Merge branches 'acpi-video', 'device-properties', 'pm-sleep' and 'pm-cpuidle'
[linux-2.6-block.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
8c3d3d4b 4 * Maintained by: Tejun Heo <tj@kernel.org>
af36d7f0
JG
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/interrupt.h>
54#include <linux/completion.h>
55#include <linux/suspend.h>
56#include <linux/workqueue.h>
378f058c 57#include <linux/scatterlist.h>
2dcb407e 58#include <linux/io.h>
79318057 59#include <linux/async.h>
e18086d6 60#include <linux/log2.h>
5a0e3ad6 61#include <linux/slab.h>
428ac5fc 62#include <linux/glob.h>
1da177e4 63#include <scsi/scsi.h>
193515d5 64#include <scsi/scsi_cmnd.h>
1da177e4
LT
65#include <scsi/scsi_host.h>
66#include <linux/libata.h>
1da177e4 67#include <asm/byteorder.h>
140b5e59 68#include <linux/cdrom.h>
9990b6f3 69#include <linux/ratelimit.h>
9ee4f393 70#include <linux/pm_runtime.h>
b7db04d9 71#include <linux/platform_device.h>
1da177e4 72
255c03d1
HR
73#define CREATE_TRACE_POINTS
74#include <trace/events/libata.h>
75
1da177e4 76#include "libata.h"
d9027470 77#include "libata-transport.h"
fda0efc5 78
d7bb4cc7 79/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
80const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
81const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
82const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 83
029cfd6b 84const struct ata_port_operations ata_base_port_ops = {
0aa1113d 85 .prereset = ata_std_prereset,
203c75b8 86 .postreset = ata_std_postreset,
a1efdaba 87 .error_handler = ata_std_error_handler,
e4a9c373
DW
88 .sched_eh = ata_std_sched_eh,
89 .end_eh = ata_std_end_eh,
029cfd6b
TH
90};
91
92const struct ata_port_operations sata_port_ops = {
93 .inherits = &ata_base_port_ops,
94
95 .qc_defer = ata_std_qc_defer,
57c9efdf 96 .hardreset = sata_std_hardreset,
029cfd6b
TH
97};
98
3373efd8
TH
99static unsigned int ata_dev_init_params(struct ata_device *dev,
100 u16 heads, u16 sectors);
101static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
102static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 103static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 104
a78f57af 105atomic_t ata_print_id = ATOMIC_INIT(0);
1da177e4 106
33267325
TH
107struct ata_force_param {
108 const char *name;
109 unsigned int cbl;
110 int spd_limit;
111 unsigned long xfer_mask;
112 unsigned int horkage_on;
113 unsigned int horkage_off;
05944bdf 114 unsigned int lflags;
33267325
TH
115};
116
117struct ata_force_ent {
118 int port;
119 int device;
120 struct ata_force_param param;
121};
122
123static struct ata_force_ent *ata_force_tbl;
124static int ata_force_tbl_size;
125
126static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
127/* param_buf is thrown away after initialization, disallow read */
128module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
33267325
TH
129MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
130
2486fa56 131static int atapi_enabled = 1;
1623c81e 132module_param(atapi_enabled, int, 0444);
ad5d8eac 133MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
1623c81e 134
c5c61bda 135static int atapi_dmadir = 0;
95de719a 136module_param(atapi_dmadir, int, 0444);
ad5d8eac 137MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
95de719a 138
baf4fdfa
ML
139int atapi_passthru16 = 1;
140module_param(atapi_passthru16, int, 0444);
ad5d8eac 141MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
baf4fdfa 142
c3c013a2
JG
143int libata_fua = 0;
144module_param_named(fua, libata_fua, int, 0444);
ad5d8eac 145MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
c3c013a2 146
2dcb407e 147static int ata_ignore_hpa;
1e999736
AC
148module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
149MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
150
b3a70601
AC
151static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
152module_param_named(dma, libata_dma_mask, int, 0444);
153MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
154
87fbc5a0 155static int ata_probe_timeout;
a8601e5f
AM
156module_param(ata_probe_timeout, int, 0444);
157MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
158
6ebe9d86 159int libata_noacpi = 0;
d7d0dad6 160module_param_named(noacpi, libata_noacpi, int, 0444);
ad5d8eac 161MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
11ef697b 162
ae8d4ee7
AC
163int libata_allow_tpm = 0;
164module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
ad5d8eac 165MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
ae8d4ee7 166
e7ecd435
TH
167static int atapi_an;
168module_param(atapi_an, int, 0444);
169MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
170
1da177e4
LT
171MODULE_AUTHOR("Jeff Garzik");
172MODULE_DESCRIPTION("Library module for ATA devices");
173MODULE_LICENSE("GPL");
174MODULE_VERSION(DRV_VERSION);
175
0baab86b 176
9913ff8a
TH
177static bool ata_sstatus_online(u32 sstatus)
178{
179 return (sstatus & 0xf) == 0x3;
180}
181
1eca4365
TH
182/**
183 * ata_link_next - link iteration helper
184 * @link: the previous link, NULL to start
185 * @ap: ATA port containing links to iterate
186 * @mode: iteration mode, one of ATA_LITER_*
187 *
188 * LOCKING:
189 * Host lock or EH context.
aadffb68 190 *
1eca4365
TH
191 * RETURNS:
192 * Pointer to the next link.
aadffb68 193 */
1eca4365
TH
194struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
195 enum ata_link_iter_mode mode)
aadffb68 196{
1eca4365
TH
197 BUG_ON(mode != ATA_LITER_EDGE &&
198 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
199
aadffb68 200 /* NULL link indicates start of iteration */
1eca4365
TH
201 if (!link)
202 switch (mode) {
203 case ATA_LITER_EDGE:
204 case ATA_LITER_PMP_FIRST:
205 if (sata_pmp_attached(ap))
206 return ap->pmp_link;
207 /* fall through */
208 case ATA_LITER_HOST_FIRST:
209 return &ap->link;
210 }
aadffb68 211
1eca4365
TH
212 /* we just iterated over the host link, what's next? */
213 if (link == &ap->link)
214 switch (mode) {
215 case ATA_LITER_HOST_FIRST:
216 if (sata_pmp_attached(ap))
217 return ap->pmp_link;
218 /* fall through */
219 case ATA_LITER_PMP_FIRST:
220 if (unlikely(ap->slave_link))
b1c72916 221 return ap->slave_link;
1eca4365
TH
222 /* fall through */
223 case ATA_LITER_EDGE:
aadffb68 224 return NULL;
b1c72916 225 }
aadffb68 226
b1c72916
TH
227 /* slave_link excludes PMP */
228 if (unlikely(link == ap->slave_link))
229 return NULL;
230
1eca4365 231 /* we were over a PMP link */
aadffb68
TH
232 if (++link < ap->pmp_link + ap->nr_pmp_links)
233 return link;
1eca4365
TH
234
235 if (mode == ATA_LITER_PMP_FIRST)
236 return &ap->link;
237
aadffb68
TH
238 return NULL;
239}
240
1eca4365
TH
241/**
242 * ata_dev_next - device iteration helper
243 * @dev: the previous device, NULL to start
244 * @link: ATA link containing devices to iterate
245 * @mode: iteration mode, one of ATA_DITER_*
246 *
247 * LOCKING:
248 * Host lock or EH context.
249 *
250 * RETURNS:
251 * Pointer to the next device.
252 */
253struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
254 enum ata_dev_iter_mode mode)
255{
256 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
257 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
258
259 /* NULL dev indicates start of iteration */
260 if (!dev)
261 switch (mode) {
262 case ATA_DITER_ENABLED:
263 case ATA_DITER_ALL:
264 dev = link->device;
265 goto check;
266 case ATA_DITER_ENABLED_REVERSE:
267 case ATA_DITER_ALL_REVERSE:
268 dev = link->device + ata_link_max_devices(link) - 1;
269 goto check;
270 }
271
272 next:
273 /* move to the next one */
274 switch (mode) {
275 case ATA_DITER_ENABLED:
276 case ATA_DITER_ALL:
277 if (++dev < link->device + ata_link_max_devices(link))
278 goto check;
279 return NULL;
280 case ATA_DITER_ENABLED_REVERSE:
281 case ATA_DITER_ALL_REVERSE:
282 if (--dev >= link->device)
283 goto check;
284 return NULL;
285 }
286
287 check:
288 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
289 !ata_dev_enabled(dev))
290 goto next;
291 return dev;
292}
293
b1c72916
TH
294/**
295 * ata_dev_phys_link - find physical link for a device
296 * @dev: ATA device to look up physical link for
297 *
298 * Look up physical link which @dev is attached to. Note that
299 * this is different from @dev->link only when @dev is on slave
300 * link. For all other cases, it's the same as @dev->link.
301 *
302 * LOCKING:
303 * Don't care.
304 *
305 * RETURNS:
306 * Pointer to the found physical link.
307 */
308struct ata_link *ata_dev_phys_link(struct ata_device *dev)
309{
310 struct ata_port *ap = dev->link->ap;
311
312 if (!ap->slave_link)
313 return dev->link;
314 if (!dev->devno)
315 return &ap->link;
316 return ap->slave_link;
317}
318
33267325
TH
319/**
320 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 321 * @ap: ATA port of interest
33267325
TH
322 *
323 * Force cable type according to libata.force and whine about it.
324 * The last entry which has matching port number is used, so it
325 * can be specified as part of device force parameters. For
326 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
327 * same effect.
328 *
329 * LOCKING:
330 * EH context.
331 */
332void ata_force_cbl(struct ata_port *ap)
333{
334 int i;
335
336 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
337 const struct ata_force_ent *fe = &ata_force_tbl[i];
338
339 if (fe->port != -1 && fe->port != ap->print_id)
340 continue;
341
342 if (fe->param.cbl == ATA_CBL_NONE)
343 continue;
344
345 ap->cbl = fe->param.cbl;
a9a79dfe 346 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
33267325
TH
347 return;
348 }
349}
350
351/**
05944bdf 352 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
353 * @link: ATA link of interest
354 *
05944bdf
TH
355 * Force link flags and SATA spd limit according to libata.force
356 * and whine about it. When only the port part is specified
357 * (e.g. 1:), the limit applies to all links connected to both
358 * the host link and all fan-out ports connected via PMP. If the
359 * device part is specified as 0 (e.g. 1.00:), it specifies the
360 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
361 * points to the host link whether PMP is attached or not. If the
362 * controller has slave link, device number 16 points to it.
33267325
TH
363 *
364 * LOCKING:
365 * EH context.
366 */
05944bdf 367static void ata_force_link_limits(struct ata_link *link)
33267325 368{
05944bdf 369 bool did_spd = false;
b1c72916
TH
370 int linkno = link->pmp;
371 int i;
33267325
TH
372
373 if (ata_is_host_link(link))
b1c72916 374 linkno += 15;
33267325
TH
375
376 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
377 const struct ata_force_ent *fe = &ata_force_tbl[i];
378
379 if (fe->port != -1 && fe->port != link->ap->print_id)
380 continue;
381
382 if (fe->device != -1 && fe->device != linkno)
383 continue;
384
05944bdf
TH
385 /* only honor the first spd limit */
386 if (!did_spd && fe->param.spd_limit) {
387 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
a9a79dfe 388 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
05944bdf
TH
389 fe->param.name);
390 did_spd = true;
391 }
33267325 392
05944bdf
TH
393 /* let lflags stack */
394 if (fe->param.lflags) {
395 link->flags |= fe->param.lflags;
a9a79dfe 396 ata_link_notice(link,
05944bdf
TH
397 "FORCE: link flag 0x%x forced -> 0x%x\n",
398 fe->param.lflags, link->flags);
399 }
33267325
TH
400 }
401}
402
403/**
404 * ata_force_xfermask - force xfermask according to libata.force
405 * @dev: ATA device of interest
406 *
407 * Force xfer_mask according to libata.force and whine about it.
408 * For consistency with link selection, device number 15 selects
409 * the first device connected to the host link.
410 *
411 * LOCKING:
412 * EH context.
413 */
414static void ata_force_xfermask(struct ata_device *dev)
415{
416 int devno = dev->link->pmp + dev->devno;
417 int alt_devno = devno;
418 int i;
419
b1c72916
TH
420 /* allow n.15/16 for devices attached to host port */
421 if (ata_is_host_link(dev->link))
422 alt_devno += 15;
33267325
TH
423
424 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
425 const struct ata_force_ent *fe = &ata_force_tbl[i];
426 unsigned long pio_mask, mwdma_mask, udma_mask;
427
428 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
429 continue;
430
431 if (fe->device != -1 && fe->device != devno &&
432 fe->device != alt_devno)
433 continue;
434
435 if (!fe->param.xfer_mask)
436 continue;
437
438 ata_unpack_xfermask(fe->param.xfer_mask,
439 &pio_mask, &mwdma_mask, &udma_mask);
440 if (udma_mask)
441 dev->udma_mask = udma_mask;
442 else if (mwdma_mask) {
443 dev->udma_mask = 0;
444 dev->mwdma_mask = mwdma_mask;
445 } else {
446 dev->udma_mask = 0;
447 dev->mwdma_mask = 0;
448 dev->pio_mask = pio_mask;
449 }
450
a9a79dfe
JP
451 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
452 fe->param.name);
33267325
TH
453 return;
454 }
455}
456
457/**
458 * ata_force_horkage - force horkage according to libata.force
459 * @dev: ATA device of interest
460 *
461 * Force horkage according to libata.force and whine about it.
462 * For consistency with link selection, device number 15 selects
463 * the first device connected to the host link.
464 *
465 * LOCKING:
466 * EH context.
467 */
468static void ata_force_horkage(struct ata_device *dev)
469{
470 int devno = dev->link->pmp + dev->devno;
471 int alt_devno = devno;
472 int i;
473
b1c72916
TH
474 /* allow n.15/16 for devices attached to host port */
475 if (ata_is_host_link(dev->link))
476 alt_devno += 15;
33267325
TH
477
478 for (i = 0; i < ata_force_tbl_size; i++) {
479 const struct ata_force_ent *fe = &ata_force_tbl[i];
480
481 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
482 continue;
483
484 if (fe->device != -1 && fe->device != devno &&
485 fe->device != alt_devno)
486 continue;
487
488 if (!(~dev->horkage & fe->param.horkage_on) &&
489 !(dev->horkage & fe->param.horkage_off))
490 continue;
491
492 dev->horkage |= fe->param.horkage_on;
493 dev->horkage &= ~fe->param.horkage_off;
494
a9a79dfe
JP
495 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
496 fe->param.name);
33267325
TH
497 }
498}
499
436d34b3
TH
500/**
501 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
502 * @opcode: SCSI opcode
503 *
504 * Determine ATAPI command type from @opcode.
505 *
506 * LOCKING:
507 * None.
508 *
509 * RETURNS:
510 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
511 */
512int atapi_cmd_type(u8 opcode)
513{
514 switch (opcode) {
515 case GPCMD_READ_10:
516 case GPCMD_READ_12:
517 return ATAPI_READ;
518
519 case GPCMD_WRITE_10:
520 case GPCMD_WRITE_12:
521 case GPCMD_WRITE_AND_VERIFY_10:
522 return ATAPI_WRITE;
523
524 case GPCMD_READ_CD:
525 case GPCMD_READ_CD_MSF:
526 return ATAPI_READ_CD;
527
e52dcc48
TH
528 case ATA_16:
529 case ATA_12:
530 if (atapi_passthru16)
531 return ATAPI_PASS_THRU;
532 /* fall thru */
436d34b3
TH
533 default:
534 return ATAPI_MISC;
535 }
536}
537
1da177e4
LT
538/**
539 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
540 * @tf: Taskfile to convert
1da177e4 541 * @pmp: Port multiplier port
9977126c
TH
542 * @is_cmd: This FIS is for command
543 * @fis: Buffer into which data will output
1da177e4
LT
544 *
545 * Converts a standard ATA taskfile to a Serial ATA
546 * FIS structure (Register - Host to Device).
547 *
548 * LOCKING:
549 * Inherited from caller.
