= ATA_HOST_STARTED;
6962 return 0;
6963
6964 err_out:
6965 while (--i >= 0) {
6966 struct ata_port *ap = host->ports[i];
6967
6968 if (ap->ops->port_stop)
6969 ap->ops->port_stop(ap);
6970 }
32ebbc0c 6971 devres_free(start_dr);
ecef7253
TH
6972 return rc;
6973}
6974
b03732f0 6975/**
cca3974e
JG
6976 * ata_sas_host_init - Initialize a host struct
6977 * @host: host to initialize
6978 * @dev: device host is attached to
6979 * @flags: host flags
6980 * @ops: port_ops
b03732f0
BK
6981 *
6982 * LOCKING:
6983 * PCI/etc. bus probe sem.
6984 *
6985 */
f3187195 6986/* KILLME - the only user left is ipr */
cca3974e
JG
6987void ata_host_init(struct ata_host *host, struct device *dev,
6988 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6989{
cca3974e
JG
6990 spin_lock_init(&host->lock);
6991 host->dev = dev;
6992 host->flags = flags;
6993 host->ops = ops;
b03732f0
BK
6994}
6995
f3187195
TH
6996/**
6997 * ata_host_register - register initialized ATA host
6998 * @host: ATA host to register
6999 * @sht: template for SCSI host
7000 *
7001 * Register initialized ATA host. @host is allocated using
7002 * ata_host_alloc() and fully initialized by LLD. This function
7003 * starts ports, registers @host with ATA and SCSI layers and
7004 * probe registered devices.
7005 *
7006 * LOCKING:
7007 * Inherited from calling layer (may sleep).
7008 *
7009 * RETURNS:
7010 * 0 on success, -errno otherwise.
7011 */
7012int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7013{
7014 int i, rc;
7015
7016 /* host must have been started */
7017 if (!(host->flags & ATA_HOST_STARTED)) {
7018 dev_printk(KERN_ERR, host->dev,
7019 "BUG: trying to register unstarted host\n");
7020 WARN_ON(1);
7021 return -EINVAL;
7022 }
7023
7024 /* Blow away unused ports. This happens when LLD can't
7025 * determine the exact number of ports to allocate at
7026 * allocation time.
7027 */
7028 for (i = host->n_ports; host->ports[i]; i++)
7029 kfree(host->ports[i]);
7030
7031 /* give ports names and add SCSI hosts */
7032 for (i = 0; i < host->n_ports; i++)
7033 host->ports[i]->print_id = ata_print_id++;
7034
7035 rc = ata_scsi_add_hosts(host, sht);
7036 if (rc)
7037 return rc;
7038
fafbae87
TH
7039 /* associate with ACPI nodes */
7040 ata_acpi_associate(host);
7041
f3187195
TH
7042 /* set cable, sata_spd_limit and report */
7043 for (i = 0; i < host->n_ports; i++) {
7044 struct ata_port *ap = host->ports[i];
f3187195
TH
7045 unsigned long xfer_mask;
7046
7047 /* set SATA cable type if still unset */
7048 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7049 ap->cbl = ATA_CBL_SATA;
7050
7051 /* init sata_spd_limit to the current value */
4fb37a25 7052 sata_link_init_spd(&ap->link);
f3187195 7053
cbcdd875 7054 /* print per-port info to dmesg */
f3187195
TH
7055 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7056 ap->udma_mask);
7057
abf6e8ed 7058 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
7059 ata_port_printk(ap, KERN_INFO,
7060 "%cATA max %s %s\n",
a16abc0b 7061 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 7062 ata_mode_string(xfer_mask),
cbcdd875 7063 ap->link.eh_info.desc);
abf6e8ed
TH
7064 ata_ehi_clear_desc(&ap->link.eh_info);
7065 } else
f3187195
TH
7066 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7067 }
7068
7069 /* perform each probe synchronously */
7070 DPRINTK("probe begin\n");
7071 for (i = 0; i < host->n_ports; i++) {
7072 struct ata_port *ap = host->ports[i];
7073 int rc;
7074
7075 /* probe */
7076 if (ap->ops->error_handler) {
9af5c9c9 7077 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
7078 unsigned long flags;
7079
7080 ata_port_probe(ap);
7081
7082 /* kick EH for boot probing */
7083 spin_lock_irqsave(ap->lock, flags);
7084
f58229f8
TH
7085 ehi->probe_mask =
7086 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
7087 ehi->action |= ATA_EH_SOFTRESET;
7088 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7089
f4d6d004 7090 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
7091 ap->pflags |= ATA_PFLAG_LOADING;
7092 ata_port_schedule_eh(ap);
7093
7094 spin_unlock_irqrestore(ap->lock, flags);
7095
7096 /* wait for EH to finish */
7097 ata_port_wait_eh(ap);
7098 } else {
7099 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7100 rc = ata_bus_probe(ap);
7101 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7102
7103 if (rc) {
7104 /* FIXME: do something useful here?
