ahci: Disable LPM on Lenovo 50 series laptops with a too old BIOS
[linux-block.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
8c3d3d4b 4 * Maintained by: Tejun Heo <tj@kernel.org>
af36d7f0
JG
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
19285f3c 28 * as Documentation/driver-api/libata.rst
af36d7f0
JG
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
848c3920 53#include <linux/time.h>
1da177e4
LT
54#include <linux/interrupt.h>
55#include <linux/completion.h>
56#include <linux/suspend.h>
57#include <linux/workqueue.h>
378f058c 58#include <linux/scatterlist.h>
2dcb407e 59#include <linux/io.h>
79318057 60#include <linux/async.h>
e18086d6 61#include <linux/log2.h>
5a0e3ad6 62#include <linux/slab.h>
428ac5fc 63#include <linux/glob.h>
1da177e4 64#include <scsi/scsi.h>
193515d5 65#include <scsi/scsi_cmnd.h>
1da177e4
LT
66#include <scsi/scsi_host.h>
67#include <linux/libata.h>
1da177e4 68#include <asm/byteorder.h>
fe5af0cc 69#include <asm/unaligned.h>
140b5e59 70#include <linux/cdrom.h>
9990b6f3 71#include <linux/ratelimit.h>
eb25cb99 72#include <linux/leds.h>
9ee4f393 73#include <linux/pm_runtime.h>
b7db04d9 74#include <linux/platform_device.h>
1da177e4 75
255c03d1
HR
76#define CREATE_TRACE_POINTS
77#include <trace/events/libata.h>
78
1da177e4 79#include "libata.h"
d9027470 80#include "libata-transport.h"
fda0efc5 81
d7bb4cc7 82/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
83const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
84const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
85const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 86
029cfd6b 87const struct ata_port_operations ata_base_port_ops = {
0aa1113d 88 .prereset = ata_std_prereset,
203c75b8 89 .postreset = ata_std_postreset,
a1efdaba 90 .error_handler = ata_std_error_handler,
e4a9c373
DW
91 .sched_eh = ata_std_sched_eh,
92 .end_eh = ata_std_end_eh,
029cfd6b
TH
93};
94
95const struct ata_port_operations sata_port_ops = {
96 .inherits = &ata_base_port_ops,
97
98 .qc_defer = ata_std_qc_defer,
57c9efdf 99 .hardreset = sata_std_hardreset,
029cfd6b
TH
100};
101
3373efd8
TH
102static unsigned int ata_dev_init_params(struct ata_device *dev,
103 u16 heads, u16 sectors);
104static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
105static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 106static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 107
a78f57af 108atomic_t ata_print_id = ATOMIC_INIT(0);
1da177e4 109
33267325
TH
110struct ata_force_param {
111 const char *name;
112 unsigned int cbl;
113 int spd_limit;
114 unsigned long xfer_mask;
115 unsigned int horkage_on;
116 unsigned int horkage_off;
05944bdf 117 unsigned int lflags;
33267325
TH
118};
119
120struct ata_force_ent {
121 int port;
122 int device;
123 struct ata_force_param param;
124};
125
126static struct ata_force_ent *ata_force_tbl;
127static int ata_force_tbl_size;
128
129static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
130/* param_buf is thrown away after initialization, disallow read */
131module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
8c27ceff 132MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
33267325 133
2486fa56 134static int atapi_enabled = 1;
1623c81e 135module_param(atapi_enabled, int, 0444);
ad5d8eac 136MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
1623c81e 137
c5c61bda 138static int atapi_dmadir = 0;
95de719a 139module_param(atapi_dmadir, int, 0444);
ad5d8eac 140MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
95de719a 141
baf4fdfa
ML
142int atapi_passthru16 = 1;
143module_param(atapi_passthru16, int, 0444);
ad5d8eac 144MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
baf4fdfa 145
c3c013a2
JG
146int libata_fua = 0;
147module_param_named(fua, libata_fua, int, 0444);
ad5d8eac 148MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
c3c013a2 149
2dcb407e 150static int ata_ignore_hpa;
1e999736
AC
151module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
152MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
153
b3a70601
AC
154static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
155module_param_named(dma, libata_dma_mask, int, 0444);
156MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
157
87fbc5a0 158static int ata_probe_timeout;
a8601e5f
AM
159module_param(ata_probe_timeout, int, 0444);
160MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
161
6ebe9d86 162int libata_noacpi = 0;
d7d0dad6 163module_param_named(noacpi, libata_noacpi, int, 0444);
ad5d8eac 164MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
11ef697b 165
ae8d4ee7
AC
166int libata_allow_tpm = 0;
167module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
ad5d8eac 168MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
ae8d4ee7 169
e7ecd435
TH
170static int atapi_an;
171module_param(atapi_an, int, 0444);
172MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
173
1da177e4
LT
174MODULE_AUTHOR("Jeff Garzik");
175MODULE_DESCRIPTION("Library module for ATA devices");
176MODULE_LICENSE("GPL");
177MODULE_VERSION(DRV_VERSION);
178
0baab86b 179
9913ff8a
TH
180static bool ata_sstatus_online(u32 sstatus)
181{
182 return (sstatus & 0xf) == 0x3;
183}
184
1eca4365
TH
185/**
186 * ata_link_next - link iteration helper
187 * @link: the previous link, NULL to start
188 * @ap: ATA port containing links to iterate
189 * @mode: iteration mode, one of ATA_LITER_*
190 *
191 * LOCKING:
192 * Host lock or EH context.
aadffb68 193 *
1eca4365
TH
194 * RETURNS:
195 * Pointer to the next link.
aadffb68 196 */
1eca4365
TH
197struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
198 enum ata_link_iter_mode mode)
aadffb68 199{
1eca4365
TH
200 BUG_ON(mode != ATA_LITER_EDGE &&
201 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
202
aadffb68 203 /* NULL link indicates start of iteration */
1eca4365
TH
204 if (!link)
205 switch (mode) {
206 case ATA_LITER_EDGE:
207 case ATA_LITER_PMP_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_HOST_FIRST:
212 return &ap->link;
213 }
aadffb68 214
1eca4365
TH
215 /* we just iterated over the host link, what's next? */
216 if (link == &ap->link)
217 switch (mode) {
218 case ATA_LITER_HOST_FIRST:
219 if (sata_pmp_attached(ap))
220 return ap->pmp_link;
221 /* fall through */
222 case ATA_LITER_PMP_FIRST:
223 if (unlikely(ap->slave_link))
b1c72916 224 return ap->slave_link;
1eca4365
TH
225 /* fall through */
226 case ATA_LITER_EDGE:
aadffb68 227 return NULL;
b1c72916 228 }
aadffb68 229
b1c72916
TH
230 /* slave_link excludes PMP */
231 if (unlikely(link == ap->slave_link))
232 return NULL;
233
1eca4365 234 /* we were over a PMP link */
aadffb68
TH
235 if (++link < ap->pmp_link + ap->nr_pmp_links)
236 return link;
1eca4365
TH
237
238 if (mode == ATA_LITER_PMP_FIRST)
239 return &ap->link;
240
aadffb68
TH
241 return NULL;
242}
243
1eca4365
TH
244/**
245 * ata_dev_next - device iteration helper
246 * @dev: the previous device, NULL to start
247 * @link: ATA link containing devices to iterate
248 * @mode: iteration mode, one of ATA_DITER_*
249 *
250 * LOCKING:
251 * Host lock or EH context.
252 *
253 * RETURNS:
254 * Pointer to the next device.
255 */
256struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
257 enum ata_dev_iter_mode mode)
258{
259 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
260 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
261
262 /* NULL dev indicates start of iteration */
263 if (!dev)
264 switch (mode) {
265 case ATA_DITER_ENABLED:
266 case ATA_DITER_ALL:
267 dev = link->device;
268 goto check;
269 case ATA_DITER_ENABLED_REVERSE:
270 case ATA_DITER_ALL_REVERSE:
271 dev = link->device + ata_link_max_devices(link) - 1;
272 goto check;
273 }
274
275 next:
276 /* move to the next one */
277 switch (mode) {
278 case ATA_DITER_ENABLED:
279 case ATA_DITER_ALL:
280 if (++dev < link->device + ata_link_max_devices(link))
281 goto check;
282 return NULL;
283 case ATA_DITER_ENABLED_REVERSE:
284 case ATA_DITER_ALL_REVERSE:
285 if (--dev >= link->device)
286 goto check;
287 return NULL;
288 }
289
290 check:
291 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
292 !ata_dev_enabled(dev))
293 goto next;
294 return dev;
295}
296
b1c72916
TH
297/**
298 * ata_dev_phys_link - find physical link for a device
299 * @dev: ATA device to look up physical link for
300 *
301 * Look up physical link which @dev is attached to. Note that
302 * this is different from @dev->link only when @dev is on slave
303 * link. For all other cases, it's the same as @dev->link.
304 *
305 * LOCKING:
306 * Don't care.
307 *
308 * RETURNS:
309 * Pointer to the found physical link.
310 */
311struct ata_link *ata_dev_phys_link(struct ata_device *dev)
312{
313 struct ata_port *ap = dev->link->ap;
314
315 if (!ap->slave_link)
316 return dev->link;
317 if (!dev->devno)
318 return &ap->link;
319 return ap->slave_link;
320}
321
33267325
TH
322/**
323 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 324 * @ap: ATA port of interest
33267325
TH
325 *
326 * Force cable type according to libata.force and whine about it.
327 * The last entry which has matching port number is used, so it
328 * can be specified as part of device force parameters. For
329 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
330 * same effect.
331 *
332 * LOCKING:
333 * EH context.
334 */
335void ata_force_cbl(struct ata_port *ap)
336{
337 int i;
338
339 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
340 const struct ata_force_ent *fe = &ata_force_tbl[i];
341
342 if (fe->port != -1 && fe->port != ap->print_id)
343 continue;
344
345 if (fe->param.cbl == ATA_CBL_NONE)
346 continue;
347
348 ap->cbl = fe->param.cbl;
a9a79dfe 349 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
33267325
TH
350 return;
351 }
352}
353
354/**
05944bdf 355 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
356 * @link: ATA link of interest
357 *
05944bdf
TH
358 * Force link flags and SATA spd limit according to libata.force
359 * and whine about it. When only the port part is specified
360 * (e.g. 1:), the limit applies to all links connected to both
361 * the host link and all fan-out ports connected via PMP. If the
362 * device part is specified as 0 (e.g. 1.00:), it specifies the
363 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
364 * points to the host link whether PMP is attached or not. If the
365 * controller has slave link, device number 16 points to it.
33267325
TH
366 *
367 * LOCKING:
368 * EH context.
369 */
05944bdf 370static void ata_force_link_limits(struct ata_link *link)
33267325 371{
05944bdf 372 bool did_spd = false;
b1c72916
TH
373 int linkno = link->pmp;
374 int i;
33267325
TH
375
376 if (ata_is_host_link(link))
b1c72916 377 linkno += 15;
33267325
TH
378
379 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
380 const struct ata_force_ent *fe = &ata_force_tbl[i];
381
382 if (fe->port != -1 && fe->port != link->ap->print_id)
383 continue;
384
385 if (fe->device != -1 && fe->device != linkno)
386 continue;
387
05944bdf
TH
388 /* only honor the first spd limit */
389 if (!did_spd && fe->param.spd_limit) {
390 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
a9a79dfe 391 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
05944bdf
TH
392 fe->param.name);
393 did_spd = true;
394 }
33267325 395
05944bdf
TH
396 /* let lflags stack */
397 if (fe->param.lflags) {
398 link->flags |= fe->param.lflags;
a9a79dfe 399 ata_link_notice(link,
05944bdf
TH
400 "FORCE: link flag 0x%x forced -> 0x%x\n",
401 fe->param.lflags, link->flags);
402 }
33267325
TH
403 }
404}
405
406/**
407 * ata_force_xfermask - force xfermask according to libata.force
408 * @dev: ATA device of interest
409 *
410 * Force xfer_mask according to libata.force and whine about it.
411 * For consistency with link selection, device number 15 selects
412 * the first device connected to the host link.
413 *
414 * LOCKING:
415 * EH context.
416 */
417static void ata_force_xfermask(struct ata_device *dev)
418{
419 int devno = dev->link->pmp + dev->devno;
420 int alt_devno = devno;
421 int i;
422
b1c72916
TH
423 /* allow n.15/16 for devices attached to host port */
424 if (ata_is_host_link(dev->link))
425 alt_devno += 15;
33267325
TH
426
427 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
428 const struct ata_force_ent *fe = &ata_force_tbl[i];
429 unsigned long pio_mask, mwdma_mask, udma_mask;
430
431 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
432 continue;
433
434 if (fe->device != -1 && fe->device != devno &&
435 fe->device != alt_devno)
436 continue;
437
438 if (!fe->param.xfer_mask)
439 continue;
440
441 ata_unpack_xfermask(fe->param.xfer_mask,
442 &pio_mask, &mwdma_mask, &udma_mask);
443 if (udma_mask)
444 dev->udma_mask = udma_mask;
445 else if (mwdma_mask) {
446 dev->udma_mask = 0;
447 dev->mwdma_mask = mwdma_mask;
448 } else {
449 dev->udma_mask = 0;
450 dev->mwdma_mask = 0;
451 dev->pio_mask = pio_mask;
452 }
453
a9a79dfe
JP
454 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
455 fe->param.name);
33267325
TH
456 return;
457 }
458}
459
460/**
461 * ata_force_horkage - force horkage according to libata.force
462 * @dev: ATA device of interest
463 *
464 * Force horkage according to libata.force and whine about it.
465 * For consistency with link selection, device number 15 selects
466 * the first device connected to the host link.
467 *
468 * LOCKING:
469 * EH context.
470 */
471static void ata_force_horkage(struct ata_device *dev)
472{
473 int devno = dev->link->pmp + dev->devno;
474 int alt_devno = devno;
475 int i;
476
b1c72916
TH
477 /* allow n.15/16 for devices attached to host port */
478 if (ata_is_host_link(dev->link))
479 alt_devno += 15;
33267325
TH
480
481 for (i = 0; i < ata_force_tbl_size; i++) {
482 const struct ata_force_ent *fe = &ata_force_tbl[i];
483
484 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
485 continue;
486
487 if (fe->device != -1 && fe->device != devno &&
488 fe->device != alt_devno)
489 continue;
490
491 if (!(~dev->horkage & fe->param.horkage_on) &&
492 !(dev->horkage & fe->param.horkage_off))
493 continue;
494
495 dev->horkage |= fe->param.horkage_on;
496 dev->horkage &= ~fe->param.horkage_off;
497
a9a79dfe
JP
498 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
499 fe->param.name);
33267325
TH
500 }
501}
502
436d34b3
TH
503/**
504 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505 * @opcode: SCSI opcode
506 *
507 * Determine ATAPI command type from @opcode.
508 *
509 * LOCKING:
510 * None.
511 *
512 * RETURNS:
513 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
514 */
515int atapi_cmd_type(u8 opcode)
516{
517 switch (opcode) {
518 case GPCMD_READ_10:
519 case GPCMD_READ_12:
520 return ATAPI_READ;
521
522 case GPCMD_WRITE_10:
523 case GPCMD_WRITE_12:
524 case GPCMD_WRITE_AND_VERIFY_10:
525 return ATAPI_WRITE;
526
527 case GPCMD_READ_CD:
528 case GPCMD_READ_CD_MSF:
529 return ATAPI_READ_CD;
530
e52dcc48
TH
531 case ATA_16:
532 case ATA_12:
533 if (atapi_passthru16)
534 return ATAPI_PASS_THRU;
535 /* fall thru */
436d34b3
TH
536 default:
537 return ATAPI_MISC;
538 }
539}
540
1da177e4
LT
541/**
542 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543 * @tf: Taskfile to convert
1da177e4 544 * @pmp: Port multiplier port
9977126c
TH
545 * @is_cmd: This FIS is for command
546 * @fis: Buffer into which data will output
1da177e4
LT
547 *
548 * Converts a standard ATA taskfile to a Serial ATA
549 * FIS structure (Register - Host to Device).
550 *
551 * LOCKING:
552 * Inherited from caller.
553 */
9977126c 554void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 555{
9977126c
TH
556 fis[0] = 0x27; /* Register - Host to Device FIS */
557 fis[1] = pmp & 0xf; /* Port multiplier number*/
558 if (is_cmd)
559 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
560
1da177e4
LT
561 fis[2] = tf->command;
562 fis[3] = tf->feature;
563
564 fis[4] = tf->lbal;
565 fis[5] = tf->lbam;
566 fis[6] = tf->lbah;
567 fis[7] = tf->device;
568
569 fis[8] = tf->hob_lbal;
570 fis[9] = tf->hob_lbam;
571 fis[10] = tf->hob_lbah;
572 fis[11] = tf->hob_feature;
573
574 fis[12] = tf->nsect;
575 fis[13] = tf->hob_nsect;
576 fis[14] = 0;
577 fis[15] = tf->ctl;
578
86a565e6
MC
579 fis[16] = tf->auxiliary & 0xff;
580 fis[17] = (tf->auxiliary >> 8) & 0xff;
581 fis[18] = (tf->auxiliary >> 16) & 0xff;
582 fis[19] = (tf->auxiliary >> 24) & 0xff;
1da177e4
LT
583}
584
585/**
586 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587 * @fis: Buffer from which data will be input
588 * @tf: Taskfile to output
589 *
e12a1be6 590 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
591 *
592 * LOCKING:
593 * Inherited from caller.
594 */
595
057ace5e 596void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
597{
598 tf->command = fis[2]; /* status */
599 tf->feature = fis[3]; /* error */
600
601 tf->lbal = fis[4];
602 tf->lbam = fis[5];
603 tf->lbah = fis[6];
604 tf->device = fis[7];
605
606 tf->hob_lbal = fis[8];
607 tf->hob_lbam = fis[9];
608 tf->hob_lbah = fis[10];
609
610 tf->nsect = fis[12];
611 tf->hob_nsect = fis[13];
612}
613
8cbd6df1
AL
614static const u8 ata_rw_cmds[] = {
615 /* pio multi */
616 ATA_CMD_READ_MULTI,
617 ATA_CMD_WRITE_MULTI,
618 ATA_CMD_READ_MULTI_EXT,
619 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
620 0,
621 0,
622 0,
623 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
624 /* pio */
625 ATA_CMD_PIO_READ,
626 ATA_CMD_PIO_WRITE,
627 ATA_CMD_PIO_READ_EXT,
628 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
629 0,
630 0,
631 0,
632 0,
8cbd6df1
AL
633 /* dma */
634 ATA_CMD_READ,
635 ATA_CMD_WRITE,
636 ATA_CMD_READ_EXT,
9a3dccc4
TH
637 ATA_CMD_WRITE_EXT,
638 0,
639 0,
640 0,
641 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 642};
1da177e4
LT
643
644/**
8cbd6df1 645 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
646 * @tf: command to examine and configure
647 * @dev: device tf belongs to
1da177e4 648 *
2e9edbf8 649 * Examine the device configuration and tf->flags to calculate
8cbd6df1 650 * the proper read/write commands and protocol to use.
1da177e4
LT
651 *
652 * LOCKING:
653 * caller.
654 */
bd056d7e 655static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 656{
9a3dccc4 657 u8 cmd;
1da177e4 658
9a3dccc4 659 int index, fua, lba48, write;
2e9edbf8 660
9a3dccc4 661 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
662 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
663 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 664
8cbd6df1
AL
665 if (dev->flags & ATA_DFLAG_PIO) {
666 tf->protocol = ATA_PROT_PIO;
9a3dccc4 667 index = dev->multi_count ? 0 : 8;
9af5c9c9 668 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
669 /* Unable to use DMA due to host limitation */
670 tf->protocol = ATA_PROT_PIO;
0565c26d 671 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
672 } else {
673 tf->protocol = ATA_PROT_DMA;
9a3dccc4 674 index = 16;
8cbd6df1 675 }
1da177e4 676
9a3dccc4
TH
677 cmd = ata_rw_cmds[index + fua + lba48 + write];
678 if (cmd) {
679 tf->command = cmd;
680 return 0;
681 }
682 return -1;
1da177e4
LT
683}
684
35b649fe
TH
685/**
686 * ata_tf_read_block - Read block address from ATA taskfile
687 * @tf: ATA taskfile of interest
688 * @dev: ATA device @tf belongs to
689 *
690 * LOCKING:
691 * None.
692 *
693 * Read block address from @tf. This function can handle all
694 * three address formats - LBA, LBA48 and CHS. tf->protocol and
695 * flags select the address format to use.
696 *
697 * RETURNS:
698 * Block address read from @tf.
699 */
cffd1ee9 700u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
35b649fe
TH
701{
702 u64 block = 0;
703
fe16d4f2 704 if (tf->flags & ATA_TFLAG_LBA) {
35b649fe
TH
705 if (tf->flags & ATA_TFLAG_LBA48) {
706 block |= (u64)tf->hob_lbah << 40;
707 block |= (u64)tf->hob_lbam << 32;
44901a96 708 block |= (u64)tf->hob_lbal << 24;
35b649fe
TH
709 } else
710 block |= (tf->device & 0xf) << 24;
711
712 block |= tf->lbah << 16;
713 block |= tf->lbam << 8;
714 block |= tf->lbal;
715 } else {
716 u32 cyl, head, sect;
717
718 cyl = tf->lbam | (tf->lbah << 8);
719 head = tf->device & 0xf;
720 sect = tf->lbal;
721
ac8672ea 722 if (!sect) {
a9a79dfe
JP
723 ata_dev_warn(dev,
724 "device reported invalid CHS sector 0\n");
cffd1ee9 725 return U64_MAX;
ac8672ea
TH
726 }
727
728 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
35b649fe
TH
729 }
730
731 return block;
732}
733
bd056d7e
TH
734/**
735 * ata_build_rw_tf - Build ATA taskfile for given read/write request
736 * @tf: Target ATA taskfile
737 * @dev: ATA device @tf belongs to
738 * @block: Block address
739 * @n_block: Number of blocks
740 * @tf_flags: RW/FUA etc...
741 * @tag: tag
8e061784 742 * @class: IO priority class
bd056d7e
TH
743 *
744 * LOCKING:
745 * None.
746 *
747 * Build ATA taskfile @tf for read/write request described by
748 * @block, @n_block, @tf_flags and @tag on @dev.
749 *
750 * RETURNS:
751 *
752 * 0 on success, -ERANGE if the request is too large for @dev,
753 * -EINVAL if the request is invalid.
754 */
755int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
756 u64 block, u32 n_block, unsigned int tf_flags,
8e061784 757 unsigned int tag, int class)
bd056d7e
TH
758{
759 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
760 tf->flags |= tf_flags;
761
2e2cc676 762 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
bd056d7e
TH
763 /* yay, NCQ */
764 if (!lba_48_ok(block, n_block))
765 return -ERANGE;
766
767 tf->protocol = ATA_PROT_NCQ;
768 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
769
770 if (tf->flags & ATA_TFLAG_WRITE)
771 tf->command = ATA_CMD_FPDMA_WRITE;
772 else
773 tf->command = ATA_CMD_FPDMA_READ;
774
775 tf->nsect = tag << 3;
776 tf->hob_feature = (n_block >> 8) & 0xff;
777 tf->feature = n_block & 0xff;
778
779 tf->hob_lbah = (block >> 40) & 0xff;
780 tf->hob_lbam = (block >> 32) & 0xff;
781 tf->hob_lbal = (block >> 24) & 0xff;
782 tf->lbah = (block >> 16) & 0xff;
783 tf->lbam = (block >> 8) & 0xff;
784 tf->lbal = block & 0xff;
785
9ca7cfa4 786 tf->device = ATA_LBA;
bd056d7e
TH
787 if (tf->flags & ATA_TFLAG_FUA)
788 tf->device |= 1 << 7;
8e061784 789
9f56eca3 790 if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
8e061784
AM
791 if (class == IOPRIO_CLASS_RT)
792 tf->hob_nsect |= ATA_PRIO_HIGH <<
793 ATA_SHIFT_PRIO;
794 }
bd056d7e
TH
795 } else if (dev->flags & ATA_DFLAG_LBA) {
796 tf->flags |= ATA_TFLAG_LBA;
797
798 if (lba_28_ok(block, n_block)) {
799 /* use LBA28 */
800 tf->device |= (block >> 24) & 0xf;
801 } else if (lba_48_ok(block, n_block)) {
802 if (!(dev->flags & ATA_DFLAG_LBA48))
803 return -ERANGE;
804
805 /* use LBA48 */
806 tf->flags |= ATA_TFLAG_LBA48;
807
808 tf->hob_nsect = (n_block >> 8) & 0xff;
809
810 tf->hob_lbah = (block >> 40) & 0xff;
811 tf->hob_lbam = (block >> 32) & 0xff;
812 tf->hob_lbal = (block >> 24) & 0xff;
813 } else
814 /* request too large even for LBA48 */
815 return -ERANGE;
816
817 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
818 return -EINVAL;
819
820 tf->nsect = n_block & 0xff;
821
822 tf->lbah = (block >> 16) & 0xff;
823 tf->lbam = (block >> 8) & 0xff;
824 tf->lbal = block & 0xff;
825
826 tf->device |= ATA_LBA;
827 } else {
828 /* CHS */
829 u32 sect, head, cyl, track;
830
831 /* The request -may- be too large for CHS addressing. */
832 if (!lba_28_ok(block, n_block))
833 return -ERANGE;
834
835 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
836 return -EINVAL;
837
838 /* Convert LBA to CHS */
839 track = (u32)block / dev->sectors;
840 cyl = track / dev->heads;
841 head = track % dev->heads;
842 sect = (u32)block % dev->sectors + 1;
843
844 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
845 (u32)block, track, cyl, head, sect);
846
847 /* Check whether the converted CHS can fit.
848 Cylinder: 0-65535
849 Head: 0-15
850 Sector: 1-255*/
851 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
852 return -ERANGE;
853
854 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
855 tf->lbal = sect;
856 tf->lbam = cyl;
857 tf->lbah = cyl >> 8;
858 tf->device |= head;
859 }
860
861 return 0;
862}
863
cb95d562
TH
864/**
865 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
866 * @pio_mask: pio_mask
867 * @mwdma_mask: mwdma_mask
868 * @udma_mask: udma_mask
869 *
870 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
871 * unsigned int xfer_mask.
872 *
873 * LOCKING:
874 * None.
875 *
876 * RETURNS:
877 * Packed xfer_mask.
878 */
7dc951ae
TH
879unsigned long ata_pack_xfermask(unsigned long pio_mask,
880 unsigned long mwdma_mask,
881 unsigned long udma_mask)
cb95d562
TH
882{
883 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
884 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
885 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
886}
887
c0489e4e
TH
888/**
889 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
890 * @xfer_mask: xfer_mask to unpack
891 * @pio_mask: resulting pio_mask
892 * @mwdma_mask: resulting mwdma_mask
893 * @udma_mask: resulting udma_mask
894 *
895 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
c9b5560a 896 * Any NULL destination masks will be ignored.
c0489e4e 897 */
7dc951ae
TH
898void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
899 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
900{
901 if (pio_mask)
902 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
903 if (mwdma_mask)
904 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
905 if (udma_mask)
906 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
907}
908
cb95d562 909static const struct ata_xfer_ent {
be9a50c8 910 int shift, bits;
cb95d562
TH
911 u8 base;
912} ata_xfer_tbl[] = {
70cd071e
TH
913 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
914 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
915 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
916 { -1, },
917};
918
919/**
920 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
921 * @xfer_mask: xfer_mask of interest
922 *
923 * Return matching XFER_* value for @xfer_mask. Only the highest
924 * bit of @xfer_mask is considered.
925 *
926 * LOCKING:
927 * None.
928 *
929 * RETURNS:
70cd071e 930 * Matching XFER_* value, 0xff if no match found.
cb95d562 931 */
7dc951ae 932u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
933{
934 int highbit = fls(xfer_mask) - 1;
935 const struct ata_xfer_ent *ent;
936
937 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
938 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
939 return ent->base + highbit - ent->shift;
70cd071e 940 return 0xff;
cb95d562
TH
941}
942
943/**
944 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
945 * @xfer_mode: XFER_* of interest
946 *
947 * Return matching xfer_mask for @xfer_mode.
948 *
949 * LOCKING:
950 * None.
951 *
952 * RETURNS:
953 * Matching xfer_mask, 0 if no match found.
954 */
7dc951ae 955unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
956{
957 const struct ata_xfer_ent *ent;
958
959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
961 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
962 & ~((1 << ent->shift) - 1);
cb95d562
TH
963 return 0;
964}
965
966/**
967 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
968 * @xfer_mode: XFER_* of interest
969 *
970 * Return matching xfer_shift for @xfer_mode.
971 *
972 * LOCKING:
973 * None.
974 *
975 * RETURNS:
976 * Matching xfer_shift, -1 if no match found.
977 */
7dc951ae 978int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
979{
980 const struct ata_xfer_ent *ent;
981
982 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
983 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
984 return ent->shift;
985 return -1;
986}
987
1da177e4 988/**
1da7b0d0
TH
989 * ata_mode_string - convert xfer_mask to string
990 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
991 *
992 * Determine string which represents the highest speed
1da7b0d0 993 * (highest bit in @modemask).
1da177e4
LT
994 *
995 * LOCKING:
996 * None.
997 *
998 * RETURNS:
999 * Constant C string representing highest speed listed in
1da7b0d0 1000 * @mode_mask, or the constant C string "<n/a>".
1da177e4 1001 */
7dc951ae 1002const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 1003{
75f554bc
TH
1004 static const char * const xfer_mode_str[] = {
1005 "PIO0",
1006 "PIO1",
1007 "PIO2",
1008 "PIO3",
1009 "PIO4",
b352e57d
AC
1010 "PIO5",
1011 "PIO6",
75f554bc
TH
1012 "MWDMA0",
1013 "MWDMA1",
1014 "MWDMA2",
b352e57d
AC
1015 "MWDMA3",
1016 "MWDMA4",
75f554bc
TH
1017 "UDMA/16",
1018 "UDMA/25",
1019 "UDMA/33",
1020 "UDMA/44",
1021 "UDMA/66",
1022 "UDMA/100",
1023 "UDMA/133",
1024 "UDMA7",
1025 };
1da7b0d0 1026 int highbit;
1da177e4 1027
1da7b0d0
TH
1028 highbit = fls(xfer_mask) - 1;
1029 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1030 return xfer_mode_str[highbit];
1da177e4 1031 return "<n/a>";
1da177e4
LT
1032}
1033
d9027470 1034const char *sata_spd_string(unsigned int spd)
4c360c81
TH
1035{
1036 static const char * const spd_str[] = {
1037 "1.5 Gbps",
1038 "3.0 Gbps",
8522ee25 1039 "6.0 Gbps",
4c360c81
TH
1040 };
1041
1042 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1043 return "<unknown>";
1044 return spd_str[spd - 1];
1045}
1046
1da177e4
LT
1047/**
1048 * ata_dev_classify - determine device type based on ATA-spec signature
1049 * @tf: ATA taskfile register set for device to be identified
1050 *
1051 * Determine from taskfile register contents whether a device is
1052 * ATA or ATAPI, as per "Signature and persistence" section
1053 * of ATA/PI spec (volume 1, sect 5.14).