550 */
9977126c 551void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 552{
9977126c
TH
553 fis[0] = 0x27; /* Register - Host to Device FIS */
554 fis[1] = pmp & 0xf; /* Port multiplier number*/
555 if (is_cmd)
556 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
557
1da177e4
LT
558 fis[2] = tf->command;
559 fis[3] = tf->feature;
560
561 fis[4] = tf->lbal;
562 fis[5] = tf->lbam;
563 fis[6] = tf->lbah;
564 fis[7] = tf->device;
565
566 fis[8] = tf->hob_lbal;
567 fis[9] = tf->hob_lbam;
568 fis[10] = tf->hob_lbah;
569 fis[11] = tf->hob_feature;
570
571 fis[12] = tf->nsect;
572 fis[13] = tf->hob_nsect;
573 fis[14] = 0;
574 fis[15] = tf->ctl;
575
86a565e6
MC
576 fis[16] = tf->auxiliary & 0xff;
577 fis[17] = (tf->auxiliary >> 8) & 0xff;
578 fis[18] = (tf->auxiliary >> 16) & 0xff;
579 fis[19] = (tf->auxiliary >> 24) & 0xff;
1da177e4
LT
580}
581
582/**
583 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
584 * @fis: Buffer from which data will be input
585 * @tf: Taskfile to output
586 *
e12a1be6 587 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
588 *
589 * LOCKING:
590 * Inherited from caller.
591 */
592
057ace5e 593void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
594{
595 tf->command = fis[2]; /* status */
596 tf->feature = fis[3]; /* error */
597
598 tf->lbal = fis[4];
599 tf->lbam = fis[5];
600 tf->lbah = fis[6];
601 tf->device = fis[7];
602
603 tf->hob_lbal = fis[8];
604 tf->hob_lbam = fis[9];
605 tf->hob_lbah = fis[10];
606
607 tf->nsect = fis[12];
608 tf->hob_nsect = fis[13];
609}
610
8cbd6df1
AL
611static const u8 ata_rw_cmds[] = {
612 /* pio multi */
613 ATA_CMD_READ_MULTI,
614 ATA_CMD_WRITE_MULTI,
615 ATA_CMD_READ_MULTI_EXT,
616 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
617 0,
618 0,
619 0,
620 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
621 /* pio */
622 ATA_CMD_PIO_READ,
623 ATA_CMD_PIO_WRITE,
624 ATA_CMD_PIO_READ_EXT,
625 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
626 0,
627 0,
628 0,
629 0,
8cbd6df1
AL
630 /* dma */
631 ATA_CMD_READ,
632 ATA_CMD_WRITE,
633 ATA_CMD_READ_EXT,
9a3dccc4
TH
634 ATA_CMD_WRITE_EXT,
635 0,
636 0,
637 0,
638 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 639};
1da177e4
LT
640
641/**
8cbd6df1 642 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
643 * @tf: command to examine and configure
644 * @dev: device tf belongs to
1da177e4 645 *
2e9edbf8 646 * Examine the device configuration and tf->flags to calculate
8cbd6df1 647 * the proper read/write commands and protocol to use.
1da177e4
LT
648 *
649 * LOCKING:
650 * caller.
651 */
bd056d7e 652static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 653{
9a3dccc4 654 u8 cmd;
1da177e4 655
9a3dccc4 656 int index, fua, lba48, write;
2e9edbf8 657
9a3dccc4 658 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
659 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
660 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 661
8cbd6df1
AL
662 if (dev->flags & ATA_DFLAG_PIO) {
663 tf->protocol = ATA_PROT_PIO;
9a3dccc4 664 index = dev->multi_count ? 0 : 8;
9af5c9c9 665 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
666 /* Unable to use DMA due to host limitation */
667 tf->protocol = ATA_PROT_PIO;
0565c26d 668 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
669 } else {
670 tf->protocol = ATA_PROT_DMA;
9a3dccc4 671 index = 16;
8cbd6df1 672 }
1da177e4 673
9a3dccc4
TH
674 cmd = ata_rw_cmds[index + fua + lba48 + write];
675 if (cmd) {
676 tf->command = cmd;
677 return 0;
678 }
679 return -1;
1da177e4
LT
680}
681
35b649fe
TH
682/**
683 * ata_tf_read_block - Read block address from ATA taskfile
684 * @tf: ATA taskfile of interest
685 * @dev: ATA device @tf belongs to
686 *
687 * LOCKING:
688 * None.
689 *
690 * Read block address from @tf. This function can handle all
691 * three address formats - LBA, LBA48 and CHS. tf->protocol and
692 * flags select the address format to use.
693 *
694 * RETURNS:
695 * Block address read from @tf.
696 */
a1524f22 697u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
35b649fe
TH
698{
699 u64 block = 0;
700
a1524f22 701 if (!dev || tf->flags & ATA_TFLAG_LBA) {
35b649fe
TH
702 if (tf->flags & ATA_TFLAG_LBA48) {
703 block |= (u64)tf->hob_lbah << 40;
704 block |= (u64)tf->hob_lbam << 32;
44901a96 705 block |= (u64)tf->hob_lbal << 24;
35b649fe
TH
706 } else
707 block |= (tf->device & 0xf) << 24;
708
709 block |= tf->lbah << 16;
710 block |= tf->lbam << 8;
711 block |= tf->lbal;
712 } else {
713 u32 cyl, head, sect;
714
715 cyl = tf->lbam | (tf->lbah << 8);
716 head = tf->device & 0xf;
717 sect = tf->lbal;
718
ac8672ea 719 if (!sect) {
a9a79dfe
JP
720 ata_dev_warn(dev,
721 "device reported invalid CHS sector 0\n");
ac8672ea
TH
722 sect = 1; /* oh well */
723 }
724
725 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
35b649fe
TH
726 }
727
728 return block;
729}
730
bd056d7e
TH
731/**
732 * ata_build_rw_tf - Build ATA taskfile for given read/write request
733 * @tf: Target ATA taskfile
734 * @dev: ATA device @tf belongs to
735 * @block: Block address
736 * @n_block: Number of blocks
737 * @tf_flags: RW/FUA etc...
738 * @tag: tag
739 *
740 * LOCKING:
741 * None.
742 *
743 * Build ATA taskfile @tf for read/write request described by
744 * @block, @n_block, @tf_flags and @tag on @dev.
745 *
746 * RETURNS:
747 *
748 * 0 on success, -ERANGE if the request is too large for @dev,
749 * -EINVAL if the request is invalid.
750 */
751int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
752 u64 block, u32 n_block, unsigned int tf_flags,
753 unsigned int tag)
754{
755 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
756 tf->flags |= tf_flags;
757
6d1245bf 758 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
759 /* yay, NCQ */
760 if (!lba_48_ok(block, n_block))
761 return -ERANGE;
762
763 tf->protocol = ATA_PROT_NCQ;
764 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
765
766 if (tf->flags & ATA_TFLAG_WRITE)
767 tf->command = ATA_CMD_FPDMA_WRITE;
768 else
769 tf->command = ATA_CMD_FPDMA_READ;
770
771 tf->nsect = tag << 3;
772 tf->hob_feature = (n_block >> 8) & 0xff;
773 tf->feature = n_block & 0xff;
774
775 tf->hob_lbah = (block >> 40) & 0xff;
776 tf->hob_lbam = (block >> 32) & 0xff;
777 tf->hob_lbal = (block >> 24) & 0xff;
778 tf->lbah = (block >> 16) & 0xff;
779 tf->lbam = (block >> 8) & 0xff;
780 tf->lbal = block & 0xff;
781
9ca7cfa4 782 tf->device = ATA_LBA;
bd056d7e
TH
783 if (tf->flags & ATA_TFLAG_FUA)
784 tf->device |= 1 << 7;
785 } else if (dev->flags & ATA_DFLAG_LBA) {
786 tf->flags |= ATA_TFLAG_LBA;
787
788 if (lba_28_ok(block, n_block)) {
789 /* use LBA28 */
790 tf->device |= (block >> 24) & 0xf;
791 } else if (lba_48_ok(block, n_block)) {
792 if (!(dev->flags & ATA_DFLAG_LBA48))
793 return -ERANGE;
794
795 /* use LBA48 */
796 tf->flags |= ATA_TFLAG_LBA48;
797
798 tf->hob_nsect = (n_block >> 8) & 0xff;
799
800 tf->hob_lbah = (block >> 40) & 0xff;
801 tf->hob_lbam = (block >> 32) & 0xff;
802 tf->hob_lbal = (block >> 24) & 0xff;
803 } else
804 /* request too large even for LBA48 */
805 return -ERANGE;
806
807 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
808 return -EINVAL;
809
810 tf->nsect = n_block & 0xff;
811
812 tf->lbah = (block >> 16) & 0xff;
813 tf->lbam = (block >> 8) & 0xff;
814 tf->lbal = block & 0xff;
815
816 tf->device |= ATA_LBA;
817 } else {
818 /* CHS */
819 u32 sect, head, cyl, track;
820
821 /* The request -may- be too large for CHS addressing. */
822 if (!lba_28_ok(block, n_block))
823 return -ERANGE;
824
825 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
826 return -EINVAL;
827
828 /* Convert LBA to CHS */
829 track = (u32)block / dev->sectors;
830 cyl = track / dev->heads;
831 head = track % dev->heads;
832 sect = (u32)block % dev->sectors + 1;
833
834 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
835 (u32)block, track, cyl, head, sect);
836
837 /* Check whether the converted CHS can fit.
838 Cylinder: 0-65535
839 Head: 0-15
840 Sector: 1-255*/
841 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
842 return -ERANGE;
843
844 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
845 tf->lbal = sect;
846 tf->lbam = cyl;
847 tf->lbah = cyl >> 8;
848 tf->device |= head;
849 }
850
851 return 0;
852}
853
cb95d562
TH
854/**
855 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
856 * @pio_mask: pio_mask
857 * @mwdma_mask: mwdma_mask
858 * @udma_mask: udma_mask
859 *
860 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
861 * unsigned int xfer_mask.
862 *
863 * LOCKING:
864 * None.
865 *
866 * RETURNS:
867 * Packed xfer_mask.
868 */
7dc951ae
TH
869unsigned long ata_pack_xfermask(unsigned long pio_mask,
870 unsigned long mwdma_mask,
871 unsigned long udma_mask)
cb95d562
TH
872{
873 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
874 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
875 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
876}
877
c0489e4e
TH
878/**
879 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
880 * @xfer_mask: xfer_mask to unpack
881 * @pio_mask: resulting pio_mask
882 * @mwdma_mask: resulting mwdma_mask
883 * @udma_mask: resulting udma_mask
884 *
885 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
886 * Any NULL distination masks will be ignored.
887 */
7dc951ae
TH
888void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
889 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
890{
891 if (pio_mask)
892 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
893 if (mwdma_mask)
894 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
895 if (udma_mask)
896 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
897}
898
cb95d562 899static const struct ata_xfer_ent {
be9a50c8 900 int shift, bits;
cb95d562
TH
901 u8 base;
902} ata_xfer_tbl[] = {
70cd071e
TH
903 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
904 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
905 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
906 { -1, },
907};
908
909/**
910 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
911 * @xfer_mask: xfer_mask of interest
912 *
913 * Return matching XFER_* value for @xfer_mask. Only the highest
914 * bit of @xfer_mask is considered.
915 *
916 * LOCKING:
917 * None.
918 *
919 * RETURNS:
70cd071e 920 * Matching XFER_* value, 0xff if no match found.
cb95d562 921 */
7dc951ae 922u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
923{
924 int highbit = fls(xfer_mask) - 1;
925 const struct ata_xfer_ent *ent;
926
927 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
928 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
929 return ent->base + highbit - ent->shift;
70cd071e 930 return 0xff;
cb95d562
TH
931}
932
933/**
934 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
935 * @xfer_mode: XFER_* of interest
936 *
937 * Return matching xfer_mask for @xfer_mode.
938 *
939 * LOCKING:
940 * None.
941 *
942 * RETURNS:
943 * Matching xfer_mask, 0 if no match found.
944 */
7dc951ae 945unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
946{
947 const struct ata_xfer_ent *ent;
948
949 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
950 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
951 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
952 & ~((1 << ent->shift) - 1);
cb95d562
TH
953 return 0;
954}
955
956/**
957 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
958 * @xfer_mode: XFER_* of interest
959 *
960 * Return matching xfer_shift for @xfer_mode.
961 *
962 * LOCKING:
963 * None.
964 *
965 * RETURNS:
966 * Matching xfer_shift, -1 if no match found.
967 */
7dc951ae 968int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
969{
970 const struct ata_xfer_ent *ent;
971
972 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
973 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
974 return ent->shift;
975 return -1;
976}
977
1da177e4 978/**
1da7b0d0
TH
979 * ata_mode_string - convert xfer_mask to string
980 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
981 *
982 * Determine string which represents the highest speed
1da7b0d0 983 * (highest bit in @modemask).
1da177e4
LT
984 *
985 * LOCKING:
986 * None.
987 *
988 * RETURNS:
989 * Constant C string representing highest speed listed in
1da7b0d0 990 * @mode_mask, or the constant C string "<n/a>".
1da177e4 991 */
7dc951ae 992const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 993{
75f554bc
TH
994 static const char * const xfer_mode_str[] = {
995 "PIO0",
996 "PIO1",
997 "PIO2",
998 "PIO3",
999 "PIO4",
b352e57d
AC
1000 "PIO5",
1001 "PIO6",
75f554bc
TH
1002 "MWDMA0",
1003 "MWDMA1",
1004 "MWDMA2",
b352e57d
AC
1005 "MWDMA3",
1006 "MWDMA4",
75f554bc
TH
1007 "UDMA/16",
1008 "UDMA/25",
1009 "UDMA/33",
1010 "UDMA/44",
1011 "UDMA/66",
1012 "UDMA/100",
1013 "UDMA/133",
1014 "UDMA7",
1015 };
1da7b0d0 1016 int highbit;
1da177e4 1017
1da7b0d0
TH
1018 highbit = fls(xfer_mask) - 1;
1019 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1020 return xfer_mode_str[highbit];
1da177e4 1021 return "<n/a>";
1da177e4
LT
1022}
1023
d9027470 1024const char *sata_spd_string(unsigned int spd)
4c360c81
TH
1025{
1026 static const char * const spd_str[] = {
1027 "1.5 Gbps",
1028 "3.0 Gbps",
8522ee25 1029 "6.0 Gbps",
4c360c81
TH
1030 };
1031
1032 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1033 return "<unknown>";
1034 return spd_str[spd - 1];
1035}
1036
1da177e4
LT
1037/**
1038 * ata_dev_classify - determine device type based on ATA-spec signature
1039 * @tf: ATA taskfile register set for device to be identified
1040 *
1041 * Determine from taskfile register contents whether a device is
1042 * ATA or ATAPI, as per "Signature and persistence" section
1043 * of ATA/PI spec (volume 1, sect 5.14).
1044 *
1045 * LOCKING:
1046 * None.
1047 *
1048 * RETURNS:
9162c657
HR
1049 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1050 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1051 */
057ace5e 1052unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1053{
1054 /* Apple's open source Darwin code hints that some devices only
1055 * put a proper signature into the LBA mid/high registers,
1056 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1057 *
1058 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1059 * signatures for ATA and ATAPI devices attached on SerialATA,
1060 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1061 * spec has never mentioned about using different signatures
1062 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1063 * Multiplier specification began to use 0x69/0x96 to identify
1064 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1065 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1066 * 0x69/0x96 shortly and described them as reserved for
1067 * SerialATA.
1068 *
1069 * We follow the current spec and consider that 0x69/0x96
1070 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
79b42bab
TH
1071 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1072 * SEMB signature. This is worked around in
1073 * ata_dev_read_id().
1da177e4 1074 */
633273a3 1075 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1076 DPRINTK("found ATA device by sig\n");
1077 return ATA_DEV_ATA;
1078 }
1079
633273a3 1080 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1081 DPRINTK("found ATAPI device by sig\n");
1082 return ATA_DEV_ATAPI;
1083 }
1084
633273a3
TH
1085 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1086 DPRINTK("found PMP device by sig\n");
1087 return ATA_DEV_PMP;
1088 }
1089
1090 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
79b42bab
TH
1091 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1092 return ATA_DEV_SEMB;
633273a3
TH
1093 }
1094
9162c657
HR
1095 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1096 DPRINTK("found ZAC device by sig\n");
1097 return ATA_DEV_ZAC;
1098 }
1099
1da177e4
LT
1100 DPRINTK("unknown device\n");
1101 return ATA_DEV_UNKNOWN;
1102}
1103
1da177e4 1104/**
6a62a04d 1105 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1106 * @id: IDENTIFY DEVICE results we will examine
1107 * @s: string into which data is output
1108 * @ofs: offset into identify device page
1109 * @len: length of string to return. must be an even number.