7105 * Current libata behavior will
7106 * tear down everything when
7107 * the module is removed
7108 * or the h/w is unplugged.
7109 */
7110 }
7111 }
7112 }
7113
7114 /* probes are done, now scan each port's disk(s) */
7115 DPRINTK("host probe begin\n");
7116 for (i = 0; i < host->n_ports; i++) {
7117 struct ata_port *ap = host->ports[i];
7118
1ae46317 7119 ata_scsi_scan_host(ap, 1);
ca77329f 7120 ata_lpm_schedule(ap, ap->pm_policy);
f3187195
TH
7121 }
7122
7123 return 0;
7124}
7125
f5cda257
TH
7126/**
7127 * ata_host_activate - start host, request IRQ and register it
7128 * @host: target ATA host
7129 * @irq: IRQ to request
7130 * @irq_handler: irq_handler used when requesting IRQ
7131 * @irq_flags: irq_flags used when requesting IRQ
7132 * @sht: scsi_host_template to use when registering the host
7133 *
7134 * After allocating an ATA host and initializing it, most libata
7135 * LLDs perform three steps to activate the host - start host,
7136 * request IRQ and register it. This helper takes necessasry
7137 * arguments and performs the three steps in one go.
7138 *
3d46b2e2
PM
7139 * An invalid IRQ skips the IRQ registration and expects the host to
7140 * have set polling mode on the port. In this case, @irq_handler
7141 * should be NULL.
7142 *
f5cda257
TH
7143 * LOCKING:
7144 * Inherited from calling layer (may sleep).
7145 *
7146 * RETURNS:
7147 * 0 on success, -errno otherwise.
7148 */
7149int ata_host_activate(struct ata_host *host, int irq,
7150 irq_handler_t irq_handler, unsigned long irq_flags,
7151 struct scsi_host_template *sht)
7152{
cbcdd875 7153 int i, rc;
f5cda257
TH
7154
7155 rc = ata_host_start(host);
7156 if (rc)
7157 return rc;
7158
3d46b2e2
PM
7159 /* Special case for polling mode */
7160 if (!irq) {
7161 WARN_ON(irq_handler);
7162 return ata_host_register(host, sht);
7163 }
7164
f5cda257
TH
7165 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7166 dev_driver_string(host->dev), host);
7167 if (rc)
7168 return rc;
7169
cbcdd875
TH
7170 for (i = 0; i < host->n_ports; i++)
7171 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 7172
f5cda257
TH
7173 rc = ata_host_register(host, sht);
7174 /* if failed, just free the IRQ and leave ports alone */
7175 if (rc)
7176 devm_free_irq(host->dev, irq, host);
7177
7178 return rc;
7179}
7180
720ba126
TH
7181/**
7182 * ata_port_detach - Detach ATA port in prepration of device removal
7183 * @ap: ATA port to be detached
7184 *
7185 * Detach all ATA devices and the associated SCSI devices of @ap;
7186 * then, remove the associated SCSI host. @ap is guaranteed to
7187 * be quiescent on return from this function.
7188 *
7189 * LOCKING:
7190 * Kernel thread context (may sleep).
7191 */
741b7763 7192static void ata_port_detach(struct ata_port *ap)
720ba126
TH
7193{
7194 unsigned long flags;
41bda9c9 7195 struct ata_link *link;
f58229f8 7196 struct ata_device *dev;
720ba126
TH
7197
7198 if (!ap->ops->error_handler)
c3cf30a9 7199 goto skip_eh;
720ba126
TH
7200
7201 /* tell EH we're leaving & flush EH */
ba6a1308 7202 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 7203 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 7204 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7205
7206 ata_port_wait_eh(ap);
7207
7f9ad9b8
TH
7208 /* EH is now guaranteed to see UNLOADING - EH context belongs
7209 * to us. Disable all existing devices.
720ba126 7210 */
41bda9c9
TH
7211 ata_port_for_each_link(link, ap) {
7212 ata_link_for_each_dev(dev, link)
7213 ata_dev_disable(dev);
7214 }
720ba126 7215
720ba126
TH
7216 /* Final freeze & EH. All in-flight commands are aborted. EH
7217 * will be skipped and retrials will be terminated with bad
7218 * target.