1054 *
1055 * LOCKING:
1056 * None.
1057 *
1058 * RETURNS:
9162c657
HR
1059 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1060 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1061 */
057ace5e 1062unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1063{
1064 /* Apple's open source Darwin code hints that some devices only
1065 * put a proper signature into the LBA mid/high registers,
1066 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1067 *
1068 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1069 * signatures for ATA and ATAPI devices attached on SerialATA,
1070 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1071 * spec has never mentioned about using different signatures
1072 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1073 * Multiplier specification began to use 0x69/0x96 to identify
1074 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1075 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1076 * 0x69/0x96 shortly and described them as reserved for
1077 * SerialATA.
1078 *
1079 * We follow the current spec and consider that 0x69/0x96
1080 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
79b42bab
TH
1081 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1082 * SEMB signature. This is worked around in
1083 * ata_dev_read_id().
1da177e4 1084 */
633273a3 1085 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1086 DPRINTK("found ATA device by sig\n");
1087 return ATA_DEV_ATA;
1088 }
1089
633273a3 1090 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1091 DPRINTK("found ATAPI device by sig\n");
1092 return ATA_DEV_ATAPI;
1093 }
1094
633273a3
TH
1095 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1096 DPRINTK("found PMP device by sig\n");
1097 return ATA_DEV_PMP;
1098 }
1099
1100 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
79b42bab
TH
1101 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1102 return ATA_DEV_SEMB;
633273a3
TH
1103 }
1104
9162c657
HR
1105 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1106 DPRINTK("found ZAC device by sig\n");
1107 return ATA_DEV_ZAC;
1108 }
1109
1da177e4
LT
1110 DPRINTK("unknown device\n");
1111 return ATA_DEV_UNKNOWN;
1112}
1113
1da177e4 1114/**
6a62a04d 1115 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1116 * @id: IDENTIFY DEVICE results we will examine
1117 * @s: string into which data is output
1118 * @ofs: offset into identify device page
1119 * @len: length of string to return. must be an even number.
1120 *
1121 * The strings in the IDENTIFY DEVICE page are broken up into
1122 * 16-bit chunks. Run through the string, and output each
1123 * 8-bit chunk linearly, regardless of platform.
1124 *
1125 * LOCKING:
1126 * caller.
1127 */
1128
6a62a04d
TH
1129void ata_id_string(const u16 *id, unsigned char *s,
1130 unsigned int ofs, unsigned int len)
1da177e4
LT
1131{
1132 unsigned int c;
1133
963e4975
AC
1134 BUG_ON(len & 1);
1135
1da177e4
LT
1136 while (len > 0) {
1137 c = id[ofs] >> 8;
1138 *s = c;
1139 s++;
1140
1141 c = id[ofs] & 0xff;
1142 *s = c;
1143 s++;
1144
1145 ofs++;
1146 len -= 2;
1147 }
1148}
1149
0e949ff3 1150/**
6a62a04d 1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1152 * @id: IDENTIFY DEVICE results we will examine
1153 * @s: string into which data is output
1154 * @ofs: offset into identify device page
1155 * @len: length of string to return. must be an odd number.
1156 *
6a62a04d 1157 * This function is identical to ata_id_string except that it
0e949ff3
TH
1158 * trims trailing spaces and terminates the resulting string with
1159 * null. @len must be actual maximum length (even number) + 1.
1160 *
1161 * LOCKING:
1162 * caller.
1163 */
6a62a04d
TH
1164void ata_id_c_string(const u16 *id, unsigned char *s,
1165 unsigned int ofs, unsigned int len)
0e949ff3
TH
1166{
1167 unsigned char *p;
1168
6a62a04d 1169 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1170
1171 p = s + strnlen(s, len - 1);
1172 while (p > s && p[-1] == ' ')
1173 p--;
1174 *p = '\0';
1175}
0baab86b 1176
db6f8759
TH
1177static u64 ata_id_n_sectors(const u16 *id)
1178{
1179 if (ata_id_has_lba(id)) {
1180 if (ata_id_has_lba48(id))
968e594a 1181 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
db6f8759 1182 else
968e594a 1183 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
db6f8759
TH
1184 } else {
1185 if (ata_id_current_chs_valid(id))
968e594a
RH
1186 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1187 id[ATA_ID_CUR_SECTORS];
db6f8759 1188 else
968e594a
RH
1189 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1190 id[ATA_ID_SECTORS];
db6f8759
TH
1191 }
1192}
1193
a5987e0a 1194u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1195{
1196 u64 sectors = 0;
1197
1198 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
ba14a9c2 1200 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1e999736
AC
1201 sectors |= (tf->lbah & 0xff) << 16;
1202 sectors |= (tf->lbam & 0xff) << 8;
1203 sectors |= (tf->lbal & 0xff);
1204
a5987e0a 1205 return sectors;
1e999736
AC
1206}
1207
a5987e0a 1208u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1209{
1210 u64 sectors = 0;
1211
1212 sectors |= (tf->device & 0x0f) << 24;
1213 sectors |= (tf->lbah & 0xff) << 16;
1214 sectors |= (tf->lbam & 0xff) << 8;
1215 sectors |= (tf->lbal & 0xff);
1216
a5987e0a 1217 return sectors;
1e999736
AC
1218}
1219
1220/**
c728a914
TH
1221 * ata_read_native_max_address - Read native max address
1222 * @dev: target device
1223 * @max_sectors: out parameter for the result native max address
1e999736 1224 *
c728a914
TH
1225 * Perform an LBA48 or LBA28 native size query upon the device in
1226 * question.
1e999736 1227 *
c728a914
TH
1228 * RETURNS:
1229 * 0 on success, -EACCES if command is aborted by the drive.
1230 * -EIO on other errors.
1e999736 1231 */
c728a914 1232static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1233{
c728a914 1234 unsigned int err_mask;
1e999736 1235 struct ata_taskfile tf;
c728a914 1236 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1237
1238 ata_tf_init(dev, &tf);
1239
c728a914 1240 /* always clear all address registers */
1e999736 1241 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1242
c728a914
TH
1243 if (lba48) {
1244 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245 tf.flags |= ATA_TFLAG_LBA48;
1246 } else
1247 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1248
bd18bc04 1249 tf.protocol = ATA_PROT_NODATA;
c728a914
TH
1250 tf.device |= ATA_LBA;
1251
2b789108 1252 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1253 if (err_mask) {
a9a79dfe
JP
1254 ata_dev_warn(dev,
1255 "failed to read native max address (err_mask=0x%x)\n",
1256 err_mask);
c728a914
TH
1257 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1258 return -EACCES;
1259 return -EIO;
1260 }
1e999736 1261
c728a914 1262 if (lba48)
a5987e0a 1263 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1264 else
a5987e0a 1265 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1266 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1267 (*max_sectors)--;
c728a914 1268 return 0;
1e999736
AC
1269}
1270
1271/**
c728a914
TH
1272 * ata_set_max_sectors - Set max sectors
1273 * @dev: target device
6b38d1d1 1274 * @new_sectors: new max sectors value to set for the device
1e999736 1275 *
c728a914
TH
1276 * Set max sectors of @dev to @new_sectors.
1277 *
1278 * RETURNS:
1279 * 0 on success, -EACCES if command is aborted or denied (due to
1280 * previous non-volatile SET_MAX) by the drive. -EIO on other
1281 * errors.
1e999736 1282 */
05027adc 1283static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1284{
c728a914 1285 unsigned int err_mask;
1e999736 1286 struct ata_taskfile tf;
c728a914 1287 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1288
1289 new_sectors--;
1290
1291 ata_tf_init(dev, &tf);
1292
1e999736 1293 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1294
1295 if (lba48) {
1296 tf.command = ATA_CMD_SET_MAX_EXT;
1297 tf.flags |= ATA_TFLAG_LBA48;
1298
1299 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1300 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1301 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1302 } else {
c728a914
TH
1303 tf.command = ATA_CMD_SET_MAX;
1304
1e582ba4
TH
1305 tf.device |= (new_sectors >> 24) & 0xf;
1306 }
1307
bd18bc04 1308 tf.protocol = ATA_PROT_NODATA;
c728a914 1309 tf.device |= ATA_LBA;
1e999736
AC
1310
1311 tf.lbal = (new_sectors >> 0) & 0xff;
1312 tf.lbam = (new_sectors >> 8) & 0xff;
1313 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1314
2b789108 1315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1316 if (err_mask) {
a9a79dfe
JP
1317 ata_dev_warn(dev,
1318 "failed to set max address (err_mask=0x%x)\n",
1319 err_mask);
c728a914
TH
1320 if (err_mask == AC_ERR_DEV &&
1321 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1322 return -EACCES;
1323 return -EIO;
1324 }
1325
c728a914 1326 return 0;
1e999736
AC
1327}
1328
1329/**
1330 * ata_hpa_resize - Resize a device with an HPA set
1331 * @dev: Device to resize
1332 *
1333 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1334 * it if required to the full size of the media. The caller must check
1335 * the drive has the HPA feature set enabled.
05027adc
TH
1336 *
1337 * RETURNS:
1338 * 0 on success, -errno on failure.
1e999736 1339 */
05027adc 1340static int ata_hpa_resize(struct ata_device *dev)
1e999736 1341{
05027adc
TH
1342 struct ata_eh_context *ehc = &dev->link->eh_context;
1343 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
445d211b 1344 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
05027adc
TH
1345 u64 sectors = ata_id_n_sectors(dev->id);
1346 u64 native_sectors;
c728a914 1347 int rc;
a617c09f 1348
05027adc 1349 /* do we need to do it? */
9162c657 1350 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
05027adc
TH
1351 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1352 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1353 return 0;
1e999736 1354
05027adc
TH
1355 /* read native max address */
1356 rc = ata_read_native_max_address(dev, &native_sectors);
1357 if (rc) {
dda7aba1
TH
1358 /* If device aborted the command or HPA isn't going to
1359 * be unlocked, skip HPA resizing.
05027adc 1360 */
445d211b 1361 if (rc == -EACCES || !unlock_hpa) {
a9a79dfe
JP
1362 ata_dev_warn(dev,
1363 "HPA support seems broken, skipping HPA handling\n");
05027adc
TH
1364 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1365
1366 /* we can continue if device aborted the command */
1367 if (rc == -EACCES)
1368 rc = 0;
1e999736 1369 }
37301a55 1370
05027adc
TH
1371 return rc;
1372 }
5920dadf 1373 dev->n_native_sectors = native_sectors;
05027adc
TH
1374
1375 /* nothing to do? */
445d211b 1376 if (native_sectors <= sectors || !unlock_hpa) {
05027adc
TH
1377 if (!print_info || native_sectors == sectors)
1378 return 0;
1379
1380 if (native_sectors > sectors)
a9a79dfe 1381 ata_dev_info(dev,
05027adc
TH
1382 "HPA detected: current %llu, native %llu\n",
1383 (unsigned long long)sectors,
1384 (unsigned long long)native_sectors);
1385 else if (native_sectors < sectors)
a9a79dfe
JP
1386 ata_dev_warn(dev,
1387 "native sectors (%llu) is smaller than sectors (%llu)\n",
05027adc
TH
1388 (unsigned long long)native_sectors,
1389 (unsigned long long)sectors);
1390 return 0;
1391 }
1392
1393 /* let's unlock HPA */
1394 rc = ata_set_max_sectors(dev, native_sectors);
1395 if (rc == -EACCES) {
1396 /* if device aborted the command, skip HPA resizing */
a9a79dfe
JP
1397 ata_dev_warn(dev,
1398 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1399 (unsigned long long)sectors,
1400 (unsigned long long)native_sectors);
05027adc
TH
1401 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1402 return 0;
1403 } else if (rc)
1404 return rc;
1405
1406 /* re-read IDENTIFY data */
1407 rc = ata_dev_reread_id(dev, 0);
1408 if (rc) {
a9a79dfe
JP
1409 ata_dev_err(dev,
1410 "failed to re-read IDENTIFY data after HPA resizing\n");
05027adc
TH
1411 return rc;
1412 }
1413
1414 if (print_info) {
1415 u64 new_sectors = ata_id_n_sectors(dev->id);
a9a79dfe 1416 ata_dev_info(dev,
05027adc
TH
1417 "HPA unlocked: %llu -> %llu, native %llu\n",
1418 (unsigned long long)sectors,
1419 (unsigned long long)new_sectors,
1420 (unsigned long long)native_sectors);
1421 }
1422
1423 return 0;
1e999736
AC
1424}
1425
1da177e4
LT
1426/**
1427 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1428 * @id: IDENTIFY DEVICE page to dump
1da177e4 1429 *
0bd3300a
TH
1430 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1431 * page.
1da177e4
LT
1432 *
1433 * LOCKING:
1434 * caller.
1435 */
1436
0bd3300a 1437static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1438{
1439 DPRINTK("49==0x%04x "
1440 "53==0x%04x "
1441 "63==0x%04x "
1442 "64==0x%04x "
1443 "75==0x%04x \n",
0bd3300a
TH
1444 id[49],
1445 id[53],
1446 id[63],
1447 id[64],
1448 id[75]);
1da177e4
LT
1449 DPRINTK("80==0x%04x "
1450 "81==0x%04x "
1451 "82==0x%04x "
1452 "83==0x%04x "
1453 "84==0x%04x \n",
0bd3300a
TH
1454 id[80],
1455 id[81],
1456 id[82],
1457 id[83],
1458 id[84]);
1da177e4
LT
1459 DPRINTK("88==0x%04x "
1460 "93==0x%04x\n",
0bd3300a
TH
1461 id[88],
1462 id[93]);
1da177e4
LT
1463}
1464
cb95d562
TH
1465/**
1466 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1467 * @id: IDENTIFY data to compute xfer mask from
1468 *
1469 * Compute the xfermask for this device. This is not as trivial
1470 * as it seems if we must consider early devices correctly.
1471 *
1472 * FIXME: pre IDE drive timing (do we care ?).
1473 *
1474 * LOCKING:
1475 * None.
1476 *
1477 * RETURNS:
1478 * Computed xfermask
1479 */
7dc951ae 1480unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1481{
7dc951ae 1482 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1483
1484 /* Usual case. Word 53 indicates word 64 is valid */
1485 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1486 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1487 pio_mask <<= 3;
1488 pio_mask |= 0x7;
1489 } else {
1490 /* If word 64 isn't valid then Word 51 high byte holds
1491 * the PIO timing number for the maximum. Turn it into
1492 * a mask.
1493 */
7a0f1c8a 1494 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1495 if (mode < 5) /* Valid PIO range */
2dcb407e 1496 pio_mask = (2 << mode) - 1;
46767aeb
AC
1497 else
1498 pio_mask = 1;
cb95d562
TH
1499
1500 /* But wait.. there's more. Design your standards by
1501 * committee and you too can get a free iordy field to
1502 * process. However its the speeds not the modes that
1503 * are supported... Note drivers using the timing API
1504 * will get this right anyway
1505 */
1506 }
1507
1508 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1509
b352e57d
AC
1510 if (ata_id_is_cfa(id)) {
1511 /*
1512 * Process compact flash extended modes
1513 */
62afe5d7
SS
1514 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1515 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
b352e57d
AC
1516
1517 if (pio)
1518 pio_mask |= (1 << 5);
1519 if (pio > 1)
1520 pio_mask |= (1 << 6);
1521 if (dma)
1522 mwdma_mask |= (1 << 3);
1523 if (dma > 1)
1524 mwdma_mask |= (1 << 4);
1525 }
1526
fb21f0d0
TH
1527 udma_mask = 0;
1528 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1529 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1530
1531 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1532}
1533
7102d230 1534static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1535{
77853bf2 1536 struct completion *waiting = qc->private_data;
a2a7a662 1537
a2a7a662 1538 complete(waiting);
a2a7a662
TH
1539}
1540
1541/**
2432697b 1542 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1543 * @dev: Device to which the command is sent
1544 * @tf: Taskfile registers for the command and the result
d69cf37d 1545 * @cdb: CDB for packet command
e227867f 1546 * @dma_dir: Data transfer direction of the command
5c1ad8b3 1547 * @sgl: sg list for the data buffer of the command
2432697b 1548 * @n_elem: Number of sg entries
2b789108 1549 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1550 *
1551 * Executes libata internal command with timeout. @tf contains
1552 * command on entry and result on return. Timeout and error
1553 * conditions are reported via return value. No recovery action
1554 * is taken after a command times out. It's caller's duty to
1555 * clean up after timeout.
1556 *
1557 * LOCKING:
1558 * None. Should be called with kernel context, might sleep.
551e8889
TH
1559 *
1560 * RETURNS:
1561 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1562 */
2432697b
TH
1563unsigned ata_exec_internal_sg(struct ata_device *dev,
1564 struct ata_taskfile *tf, const u8 *cdb,
87260216 1565 int dma_dir, struct scatterlist *sgl,
2b789108 1566 unsigned int n_elem, unsigned long timeout)
a2a7a662 1567{
9af5c9c9
TH
1568 struct ata_link *link = dev->link;
1569 struct ata_port *ap = link->ap;
a2a7a662 1570 u8 command = tf->command;
87fbc5a0 1571 int auto_timeout = 0;
a2a7a662 1572 struct ata_queued_cmd *qc;
28361c40 1573 unsigned int preempted_tag;
e3ed8939
JA
1574 u32 preempted_sactive;
1575 u64 preempted_qc_active;
da917d69 1576 int preempted_nr_active_links;
60be6b9a 1577 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1578 unsigned long flags;
77853bf2 1579 unsigned int err_mask;
d95a717f 1580 int rc;
a2a7a662 1581
ba6a1308 1582 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1583
e3180499 1584 /* no internal command while frozen */
b51e9e5d 1585 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1586 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1587 return AC_ERR_SYSTEM;
1588 }
1589
2ab7db1f 1590 /* initialize internal qc */
28361c40 1591 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
a2a7a662 1592
28361c40
JA
1593 qc->tag = ATA_TAG_INTERNAL;
1594 qc->hw_tag = 0;
2ab7db1f
TH
1595 qc->scsicmd = NULL;
1596 qc->ap = ap;
1597 qc->dev = dev;
1598 ata_qc_reinit(qc);
1599
9af5c9c9
TH
1600 preempted_tag = link->active_tag;
1601 preempted_sactive = link->sactive;
dedaf2b0 1602 preempted_qc_active = ap->qc_active;
da917d69 1603 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1604 link->active_tag = ATA_TAG_POISON;
1605 link->sactive = 0;
dedaf2b0 1606 ap->qc_active = 0;
da917d69 1607 ap->nr_active_links = 0;
2ab7db1f
TH
1608
1609 /* prepare & issue qc */
a2a7a662 1610 qc->tf = *tf;
d69cf37d
TH
1611 if (cdb)
1612 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e771451c
VP
1613
1614 /* some SATA bridges need us to indicate data xfer direction */
1615 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1616 dma_dir == DMA_FROM_DEVICE)
1617 qc->tf.feature |= ATAPI_DMADIR;
1618
e61e0672 1619 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1620 qc->dma_dir = dma_dir;
1621 if (dma_dir != DMA_NONE) {
2432697b 1622 unsigned int i, buflen = 0;
87260216 1623 struct scatterlist *sg;
2432697b 1624
87260216
JA
1625 for_each_sg(sgl, sg, n_elem, i)
1626 buflen += sg->length;
2432697b 1627
87260216 1628 ata_sg_init(qc, sgl, n_elem);
49c80429 1629 qc->nbytes = buflen;
a2a7a662
TH
1630 }
1631
77853bf2 1632 qc->private_data = &wait;
a2a7a662
TH
1633 qc->complete_fn = ata_qc_complete_internal;
1634
8e0e694a 1635 ata_qc_issue(qc);
a2a7a662 1636
ba6a1308 1637 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1638
87fbc5a0
TH
1639 if (!timeout) {
1640 if (ata_probe_timeout)
1641 timeout = ata_probe_timeout * 1000;
1642 else {
1643 timeout = ata_internal_cmd_timeout(dev, command);
1644 auto_timeout = 1;
1645 }
1646 }
2b789108 1647
c0c362b6
TH
1648 if (ap->ops->error_handler)
1649 ata_eh_release(ap);
1650
2b789108 1651 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f 1652
c0c362b6
TH
1653 if (ap->ops->error_handler)
1654 ata_eh_acquire(ap);
1655
c429137a 1656 ata_sff_flush_pio_task(ap);
41ade50c 1657
d95a717f 1658 if (!rc) {
ba6a1308 1659 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1660
1661 /* We're racing with irq here. If we lose, the
1662 * following test prevents us from completing the qc
d95a717f
TH
1663 * twice. If we win, the port is frozen and will be
1664 * cleaned up by ->post_internal_cmd().
a2a7a662 1665 */
77853bf2 1666 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1667 qc->err_mask |= AC_ERR_TIMEOUT;
1668
1669 if (ap->ops->error_handler)
1670 ata_port_freeze(ap);
1671 else
1672 ata_qc_complete(qc);
f15a1daf 1673
0dd4b21f 1674 if (ata_msg_warn(ap))
a9a79dfe
JP
1675 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1676 command);
a2a7a662
TH
1677 }
1678
ba6a1308 1679 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1680 }
1681
d95a717f
TH
1682 /* do post_internal_cmd */
1683 if (ap->ops->post_internal_cmd)
1684 ap->ops->post_internal_cmd(qc);
1685
a51d644a
TH
1686 /* perform minimal error analysis */
1687 if (qc->flags & ATA_QCFLAG_FAILED) {
1688 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1689 qc->err_mask |= AC_ERR_DEV;
1690
1691 if (!qc->err_mask)
1692 qc->err_mask |= AC_ERR_OTHER;
1693
1694 if (qc->err_mask & ~AC_ERR_OTHER)
1695 qc->err_mask &= ~AC_ERR_OTHER;
2dae9955
DLM
1696 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1697 qc->result_tf.command |= ATA_SENSE;
d95a717f
TH
1698 }
1699
15869303 1700 /* finish up */
ba6a1308 1701 spin_lock_irqsave(ap->lock, flags);
15869303 1702
e61e0672 1703 *tf = qc->result_tf;
77853bf2
TH
1704 err_mask = qc->err_mask;
1705
1706 ata_qc_free(qc);
9af5c9c9
TH
1707 link->active_tag = preempted_tag;
1708 link->sactive = preempted_sactive;
dedaf2b0 1709 ap->qc_active = preempted_qc_active;
da917d69 1710 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1711
ba6a1308 1712 spin_unlock_irqrestore(ap->lock, flags);
15869303 1713
87fbc5a0
TH
1714 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1715 ata_internal_cmd_timed_out(dev, command);
1716
77853bf2 1717 return err_mask;
a2a7a662
TH
1718}
1719
2432697b 1720/**
33480a0e 1721 * ata_exec_internal - execute libata internal command
2432697b
TH
1722 * @dev: Device to which the command is sent
1723 * @tf: Taskfile registers for the command and the result
1724 * @cdb: CDB for packet command
e227867f 1725 * @dma_dir: Data transfer direction of the command
2432697b
TH
1726 * @buf: Data buffer of the command
1727 * @buflen: Length of data buffer
2b789108 1728 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1729 *
1730 * Wrapper around ata_exec_internal_sg() which takes simple
1731 * buffer instead of sg list.
1732 *
1733 * LOCKING:
1734 * None. Should be called with kernel context, might sleep.
1735 *
1736 * RETURNS:
1737 * Zero on success, AC_ERR_* mask on failure
1738 */
1739unsigned ata_exec_internal(struct ata_device *dev,
1740 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1741 int dma_dir, void *buf, unsigned int buflen,
1742 unsigned long timeout)
2432697b 1743{
33480a0e
TH
1744 struct scatterlist *psg = NULL, sg;
1745 unsigned int n_elem = 0;
2432697b 1746
33480a0e
TH
1747 if (dma_dir != DMA_NONE) {
1748 WARN_ON(!buf);
1749 sg_init_one(&sg, buf, buflen);
1750 psg = &sg;
1751 n_elem++;
1752 }
2432697b 1753
2b789108
TH
1754 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1755 timeout);
2432697b
TH
1756}
1757
1bc4ccff
AC
1758/**
1759 * ata_pio_need_iordy - check if iordy needed
1760 * @adev: ATA device
1761 *
1762 * Check if the current speed of the device requires IORDY. Used
1763 * by various controllers for chip configuration.
1764 */
1bc4ccff
AC
1765unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1766{
0d9e6659
TH
1767 /* Don't set IORDY if we're preparing for reset. IORDY may
1768 * lead to controller lock up on certain controllers if the
1769 * port is not occupied. See bko#11703 for details.
1770 */
1771 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1772 return 0;
1773 /* Controller doesn't support IORDY. Probably a pointless
1774 * check as the caller should know this.
1775 */
9af5c9c9 1776 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1777 return 0;
5c18c4d2
DD
1778 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1779 if (ata_id_is_cfa(adev->id)
1780 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1781 return 0;
432729f0
AC
1782 /* PIO3 and higher it is mandatory */
1783 if (adev->pio_mode > XFER_PIO_2)
1784 return 1;
1785 /* We turn it on when possible */
1786 if (ata_id_has_iordy(adev->id))
1bc4ccff 1787 return 1;
432729f0
AC
1788 return 0;
1789}
2e9edbf8 1790
432729f0
AC
1791/**
1792 * ata_pio_mask_no_iordy - Return the non IORDY mask
1793 * @adev: ATA device
1794 *
1795 * Compute the highest mode possible if we are not using iordy. Return
1796 * -1 if no iordy mode is available.
1797 */
432729f0
AC
1798static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1799{
1bc4ccff 1800 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1801 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1802 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1803 /* Is the speed faster than the drive allows non IORDY ? */
1804 if (pio) {
1805 /* This is cycle times not frequency - watch the logic! */
1806 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1807 return 3 << ATA_SHIFT_PIO;
1808 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1809 }
1810 }
432729f0 1811 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1812}
1813
963e4975
AC
1814/**
1815 * ata_do_dev_read_id - default ID read method
1816 * @dev: device
1817 * @tf: proposed taskfile
1818 * @id: data buffer
1819 *
1820 * Issue the identify taskfile and hand back the buffer containing
1821 * identify data. For some RAID controllers and for pre ATA devices
1822 * this function is wrapped or replaced by the driver
1823 */
1824unsigned int ata_do_dev_read_id(struct ata_device *dev,
1825 struct ata_taskfile *tf, u16 *id)
1826{
1827 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1828 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1829}
1830
1da177e4 1831/**
49016aca 1832 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1833 * @dev: target device
1834 * @p_class: pointer to class of the target device (may be changed)
bff04647 1835 * @flags: ATA_READID_* flags
fe635c7e 1836 * @id: buffer to read IDENTIFY data into
1da177e4 1837 *
49016aca
TH
1838 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1839 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1840 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1841 * for pre-ATA4 drives.
1da177e4 1842 *
50a99018 1843 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1844 * now we abort if we hit that case.
50a99018 1845 *
1da177e4 1846 * LOCKING:
49016aca
TH
1847 * Kernel thread context (may sleep)
1848 *
1849 * RETURNS:
1850 * 0 on success, -errno otherwise.
1da177e4 1851 */
a9beec95 1852int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1853 unsigned int flags, u16 *id)
1da177e4 1854{
9af5c9c9 1855 struct ata_port *ap = dev->link->ap;
49016aca 1856 unsigned int class = *p_class;
a0123703 1857 struct ata_taskfile tf;
49016aca
TH
1858 unsigned int err_mask = 0;
1859 const char *reason;
79b42bab 1860 bool is_semb = class == ATA_DEV_SEMB;
54936f8b 1861 int may_fallback = 1, tried_spinup = 0;
49016aca 1862 int rc;
1da177e4 1863
0dd4b21f 1864 if (ata_msg_ctl(ap))
a9a79dfe 1865 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 1866
963e4975 1867retry:
3373efd8 1868 ata_tf_init(dev, &tf);
a0123703 1869
49016aca 1870 switch (class) {
79b42bab
TH
1871 case ATA_DEV_SEMB:
1872 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
05b83605 1873 /* fall through */
49016aca 1874 case ATA_DEV_ATA:
9162c657 1875 case ATA_DEV_ZAC:
a0123703 1876 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1877 break;
1878 case ATA_DEV_ATAPI:
a0123703 1879 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1880 break;
1881 default:
1882 rc = -ENODEV;
1883 reason = "unsupported class";
1884 goto err_out;
1da177e4
LT
1885 }
1886
a0123703 1887 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1888
1889 /* Some devices choke if TF registers contain garbage. Make
1890 * sure those are properly initialized.
1891 */
1892 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1893
1894 /* Device presence detection is unreliable on some
1895 * controllers. Always poll IDENTIFY if available.
1896 */
1897 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1898
963e4975
AC
1899 if (ap->ops->read_id)
1900 err_mask = ap->ops->read_id(dev, &tf, id);
1901 else
1902 err_mask = ata_do_dev_read_id(dev, &tf, id);
1903
a0123703 1904 if (err_mask) {
800b3996 1905 if (err_mask & AC_ERR_NODEV_HINT) {
a9a79dfe 1906 ata_dev_dbg(dev, "NODEV after polling detection\n");
55a8e2c8
TH
1907 return -ENOENT;
1908 }
1909
79b42bab 1910 if (is_semb) {
a9a79dfe
JP
1911 ata_dev_info(dev,
1912 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
79b42bab
TH
1913 /* SEMB is not supported yet */
1914 *p_class = ATA_DEV_SEMB_UNSUP;
1915 return 0;
1916 }
1917
1ffc151f
TH
1918 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1919 /* Device or controller might have reported
1920 * the wrong device class. Give a shot at the
1921 * other IDENTIFY if the current one is
1922 * aborted by the device.