1110 *
1111 * The strings in the IDENTIFY DEVICE page are broken up into
1112 * 16-bit chunks. Run through the string, and output each
1113 * 8-bit chunk linearly, regardless of platform.
1114 *
1115 * LOCKING:
1116 * caller.
1117 */
1118
6a62a04d
TH
1119void ata_id_string(const u16 *id, unsigned char *s,
1120 unsigned int ofs, unsigned int len)
1da177e4
LT
1121{
1122 unsigned int c;
1123
963e4975
AC
1124 BUG_ON(len & 1);
1125
1da177e4
LT
1126 while (len > 0) {
1127 c = id[ofs] >> 8;
1128 *s = c;
1129 s++;
1130
1131 c = id[ofs] & 0xff;
1132 *s = c;
1133 s++;
1134
1135 ofs++;
1136 len -= 2;
1137 }
1138}
1139
0e949ff3 1140/**
6a62a04d 1141 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1142 * @id: IDENTIFY DEVICE results we will examine
1143 * @s: string into which data is output
1144 * @ofs: offset into identify device page
1145 * @len: length of string to return. must be an odd number.
1146 *
6a62a04d 1147 * This function is identical to ata_id_string except that it
0e949ff3
TH
1148 * trims trailing spaces and terminates the resulting string with
1149 * null. @len must be actual maximum length (even number) + 1.
1150 *
1151 * LOCKING:
1152 * caller.
1153 */
6a62a04d
TH
1154void ata_id_c_string(const u16 *id, unsigned char *s,
1155 unsigned int ofs, unsigned int len)
0e949ff3
TH
1156{
1157 unsigned char *p;
1158
6a62a04d 1159 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1160
1161 p = s + strnlen(s, len - 1);
1162 while (p > s && p[-1] == ' ')
1163 p--;
1164 *p = '\0';
1165}
0baab86b 1166
db6f8759
TH
1167static u64 ata_id_n_sectors(const u16 *id)
1168{
1169 if (ata_id_has_lba(id)) {
1170 if (ata_id_has_lba48(id))
968e594a 1171 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
db6f8759 1172 else
968e594a 1173 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
db6f8759
TH
1174 } else {
1175 if (ata_id_current_chs_valid(id))
968e594a
RH
1176 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1177 id[ATA_ID_CUR_SECTORS];
db6f8759 1178 else
968e594a
RH
1179 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1180 id[ATA_ID_SECTORS];
db6f8759
TH
1181 }
1182}
1183
a5987e0a 1184u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1185{
1186 u64 sectors = 0;
1187
1188 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1189 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
ba14a9c2 1190 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1e999736
AC
1191 sectors |= (tf->lbah & 0xff) << 16;
1192 sectors |= (tf->lbam & 0xff) << 8;
1193 sectors |= (tf->lbal & 0xff);
1194
a5987e0a 1195 return sectors;
1e999736
AC
1196}
1197
a5987e0a 1198u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1199{
1200 u64 sectors = 0;
1201
1202 sectors |= (tf->device & 0x0f) << 24;
1203 sectors |= (tf->lbah & 0xff) << 16;
1204 sectors |= (tf->lbam & 0xff) << 8;
1205 sectors |= (tf->lbal & 0xff);
1206
a5987e0a 1207 return sectors;
1e999736
AC
1208}
1209
1210/**
c728a914
TH
1211 * ata_read_native_max_address - Read native max address
1212 * @dev: target device
1213 * @max_sectors: out parameter for the result native max address
1e999736 1214 *
c728a914
TH
1215 * Perform an LBA48 or LBA28 native size query upon the device in
1216 * question.
1e999736 1217 *
c728a914
TH
1218 * RETURNS:
1219 * 0 on success, -EACCES if command is aborted by the drive.
1220 * -EIO on other errors.
1e999736 1221 */
c728a914 1222static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1223{
c728a914 1224 unsigned int err_mask;
1e999736 1225 struct ata_taskfile tf;
c728a914 1226 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1227
1228 ata_tf_init(dev, &tf);
1229
c728a914 1230 /* always clear all address registers */
1e999736 1231 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1232
c728a914
TH
1233 if (lba48) {
1234 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1235 tf.flags |= ATA_TFLAG_LBA48;
1236 } else
1237 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1238
1e999736 1239 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1240 tf.device |= ATA_LBA;
1241
2b789108 1242 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1243 if (err_mask) {
a9a79dfe
JP
1244 ata_dev_warn(dev,
1245 "failed to read native max address (err_mask=0x%x)\n",
1246 err_mask);
c728a914
TH
1247 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1248 return -EACCES;
1249 return -EIO;
1250 }
1e999736 1251
c728a914 1252 if (lba48)
a5987e0a 1253 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1254 else
a5987e0a 1255 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1256 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1257 (*max_sectors)--;
c728a914 1258 return 0;
1e999736
AC
1259}
1260
1261/**
c728a914
TH
1262 * ata_set_max_sectors - Set max sectors
1263 * @dev: target device
6b38d1d1 1264 * @new_sectors: new max sectors value to set for the device
1e999736 1265 *
c728a914
TH
1266 * Set max sectors of @dev to @new_sectors.
1267 *
1268 * RETURNS:
1269 * 0 on success, -EACCES if command is aborted or denied (due to
1270 * previous non-volatile SET_MAX) by the drive. -EIO on other
1271 * errors.
1e999736 1272 */
05027adc 1273static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1274{
c728a914 1275 unsigned int err_mask;
1e999736 1276 struct ata_taskfile tf;
c728a914 1277 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1278
1279 new_sectors--;
1280
1281 ata_tf_init(dev, &tf);
1282
1e999736 1283 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1284
1285 if (lba48) {
1286 tf.command = ATA_CMD_SET_MAX_EXT;
1287 tf.flags |= ATA_TFLAG_LBA48;
1288
1289 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1290 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1291 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1292 } else {
c728a914
TH
1293 tf.command = ATA_CMD_SET_MAX;
1294
1e582ba4
TH
1295 tf.device |= (new_sectors >> 24) & 0xf;
1296 }
1297
1e999736 1298 tf.protocol |= ATA_PROT_NODATA;
c728a914 1299 tf.device |= ATA_LBA;
1e999736
AC
1300
1301 tf.lbal = (new_sectors >> 0) & 0xff;
1302 tf.lbam = (new_sectors >> 8) & 0xff;
1303 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1304
2b789108 1305 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1306 if (err_mask) {
a9a79dfe
JP
1307 ata_dev_warn(dev,
1308 "failed to set max address (err_mask=0x%x)\n",
1309 err_mask);
c728a914
TH
1310 if (err_mask == AC_ERR_DEV &&
1311 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1312 return -EACCES;
1313 return -EIO;
1314 }
1315
c728a914 1316 return 0;
1e999736
AC
1317}
1318
1319/**
1320 * ata_hpa_resize - Resize a device with an HPA set
1321 * @dev: Device to resize
1322 *
1323 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1324 * it if required to the full size of the media. The caller must check
1325 * the drive has the HPA feature set enabled.
05027adc
TH
1326 *
1327 * RETURNS:
1328 * 0 on success, -errno on failure.
1e999736 1329 */
05027adc 1330static int ata_hpa_resize(struct ata_device *dev)
1e999736 1331{
05027adc
TH
1332 struct ata_eh_context *ehc = &dev->link->eh_context;
1333 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
445d211b 1334 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
05027adc
TH
1335 u64 sectors = ata_id_n_sectors(dev->id);
1336 u64 native_sectors;
c728a914 1337 int rc;
a617c09f 1338
05027adc 1339 /* do we need to do it? */
9162c657 1340 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
05027adc
TH
1341 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1342 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1343 return 0;
1e999736 1344
05027adc
TH
1345 /* read native max address */
1346 rc = ata_read_native_max_address(dev, &native_sectors);
1347 if (rc) {
dda7aba1
TH
1348 /* If device aborted the command or HPA isn't going to
1349 * be unlocked, skip HPA resizing.
05027adc 1350 */
445d211b 1351 if (rc == -EACCES || !unlock_hpa) {
a9a79dfe
JP
1352 ata_dev_warn(dev,
1353 "HPA support seems broken, skipping HPA handling\n");
05027adc
TH
1354 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1355
1356 /* we can continue if device aborted the command */
1357 if (rc == -EACCES)
1358 rc = 0;
1e999736 1359 }
37301a55 1360
05027adc
TH
1361 return rc;
1362 }
5920dadf 1363 dev->n_native_sectors = native_sectors;
05027adc
TH
1364
1365 /* nothing to do? */
445d211b 1366 if (native_sectors <= sectors || !unlock_hpa) {
05027adc
TH
1367 if (!print_info || native_sectors == sectors)
1368 return 0;
1369
1370 if (native_sectors > sectors)
a9a79dfe 1371 ata_dev_info(dev,
05027adc
TH
1372 "HPA detected: current %llu, native %llu\n",
1373 (unsigned long long)sectors,
1374 (unsigned long long)native_sectors);
1375 else if (native_sectors < sectors)
a9a79dfe
JP
1376 ata_dev_warn(dev,
1377 "native sectors (%llu) is smaller than sectors (%llu)\n",
05027adc
TH
1378 (unsigned long long)native_sectors,
1379 (unsigned long long)sectors);
1380 return 0;
1381 }
1382
1383 /* let's unlock HPA */
1384 rc = ata_set_max_sectors(dev, native_sectors);
1385 if (rc == -EACCES) {
1386 /* if device aborted the command, skip HPA resizing */
a9a79dfe
JP
1387 ata_dev_warn(dev,
1388 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1389 (unsigned long long)sectors,
1390 (unsigned long long)native_sectors);
05027adc
TH
1391 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1392 return 0;
1393 } else if (rc)
1394 return rc;
1395
1396 /* re-read IDENTIFY data */
1397 rc = ata_dev_reread_id(dev, 0);
1398 if (rc) {
a9a79dfe
JP
1399 ata_dev_err(dev,
1400 "failed to re-read IDENTIFY data after HPA resizing\n");
05027adc
TH
1401 return rc;
1402 }
1403
1404 if (print_info) {
1405 u64 new_sectors = ata_id_n_sectors(dev->id);
a9a79dfe 1406 ata_dev_info(dev,
05027adc
TH
1407 "HPA unlocked: %llu -> %llu, native %llu\n",
1408 (unsigned long long)sectors,
1409 (unsigned long long)new_sectors,
1410 (unsigned long long)native_sectors);
1411 }
1412
1413 return 0;
1e999736
AC
1414}
1415
1da177e4
LT
1416/**
1417 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1418 * @id: IDENTIFY DEVICE page to dump
1da177e4 1419 *
0bd3300a
TH
1420 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1421 * page.
1da177e4
LT
1422 *
1423 * LOCKING:
1424 * caller.
1425 */
1426
0bd3300a 1427static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1428{
1429 DPRINTK("49==0x%04x "
1430 "53==0x%04x "
1431 "63==0x%04x "
1432 "64==0x%04x "
1433 "75==0x%04x \n",
0bd3300a
TH
1434 id[49],
1435 id[53],
1436 id[63],
1437 id[64],
1438 id[75]);
1da177e4
LT
1439 DPRINTK("80==0x%04x "
1440 "81==0x%04x "
1441 "82==0x%04x "
1442 "83==0x%04x "
1443 "84==0x%04x \n",
0bd3300a
TH
1444 id[80],
1445 id[81],
1446 id[82],
1447 id[83],
1448 id[84]);
1da177e4
LT
1449 DPRINTK("88==0x%04x "
1450 "93==0x%04x\n",
0bd3300a
TH
1451 id[88],
1452 id[93]);
1da177e4
LT
1453}
1454
cb95d562
TH
1455/**
1456 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1457 * @id: IDENTIFY data to compute xfer mask from
1458 *
1459 * Compute the xfermask for this device. This is not as trivial
1460 * as it seems if we must consider early devices correctly.
1461 *
1462 * FIXME: pre IDE drive timing (do we care ?).
1463 *
1464 * LOCKING:
1465 * None.
1466 *
1467 * RETURNS:
1468 * Computed xfermask
1469 */
7dc951ae 1470unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1471{
7dc951ae 1472 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1473
1474 /* Usual case. Word 53 indicates word 64 is valid */
1475 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1476 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1477 pio_mask <<= 3;
1478 pio_mask |= 0x7;
1479 } else {
1480 /* If word 64 isn't valid then Word 51 high byte holds
1481 * the PIO timing number for the maximum. Turn it into
1482 * a mask.
1483 */
7a0f1c8a 1484 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1485 if (mode < 5) /* Valid PIO range */
2dcb407e 1486 pio_mask = (2 << mode) - 1;
46767aeb
AC
1487 else
1488 pio_mask = 1;
cb95d562
TH
1489
1490 /* But wait.. there's more. Design your standards by
1491 * committee and you too can get a free iordy field to
1492 * process. However its the speeds not the modes that
1493 * are supported... Note drivers using the timing API
1494 * will get this right anyway
1495 */
1496 }
1497
1498 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1499
b352e57d
AC
1500 if (ata_id_is_cfa(id)) {
1501 /*
1502 * Process compact flash extended modes
1503 */
62afe5d7
SS
1504 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1505 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
b352e57d
AC
1506
1507 if (pio)
1508 pio_mask |= (1 << 5);
1509 if (pio > 1)
1510 pio_mask |= (1 << 6);
1511 if (dma)
1512 mwdma_mask |= (1 << 3);
1513 if (dma > 1)
1514 mwdma_mask |= (1 << 4);
1515 }
1516
fb21f0d0
TH
1517 udma_mask = 0;
1518 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1519 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1520
1521 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1522}
1523
7102d230 1524static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1525{
77853bf2 1526 struct completion *waiting = qc->private_data;
a2a7a662 1527
a2a7a662 1528 complete(waiting);
a2a7a662
TH
1529}
1530
1531/**
2432697b 1532 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1533 * @dev: Device to which the command is sent
1534 * @tf: Taskfile registers for the command and the result
d69cf37d 1535 * @cdb: CDB for packet command
e227867f 1536 * @dma_dir: Data transfer direction of the command
5c1ad8b3 1537 * @sgl: sg list for the data buffer of the command
2432697b 1538 * @n_elem: Number of sg entries
2b789108 1539 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1540 *
1541 * Executes libata internal command with timeout. @tf contains
1542 * command on entry and result on return. Timeout and error
1543 * conditions are reported via return value. No recovery action
1544 * is taken after a command times out. It's caller's duty to
1545 * clean up after timeout.
1546 *
1547 * LOCKING:
1548 * None. Should be called with kernel context, might sleep.
551e8889
TH
1549 *
1550 * RETURNS:
1551 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1552 */
2432697b
TH
1553unsigned ata_exec_internal_sg(struct ata_device *dev,
1554 struct ata_taskfile *tf, const u8 *cdb,
87260216 1555 int dma_dir, struct scatterlist *sgl,
2b789108 1556 unsigned int n_elem, unsigned long timeout)
a2a7a662 1557{
9af5c9c9
TH
1558 struct ata_link *link = dev->link;
1559 struct ata_port *ap = link->ap;
a2a7a662 1560 u8 command = tf->command;
87fbc5a0 1561 int auto_timeout = 0;
a2a7a662 1562 struct ata_queued_cmd *qc;
2ab7db1f 1563 unsigned int tag, preempted_tag;
dedaf2b0 1564 u32 preempted_sactive, preempted_qc_active;
da917d69 1565 int preempted_nr_active_links;
60be6b9a 1566 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1567 unsigned long flags;
77853bf2 1568 unsigned int err_mask;
d95a717f 1569 int rc;
a2a7a662 1570
ba6a1308 1571 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1572
e3180499 1573 /* no internal command while frozen */
b51e9e5d 1574 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1575 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1576 return AC_ERR_SYSTEM;
1577 }
1578
2ab7db1f 1579 /* initialize internal qc */
a2a7a662 1580
2ab7db1f
TH
1581 /* XXX: Tag 0 is used for drivers with legacy EH as some
1582 * drivers choke if any other tag is given. This breaks
1583 * ata_tag_internal() test for those drivers. Don't use new
1584 * EH stuff without converting to it.