7219 */
ba6a1308 7220 spin_lock_irqsave(ap->lock, flags);
720ba126 7221 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 7222 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7223
7224 ata_port_wait_eh(ap);
45a66c1c 7225 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 7226
c3cf30a9 7227 skip_eh:
720ba126 7228 /* remove the associated SCSI host */
cca3974e 7229 scsi_remove_host(ap->scsi_host);
720ba126
TH
7230}
7231
0529c159
TH
7232/**
7233 * ata_host_detach - Detach all ports of an ATA host
7234 * @host: Host to detach
7235 *
7236 * Detach all ports of @host.
7237 *
7238 * LOCKING:
7239 * Kernel thread context (may sleep).
7240 */
7241void ata_host_detach(struct ata_host *host)
7242{
7243 int i;
7244
7245 for (i = 0; i < host->n_ports; i++)
7246 ata_port_detach(host->ports[i]);
562f0c2d
TH
7247
7248 /* the host is dead now, dissociate ACPI */
7249 ata_acpi_dissociate(host);
0529c159
TH
7250}
7251
1da177e4
LT
7252/**
7253 * ata_std_ports - initialize ioaddr with standard port offsets.
7254 * @ioaddr: IO address structure to be initialized
0baab86b
EF
7255 *
7256 * Utility function which initializes data_addr, error_addr,
7257 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7258 * device_addr, status_addr, and command_addr to standard offsets
7259 * relative to cmd_addr.
7260 *
7261 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 7262 */
0baab86b 7263
1da177e4
LT
7264void ata_std_ports(struct ata_ioports *ioaddr)
7265{
7266 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7267 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7268 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7269 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7270 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7271 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7272 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7273 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7274 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7275 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7276}
7277
0baab86b 7278
374b1873
JG
7279#ifdef CONFIG_PCI
7280
1da177e4
LT
7281/**
7282 * ata_pci_remove_one - PCI layer callback for device removal
7283 * @pdev: PCI device that was removed
7284 *
b878ca5d
TH
7285 * PCI layer indicates to libata via this hook that hot-unplug or
7286 * module unload event has occurred. Detach all ports. Resource
7287 * release is handled via devres.
1da177e4
LT
7288 *
7289 * LOCKING:
7290 * Inherited from PCI layer (may sleep).
7291 */
f0d36efd 7292void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 7293{
2855568b 7294 struct device *dev = &pdev->dev;
cca3974e 7295 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 7296
b878ca5d 7297 ata_host_detach(host);
1da177e4
LT
7298}
7299
7300/* move to PCI subsystem */
057ace5e 7301int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
7302{
7303 unsigned long tmp = 0;
7304
7305 switch (bits->width) {
7306 case 1: {
7307 u8 tmp8 = 0;
7308 pci_read_config_byte(pdev, bits->reg, &tmp8);
7309 tmp = tmp8;
7310 break;
7311 }
7312 case 2: {
7313 u16 tmp16 = 0;
7314 pci_read_config_word(pdev, bits->reg, &tmp16);
7315 tmp = tmp16;
7316 break;
7317 }
7318 case 4: {
7319 u32 tmp32 = 0;
7320 pci_read_config_dword(pdev, bits->reg, &tmp32);
7321 tmp = tmp32;
7322 break;
7323 }
7324
7325 default:
7326 return -EINVAL;
7327 }
7328
7329 tmp &= bits->mask;
7330
7331 return (tmp == bits->val) ? 1 : 0;
7332}
9b847548 7333
6ffa01d8 7334#ifdef CONFIG_PM
3c5100c1 7335void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
7336{
7337 pci_save_state(pdev);
4c90d971 7338 pci_disable_device(pdev);
500530f6 7339
4c90d971 7340 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 7341 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
7342}
7343
553c4aa6 7344int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 7345{
553c4aa6
TH
7346 int rc;
7347
9b847548
JA
7348 pci_set_power_state(pdev, PCI_D0);
7349 pci_restore_state(pdev);
553c4aa6 7350
b878ca5d 7351 rc = pcim_enable_device(pdev);
553c4aa6
TH
7352 if (rc) {
7353 dev_printk(KERN_ERR, &pdev->dev,
7354 "failed to enable device after resume (%d)\n", rc);
7355 return rc;
7356 }
7357
9b847548 7358 pci_set_master(pdev);
553c4aa6 7359 return 0;
500530f6
TH
7360}
7361
3c5100c1 7362int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 7363{
cca3974e 7364 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
7365 int rc = 0;
7366