1923 */
1924 if (may_fallback) {
1925 may_fallback = 0;
1926
1927 if (class == ATA_DEV_ATA)
1928 class = ATA_DEV_ATAPI;
1929 else
1930 class = ATA_DEV_ATA;
1931 goto retry;
1932 }
1933
1934 /* Control reaches here iff the device aborted
1935 * both flavors of IDENTIFYs which happens
1936 * sometimes with phantom devices.
1937 */
a9a79dfe
JP
1938 ata_dev_dbg(dev,
1939 "both IDENTIFYs aborted, assuming NODEV\n");
1ffc151f 1940 return -ENOENT;
54936f8b
TH
1941 }
1942
49016aca
TH
1943 rc = -EIO;
1944 reason = "I/O error";
1da177e4
LT
1945 goto err_out;
1946 }
1947
43c9c591 1948 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
a9a79dfe
JP
1949 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1950 "class=%d may_fallback=%d tried_spinup=%d\n",
1951 class, may_fallback, tried_spinup);
43c9c591
TH
1952 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1953 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1954 }
1955
54936f8b
TH
1956 /* Falling back doesn't make sense if ID data was read
1957 * successfully at least once.
1958 */
1959 may_fallback = 0;
1960
49016aca 1961 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1962
49016aca 1963 /* sanity check */
a4f5749b 1964 rc = -EINVAL;
6070068b 1965 reason = "device reports invalid type";
a4f5749b 1966
9162c657 1967 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
a4f5749b
TH
1968 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1969 goto err_out;
db63a4c8
AW
1970 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1971 ata_id_is_ata(id)) {
1972 ata_dev_dbg(dev,
1973 "host indicates ignore ATA devices, ignored\n");
1974 return -ENOENT;
1975 }
a4f5749b
TH
1976 } else {
1977 if (ata_id_is_ata(id))
1978 goto err_out;
49016aca
TH
1979 }
1980
169439c2
ML
1981 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1982 tried_spinup = 1;
1983 /*
1984 * Drive powered-up in standby mode, and requires a specific
1985 * SET_FEATURES spin-up subcommand before it will accept
1986 * anything other than the original IDENTIFY command.
1987 */
218f3d30 1988 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1989 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1990 rc = -EIO;
1991 reason = "SPINUP failed";
1992 goto err_out;
1993 }
1994 /*
1995 * If the drive initially returned incomplete IDENTIFY info,
1996 * we now must reissue the IDENTIFY command.
1997 */
1998 if (id[2] == 0x37c8)
1999 goto retry;
2000 }
2001
9162c657
HR
2002 if ((flags & ATA_READID_POSTRESET) &&
2003 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
49016aca
TH
2004 /*
2005 * The exact sequence expected by certain pre-ATA4 drives is:
2006 * SRST RESET
50a99018
AC
2007 * IDENTIFY (optional in early ATA)
2008 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2009 * anything else..
2010 * Some drives were very specific about that exact sequence.
50a99018
AC
2011 *
2012 * Note that ATA4 says lba is mandatory so the second check
c9404c9c 2013 * should never trigger.
49016aca
TH
2014 */
2015 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2016 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2017 if (err_mask) {
2018 rc = -EIO;
2019 reason = "INIT_DEV_PARAMS failed";
2020 goto err_out;
2021 }
2022
2023 /* current CHS translation info (id[53-58]) might be
2024 * changed. reread the identify device info.
2025 */
bff04647 2026 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2027 goto retry;
2028 }
2029 }
2030
2031 *p_class = class;
fe635c7e 2032
49016aca
TH
2033 return 0;
2034
2035 err_out:
88574551 2036 if (ata_msg_warn(ap))
a9a79dfe
JP
2037 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2038 reason, err_mask);
49016aca
TH
2039 return rc;
2040}
2041
f01f62c2
CH
2042/**
2043 * ata_read_log_page - read a specific log page
2044 * @dev: target device
2045 * @log: log to read
2046 * @page: page to read
2047 * @buf: buffer to store read page
2048 * @sectors: number of sectors to read
2049 *
2050 * Read log page using READ_LOG_EXT command.
2051 *
2052 * LOCKING:
2053 * Kernel thread context (may sleep).
2054 *
2055 * RETURNS:
2056 * 0 on success, AC_ERR_* mask otherwise.
2057 */
2058unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2059 u8 page, void *buf, unsigned int sectors)
2060{
2061 unsigned long ap_flags = dev->link->ap->flags;
2062 struct ata_taskfile tf;
2063 unsigned int err_mask;
2064 bool dma = false;
2065
2066 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2067
2068 /*
2069 * Return error without actually issuing the command on controllers
2070 * which e.g. lockup on a read log page.
2071 */
2072 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2073 return AC_ERR_DEV;
2074
2075retry:
2076 ata_tf_init(dev, &tf);
2077 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
7cfdfdc8 2078 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
f01f62c2
CH
2079 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2080 tf.protocol = ATA_PROT_DMA;
2081 dma = true;
2082 } else {
2083 tf.command = ATA_CMD_READ_LOG_EXT;
2084 tf.protocol = ATA_PROT_PIO;
2085 dma = false;
2086 }
2087 tf.lbal = log;
2088 tf.lbam = page;
2089 tf.nsect = sectors;
2090 tf.hob_nsect = sectors >> 8;
2091 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2092
2093 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2094 buf, sectors * ATA_SECT_SIZE, 0);
2095
2096 if (err_mask && dma) {
7cfdfdc8
DLM
2097 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2098 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
f01f62c2
CH
2099 goto retry;
2100 }
2101
2102 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2103 return err_mask;
2104}
2105
efe205a3
CH
2106static bool ata_log_supported(struct ata_device *dev, u8 log)
2107{
2108 struct ata_port *ap = dev->link->ap;
2109
2110 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2111 return false;
2112 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2113}
2114
a0fd2454
CH
2115static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2116{
2117 struct ata_port *ap = dev->link->ap;
2118 unsigned int err, i;
2119
2120 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2121 ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2122 return false;
2123 }
2124
2125 /*
2126 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2127 * supported.
2128 */
2129 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2130 1);
2131 if (err) {
2132 ata_dev_info(dev,
2133 "failed to get Device Identify Log Emask 0x%x\n",
2134 err);
2135 return false;
2136 }
2137
2138 for (i = 0; i < ap->sector_buf[8]; i++) {
2139 if (ap->sector_buf[9 + i] == page)
2140 return true;
2141 }
2142
2143 return false;
2144}
2145
9062712f
TH
2146static int ata_do_link_spd_horkage(struct ata_device *dev)
2147{
2148 struct ata_link *plink = ata_dev_phys_link(dev);
2149 u32 target, target_limit;
2150
2151 if (!sata_scr_valid(plink))
2152 return 0;
2153
2154 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2155 target = 1;
2156 else
2157 return 0;
2158
2159 target_limit = (1 << target) - 1;
2160
2161 /* if already on stricter limit, no need to push further */
2162 if (plink->sata_spd_limit <= target_limit)
2163 return 0;
2164
2165 plink->sata_spd_limit = target_limit;
2166
2167 /* Request another EH round by returning -EAGAIN if link is
2168 * going faster than the target speed. Forward progress is
2169 * guaranteed by setting sata_spd_limit to target_limit above.
2170 */
2171 if (plink->sata_spd > target) {
a9a79dfe
JP
2172 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2173 sata_spd_string(target));
9062712f
TH
2174 return -EAGAIN;
2175 }
2176 return 0;
2177}
2178
3373efd8 2179static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2180{
9af5c9c9 2181 struct ata_port *ap = dev->link->ap;
9ce8e307
JA
2182
2183 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2184 return 0;
2185
9af5c9c9 2186 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2187}
2188
5a233551
HR
2189static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2190{
2191 struct ata_port *ap = dev->link->ap;
2192 unsigned int err_mask;
2193
efe205a3
CH
2194 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2195 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
fe5af0cc
HR
2196 return;
2197 }
5a233551
HR
2198 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2199 0, ap->sector_buf, 1);
2200 if (err_mask) {
2201 ata_dev_dbg(dev,
2202 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2203 err_mask);
2204 } else {
2205 u8 *cmds = dev->ncq_send_recv_cmds;
2206
2207 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2208 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2209
2210 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2211 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2212 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2213 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2214 }
2215 }
2216}
2217
284b3b77
HR
2218static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2219{
2220 struct ata_port *ap = dev->link->ap;
2221 unsigned int err_mask;
284b3b77 2222
efe205a3 2223 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
284b3b77
HR
2224 ata_dev_warn(dev,
2225 "NCQ Send/Recv Log not supported\n");
2226 return;
2227 }
2228 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2229 0, ap->sector_buf, 1);
2230 if (err_mask) {
2231 ata_dev_dbg(dev,
2232 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2233 err_mask);
2234 } else {
2235 u8 *cmds = dev->ncq_non_data_cmds;
2236
2237 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2238 }
2239}
2240
8e061784
AM
2241static void ata_dev_config_ncq_prio(struct ata_device *dev)
2242{
2243 struct ata_port *ap = dev->link->ap;
2244 unsigned int err_mask;
2245
9f56eca3
AM
2246 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2247 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2248 return;
2249 }
2250
8e061784 2251 err_mask = ata_read_log_page(dev,
1d51d5f3 2252 ATA_LOG_IDENTIFY_DEVICE,
8e061784
AM
2253 ATA_LOG_SATA_SETTINGS,
2254 ap->sector_buf,
2255 1);
2256 if (err_mask) {
2257 ata_dev_dbg(dev,
2258 "failed to get Identify Device data, Emask 0x%x\n",
2259 err_mask);
2260 return;
2261 }
2262
9f56eca3 2263 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
8e061784 2264 dev->flags |= ATA_DFLAG_NCQ_PRIO;
9f56eca3
AM
2265 } else {
2266 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
8e061784 2267 ata_dev_dbg(dev, "SATA page does not support priority\n");
9f56eca3 2268 }
8e061784
AM
2269
2270}
2271
388539f3 2272static int ata_dev_config_ncq(struct ata_device *dev,
a6e6ce8e
TH
2273 char *desc, size_t desc_sz)
2274{
9af5c9c9 2275 struct ata_port *ap = dev->link->ap;
a6e6ce8e 2276 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
388539f3
SL
2277 unsigned int err_mask;
2278 char *aa_desc = "";
a6e6ce8e
TH
2279
2280 if (!ata_id_has_ncq(dev->id)) {
2281 desc[0] = '\0';
388539f3 2282 return 0;
a6e6ce8e 2283 }
75683fe7 2284 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6 2285 snprintf(desc, desc_sz, "NCQ (not used)");
388539f3 2286 return 0;
6919a0a6 2287 }
a6e6ce8e 2288 if (ap->flags & ATA_FLAG_NCQ) {
69278f79 2289 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
a6e6ce8e
TH
2290 dev->flags |= ATA_DFLAG_NCQ;
2291 }
2292
388539f3
SL
2293 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2294 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2295 ata_id_has_fpdma_aa(dev->id)) {
2296 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2297 SATA_FPDMA_AA);
2298 if (err_mask) {
a9a79dfe
JP
2299 ata_dev_err(dev,
2300 "failed to enable AA (error_mask=0x%x)\n",
2301 err_mask);
388539f3
SL
2302 if (err_mask != AC_ERR_DEV) {
2303 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2304 return -EIO;
2305 }
2306 } else
2307 aa_desc = ", AA";
2308 }
2309
a6e6ce8e 2310 if (hdepth >= ddepth)
388539f3 2311 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
a6e6ce8e 2312 else
388539f3
SL
2313 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2314 ddepth, aa_desc);
ed36911c 2315
284b3b77
HR
2316 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2317 if (ata_id_has_ncq_send_and_recv(dev->id))
2318 ata_dev_config_ncq_send_recv(dev);
2319 if (ata_id_has_ncq_non_data(dev->id))
2320 ata_dev_config_ncq_non_data(dev);
8e061784
AM
2321 if (ata_id_has_ncq_prio(dev->id))
2322 ata_dev_config_ncq_prio(dev);
284b3b77 2323 }
f78dea06 2324
388539f3 2325 return 0;
a6e6ce8e 2326}
f78dea06 2327
e87fd28c
HR
2328static void ata_dev_config_sense_reporting(struct ata_device *dev)
2329{
2330 unsigned int err_mask;
2331
2332 if (!ata_id_has_sense_reporting(dev->id))
2333 return;
2334
2335 if (ata_id_sense_reporting_enabled(dev->id))
2336 return;
2337
2338 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2339 if (err_mask) {
2340 ata_dev_dbg(dev,
2341 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2342 err_mask);
2343 }
2344}
2345
6d1003ae
HR
2346static void ata_dev_config_zac(struct ata_device *dev)
2347{
2348 struct ata_port *ap = dev->link->ap;
2349 unsigned int err_mask;
2350 u8 *identify_buf = ap->sector_buf;
6d1003ae
HR
2351
2352 dev->zac_zones_optimal_open = U32_MAX;
2353 dev->zac_zones_optimal_nonseq = U32_MAX;
2354 dev->zac_zones_max_open = U32_MAX;
2355
2356 /*
2357 * Always set the 'ZAC' flag for Host-managed devices.
2358 */
2359 if (dev->class == ATA_DEV_ZAC)
2360 dev->flags |= ATA_DFLAG_ZAC;
2361 else if (ata_id_zoned_cap(dev->id) == 0x01)
2362 /*
2363 * Check for host-aware devices.
2364 */
2365 dev->flags |= ATA_DFLAG_ZAC;
2366
2367 if (!(dev->flags & ATA_DFLAG_ZAC))
2368 return;
2369
a0fd2454 2370 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
6d1003ae
HR
2371 ata_dev_warn(dev,
2372 "ATA Zoned Information Log not supported\n");
2373 return;
2374 }
ed36911c 2375
6d1003ae
HR
2376 /*
2377 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2378 */
1d51d5f3 2379 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
6d1003ae
HR
2380 ATA_LOG_ZONED_INFORMATION,
2381 identify_buf, 1);
2382 if (!err_mask) {
2383 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2384
2385 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2386 if ((zoned_cap >> 63))
2387 dev->zac_zoned_cap = (zoned_cap & 1);
2388 opt_open = get_unaligned_le64(&identify_buf[24]);
2389 if ((opt_open >> 63))
2390 dev->zac_zones_optimal_open = (u32)opt_open;
2391 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2392 if ((opt_nonseq >> 63))
2393 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2394 max_open = get_unaligned_le64(&identify_buf[40]);
2395 if ((max_open >> 63))
2396 dev->zac_zones_max_open = (u32)max_open;
2397 }
a6e6ce8e
TH
2398}
2399
818831c8
CH
2400static void ata_dev_config_trusted(struct ata_device *dev)
2401{
2402 struct ata_port *ap = dev->link->ap;
2403 u64 trusted_cap;
2404 unsigned int err;
2405
e8f11db9
CH
2406 if (!ata_id_has_trusted(dev->id))
2407 return;
2408
818831c8
CH
2409 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2410 ata_dev_warn(dev,
2411 "Security Log not supported\n");
2412 return;
2413 }
2414
2415 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2416 ap->sector_buf, 1);
2417 if (err) {
2418 ata_dev_dbg(dev,
2419 "failed to read Security Log, Emask 0x%x\n", err);
2420 return;
2421 }
2422
2423 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2424 if (!(trusted_cap & (1ULL << 63))) {
2425 ata_dev_dbg(dev,
2426 "Trusted Computing capability qword not valid!\n");
2427 return;
2428 }
2429
2430 if (trusted_cap & (1 << 0))
2431 dev->flags |= ATA_DFLAG_TRUSTED;
2432}
2433
49016aca 2434/**
ffeae418 2435 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2436 * @dev: Target device to configure
2437 *
2438 * Configure @dev according to @dev->id. Generic and low-level
2439 * driver specific fixups are also applied.
49016aca
TH
2440 *
2441 * LOCKING:
ffeae418
TH
2442 * Kernel thread context (may sleep)
2443 *
2444 * RETURNS:
2445 * 0 on success, -errno otherwise
49016aca 2446 */
efdaedc4 2447int ata_dev_configure(struct ata_device *dev)
49016aca 2448{
9af5c9c9
TH
2449 struct ata_port *ap = dev->link->ap;
2450 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2451 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2452 const u16 *id = dev->id;
7dc951ae 2453 unsigned long xfer_mask;
65fe1f0f 2454 unsigned int err_mask;
b352e57d 2455 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2456 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2457 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2458 int rc;
49016aca 2459
0dd4b21f 2460 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
a9a79dfe 2461 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
ffeae418 2462 return 0;
49016aca
TH
2463 }
2464
0dd4b21f 2465 if (ata_msg_probe(ap))
a9a79dfe 2466 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 2467
75683fe7
TH
2468 /* set horkage */
2469 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2470 ata_force_horkage(dev);
75683fe7 2471
50af2fa1 2472 if (dev->horkage & ATA_HORKAGE_DISABLE) {
a9a79dfe 2473 ata_dev_info(dev, "unsupported device, disabling\n");
50af2fa1
TH
2474 ata_dev_disable(dev);
2475 return 0;
2476 }
2477
2486fa56
TH
2478 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2479 dev->class == ATA_DEV_ATAPI) {
a9a79dfe
JP
2480 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2481 atapi_enabled ? "not supported with this driver"
2482 : "disabled");
2486fa56
TH
2483 ata_dev_disable(dev);
2484 return 0;
2485 }
2486
9062712f
TH
2487 rc = ata_do_link_spd_horkage(dev);
2488 if (rc)
2489 return rc;
2490
ecd75ad5
TH
2491 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2492 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2493 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2494 dev->horkage |= ATA_HORKAGE_NOLPM;
2495
240630e6
HG
2496 if (ap->flags & ATA_FLAG_NO_LPM)
2497 dev->horkage |= ATA_HORKAGE_NOLPM;
2498
ecd75ad5
TH
2499 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2500 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2501 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2502 }
2503
6746544c
TH
2504 /* let ACPI work its magic */
2505 rc = ata_acpi_on_devcfg(dev);
2506 if (rc)
2507 return rc;
08573a86 2508
05027adc
TH
2509 /* massage HPA, do it early as it might change IDENTIFY data */
2510 rc = ata_hpa_resize(dev);
2511 if (rc)
2512 return rc;
2513
c39f5ebe 2514 /* print device capabilities */
0dd4b21f 2515 if (ata_msg_probe(ap))
a9a79dfe
JP
2516 ata_dev_dbg(dev,
2517 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2518 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2519 __func__,
2520 id[49], id[82], id[83], id[84],
2521 id[85], id[86], id[87], id[88]);
c39f5ebe 2522
208a9933 2523 /* initialize to-be-configured parameters */
ea1dd4e1 2524 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2525 dev->max_sectors = 0;
2526 dev->cdb_len = 0;
2527 dev->n_sectors = 0;
2528 dev->cylinders = 0;
2529 dev->heads = 0;
2530 dev->sectors = 0;
e18086d6 2531 dev->multi_count = 0;
208a9933 2532
1da177e4
LT
2533 /*
2534 * common ATA, ATAPI feature tests
2535 */
2536
ff8854b2 2537 /* find max transfer mode; for printk only */
1148c3a7 2538 xfer_mask = ata_id_xfermask(id);
1da177e4 2539
0dd4b21f
BP
2540 if (ata_msg_probe(ap))
2541 ata_dump_id(id);
1da177e4 2542
ef143d57
AL
2543 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2544 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2545 sizeof(fwrevbuf));
2546
2547 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2548 sizeof(modelbuf));
2549
1da177e4 2550 /* ATA-specific feature tests */
9162c657 2551 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
b352e57d 2552 if (ata_id_is_cfa(id)) {
62afe5d7
SS
2553 /* CPRM may make this media unusable */
2554 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
a9a79dfe
JP
2555 ata_dev_warn(dev,
2556 "supports DRM functions and may not be fully accessible\n");
b352e57d 2557 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2558 } else {
2dcb407e 2559 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2560 /* Warn the user if the device has TPM extensions */
2561 if (ata_id_has_tpm(id))
a9a79dfe
JP
2562 ata_dev_warn(dev,
2563 "supports DRM functions and may not be fully accessible\n");
ae8d4ee7 2564 }
b352e57d 2565
1148c3a7 2566 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2567
e18086d6
ML
2568 /* get current R/W Multiple count setting */
2569 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2570 unsigned int max = dev->id[47] & 0xff;
2571 unsigned int cnt = dev->id[59] & 0xff;
2572 /* only recognize/allow powers of two here */
2573 if (is_power_of_2(max) && is_power_of_2(cnt))
2574 if (cnt <= max)
2575 dev->multi_count = cnt;
2576 }
3f64f565 2577
1148c3a7 2578 if (ata_id_has_lba(id)) {
4c2d721a 2579 const char *lba_desc;
388539f3 2580 char ncq_desc[24];
8bf62ece 2581
4c2d721a
TH
2582 lba_desc = "LBA";
2583 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2584 if (ata_id_has_lba48(id)) {
8bf62ece 2585 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2586 lba_desc = "LBA48";
6fc49adb
TH
2587
2588 if (dev->n_sectors >= (1UL << 28) &&
2589 ata_id_has_flush_ext(id))
2590 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2591 }
8bf62ece 2592
a6e6ce8e 2593 /* config NCQ */
388539f3
SL
2594 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2595 if (rc)
2596 return rc;
a6e6ce8e 2597
8bf62ece 2598 /* print device info to dmesg */
3f64f565 2599 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2600 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2601 revbuf, modelbuf, fwrevbuf,
2602 ata_mode_string(xfer_mask));
2603 ata_dev_info(dev,
2604 "%llu sectors, multi %u: %s %s\n",
f15a1daf 2605 (unsigned long long)dev->n_sectors,
3f64f565
EM
2606 dev->multi_count, lba_desc, ncq_desc);
2607 }
ffeae418 2608 } else {
8bf62ece
AL
2609 /* CHS */
2610
2611 /* Default translation */
1148c3a7
TH
2612 dev->cylinders = id[1];
2613 dev->heads = id[3];
2614 dev->sectors = id[6];
8bf62ece 2615
1148c3a7 2616 if (ata_id_current_chs_valid(id)) {
8bf62ece 2617 /* Current CHS translation is valid. */
1148c3a7
TH
2618 dev->cylinders = id[54];
2619 dev->heads = id[55];
2620 dev->sectors = id[56];
8bf62ece
AL
2621 }
2622
2623 /* print device info to dmesg */
3f64f565 2624 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2625 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2626 revbuf, modelbuf, fwrevbuf,
2627 ata_mode_string(xfer_mask));
2628 ata_dev_info(dev,
2629 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2630 (unsigned long long)dev->n_sectors,
2631 dev->multi_count, dev->cylinders,
2632 dev->heads, dev->sectors);
3f64f565 2633 }
07f6f7d0
AL
2634 }
2635
803739d2
SH
2636 /* Check and mark DevSlp capability. Get DevSlp timing variables
2637 * from SATA Settings page of Identify Device Data Log.
65fe1f0f 2638 */
803739d2 2639 if (ata_id_has_devslp(dev->id)) {
8e725c7f 2640 u8 *sata_setting = ap->sector_buf;
803739d2
SH
2641 int i, j;
2642
2643 dev->flags |= ATA_DFLAG_DEVSLP;
65fe1f0f 2644 err_mask = ata_read_log_page(dev,
1d51d5f3 2645 ATA_LOG_IDENTIFY_DEVICE,
65fe1f0f 2646 ATA_LOG_SATA_SETTINGS,
803739d2 2647 sata_setting,
65fe1f0f
SH
2648 1);
2649 if (err_mask)
2650 ata_dev_dbg(dev,
2651 "failed to get Identify Device Data, Emask 0x%x\n",
2652 err_mask);
803739d2
SH
2653 else
2654 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2655 j = ATA_LOG_DEVSLP_OFFSET + i;
2656 dev->devslp_timing[i] = sata_setting[j];
2657 }
65fe1f0f 2658 }
e87fd28c 2659 ata_dev_config_sense_reporting(dev);
6d1003ae 2660 ata_dev_config_zac(dev);
818831c8 2661 ata_dev_config_trusted(dev);
b1ffbf85 2662 dev->cdb_len = 32;
1da177e4
LT
2663 }
2664
2665 /* ATAPI-specific feature tests */
2c13b7ce 2666 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2667 const char *cdb_intr_string = "";
2668 const char *atapi_an_string = "";
91163006 2669 const char *dma_dir_string = "";
7d77b247 2670 u32 sntf;
08a556db 2671
1148c3a7 2672 rc = atapi_cdb_len(id);
1da177e4 2673 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2674 if (ata_msg_warn(ap))
a9a79dfe 2675 ata_dev_warn(dev, "unsupported CDB len\n");
ffeae418 2676 rc = -EINVAL;
1da177e4
LT
2677 goto err_out_nosup;
2678 }
6e7846e9 2679 dev->cdb_len = (unsigned int) rc;
1da177e4 2680
7d77b247
TH
2681 /* Enable ATAPI AN if both the host and device have
2682 * the support. If PMP is attached, SNTF is required
2683 * to enable ATAPI AN to discern between PHY status
2684 * changed notifications and ATAPI ANs.
9f45cbd3 2685 */
e7ecd435
TH
2686 if (atapi_an &&
2687 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2688 (!sata_pmp_attached(ap) ||
7d77b247 2689 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
9f45cbd3 2690 /* issue SET feature command to turn this on */
218f3d30
JG
2691 err_mask = ata_dev_set_feature(dev,
2692 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2693 if (err_mask)
a9a79dfe
JP
2694 ata_dev_err(dev,
2695 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2696 err_mask);
854c73a2 2697 else {
9f45cbd3 2698 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2699 atapi_an_string = ", ATAPI AN";
2700 }
9f45cbd3
KCA
2701 }
2702
08a556db 2703 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2704 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2705 cdb_intr_string = ", CDB intr";
2706 }
312f7da2 2707
966fbe19 2708 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
91163006
TH
2709 dev->flags |= ATA_DFLAG_DMADIR;
2710 dma_dir_string = ", DMADIR";
2711 }
2712
afe75951 2713 if (ata_id_has_da(dev->id)) {
b1354cbb 2714 dev->flags |= ATA_DFLAG_DA;
afe75951
AL
2715 zpodd_init(dev);
2716 }
b1354cbb 2717
1da177e4 2718 /* print device info to dmesg */
5afc8142 2719 if (ata_msg_drv(ap) && print_info)
a9a79dfe
JP
2720 ata_dev_info(dev,
2721 "ATAPI: %s, %s, max %s%s%s%s\n",
2722 modelbuf, fwrevbuf,
2723 ata_mode_string(xfer_mask),
2724 cdb_intr_string, atapi_an_string,
2725 dma_dir_string);
1da177e4
LT
2726 }
2727
914ed354
TH
2728 /* determine max_sectors */
2729 dev->max_sectors = ATA_MAX_SECTORS;
2730 if (dev->flags & ATA_DFLAG_LBA48)
2731 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2732
c5038fc0
AC
2733 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2734 200 sectors */
3373efd8 2735 if (ata_dev_knobble(dev)) {
5afc8142 2736 if (ata_msg_drv(ap) && print_info)
a9a79dfe 2737 ata_dev_info(dev, "applying bridge limits\n");
5a529139 2738 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2739 dev->max_sectors = ATA_MAX_SECTORS;
2740 }
2741
f8d8e579 2742 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2743 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2744 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2745 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2746 }
f8d8e579 2747
75683fe7 2748 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2749 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2750 dev->max_sectors);
18d6e9d5 2751
af34d637
DM
2752 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2753 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2754 dev->max_sectors);
2755
a32450e1
SH
2756 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2757 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2758
4b2f3ede 2759 if (ap->ops->dev_config)
cd0d3bbc 2760 ap->ops->dev_config(dev);
4b2f3ede 2761
c5038fc0
AC
2762 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2763 /* Let the user know. We don't want to disallow opens for
2764 rescue purposes, or in case the vendor is just a blithering
2765 idiot. Do this after the dev_config call as some controllers
2766 with buggy firmware may want to avoid reporting false device
2767 bugs */
2768
2769 if (print_info) {
a9a79dfe 2770 ata_dev_warn(dev,
c5038fc0 2771"Drive reports diagnostics failure. This may indicate a drive\n");
a9a79dfe 2772 ata_dev_warn(dev,
c5038fc0
AC
2773"fault or invalid emulation. Contact drive vendor for information.\n");
2774 }
2775 }
2776
ac70a964 2777 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
a9a79dfe
JP
2778 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2779 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
ac70a964
TH
2780 }
2781
ffeae418 2782 return 0;
1da177e4
LT
2783
2784err_out_nosup:
0dd4b21f 2785 if (ata_msg_probe(ap))
a9a79dfe 2786 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
ffeae418 2787 return rc;
1da177e4
LT
2788}
2789
be0d18df 2790/**
2e41e8e6 2791 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2792 * @ap: port
2793 *
2e41e8e6 2794 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2795 * detection.
2796 */
2797
2798int ata_cable_40wire(struct ata_port *ap)
2799{
2800 return ATA_CBL_PATA40;
2801}
2802
2803/**
2e41e8e6 2804 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2805 * @ap: port
2806 *
2e41e8e6 2807 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2808 * detection.
2809 */
2810
2811int ata_cable_80wire(struct ata_port *ap)
2812{
2813 return ATA_CBL_PATA80;
2814}
2815
2816/**
2817 * ata_cable_unknown - return unknown PATA cable.
2818 * @ap: port
2819 *
2820 * Helper method for drivers which have no PATA cable detection.
2821 */
2822
2823int ata_cable_unknown(struct ata_port *ap)
2824{
2825 return ATA_CBL_PATA_UNK;
2826}
2827
c88f90c3
TH
2828/**
2829 * ata_cable_ignore - return ignored PATA cable.
2830 * @ap: port
2831 *
2832 * Helper method for drivers which don't use cable type to limit
2833 * transfer mode.
2834 */
2835int ata_cable_ignore(struct ata_port *ap)
2836{
2837 return ATA_CBL_PATA_IGN;
2838}
2839
be0d18df
AC
2840/**
2841 * ata_cable_sata - return SATA cable type
2842 * @ap: port
2843 *
2844 * Helper method for drivers which have SATA cables
2845 */
2846
2847int ata_cable_sata(struct ata_port *ap)
2848{
2849 return ATA_CBL_SATA;
2850}
2851
1da177e4
LT
2852/**
2853 * ata_bus_probe - Reset and probe ATA bus
2854 * @ap: Bus to probe
2855 *
0cba632b
JG
2856 * Master ATA bus probing function. Initiates a hardware-dependent
2857 * bus reset, then attempts to identify any devices found on
2858 * the bus.