1585 */
1586 if (ap->ops->error_handler)
1587 tag = ATA_TAG_INTERNAL;
1588 else
1589 tag = 0;
1590
f69499f4 1591 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1592
1593 qc->tag = tag;
1594 qc->scsicmd = NULL;
1595 qc->ap = ap;
1596 qc->dev = dev;
1597 ata_qc_reinit(qc);
1598
9af5c9c9
TH
1599 preempted_tag = link->active_tag;
1600 preempted_sactive = link->sactive;
dedaf2b0 1601 preempted_qc_active = ap->qc_active;
da917d69 1602 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1603 link->active_tag = ATA_TAG_POISON;
1604 link->sactive = 0;
dedaf2b0 1605 ap->qc_active = 0;
da917d69 1606 ap->nr_active_links = 0;
2ab7db1f
TH
1607
1608 /* prepare & issue qc */
a2a7a662 1609 qc->tf = *tf;
d69cf37d
TH
1610 if (cdb)
1611 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e771451c
VP
1612
1613 /* some SATA bridges need us to indicate data xfer direction */
1614 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1615 dma_dir == DMA_FROM_DEVICE)
1616 qc->tf.feature |= ATAPI_DMADIR;
1617
e61e0672 1618 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1619 qc->dma_dir = dma_dir;
1620 if (dma_dir != DMA_NONE) {
2432697b 1621 unsigned int i, buflen = 0;
87260216 1622 struct scatterlist *sg;
2432697b 1623
87260216
JA
1624 for_each_sg(sgl, sg, n_elem, i)
1625 buflen += sg->length;
2432697b 1626
87260216 1627 ata_sg_init(qc, sgl, n_elem);
49c80429 1628 qc->nbytes = buflen;
a2a7a662
TH
1629 }
1630
77853bf2 1631 qc->private_data = &wait;
a2a7a662
TH
1632 qc->complete_fn = ata_qc_complete_internal;
1633
8e0e694a 1634 ata_qc_issue(qc);
a2a7a662 1635
ba6a1308 1636 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1637
87fbc5a0
TH
1638 if (!timeout) {
1639 if (ata_probe_timeout)
1640 timeout = ata_probe_timeout * 1000;
1641 else {
1642 timeout = ata_internal_cmd_timeout(dev, command);
1643 auto_timeout = 1;
1644 }
1645 }
2b789108 1646
c0c362b6
TH
1647 if (ap->ops->error_handler)
1648 ata_eh_release(ap);
1649
2b789108 1650 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f 1651
c0c362b6
TH
1652 if (ap->ops->error_handler)
1653 ata_eh_acquire(ap);
1654
c429137a 1655 ata_sff_flush_pio_task(ap);
41ade50c 1656
d95a717f 1657 if (!rc) {
ba6a1308 1658 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1659
1660 /* We're racing with irq here. If we lose, the
1661 * following test prevents us from completing the qc
d95a717f
TH
1662 * twice. If we win, the port is frozen and will be
1663 * cleaned up by ->post_internal_cmd().
a2a7a662 1664 */
77853bf2 1665 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1666 qc->err_mask |= AC_ERR_TIMEOUT;
1667
1668 if (ap->ops->error_handler)
1669 ata_port_freeze(ap);
1670 else
1671 ata_qc_complete(qc);
f15a1daf 1672
0dd4b21f 1673 if (ata_msg_warn(ap))
a9a79dfe
JP
1674 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1675 command);
a2a7a662
TH
1676 }
1677
ba6a1308 1678 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1679 }
1680
d95a717f
TH
1681 /* do post_internal_cmd */
1682 if (ap->ops->post_internal_cmd)
1683 ap->ops->post_internal_cmd(qc);
1684
a51d644a
TH
1685 /* perform minimal error analysis */
1686 if (qc->flags & ATA_QCFLAG_FAILED) {
1687 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1688 qc->err_mask |= AC_ERR_DEV;
1689
1690 if (!qc->err_mask)
1691 qc->err_mask |= AC_ERR_OTHER;
1692
1693 if (qc->err_mask & ~AC_ERR_OTHER)
1694 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1695 }
1696
15869303 1697 /* finish up */
ba6a1308 1698 spin_lock_irqsave(ap->lock, flags);
15869303 1699
e61e0672 1700 *tf = qc->result_tf;
77853bf2
TH
1701 err_mask = qc->err_mask;
1702
1703 ata_qc_free(qc);
9af5c9c9
TH
1704 link->active_tag = preempted_tag;
1705 link->sactive = preempted_sactive;
dedaf2b0 1706 ap->qc_active = preempted_qc_active;
da917d69 1707 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1708
ba6a1308 1709 spin_unlock_irqrestore(ap->lock, flags);
15869303 1710
87fbc5a0
TH
1711 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1712 ata_internal_cmd_timed_out(dev, command);
1713
77853bf2 1714 return err_mask;
a2a7a662
TH
1715}
1716
2432697b 1717/**
33480a0e 1718 * ata_exec_internal - execute libata internal command
2432697b
TH
1719 * @dev: Device to which the command is sent
1720 * @tf: Taskfile registers for the command and the result
1721 * @cdb: CDB for packet command
e227867f 1722 * @dma_dir: Data transfer direction of the command
2432697b
TH
1723 * @buf: Data buffer of the command
1724 * @buflen: Length of data buffer
2b789108 1725 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1726 *
1727 * Wrapper around ata_exec_internal_sg() which takes simple
1728 * buffer instead of sg list.
1729 *
1730 * LOCKING:
1731 * None. Should be called with kernel context, might sleep.
1732 *
1733 * RETURNS:
1734 * Zero on success, AC_ERR_* mask on failure
1735 */
1736unsigned ata_exec_internal(struct ata_device *dev,
1737 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1738 int dma_dir, void *buf, unsigned int buflen,
1739 unsigned long timeout)
2432697b 1740{
33480a0e
TH
1741 struct scatterlist *psg = NULL, sg;
1742 unsigned int n_elem = 0;
2432697b 1743
33480a0e
TH
1744 if (dma_dir != DMA_NONE) {
1745 WARN_ON(!buf);
1746 sg_init_one(&sg, buf, buflen);
1747 psg = &sg;
1748 n_elem++;
1749 }
2432697b 1750
2b789108
TH
1751 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1752 timeout);
2432697b
TH
1753}
1754
1bc4ccff
AC
1755/**
1756 * ata_pio_need_iordy - check if iordy needed
1757 * @adev: ATA device
1758 *
1759 * Check if the current speed of the device requires IORDY. Used
1760 * by various controllers for chip configuration.
1761 */
1bc4ccff
AC
1762unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1763{
0d9e6659
TH
1764 /* Don't set IORDY if we're preparing for reset. IORDY may
1765 * lead to controller lock up on certain controllers if the
1766 * port is not occupied. See bko#11703 for details.
1767 */
1768 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1769 return 0;
1770 /* Controller doesn't support IORDY. Probably a pointless
1771 * check as the caller should know this.
1772 */
9af5c9c9 1773 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1774 return 0;
5c18c4d2
DD
1775 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1776 if (ata_id_is_cfa(adev->id)
1777 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1778 return 0;
432729f0
AC
1779 /* PIO3 and higher it is mandatory */
1780 if (adev->pio_mode > XFER_PIO_2)
1781 return 1;
1782 /* We turn it on when possible */
1783 if (ata_id_has_iordy(adev->id))
1bc4ccff 1784 return 1;
432729f0
AC
1785 return 0;
1786}
2e9edbf8 1787
432729f0
AC
1788/**
1789 * ata_pio_mask_no_iordy - Return the non IORDY mask
1790 * @adev: ATA device
1791 *
1792 * Compute the highest mode possible if we are not using iordy. Return
1793 * -1 if no iordy mode is available.
1794 */
432729f0
AC
1795static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1796{
1bc4ccff 1797 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1798 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1799 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1800 /* Is the speed faster than the drive allows non IORDY ? */
1801 if (pio) {
1802 /* This is cycle times not frequency - watch the logic! */
1803 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1804 return 3 << ATA_SHIFT_PIO;
1805 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1806 }
1807 }
432729f0 1808 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1809}
1810
963e4975
AC
1811/**
1812 * ata_do_dev_read_id - default ID read method
1813 * @dev: device
1814 * @tf: proposed taskfile
1815 * @id: data buffer
1816 *
1817 * Issue the identify taskfile and hand back the buffer containing
1818 * identify data. For some RAID controllers and for pre ATA devices
1819 * this function is wrapped or replaced by the driver
1820 */
1821unsigned int ata_do_dev_read_id(struct ata_device *dev,
1822 struct ata_taskfile *tf, u16 *id)
1823{
1824 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1825 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1826}
1827
1da177e4 1828/**
49016aca 1829 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1830 * @dev: target device
1831 * @p_class: pointer to class of the target device (may be changed)
bff04647 1832 * @flags: ATA_READID_* flags
fe635c7e 1833 * @id: buffer to read IDENTIFY data into
1da177e4 1834 *
49016aca
TH
1835 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1836 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1837 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1838 * for pre-ATA4 drives.
1da177e4 1839 *
50a99018 1840 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1841 * now we abort if we hit that case.
50a99018 1842 *
1da177e4 1843 * LOCKING:
49016aca
TH
1844 * Kernel thread context (may sleep)
1845 *
1846 * RETURNS:
1847 * 0 on success, -errno otherwise.
1da177e4 1848 */
a9beec95 1849int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1850 unsigned int flags, u16 *id)
1da177e4 1851{
9af5c9c9 1852 struct ata_port *ap = dev->link->ap;
49016aca 1853 unsigned int class = *p_class;
a0123703 1854 struct ata_taskfile tf;
49016aca
TH
1855 unsigned int err_mask = 0;
1856 const char *reason;
79b42bab 1857 bool is_semb = class == ATA_DEV_SEMB;
54936f8b 1858 int may_fallback = 1, tried_spinup = 0;
49016aca 1859 int rc;
1da177e4 1860
0dd4b21f 1861 if (ata_msg_ctl(ap))
a9a79dfe 1862 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 1863
963e4975 1864retry:
3373efd8 1865 ata_tf_init(dev, &tf);
a0123703 1866
49016aca 1867 switch (class) {
79b42bab
TH
1868 case ATA_DEV_SEMB:
1869 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
49016aca 1870 case ATA_DEV_ATA:
9162c657 1871 case ATA_DEV_ZAC:
a0123703 1872 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1873 break;
1874 case ATA_DEV_ATAPI:
a0123703 1875 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1876 break;
1877 default:
1878 rc = -ENODEV;
1879 reason = "unsupported class";
1880 goto err_out;
1da177e4
LT
1881 }
1882
a0123703 1883 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1884
1885 /* Some devices choke if TF registers contain garbage. Make
1886 * sure those are properly initialized.
1887 */
1888 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1889
1890 /* Device presence detection is unreliable on some
1891 * controllers. Always poll IDENTIFY if available.
1892 */
1893 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1894
963e4975
AC
1895 if (ap->ops->read_id)
1896 err_mask = ap->ops->read_id(dev, &tf, id);
1897 else
1898 err_mask = ata_do_dev_read_id(dev, &tf, id);
1899
a0123703 1900 if (err_mask) {
800b3996 1901 if (err_mask & AC_ERR_NODEV_HINT) {
a9a79dfe 1902 ata_dev_dbg(dev, "NODEV after polling detection\n");
55a8e2c8
TH
1903 return -ENOENT;
1904 }
1905
79b42bab 1906 if (is_semb) {
a9a79dfe
JP
1907 ata_dev_info(dev,
1908 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
79b42bab
TH
1909 /* SEMB is not supported yet */
1910 *p_class = ATA_DEV_SEMB_UNSUP;
1911 return 0;
1912 }
1913
1ffc151f
TH
1914 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1915 /* Device or controller might have reported
1916 * the wrong device class. Give a shot at the
1917 * other IDENTIFY if the current one is
1918 * aborted by the device.
1919 */
1920 if (may_fallback) {
1921 may_fallback = 0;
1922
1923 if (class == ATA_DEV_ATA)
1924 class = ATA_DEV_ATAPI;
1925 else
1926 class = ATA_DEV_ATA;
1927 goto retry;
1928 }
1929
1930 /* Control reaches here iff the device aborted
1931 * both flavors of IDENTIFYs which happens
1932 * sometimes with phantom devices.
1933 */
a9a79dfe
JP
1934 ata_dev_dbg(dev,
1935 "both IDENTIFYs aborted, assuming NODEV\n");
1ffc151f 1936 return -ENOENT;
54936f8b
TH
1937 }
1938
49016aca
TH
1939 rc = -EIO;
1940 reason = "I/O error";
1da177e4
LT
1941 goto err_out;
1942 }
1943
43c9c591 1944 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
a9a79dfe
JP
1945 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1946 "class=%d may_fallback=%d tried_spinup=%d\n",
1947 class, may_fallback, tried_spinup);
43c9c591
TH
1948 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1949 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1950 }
1951
54936f8b
TH
1952 /* Falling back doesn't make sense if ID data was read
1953 * successfully at least once.
1954 */
1955 may_fallback = 0;
1956
49016aca 1957 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1958
49016aca 1959 /* sanity check */
a4f5749b 1960 rc = -EINVAL;
6070068b 1961 reason = "device reports invalid type";
a4f5749b 1962
9162c657 1963 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
a4f5749b
TH
1964 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1965 goto err_out;
db63a4c8
AW
1966 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1967 ata_id_is_ata(id)) {
1968 ata_dev_dbg(dev,
1969 "host indicates ignore ATA devices, ignored\n");
1970 return -ENOENT;
1971 }
a4f5749b
TH
1972 } else {
1973 if (ata_id_is_ata(id))
1974 goto err_out;
49016aca
TH
1975 }
1976
169439c2
ML
1977 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1978 tried_spinup = 1;
1979 /*
1980 * Drive powered-up in standby mode, and requires a specific
1981 * SET_FEATURES spin-up subcommand before it will accept
1982 * anything other than the original IDENTIFY command.
1983 */
218f3d30 1984 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1985 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1986 rc = -EIO;
1987 reason = "SPINUP failed";
1988 goto err_out;
1989 }
1990 /*
1991 * If the drive initially returned incomplete IDENTIFY info,
1992 * we now must reissue the IDENTIFY command.
1993 */
1994 if (id[2] == 0x37c8)
1995 goto retry;
1996 }
1997
9162c657
HR
1998 if ((flags & ATA_READID_POSTRESET) &&
1999 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
49016aca
TH
2000 /*
2001 * The exact sequence expected by certain pre-ATA4 drives is:
2002 * SRST RESET
50a99018
AC
2003 * IDENTIFY (optional in early ATA)
2004 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2005 * anything else..
2006 * Some drives were very specific about that exact sequence.
50a99018
AC
2007 *
2008 * Note that ATA4 says lba is mandatory so the second check
c9404c9c 2009 * should never trigger.
49016aca
TH
2010 */
2011 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2012 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2013 if (err_mask) {
2014 rc = -EIO;
2015 reason = "INIT_DEV_PARAMS failed";
2016 goto err_out;
2017 }
2018
2019 /* current CHS translation info (id[53-58]) might be
2020 * changed. reread the identify device info.
2021 */
bff04647 2022 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2023 goto retry;
2024 }
2025 }
2026
2027 *p_class = class;
fe635c7e 2028
49016aca
TH
2029 return 0;
2030
2031 err_out:
88574551 2032 if (ata_msg_warn(ap))
a9a79dfe
JP
2033 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2034 reason, err_mask);
49016aca
TH
2035 return rc;
2036}
2037
9062712f
TH
2038static int ata_do_link_spd_horkage(struct ata_device *dev)
2039{
2040 struct ata_link *plink = ata_dev_phys_link(dev);
2041 u32 target, target_limit;
2042
2043 if (!sata_scr_valid(plink))
2044 return 0;
2045
2046 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2047 target = 1;
2048 else
2049 return 0;
2050
2051 target_limit = (1 << target) - 1;
2052
2053 /* if already on stricter limit, no need to push further */
2054 if (plink->sata_spd_limit <= target_limit)
2055 return 0;
2056
2057 plink->sata_spd_limit = target_limit;
2058
2059 /* Request another EH round by returning -EAGAIN if link is
2060 * going faster than the target speed. Forward progress is
2061 * guaranteed by setting sata_spd_limit to target_limit above.