cca3974e 7367 rc = ata_host_suspend(host, mesg);
500530f6
TH
7368 if (rc)
7369 return rc;
7370
3c5100c1 7371 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
7372
7373 return 0;
7374}
7375
7376int ata_pci_device_resume(struct pci_dev *pdev)
7377{
cca3974e 7378 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 7379 int rc;
500530f6 7380
553c4aa6
TH
7381 rc = ata_pci_device_do_resume(pdev);
7382 if (rc == 0)
7383 ata_host_resume(host);
7384 return rc;
9b847548 7385}
6ffa01d8
TH
7386#endif /* CONFIG_PM */
7387
1da177e4
LT
7388#endif /* CONFIG_PCI */
7389
7390
1da177e4
LT
7391static int __init ata_init(void)
7392{
a8601e5f 7393 ata_probe_timeout *= HZ;
1da177e4
LT
7394 ata_wq = create_workqueue("ata");
7395 if (!ata_wq)
7396 return -ENOMEM;
7397
453b07ac
TH
7398 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7399 if (!ata_aux_wq) {
7400 destroy_workqueue(ata_wq);
7401 return -ENOMEM;
7402 }
7403
1da177e4
LT
7404 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7405 return 0;
7406}
7407
7408static void __exit ata_exit(void)
7409{
7410 destroy_workqueue(ata_wq);
453b07ac 7411 destroy_workqueue(ata_aux_wq);
1da177e4
LT
7412}
7413
a4625085 7414subsys_initcall(ata_init);
1da177e4
LT
7415module_exit(ata_exit);
7416
67846b30 7417static unsigned long ratelimit_time;
34af946a 7418static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
7419
7420int ata_ratelimit(void)
7421{
7422 int rc;
7423 unsigned long flags;
7424
7425 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7426
7427 if (time_after(jiffies, ratelimit_time)) {
7428 rc = 1;
7429 ratelimit_time = jiffies + (HZ/5);
7430 } else
7431 rc = 0;
7432
7433 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7434
7435 return rc;
7436}
7437
c22daff4
TH
7438/**
7439 * ata_wait_register - wait until register value changes
7440 * @reg: IO-mapped register
7441 * @mask: Mask to apply to read register value
7442 * @val: Wait condition
7443 * @interval_msec: polling interval in milliseconds
7444 * @timeout_msec: timeout in milliseconds
7445 *
7446 * Waiting for some bits of register to change is a common
7447 * operation for ATA controllers. This function reads 32bit LE
7448 * IO-mapped register @reg and tests for the following condition.
7449 *
7450 * (*@reg & mask) != val
7451 *
7452 * If the condition is met, it returns; otherwise, the process is
7453 * repeated after @interval_msec until timeout.
7454 *
7455 * LOCKING:
7456 * Kernel thread context (may sleep)
7457 *
7458 * RETURNS:
7459 * The final register value.
7460 */
7461u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7462 unsigned long interval_msec,
7463 unsigned long timeout_msec)
7464{
7465 unsigned long timeout;
7466 u32 tmp;
7467
7468 tmp = ioread32(reg);
7469
7470 /* Calculate timeout _after_ the first read to make sure
7471 * preceding writes reach the controller before starting to
7472 * eat away the timeout.
7473 */
7474 timeout = jiffies + (timeout_msec * HZ) / 1000;
7475
7476 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7477 msleep(interval_msec);
7478 tmp = ioread32(reg);
7479 }
7480
7481 return tmp;
7482}
7483
dd5b06c4
TH
7484/*
7485 * Dummy port_ops
7486 */
7487static void ata_dummy_noret(struct ata_port *ap) { }
7488static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7489static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7490
7491static u8 ata_dummy_check_status(struct ata_port *ap)
7492{
7493 return ATA_DRDY;
7494}
7495
7496static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7497{
7498 return AC_ERR_SYSTEM;
7499}
7500
7501const struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7502 .check_status = ata_dummy_check_status,
7503 .check_altstatus = ata_dummy_check_status,
7504 .dev_select = ata_noop_dev_select,
7505 .qc_prep = ata_noop_qc_prep,
7506 .qc_issue = ata_dummy_qc_issue,
7507 .freeze = ata_dummy_noret,
7508 .thaw = ata_dummy_noret,
7509 .error_handler = ata_dummy_noret,
7510 .post_internal_cmd = ata_dummy_qc_noret,
7511 .irq_clear = ata_dummy_noret,
7512 .port_start = ata_dummy_ret0,
7513 .port_stop = ata_dummy_noret,
7514};
7515
21b0ad4f
TH
7516const struct ata_port_info ata_dummy_port_info = {
7517 .port_ops = &ata_dummy_port_ops,
7518};
7519
1da177e4
LT
7520/*
7521 * libata is essentially a library of internal helper functions for
7522 * low-level ATA host controller drivers. As such, the API/ABI is
7523 * likely to change as new drivers are added and updated.