2859 *
1da177e4 2860 * LOCKING:
0cba632b 2861 * PCI/etc. bus probe sem.
1da177e4
LT
2862 *
2863 * RETURNS:
96072e69 2864 * Zero on success, negative errno otherwise.
1da177e4
LT
2865 */
2866
80289167 2867int ata_bus_probe(struct ata_port *ap)
1da177e4 2868{
28ca5c57 2869 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2870 int tries[ATA_MAX_DEVICES];
f58229f8 2871 int rc;
e82cbdb9 2872 struct ata_device *dev;
1da177e4 2873
1eca4365 2874 ata_for_each_dev(dev, &ap->link, ALL)
f58229f8 2875 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2876
2877 retry:
1eca4365 2878 ata_for_each_dev(dev, &ap->link, ALL) {
cdeab114
TH
2879 /* If we issue an SRST then an ATA drive (not ATAPI)
2880 * may change configuration and be in PIO0 timing. If
2881 * we do a hard reset (or are coming from power on)
2882 * this is true for ATA or ATAPI. Until we've set a
2883 * suitable controller mode we should not touch the
2884 * bus as we may be talking too fast.
2885 */
2886 dev->pio_mode = XFER_PIO_0;
5416912a 2887 dev->dma_mode = 0xff;
cdeab114
TH
2888
2889 /* If the controller has a pio mode setup function
2890 * then use it to set the chipset to rights. Don't
2891 * touch the DMA setup as that will be dealt with when
2892 * configuring devices.
2893 */
2894 if (ap->ops->set_piomode)
2895 ap->ops->set_piomode(ap, dev);
2896 }
2897
2044470c 2898 /* reset and determine device classes */
52783c5d 2899 ap->ops->phy_reset(ap);
2061a47a 2900
1eca4365 2901 ata_for_each_dev(dev, &ap->link, ALL) {
3e4ec344 2902 if (dev->class != ATA_DEV_UNKNOWN)
52783c5d
TH
2903 classes[dev->devno] = dev->class;
2904 else
2905 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2906
52783c5d 2907 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2908 }
1da177e4 2909
f31f0cc2
JG
2910 /* read IDENTIFY page and configure devices. We have to do the identify
2911 specific sequence bass-ackwards so that PDIAG- is released by
2912 the slave device */
2913
1eca4365 2914 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
f58229f8
TH
2915 if (tries[dev->devno])
2916 dev->class = classes[dev->devno];
ffeae418 2917
14d2bac1 2918 if (!ata_dev_enabled(dev))
ffeae418 2919 continue;
ffeae418 2920
bff04647
TH
2921 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2922 dev->id);
14d2bac1
TH
2923 if (rc)
2924 goto fail;
f31f0cc2
JG
2925 }
2926
be0d18df
AC
2927 /* Now ask for the cable type as PDIAG- should have been released */
2928 if (ap->ops->cable_detect)
2929 ap->cbl = ap->ops->cable_detect(ap);
2930
1eca4365
TH
2931 /* We may have SATA bridge glue hiding here irrespective of
2932 * the reported cable types and sensed types. When SATA
2933 * drives indicate we have a bridge, we don't know which end
2934 * of the link the bridge is which is a problem.
2935 */
2936 ata_for_each_dev(dev, &ap->link, ENABLED)
614fe29b
AC
2937 if (ata_id_is_sata(dev->id))
2938 ap->cbl = ATA_CBL_SATA;
614fe29b 2939
f31f0cc2
JG
2940 /* After the identify sequence we can now set up the devices. We do
2941 this in the normal order so that the user doesn't get confused */
2942
1eca4365 2943 ata_for_each_dev(dev, &ap->link, ENABLED) {
9af5c9c9 2944 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2945 rc = ata_dev_configure(dev);
9af5c9c9 2946 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2947 if (rc)
2948 goto fail;
1da177e4
LT
2949 }
2950
e82cbdb9 2951 /* configure transfer mode */
0260731f 2952 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2953 if (rc)
51713d35 2954 goto fail;
1da177e4 2955
1eca4365
TH
2956 ata_for_each_dev(dev, &ap->link, ENABLED)
2957 return 0;
1da177e4 2958
96072e69 2959 return -ENODEV;
14d2bac1
TH
2960
2961 fail:
4ae72a1e
TH
2962 tries[dev->devno]--;
2963
14d2bac1
TH
2964 switch (rc) {
2965 case -EINVAL:
4ae72a1e 2966 /* eeek, something went very wrong, give up */
14d2bac1
TH
2967 tries[dev->devno] = 0;
2968 break;
4ae72a1e
TH
2969
2970 case -ENODEV:
2971 /* give it just one more chance */
2972 tries[dev->devno] = min(tries[dev->devno], 1);
05b83605 2973 /* fall through */
14d2bac1 2974 case -EIO:
4ae72a1e
TH
2975 if (tries[dev->devno] == 1) {
2976 /* This is the last chance, better to slow
2977 * down than lose it.
2978 */
a07d499b 2979 sata_down_spd_limit(&ap->link, 0);
4ae72a1e
TH
2980 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2981 }
14d2bac1
TH
2982 }
2983
4ae72a1e 2984 if (!tries[dev->devno])
3373efd8 2985 ata_dev_disable(dev);
ec573755 2986
14d2bac1 2987 goto retry;
1da177e4
LT
2988}
2989
3be680b7
TH
2990/**
2991 * sata_print_link_status - Print SATA link status
936fd732 2992 * @link: SATA link to printk link status about
3be680b7
TH
2993 *
2994 * This function prints link speed and status of a SATA link.
2995 *
2996 * LOCKING:
2997 * None.
2998 */
6bdb4fc9 2999static void sata_print_link_status(struct ata_link *link)
3be680b7 3000{
6d5f9732 3001 u32 sstatus, scontrol, tmp;
3be680b7 3002
936fd732 3003 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 3004 return;
936fd732 3005 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 3006
b1c72916 3007 if (ata_phys_link_online(link)) {
3be680b7 3008 tmp = (sstatus >> 4) & 0xf;
a9a79dfe
JP
3009 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3010 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 3011 } else {
a9a79dfe
JP
3012 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3013 sstatus, scontrol);
3be680b7
TH
3014 }
3015}
3016
ebdfca6e
AC
3017/**
3018 * ata_dev_pair - return other device on cable
ebdfca6e
AC
3019 * @adev: device
3020 *
3021 * Obtain the other device on the same cable, or if none is
3022 * present NULL is returned
3023 */
2e9edbf8 3024
3373efd8 3025struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 3026{
9af5c9c9
TH
3027 struct ata_link *link = adev->link;
3028 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 3029 if (!ata_dev_enabled(pair))
ebdfca6e
AC
3030 return NULL;
3031 return pair;
3032}
3033
1c3fae4d 3034/**
3c567b7d 3035 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 3036 * @link: Link to adjust SATA spd limit for
a07d499b 3037 * @spd_limit: Additional limit
1c3fae4d 3038 *
936fd732 3039 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 3040 * function only adjusts the limit. The change must be applied
3c567b7d 3041 * using sata_set_spd().
1c3fae4d 3042 *
a07d499b
TH
3043 * If @spd_limit is non-zero, the speed is limited to equal to or
3044 * lower than @spd_limit if such speed is supported. If
3045 * @spd_limit is slower than any supported speed, only the lowest
3046 * supported speed is allowed.
3047 *
1c3fae4d
TH
3048 * LOCKING:
3049 * Inherited from caller.
3050 *
3051 * RETURNS:
3052 * 0 on success, negative errno on failure
3053 */
a07d499b 3054int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
1c3fae4d 3055{
81952c54 3056 u32 sstatus, spd, mask;
a07d499b 3057 int rc, bit;
1c3fae4d 3058
936fd732 3059 if (!sata_scr_valid(link))
008a7896
TH
3060 return -EOPNOTSUPP;
3061
3062 /* If SCR can be read, use it to determine the current SPD.
936fd732 3063 * If not, use cached value in link->sata_spd.
008a7896 3064 */
936fd732 3065 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
9913ff8a 3066 if (rc == 0 && ata_sstatus_online(sstatus))
008a7896
TH
3067 spd = (sstatus >> 4) & 0xf;
3068 else
936fd732 3069 spd = link->sata_spd;
1c3fae4d 3070
936fd732 3071 mask = link->sata_spd_limit;
1c3fae4d
TH
3072 if (mask <= 1)
3073 return -EINVAL;
008a7896
TH
3074
3075 /* unconditionally mask off the highest bit */
a07d499b
TH
3076 bit = fls(mask) - 1;
3077 mask &= ~(1 << bit);
1c3fae4d 3078
2dc0b46b
DM
3079 /*
3080 * Mask off all speeds higher than or equal to the current one. At
3081 * this point, if current SPD is not available and we previously
3082 * recorded the link speed from SStatus, the driver has already
3083 * masked off the highest bit so mask should already be 1 or 0.
3084 * Otherwise, we should not force 1.5Gbps on a link where we have
3085 * not previously recorded speed from SStatus. Just return in this
3086 * case.
008a7896
TH
3087 */
3088 if (spd > 1)
3089 mask &= (1 << (spd - 1)) - 1;
3090 else
2dc0b46b 3091 return -EINVAL;
008a7896
TH
3092
3093 /* were we already at the bottom? */
1c3fae4d
TH
3094 if (!mask)
3095 return -EINVAL;
3096
a07d499b
TH
3097 if (spd_limit) {
3098 if (mask & ((1 << spd_limit) - 1))
3099 mask &= (1 << spd_limit) - 1;
3100 else {
3101 bit = ffs(mask) - 1;
3102 mask = 1 << bit;
3103 }
3104 }
3105
936fd732 3106 link->sata_spd_limit = mask;
1c3fae4d 3107
a9a79dfe
JP
3108 ata_link_warn(link, "limiting SATA link speed to %s\n",
3109 sata_spd_string(fls(mask)));
1c3fae4d
TH
3110
3111 return 0;
3112}
3113
936fd732 3114static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 3115{
5270222f
TH
3116 struct ata_link *host_link = &link->ap->link;
3117 u32 limit, target, spd;
1c3fae4d 3118
5270222f
TH
3119 limit = link->sata_spd_limit;
3120
3121 /* Don't configure downstream link faster than upstream link.
3122 * It doesn't speed up anything and some PMPs choke on such
3123 * configuration.
3124 */
3125 if (!ata_is_host_link(link) && host_link->sata_spd)
3126 limit &= (1 << host_link->sata_spd) - 1;
3127
3128 if (limit == UINT_MAX)
3129 target = 0;
1c3fae4d 3130 else
5270222f 3131 target = fls(limit);
1c3fae4d
TH
3132
3133 spd = (*scontrol >> 4) & 0xf;
5270222f 3134 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 3135
5270222f 3136 return spd != target;
1c3fae4d
TH
3137}
3138
3139/**
3c567b7d 3140 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 3141 * @link: Link in question
1c3fae4d
TH
3142 *
3143 * Test whether the spd limit in SControl matches
936fd732 3144 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
3145 * whether hardreset is necessary to apply SATA spd
3146 * configuration.
3147 *
3148 * LOCKING:
3149 * Inherited from caller.
3150 *
3151 * RETURNS:
3152 * 1 if SATA spd configuration is needed, 0 otherwise.
3153 */
1dc55e87 3154static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
3155{
3156 u32 scontrol;
3157
936fd732 3158 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 3159 return 1;
1c3fae4d 3160
936fd732 3161 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
3162}
3163
3164/**
3c567b7d 3165 * sata_set_spd - set SATA spd according to spd limit
936fd732 3166 * @link: Link to set SATA spd for
1c3fae4d 3167 *
936fd732 3168 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
3169 *
3170 * LOCKING:
3171 * Inherited from caller.
3172 *
3173 * RETURNS:
3174 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 3175 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 3176 */
936fd732 3177int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
3178{
3179 u32 scontrol;
81952c54 3180 int rc;
1c3fae4d 3181
936fd732 3182 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3183 return rc;
1c3fae4d 3184
936fd732 3185 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
3186 return 0;
3187
936fd732 3188 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
3189 return rc;
3190
1c3fae4d
TH
3191 return 1;
3192}
3193
452503f9
AC
3194/*
3195 * This mode timing computation functionality is ported over from
3196 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3197 */
3198/*
b352e57d 3199 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 3200 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
3201 * for UDMA6, which is currently supported only by Maxtor drives.
3202 *
3203 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
3204 */
3205
3206static const struct ata_timing ata_timing[] = {
3ada9c12
DD
3207/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3208 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3209 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3210 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3211 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3212 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3213 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3214 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3215
3216 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3217 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3218 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3219
3220 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3221 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3222 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3223 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3224 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3225
3226/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3227 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3228 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3229 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3230 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3231 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3232 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3233 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
3234
3235 { 0xFF }
3236};
3237
2dcb407e 3238#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
23e4c67a 3239#define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0)
452503f9
AC
3240
3241static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3242{
23e4c67a
AB
3243 q->setup = EZ(t->setup, T);
3244 q->act8b = EZ(t->act8b, T);
3245 q->rec8b = EZ(t->rec8b, T);
3246 q->cyc8b = EZ(t->cyc8b, T);
3247 q->active = EZ(t->active, T);
3248 q->recover = EZ(t->recover, T);
3249 q->dmack_hold = EZ(t->dmack_hold, T);
3250 q->cycle = EZ(t->cycle, T);
3251 q->udma = EZ(t->udma, UT);
452503f9
AC
3252}
3253
3254void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3255 struct ata_timing *m, unsigned int what)
3256{
3257 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3258 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3259 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3260 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3261 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3262 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3ada9c12 3263 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
452503f9
AC
3264 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3265 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3266}
3267
6357357c 3268const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 3269{
70cd071e
TH
3270 const struct ata_timing *t = ata_timing;
3271
3272 while (xfer_mode > t->mode)
3273 t++;
452503f9 3274
70cd071e
TH
3275 if (xfer_mode == t->mode)
3276 return t;
cd705d5a
BP
3277
3278 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3279 __func__, xfer_mode);
3280
70cd071e 3281 return NULL;
452503f9
AC
3282}
3283
3284int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3285 struct ata_timing *t, int T, int UT)
3286{
9e8808a9 3287 const u16 *id = adev->id;
452503f9
AC
3288 const struct ata_timing *s;
3289 struct ata_timing p;
3290
3291 /*
2e9edbf8 3292 * Find the mode.
75b1f2f8 3293 */
452503f9
AC
3294
3295 if (!(s = ata_timing_find_mode(speed)))
3296 return -EINVAL;
3297
75b1f2f8
AL
3298 memcpy(t, s, sizeof(*s));
3299
452503f9
AC
3300 /*
3301 * If the drive is an EIDE drive, it can tell us it needs extended
3302 * PIO/MW_DMA cycle timing.
3303 */
3304
9e8808a9 3305 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
452503f9 3306 memset(&p, 0, sizeof(p));
9e8808a9 3307
bff00256 3308 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
9e8808a9
BZ
3309 if (speed <= XFER_PIO_2)
3310 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3311 else if ((speed <= XFER_PIO_4) ||
3312 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3313 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3314 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3315 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3316
452503f9
AC
3317 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3318 }
3319
3320 /*
3321 * Convert the timing to bus clock counts.
3322 */
3323
75b1f2f8 3324 ata_timing_quantize(t, t, T, UT);
452503f9
AC
3325
3326 /*
c893a3ae
RD
3327 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3328 * S.M.A.R.T * and some other commands. We have to ensure that the
3329 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
3330 */
3331
fd3367af 3332 if (speed > XFER_PIO_6) {
452503f9
AC
3333 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3334 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3335 }
3336
3337 /*
c893a3ae 3338 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
3339 */
3340
3341 if (t->act8b + t->rec8b < t->cyc8b) {
3342 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3343 t->rec8b = t->cyc8b - t->act8b;
3344 }
3345
3346 if (t->active + t->recover < t->cycle) {
3347 t->active += (t->cycle - (t->active + t->recover)) / 2;
3348 t->recover = t->cycle - t->active;
3349 }
a617c09f 3350
4f701d1e
AC
3351 /* In a few cases quantisation may produce enough errors to
3352 leave t->cycle too low for the sum of active and recovery
3353 if so we must correct this */
3354 if (t->active + t->recover > t->cycle)
3355 t->cycle = t->active + t->recover;
452503f9
AC
3356
3357 return 0;
3358}
3359
a0f79b92
TH
3360/**
3361 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3362 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3363 * @cycle: cycle duration in ns
3364 *
3365 * Return matching xfer mode for @cycle. The returned mode is of
3366 * the transfer type specified by @xfer_shift. If @cycle is too
3367 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3368 * than the fastest known mode, the fasted mode is returned.
3369 *
3370 * LOCKING:
3371 * None.
3372 *
3373 * RETURNS:
3374 * Matching xfer_mode, 0xff if no match found.
3375 */
3376u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3377{
3378 u8 base_mode = 0xff, last_mode = 0xff;
3379 const struct ata_xfer_ent *ent;
3380 const struct ata_timing *t;
3381
3382 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3383 if (ent->shift == xfer_shift)
3384 base_mode = ent->base;
3385
3386 for (t = ata_timing_find_mode(base_mode);
3387 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3388 unsigned short this_cycle;
3389
3390 switch (xfer_shift) {
3391 case ATA_SHIFT_PIO:
3392 case ATA_SHIFT_MWDMA:
3393 this_cycle = t->cycle;
3394 break;
3395 case ATA_SHIFT_UDMA:
3396 this_cycle = t->udma;
3397 break;
3398 default:
3399 return 0xff;
3400 }
3401
3402 if (cycle > this_cycle)
3403 break;
3404
3405 last_mode = t->mode;
3406 }
3407
3408 return last_mode;
3409}
3410
cf176e1a
TH
3411/**
3412 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3413 * @dev: Device to adjust xfer masks
458337db 3414 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3415 *
3416 * Adjust xfer masks of @dev downward. Note that this function
3417 * does not apply the change. Invoking ata_set_mode() afterwards
3418 * will apply the limit.
3419 *
3420 * LOCKING:
3421 * Inherited from caller.
3422 *
3423 * RETURNS:
3424 * 0 on success, negative errno on failure
3425 */
458337db 3426int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3427{
458337db 3428 char buf[32];
7dc951ae
TH
3429 unsigned long orig_mask, xfer_mask;
3430 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3431 int quiet, highbit;
cf176e1a 3432
458337db
TH
3433 quiet = !!(sel & ATA_DNXFER_QUIET);
3434 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3435
458337db
TH
3436 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3437 dev->mwdma_mask,
3438 dev->udma_mask);
3439 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3440
458337db
TH
3441 switch (sel) {
3442 case ATA_DNXFER_PIO:
3443 highbit = fls(pio_mask) - 1;
3444 pio_mask &= ~(1 << highbit);
3445 break;
3446
3447 case ATA_DNXFER_DMA:
3448 if (udma_mask) {
3449 highbit = fls(udma_mask) - 1;
3450 udma_mask &= ~(1 << highbit);
3451 if (!udma_mask)
3452 return -ENOENT;
3453 } else if (mwdma_mask) {
3454 highbit = fls(mwdma_mask) - 1;
3455 mwdma_mask &= ~(1 << highbit);
3456 if (!mwdma_mask)
3457 return -ENOENT;
3458 }
3459 break;
3460
3461 case ATA_DNXFER_40C:
3462 udma_mask &= ATA_UDMA_MASK_40C;
3463 break;
3464
3465 case ATA_DNXFER_FORCE_PIO0:
3466 pio_mask &= 1;
05b83605 3467 /* fall through */
458337db
TH
3468 case ATA_DNXFER_FORCE_PIO:
3469 mwdma_mask = 0;
3470 udma_mask = 0;
3471 break;
3472
458337db
TH
3473 default:
3474 BUG();
3475 }
3476
3477 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3478
3479 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3480 return -ENOENT;
3481
3482 if (!quiet) {
3483 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3484 snprintf(buf, sizeof(buf), "%s:%s",
3485 ata_mode_string(xfer_mask),
3486 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3487 else
3488 snprintf(buf, sizeof(buf), "%s",
3489 ata_mode_string(xfer_mask));
3490
a9a79dfe 3491 ata_dev_warn(dev, "limiting speed to %s\n", buf);
458337db 3492 }
cf176e1a
TH
3493
3494 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3495 &dev->udma_mask);
3496
cf176e1a 3497 return 0;
cf176e1a
TH
3498}
3499
3373efd8 3500static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3501{
d0cb43b3 3502 struct ata_port *ap = dev->link->ap;
9af5c9c9 3503 struct ata_eh_context *ehc = &dev->link->eh_context;
d0cb43b3 3504 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
4055dee7
TH
3505 const char *dev_err_whine = "";
3506 int ign_dev_err = 0;
d0cb43b3 3507 unsigned int err_mask = 0;
83206a29 3508 int rc;
1da177e4 3509
e8384607 3510 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3511 if (dev->xfer_shift == ATA_SHIFT_PIO)
3512 dev->flags |= ATA_DFLAG_PIO;
3513
d0cb43b3
TH
3514 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3515 dev_err_whine = " (SET_XFERMODE skipped)";
3516 else {
3517 if (nosetxfer)
a9a79dfe
JP
3518 ata_dev_warn(dev,
3519 "NOSETXFER but PATA detected - can't "
3520 "skip SETXFER, might malfunction\n");
d0cb43b3
TH
3521 err_mask = ata_dev_set_xfermode(dev);
3522 }
2dcb407e 3523
4055dee7
TH
3524 if (err_mask & ~AC_ERR_DEV)
3525 goto fail;
3526
3527 /* revalidate */
3528 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3529 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3530 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3531 if (rc)
3532 return rc;
3533
b93fda12
AC
3534 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3535 /* Old CFA may refuse this command, which is just fine */
3536 if (ata_id_is_cfa(dev->id))
3537 ign_dev_err = 1;
3538 /* Catch several broken garbage emulations plus some pre
3539 ATA devices */
3540 if (ata_id_major_version(dev->id) == 0 &&
3541 dev->pio_mode <= XFER_PIO_2)
3542 ign_dev_err = 1;
3543 /* Some very old devices and some bad newer ones fail
3544 any kind of SET_XFERMODE request but support PIO0-2
3545 timings and no IORDY */
3546 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3547 ign_dev_err = 1;
3548 }
3acaf94b
AC
3549 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3550 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3551 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3552 dev->dma_mode == XFER_MW_DMA_0 &&
3553 (dev->id[63] >> 8) & 1)
4055dee7 3554 ign_dev_err = 1;
3acaf94b 3555
4055dee7
TH
3556 /* if the device is actually configured correctly, ignore dev err */
3557 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3558 ign_dev_err = 1;
1da177e4 3559
4055dee7
TH
3560 if (err_mask & AC_ERR_DEV) {
3561 if (!ign_dev_err)
3562 goto fail;
3563 else
3564 dev_err_whine = " (device error ignored)";
3565 }
48a8a14f 3566
23e71c3d
TH
3567 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3568 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3569
07b9b6d6
DLM
3570 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3571 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3572 ata_dev_info(dev, "configured for %s%s\n",
3573 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3574 dev_err_whine);
4055dee7 3575
83206a29 3576 return 0;
4055dee7
TH
3577
3578 fail:
a9a79dfe 3579 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
4055dee7 3580 return -EIO;
1da177e4
LT
3581}
3582
1da177e4 3583/**
04351821 3584 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3585 * @link: link on which timings will be programmed
1967b7ff 3586 * @r_failed_dev: out parameter for failed device
1da177e4 3587 *
04351821
A
3588 * Standard implementation of the function used to tune and set
3589 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3590 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3591 * returned in @r_failed_dev.
780a87f7 3592 *
1da177e4 3593 * LOCKING:
0cba632b 3594 * PCI/etc. bus probe sem.
e82cbdb9
TH
3595 *
3596 * RETURNS:
3597 * 0 on success, negative errno otherwise
1da177e4 3598 */
04351821 3599
0260731f 3600int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3601{
0260731f 3602 struct ata_port *ap = link->ap;
e8e0619f 3603 struct ata_device *dev;
f58229f8 3604 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3605
a6d5a51c 3606 /* step 1: calculate xfer_mask */
1eca4365 3607 ata_for_each_dev(dev, link, ENABLED) {
7dc951ae 3608 unsigned long pio_mask, dma_mask;
b3a70601 3609 unsigned int mode_mask;
a6d5a51c 3610
b3a70601
AC
3611 mode_mask = ATA_DMA_MASK_ATA;
3612 if (dev->class == ATA_DEV_ATAPI)
3613 mode_mask = ATA_DMA_MASK_ATAPI;
3614 else if (ata_id_is_cfa(dev->id))
3615 mode_mask = ATA_DMA_MASK_CFA;
3616
3373efd8 3617 ata_dev_xfermask(dev);
33267325 3618 ata_force_xfermask(dev);
1da177e4 3619
acf356b1 3620 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
b3a70601
AC
3621
3622 if (libata_dma_mask & mode_mask)
80a9c430
SS
3623 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3624 dev->udma_mask);
b3a70601
AC
3625 else
3626 dma_mask = 0;
3627
acf356b1
TH
3628 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3629 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3630
4f65977d 3631 found = 1;
b15b3eba 3632 if (ata_dma_enabled(dev))
5444a6f4 3633 used_dma = 1;
a6d5a51c 3634 }
4f65977d 3635 if (!found)
e82cbdb9 3636 goto out;
a6d5a51c
TH
3637
3638 /* step 2: always set host PIO timings */
1eca4365 3639 ata_for_each_dev(dev, link, ENABLED) {
70cd071e 3640 if (dev->pio_mode == 0xff) {
a9a79dfe 3641 ata_dev_warn(dev, "no PIO support\n");
e8e0619f 3642 rc = -EINVAL;
e82cbdb9 3643 goto out;
e8e0619f
TH
3644 }
3645
3646 dev->xfer_mode = dev->pio_mode;
3647 dev->xfer_shift = ATA_SHIFT_PIO;
3648 if (ap->ops->set_piomode)
3649 ap->ops->set_piomode(ap, dev);
3650 }
1da177e4 3651
a6d5a51c 3652 /* step 3: set host DMA timings */
1eca4365
TH
3653 ata_for_each_dev(dev, link, ENABLED) {
3654 if (!ata_dma_enabled(dev))
e8e0619f
TH
3655 continue;
3656
3657 dev->xfer_mode = dev->dma_mode;
3658 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3659 if (ap->ops->set_dmamode)
3660 ap->ops->set_dmamode(ap, dev);
3661 }
1da177e4
LT
3662
3663 /* step 4: update devices' xfer mode */
1eca4365 3664 ata_for_each_dev(dev, link, ENABLED) {
3373efd8 3665 rc = ata_dev_set_mode(dev);
5bbc53f4 3666 if (rc)
e82cbdb9 3667 goto out;
83206a29 3668 }
1da177e4 3669
e8e0619f
TH
3670 /* Record simplex status. If we selected DMA then the other
3671 * host channels are not permitted to do so.
5444a6f4 3672 */
cca3974e 3673 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3674 ap->host->simplex_claimed = ap;
5444a6f4 3675
e82cbdb9
TH
3676 out:
3677 if (rc)
3678 *r_failed_dev = dev;
3679 return rc;
1da177e4
LT
3680}
3681
aa2731ad
TH
3682/**
3683 * ata_wait_ready - wait for link to become ready
3684 * @link: link to be waited on
3685 * @deadline: deadline jiffies for the operation
3686 * @check_ready: callback to check link readiness
3687 *
3688 * Wait for @link to become ready. @check_ready should return
3689 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3690 * link doesn't seem to be occupied, other errno for other error
3691 * conditions.
3692 *
3693 * Transient -ENODEV conditions are allowed for
3694 * ATA_TMOUT_FF_WAIT.
3695 *
3696 * LOCKING:
3697 * EH context.
3698 *
3699 * RETURNS:
c9b5560a 3700 * 0 if @link is ready before @deadline; otherwise, -errno.
aa2731ad
TH
3701 */
3702int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3703 int (*check_ready)(struct ata_link *link))
3704{
3705 unsigned long start = jiffies;
b48d58f5 3706 unsigned long nodev_deadline;
aa2731ad
TH
3707 int warned = 0;
3708
b48d58f5
TH
3709 /* choose which 0xff timeout to use, read comment in libata.h */
3710 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3711 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3712 else
3713 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3714
b1c72916
TH
3715 /* Slave readiness can't be tested separately from master. On
3716 * M/S emulation configuration, this function should be called
3717 * only on the master and it will handle both master and slave.
3718 */
3719 WARN_ON(link == link->ap->slave_link);
3720
aa2731ad
TH
3721 if (time_after(nodev_deadline, deadline))
3722 nodev_deadline = deadline;
3723
3724 while (1) {
3725 unsigned long now = jiffies;
3726 int ready, tmp;
3727
3728 ready = tmp = check_ready(link);
3729 if (ready > 0)
3730 return 0;
3731
b48d58f5
TH
3732 /*
3733 * -ENODEV could be transient. Ignore -ENODEV if link
aa2731ad 3734 * is online. Also, some SATA devices take a long
b48d58f5
TH
3735 * time to clear 0xff after reset. Wait for
3736 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3737 * offline.
aa2731ad
TH
3738 *
3739 * Note that some PATA controllers (pata_ali) explode
3740 * if status register is read more than once when
3741 * there's no device attached.
3742 */
3743 if (ready == -ENODEV) {
3744 if (ata_link_online(link))
3745 ready = 0;
3746 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3747 !ata_link_offline(link) &&
3748 time_before(now, nodev_deadline))
3749 ready = 0;
3750 }
3751
3752 if (ready)
3753 return ready;
3754 if (time_after(now, deadline))
3755 return -EBUSY;
3756
3757 if (!warned && time_after(now, start + 5 * HZ) &&
3758 (deadline - now > 3 * HZ)) {
a9a79dfe 3759 ata_link_warn(link,
aa2731ad
TH
3760 "link is slow to respond, please be patient "
3761 "(ready=%d)\n", tmp);
3762 warned = 1;
3763 }
3764
97750ceb 3765 ata_msleep(link->ap, 50);
aa2731ad
TH
3766 }
3767}
3768
3769/**
3770 * ata_wait_after_reset - wait for link to become ready after reset
3771 * @link: link to be waited on
3772 * @deadline: deadline jiffies for the operation
3773 * @check_ready: callback to check link readiness
3774 *
3775 * Wait for @link to become ready after reset.