2062 */
2063 if (plink->sata_spd > target) {
a9a79dfe
JP
2064 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2065 sata_spd_string(target));
9062712f
TH
2066 return -EAGAIN;
2067 }
2068 return 0;
2069}
2070
3373efd8 2071static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2072{
9af5c9c9 2073 struct ata_port *ap = dev->link->ap;
9ce8e307
JA
2074
2075 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2076 return 0;
2077
9af5c9c9 2078 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2079}
2080
388539f3 2081static int ata_dev_config_ncq(struct ata_device *dev,
a6e6ce8e
TH
2082 char *desc, size_t desc_sz)
2083{
9af5c9c9 2084 struct ata_port *ap = dev->link->ap;
a6e6ce8e 2085 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
388539f3
SL
2086 unsigned int err_mask;
2087 char *aa_desc = "";
a6e6ce8e
TH
2088
2089 if (!ata_id_has_ncq(dev->id)) {
2090 desc[0] = '\0';
388539f3 2091 return 0;
a6e6ce8e 2092 }
75683fe7 2093 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6 2094 snprintf(desc, desc_sz, "NCQ (not used)");
388539f3 2095 return 0;
6919a0a6 2096 }
a6e6ce8e 2097 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2098 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2099 dev->flags |= ATA_DFLAG_NCQ;
2100 }
2101
388539f3
SL
2102 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2103 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2104 ata_id_has_fpdma_aa(dev->id)) {
2105 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2106 SATA_FPDMA_AA);
2107 if (err_mask) {
a9a79dfe
JP
2108 ata_dev_err(dev,
2109 "failed to enable AA (error_mask=0x%x)\n",
2110 err_mask);
388539f3
SL
2111 if (err_mask != AC_ERR_DEV) {
2112 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2113 return -EIO;
2114 }
2115 } else
2116 aa_desc = ", AA";
2117 }
2118
a6e6ce8e 2119 if (hdepth >= ddepth)
388539f3 2120 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
a6e6ce8e 2121 else
388539f3
SL
2122 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2123 ddepth, aa_desc);
ed36911c
MC
2124
2125 if ((ap->flags & ATA_FLAG_FPDMA_AUX) &&
2126 ata_id_has_ncq_send_and_recv(dev->id)) {
2127 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2128 0, ap->sector_buf, 1);
2129 if (err_mask) {
2130 ata_dev_dbg(dev,
2131 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2132 err_mask);
2133 } else {
f78dea06
MC
2134 u8 *cmds = dev->ncq_send_recv_cmds;
2135
ed36911c 2136 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
f78dea06
MC
2137 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2138
2139 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2140 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2141 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2142 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2143 }
ed36911c
MC
2144 }
2145 }
2146
388539f3 2147 return 0;
a6e6ce8e
TH
2148}
2149
fe7173c2
HR
2150static void ata_dev_config_sense_reporting(struct ata_device *dev)
2151{
2152 unsigned int err_mask;
2153
2154 if (!ata_id_has_sense_reporting(dev->id))
2155 return;
2156
2157 if (ata_id_sense_reporting_enabled(dev->id))
2158 return;
2159
2160 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2161 if (err_mask) {
2162 ata_dev_dbg(dev,
2163 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2164 err_mask);
2165 }
2166}
2167
49016aca 2168/**
ffeae418 2169 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2170 * @dev: Target device to configure
2171 *
2172 * Configure @dev according to @dev->id. Generic and low-level
2173 * driver specific fixups are also applied.
49016aca
TH
2174 *
2175 * LOCKING:
ffeae418
TH
2176 * Kernel thread context (may sleep)
2177 *
2178 * RETURNS:
2179 * 0 on success, -errno otherwise
49016aca 2180 */
efdaedc4 2181int ata_dev_configure(struct ata_device *dev)
49016aca 2182{
9af5c9c9
TH
2183 struct ata_port *ap = dev->link->ap;
2184 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2185 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2186 const u16 *id = dev->id;
7dc951ae 2187 unsigned long xfer_mask;
65fe1f0f 2188 unsigned int err_mask;
b352e57d 2189 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2190 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2191 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2192 int rc;
49016aca 2193
0dd4b21f 2194 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
a9a79dfe 2195 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
ffeae418 2196 return 0;
49016aca
TH
2197 }
2198
0dd4b21f 2199 if (ata_msg_probe(ap))
a9a79dfe 2200 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 2201
75683fe7
TH
2202 /* set horkage */
2203 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2204 ata_force_horkage(dev);
75683fe7 2205
50af2fa1 2206 if (dev->horkage & ATA_HORKAGE_DISABLE) {
a9a79dfe 2207 ata_dev_info(dev, "unsupported device, disabling\n");
50af2fa1
TH
2208 ata_dev_disable(dev);
2209 return 0;
2210 }
2211
2486fa56
TH
2212 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2213 dev->class == ATA_DEV_ATAPI) {
a9a79dfe
JP
2214 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2215 atapi_enabled ? "not supported with this driver"
2216 : "disabled");
2486fa56
TH
2217 ata_dev_disable(dev);
2218 return 0;
2219 }
2220
9062712f
TH
2221 rc = ata_do_link_spd_horkage(dev);
2222 if (rc)
2223 return rc;
2224
ecd75ad5
TH
2225 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2226 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2227 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2228 dev->horkage |= ATA_HORKAGE_NOLPM;
2229
2230 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2231 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2232 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2233 }
2234
6746544c
TH
2235 /* let ACPI work its magic */
2236 rc = ata_acpi_on_devcfg(dev);
2237 if (rc)
2238 return rc;
08573a86 2239
05027adc
TH
2240 /* massage HPA, do it early as it might change IDENTIFY data */
2241 rc = ata_hpa_resize(dev);
2242 if (rc)
2243 return rc;
2244
c39f5ebe 2245 /* print device capabilities */
0dd4b21f 2246 if (ata_msg_probe(ap))
a9a79dfe
JP
2247 ata_dev_dbg(dev,
2248 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2249 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2250 __func__,
2251 id[49], id[82], id[83], id[84],
2252 id[85], id[86], id[87], id[88]);
c39f5ebe 2253
208a9933 2254 /* initialize to-be-configured parameters */
ea1dd4e1 2255 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2256 dev->max_sectors = 0;
2257 dev->cdb_len = 0;
2258 dev->n_sectors = 0;
2259 dev->cylinders = 0;
2260 dev->heads = 0;
2261 dev->sectors = 0;
e18086d6 2262 dev->multi_count = 0;
208a9933 2263
1da177e4
LT
2264 /*
2265 * common ATA, ATAPI feature tests
2266 */
2267
ff8854b2 2268 /* find max transfer mode; for printk only */
1148c3a7 2269 xfer_mask = ata_id_xfermask(id);
1da177e4 2270
0dd4b21f
BP
2271 if (ata_msg_probe(ap))
2272 ata_dump_id(id);
1da177e4 2273
ef143d57
AL
2274 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2275 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2276 sizeof(fwrevbuf));
2277
2278 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2279 sizeof(modelbuf));
2280
1da177e4 2281 /* ATA-specific feature tests */
9162c657 2282 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
b352e57d 2283 if (ata_id_is_cfa(id)) {
62afe5d7
SS
2284 /* CPRM may make this media unusable */
2285 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
a9a79dfe
JP
2286 ata_dev_warn(dev,
2287 "supports DRM functions and may not be fully accessible\n");
b352e57d 2288 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2289 } else {
2dcb407e 2290 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2291 /* Warn the user if the device has TPM extensions */
2292 if (ata_id_has_tpm(id))
a9a79dfe
JP
2293 ata_dev_warn(dev,
2294 "supports DRM functions and may not be fully accessible\n");
ae8d4ee7 2295 }
b352e57d 2296
1148c3a7 2297 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2298
e18086d6
ML
2299 /* get current R/W Multiple count setting */
2300 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2301 unsigned int max = dev->id[47] & 0xff;
2302 unsigned int cnt = dev->id[59] & 0xff;
2303 /* only recognize/allow powers of two here */
2304 if (is_power_of_2(max) && is_power_of_2(cnt))
2305 if (cnt <= max)
2306 dev->multi_count = cnt;
2307 }
3f64f565 2308
1148c3a7 2309 if (ata_id_has_lba(id)) {
4c2d721a 2310 const char *lba_desc;
388539f3 2311 char ncq_desc[24];
8bf62ece 2312
4c2d721a
TH
2313 lba_desc = "LBA";
2314 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2315 if (ata_id_has_lba48(id)) {
8bf62ece 2316 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2317 lba_desc = "LBA48";
6fc49adb
TH
2318
2319 if (dev->n_sectors >= (1UL << 28) &&
2320 ata_id_has_flush_ext(id))
2321 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2322 }
8bf62ece 2323
a6e6ce8e 2324 /* config NCQ */
388539f3
SL
2325 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2326 if (rc)
2327 return rc;
a6e6ce8e 2328
8bf62ece 2329 /* print device info to dmesg */
3f64f565 2330 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2331 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2332 revbuf, modelbuf, fwrevbuf,
2333 ata_mode_string(xfer_mask));
2334 ata_dev_info(dev,
2335 "%llu sectors, multi %u: %s %s\n",
f15a1daf 2336 (unsigned long long)dev->n_sectors,
3f64f565
EM
2337 dev->multi_count, lba_desc, ncq_desc);
2338 }
ffeae418 2339 } else {
8bf62ece
AL
2340 /* CHS */
2341
2342 /* Default translation */
1148c3a7
TH
2343 dev->cylinders = id[1];
2344 dev->heads = id[3];
2345 dev->sectors = id[6];
8bf62ece 2346
1148c3a7 2347 if (ata_id_current_chs_valid(id)) {
8bf62ece 2348 /* Current CHS translation is valid. */
1148c3a7
TH
2349 dev->cylinders = id[54];
2350 dev->heads = id[55];
2351 dev->sectors = id[56];
8bf62ece
AL
2352 }
2353
2354 /* print device info to dmesg */
3f64f565 2355 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2356 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2357 revbuf, modelbuf, fwrevbuf,
2358 ata_mode_string(xfer_mask));
2359 ata_dev_info(dev,
2360 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2361 (unsigned long long)dev->n_sectors,
2362 dev->multi_count, dev->cylinders,
2363 dev->heads, dev->sectors);
3f64f565 2364 }
07f6f7d0
AL
2365 }
2366
803739d2
SH
2367 /* Check and mark DevSlp capability. Get DevSlp timing variables
2368 * from SATA Settings page of Identify Device Data Log.
65fe1f0f 2369 */
803739d2 2370 if (ata_id_has_devslp(dev->id)) {
8e725c7f 2371 u8 *sata_setting = ap->sector_buf;
803739d2
SH
2372 int i, j;
2373
2374 dev->flags |= ATA_DFLAG_DEVSLP;
65fe1f0f
SH
2375 err_mask = ata_read_log_page(dev,
2376 ATA_LOG_SATA_ID_DEV_DATA,
2377 ATA_LOG_SATA_SETTINGS,
803739d2 2378 sata_setting,
65fe1f0f
SH
2379 1);
2380 if (err_mask)
2381 ata_dev_dbg(dev,
2382 "failed to get Identify Device Data, Emask 0x%x\n",
2383 err_mask);
803739d2
SH
2384 else
2385 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2386 j = ATA_LOG_DEVSLP_OFFSET + i;
2387 dev->devslp_timing[i] = sata_setting[j];
2388 }
65fe1f0f 2389 }
fe7173c2 2390 ata_dev_config_sense_reporting(dev);
6e7846e9 2391 dev->cdb_len = 16;
1da177e4
LT
2392 }
2393
2394 /* ATAPI-specific feature tests */
2c13b7ce 2395 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2396 const char *cdb_intr_string = "";
2397 const char *atapi_an_string = "";
91163006 2398 const char *dma_dir_string = "";
7d77b247 2399 u32 sntf;
08a556db 2400
1148c3a7 2401 rc = atapi_cdb_len(id);
1da177e4 2402 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2403 if (ata_msg_warn(ap))
a9a79dfe 2404 ata_dev_warn(dev, "unsupported CDB len\n");
ffeae418 2405 rc = -EINVAL;
1da177e4
LT
2406 goto err_out_nosup;
2407 }
6e7846e9 2408 dev->cdb_len = (unsigned int) rc;
1da177e4 2409
7d77b247
TH
2410 /* Enable ATAPI AN if both the host and device have
2411 * the support. If PMP is attached, SNTF is required
2412 * to enable ATAPI AN to discern between PHY status
2413 * changed notifications and ATAPI ANs.
9f45cbd3 2414 */
e7ecd435
TH
2415 if (atapi_an &&
2416 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2417 (!sata_pmp_attached(ap) ||
7d77b247 2418 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
9f45cbd3 2419 /* issue SET feature command to turn this on */
218f3d30
JG
2420 err_mask = ata_dev_set_feature(dev,
2421 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2422 if (err_mask)
a9a79dfe
JP
2423 ata_dev_err(dev,
2424 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2425 err_mask);
854c73a2 2426 else {
9f45cbd3 2427 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2428 atapi_an_string = ", ATAPI AN";
2429 }
9f45cbd3
KCA
2430 }
2431
08a556db 2432 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2433 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2434 cdb_intr_string = ", CDB intr";
2435 }
312f7da2 2436
966fbe19 2437 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
91163006
TH
2438 dev->flags |= ATA_DFLAG_DMADIR;
2439 dma_dir_string = ", DMADIR";
2440 }
2441
afe75951 2442 if (ata_id_has_da(dev->id)) {
b1354cbb 2443 dev->flags |= ATA_DFLAG_DA;
afe75951
AL
2444 zpodd_init(dev);
2445 }
b1354cbb 2446
1da177e4 2447 /* print device info to dmesg */
5afc8142 2448 if (ata_msg_drv(ap) && print_info)
a9a79dfe
JP
2449 ata_dev_info(dev,
2450 "ATAPI: %s, %s, max %s%s%s%s\n",
2451 modelbuf, fwrevbuf,
2452 ata_mode_string(xfer_mask),
2453 cdb_intr_string, atapi_an_string,
2454 dma_dir_string);
1da177e4
LT
2455 }
2456
914ed354
TH
2457 /* determine max_sectors */
2458 dev->max_sectors = ATA_MAX_SECTORS;
2459 if (dev->flags & ATA_DFLAG_LBA48)
2460 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2461
c5038fc0
AC
2462 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2463 200 sectors */
3373efd8 2464 if (ata_dev_knobble(dev)) {
5afc8142 2465 if (ata_msg_drv(ap) && print_info)
a9a79dfe 2466 ata_dev_info(dev, "applying bridge limits\n");
5a529139 2467 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2468 dev->max_sectors = ATA_MAX_SECTORS;
2469 }
2470
f8d8e579 2471 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2472 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2473 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2474 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2475 }
f8d8e579 2476
75683fe7 2477 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2478 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2479 dev->max_sectors);
18d6e9d5 2480
a32450e1
SH
2481 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2482 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2483
4b2f3ede 2484 if (ap->ops->dev_config)
cd0d3bbc 2485 ap->ops->dev_config(dev);
4b2f3ede 2486
c5038fc0
AC
2487 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2488 /* Let the user know. We don't want to disallow opens for
2489 rescue purposes, or in case the vendor is just a blithering
2490 idiot. Do this after the dev_config call as some controllers
2491 with buggy firmware may want to avoid reporting false device
2492 bugs */
2493
2494 if (print_info) {
a9a79dfe 2495 ata_dev_warn(dev,
c5038fc0 2496"Drive reports diagnostics failure. This may indicate a drive\n");
a9a79dfe 2497 ata_dev_warn(dev,
c5038fc0
AC
2498"fault or invalid emulation. Contact drive vendor for information.\n");
2499 }
2500 }
2501
ac70a964 2502 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
a9a79dfe
JP
2503 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2504 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
ac70a964
TH
2505 }
2506
ffeae418 2507 return 0;
1da177e4
LT
2508
2509err_out_nosup:
0dd4b21f 2510 if (ata_msg_probe(ap))
a9a79dfe 2511 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
ffeae418 2512 return rc;
1da177e4
LT
2513}
2514
be0d18df 2515/**
2e41e8e6 2516 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2517 * @ap: port
2518 *
2e41e8e6 2519 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2520 * detection.
2521 */
2522
2523int ata_cable_40wire(struct ata_port *ap)
2524{
2525 return ATA_CBL_PATA40;
2526}
2527
2528/**
2e41e8e6 2529 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2530 * @ap: port
2531 *
2e41e8e6 2532 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2533 * detection.
2534 */
2535
2536int ata_cable_80wire(struct ata_port *ap)
2537{
2538 return ATA_CBL_PATA80;
2539}
2540
2541/**
2542 * ata_cable_unknown - return unknown PATA cable.
2543 * @ap: port
2544 *
2545 * Helper method for drivers which have no PATA cable detection.
2546 */
2547
2548int ata_cable_unknown(struct ata_port *ap)
2549{
2550 return ATA_CBL_PATA_UNK;
2551}
2552
c88f90c3
TH
2553/**
2554 * ata_cable_ignore - return ignored PATA cable.