7524 * Do not depend on ABI/API stability.
7525 */
e9c83914
TH
7526EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7527EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7528EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 7529EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7530EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
7531EXPORT_SYMBOL_GPL(ata_std_bios_param);
7532EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 7533EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7534EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7535EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 7536EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7537EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7538EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7539EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 7540EXPORT_SYMBOL_GPL(ata_sg_init);
9a1004d0 7541EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 7542EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7543EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 7544EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
7545EXPORT_SYMBOL_GPL(ata_tf_load);
7546EXPORT_SYMBOL_GPL(ata_tf_read);
7547EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7548EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 7549EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
7550EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7551EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
7552EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7553EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7554EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7555EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7556EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7557EXPORT_SYMBOL_GPL(ata_mode_string);
7558EXPORT_SYMBOL_GPL(ata_id_xfermask);
1da177e4
LT
7559EXPORT_SYMBOL_GPL(ata_check_status);
7560EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
7561EXPORT_SYMBOL_GPL(ata_exec_command);
7562EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 7563EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 7564EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 7565EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
7566EXPORT_SYMBOL_GPL(ata_data_xfer);
7567EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
31cc23b3 7568EXPORT_SYMBOL_GPL(ata_std_qc_defer);
1da177e4 7569EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 7570EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 7571EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
7572EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7573EXPORT_SYMBOL_GPL(ata_bmdma_start);
7574EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7575EXPORT_SYMBOL_GPL(ata_bmdma_status);
7576EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
7577EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7578EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7579EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7580EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7581EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 7582EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 7583EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7584EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
7585EXPORT_SYMBOL_GPL(sata_link_debounce);
7586EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4 7587EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7588EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7589EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7590EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7591EXPORT_SYMBOL_GPL(sata_std_hardreset);
7592EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7593EXPORT_SYMBOL_GPL(ata_dev_classify);
7594EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7595EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7596EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7597EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7598EXPORT_SYMBOL_GPL(ata_busy_sleep);
88ff6eaf 7599EXPORT_SYMBOL_GPL(ata_wait_after_reset);
d4b2bab4 7600EXPORT_SYMBOL_GPL(ata_wait_ready);
1da177e4
LT
7601EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7602EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7603EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7604EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7605EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7606EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7607EXPORT_SYMBOL_GPL(sata_scr_valid);
7608EXPORT_SYMBOL_GPL(sata_scr_read);
7609EXPORT_SYMBOL_GPL(sata_scr_write);
7610EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7611EXPORT_SYMBOL_GPL(ata_link_online);
7612EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7613#ifdef CONFIG_PM
cca3974e
JG
7614EXPORT_SYMBOL_GPL(ata_host_suspend);
7615EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7616#endif /* CONFIG_PM */
6a62a04d
TH
7617EXPORT_SYMBOL_GPL(ata_id_string);
7618EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
7619EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7620
1bc4ccff 7621EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 7622EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
7623EXPORT_SYMBOL_GPL(ata_timing_compute);
7624EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 7625EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 7626
1da177e4
LT
7627#ifdef CONFIG_PCI
7628EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7629EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7630EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7631EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
7632EXPORT_SYMBOL_GPL(ata_pci_init_one);
7633EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7634#ifdef CONFIG_PM
500530f6
TH
7635EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7636EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7637EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7638EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7639#endif /* CONFIG_PM */
67951ade
AC
7640EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7641EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7642#endif /* CONFIG_PCI */
9b847548 7643
31f88384 7644EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
3af9a77a
TH
7645EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7646EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7647EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7648EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7649
b64bbc39
TH
7650EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7651EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7652EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7653EXPORT_SYMBOL_GPL(ata_port_desc);
7654#ifdef CONFIG_PCI
7655EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7656#endif /* CONFIG_PCI */
7b70fc03 7657EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7658EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7659EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7660EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7661EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7662EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7663EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7664EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7665EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7666EXPORT_SYMBOL_GPL(ata_do_eh);
83625006 7667EXPORT_SYMBOL_GPL(ata_irq_on);
a619f981 7668EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7669
7670EXPORT_SYMBOL_GPL(ata_cable_40wire);
7671EXPORT_SYMBOL_GPL(ata_cable_80wire);
7672EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 7673EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 7674EXPORT_SYMBOL_GPL(ata_cable_sata);