3776 *
3777 * LOCKING:
3778 * EH context.
3779 *
3780 * RETURNS:
c9b5560a 3781 * 0 if @link is ready before @deadline; otherwise, -errno.
aa2731ad 3782 */
2b4221bb 3783int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3784 int (*check_ready)(struct ata_link *link))
3785{
97750ceb 3786 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3787
3788 return ata_wait_ready(link, deadline, check_ready);
3789}
3790
d7bb4cc7 3791/**
936fd732
TH
3792 * sata_link_debounce - debounce SATA phy status
3793 * @link: ATA link to debounce SATA phy status for
c9b5560a 3794 * @params: timing parameters { interval, duration, timeout } in msec
d4b2bab4 3795 * @deadline: deadline jiffies for the operation
d7bb4cc7 3796 *
1152b261 3797 * Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3798 * holding the same value where DET is not 1 for @duration polled
3799 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3800 * beginning of the stable state. Because DET gets stuck at 1 on
3801 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3802 * until timeout then returns 0 if DET is stable at 1.
3803 *
d4b2bab4
TH
3804 * @timeout is further limited by @deadline. The sooner of the
3805 * two is used.
3806 *
d7bb4cc7
TH
3807 * LOCKING:
3808 * Kernel thread context (may sleep)
3809 *
3810 * RETURNS:
3811 * 0 on success, -errno on failure.
3812 */
936fd732
TH
3813int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3814 unsigned long deadline)
7a7921e8 3815{
341c2c95
TH
3816 unsigned long interval = params[0];
3817 unsigned long duration = params[1];
d4b2bab4 3818 unsigned long last_jiffies, t;
d7bb4cc7
TH
3819 u32 last, cur;
3820 int rc;
3821
341c2c95 3822 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3823 if (time_before(t, deadline))
3824 deadline = t;
3825
936fd732 3826 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3827 return rc;
3828 cur &= 0xf;
3829
3830 last = cur;
3831 last_jiffies = jiffies;
3832
3833 while (1) {
97750ceb 3834 ata_msleep(link->ap, interval);
936fd732 3835 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3836 return rc;
3837 cur &= 0xf;
3838
3839 /* DET stable? */
3840 if (cur == last) {
d4b2bab4 3841 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3842 continue;
341c2c95
TH
3843 if (time_after(jiffies,
3844 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3845 return 0;
3846 continue;
3847 }
3848
3849 /* unstable, start over */
3850 last = cur;
3851 last_jiffies = jiffies;
3852
f1545154
TH
3853 /* Check deadline. If debouncing failed, return
3854 * -EPIPE to tell upper layer to lower link speed.
3855 */
d4b2bab4 3856 if (time_after(jiffies, deadline))
f1545154 3857 return -EPIPE;
d7bb4cc7
TH
3858 }
3859}
3860
3861/**
936fd732
TH
3862 * sata_link_resume - resume SATA link
3863 * @link: ATA link to resume SATA
c9b5560a 3864 * @params: timing parameters { interval, duration, timeout } in msec
d4b2bab4 3865 * @deadline: deadline jiffies for the operation
d7bb4cc7 3866 *
936fd732 3867 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3868 *
3869 * LOCKING:
3870 * Kernel thread context (may sleep)
3871 *
3872 * RETURNS:
3873 * 0 on success, -errno on failure.
3874 */
936fd732
TH
3875int sata_link_resume(struct ata_link *link, const unsigned long *params,
3876 unsigned long deadline)
d7bb4cc7 3877{
5040ab67 3878 int tries = ATA_LINK_RESUME_TRIES;
ac371987 3879 u32 scontrol, serror;
81952c54
TH
3880 int rc;
3881
936fd732 3882 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3883 return rc;
7a7921e8 3884
5040ab67
TH
3885 /*
3886 * Writes to SControl sometimes get ignored under certain
3887 * controllers (ata_piix SIDPR). Make sure DET actually is
3888 * cleared.
3889 */
3890 do {
3891 scontrol = (scontrol & 0x0f0) | 0x300;
3892 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3893 return rc;
3894 /*
3895 * Some PHYs react badly if SStatus is pounded
3896 * immediately after resuming. Delay 200ms before
3897 * debouncing.
3898 */
e39b2bb3
DP
3899 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3900 ata_msleep(link->ap, 200);
81952c54 3901
5040ab67
TH
3902 /* is SControl restored correctly? */
3903 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3904 return rc;
3905 } while ((scontrol & 0xf0f) != 0x300 && --tries);
7a7921e8 3906
5040ab67 3907 if ((scontrol & 0xf0f) != 0x300) {
38941c95 3908 ata_link_warn(link, "failed to resume link (SControl %X)\n",
a9a79dfe 3909 scontrol);
5040ab67
TH
3910 return 0;
3911 }
3912
3913 if (tries < ATA_LINK_RESUME_TRIES)
a9a79dfe
JP
3914 ata_link_warn(link, "link resume succeeded after %d retries\n",
3915 ATA_LINK_RESUME_TRIES - tries);
7a7921e8 3916
ac371987
TH
3917 if ((rc = sata_link_debounce(link, params, deadline)))
3918 return rc;
3919
f046519f 3920 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3921 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3922 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3923
f046519f 3924 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3925}
3926
1152b261
TH
3927/**
3928 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3929 * @link: ATA link to manipulate SControl for
3930 * @policy: LPM policy to configure
3931 * @spm_wakeup: initiate LPM transition to active state
3932 *
3933 * Manipulate the IPM field of the SControl register of @link
3934 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3935 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3936 * the link. This function also clears PHYRDY_CHG before
3937 * returning.
3938 *
3939 * LOCKING:
3940 * EH context.
3941 *
3942 * RETURNS:
8485187b 3943 * 0 on success, -errno otherwise.
1152b261
TH
3944 */
3945int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3946 bool spm_wakeup)
3947{
3948 struct ata_eh_context *ehc = &link->eh_context;
3949 bool woken_up = false;
3950 u32 scontrol;
3951 int rc;
3952
3953 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3954 if (rc)
3955 return rc;
3956
3957 switch (policy) {
3958 case ATA_LPM_MAX_POWER:
3959 /* disable all LPM transitions */
65fe1f0f 3960 scontrol |= (0x7 << 8);
1152b261
TH
3961 /* initiate transition to active state */
3962 if (spm_wakeup) {
3963 scontrol |= (0x4 << 12);
3964 woken_up = true;
3965 }
3966 break;
3967 case ATA_LPM_MED_POWER:
3968 /* allow LPM to PARTIAL */
3969 scontrol &= ~(0x1 << 8);
65fe1f0f 3970 scontrol |= (0x6 << 8);
1152b261 3971 break;
f4ac6476 3972 case ATA_LPM_MED_POWER_WITH_DIPM:
1152b261 3973 case ATA_LPM_MIN_POWER:
8a745f1f
KCA
3974 if (ata_link_nr_enabled(link) > 0)
3975 /* no restrictions on LPM transitions */
65fe1f0f 3976 scontrol &= ~(0x7 << 8);
8a745f1f
KCA
3977 else {
3978 /* empty port, power off */
3979 scontrol &= ~0xf;
3980 scontrol |= (0x1 << 2);
3981 }
1152b261
TH
3982 break;
3983 default:
3984 WARN_ON(1);
3985 }
3986
3987 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3988 if (rc)
3989 return rc;
3990
3991 /* give the link time to transit out of LPM state */
3992 if (woken_up)
3993 msleep(10);
3994
3995 /* clear PHYRDY_CHG from SError */
3996 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3997 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3998}
3999
f5914a46 4000/**
0aa1113d 4001 * ata_std_prereset - prepare for reset
cc0680a5 4002 * @link: ATA link to be reset
d4b2bab4 4003 * @deadline: deadline jiffies for the operation
f5914a46 4004 *
cc0680a5 4005 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
4006 * prereset makes libata abort whole reset sequence and give up
4007 * that port, so prereset should be best-effort. It does its
4008 * best to prepare for reset sequence but if things go wrong, it
4009 * should just whine, not fail.
f5914a46
TH
4010 *
4011 * LOCKING:
4012 * Kernel thread context (may sleep)
4013 *
4014 * RETURNS:
4015 * 0 on success, -errno otherwise.
4016 */
0aa1113d 4017int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 4018{
cc0680a5 4019 struct ata_port *ap = link->ap;
936fd732 4020 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 4021 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
4022 int rc;
4023
f5914a46
TH
4024 /* if we're about to do hardreset, nothing more to do */
4025 if (ehc->i.action & ATA_EH_HARDRESET)
4026 return 0;
4027
936fd732 4028 /* if SATA, resume link */
a16abc0b 4029 if (ap->flags & ATA_FLAG_SATA) {
936fd732 4030 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
4031 /* whine about phy resume failure but proceed */
4032 if (rc && rc != -EOPNOTSUPP)
a9a79dfe
JP
4033 ata_link_warn(link,
4034 "failed to resume link for reset (errno=%d)\n",
4035 rc);
f5914a46
TH
4036 }
4037
45db2f6c 4038 /* no point in trying softreset on offline link */
b1c72916 4039 if (ata_phys_link_offline(link))
45db2f6c
TH
4040 ehc->i.action &= ~ATA_EH_SOFTRESET;
4041
f5914a46
TH
4042 return 0;
4043}
4044
c2bd5804 4045/**
624d5c51
TH
4046 * sata_link_hardreset - reset link via SATA phy reset
4047 * @link: link to reset
c9b5560a 4048 * @timing: timing parameters { interval, duration, timeout } in msec
d4b2bab4 4049 * @deadline: deadline jiffies for the operation
9dadd45b
TH
4050 * @online: optional out parameter indicating link onlineness
4051 * @check_ready: optional callback to check link readiness
c2bd5804 4052 *
624d5c51 4053 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
4054 * After hardreset, link readiness is waited upon using
4055 * ata_wait_ready() if @check_ready is specified. LLDs are
4056 * allowed to not specify @check_ready and wait itself after this
4057 * function returns. Device classification is LLD's
4058 * responsibility.
4059 *
4060 * *@online is set to one iff reset succeeded and @link is online
4061 * after reset.
c2bd5804
TH
4062 *
4063 * LOCKING:
4064 * Kernel thread context (may sleep)
4065 *
4066 * RETURNS:
4067 * 0 on success, -errno otherwise.
4068 */
624d5c51 4069int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
4070 unsigned long deadline,
4071 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 4072{
624d5c51 4073 u32 scontrol;
81952c54 4074 int rc;
852ee16a 4075
c2bd5804
TH
4076 DPRINTK("ENTER\n");
4077
9dadd45b
TH
4078 if (online)
4079 *online = false;
4080
936fd732 4081 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
4082 /* SATA spec says nothing about how to reconfigure
4083 * spd. To be on the safe side, turn off phy during
4084 * reconfiguration. This works for at least ICH7 AHCI
4085 * and Sil3124.
4086 */
936fd732 4087 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 4088 goto out;
81952c54 4089
a34b6fc0 4090 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 4091
936fd732 4092 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 4093 goto out;
1c3fae4d 4094
936fd732 4095 sata_set_spd(link);
1c3fae4d
TH
4096 }
4097
4098 /* issue phy wake/reset */
936fd732 4099 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 4100 goto out;
81952c54 4101
852ee16a 4102 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 4103
936fd732 4104 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 4105 goto out;
c2bd5804 4106
1c3fae4d 4107 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
4108 * 10.4.2 says at least 1 ms.
4109 */
97750ceb 4110 ata_msleep(link->ap, 1);
c2bd5804 4111
936fd732
TH
4112 /* bring link back */
4113 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
4114 if (rc)
4115 goto out;
4116 /* if link is offline nothing more to do */
b1c72916 4117 if (ata_phys_link_offline(link))
9dadd45b
TH
4118 goto out;
4119
4120 /* Link is online. From this point, -ENODEV too is an error. */
4121 if (online)
4122 *online = true;
4123
071f44b1 4124 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
4125 /* If PMP is supported, we have to do follow-up SRST.
4126 * Some PMPs don't send D2H Reg FIS after hardreset if
4127 * the first port is empty. Wait only for
4128 * ATA_TMOUT_PMP_SRST_WAIT.
4129 */
4130 if (check_ready) {
4131 unsigned long pmp_deadline;
4132
341c2c95
TH
4133 pmp_deadline = ata_deadline(jiffies,
4134 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
4135 if (time_after(pmp_deadline, deadline))
4136 pmp_deadline = deadline;
4137 ata_wait_ready(link, pmp_deadline, check_ready);
4138 }
4139 rc = -EAGAIN;
4140 goto out;
4141 }
4142
4143 rc = 0;
4144 if (check_ready)
4145 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 4146 out:
0cbf0711
TH
4147 if (rc && rc != -EAGAIN) {
4148 /* online is set iff link is online && reset succeeded */
4149 if (online)
4150 *online = false;
a9a79dfe 4151 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
0cbf0711 4152 }
b6103f6d
TH
4153 DPRINTK("EXIT, rc=%d\n", rc);
4154 return rc;
4155}
4156
57c9efdf
TH
4157/**
4158 * sata_std_hardreset - COMRESET w/o waiting or classification
4159 * @link: link to reset
4160 * @class: resulting class of attached device
4161 * @deadline: deadline jiffies for the operation
4162 *
4163 * Standard SATA COMRESET w/o waiting or classification.
4164 *
4165 * LOCKING:
4166 * Kernel thread context (may sleep)
4167 *
4168 * RETURNS:
4169 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4170 */
4171int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4172 unsigned long deadline)
4173{
4174 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4175 bool online;
4176 int rc;
4177
4178 /* do hardreset */
4179 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
4180 return online ? -EAGAIN : rc;
4181}
4182
c2bd5804 4183/**
203c75b8 4184 * ata_std_postreset - standard postreset callback
cc0680a5 4185 * @link: the target ata_link
c2bd5804
TH
4186 * @classes: classes of attached devices
4187 *
4188 * This function is invoked after a successful reset. Note that
4189 * the device might have been reset more than once using
4190 * different reset methods before postreset is invoked.
c2bd5804 4191 *
c2bd5804
TH
4192 * LOCKING:
4193 * Kernel thread context (may sleep)
4194 */
203c75b8 4195void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 4196{
f046519f
TH
4197 u32 serror;
4198
c2bd5804
TH
4199 DPRINTK("ENTER\n");
4200
f046519f
TH
4201 /* reset complete, clear SError */
4202 if (!sata_scr_read(link, SCR_ERROR, &serror))
4203 sata_scr_write(link, SCR_ERROR, serror);
4204
c2bd5804 4205 /* print link status */
936fd732 4206 sata_print_link_status(link);
c2bd5804 4207
c2bd5804
TH
4208 DPRINTK("EXIT\n");
4209}
4210
623a3128
TH
4211/**
4212 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
4213 * @dev: device to compare against
4214 * @new_class: class of the new device
4215 * @new_id: IDENTIFY page of the new device
4216 *
4217 * Compare @new_class and @new_id against @dev and determine
4218 * whether @dev is the device indicated by @new_class and
4219 * @new_id.
4220 *
4221 * LOCKING:
4222 * None.
4223 *
4224 * RETURNS:
4225 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4226 */
3373efd8
TH
4227static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4228 const u16 *new_id)
623a3128
TH
4229{
4230 const u16 *old_id = dev->id;
a0cf733b
TH
4231 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4232 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
4233
4234 if (dev->class != new_class) {
a9a79dfe
JP
4235 ata_dev_info(dev, "class mismatch %d != %d\n",
4236 dev->class, new_class);
623a3128
TH
4237 return 0;
4238 }
4239
a0cf733b
TH
4240 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4241 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4242 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4243 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
4244
4245 if (strcmp(model[0], model[1])) {
a9a79dfe
JP
4246 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4247 model[0], model[1]);
623a3128
TH
4248 return 0;
4249 }
4250
4251 if (strcmp(serial[0], serial[1])) {
a9a79dfe
JP
4252 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4253 serial[0], serial[1]);
623a3128
TH
4254 return 0;
4255 }
4256
623a3128
TH
4257 return 1;
4258}
4259
4260/**
fe30911b 4261 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4262 * @dev: target ATA device
bff04647 4263 * @readid_flags: read ID flags
623a3128
TH
4264 *
4265 * Re-read IDENTIFY page and make sure @dev is still attached to
4266 * the port.
4267 *
4268 * LOCKING:
4269 * Kernel thread context (may sleep)
4270 *
4271 * RETURNS:
4272 * 0 on success, negative errno otherwise
4273 */
fe30911b 4274int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4275{
5eb45c02 4276 unsigned int class = dev->class;
9af5c9c9 4277 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4278 int rc;
4279
fe635c7e 4280 /* read ID data */
bff04647 4281 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4282 if (rc)
fe30911b 4283 return rc;
623a3128
TH
4284
4285 /* is the device still there? */
fe30911b
TH
4286 if (!ata_dev_same_device(dev, class, id))
4287 return -ENODEV;
623a3128 4288
fe635c7e 4289 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4290 return 0;
4291}
4292
4293/**
4294 * ata_dev_revalidate - Revalidate ATA device
4295 * @dev: device to revalidate
422c9daa 4296 * @new_class: new class code
fe30911b
TH
4297 * @readid_flags: read ID flags
4298 *
4299 * Re-read IDENTIFY page, make sure @dev is still attached to the
4300 * port and reconfigure it according to the new IDENTIFY page.
4301 *
4302 * LOCKING:
4303 * Kernel thread context (may sleep)
4304 *
4305 * RETURNS:
4306 * 0 on success, negative errno otherwise
4307 */
422c9daa
TH
4308int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4309 unsigned int readid_flags)
fe30911b 4310{
6ddcd3b0 4311 u64 n_sectors = dev->n_sectors;
5920dadf 4312 u64 n_native_sectors = dev->n_native_sectors;
fe30911b
TH
4313 int rc;
4314
4315 if (!ata_dev_enabled(dev))
4316 return -ENODEV;
4317
422c9daa
TH
4318 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4319 if (ata_class_enabled(new_class) &&
f0d0613d
BP
4320 new_class != ATA_DEV_ATA &&
4321 new_class != ATA_DEV_ATAPI &&
9162c657 4322 new_class != ATA_DEV_ZAC &&
f0d0613d 4323 new_class != ATA_DEV_SEMB) {
a9a79dfe
JP
4324 ata_dev_info(dev, "class mismatch %u != %u\n",
4325 dev->class, new_class);
422c9daa
TH
4326 rc = -ENODEV;
4327 goto fail;
4328 }
4329
fe30911b
TH
4330 /* re-read ID */
4331 rc = ata_dev_reread_id(dev, readid_flags);
4332 if (rc)
4333 goto fail;
623a3128
TH
4334
4335 /* configure device according to the new ID */
efdaedc4 4336 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4337 if (rc)
4338 goto fail;
4339
4340 /* verify n_sectors hasn't changed */
445d211b
TH
4341 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4342 dev->n_sectors == n_sectors)
4343 return 0;
4344
4345 /* n_sectors has changed */
a9a79dfe
JP
4346 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4347 (unsigned long long)n_sectors,
4348 (unsigned long long)dev->n_sectors);
445d211b
TH
4349
4350 /*
4351 * Something could have caused HPA to be unlocked
4352 * involuntarily. If n_native_sectors hasn't changed and the
4353 * new size matches it, keep the device.
4354 */
4355 if (dev->n_native_sectors == n_native_sectors &&
4356 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
a9a79dfe
JP
4357 ata_dev_warn(dev,
4358 "new n_sectors matches native, probably "
4359 "late HPA unlock, n_sectors updated\n");
68939ce5 4360 /* use the larger n_sectors */
445d211b 4361 return 0;
6ddcd3b0
TH
4362 }
4363
445d211b
TH
4364 /*
4365 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4366 * unlocking HPA in those cases.
4367 *
4368 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4369 */
4370 if (dev->n_native_sectors == n_native_sectors &&
4371 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4372 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
a9a79dfe
JP
4373 ata_dev_warn(dev,
4374 "old n_sectors matches native, probably "
4375 "late HPA lock, will try to unlock HPA\n");
445d211b
TH
4376 /* try unlocking HPA */
4377 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4378 rc = -EIO;
4379 } else
4380 rc = -ENODEV;
623a3128 4381
445d211b
TH
4382 /* restore original n_[native_]sectors and fail */
4383 dev->n_native_sectors = n_native_sectors;
4384 dev->n_sectors = n_sectors;
623a3128 4385 fail:
a9a79dfe 4386 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4387 return rc;
4388}
4389
6919a0a6
AC
4390struct ata_blacklist_entry {
4391 const char *model_num;
4392 const char *model_rev;
4393 unsigned long horkage;
4394};
4395
4396static const struct ata_blacklist_entry ata_device_blacklist [] = {
4397 /* Devices with DMA related problems under Linux */
4398 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4399 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4400 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4401 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4402 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4403 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4404 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4405 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4406 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
7da4c935 4407 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4408 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4409 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4410 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4411 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4412 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
7da4c935 4413 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4414 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4415 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4416 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4417 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4418 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4419 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4420 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4421 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4422 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4423 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4424 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4425 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
d17d794c 4426 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
b00622fc 4427 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
3af9a77a 4428 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4429 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4430
18d6e9d5 4431 /* Weird ATAPI devices */
40a1d531 4432 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
6a87e42e 4433 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
a32450e1 4434 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
0523f037 4435 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
18d6e9d5 4436
af34d637
DM
4437 /*
4438 * Causes silent data corruption with higher max sects.
4439 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4440 */
4441 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
1488a1e3
TH
4442
4443 /*
e0edc8c5 4444 * These devices time out with higher max sects.
1488a1e3
TH
4445 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4446 */
e0edc8c5 4447 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
db5ff909 4448 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
af34d637 4449
6919a0a6
AC
4450 /* Devices we expect to fail diagnostics */
4451
4452 /* Devices where NCQ should be avoided */
4453 /* NCQ is slow */
2dcb407e 4454 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4455 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4456 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4457 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4458 /* NCQ is broken */
539cc7c7 4459 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4460 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4461 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4462 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
5ccfca97 4463 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
539cc7c7 4464
ac70a964 4465 /* Seagate NCQ + FLUSH CACHE firmware bug */
4d1f9082 4466 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964 4467 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4468
4d1f9082 4469 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4470 ATA_HORKAGE_FIRMWARE_WARN },
4471
4d1f9082 4472 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4473 ATA_HORKAGE_FIRMWARE_WARN },
4474
4d1f9082 4475 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964
TH
4476 ATA_HORKAGE_FIRMWARE_WARN },
4477
08c85d2a 4478 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
87809942 4479 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
b28a613e 4480 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
08c85d2a 4481 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
87809942 4482
36e337d0
RH
4483 /* Blacklist entries taken from Silicon Image 3124/3132
4484 Windows driver .inf file - also several Linux problem reports */
4485 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4486 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4487 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4488
68b0ddb2
TH
4489 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4490 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4491
322579dc
TH
4492 /* Some Sandisk SSDs lock up hard with NCQ enabled. Reported on
4493 SD7SN6S256G and SD8SN8U256G */
4494 { "SanDisk SD[78]SN*G", NULL, ATA_HORKAGE_NONCQ, },
4495
16c55b03
TH
4496 /* devices which puke on READ_NATIVE_MAX */
4497 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4498 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4499 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4500 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4501
7831387b
TH
4502 /* this one allows HPA unlocking but fails IOs on the area */
4503 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4504
93328e11
AC
4505 /* Devices which report 1 sector over size HPA */
4506 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4507 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4508 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4509
6bbfd53d
AC
4510 /* Devices which get the IVB wrong */
4511 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5 4512 /* Maybe we should just blacklist TSSTcorp... */
7da4c935 4513 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
6bbfd53d 4514
9ce8e307
JA
4515 /* Devices that do not need bridging limits applied */
4516 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
04d0f1b8 4517 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
9ce8e307 4518
9062712f
TH
4519 /* Devices which aren't very happy with higher link speeds */
4520 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
c531077f 4521 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
9062712f 4522
d0cb43b3
TH
4523 /*
4524 * Devices which choke on SETXFER. Applies only if both the
4525 * device and controller are SATA.
4526 */
cd691876 4527 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
3a25179e
VL
4528 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4529 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
cd691876
TH
4530 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4531 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
d0cb43b3 4532
b17e5729 4533 /* Crucial BX100 SSD 500GB has broken LPM support */
3bf7b5d6 4534 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
b17e5729 4535
d418ff56
HG
4536 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4537 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
9c7be59f
HG
4538 ATA_HORKAGE_ZERO_AFTER_TRIM |
4539 ATA_HORKAGE_NOLPM, },
d418ff56
HG
4540 /* 512GB MX100 with newer firmware has only LPM issues */
4541 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
4542 ATA_HORKAGE_NOLPM, },
9c7be59f 4543
62ac3f73
HG
4544 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4545 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4546 ATA_HORKAGE_ZERO_AFTER_TRIM |
4547 ATA_HORKAGE_NOLPM, },
4548 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4549 ATA_HORKAGE_ZERO_AFTER_TRIM |
4550 ATA_HORKAGE_NOLPM, },
4551
76936e9a 4552 /* These specific Samsung models/firmware-revs do not handle LPM well */
b5b4d3a5 4553 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
76936e9a 4554 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, },
b5b4d3a5 4555
f78dea06 4556 /* devices that don't properly handle queued TRIM commands */
136d769e
SM
4557 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4558 ATA_HORKAGE_ZERO_AFTER_TRIM, },
243918be 4559 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
ff7f53fb
MP
4560 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4561 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4562 ATA_HORKAGE_ZERO_AFTER_TRIM, },
9051bd39 4563 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
ff7f53fb
MP
4564 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4565 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4566 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4567 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
e61f7d1c 4568 ATA_HORKAGE_ZERO_AFTER_TRIM, },
ca6bfcb2
JHP
4569 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4570 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4571 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
6fc4d97a 4572 ATA_HORKAGE_ZERO_AFTER_TRIM, },
7a7184b0
GA
4573 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4574 ATA_HORKAGE_ZERO_AFTER_TRIM, },
e61f7d1c 4575
cda57b1b
AF
4576 /* devices that don't properly handle TRIM commands */
4577 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4578
e61f7d1c
MP
4579 /*
4580 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4581 * (Return Zero After Trim) flags in the ATA Command Set are
4582 * unreliable in the sense that they only define what happens if
4583 * the device successfully executed the DSM TRIM command. TRIM
4584 * is only advisory, however, and the device is free to silently
4585 * ignore all or parts of the request.
4586 *
4587 * Whitelist drives that are known to reliably return zeroes
4588 * after TRIM.
4589 */
4590
4591 /*
4592 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4593 * that model before whitelisting all other intel SSDs.
4594 */
4595 { "INTEL*SSDSC2MH*", NULL, 0, },
4596
ff7f53fb
MP
4597 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4598 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
e61f7d1c
MP
4599 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4600 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4601 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4602 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4603 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
f78dea06 4604
ecd75ad5
TH
4605 /*
4606 * Some WD SATA-I drives spin up and down erratically when the link
4607 * is put into the slumber mode. We don't have full list of the
4608 * affected devices. Disable LPM if the device matches one of the
4609 * known prefixes and is SATA-1. As a side effect LPM partial is
4610 * lost too.
4611 *
4612 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4613 */
4614 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4615 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4616 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4617 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4618 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4619 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4620 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4621
6919a0a6
AC
4622 /* End Marker */
4623 { }
1da177e4 4624};
2e9edbf8 4625
75683fe7 4626static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4627{
8bfa79fc
TH
4628 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4629 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4630 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4631
8bfa79fc
TH
4632 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4633 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4634
6919a0a6 4635 while (ad->model_num) {
1c402799 4636 if (glob_match(ad->model_num, model_num)) {
6919a0a6
AC
4637 if (ad->model_rev == NULL)
4638 return ad->horkage;
1c402799 4639 if (glob_match(ad->model_rev, model_rev))
6919a0a6 4640 return ad->horkage;
f4b15fef 4641 }
6919a0a6 4642 ad++;
f4b15fef 4643 }
1da177e4
LT
4644 return 0;
4645}
4646
6919a0a6
AC
4647static int ata_dma_blacklisted(const struct ata_device *dev)
4648{
4649 /* We don't support polling DMA.
4650 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4651 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4652 */
9af5c9c9 4653 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4654 (dev->flags & ATA_DFLAG_CDB_INTR))
4655 return 1;
75683fe7 4656 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4657}
4658
6bbfd53d
AC
4659/**
4660 * ata_is_40wire - check drive side detection
4661 * @dev: device
4662 *
4663 * Perform drive side detection decoding, allowing for device vendors
4664 * who can't follow the documentation.
4665 */
4666
4667static int ata_is_40wire(struct ata_device *dev)
4668{
4669 if (dev->horkage & ATA_HORKAGE_IVB)
4670 return ata_drive_40wire_relaxed(dev->id);
4671 return ata_drive_40wire(dev->id);
4672}
4673
15a5551c
AC
4674/**
4675 * cable_is_40wire - 40/80/SATA decider
4676 * @ap: port to consider
4677 *
4678 * This function encapsulates the policy for speed management
4679 * in one place. At the moment we don't cache the result but
4680 * there is a good case for setting ap->cbl to the result when
4681 * we are called with unknown cables (and figuring out if it
4682 * impacts hotplug at all).
4683 *
4684 * Return 1 if the cable appears to be 40 wire.
4685 */
4686
4687static int cable_is_40wire(struct ata_port *ap)
4688{
4689 struct ata_link *link;
4690 struct ata_device *dev;
4691
4a9c7b33 4692 /* If the controller thinks we are 40 wire, we are. */
15a5551c
AC
4693 if (ap->cbl == ATA_CBL_PATA40)
4694 return 1;
4a9c7b33
TH
4695
4696 /* If the controller thinks we are 80 wire, we are. */
15a5551c
AC
4697 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4698 return 0;
4a9c7b33
TH
4699
4700 /* If the system is known to be 40 wire short cable (eg
4701 * laptop), then we allow 80 wire modes even if the drive
4702 * isn't sure.
4703 */
f792068e
AC
4704 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4705 return 0;
4a9c7b33
TH
4706
4707 /* If the controller doesn't know, we scan.