2555 * @ap: port
2556 *
2557 * Helper method for drivers which don't use cable type to limit
2558 * transfer mode.
2559 */
2560int ata_cable_ignore(struct ata_port *ap)
2561{
2562 return ATA_CBL_PATA_IGN;
2563}
2564
be0d18df
AC
2565/**
2566 * ata_cable_sata - return SATA cable type
2567 * @ap: port
2568 *
2569 * Helper method for drivers which have SATA cables
2570 */
2571
2572int ata_cable_sata(struct ata_port *ap)
2573{
2574 return ATA_CBL_SATA;
2575}
2576
1da177e4
LT
2577/**
2578 * ata_bus_probe - Reset and probe ATA bus
2579 * @ap: Bus to probe
2580 *
0cba632b
JG
2581 * Master ATA bus probing function. Initiates a hardware-dependent
2582 * bus reset, then attempts to identify any devices found on
2583 * the bus.
2584 *
1da177e4 2585 * LOCKING:
0cba632b 2586 * PCI/etc. bus probe sem.
1da177e4
LT
2587 *
2588 * RETURNS:
96072e69 2589 * Zero on success, negative errno otherwise.
1da177e4
LT
2590 */
2591
80289167 2592int ata_bus_probe(struct ata_port *ap)
1da177e4 2593{
28ca5c57 2594 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2595 int tries[ATA_MAX_DEVICES];
f58229f8 2596 int rc;
e82cbdb9 2597 struct ata_device *dev;
1da177e4 2598
1eca4365 2599 ata_for_each_dev(dev, &ap->link, ALL)
f58229f8 2600 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2601
2602 retry:
1eca4365 2603 ata_for_each_dev(dev, &ap->link, ALL) {
cdeab114
TH
2604 /* If we issue an SRST then an ATA drive (not ATAPI)
2605 * may change configuration and be in PIO0 timing. If
2606 * we do a hard reset (or are coming from power on)
2607 * this is true for ATA or ATAPI. Until we've set a
2608 * suitable controller mode we should not touch the
2609 * bus as we may be talking too fast.
2610 */
2611 dev->pio_mode = XFER_PIO_0;
5416912a 2612 dev->dma_mode = 0xff;
cdeab114
TH
2613
2614 /* If the controller has a pio mode setup function
2615 * then use it to set the chipset to rights. Don't
2616 * touch the DMA setup as that will be dealt with when
2617 * configuring devices.
2618 */
2619 if (ap->ops->set_piomode)
2620 ap->ops->set_piomode(ap, dev);
2621 }
2622
2044470c 2623 /* reset and determine device classes */
52783c5d 2624 ap->ops->phy_reset(ap);
2061a47a 2625
1eca4365 2626 ata_for_each_dev(dev, &ap->link, ALL) {
3e4ec344 2627 if (dev->class != ATA_DEV_UNKNOWN)
52783c5d
TH
2628 classes[dev->devno] = dev->class;
2629 else
2630 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2631
52783c5d 2632 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2633 }
1da177e4 2634
f31f0cc2
JG
2635 /* read IDENTIFY page and configure devices. We have to do the identify
2636 specific sequence bass-ackwards so that PDIAG- is released by
2637 the slave device */
2638
1eca4365 2639 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
f58229f8
TH
2640 if (tries[dev->devno])
2641 dev->class = classes[dev->devno];
ffeae418 2642
14d2bac1 2643 if (!ata_dev_enabled(dev))
ffeae418 2644 continue;
ffeae418 2645
bff04647
TH
2646 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2647 dev->id);
14d2bac1
TH
2648 if (rc)
2649 goto fail;
f31f0cc2
JG
2650 }
2651
be0d18df
AC
2652 /* Now ask for the cable type as PDIAG- should have been released */
2653 if (ap->ops->cable_detect)
2654 ap->cbl = ap->ops->cable_detect(ap);
2655
1eca4365
TH
2656 /* We may have SATA bridge glue hiding here irrespective of
2657 * the reported cable types and sensed types. When SATA
2658 * drives indicate we have a bridge, we don't know which end
2659 * of the link the bridge is which is a problem.
2660 */
2661 ata_for_each_dev(dev, &ap->link, ENABLED)
614fe29b
AC
2662 if (ata_id_is_sata(dev->id))
2663 ap->cbl = ATA_CBL_SATA;
614fe29b 2664
f31f0cc2
JG
2665 /* After the identify sequence we can now set up the devices. We do
2666 this in the normal order so that the user doesn't get confused */
2667
1eca4365 2668 ata_for_each_dev(dev, &ap->link, ENABLED) {
9af5c9c9 2669 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2670 rc = ata_dev_configure(dev);
9af5c9c9 2671 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2672 if (rc)
2673 goto fail;
1da177e4
LT
2674 }
2675
e82cbdb9 2676 /* configure transfer mode */
0260731f 2677 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2678 if (rc)
51713d35 2679 goto fail;
1da177e4 2680
1eca4365
TH
2681 ata_for_each_dev(dev, &ap->link, ENABLED)
2682 return 0;
1da177e4 2683
96072e69 2684 return -ENODEV;
14d2bac1
TH
2685
2686 fail:
4ae72a1e
TH
2687 tries[dev->devno]--;
2688
14d2bac1
TH
2689 switch (rc) {
2690 case -EINVAL:
4ae72a1e 2691 /* eeek, something went very wrong, give up */
14d2bac1
TH
2692 tries[dev->devno] = 0;
2693 break;
4ae72a1e
TH
2694
2695 case -ENODEV:
2696 /* give it just one more chance */
2697 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2698 case -EIO:
4ae72a1e
TH
2699 if (tries[dev->devno] == 1) {
2700 /* This is the last chance, better to slow
2701 * down than lose it.
2702 */
a07d499b 2703 sata_down_spd_limit(&ap->link, 0);
4ae72a1e
TH
2704 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2705 }
14d2bac1
TH
2706 }
2707
4ae72a1e 2708 if (!tries[dev->devno])
3373efd8 2709 ata_dev_disable(dev);
ec573755 2710
14d2bac1 2711 goto retry;
1da177e4
LT
2712}
2713
3be680b7
TH
2714/**
2715 * sata_print_link_status - Print SATA link status
936fd732 2716 * @link: SATA link to printk link status about
3be680b7
TH
2717 *
2718 * This function prints link speed and status of a SATA link.
2719 *
2720 * LOCKING:
2721 * None.
2722 */
6bdb4fc9 2723static void sata_print_link_status(struct ata_link *link)
3be680b7 2724{
6d5f9732 2725 u32 sstatus, scontrol, tmp;
3be680b7 2726
936fd732 2727 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2728 return;
936fd732 2729 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2730
b1c72916 2731 if (ata_phys_link_online(link)) {
3be680b7 2732 tmp = (sstatus >> 4) & 0xf;
a9a79dfe
JP
2733 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2734 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2735 } else {
a9a79dfe
JP
2736 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2737 sstatus, scontrol);
3be680b7
TH
2738 }
2739}
2740
ebdfca6e
AC
2741/**
2742 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2743 * @adev: device
2744 *
2745 * Obtain the other device on the same cable, or if none is
2746 * present NULL is returned
2747 */
2e9edbf8 2748
3373efd8 2749struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2750{
9af5c9c9
TH
2751 struct ata_link *link = adev->link;
2752 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2753 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2754 return NULL;
2755 return pair;
2756}
2757
1c3fae4d 2758/**
3c567b7d 2759 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2760 * @link: Link to adjust SATA spd limit for
a07d499b 2761 * @spd_limit: Additional limit
1c3fae4d 2762 *
936fd732 2763 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2764 * function only adjusts the limit. The change must be applied
3c567b7d 2765 * using sata_set_spd().
1c3fae4d 2766 *
a07d499b
TH
2767 * If @spd_limit is non-zero, the speed is limited to equal to or
2768 * lower than @spd_limit if such speed is supported. If
2769 * @spd_limit is slower than any supported speed, only the lowest
2770 * supported speed is allowed.
2771 *
1c3fae4d
TH
2772 * LOCKING:
2773 * Inherited from caller.
2774 *
2775 * RETURNS:
2776 * 0 on success, negative errno on failure
2777 */
a07d499b 2778int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
1c3fae4d 2779{
81952c54 2780 u32 sstatus, spd, mask;
a07d499b 2781 int rc, bit;
1c3fae4d 2782
936fd732 2783 if (!sata_scr_valid(link))
008a7896
TH
2784 return -EOPNOTSUPP;
2785
2786 /* If SCR can be read, use it to determine the current SPD.
936fd732 2787 * If not, use cached value in link->sata_spd.
008a7896 2788 */
936fd732 2789 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
9913ff8a 2790 if (rc == 0 && ata_sstatus_online(sstatus))
008a7896
TH
2791 spd = (sstatus >> 4) & 0xf;
2792 else
936fd732 2793 spd = link->sata_spd;
1c3fae4d 2794
936fd732 2795 mask = link->sata_spd_limit;
1c3fae4d
TH
2796 if (mask <= 1)
2797 return -EINVAL;
008a7896
TH
2798
2799 /* unconditionally mask off the highest bit */
a07d499b
TH
2800 bit = fls(mask) - 1;
2801 mask &= ~(1 << bit);
1c3fae4d 2802
008a7896
TH
2803 /* Mask off all speeds higher than or equal to the current
2804 * one. Force 1.5Gbps if current SPD is not available.
2805 */
2806 if (spd > 1)
2807 mask &= (1 << (spd - 1)) - 1;
2808 else
2809 mask &= 1;
2810
2811 /* were we already at the bottom? */
1c3fae4d
TH
2812 if (!mask)
2813 return -EINVAL;
2814
a07d499b
TH
2815 if (spd_limit) {
2816 if (mask & ((1 << spd_limit) - 1))
2817 mask &= (1 << spd_limit) - 1;
2818 else {
2819 bit = ffs(mask) - 1;
2820 mask = 1 << bit;
2821 }
2822 }
2823
936fd732 2824 link->sata_spd_limit = mask;
1c3fae4d 2825
a9a79dfe
JP
2826 ata_link_warn(link, "limiting SATA link speed to %s\n",
2827 sata_spd_string(fls(mask)));
1c3fae4d
TH
2828
2829 return 0;
2830}
2831
936fd732 2832static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2833{
5270222f
TH
2834 struct ata_link *host_link = &link->ap->link;
2835 u32 limit, target, spd;
1c3fae4d 2836
5270222f
TH
2837 limit = link->sata_spd_limit;
2838
2839 /* Don't configure downstream link faster than upstream link.
2840 * It doesn't speed up anything and some PMPs choke on such
2841 * configuration.
2842 */
2843 if (!ata_is_host_link(link) && host_link->sata_spd)
2844 limit &= (1 << host_link->sata_spd) - 1;
2845
2846 if (limit == UINT_MAX)
2847 target = 0;
1c3fae4d 2848 else
5270222f 2849 target = fls(limit);
1c3fae4d
TH
2850
2851 spd = (*scontrol >> 4) & 0xf;
5270222f 2852 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2853
5270222f 2854 return spd != target;
1c3fae4d
TH
2855}
2856
2857/**
3c567b7d 2858 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2859 * @link: Link in question
1c3fae4d
TH
2860 *
2861 * Test whether the spd limit in SControl matches
936fd732 2862 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2863 * whether hardreset is necessary to apply SATA spd
2864 * configuration.
2865 *
2866 * LOCKING:
2867 * Inherited from caller.
2868 *
2869 * RETURNS:
2870 * 1 if SATA spd configuration is needed, 0 otherwise.
2871 */
1dc55e87 2872static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2873{
2874 u32 scontrol;
2875
936fd732 2876 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2877 return 1;
1c3fae4d 2878
936fd732 2879 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2880}
2881
2882/**
3c567b7d 2883 * sata_set_spd - set SATA spd according to spd limit
936fd732 2884 * @link: Link to set SATA spd for
1c3fae4d 2885 *
936fd732 2886 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2887 *
2888 * LOCKING:
2889 * Inherited from caller.
2890 *
2891 * RETURNS:
2892 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2893 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2894 */
936fd732 2895int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2896{
2897 u32 scontrol;
81952c54 2898 int rc;
1c3fae4d 2899
936fd732 2900 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2901 return rc;
1c3fae4d 2902
936fd732 2903 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2904 return 0;
2905
936fd732 2906 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2907 return rc;
2908
1c3fae4d
TH
2909 return 1;
2910}
2911
452503f9
AC
2912/*
2913 * This mode timing computation functionality is ported over from
2914 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2915 */
2916/*
b352e57d 2917 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2918 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2919 * for UDMA6, which is currently supported only by Maxtor drives.
2920 *
2921 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2922 */
2923
2924static const struct ata_timing ata_timing[] = {
3ada9c12
DD
2925/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2926 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2927 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2928 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2929 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2930 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2931 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2932 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2933
2934 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2935 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2936 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2937
2938 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2939 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2940 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2941 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2942 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2943
2944/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2945 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2946 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2947 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2948 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2949 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2950 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2951 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
2952
2953 { 0xFF }
2954};
2955
2dcb407e
JG
2956#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2957#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2958
2959static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2960{
3ada9c12
DD
2961 q->setup = EZ(t->setup * 1000, T);
2962 q->act8b = EZ(t->act8b * 1000, T);
2963 q->rec8b = EZ(t->rec8b * 1000, T);
2964 q->cyc8b = EZ(t->cyc8b * 1000, T);
2965 q->active = EZ(t->active * 1000, T);
2966 q->recover = EZ(t->recover * 1000, T);
2967 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2968 q->cycle = EZ(t->cycle * 1000, T);
2969 q->udma = EZ(t->udma * 1000, UT);
452503f9
AC
2970}
2971
2972void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2973 struct ata_timing *m, unsigned int what)
2974{
2975 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2976 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2977 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2978 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2979 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2980 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3ada9c12 2981 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
452503f9
AC
2982 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2983 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2984}
2985
6357357c 2986const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 2987{
70cd071e
TH
2988 const struct ata_timing *t = ata_timing;
2989
2990 while (xfer_mode > t->mode)
2991 t++;
452503f9 2992
70cd071e
TH
2993 if (xfer_mode == t->mode)
2994 return t;
cd705d5a
BP
2995
2996 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2997 __func__, xfer_mode);
2998
70cd071e 2999 return NULL;
452503f9
AC
3000}
3001
3002int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3003 struct ata_timing *t, int T, int UT)
3004{
9e8808a9 3005 const u16 *id = adev->id;
452503f9
AC
3006 const struct ata_timing *s;
3007 struct ata_timing p;
3008
3009 /*
2e9edbf8 3010 * Find the mode.
75b1f2f8 3011 */
452503f9
AC
3012
3013 if (!(s = ata_timing_find_mode(speed)))
3014 return -EINVAL;
3015
75b1f2f8
AL
3016 memcpy(t, s, sizeof(*s));
3017
452503f9
AC
3018 /*
3019 * If the drive is an EIDE drive, it can tell us it needs extended
3020 * PIO/MW_DMA cycle timing.
3021 */
3022
9e8808a9 3023 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
452503f9 3024 memset(&p, 0, sizeof(p));
9e8808a9 3025
bff00256 3026 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
9e8808a9
BZ
3027 if (speed <= XFER_PIO_2)
3028 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3029 else if ((speed <= XFER_PIO_4) ||
3030 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3031 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3032 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3033 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3034
452503f9
AC
3035 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3036 }
3037
3038 /*
3039 * Convert the timing to bus clock counts.
3040 */
3041
75b1f2f8 3042 ata_timing_quantize(t, t, T, UT);
452503f9
AC
3043
3044 /*
c893a3ae
RD
3045 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3046 * S.M.A.R.T * and some other commands. We have to ensure that the
3047 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
3048 */
3049
fd3367af 3050 if (speed > XFER_PIO_6) {
452503f9
AC
3051 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3052 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3053 }
3054
3055 /*
c893a3ae 3056 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
3057 */
3058
3059 if (t->act8b + t->rec8b < t->cyc8b) {
3060 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3061 t->rec8b = t->cyc8b - t->act8b;
3062 }
3063
3064 if (t->active + t->recover < t->cycle) {
3065 t->active += (t->cycle - (t->active + t->recover)) / 2;
3066 t->recover = t->cycle - t->active;
3067 }
a617c09f 3068
4f701d1e
AC
3069 /* In a few cases quantisation may produce enough errors to
3070 leave t->cycle too low for the sum of active and recovery
3071 if so we must correct this */
3072 if (t->active + t->recover > t->cycle)
3073 t->cycle = t->active + t->recover;
452503f9
AC
3074
3075 return 0;
3076}
3077
a0f79b92
TH
3078/**
3079 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3080 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3081 * @cycle: cycle duration in ns
3082 *
3083 * Return matching xfer mode for @cycle. The returned mode is of
3084 * the transfer type specified by @xfer_shift. If @cycle is too
3085 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3086 * than the fastest known mode, the fasted mode is returned.
3087 *
3088 * LOCKING:
3089 * None.
3090 *
3091 * RETURNS:
3092 * Matching xfer_mode, 0xff if no match found.
3093 */
3094u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3095{
3096 u8 base_mode = 0xff, last_mode = 0xff;
3097 const struct ata_xfer_ent *ent;
3098 const struct ata_timing *t;
3099
3100 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3101 if (ent->shift == xfer_shift)
3102 base_mode = ent->base;
3103
3104 for (t = ata_timing_find_mode(base_mode);
3105 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3106 unsigned short this_cycle;
3107
3108 switch (xfer_shift) {
3109 case ATA_SHIFT_PIO:
3110 case ATA_SHIFT_MWDMA:
3111 this_cycle = t->cycle;
3112 break;
3113 case ATA_SHIFT_UDMA:
3114 this_cycle = t->udma;
3115 break;
3116 default:
3117 return 0xff;
3118 }
3119
3120 if (cycle > this_cycle)
3121 break;
3122
3123 last_mode = t->mode;
3124 }
3125
3126 return last_mode;
3127}
3128
cf176e1a
TH
3129/**
3130 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3131 * @dev: Device to adjust xfer masks
458337db 3132 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3133 *
3134 * Adjust xfer masks of @dev downward. Note that this function
3135 * does not apply the change. Invoking ata_set_mode() afterwards
3136 * will apply the limit.
3137 *
3138 * LOCKING:
3139 * Inherited from caller.
3140 *
3141 * RETURNS:
3142 * 0 on success, negative errno on failure
3143 */
458337db 3144int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3145{
458337db 3146 char buf[32];
7dc951ae
TH
3147 unsigned long orig_mask, xfer_mask;
3148 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3149 int quiet, highbit;
cf176e1a 3150
458337db
TH
3151 quiet = !!(sel & ATA_DNXFER_QUIET);
3152 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3153
458337db
TH
3154 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3155 dev->mwdma_mask,
3156 dev->udma_mask);
3157 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3158
458337db
TH
3159 switch (sel) {
3160 case ATA_DNXFER_PIO:
3161 highbit = fls(pio_mask) - 1;
3162 pio_mask &= ~(1 << highbit);
3163 break;
3164
3165 case ATA_DNXFER_DMA:
3166 if (udma_mask) {
3167 highbit = fls(udma_mask) - 1;
3168 udma_mask &= ~(1 << highbit);
3169 if (!udma_mask)
3170 return -ENOENT;
3171 } else if (mwdma_mask) {
3172 highbit = fls(mwdma_mask) - 1;
3173 mwdma_mask &= ~(1 << highbit);
3174 if (!mwdma_mask)
3175 return -ENOENT;
3176 }
3177 break;
3178
3179 case ATA_DNXFER_40C:
3180 udma_mask &= ATA_UDMA_MASK_40C;
3181 break;
3182
3183 case ATA_DNXFER_FORCE_PIO0:
3184 pio_mask &= 1;
3185 case ATA_DNXFER_FORCE_PIO:
3186 mwdma_mask = 0;
3187 udma_mask = 0;
3188 break;
3189
458337db
TH
3190 default:
3191 BUG();
3192 }
3193
3194 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3195
3196 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3197 return -ENOENT;
3198
3199 if (!quiet) {
3200 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3201 snprintf(buf, sizeof(buf), "%s:%s",
3202 ata_mode_string(xfer_mask),
3203 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3204 else
3205 snprintf(buf, sizeof(buf), "%s",
3206 ata_mode_string(xfer_mask));
3207
a9a79dfe 3208 ata_dev_warn(dev, "limiting speed to %s\n", buf);
458337db 3209 }
cf176e1a
TH
3210
3211 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3212 &dev->udma_mask);
3213
cf176e1a 3214 return 0;
cf176e1a
TH
3215}
3216
3373efd8 3217static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3218{
d0cb43b3 3219 struct ata_port *ap = dev->link->ap;
9af5c9c9 3220 struct ata_eh_context *ehc = &dev->link->eh_context;
d0cb43b3 3221 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
4055dee7
TH
3222 const char *dev_err_whine = "";
3223 int ign_dev_err = 0;
d0cb43b3 3224 unsigned int err_mask = 0;
83206a29 3225 int rc;
1da177e4 3226
e8384607 3227 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3228 if (dev->xfer_shift == ATA_SHIFT_PIO)
3229 dev->flags |= ATA_DFLAG_PIO;
3230
d0cb43b3
TH
3231 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3232 dev_err_whine = " (SET_XFERMODE skipped)";
3233 else {
3234 if (nosetxfer)
a9a79dfe
JP
3235 ata_dev_warn(dev,
3236 "NOSETXFER but PATA detected - can't "
3237 "skip SETXFER, might malfunction\n");
d0cb43b3
TH
3238 err_mask = ata_dev_set_xfermode(dev);
3239 }
2dcb407e 3240
4055dee7
TH
3241 if (err_mask & ~AC_ERR_DEV)
3242 goto fail;
3243
3244 /* revalidate */
3245 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3246 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3247 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3248 if (rc)
3249 return rc;
3250
b93fda12
AC
3251 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3252 /* Old CFA may refuse this command, which is just fine */
3253 if (ata_id_is_cfa(dev->id))
3254 ign_dev_err = 1;
3255 /* Catch several broken garbage emulations plus some pre
3256 ATA devices */
3257 if (ata_id_major_version(dev->id) == 0 &&
3258 dev->pio_mode <= XFER_PIO_2)
3259 ign_dev_err = 1;
3260 /* Some very old devices and some bad newer ones fail
3261 any kind of SET_XFERMODE request but support PIO0-2
3262 timings and no IORDY */
3263 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3264 ign_dev_err = 1;
3265 }
3acaf94b
AC
3266 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3267 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3268 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3269 dev->dma_mode == XFER_MW_DMA_0 &&
3270 (dev->id[63] >> 8) & 1)
4055dee7 3271 ign_dev_err = 1;
3acaf94b 3272
4055dee7
TH
3273 /* if the device is actually configured correctly, ignore dev err */
3274 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3275 ign_dev_err = 1;
1da177e4 3276
4055dee7
TH
3277 if (err_mask & AC_ERR_DEV) {
3278 if (!ign_dev_err)
3279 goto fail;
3280 else
3281 dev_err_whine = " (device error ignored)";
3282 }
48a8a14f 3283
23e71c3d
TH
3284 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3285 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3286
a9a79dfe
JP
3287 ata_dev_info(dev, "configured for %s%s\n",
3288 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3289 dev_err_whine);
4055dee7 3290
83206a29 3291 return 0;
4055dee7
TH
3292
3293 fail:
a9a79dfe 3294 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
4055dee7 3295 return -EIO;
1da177e4
LT
3296}
3297
1da177e4 3298/**
04351821 3299 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3300 * @link: link on which timings will be programmed
1967b7ff 3301 * @r_failed_dev: out parameter for failed device
1da177e4 3302 *
04351821
A
3303 * Standard implementation of the function used to tune and set
3304 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3305 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3306 * returned in @r_failed_dev.
780a87f7 3307 *
1da177e4 3308 * LOCKING:
0cba632b 3309 * PCI/etc. bus probe sem.
e82cbdb9
TH
3310 *
3311 * RETURNS:
3312 * 0 on success, negative errno otherwise
1da177e4 3313 */
04351821 3314
0260731f 3315int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3316{
0260731f 3317 struct ata_port *ap = link->ap;
e8e0619f 3318 struct ata_device *dev;
f58229f8 3319 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3320
a6d5a51c 3321 /* step 1: calculate xfer_mask */
1eca4365 3322 ata_for_each_dev(dev, link, ENABLED) {
7dc951ae 3323 unsigned long pio_mask, dma_mask;
b3a70601 3324 unsigned int mode_mask;
a6d5a51c 3325
b3a70601
AC
3326 mode_mask = ATA_DMA_MASK_ATA;
3327 if (dev->class == ATA_DEV_ATAPI)
3328 mode_mask = ATA_DMA_MASK_ATAPI;
3329 else if (ata_id_is_cfa(dev->id))
3330 mode_mask = ATA_DMA_MASK_CFA;
3331
3373efd8 3332 ata_dev_xfermask(dev);
33267325 3333 ata_force_xfermask(dev);
1da177e4 3334
acf356b1 3335 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
b3a70601
AC
3336
3337 if (libata_dma_mask & mode_mask)
80a9c430
SS
3338 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3339 dev->udma_mask);
b3a70601
AC
3340 else
3341 dma_mask = 0;
3342
acf356b1
TH
3343 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3344 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3345
4f65977d 3346 found = 1;
b15b3eba 3347 if (ata_dma_enabled(dev))
5444a6f4 3348 used_dma = 1;
a6d5a51c 3349 }
4f65977d 3350 if (!found)
e82cbdb9 3351 goto out;
a6d5a51c
TH
3352
3353 /* step 2: always set host PIO timings */
1eca4365 3354 ata_for_each_dev(dev, link, ENABLED) {
70cd071e 3355 if (dev->pio_mode == 0xff) {
a9a79dfe 3356 ata_dev_warn(dev, "no PIO support\n");
e8e0619f 3357 rc = -EINVAL;
e82cbdb9 3358 goto out;
e8e0619f
TH
3359 }
3360
3361 dev->xfer_mode = dev->pio_mode;
3362 dev->xfer_shift = ATA_SHIFT_PIO;
3363 if (ap->ops->set_piomode)
3364 ap->ops->set_piomode(ap, dev);
3365 }
1da177e4 3366
a6d5a51c 3367 /* step 3: set host DMA timings */
1eca4365
TH
3368 ata_for_each_dev(dev, link, ENABLED) {
3369 if (!ata_dma_enabled(dev))
e8e0619f
TH
3370 continue;
3371
3372 dev->xfer_mode = dev->dma_mode;
3373 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3374 if (ap->ops->set_dmamode)
3375 ap->ops->set_dmamode(ap, dev);
3376 }
1da177e4
LT
3377
3378 /* step 4: update devices' xfer mode */
1eca4365 3379 ata_for_each_dev(dev, link, ENABLED) {
3373efd8 3380 rc = ata_dev_set_mode(dev);
5bbc53f4 3381 if (rc)
e82cbdb9 3382 goto out;
83206a29 3383 }
1da177e4 3384
e8e0619f
TH
3385 /* Record simplex status. If we selected DMA then the other
3386 * host channels are not permitted to do so.
5444a6f4 3387 */
cca3974e 3388 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3389 ap->host->simplex_claimed = ap;
5444a6f4 3390
e82cbdb9
TH
3391 out:
3392 if (rc)
3393 *r_failed_dev = dev;
3394 return rc;
1da177e4
LT
3395}
3396
aa2731ad
TH
3397/**
3398 * ata_wait_ready - wait for link to become ready
3399 * @link: link to be waited on
3400 * @deadline: deadline jiffies for the operation
3401 * @check_ready: callback to check link readiness
3402 *
3403 * Wait for @link to become ready. @check_ready should return
3404 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3405 * link doesn't seem to be occupied, other errno for other error
3406 * conditions.
3407 *
3408 * Transient -ENODEV conditions are allowed for
3409 * ATA_TMOUT_FF_WAIT.
3410 *
3411 * LOCKING:
3412 * EH context.
3413 *
3414 * RETURNS:
3415 * 0 if @linke is ready before @deadline; otherwise, -errno.
3416 */
3417int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3418 int (*check_ready)(struct ata_link *link))
3419{
3420 unsigned long start = jiffies;
b48d58f5 3421 unsigned long nodev_deadline;
aa2731ad
TH
3422 int warned = 0;
3423
b48d58f5
TH
3424 /* choose which 0xff timeout to use, read comment in libata.h */
3425 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3426 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3427 else
3428 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3429
b1c72916
TH
3430 /* Slave readiness can't be tested separately from master. On
3431 * M/S emulation configuration, this function should be called
3432 * only on the master and it will handle both master and slave.
3433 */
3434 WARN_ON(link == link->ap->slave_link);
3435
aa2731ad
TH
3436 if (time_after(nodev_deadline, deadline))
3437 nodev_deadline = deadline;
3438
3439 while (1) {
3440 unsigned long now = jiffies;
3441 int ready, tmp;
3442
3443 ready = tmp = check_ready(link);
3444 if (ready > 0)
3445 return 0;
3446
b48d58f5
TH
3447 /*
3448 * -ENODEV could be transient. Ignore -ENODEV if link
aa2731ad 3449 * is online. Also, some SATA devices take a long
b48d58f5
TH
3450 * time to clear 0xff after reset. Wait for
3451 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3452 * offline.
aa2731ad
TH
3453 *
3454 * Note that some PATA controllers (pata_ali) explode
3455 * if status register is read more than once when
3456 * there's no device attached.
3457 */
3458 if (ready == -ENODEV) {
3459 if (ata_link_online(link))
3460 ready = 0;
3461 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3462 !ata_link_offline(link) &&
3463 time_before(now, nodev_deadline))
3464 ready = 0;
3465 }
3466
3467 if (ready)
3468 return ready;
3469 if (time_after(now, deadline))
3470 return -EBUSY;
3471
3472 if (!warned && time_after(now, start + 5 * HZ) &&
3473 (deadline - now > 3 * HZ)) {
a9a79dfe 3474 ata_link_warn(link,
aa2731ad
TH
3475 "link is slow to respond, please be patient "
3476 "(ready=%d)\n", tmp);
3477 warned = 1;
3478 }
3479
97750ceb 3480 ata_msleep(link->ap, 50);
aa2731ad
TH
3481 }
3482}
3483
3484/**
3485 * ata_wait_after_reset - wait for link to become ready after reset
3486 * @link: link to be waited on
3487 * @deadline: deadline jiffies for the operation
3488 * @check_ready: callback to check link readiness
3489 *
3490 * Wait for @link to become ready after reset.
3491 *
3492 * LOCKING:
3493 * EH context.
3494 *
3495 * RETURNS:
3496 * 0 if @linke is ready before @deadline; otherwise, -errno.
3497 */
2b4221bb 3498int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3499 int (*check_ready)(struct ata_link *link))
3500{
97750ceb 3501 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3502
3503 return ata_wait_ready(link, deadline, check_ready);
3504}
3505
d7bb4cc7 3506/**
936fd732
TH
3507 * sata_link_debounce - debounce SATA phy status
3508 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3509 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3510 * @deadline: deadline jiffies for the operation
d7bb4cc7 3511 *
1152b261 3512 * Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3513 * holding the same value where DET is not 1 for @duration polled
3514 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3515 * beginning of the stable state. Because DET gets stuck at 1 on
3516 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3517 * until timeout then returns 0 if DET is stable at 1.
3518 *
d4b2bab4
TH
3519 * @timeout is further limited by @deadline. The sooner of the
3520 * two is used.
3521 *
d7bb4cc7
TH
3522 * LOCKING:
3523 * Kernel thread context (may sleep)
3524 *
3525 * RETURNS:
3526 * 0 on success, -errno on failure.
3527 */
936fd732
TH
3528int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3529 unsigned long deadline)
7a7921e8 3530{
341c2c95
TH
3531 unsigned long interval = params[0];
3532 unsigned long duration = params[1];
d4b2bab4 3533 unsigned long last_jiffies, t;
d7bb4cc7
TH
3534 u32 last, cur;
3535 int rc;
3536
341c2c95 3537 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3538 if (time_before(t, deadline))
3539 deadline = t;
3540
936fd732 3541 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3542 return rc;
3543 cur &= 0xf;
3544
3545 last = cur;
3546 last_jiffies = jiffies;
3547
3548 while (1) {
97750ceb 3549 ata_msleep(link->ap, interval);
936fd732 3550 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3551 return rc;
3552 cur &= 0xf;
3553
3554 /* DET stable? */
3555 if (cur == last) {
d4b2bab4 3556 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3557 continue;
341c2c95
TH
3558 if (time_after(jiffies,
3559 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3560 return 0;
3561 continue;
3562 }
3563
3564 /* unstable, start over */
3565 last = cur;
3566 last_jiffies = jiffies;
3567
f1545154
TH
3568 /* Check deadline. If debouncing failed, return
3569 * -EPIPE to tell upper layer to lower link speed.