4708 *
4709 * Note: We look for all 40 wire detects at this point. Any
4710 * 80 wire detect is taken to be 80 wire cable because
4711 * - in many setups only the one drive (slave if present) will
4712 * give a valid detect
4713 * - if you have a non detect capable drive you don't want it
4714 * to colour the choice
4715 */
1eca4365
TH
4716 ata_for_each_link(link, ap, EDGE) {
4717 ata_for_each_dev(dev, link, ENABLED) {
4718 if (!ata_is_40wire(dev))
15a5551c
AC
4719 return 0;
4720 }
4721 }
4722 return 1;
4723}
4724
a6d5a51c
TH
4725/**
4726 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4727 * @dev: Device to compute xfermask for
4728 *
acf356b1
TH
4729 * Compute supported xfermask of @dev and store it in
4730 * dev->*_mask. This function is responsible for applying all
4731 * known limits including host controller limits, device
4732 * blacklist, etc...
a6d5a51c
TH
4733 *
4734 * LOCKING:
4735 * None.
a6d5a51c 4736 */
3373efd8 4737static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4738{
9af5c9c9
TH
4739 struct ata_link *link = dev->link;
4740 struct ata_port *ap = link->ap;
cca3974e 4741 struct ata_host *host = ap->host;
a6d5a51c 4742 unsigned long xfer_mask;
1da177e4 4743
37deecb5 4744 /* controller modes available */
565083e1
TH
4745 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4746 ap->mwdma_mask, ap->udma_mask);
4747
8343f889 4748 /* drive modes available */
37deecb5
TH
4749 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4750 dev->mwdma_mask, dev->udma_mask);
4751 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4752
b352e57d
AC
4753 /*
4754 * CFA Advanced TrueIDE timings are not allowed on a shared
4755 * cable
4756 */
4757 if (ata_dev_pair(dev)) {
4758 /* No PIO5 or PIO6 */
4759 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4760 /* No MWDMA3 or MWDMA 4 */
4761 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4762 }
4763
37deecb5
TH
4764 if (ata_dma_blacklisted(dev)) {
4765 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4766 ata_dev_warn(dev,
4767 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4768 }
a6d5a51c 4769
14d66ab7 4770 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4771 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5 4772 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4773 ata_dev_warn(dev,
4774 "simplex DMA is claimed by other device, disabling DMA\n");
5444a6f4 4775 }
565083e1 4776
e424675f
JG
4777 if (ap->flags & ATA_FLAG_NO_IORDY)
4778 xfer_mask &= ata_pio_mask_no_iordy(dev);
4779
5444a6f4 4780 if (ap->ops->mode_filter)
a76b62ca 4781 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4782
8343f889
RH
4783 /* Apply cable rule here. Don't apply it early because when
4784 * we handle hot plug the cable type can itself change.
4785 * Check this last so that we know if the transfer rate was
4786 * solely limited by the cable.
4787 * Unknown or 80 wire cables reported host side are checked
4788 * drive side as well. Cases where we know a 40wire cable
4789 * is used safely for 80 are not checked here.
4790 */
4791 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4792 /* UDMA/44 or higher would be available */
15a5551c 4793 if (cable_is_40wire(ap)) {
a9a79dfe
JP
4794 ata_dev_warn(dev,
4795 "limited to UDMA/33 due to 40-wire cable\n");
8343f889
RH
4796 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4797 }
4798
565083e1
TH
4799 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4800 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4801}
4802
1da177e4
LT
4803/**
4804 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4805 * @dev: Device to which command will be sent
4806 *
780a87f7
JG
4807 * Issue SET FEATURES - XFER MODE command to device @dev
4808 * on port @ap.
4809 *
1da177e4 4810 * LOCKING:
0cba632b 4811 * PCI/etc. bus probe sem.
83206a29
TH
4812 *
4813 * RETURNS:
4814 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4815 */
4816
3373efd8 4817static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4818{
a0123703 4819 struct ata_taskfile tf;
83206a29 4820 unsigned int err_mask;
1da177e4
LT
4821
4822 /* set up set-features taskfile */
4823 DPRINTK("set features - xfer mode\n");
4824
464cf177
TH
4825 /* Some controllers and ATAPI devices show flaky interrupt
4826 * behavior after setting xfer mode. Use polling instead.
4827 */
3373efd8 4828 ata_tf_init(dev, &tf);
a0123703
TH
4829 tf.command = ATA_CMD_SET_FEATURES;
4830 tf.feature = SETFEATURES_XFER;
464cf177 4831 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4832 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4833 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4834 if (ata_pio_need_iordy(dev))
4835 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4836 /* If the device has IORDY and the controller does not - turn it off */
4837 else if (ata_id_has_iordy(dev->id))
11b7becc 4838 tf.nsect = 0x01;
b9f8ab2d
AC
4839 else /* In the ancient relic department - skip all of this */
4840 return 0;
1da177e4 4841
d531be2c
MP
4842 /* On some disks, this command causes spin-up, so we need longer timeout */
4843 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
9f45cbd3
KCA
4844
4845 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4846 return err_mask;
4847}
1152b261 4848
9f45cbd3 4849/**
218f3d30 4850 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4851 * @dev: Device to which command will be sent
4852 * @enable: Whether to enable or disable the feature
218f3d30 4853 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4854 *
4855 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4856 * on port @ap with sector count
9f45cbd3
KCA
4857 *
4858 * LOCKING:
4859 * PCI/etc. bus probe sem.
4860 *
4861 * RETURNS:
4862 * 0 on success, AC_ERR_* mask otherwise.
4863 */
1152b261 4864unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
9f45cbd3
KCA
4865{
4866 struct ata_taskfile tf;
4867 unsigned int err_mask;
974e0a45 4868 unsigned long timeout = 0;
9f45cbd3
KCA
4869
4870 /* set up set-features taskfile */
4871 DPRINTK("set features - SATA features\n");
4872
4873 ata_tf_init(dev, &tf);
4874 tf.command = ATA_CMD_SET_FEATURES;
4875 tf.feature = enable;
4876 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4877 tf.protocol = ATA_PROT_NODATA;
218f3d30 4878 tf.nsect = feature;
9f45cbd3 4879
974e0a45
DLM
4880 if (enable == SETFEATURES_SPINUP)
4881 timeout = ata_probe_timeout ?
4882 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4883 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
1da177e4 4884
83206a29
TH
4885 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4886 return err_mask;
1da177e4 4887}
633de4cc 4888EXPORT_SYMBOL_GPL(ata_dev_set_feature);
1da177e4 4889
8bf62ece
AL
4890/**
4891 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4892 * @dev: Device to which command will be sent
e2a7f77a
RD
4893 * @heads: Number of heads (taskfile parameter)
4894 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4895 *
4896 * LOCKING:
6aff8f1f
TH
4897 * Kernel thread context (may sleep)
4898 *
4899 * RETURNS:
4900 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4901 */
3373efd8
TH
4902static unsigned int ata_dev_init_params(struct ata_device *dev,
4903 u16 heads, u16 sectors)
8bf62ece 4904{
a0123703 4905 struct ata_taskfile tf;
6aff8f1f 4906 unsigned int err_mask;
8bf62ece
AL
4907
4908 /* Number of sectors per track 1-255. Number of heads 1-16 */
4909 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4910 return AC_ERR_INVALID;
8bf62ece
AL
4911
4912 /* set up init dev params taskfile */
4913 DPRINTK("init dev params \n");
4914
3373efd8 4915 ata_tf_init(dev, &tf);
a0123703
TH
4916 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4917 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4918 tf.protocol = ATA_PROT_NODATA;
4919 tf.nsect = sectors;
4920 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4921
2b789108 4922 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4923 /* A clean abort indicates an original or just out of spec drive
4924 and we should continue as we issue the setup based on the
4925 drive reported working geometry */
4926 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4927 err_mask = 0;
8bf62ece 4928
6aff8f1f
TH
4929 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4930 return err_mask;
8bf62ece
AL
4931}
4932
1da177e4 4933/**
5895ef9a 4934 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4935 * @qc: Metadata associated with taskfile to check
4936 *
780a87f7
JG
4937 * Allow low-level driver to filter ATA PACKET commands, returning
4938 * a status indicating whether or not it is OK to use DMA for the
4939 * supplied PACKET command.
4940 *
1da177e4 4941 * LOCKING:
624d5c51
TH
4942 * spin_lock_irqsave(host lock)
4943 *
4944 * RETURNS: 0 when ATAPI DMA can be used
4945 * nonzero otherwise
4946 */
5895ef9a 4947int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4948{
4949 struct ata_port *ap = qc->ap;
71601958 4950
624d5c51
TH
4951 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4952 * few ATAPI devices choke on such DMA requests.
4953 */
6a87e42e
TH
4954 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4955 unlikely(qc->nbytes & 15))
624d5c51 4956 return 1;
e2cec771 4957
624d5c51
TH
4958 if (ap->ops->check_atapi_dma)
4959 return ap->ops->check_atapi_dma(qc);
e2cec771 4960
624d5c51
TH
4961 return 0;
4962}
1da177e4 4963
624d5c51
TH
4964/**
4965 * ata_std_qc_defer - Check whether a qc needs to be deferred
4966 * @qc: ATA command in question
4967 *
4968 * Non-NCQ commands cannot run with any other command, NCQ or
4969 * not. As upper layer only knows the queue depth, we are
4970 * responsible for maintaining exclusion. This function checks
4971 * whether a new command @qc can be issued.
4972 *
4973 * LOCKING:
4974 * spin_lock_irqsave(host lock)
4975 *
4976 * RETURNS:
4977 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4978 */
4979int ata_std_qc_defer(struct ata_queued_cmd *qc)
4980{
4981 struct ata_link *link = qc->dev->link;
e2cec771 4982
179b310a 4983 if (ata_is_ncq(qc->tf.protocol)) {
624d5c51
TH
4984 if (!ata_tag_valid(link->active_tag))
4985 return 0;
4986 } else {
4987 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4988 return 0;
4989 }
e2cec771 4990
624d5c51
TH
4991 return ATA_DEFER_LINK;
4992}
6912ccd5 4993
624d5c51 4994void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4995
624d5c51
TH
4996/**
4997 * ata_sg_init - Associate command with scatter-gather table.
4998 * @qc: Command to be associated
4999 * @sg: Scatter-gather table.
5000 * @n_elem: Number of elements in s/g table.
5001 *
5002 * Initialize the data-related elements of queued_cmd @qc
5003 * to point to a scatter-gather table @sg, containing @n_elem
5004 * elements.
5005 *
5006 * LOCKING:
5007 * spin_lock_irqsave(host lock)
5008 */
5009void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
5010 unsigned int n_elem)
5011{
5012 qc->sg = sg;
5013 qc->n_elem = n_elem;
5014 qc->cursg = qc->sg;
5015}
bb5cb290 5016
2874d5ee
GU
5017#ifdef CONFIG_HAS_DMA
5018
5019/**
5020 * ata_sg_clean - Unmap DMA memory associated with command
5021 * @qc: Command containing DMA memory to be released
5022 *
5023 * Unmap all mapped DMA memory associated with this command.
5024 *
5025 * LOCKING:
5026 * spin_lock_irqsave(host lock)
5027 */
af27e01c 5028static void ata_sg_clean(struct ata_queued_cmd *qc)
2874d5ee
GU
5029{
5030 struct ata_port *ap = qc->ap;
5031 struct scatterlist *sg = qc->sg;
5032 int dir = qc->dma_dir;
5033
5034 WARN_ON_ONCE(sg == NULL);
5035
5036 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
5037
5038 if (qc->n_elem)
5039 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
5040
5041 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5042 qc->sg = NULL;
5043}
5044
624d5c51
TH
5045/**
5046 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5047 * @qc: Command with scatter-gather table to be mapped.
5048 *
5049 * DMA-map the scatter-gather table associated with queued_cmd @qc.
5050 *
5051 * LOCKING:
5052 * spin_lock_irqsave(host lock)
5053 *
5054 * RETURNS:
5055 * Zero on success, negative on error.
5056 *
5057 */
5058static int ata_sg_setup(struct ata_queued_cmd *qc)
5059{
5060 struct ata_port *ap = qc->ap;
5061 unsigned int n_elem;
1da177e4 5062
624d5c51 5063 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 5064
624d5c51
TH
5065 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5066 if (n_elem < 1)
5067 return -1;
bb5cb290 5068
624d5c51 5069 DPRINTK("%d sg elements mapped\n", n_elem);
5825627c 5070 qc->orig_n_elem = qc->n_elem;
624d5c51
TH
5071 qc->n_elem = n_elem;
5072 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 5073
624d5c51 5074 return 0;
1da177e4
LT
5075}
5076
2874d5ee
GU
5077#else /* !CONFIG_HAS_DMA */
5078
5079static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
5080static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5081
5082#endif /* !CONFIG_HAS_DMA */
5083
624d5c51
TH
5084/**
5085 * swap_buf_le16 - swap halves of 16-bit words in place
5086 * @buf: Buffer to swap
5087 * @buf_words: Number of 16-bit words in buffer.
5088 *
5089 * Swap halves of 16-bit words if needed to convert from
5090 * little-endian byte order to native cpu byte order, or
5091 * vice-versa.
5092 *
5093 * LOCKING:
5094 * Inherited from caller.
5095 */
5096void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 5097{
624d5c51
TH
5098#ifdef __BIG_ENDIAN
5099 unsigned int i;
8061f5f0 5100
624d5c51
TH
5101 for (i = 0; i < buf_words; i++)
5102 buf[i] = le16_to_cpu(buf[i]);
5103#endif /* __BIG_ENDIAN */
8061f5f0
TH
5104}
5105
8a8bc223 5106/**
98bd4be1
SL
5107 * ata_qc_new_init - Request an available ATA command, and initialize it
5108 * @dev: Device from whom we request an available command structure
38755e89 5109 * @tag: tag
1871ee13 5110 *
8a8bc223
TH
5111 * LOCKING:
5112 * None.
5113 */
5114
98bd4be1 5115struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
8a8bc223 5116{
98bd4be1 5117 struct ata_port *ap = dev->link->ap;
12cb5ce1 5118 struct ata_queued_cmd *qc;
8a8bc223
TH
5119
5120 /* no command while frozen */
5121 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5122 return NULL;
5123
98bd4be1 5124 /* libsas case */
5067c046 5125 if (ap->flags & ATA_FLAG_SAS_HOST) {
98bd4be1
SL
5126 tag = ata_sas_allocate_tag(ap);
5127 if (tag < 0)
5128 return NULL;
8a4aeec8 5129 }
8a8bc223 5130
98bd4be1 5131 qc = __ata_qc_from_tag(ap, tag);
5ac40790 5132 qc->tag = qc->hw_tag = tag;
98bd4be1
SL
5133 qc->scsicmd = NULL;
5134 qc->ap = ap;
5135 qc->dev = dev;
1da177e4 5136
98bd4be1 5137 ata_qc_reinit(qc);
1da177e4
LT
5138
5139 return qc;
5140}
5141
8a8bc223
TH
5142/**
5143 * ata_qc_free - free unused ata_queued_cmd
5144 * @qc: Command to complete
5145 *
5146 * Designed to free unused ata_queued_cmd object
5147 * in case something prevents using it.
5148 *
5149 * LOCKING:
5150 * spin_lock_irqsave(host lock)
5151 */
5152void ata_qc_free(struct ata_queued_cmd *qc)
5153{
a1104016 5154 struct ata_port *ap;
8a8bc223
TH
5155 unsigned int tag;
5156
efcb3cf7 5157 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
a1104016 5158 ap = qc->ap;
8a8bc223
TH
5159
5160 qc->flags = 0;
5161 tag = qc->tag;
28361c40 5162 if (ata_tag_valid(tag)) {
8a8bc223 5163 qc->tag = ATA_TAG_POISON;
5067c046 5164 if (ap->flags & ATA_FLAG_SAS_HOST)
98bd4be1 5165 ata_sas_free_tag(tag, ap);
8a8bc223
TH
5166 }
5167}
5168
76014427 5169void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5170{
a1104016
JL
5171 struct ata_port *ap;
5172 struct ata_link *link;
dedaf2b0 5173
efcb3cf7
TH
5174 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5175 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
a1104016
JL
5176 ap = qc->ap;
5177 link = qc->dev->link;
1da177e4
LT
5178
5179 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5180 ata_sg_clean(qc);
5181
7401abf2 5182 /* command should be marked inactive atomically with qc completion */
179b310a 5183 if (ata_is_ncq(qc->tf.protocol)) {
4e5b6260 5184 link->sactive &= ~(1 << qc->hw_tag);
da917d69
TH
5185 if (!link->sactive)
5186 ap->nr_active_links--;
5187 } else {
9af5c9c9 5188 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5189 ap->nr_active_links--;
5190 }
5191
5192 /* clear exclusive status */
5193 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5194 ap->excl_link == link))
5195 ap->excl_link = NULL;
7401abf2 5196
3f3791d3
AL
5197 /* atapi: mark qc as inactive to prevent the interrupt handler
5198 * from completing the command twice later, before the error handler
5199 * is called. (when rc != 0 and atapi request sense is needed)
5200 */
5201 qc->flags &= ~ATA_QCFLAG_ACTIVE;
e3ed8939 5202 ap->qc_active &= ~(1ULL << qc->tag);
3f3791d3 5203
1da177e4 5204 /* call completion callback */
77853bf2 5205 qc->complete_fn(qc);
1da177e4
LT
5206}
5207
39599a53
TH
5208static void fill_result_tf(struct ata_queued_cmd *qc)
5209{
5210 struct ata_port *ap = qc->ap;
5211
39599a53 5212 qc->result_tf.flags = qc->tf.flags;
22183bf5 5213 ap->ops->qc_fill_rtf(qc);
39599a53
TH
5214}
5215
00115e0f
TH
5216static void ata_verify_xfer(struct ata_queued_cmd *qc)
5217{
5218 struct ata_device *dev = qc->dev;
5219
eb0effdf 5220 if (!ata_is_data(qc->tf.protocol))
00115e0f
TH
5221 return;
5222
5223 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5224 return;
5225
5226 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5227}
5228
f686bcb8
TH
5229/**
5230 * ata_qc_complete - Complete an active ATA command
5231 * @qc: Command to complete
f686bcb8 5232 *
1aadf5c3
TH
5233 * Indicate to the mid and upper layers that an ATA command has
5234 * completed, with either an ok or not-ok status.
5235 *
5236 * Refrain from calling this function multiple times when
5237 * successfully completing multiple NCQ commands.
5238 * ata_qc_complete_multiple() should be used instead, which will
5239 * properly update IRQ expect state.
f686bcb8
TH
5240 *
5241 * LOCKING:
cca3974e 5242 * spin_lock_irqsave(host lock)
f686bcb8
TH
5243 */
5244void ata_qc_complete(struct ata_queued_cmd *qc)
5245{
5246 struct ata_port *ap = qc->ap;
5247
eb25cb99 5248 /* Trigger the LED (if available) */
d1ed7c55 5249 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
eb25cb99 5250
f686bcb8
TH
5251 /* XXX: New EH and old EH use different mechanisms to
5252 * synchronize EH with regular execution path.
5253 *
5254 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5255 * Normal execution path is responsible for not accessing a
5256 * failed qc. libata core enforces the rule by returning NULL
5257 * from ata_qc_from_tag() for failed qcs.
5258 *
5259 * Old EH depends on ata_qc_complete() nullifying completion
5260 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5261 * not synchronize with interrupt handler. Only PIO task is
5262 * taken care of.
5263 */
5264 if (ap->ops->error_handler) {
4dbfa39b
TH
5265 struct ata_device *dev = qc->dev;
5266 struct ata_eh_info *ehi = &dev->link->eh_info;
5267
f686bcb8
TH
5268 if (unlikely(qc->err_mask))
5269 qc->flags |= ATA_QCFLAG_FAILED;
5270
f08dc1ac
TH
5271 /*
5272 * Finish internal commands without any further processing
5273 * and always with the result TF filled.
5274 */
5275 if (unlikely(ata_tag_internal(qc->tag))) {
f4b31db9 5276 fill_result_tf(qc);
255c03d1 5277 trace_ata_qc_complete_internal(qc);
f08dc1ac
TH
5278 __ata_qc_complete(qc);
5279 return;
5280 }
f4b31db9 5281
f08dc1ac
TH
5282 /*
5283 * Non-internal qc has failed. Fill the result TF and
5284 * summon EH.
5285 */
5286 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5287 fill_result_tf(qc);
255c03d1 5288 trace_ata_qc_complete_failed(qc);
f08dc1ac 5289 ata_qc_schedule_eh(qc);
f4b31db9 5290 return;
f686bcb8
TH
5291 }
5292
4dc738ed
TH
5293 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5294
f686bcb8
TH
5295 /* read result TF if requested */
5296 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5297 fill_result_tf(qc);
f686bcb8 5298
255c03d1 5299 trace_ata_qc_complete_done(qc);
4dbfa39b
TH
5300 /* Some commands need post-processing after successful
5301 * completion.
5302 */
5303 switch (qc->tf.command) {
5304 case ATA_CMD_SET_FEATURES:
5305 if (qc->tf.feature != SETFEATURES_WC_ON &&
0c12735e
TY
5306 qc->tf.feature != SETFEATURES_WC_OFF &&
5307 qc->tf.feature != SETFEATURES_RA_ON &&
5308 qc->tf.feature != SETFEATURES_RA_OFF)
4dbfa39b
TH
5309 break;
5310 /* fall through */
5311 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5312 case ATA_CMD_SET_MULTI: /* multi_count changed */
5313 /* revalidate device */
5314 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5315 ata_port_schedule_eh(ap);
5316 break;
054a5fba
TH
5317
5318 case ATA_CMD_SLEEP:
5319 dev->flags |= ATA_DFLAG_SLEEPING;
5320 break;
4dbfa39b
TH
5321 }
5322
00115e0f
TH
5323 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5324 ata_verify_xfer(qc);
5325
f686bcb8
TH
5326 __ata_qc_complete(qc);
5327 } else {
5328 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5329 return;
5330
5331 /* read result TF if failed or requested */
5332 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5333 fill_result_tf(qc);
f686bcb8
TH
5334
5335 __ata_qc_complete(qc);
5336 }
5337}
5338
dedaf2b0
TH
5339/**
5340 * ata_qc_complete_multiple - Complete multiple qcs successfully
5341 * @ap: port in question
5342 * @qc_active: new qc_active mask
dedaf2b0
TH
5343 *
5344 * Complete in-flight commands. This functions is meant to be
5345 * called from low-level driver's interrupt routine to complete
5346 * requests normally. ap->qc_active and @qc_active is compared
5347 * and commands are completed accordingly.
5348 *
1aadf5c3
TH
5349 * Always use this function when completing multiple NCQ commands
5350 * from IRQ handlers instead of calling ata_qc_complete()
5351 * multiple times to keep IRQ expect status properly in sync.
5352 *
dedaf2b0 5353 * LOCKING:
cca3974e 5354 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5355 *
5356 * RETURNS:
5357 * Number of completed commands on success, -errno otherwise.
5358 */
e3ed8939 5359int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active)
dedaf2b0
TH
5360{
5361 int nr_done = 0;
e3ed8939 5362 u64 done_mask;
dedaf2b0
TH
5363
5364 done_mask = ap->qc_active ^ qc_active;
5365
5366 if (unlikely(done_mask & qc_active)) {
e3ed8939 5367 ata_port_err(ap, "illegal qc_active transition (%08llx->%08llx)\n",
a9a79dfe 5368 ap->qc_active, qc_active);
dedaf2b0
TH
5369 return -EINVAL;
5370 }
5371
43768180 5372 while (done_mask) {
dedaf2b0 5373 struct ata_queued_cmd *qc;
e3ed8939 5374 unsigned int tag = __ffs64(done_mask);
dedaf2b0 5375
43768180
JA
5376 qc = ata_qc_from_tag(ap, tag);
5377 if (qc) {
dedaf2b0
TH
5378 ata_qc_complete(qc);
5379 nr_done++;
5380 }
e3ed8939 5381 done_mask &= ~(1ULL << tag);
dedaf2b0
TH
5382 }
5383
5384 return nr_done;
5385}
5386
1da177e4
LT
5387/**
5388 * ata_qc_issue - issue taskfile to device
5389 * @qc: command to issue to device
5390 *
5391 * Prepare an ATA command to submission to device.
5392 * This includes mapping the data into a DMA-able
5393 * area, filling in the S/G table, and finally
5394 * writing the taskfile to hardware, starting the command.
5395 *
5396 * LOCKING:
cca3974e 5397 * spin_lock_irqsave(host lock)
1da177e4 5398 */
8e0e694a 5399void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5400{
5401 struct ata_port *ap = qc->ap;
9af5c9c9 5402 struct ata_link *link = qc->dev->link;
405e66b3 5403 u8 prot = qc->tf.protocol;
1da177e4 5404
dedaf2b0
TH
5405 /* Make sure only one non-NCQ command is outstanding. The
5406 * check is skipped for old EH because it reuses active qc to
5407 * request ATAPI sense.
5408 */
efcb3cf7 5409 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5410
1973a023 5411 if (ata_is_ncq(prot)) {
4e5b6260 5412 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
da917d69
TH
5413
5414 if (!link->sactive)
5415 ap->nr_active_links++;
4e5b6260 5416 link->sactive |= 1 << qc->hw_tag;
dedaf2b0 5417 } else {
efcb3cf7 5418 WARN_ON_ONCE(link->sactive);
da917d69
TH
5419
5420 ap->nr_active_links++;
9af5c9c9 5421 link->active_tag = qc->tag;
dedaf2b0
TH
5422 }
5423
e4a70e76 5424 qc->flags |= ATA_QCFLAG_ACTIVE;
e3ed8939 5425 ap->qc_active |= 1ULL << qc->tag;
e4a70e76 5426
60f5d6ef
TH
5427 /*
5428 * We guarantee to LLDs that they will have at least one
f92a2636
TH
5429 * non-zero sg if the command is a data command.
5430 */
9173e5e8 5431 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
60f5d6ef 5432 goto sys_err;
f92a2636 5433
405e66b3 5434 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5435 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7 5436 if (ata_sg_setup(qc))
60f5d6ef 5437 goto sys_err;
1da177e4 5438
cf480626 5439 /* if device is sleeping, schedule reset and abort the link */
054a5fba 5440 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 5441 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
5442 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5443 ata_link_abort(link);
5444 return;
5445 }
5446
1da177e4 5447 ap->ops->qc_prep(qc);
255c03d1 5448 trace_ata_qc_issue(qc);
8e0e694a
TH
5449 qc->err_mask |= ap->ops->qc_issue(qc);
5450 if (unlikely(qc->err_mask))
5451 goto err;
5452 return;
1da177e4 5453
60f5d6ef 5454sys_err:
8e0e694a
TH
5455 qc->err_mask |= AC_ERR_SYSTEM;
5456err:
5457 ata_qc_complete(qc);
1da177e4
LT
5458}
5459
34bf2170
TH
5460/**
5461 * sata_scr_valid - test whether SCRs are accessible
936fd732 5462 * @link: ATA link to test SCR accessibility for
34bf2170 5463 *
936fd732 5464 * Test whether SCRs are accessible for @link.
34bf2170
TH
5465 *
5466 * LOCKING:
5467 * None.
5468 *
5469 * RETURNS:
5470 * 1 if SCRs are accessible, 0 otherwise.
5471 */
936fd732 5472int sata_scr_valid(struct ata_link *link)
34bf2170 5473{
936fd732
TH
5474 struct ata_port *ap = link->ap;
5475
a16abc0b 5476 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5477}
5478
5479/**
5480 * sata_scr_read - read SCR register of the specified port
936fd732 5481 * @link: ATA link to read SCR for
34bf2170
TH
5482 * @reg: SCR to read
5483 * @val: Place to store read value
5484 *
936fd732 5485 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
5486 * guaranteed to succeed if @link is ap->link, the cable type of
5487 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5488 *
5489 * LOCKING:
633273a3 5490 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5491 *
5492 * RETURNS:
5493 * 0 on success, negative errno on failure.
5494 */
936fd732 5495int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5496{
633273a3 5497 if (ata_is_host_link(link)) {
633273a3 5498 if (sata_scr_valid(link))
82ef04fb 5499 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
5500 return -EOPNOTSUPP;
5501 }
5502
5503 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
5504}
5505
5506/**
5507 * sata_scr_write - write SCR register of the specified port
936fd732 5508 * @link: ATA link to write SCR for
34bf2170
TH
5509 * @reg: SCR to write
5510 * @val: value to write
5511 *
936fd732 5512 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
5513 * guaranteed to succeed if @link is ap->link, the cable type of
5514 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5515 *
5516 * LOCKING:
633273a3 5517 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5518 *
5519 * RETURNS:
5520 * 0 on success, negative errno on failure.
5521 */
936fd732 5522int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5523{
633273a3 5524 if (ata_is_host_link(link)) {
633273a3 5525 if (sata_scr_valid(link))
82ef04fb 5526 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
5527 return -EOPNOTSUPP;
5528 }
936fd732 5529
633273a3 5530 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5531}
5532
5533/**
5534 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5535 * @link: ATA link to write SCR for
34bf2170
TH
5536 * @reg: SCR to write
5537 * @val: value to write
5538 *
5539 * This function is identical to sata_scr_write() except that this
5540 * function performs flush after writing to the register.
5541 *
5542 * LOCKING:
633273a3 5543 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5544 *
5545 * RETURNS:
5546 * 0 on success, negative errno on failure.
5547 */
936fd732 5548int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5549{
633273a3 5550 if (ata_is_host_link(link)) {
633273a3 5551 int rc;
da3dbb17 5552
633273a3 5553 if (sata_scr_valid(link)) {
82ef04fb 5554 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 5555 if (rc == 0)
82ef04fb 5556 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
5557 return rc;
5558 }
5559 return -EOPNOTSUPP;
34bf2170 5560 }
633273a3
TH
5561
5562 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5563}
5564
5565/**
b1c72916 5566 * ata_phys_link_online - test whether the given link is online
936fd732 5567 * @link: ATA link to test
34bf2170 5568 *
936fd732
TH
5569 * Test whether @link is online. Note that this function returns
5570 * 0 if online status of @link cannot be obtained, so
5571 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5572 *
5573 * LOCKING:
5574 * None.
5575 *
5576 * RETURNS:
b5b3fa38 5577 * True if the port online status is available and online.
34bf2170 5578 */
b1c72916 5579bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5580{
5581 u32 sstatus;
5582
936fd732 5583 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5584 ata_sstatus_online(sstatus))
b5b3fa38
TH
5585 return true;
5586 return false;
34bf2170
TH
5587}
5588
5589/**
b1c72916 5590 * ata_phys_link_offline - test whether the given link is offline
936fd732 5591 * @link: ATA link to test
34bf2170 5592 *
936fd732
TH
5593 * Test whether @link is offline. Note that this function
5594 * returns 0 if offline status of @link cannot be obtained, so
5595 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5596 *
5597 * LOCKING:
5598 * None.
5599 *
5600 * RETURNS:
b5b3fa38 5601 * True if the port offline status is available and offline.
34bf2170 5602 */
b1c72916 5603bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5604{
5605 u32 sstatus;
5606
936fd732 5607 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5608 !ata_sstatus_online(sstatus))
b5b3fa38
TH
5609 return true;
5610 return false;
34bf2170 5611}
0baab86b 5612
b1c72916
TH
5613/**
5614 * ata_link_online - test whether the given link is online
5615 * @link: ATA link to test
5616 *
5617 * Test whether @link is online. This is identical to
5618 * ata_phys_link_online() when there's no slave link. When
5619 * there's a slave link, this function should only be called on
5620 * the master link and will return true if any of M/S links is
5621 * online.
5622 *
5623 * LOCKING:
5624 * None.
5625 *
5626 * RETURNS:
5627 * True if the port online status is available and online.
5628 */
5629bool ata_link_online(struct ata_link *link)
5630{
5631 struct ata_link *slave = link->ap->slave_link;
5632
5633 WARN_ON(link == slave); /* shouldn't be called on slave link */
5634
5635 return ata_phys_link_online(link) ||
5636 (slave && ata_phys_link_online(slave));
5637}
5638
5639/**
5640 * ata_link_offline - test whether the given link is offline
5641 * @link: ATA link to test
5642 *
5643 * Test whether @link is offline. This is identical to
5644 * ata_phys_link_offline() when there's no slave link. When
5645 * there's a slave link, this function should only be called on
5646 * the master link and will return true if both M/S links are
5647 * offline.
5648 *
5649 * LOCKING:
5650 * None.
5651 *
5652 * RETURNS:
5653 * True if the port offline status is available and offline.
5654 */
5655bool ata_link_offline(struct ata_link *link)
5656{
5657 struct ata_link *slave = link->ap->slave_link;
5658
5659 WARN_ON(link == slave); /* shouldn't be called on slave link */
5660
5661 return ata_phys_link_offline(link) &&
5662 (!slave || ata_phys_link_offline(slave));
5663}
5664
6ffa01d8 5665#ifdef CONFIG_PM
bc6e7c4b
DW
5666static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5667 unsigned int action, unsigned int ehi_flags,
5668 bool async)
500530f6 5669{
5ef41082 5670 struct ata_link *link;
500530f6 5671 unsigned long flags;
500530f6 5672
5ef41082
LM
5673 /* Previous resume operation might still be in
5674 * progress. Wait for PM_PENDING to clear.
5675 */
5676 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5677 ata_port_wait_eh(ap);
5678 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5679 }
500530f6 5680
5ef41082
LM
5681 /* request PM ops to EH */
5682 spin_lock_irqsave(ap->lock, flags);
500530f6 5683
5ef41082 5684 ap->pm_mesg = mesg;
5ef41082
LM
5685 ap->pflags |= ATA_PFLAG_PM_PENDING;
5686 ata_for_each_link(link, ap, HOST_FIRST) {
5687 link->eh_info.action |= action;
5688 link->eh_info.flags |= ehi_flags;
5689 }
500530f6 5690
5ef41082 5691 ata_port_schedule_eh(ap);
500530f6 5692
5ef41082 5693 spin_unlock_irqrestore(ap->lock, flags);
500530f6 5694
2fcbdcb4 5695 if (!async) {
5ef41082
LM
5696 ata_port_wait_eh(ap);
5697 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
500530f6 5698 }
500530f6
TH
5699}
5700
bc6e7c4b
DW
5701/*
5702 * On some hardware, device fails to respond after spun down for suspend. As
5703 * the device won't be used before being resumed, we don't need to touch the
5704 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5705 *
5706 * http://thread.gmane.org/gmane.linux.ide/46764
5707 */
5708static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5709 | ATA_EHI_NO_AUTOPSY
5710 | ATA_EHI_NO_RECOVERY;
5711
5712static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5ef41082 5713{
bc6e7c4b 5714 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5ef41082
LM
5715}
5716
bc6e7c4b 5717static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
2fcbdcb4 5718{
bc6e7c4b 5719 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
2fcbdcb4
DW
5720}
5721
bc6e7c4b 5722static int ata_port_pm_suspend(struct device *dev)
5ef41082 5723{
bc6e7c4b
DW
5724 struct ata_port *ap = to_ata_port(dev);
5725
5ef41082
LM
5726 if (pm_runtime_suspended(dev))
5727 return 0;
5728
bc6e7c4b
DW
5729 ata_port_suspend(ap, PMSG_SUSPEND);
5730 return 0;
33574d68
LM
5731}
5732
bc6e7c4b 5733static int ata_port_pm_freeze(struct device *dev)
33574d68 5734{
bc6e7c4b
DW
5735 struct ata_port *ap = to_ata_port(dev);
5736
33574d68 5737 if (pm_runtime_suspended(dev))
f5e6d0d0 5738 return 0;
33574d68 5739
bc6e7c4b
DW
5740 ata_port_suspend(ap, PMSG_FREEZE);
5741 return 0;
33574d68
LM
5742}
5743
bc6e7c4b 5744static int ata_port_pm_poweroff(struct device *dev)
33574d68 5745{
bc6e7c4b
DW
5746 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5747 return 0;
5ef41082
LM
5748}
5749
bc6e7c4b
DW
5750static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5751 | ATA_EHI_QUIET;
5ef41082 5752
bc6e7c4b
DW
5753static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5754{
5755 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5ef41082
LM
5756}
5757
bc6e7c4b 5758static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
2fcbdcb4 5759{
bc6e7c4b 5760 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
2fcbdcb4
DW
5761}
5762
bc6e7c4b 5763static int ata_port_pm_resume(struct device *dev)
e90b1e5a 5764{
200421a8 5765 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
bc6e7c4b
DW
5766 pm_runtime_disable(dev);
5767 pm_runtime_set_active(dev);
5768 pm_runtime_enable(dev);
5769 return 0;
e90b1e5a
LM
5770}
5771
7e15e9be
AL
5772/*
5773 * For ODDs, the upper layer will poll for media change every few seconds,
5774 * which will make it enter and leave suspend state every few seconds. And
5775 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5776 * is very little and the ODD may malfunction after constantly being reset.
5777 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5778 * ODD is attached to the port.
5779 */
9ee4f393
LM
5780static int ata_port_runtime_idle(struct device *dev)
5781{
7e15e9be
AL
5782 struct ata_port *ap = to_ata_port(dev);
5783 struct ata_link *link;
5784 struct ata_device *adev;
5785
5786 ata_for_each_link(link, ap, HOST_FIRST) {
5787 ata_for_each_dev(adev, link, ENABLED)
5788 if (adev->class == ATA_DEV_ATAPI &&
5789 !zpodd_dev_enabled(adev))
5790 return -EBUSY;
5791 }
5792
45f0a85c 5793 return 0;
9ee4f393
LM
5794}
5795
a7ff60db
AL
5796static int ata_port_runtime_suspend(struct device *dev)
5797{
bc6e7c4b
DW
5798 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5799 return 0;
a7ff60db
AL
5800}
5801
5802static int ata_port_runtime_resume(struct device *dev)
5803{
bc6e7c4b
DW
5804 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5805 return 0;
a7ff60db
AL
5806}
5807
5ef41082 5808static const struct dev_pm_ops ata_port_pm_ops = {
bc6e7c4b
DW
5809 .suspend = ata_port_pm_suspend,
5810 .resume = ata_port_pm_resume,
5811 .freeze = ata_port_pm_freeze,
5812 .thaw = ata_port_pm_resume,
5813 .poweroff = ata_port_pm_poweroff,
5814 .restore = ata_port_pm_resume,
9ee4f393 5815
a7ff60db
AL
5816 .runtime_suspend = ata_port_runtime_suspend,
5817 .runtime_resume = ata_port_runtime_resume,
9ee4f393 5818 .runtime_idle = ata_port_runtime_idle,
5ef41082
LM
5819};
5820
2fcbdcb4
DW
5821/* sas ports don't participate in pm runtime management of ata_ports,
5822 * and need to resume ata devices at the domain level, not the per-port
5823 * level. sas suspend/resume is async to allow parallel port recovery
5824 * since sas has multiple ata_port instances per Scsi_Host.
5825 */
bc6e7c4b 5826void ata_sas_port_suspend(struct ata_port *ap)
2fcbdcb4 5827{
bc6e7c4b 5828 ata_port_suspend_async(ap, PMSG_SUSPEND);
2fcbdcb4 5829}
bc6e7c4b 5830EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
2fcbdcb4 5831
bc6e7c4b 5832void ata_sas_port_resume(struct ata_port *ap)
2fcbdcb4 5833{
bc6e7c4b 5834 ata_port_resume_async(ap, PMSG_RESUME);
2fcbdcb4 5835}
bc6e7c4b 5836EXPORT_SYMBOL_GPL(ata_sas_port_resume);
2fcbdcb4 5837
500530f6 5838/**
cca3974e
JG
5839 * ata_host_suspend - suspend host
5840 * @host: host to suspend
500530f6
TH
5841 * @mesg: PM message
5842 *
5ef41082 5843 * Suspend @host. Actual operation is performed by port suspend.
500530f6 5844 */
cca3974e 5845int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5846{
5ef41082
LM
5847 host->dev->power.power_state = mesg;
5848 return 0;
500530f6
TH
5849}
5850
5851/**
cca3974e
JG
5852 * ata_host_resume - resume host
5853 * @host: host to resume
500530f6 5854 *
5ef41082 5855 * Resume @host. Actual operation is performed by port resume.
500530f6 5856 */
cca3974e 5857void ata_host_resume(struct ata_host *host)
500530f6 5858{
72ad6ec4 5859 host->dev->power.power_state = PMSG_ON;
500530f6 5860}
6ffa01d8 5861#endif
500530f6 5862
8df82c13 5863const struct device_type ata_port_type = {
5ef41082
LM
5864 .name = "ata_port",
5865#ifdef CONFIG_PM
5866 .pm = &ata_port_pm_ops,
5867#endif
5868};
5869
3ef3b43d
TH
5870/**
5871 * ata_dev_init - Initialize an ata_device structure
5872 * @dev: Device structure to initialize
5873 *
5874 * Initialize @dev in preparation for probing.
5875 *
5876 * LOCKING:
5877 * Inherited from caller.
5878 */
5879void ata_dev_init(struct ata_device *dev)
5880{
b1c72916 5881 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5882 struct ata_port *ap = link->ap;
72fa4b74
TH
5883 unsigned long flags;
5884
b1c72916 5885 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5886 link->sata_spd_limit = link->hw_sata_spd_limit;
5887 link->sata_spd = 0;
5a04bf4b 5888
72fa4b74
TH
5889 /* High bits of dev->flags are used to record warm plug
5890 * requests which occur asynchronously. Synchronize using
cca3974e 5891 * host lock.
72fa4b74 5892 */
ba6a1308 5893 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5894 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5895 dev->horkage = 0;
ba6a1308 5896 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5897
99cf610a
TH
5898 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5899 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
3ef3b43d
TH
5900 dev->pio_mask = UINT_MAX;
5901 dev->mwdma_mask = UINT_MAX;
5902 dev->udma_mask = UINT_MAX;
5903}
5904
4fb37a25
TH
5905/**
5906 * ata_link_init - Initialize an ata_link structure
5907 * @ap: ATA port link is attached to
5908 * @link: Link structure to initialize
8989805d 5909 * @pmp: Port multiplier port number
4fb37a25
TH
5910 *
5911 * Initialize @link.
5912 *
5913 * LOCKING:
5914 * Kernel thread context (may sleep)
5915 */
fb7fd614 5916void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5917{
5918 int i;
5919
5920 /* clear everything except for devices */
d9027470
GG
5921 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5922 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
4fb37a25
TH
5923
5924 link->ap = ap;
8989805d 5925 link->pmp = pmp;
4fb37a25
TH
5926 link->active_tag = ATA_TAG_POISON;
5927 link->hw_sata_spd_limit = UINT_MAX;
5928
5929 /* can't use iterator, ap isn't initialized yet */
5930 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5931 struct ata_device *dev = &link->device[i];
5932
5933 dev->link = link;
5934 dev->devno = dev - link->device;
110f66d2
TH
5935#ifdef CONFIG_ATA_ACPI
5936 dev->gtf_filter = ata_acpi_gtf_filter;
5937#endif
4fb37a25
TH
5938 ata_dev_init(dev);
5939 }
5940}
5941
5942/**
5943 * sata_link_init_spd - Initialize link->sata_spd_limit
5944 * @link: Link to configure sata_spd_limit for
5945 *
5946 * Initialize @link->[hw_]sata_spd_limit to the currently
5947 * configured value.
5948 *
5949 * LOCKING:
5950 * Kernel thread context (may sleep).
5951 *
5952 * RETURNS:
5953 * 0 on success, -errno on failure.
5954 */
fb7fd614 5955int sata_link_init_spd(struct ata_link *link)
4fb37a25 5956{
33267325 5957 u8 spd;
4fb37a25
TH
5958 int rc;
5959
d127ea7b 5960 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5961 if (rc)
5962 return rc;
5963
d127ea7b 5964 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5965 if (spd)
5966 link->hw_sata_spd_limit &= (1 << spd) - 1;
5967
05944bdf 5968 ata_force_link_limits(link);
33267325 5969
4fb37a25
TH
5970 link->sata_spd_limit = link->hw_sata_spd_limit;
5971
5972 return 0;
5973}
5974
1da177e4 5975/**
f3187195
TH
5976 * ata_port_alloc - allocate and initialize basic ATA port resources
5977 * @host: ATA host this allocated port belongs to
1da177e4 5978 *
f3187195
TH
5979 * Allocate and initialize basic ATA port resources.
5980 *
5981 * RETURNS:
5982 * Allocate ATA port on success, NULL on failure.
0cba632b 5983 *
1da177e4 5984 * LOCKING:
f3187195 5985 * Inherited from calling layer (may sleep).
1da177e4 5986 */
f3187195 5987struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5988{
f3187195 5989 struct ata_port *ap;
1da177e4 5990
f3187195
TH
5991 DPRINTK("ENTER\n");
5992
5993 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5994 if (!ap)
5995 return NULL;
4fca377f 5996
7b3a24c5 5997 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
cca3974e 5998 ap->lock = &host->lock;
f3187195 5999 ap->print_id = -1;
e628dc99 6000 ap->local_port_no = -1;
cca3974e 6001 ap->host = host;
f3187195 6002 ap->dev = host->dev;
bd5d825c
BP
6003
6004#if defined(ATA_VERBOSE_DEBUG)
6005 /* turn on all debugging levels */
6006 ap->msg_enable = 0x00FF;
6007#elif defined(ATA_DEBUG)
6008 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6009#else
0dd4b21f 6010 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6011#endif
1da177e4 6012
ad72cf98 6013 mutex_init(&ap->scsi_scan_mutex);
65f27f38
DH
6014 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6015 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6016 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6017 init_waitqueue_head(&ap->eh_wait_q);
45fabbb7 6018 init_completion(&ap->park_req_pending);
b93ab338
KC
6019 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
6020 TIMER_DEFERRABLE);
1da177e4 6021
838df628 6022 ap->cbl = ATA_CBL_NONE;
838df628 6023
8989805d 6024 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6025
6026#ifdef ATA_IRQ_TRAP
6027 ap->stats.unhandled_irq = 1;
6028 ap->stats.idle_irq = 1;
6029#endif
270390e1
TH
6030 ata_sff_port_init(ap);
6031
1da177e4 6032 return ap;
1da177e4
LT
6033}
6034
2623c7a5 6035static void ata_devres_release(struct device *gendev, void *res)
f0d36efd
TH
6036{
6037 struct ata_host *host = dev_get_drvdata(gendev);
6038 int i;
6039
1aa506e4
TH
6040 for (i = 0; i < host->n_ports; i++) {
6041 struct ata_port *ap = host->ports[i];
6042
4911487a
TH
6043 if (!ap)
6044 continue;
6045
6046 if (ap->scsi_host)
1aa506e4
TH
6047 scsi_host_put(ap->scsi_host);
6048
2623c7a5
TK
6049 }
6050
6051 dev_set_drvdata(gendev, NULL);
6052 ata_host_put(host);
6053}
6054
6055static void ata_host_release(struct kref *kref)
6056{
6057 struct ata_host *host = container_of(kref, struct ata_host, kref);
6058 int i;
6059
6060 for (i = 0; i < host->n_ports; i++) {
6061 struct ata_port *ap = host->ports[i];
6062
633273a3 6063 kfree(ap->pmp_link);
b1c72916 6064 kfree(ap->slave_link);
4911487a 6065 kfree(ap);
1aa506e4
TH
6066 host->ports[i] = NULL;
6067 }
2623c7a5
TK
6068 kfree(host);
6069}
1aa506e4 6070
2623c7a5
TK
6071void ata_host_get(struct ata_host *host)
6072{
6073 kref_get(&host->kref);
6074}
6075
6076void ata_host_put(struct ata_host *host)
6077{
6078 kref_put(&host->kref, ata_host_release);
f0d36efd
TH
6079}
6080
f3187195
TH
6081/**
6082 * ata_host_alloc - allocate and init basic ATA host resources
6083 * @dev: generic device this host is associated with
6084 * @max_ports: maximum number of ATA ports associated with this host
6085 *
6086 * Allocate and initialize basic ATA host resources. LLD calls
6087 * this function to allocate a host, initializes it fully and
6088 * attaches it using ata_host_register().
6089 *
6090 * @max_ports ports are allocated and host->n_ports is
6091 * initialized to @max_ports. The caller is allowed to decrease
6092 * host->n_ports before calling ata_host_register(). The unused
6093 * ports will be automatically freed on registration.
6094 *
6095 * RETURNS:
6096 * Allocate ATA host on success, NULL on failure.
6097 *
6098 * LOCKING:
6099 * Inherited from calling layer (may sleep).
6100 */
6101struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6102{
6103 struct ata_host *host;
6104 size_t sz;
6105 int i;
2623c7a5 6106 void *dr;
f3187195
TH
6107
6108 DPRINTK("ENTER\n");
6109
f3187195
TH
6110 /* alloc a container for our list of ATA ports (buses) */
6111 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
2623c7a5 6112 host = kzalloc(sz, GFP_KERNEL);
f3187195 6113 if (!host)
2623c7a5
TK
6114 return NULL;
6115
6116 if (!devres_open_group(dev, NULL, GFP_KERNEL))
dafd6c49 6117 goto err_free;
2623c7a5
TK
6118
6119 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
6120 if (!dr)
f3187195
TH
6121 goto err_out;
6122
2623c7a5 6123 devres_add(dev, dr);
f3187195
TH
6124 dev_set_drvdata(dev, host);
6125
6126 spin_lock_init(&host->lock);
c0c362b6 6127 mutex_init(&host->eh_mutex);
f3187195
TH
6128 host->dev = dev;
6129 host->n_ports = max_ports;
2623c7a5 6130 kref_init(&host->kref);
f3187195
TH
6131
6132 /* allocate ports bound to this host */
6133 for (i = 0; i < max_ports; i++) {
6134 struct ata_port *ap;
6135
6136 ap = ata_port_alloc(host);
6137 if (!ap)
6138 goto err_out;
6139
6140 ap->port_no = i;
6141 host->ports[i] = ap;
6142 }
6143
6144 devres_remove_group(dev, NULL);
6145 return host;
6146
6147 err_out:
6148 devres_release_group(dev, NULL);
dafd6c49
CIK
6149 err_free:
6150 kfree(host);
f3187195
TH
6151 return NULL;
6152}
6153
f5cda257
TH
6154/**
6155 * ata_host_alloc_pinfo - alloc host and init with port_info array
6156 * @dev: generic device this host is associated with
6157 * @ppi: array of ATA port_info to initialize host with
6158 * @n_ports: number of ATA ports attached to this host
6159 *
6160 * Allocate ATA host and initialize with info from @ppi. If NULL
6161 * terminated, @ppi may contain fewer entries than @n_ports. The
6162 * last entry will be used for the remaining ports.
6163 *
6164 * RETURNS:
6165 * Allocate ATA host on success, NULL on failure.
6166 *
6167 * LOCKING:
6168 * Inherited from calling layer (may sleep).
6169 */
6170struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6171 const struct ata_port_info * const * ppi,
6172 int n_ports)
6173{
6174 const struct ata_port_info *pi;
6175 struct ata_host *host;
6176 int i, j;
6177
6178 host = ata_host_alloc(dev, n_ports);
6179 if (!host)
6180 return NULL;
6181
6182 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6183 struct ata_port *ap = host->ports[i];
6184
6185 if (ppi[j])
6186 pi = ppi[j++];
6187
6188 ap->pio_mask = pi->pio_mask;
6189 ap->mwdma_mask = pi->mwdma_mask;
6190 ap->udma_mask = pi->udma_mask;
6191 ap->flags |= pi->flags;
0c88758b 6192 ap->link.flags |= pi->link_flags;
f5cda257
TH
6193 ap->ops = pi->port_ops;
6194
6195 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6196 host->ops = pi->port_ops;
f5cda257
TH
6197 }
6198
6199 return host;
6200}
6201
b1c72916
TH
6202/**
6203 * ata_slave_link_init - initialize slave link
6204 * @ap: port to initialize slave link for
6205 *
6206 * Create and initialize slave link for @ap. This enables slave
6207 * link handling on the port.
6208 *
6209 * In libata, a port contains links and a link contains devices.
6210 * There is single host link but if a PMP is attached to it,
6211 * there can be multiple fan-out links. On SATA, there's usually
6212 * a single device connected to a link but PATA and SATA
6213 * controllers emulating TF based interface can have two - master
6214 * and slave.
6215 *
6216 * However, there are a few controllers which don't fit into this
6217 * abstraction too well - SATA controllers which emulate TF
6218 * interface with both master and slave devices but also have
6219 * separate SCR register sets for each device. These controllers
6220 * need separate links for physical link handling
6221 * (e.g. onlineness, link speed) but should be treated like a
6222 * traditional M/S controller for everything else (e.g. command
6223 * issue, softreset).
6224 *
6225 * slave_link is libata's way of handling this class of
6226 * controllers without impacting core layer too much. For
6227 * anything other than physical link handling, the default host
6228 * link is used for both master and slave. For physical link
6229 * handling, separate @ap->slave_link is used. All dirty details
6230 * are implemented inside libata core layer. From LLD's POV, the
6231 * only difference is that prereset, hardreset and postreset are
6232 * called once more for the slave link, so the reset sequence
6233 * looks like the following.
6234 *
6235 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6236 * softreset(M) -> postreset(M) -> postreset(S)
6237 *
6238 * Note that softreset is called only for the master. Softreset
6239 * resets both M/S by definition, so SRST on master should handle
6240 * both (the standard method will work just fine).
6241 *
6242 * LOCKING:
6243 * Should be called before host is registered.
6244 *
6245 * RETURNS:
6246 * 0 on success, -errno on failure.
6247 */
6248int ata_slave_link_init(struct ata_port *ap)
6249{
6250 struct ata_link *link;
6251
6252 WARN_ON(ap->slave_link);
6253 WARN_ON(ap->flags & ATA_FLAG_PMP);
6254
6255 link = kzalloc(sizeof(*link), GFP_KERNEL);
6256 if (!link)
6257 return -ENOMEM;
6258
6259 ata_link_init(ap, link, 1);
6260 ap->slave_link = link;
6261 return 0;
6262}
6263
32ebbc0c
TH
6264static void ata_host_stop(struct device *gendev, void *res)
6265{
6266 struct ata_host *host = dev_get_drvdata(gendev);
6267 int i;
6268
6269 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6270
6271 for (i = 0; i < host->n_ports; i++) {
6272 struct ata_port *ap = host->ports[i];
6273
6274 if (ap->ops->port_stop)
6275 ap->ops->port_stop(ap);
6276 }
6277
6278 if (host->ops->host_stop)
6279 host->ops->host_stop(host);
6280}
6281
029cfd6b
TH
6282/**
6283 * ata_finalize_port_ops - finalize ata_port_operations
6284 * @ops: ata_port_operations to finalize
6285 *
6286 * An ata_port_operations can inherit from another ops and that
6287 * ops can again inherit from another. This can go on as many
6288 * times as necessary as long as there is no loop in the
6289 * inheritance chain.
6290 *
6291 * Ops tables are finalized when the host is started. NULL or
6292 * unspecified entries are inherited from the closet ancestor
6293 * which has the method and the entry is populated with it.
6294 * After finalization, the ops table directly points to all the
6295 * methods and ->inherits is no longer necessary and cleared.
6296 *
6297 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6298 *
6299 * LOCKING:
6300 * None.
6301 */
6302static void ata_finalize_port_ops(struct ata_port_operations *ops)
6303{
2da67659 6304 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
6305 const struct ata_port_operations *cur;
6306 void **begin = (void **)ops;
6307 void **end = (void **)&ops->inherits;
6308 void **pp;
6309
6310 if (!ops || !ops->inherits)
6311 return;
6312
6313 spin_lock(&lock);
6314
6315 for (cur = ops->inherits; cur; cur = cur->inherits) {
6316 void **inherit = (void **)cur;
6317
6318 for (pp = begin; pp < end; pp++, inherit++)
6319 if (!*pp)
6320 *pp = *inherit;
6321 }
6322
6323 for (pp = begin; pp < end; pp++)
6324 if (IS_ERR(*pp))
6325 *pp = NULL;
6326
6327 ops->inherits = NULL;
6328
6329 spin_unlock(&lock);
6330}
6331
ecef7253
TH
6332/**
6333 * ata_host_start - start and freeze ports of an ATA host
6334 * @host: ATA host to start ports for
6335 *
6336 * Start and then freeze ports of @host. Started status is
6337 * recorded in host->flags, so this function can be called
6338 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6339 * once. If host->ops isn't initialized yet, its set to the
6340 * first non-dummy port ops.
ecef7253
TH
6341 *
6342 * LOCKING:
6343 * Inherited from calling layer (may sleep).
6344 *
6345 * RETURNS:
6346 * 0 if all ports are started successfully, -errno otherwise.
6347 */
6348int ata_host_start(struct ata_host *host)
6349{
32ebbc0c
TH
6350 int have_stop = 0;
6351 void *start_dr = NULL;
ecef7253
TH
6352 int i, rc;
6353
6354 if (host->flags & ATA_HOST_STARTED)
6355 return 0;
6356
029cfd6b
TH
6357 ata_finalize_port_ops(host->ops);
6358
ecef7253
TH
6359 for (i = 0; i < host->n_ports; i++) {
6360 struct ata_port *ap = host->ports[i];
6361
029cfd6b
TH
6362 ata_finalize_port_ops(ap->ops);
6363
f3187195
TH
6364 if (!host->ops && !ata_port_is_dummy(ap))
6365 host->ops = ap->ops;
6366
32ebbc0c
TH
6367 if (ap->ops->port_stop)
6368 have_stop = 1;
6369 }
6370
6371 if (host->ops->host_stop)
6372 have_stop = 1;
6373
6374 if (have_stop) {
6375 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6376 if (!start_dr)
6377 return -ENOMEM;
6378 }
6379
6380 for (i = 0; i < host->n_ports; i++) {
6381 struct ata_port *ap = host->ports[i];
6382
ecef7253
TH
6383 if (ap->ops->port_start) {
6384 rc = ap->ops->port_start(ap);
6385 if (rc) {
0f9fe9b7 6386 if (rc != -ENODEV)
a44fec1f
JP
6387 dev_err(host->dev,
6388 "failed to start port %d (errno=%d)\n",
6389 i, rc);
ecef7253
TH
6390 goto err_out;
6391 }
6392 }
ecef7253
TH
6393 ata_eh_freeze_port(ap);
6394 }
6395
32ebbc0c
TH
6396 if (start_dr)
6397 devres_add(host->dev, start_dr);
ecef7253
TH
6398 host->flags |= ATA_HOST_STARTED;
6399 return 0;
6400
6401 err_out:
6402 while (--i >= 0) {
6403 struct ata_port *ap = host->ports[i];
6404
6405 if (ap->ops->port_stop)
6406 ap->ops->port_stop(ap);
6407 }
32ebbc0c 6408 devres_free(start_dr);
ecef7253
TH
6409 return rc;
6410}
6411
b03732f0 6412/**
8d8e7d13 6413 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
cca3974e
JG
6414 * @host: host to initialize
6415 * @dev: device host is attached to
cca3974e 6416 * @ops: port_ops
b03732f0 6417 *
b03732f0 6418 */
cca3974e 6419void ata_host_init(struct ata_host *host, struct device *dev,
8d8e7d13 6420 struct ata_port_operations *ops)
b03732f0 6421{
cca3974e 6422 spin_lock_init(&host->lock);
c0c362b6 6423 mutex_init(&host->eh_mutex);
69278f79 6424 host->n_tags = ATA_MAX_QUEUE;
cca3974e 6425 host->dev = dev;
cca3974e 6426 host->ops = ops;
b03732f0
BK
6427}
6428
9508a66f 6429void __ata_port_probe(struct ata_port *ap)
79318057 6430{
9508a66f
DW
6431 struct ata_eh_info *ehi = &ap->link.eh_info;
6432 unsigned long flags;
886ad09f 6433
9508a66f
DW
6434 /* kick EH for boot probing */
6435 spin_lock_irqsave(ap->lock, flags);
79318057 6436
9508a66f
DW
6437 ehi->probe_mask |= ATA_ALL_DEVICES;
6438 ehi->action |= ATA_EH_RESET;
6439 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
79318057 6440
9508a66f
DW
6441 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6442 ap->pflags |= ATA_PFLAG_LOADING;
6443 ata_port_schedule_eh(ap);
79318057 6444
9508a66f
DW
6445 spin_unlock_irqrestore(ap->lock, flags);
6446}
79318057 6447
9508a66f
DW
6448int ata_port_probe(struct ata_port *ap)
6449{
6450 int rc = 0;
79318057 6451
9508a66f
DW
6452 if (ap->ops->error_handler) {
6453 __ata_port_probe(ap);
79318057
AV
6454 ata_port_wait_eh(ap);
6455 } else {
6456 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6457 rc = ata_bus_probe(ap);
6458 DPRINTK("ata%u: bus probe end\n", ap->print_id);
79318057 6459 }
238c9cf9
JB
6460 return rc;
6461}
6462
6463
6464static void async_port_probe(void *data, async_cookie_t cookie)
6465{
6466 struct ata_port *ap = data;
4fca377f 6467
238c9cf9
JB
6468 /*
6469 * If we're not allowed to scan this host in parallel,
6470 * we need to wait until all previous scans have completed
6471 * before going further.
6472 * Jeff Garzik says this is only within a controller, so we
6473 * don't need to wait for port 0, only for later ports.
6474 */
6475 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6476 async_synchronize_cookie(cookie);
6477
6478 (void)ata_port_probe(ap);
f29d3b23
AV
6479
6480 /* in order to keep device order, we need to synchronize at this point */
6481 async_synchronize_cookie(cookie);
6482
6483 ata_scsi_scan_host(ap, 1);
79318057 6484}
238c9cf9 6485
f3187195
TH
6486/**
6487 * ata_host_register - register initialized ATA host
6488 * @host: ATA host to register
6489 * @sht: template for SCSI host
6490 *
6491 * Register initialized ATA host. @host is allocated using
6492 * ata_host_alloc() and fully initialized by LLD. This function
6493 * starts ports, registers @host with ATA and SCSI layers and
6494 * probe registered devices.
6495 *
6496 * LOCKING:
6497 * Inherited from calling layer (may sleep).
6498 *
6499 * RETURNS:
6500 * 0 on success, -errno otherwise.
6501 */
6502int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6503{
6504 int i, rc;
6505
69278f79 6506 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
1871ee13 6507
f3187195
TH
6508 /* host must have been started */
6509 if (!(host->flags & ATA_HOST_STARTED)) {
a44fec1f 6510 dev_err(host->dev, "BUG: trying to register unstarted host\n");
f3187195
TH
6511 WARN_ON(1);
6512 return -EINVAL;
6513 }
6514
6515 /* Blow away unused ports. This happens when LLD can't
6516 * determine the exact number of ports to allocate at
6517 * allocation time.
6518 */
6519 for (i = host->n_ports; host->ports[i]; i++)
6520 kfree(host->ports[i]);
6521
6522 /* give ports names and add SCSI hosts */
e628dc99 6523 for (i = 0; i < host->n_ports; i++) {
85d6725b 6524 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
e628dc99
DM
6525 host->ports[i]->local_port_no = i + 1;
6526 }
4fca377f 6527
d9027470
GG
6528 /* Create associated sysfs transport objects */
6529 for (i = 0; i < host->n_ports; i++) {
6530 rc = ata_tport_add(host->dev,host->ports[i]);
6531 if (rc) {
6532 goto err_tadd;
6533 }
6534 }
6535
f3187195
TH
6536 rc = ata_scsi_add_hosts(host, sht);
6537 if (rc)
d9027470 6538 goto err_tadd;
f3187195
TH
6539
6540 /* set cable, sata_spd_limit and report */
6541 for (i = 0; i < host->n_ports; i++) {
6542 struct ata_port *ap = host->ports[i];
f3187195
TH
6543 unsigned long xfer_mask;
6544
6545 /* set SATA cable type if still unset */
6546 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6547 ap->cbl = ATA_CBL_SATA;
6548
6549 /* init sata_spd_limit to the current value */
4fb37a25 6550 sata_link_init_spd(&ap->link);
b1c72916
TH
6551 if (ap->slave_link)
6552 sata_link_init_spd(ap->slave_link);
f3187195 6553
cbcdd875 6554 /* print per-port info to dmesg */
f3187195
TH
6555 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6556 ap->udma_mask);
6557
abf6e8ed 6558 if (!ata_port_is_dummy(ap)) {
a9a79dfe
JP
6559 ata_port_info(ap, "%cATA max %s %s\n",
6560 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6561 ata_mode_string(xfer_mask),
6562 ap->link.eh_info.desc);
abf6e8ed
TH
6563 ata_ehi_clear_desc(&ap->link.eh_info);
6564 } else
a9a79dfe 6565 ata_port_info(ap, "DUMMY\n");
f3187195
TH
6566 }
6567
f6005354 6568 /* perform each probe asynchronously */
f3187195
TH
6569 for (i = 0; i < host->n_ports; i++) {
6570 struct ata_port *ap = host->ports[i];
79318057 6571 async_schedule(async_port_probe, ap);
f3187195 6572 }
f3187195
TH
6573
6574 return 0;
d9027470
GG
6575
6576 err_tadd:
6577 while (--i >= 0) {
6578 ata_tport_delete(host->ports[i]);
6579 }
6580 return rc;
6581
f3187195
TH
6582}
6583
f5cda257
TH
6584/**
6585 * ata_host_activate - start host, request IRQ and register it
6586 * @host: target ATA host
6587 * @irq: IRQ to request
6588 * @irq_handler: irq_handler used when requesting IRQ
6589 * @irq_flags: irq_flags used when requesting IRQ
6590 * @sht: scsi_host_template to use when registering the host
6591 *
6592 * After allocating an ATA host and initializing it, most libata
6593 * LLDs perform three steps to activate the host - start host,
c9b5560a 6594 * request IRQ and register it. This helper takes necessary
f5cda257
TH
6595 * arguments and performs the three steps in one go.
6596 *
3d46b2e2
PM
6597 * An invalid IRQ skips the IRQ registration and expects the host to
6598 * have set polling mode on the port. In this case, @irq_handler
6599 * should be NULL.
6600 *
f5cda257
TH
6601 * LOCKING:
6602 * Inherited from calling layer (may sleep).
6603 *
6604 * RETURNS:
6605 * 0 on success, -errno otherwise.
6606 */
6607int ata_host_activate(struct ata_host *host, int irq,
6608 irq_handler_t irq_handler, unsigned long irq_flags,
6609 struct scsi_host_template *sht)
6610{
cbcdd875 6611 int i, rc;
7e22c002 6612 char *irq_desc;
f5cda257
TH
6613
6614 rc = ata_host_start(host);
6615 if (rc)
6616 return rc;
6617
3d46b2e2
PM
6618 /* Special case for polling mode */
6619 if (!irq) {
6620 WARN_ON(irq_handler);
6621 return ata_host_register(host, sht);
6622 }
6623
7e22c002
HK
6624 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6625 dev_driver_string(host->dev),
6626 dev_name(host->dev));
6627 if (!irq_desc)
6628 return -ENOMEM;
6629
f5cda257 6630 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7e22c002 6631 irq_desc, host);
f5cda257
TH
6632 if (rc)
6633 return rc;
6634
cbcdd875
TH
6635 for (i = 0; i < host->n_ports; i++)
6636 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6637
f5cda257
TH
6638 rc = ata_host_register(host, sht);
6639 /* if failed, just free the IRQ and leave ports alone */
6640 if (rc)
6641 devm_free_irq(host->dev, irq, host);
6642
6643 return rc;
6644}
6645
720ba126 6646/**
c9b5560a 6647 * ata_port_detach - Detach ATA port in preparation of device removal
720ba126
TH
6648 * @ap: ATA port to be detached
6649 *
6650 * Detach all ATA devices and the associated SCSI devices of @ap;
6651 * then, remove the associated SCSI host. @ap is guaranteed to
6652 * be quiescent on return from this function.
6653 *
6654 * LOCKING:
6655 * Kernel thread context (may sleep).
6656 */
741b7763 6657static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6658{
6659 unsigned long flags;
a6f9bf4d
LK
6660 struct ata_link *link;
6661 struct ata_device *dev;
720ba126
TH
6662
6663 if (!ap->ops->error_handler)
c3cf30a9 6664 goto skip_eh;
720ba126
TH
6665
6666 /* tell EH we're leaving & flush EH */
ba6a1308 6667 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6668 ap->pflags |= ATA_PFLAG_UNLOADING;
ece180d1 6669 ata_port_schedule_eh(ap);
ba6a1308 6670 spin_unlock_irqrestore(ap->lock, flags);
720ba126 6671
ece180d1 6672 /* wait till EH commits suicide */
720ba126
TH
6673 ata_port_wait_eh(ap);
6674
ece180d1
TH
6675 /* it better be dead now */
6676 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
720ba126 6677
afe2c511 6678 cancel_delayed_work_sync(&ap->hotplug_task);
720ba126 6679
c3cf30a9 6680 skip_eh:
a6f9bf4d
LK
6681 /* clean up zpodd on port removal */
6682 ata_for_each_link(link, ap, HOST_FIRST) {
6683 ata_for_each_dev(dev, link, ALL) {
6684 if (zpodd_dev_enabled(dev))
6685 zpodd_exit(dev);
6686 }
6687 }
d9027470
GG
6688 if (ap->pmp_link) {
6689 int i;
6690 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6691 ata_tlink_delete(&ap->pmp_link[i]);
6692 }
720ba126 6693 /* remove the associated SCSI host */
cca3974e 6694 scsi_remove_host(ap->scsi_host);
c5700766 6695 ata_tport_delete(ap);
720ba126
TH
6696}
6697
0529c159
TH
6698/**
6699 * ata_host_detach - Detach all ports of an ATA host
6700 * @host: Host to detach
6701 *
6702 * Detach all ports of @host.
6703 *
6704 * LOCKING:
6705 * Kernel thread context (may sleep).
6706 */
6707void ata_host_detach(struct ata_host *host)
6708{
6709 int i;
6710
6711 for (i = 0; i < host->n_ports; i++)
6712 ata_port_detach(host->ports[i]);
562f0c2d
TH
6713
6714 /* the host is dead now, dissociate ACPI */
6715 ata_acpi_dissociate(host);
0529c159
TH
6716}
6717
374b1873
JG
6718#ifdef CONFIG_PCI
6719
1da177e4
LT
6720/**
6721 * ata_pci_remove_one - PCI layer callback for device removal
6722 * @pdev: PCI device that was removed
6723 *
b878ca5d
TH
6724 * PCI layer indicates to libata via this hook that hot-unplug or
6725 * module unload event has occurred. Detach all ports. Resource
6726 * release is handled via devres.
1da177e4
LT
6727 *
6728 * LOCKING:
6729 * Inherited from PCI layer (may sleep).
6730 */
f0d36efd 6731void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6732{
04a3f5b7 6733 struct ata_host *host = pci_get_drvdata(pdev);
1da177e4 6734
b878ca5d 6735 ata_host_detach(host);
1da177e4
LT
6736}
6737
6738/* move to PCI subsystem */
057ace5e 6739int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6740{
6741 unsigned long tmp = 0;
6742
6743 switch (bits->width) {
6744 case 1: {
6745 u8 tmp8 = 0;
6746 pci_read_config_byte(pdev, bits->reg, &tmp8);
6747 tmp = tmp8;
6748 break;
6749 }
6750 case 2: {
6751 u16 tmp16 = 0;
6752 pci_read_config_word(pdev, bits->reg, &tmp16);
6753 tmp = tmp16;
6754 break;
6755 }
6756 case 4: {
6757 u32 tmp32 = 0;
6758 pci_read_config_dword(pdev, bits->reg, &tmp32);
6759 tmp = tmp32;
6760 break;
6761 }
6762
6763 default:
6764 return -EINVAL;
6765 }
6766
6767 tmp &= bits->mask;
6768
6769 return (tmp == bits->val) ? 1 : 0;
6770}
9b847548 6771
6ffa01d8 6772#ifdef CONFIG_PM
3c5100c1 6773void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6774{
6775 pci_save_state(pdev);
4c90d971 6776 pci_disable_device(pdev);
500530f6 6777
3a2d5b70 6778 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6779 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6780}
6781
553c4aa6 6782int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6783{
553c4aa6
TH
6784 int rc;
6785
9b847548
JA
6786 pci_set_power_state(pdev, PCI_D0);
6787 pci_restore_state(pdev);
553c4aa6 6788
b878ca5d 6789 rc = pcim_enable_device(pdev);
553c4aa6 6790 if (rc) {
a44fec1f
JP
6791 dev_err(&pdev->dev,
6792 "failed to enable device after resume (%d)\n", rc);
553c4aa6
TH
6793 return rc;
6794 }
6795
9b847548 6796 pci_set_master(pdev);
553c4aa6 6797 return 0;
500530f6
TH
6798}
6799
3c5100c1 6800int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6801{
04a3f5b7 6802 struct ata_host *host = pci_get_drvdata(pdev);
500530f6
TH
6803 int rc = 0;
6804
cca3974e 6805 rc = ata_host_suspend(host, mesg);
500530f6
TH
6806 if (rc)
6807 return rc;
6808
3c5100c1 6809 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6810
6811 return 0;
6812}
6813
6814int ata_pci_device_resume(struct pci_dev *pdev)
6815{
04a3f5b7 6816 struct ata_host *host = pci_get_drvdata(pdev);
553c4aa6 6817 int rc;
500530f6 6818
553c4aa6
TH
6819 rc = ata_pci_device_do_resume(pdev);
6820 if (rc == 0)
6821 ata_host_resume(host);
6822 return rc;
9b847548 6823}
6ffa01d8
TH
6824#endif /* CONFIG_PM */
6825
1da177e4
LT
6826#endif /* CONFIG_PCI */
6827
b7db04d9
BN
6828/**
6829 * ata_platform_remove_one - Platform layer callback for device removal
6830 * @pdev: Platform device that was removed
6831 *
6832 * Platform layer indicates to libata via this hook that hot-unplug or
6833 * module unload event has occurred. Detach all ports. Resource
6834 * release is handled via devres.
6835 *
6836 * LOCKING:
6837 * Inherited from platform layer (may sleep).
6838 */
6839int ata_platform_remove_one(struct platform_device *pdev)
6840{
6841 struct ata_host *host = platform_get_drvdata(pdev);
6842
6843 ata_host_detach(host);
6844
6845 return 0;
6846}
6847
33267325
TH
6848static int __init ata_parse_force_one(char **cur,
6849 struct ata_force_ent *force_ent,
6850 const char **reason)
6851{
0f5f264b 6852 static const struct ata_force_param force_tbl[] __initconst = {
33267325
TH
6853 { "40c", .cbl = ATA_CBL_PATA40 },
6854 { "80c", .cbl = ATA_CBL_PATA80 },
6855 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6856 { "unk", .cbl = ATA_CBL_PATA_UNK },
6857 { "ign", .cbl = ATA_CBL_PATA_IGN },
6858 { "sata", .cbl = ATA_CBL_SATA },
6859 { "1.5Gbps", .spd_limit = 1 },
6860 { "3.0Gbps", .spd_limit = 2 },
6861 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6862 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
d7b16e4f
MP
6863 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6864 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
43c9c591 6865 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
33267325
TH
6866 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6867 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6868 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6869 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6870 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6871 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6872 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6873 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6874 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6875 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6876 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6877 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6878 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6879 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6880 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6881 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6882 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6883 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6884 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6885 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6886 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6887 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6888 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6889 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6890 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6891 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6892 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6893 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6894 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6895 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6896 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6897 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6898 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6899 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6900 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6901 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6902 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
ca6d43b0 6903 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
966fbe19 6904 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
b8bd6dc3 6905 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
33267325
TH
6906 };
6907 char *start = *cur, *p = *cur;
6908 char *id, *val, *endp;
6909 const struct ata_force_param *match_fp = NULL;
6910 int nr_matches = 0, i;
6911
6912 /* find where this param ends and update *cur */
6913 while (*p != '\0' && *p != ',')
6914 p++;
6915
6916 if (*p == '\0')
6917 *cur = p;
6918 else
6919 *cur = p + 1;
6920
6921 *p = '\0';
6922
6923 /* parse */
6924 p = strchr(start, ':');
6925 if (!p) {
6926 val = strstrip(start);
6927 goto parse_val;
6928 }
6929 *p = '\0';
6930
6931 id = strstrip(start);
6932 val = strstrip(p + 1);
6933
6934 /* parse id */
6935 p = strchr(id, '.');
6936 if (p) {
6937 *p++ = '\0';
6938 force_ent->device = simple_strtoul(p, &endp, 10);
6939 if (p == endp || *endp != '\0') {
6940 *reason = "invalid device";
6941 return -EINVAL;
6942 }
6943 }
6944
6945 force_ent->port = simple_strtoul(id, &endp, 10);
f7cf69ae 6946 if (id == endp || *endp != '\0') {
33267325
TH
6947 *reason = "invalid port/link";
6948 return -EINVAL;
6949 }
6950
6951 parse_val:
6952 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6953 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6954 const struct ata_force_param *fp = &force_tbl[i];
6955
6956 if (strncasecmp(val, fp->name, strlen(val)))
6957 continue;
6958
6959 nr_matches++;
6960 match_fp = fp;
6961
6962 if (strcasecmp(val, fp->name) == 0) {
6963 nr_matches = 1;
6964 break;
6965 }
6966 }
6967
6968 if (!nr_matches) {
6969 *reason = "unknown value";
6970 return -EINVAL;
6971 }
6972 if (nr_matches > 1) {
9de55351 6973 *reason = "ambiguous value";
33267325
TH
6974 return -EINVAL;
6975 }
6976
6977 force_ent->param = *match_fp;
6978
6979 return 0;
6980}
6981
6982static void __init ata_parse_force_param(void)
6983{
6984 int idx = 0, size = 1;
6985 int last_port = -1, last_device = -1;
6986 char *p, *cur, *next;
6987
6988 /* calculate maximum number of params and allocate force_tbl */
6989 for (p = ata_force_param_buf; *p; p++)
6990 if (*p == ',')
6991 size++;
6992
6396bb22 6993 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
33267325
TH
6994 if (!ata_force_tbl) {
6995 printk(KERN_WARNING "ata: failed to extend force table, "
6996 "libata.force ignored\n");
6997 return;
6998 }
6999
7000 /* parse and populate the table */
7001 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
7002 const char *reason = "";
7003 struct ata_force_ent te = { .port = -1, .device = -1 };
7004
7005 next = cur;
7006 if (ata_parse_force_one(&next, &te, &reason)) {
7007 printk(KERN_WARNING "ata: failed to parse force "
7008 "parameter \"%s\" (%s)\n",
7009 cur, reason);
7010 continue;
7011 }
7012
7013 if (te.port == -1) {
7014 te.port = last_port;
7015 te.device = last_device;
7016 }
7017
7018 ata_force_tbl[idx++] = te;
7019
7020 last_port = te.port;
7021 last_device = te.device;
7022 }
7023
7024 ata_force_tbl_size = idx;
7025}
1da177e4 7026
1da177e4
LT
7027static int __init ata_init(void)
7028{
d9027470 7029 int rc;
270390e1 7030
33267325
TH
7031 ata_parse_force_param();
7032
270390e1 7033 rc = ata_sff_init();
ad72cf98
TH
7034 if (rc) {
7035 kfree(ata_force_tbl);
7036 return rc;
7037 }
453b07ac 7038
d9027470
GG
7039 libata_transport_init();
7040 ata_scsi_transport_template = ata_attach_transport();
7041 if (!ata_scsi_transport_template) {
7042 ata_sff_exit();
7043 rc = -ENOMEM;
7044 goto err_out;
4fca377f 7045 }
d9027470 7046
1da177e4
LT
7047 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7048 return 0;
d9027470
GG
7049
7050err_out:
7051 return rc;
1da177e4
LT
7052}
7053
7054static void __exit ata_exit(void)
7055{
d9027470
GG
7056 ata_release_transport(ata_scsi_transport_template);
7057 libata_transport_exit();
270390e1 7058 ata_sff_exit();
33267325 7059 kfree(ata_force_tbl);
1da177e4
LT
7060}
7061
a4625085 7062subsys_initcall(ata_init);
1da177e4
LT
7063module_exit(ata_exit);
7064
9990b6f3 7065static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
67846b30
JG
7066
7067int ata_ratelimit(void)
7068{
9990b6f3 7069 return __ratelimit(&ratelimit);
67846b30
JG
7070}
7071
c0c362b6
TH
7072/**
7073 * ata_msleep - ATA EH owner aware msleep
7074 * @ap: ATA port to attribute the sleep to
7075 * @msecs: duration to sleep in milliseconds
7076 *
7077 * Sleeps @msecs. If the current task is owner of @ap's EH, the
7078 * ownership is released before going to sleep and reacquired
7079 * after the sleep is complete. IOW, other ports sharing the
7080 * @ap->host will be allowed to own the EH while this task is
7081 * sleeping.
7082 *
7083 * LOCKING:
7084 * Might sleep.
7085 */
97750ceb
TH
7086void ata_msleep(struct ata_port *ap, unsigned int msecs)
7087{
c0c362b6
TH
7088 bool owns_eh = ap && ap->host->eh_owner == current;
7089
7090 if (owns_eh)
7091 ata_eh_release(ap);
7092
848c3920
AVM
7093 if (msecs < 20) {
7094 unsigned long usecs = msecs * USEC_PER_MSEC;
7095 usleep_range(usecs, usecs + 50);
7096 } else {
7097 msleep(msecs);
7098 }
c0c362b6
TH
7099
7100 if (owns_eh)
7101 ata_eh_acquire(ap);
97750ceb
TH
7102}
7103
c22daff4
TH
7104/**
7105 * ata_wait_register - wait until register value changes
97750ceb 7106 * @ap: ATA port to wait register for, can be NULL
c22daff4
TH
7107 * @reg: IO-mapped register
7108 * @mask: Mask to apply to read register value
7109 * @val: Wait condition
341c2c95
TH
7110 * @interval: polling interval in milliseconds
7111 * @timeout: timeout in milliseconds
c22daff4
TH
7112 *
7113 * Waiting for some bits of register to change is a common
7114 * operation for ATA controllers. This function reads 32bit LE
7115 * IO-mapped register @reg and tests for the following condition.
7116 *
7117 * (*@reg & mask) != val
7118 *
7119 * If the condition is met, it returns; otherwise, the process is
7120 * repeated after @interval_msec until timeout.
7121 *
7122 * LOCKING:
7123 * Kernel thread context (may sleep)
7124 *
7125 * RETURNS:
7126 * The final register value.
7127 */
97750ceb 7128u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
341c2c95 7129 unsigned long interval, unsigned long timeout)
c22daff4 7130{
341c2c95 7131 unsigned long deadline;
c22daff4
TH
7132 u32 tmp;
7133
7134 tmp = ioread32(reg);
7135
7136 /* Calculate timeout _after_ the first read to make sure
7137 * preceding writes reach the controller before starting to
7138 * eat away the timeout.
7139 */
341c2c95 7140 deadline = ata_deadline(jiffies, timeout);
c22daff4 7141
341c2c95 7142 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
97750ceb 7143 ata_msleep(ap, interval);
c22daff4
TH
7144 tmp = ioread32(reg);
7145 }
7146
7147 return tmp;
7148}
7149
8393b811
GM
7150/**
7151 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
7152 * @link: Link receiving the event
7153 *
7154 * Test whether the received PHY event has to be ignored or not.
7155 *
7156 * LOCKING:
7157 * None:
7158 *
7159 * RETURNS:
7160 * True if the event has to be ignored.
7161 */
7162bool sata_lpm_ignore_phy_events(struct ata_link *link)
7163{
09c5b480
GM
7164 unsigned long lpm_timeout = link->last_lpm_change +
7165 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7166
8393b811 7167 /* if LPM is enabled, PHYRDY doesn't mean anything */
09c5b480
GM
7168 if (link->lpm_policy > ATA_LPM_MAX_POWER)
7169 return true;
7170
7171 /* ignore the first PHY event after the LPM policy changed
7172 * as it is might be spurious
7173 */
7174 if ((link->flags & ATA_LFLAG_CHANGED) &&
7175 time_before(jiffies, lpm_timeout))
7176 return true;
7177
7178 return false;
8393b811
GM
7179}
7180EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7181
dd5b06c4
TH
7182/*
7183 * Dummy port_ops
7184 */
182d7bba 7185static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 7186{
182d7bba 7187 return AC_ERR_SYSTEM;
dd5b06c4
TH
7188}
7189
182d7bba 7190static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 7191{
182d7bba 7192 /* truly dummy */
dd5b06c4
TH
7193}
7194
029cfd6b 7195struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7196 .qc_prep = ata_noop_qc_prep,
7197 .qc_issue = ata_dummy_qc_issue,
182d7bba 7198 .error_handler = ata_dummy_error_handler,
e4a9c373
DW
7199 .sched_eh = ata_std_sched_eh,
7200 .end_eh = ata_std_end_eh,
dd5b06c4
TH
7201};
7202
21b0ad4f
TH
7203const struct ata_port_info ata_dummy_port_info = {
7204 .port_ops = &ata_dummy_port_ops,
7205};
7206
a9a79dfe
JP
7207/*
7208 * Utility print functions
7209 */
d7bead1b
JP
7210void ata_port_printk(const struct ata_port *ap, const char *level,
7211 const char *fmt, ...)
a9a79dfe
JP
7212{
7213 struct va_format vaf;
7214 va_list args;
a9a79dfe
JP
7215
7216 va_start(args, fmt);
7217
7218 vaf.fmt = fmt;
7219 vaf.va = &args;
7220
d7bead1b 7221 printk("%sata%u: %pV", level, ap->print_id, &vaf);
a9a79dfe
JP
7222
7223 va_end(args);
a9a79dfe
JP
7224}
7225EXPORT_SYMBOL(ata_port_printk);
7226
d7bead1b
JP
7227void ata_link_printk(const struct ata_link *link, const char *level,
7228 const char *fmt, ...)
a9a79dfe
JP
7229{
7230 struct va_format vaf;
7231 va_list args;
a9a79dfe
JP
7232
7233 va_start(args, fmt);
7234
7235 vaf.fmt = fmt;
7236 vaf.va = &args;
7237
7238 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
d7bead1b
JP
7239 printk("%sata%u.%02u: %pV",
7240 level, link->ap->print_id, link->pmp, &vaf);
a9a79dfe 7241 else
d7bead1b
JP
7242 printk("%sata%u: %pV",
7243 level, link->ap->print_id, &vaf);
a9a79dfe
JP
7244
7245 va_end(args);
a9a79dfe
JP
7246}
7247EXPORT_SYMBOL(ata_link_printk);
7248
d7bead1b 7249void ata_dev_printk(const struct ata_device *dev, const char *level,
a9a79dfe
JP
7250 const char *fmt, ...)
7251{
7252 struct va_format vaf;
7253 va_list args;
a9a79dfe
JP
7254
7255 va_start(args, fmt);
7256
7257 vaf.fmt = fmt;
7258 vaf.va = &args;
7259
d7bead1b
JP
7260 printk("%sata%u.%02u: %pV",
7261 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7262 &vaf);
a9a79dfe
JP
7263
7264 va_end(args);
a9a79dfe
JP
7265}
7266EXPORT_SYMBOL(ata_dev_printk);
7267
06296a1e
JP
7268void ata_print_version(const struct device *dev, const char *version)
7269{
7270 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7271}
7272EXPORT_SYMBOL(ata_print_version);
7273
1da177e4
LT
7274/*
7275 * libata is essentially a library of internal helper functions for
7276 * low-level ATA host controller drivers. As such, the API/ABI is
7277 * likely to change as new drivers are added and updated.
7278 * Do not depend on ABI/API stability.
7279 */
e9c83914
TH
7280EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7281EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7282EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
7283EXPORT_SYMBOL_GPL(ata_base_port_ops);
7284EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 7285EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7286EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1eca4365
TH
7287EXPORT_SYMBOL_GPL(ata_link_next);
7288EXPORT_SYMBOL_GPL(ata_dev_next);
1da177e4 7289EXPORT_SYMBOL_GPL(ata_std_bios_param);
d8d9129e 7290EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
cca3974e 7291EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7292EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7293EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 7294EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 7295EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7296EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7297EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7298EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 7299EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 7300EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7301EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 7302EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
7303EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7304EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
7305EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7306EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7307EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7308EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7309EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7310EXPORT_SYMBOL_GPL(ata_mode_string);
7311EXPORT_SYMBOL_GPL(ata_id_xfermask);
04351821 7312EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 7313EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 7314EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
10305f0f 7315EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7316EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 7317EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
7318EXPORT_SYMBOL_GPL(sata_link_debounce);
7319EXPORT_SYMBOL_GPL(sata_link_resume);
1152b261 7320EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
0aa1113d 7321EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 7322EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 7323EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 7324EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7325EXPORT_SYMBOL_GPL(ata_dev_classify);
7326EXPORT_SYMBOL_GPL(ata_dev_pair);
67846b30 7327EXPORT_SYMBOL_GPL(ata_ratelimit);
97750ceb 7328EXPORT_SYMBOL_GPL(ata_msleep);
c22daff4 7329EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4 7330EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7331EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7332EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7333EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
f6e67035 7334EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
34bf2170
TH
7335EXPORT_SYMBOL_GPL(sata_scr_valid);
7336EXPORT_SYMBOL_GPL(sata_scr_read);
7337EXPORT_SYMBOL_GPL(sata_scr_write);
7338EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7339EXPORT_SYMBOL_GPL(ata_link_online);
7340EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7341#ifdef CONFIG_PM
cca3974e
JG
7342EXPORT_SYMBOL_GPL(ata_host_suspend);
7343EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7344#endif /* CONFIG_PM */
6a62a04d
TH
7345EXPORT_SYMBOL_GPL(ata_id_string);
7346EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 7347EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
7348EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7349
1bc4ccff 7350EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 7351EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
7352EXPORT_SYMBOL_GPL(ata_timing_compute);
7353EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 7354EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 7355
1da177e4
LT
7356#ifdef CONFIG_PCI
7357EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 7358EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7359#ifdef CONFIG_PM
500530f6
TH
7360EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7361EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7362EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7363EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7364#endif /* CONFIG_PM */
1da177e4 7365#endif /* CONFIG_PCI */
9b847548 7366
b7db04d9
BN
7367EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7368
b64bbc39
TH
7369EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7370EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7371EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7372EXPORT_SYMBOL_GPL(ata_port_desc);
7373#ifdef CONFIG_PCI
7374EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7375#endif /* CONFIG_PCI */
7b70fc03 7376EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7377EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7378EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7379EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7380EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7381EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7382EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7383EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7384EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 7385EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 7386EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 7387EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
7388
7389EXPORT_SYMBOL_GPL(ata_cable_40wire);
7390EXPORT_SYMBOL_GPL(ata_cable_80wire);
7391EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 7392EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 7393EXPORT_SYMBOL_GPL(ata_cable_sata);