3570 */
d4b2bab4 3571 if (time_after(jiffies, deadline))
f1545154 3572 return -EPIPE;
d7bb4cc7
TH
3573 }
3574}
3575
3576/**
936fd732
TH
3577 * sata_link_resume - resume SATA link
3578 * @link: ATA link to resume SATA
d7bb4cc7 3579 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3580 * @deadline: deadline jiffies for the operation
d7bb4cc7 3581 *
936fd732 3582 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3583 *
3584 * LOCKING:
3585 * Kernel thread context (may sleep)
3586 *
3587 * RETURNS:
3588 * 0 on success, -errno on failure.
3589 */
936fd732
TH
3590int sata_link_resume(struct ata_link *link, const unsigned long *params,
3591 unsigned long deadline)
d7bb4cc7 3592{
5040ab67 3593 int tries = ATA_LINK_RESUME_TRIES;
ac371987 3594 u32 scontrol, serror;
81952c54
TH
3595 int rc;
3596
936fd732 3597 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3598 return rc;
7a7921e8 3599
5040ab67
TH
3600 /*
3601 * Writes to SControl sometimes get ignored under certain
3602 * controllers (ata_piix SIDPR). Make sure DET actually is
3603 * cleared.
3604 */
3605 do {
3606 scontrol = (scontrol & 0x0f0) | 0x300;
3607 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3608 return rc;
3609 /*
3610 * Some PHYs react badly if SStatus is pounded
3611 * immediately after resuming. Delay 200ms before
3612 * debouncing.
3613 */
97750ceb 3614 ata_msleep(link->ap, 200);
81952c54 3615
5040ab67
TH
3616 /* is SControl restored correctly? */
3617 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3618 return rc;
3619 } while ((scontrol & 0xf0f) != 0x300 && --tries);
7a7921e8 3620
5040ab67 3621 if ((scontrol & 0xf0f) != 0x300) {
38941c95 3622 ata_link_warn(link, "failed to resume link (SControl %X)\n",
a9a79dfe 3623 scontrol);
5040ab67
TH
3624 return 0;
3625 }
3626
3627 if (tries < ATA_LINK_RESUME_TRIES)
a9a79dfe
JP
3628 ata_link_warn(link, "link resume succeeded after %d retries\n",
3629 ATA_LINK_RESUME_TRIES - tries);
7a7921e8 3630
ac371987
TH
3631 if ((rc = sata_link_debounce(link, params, deadline)))
3632 return rc;
3633
f046519f 3634 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3635 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3636 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3637
f046519f 3638 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3639}
3640
1152b261
TH
3641/**
3642 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3643 * @link: ATA link to manipulate SControl for
3644 * @policy: LPM policy to configure
3645 * @spm_wakeup: initiate LPM transition to active state
3646 *
3647 * Manipulate the IPM field of the SControl register of @link
3648 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3649 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3650 * the link. This function also clears PHYRDY_CHG before
3651 * returning.
3652 *
3653 * LOCKING:
3654 * EH context.
3655 *
3656 * RETURNS:
3657 * 0 on succes, -errno otherwise.
3658 */
3659int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3660 bool spm_wakeup)
3661{
3662 struct ata_eh_context *ehc = &link->eh_context;
3663 bool woken_up = false;
3664 u32 scontrol;
3665 int rc;
3666
3667 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3668 if (rc)
3669 return rc;
3670
3671 switch (policy) {
3672 case ATA_LPM_MAX_POWER:
3673 /* disable all LPM transitions */
65fe1f0f 3674 scontrol |= (0x7 << 8);
1152b261
TH
3675 /* initiate transition to active state */
3676 if (spm_wakeup) {
3677 scontrol |= (0x4 << 12);
3678 woken_up = true;
3679 }
3680 break;
3681 case ATA_LPM_MED_POWER:
3682 /* allow LPM to PARTIAL */
3683 scontrol &= ~(0x1 << 8);
65fe1f0f 3684 scontrol |= (0x6 << 8);
1152b261
TH
3685 break;
3686 case ATA_LPM_MIN_POWER:
8a745f1f
KCA
3687 if (ata_link_nr_enabled(link) > 0)
3688 /* no restrictions on LPM transitions */
65fe1f0f 3689 scontrol &= ~(0x7 << 8);
8a745f1f
KCA
3690 else {
3691 /* empty port, power off */
3692 scontrol &= ~0xf;
3693 scontrol |= (0x1 << 2);
3694 }
1152b261
TH
3695 break;
3696 default:
3697 WARN_ON(1);
3698 }
3699
3700 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3701 if (rc)
3702 return rc;
3703
3704 /* give the link time to transit out of LPM state */
3705 if (woken_up)
3706 msleep(10);
3707
3708 /* clear PHYRDY_CHG from SError */
3709 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3710 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3711}
3712
f5914a46 3713/**
0aa1113d 3714 * ata_std_prereset - prepare for reset
cc0680a5 3715 * @link: ATA link to be reset
d4b2bab4 3716 * @deadline: deadline jiffies for the operation
f5914a46 3717 *
cc0680a5 3718 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3719 * prereset makes libata abort whole reset sequence and give up
3720 * that port, so prereset should be best-effort. It does its
3721 * best to prepare for reset sequence but if things go wrong, it
3722 * should just whine, not fail.
f5914a46
TH
3723 *
3724 * LOCKING:
3725 * Kernel thread context (may sleep)
3726 *
3727 * RETURNS:
3728 * 0 on success, -errno otherwise.
3729 */
0aa1113d 3730int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3731{
cc0680a5 3732 struct ata_port *ap = link->ap;
936fd732 3733 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3734 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3735 int rc;
3736
f5914a46
TH
3737 /* if we're about to do hardreset, nothing more to do */
3738 if (ehc->i.action & ATA_EH_HARDRESET)
3739 return 0;
3740
936fd732 3741 /* if SATA, resume link */
a16abc0b 3742 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3743 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3744 /* whine about phy resume failure but proceed */
3745 if (rc && rc != -EOPNOTSUPP)
a9a79dfe
JP
3746 ata_link_warn(link,
3747 "failed to resume link for reset (errno=%d)\n",
3748 rc);
f5914a46
TH
3749 }
3750
45db2f6c 3751 /* no point in trying softreset on offline link */
b1c72916 3752 if (ata_phys_link_offline(link))
45db2f6c
TH
3753 ehc->i.action &= ~ATA_EH_SOFTRESET;
3754
f5914a46
TH
3755 return 0;
3756}
3757
c2bd5804 3758/**
624d5c51
TH
3759 * sata_link_hardreset - reset link via SATA phy reset
3760 * @link: link to reset
3761 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3762 * @deadline: deadline jiffies for the operation
9dadd45b
TH
3763 * @online: optional out parameter indicating link onlineness
3764 * @check_ready: optional callback to check link readiness
c2bd5804 3765 *
624d5c51 3766 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
3767 * After hardreset, link readiness is waited upon using
3768 * ata_wait_ready() if @check_ready is specified. LLDs are
3769 * allowed to not specify @check_ready and wait itself after this
3770 * function returns. Device classification is LLD's
3771 * responsibility.
3772 *
3773 * *@online is set to one iff reset succeeded and @link is online
3774 * after reset.
c2bd5804
TH
3775 *
3776 * LOCKING:
3777 * Kernel thread context (may sleep)
3778 *
3779 * RETURNS:
3780 * 0 on success, -errno otherwise.
3781 */
624d5c51 3782int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
3783 unsigned long deadline,
3784 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 3785{
624d5c51 3786 u32 scontrol;
81952c54 3787 int rc;
852ee16a 3788
c2bd5804
TH
3789 DPRINTK("ENTER\n");
3790
9dadd45b
TH
3791 if (online)
3792 *online = false;
3793
936fd732 3794 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3795 /* SATA spec says nothing about how to reconfigure
3796 * spd. To be on the safe side, turn off phy during
3797 * reconfiguration. This works for at least ICH7 AHCI
3798 * and Sil3124.
3799 */
936fd732 3800 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3801 goto out;
81952c54 3802
a34b6fc0 3803 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3804
936fd732 3805 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3806 goto out;
1c3fae4d 3807
936fd732 3808 sata_set_spd(link);
1c3fae4d
TH
3809 }
3810
3811 /* issue phy wake/reset */
936fd732 3812 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3813 goto out;
81952c54 3814
852ee16a 3815 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3816
936fd732 3817 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3818 goto out;
c2bd5804 3819
1c3fae4d 3820 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3821 * 10.4.2 says at least 1 ms.
3822 */
97750ceb 3823 ata_msleep(link->ap, 1);
c2bd5804 3824
936fd732
TH
3825 /* bring link back */
3826 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
3827 if (rc)
3828 goto out;
3829 /* if link is offline nothing more to do */
b1c72916 3830 if (ata_phys_link_offline(link))
9dadd45b
TH
3831 goto out;
3832
3833 /* Link is online. From this point, -ENODEV too is an error. */
3834 if (online)
3835 *online = true;
3836
071f44b1 3837 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
3838 /* If PMP is supported, we have to do follow-up SRST.
3839 * Some PMPs don't send D2H Reg FIS after hardreset if
3840 * the first port is empty. Wait only for
3841 * ATA_TMOUT_PMP_SRST_WAIT.
3842 */
3843 if (check_ready) {
3844 unsigned long pmp_deadline;
3845
341c2c95
TH
3846 pmp_deadline = ata_deadline(jiffies,
3847 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
3848 if (time_after(pmp_deadline, deadline))
3849 pmp_deadline = deadline;
3850 ata_wait_ready(link, pmp_deadline, check_ready);
3851 }
3852 rc = -EAGAIN;
3853 goto out;
3854 }
3855
3856 rc = 0;
3857 if (check_ready)
3858 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 3859 out:
0cbf0711
TH
3860 if (rc && rc != -EAGAIN) {
3861 /* online is set iff link is online && reset succeeded */
3862 if (online)
3863 *online = false;
a9a79dfe 3864 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
0cbf0711 3865 }
b6103f6d
TH
3866 DPRINTK("EXIT, rc=%d\n", rc);
3867 return rc;
3868}
3869
57c9efdf
TH
3870/**
3871 * sata_std_hardreset - COMRESET w/o waiting or classification
3872 * @link: link to reset
3873 * @class: resulting class of attached device
3874 * @deadline: deadline jiffies for the operation
3875 *
3876 * Standard SATA COMRESET w/o waiting or classification.
3877 *
3878 * LOCKING:
3879 * Kernel thread context (may sleep)
3880 *
3881 * RETURNS:
3882 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3883 */
3884int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3885 unsigned long deadline)
3886{
3887 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3888 bool online;
3889 int rc;
3890
3891 /* do hardreset */
3892 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
3893 return online ? -EAGAIN : rc;
3894}
3895
c2bd5804 3896/**
203c75b8 3897 * ata_std_postreset - standard postreset callback
cc0680a5 3898 * @link: the target ata_link
c2bd5804
TH
3899 * @classes: classes of attached devices
3900 *
3901 * This function is invoked after a successful reset. Note that
3902 * the device might have been reset more than once using
3903 * different reset methods before postreset is invoked.
c2bd5804 3904 *
c2bd5804
TH
3905 * LOCKING:
3906 * Kernel thread context (may sleep)
3907 */
203c75b8 3908void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3909{
f046519f
TH
3910 u32 serror;
3911
c2bd5804
TH
3912 DPRINTK("ENTER\n");
3913
f046519f
TH
3914 /* reset complete, clear SError */
3915 if (!sata_scr_read(link, SCR_ERROR, &serror))
3916 sata_scr_write(link, SCR_ERROR, serror);
3917
c2bd5804 3918 /* print link status */
936fd732 3919 sata_print_link_status(link);
c2bd5804 3920
c2bd5804
TH
3921 DPRINTK("EXIT\n");
3922}
3923
623a3128
TH
3924/**
3925 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3926 * @dev: device to compare against
3927 * @new_class: class of the new device
3928 * @new_id: IDENTIFY page of the new device
3929 *
3930 * Compare @new_class and @new_id against @dev and determine
3931 * whether @dev is the device indicated by @new_class and
3932 * @new_id.
3933 *
3934 * LOCKING:
3935 * None.
3936 *
3937 * RETURNS:
3938 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3939 */
3373efd8
TH
3940static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3941 const u16 *new_id)
623a3128
TH
3942{
3943 const u16 *old_id = dev->id;
a0cf733b
TH
3944 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3945 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3946
3947 if (dev->class != new_class) {
a9a79dfe
JP
3948 ata_dev_info(dev, "class mismatch %d != %d\n",
3949 dev->class, new_class);
623a3128
TH
3950 return 0;
3951 }
3952
a0cf733b
TH
3953 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3954 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3955 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3956 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3957
3958 if (strcmp(model[0], model[1])) {
a9a79dfe
JP
3959 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3960 model[0], model[1]);
623a3128
TH
3961 return 0;
3962 }
3963
3964 if (strcmp(serial[0], serial[1])) {
a9a79dfe
JP
3965 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3966 serial[0], serial[1]);
623a3128
TH
3967 return 0;
3968 }
3969
623a3128
TH
3970 return 1;
3971}
3972
3973/**
fe30911b 3974 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3975 * @dev: target ATA device
bff04647 3976 * @readid_flags: read ID flags
623a3128
TH
3977 *
3978 * Re-read IDENTIFY page and make sure @dev is still attached to
3979 * the port.
3980 *
3981 * LOCKING:
3982 * Kernel thread context (may sleep)
3983 *
3984 * RETURNS:
3985 * 0 on success, negative errno otherwise
3986 */
fe30911b 3987int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3988{
5eb45c02 3989 unsigned int class = dev->class;
9af5c9c9 3990 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
3991 int rc;
3992
fe635c7e 3993 /* read ID data */
bff04647 3994 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3995 if (rc)
fe30911b 3996 return rc;
623a3128
TH
3997
3998 /* is the device still there? */
fe30911b
TH
3999 if (!ata_dev_same_device(dev, class, id))
4000 return -ENODEV;
623a3128 4001
fe635c7e 4002 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4003 return 0;
4004}
4005
4006/**
4007 * ata_dev_revalidate - Revalidate ATA device
4008 * @dev: device to revalidate
422c9daa 4009 * @new_class: new class code
fe30911b
TH
4010 * @readid_flags: read ID flags
4011 *
4012 * Re-read IDENTIFY page, make sure @dev is still attached to the
4013 * port and reconfigure it according to the new IDENTIFY page.
4014 *
4015 * LOCKING:
4016 * Kernel thread context (may sleep)
4017 *
4018 * RETURNS:
4019 * 0 on success, negative errno otherwise
4020 */
422c9daa
TH
4021int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4022 unsigned int readid_flags)
fe30911b 4023{
6ddcd3b0 4024 u64 n_sectors = dev->n_sectors;
5920dadf 4025 u64 n_native_sectors = dev->n_native_sectors;
fe30911b
TH
4026 int rc;
4027
4028 if (!ata_dev_enabled(dev))
4029 return -ENODEV;
4030
422c9daa
TH
4031 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4032 if (ata_class_enabled(new_class) &&
f0d0613d
BP
4033 new_class != ATA_DEV_ATA &&
4034 new_class != ATA_DEV_ATAPI &&
9162c657 4035 new_class != ATA_DEV_ZAC &&
f0d0613d 4036 new_class != ATA_DEV_SEMB) {
a9a79dfe
JP
4037 ata_dev_info(dev, "class mismatch %u != %u\n",
4038 dev->class, new_class);
422c9daa
TH
4039 rc = -ENODEV;
4040 goto fail;
4041 }
4042
fe30911b
TH
4043 /* re-read ID */
4044 rc = ata_dev_reread_id(dev, readid_flags);
4045 if (rc)
4046 goto fail;
623a3128
TH
4047
4048 /* configure device according to the new ID */
efdaedc4 4049 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4050 if (rc)
4051 goto fail;
4052
4053 /* verify n_sectors hasn't changed */
445d211b
TH
4054 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4055 dev->n_sectors == n_sectors)
4056 return 0;
4057
4058 /* n_sectors has changed */
a9a79dfe
JP
4059 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4060 (unsigned long long)n_sectors,
4061 (unsigned long long)dev->n_sectors);
445d211b
TH
4062
4063 /*
4064 * Something could have caused HPA to be unlocked
4065 * involuntarily. If n_native_sectors hasn't changed and the
4066 * new size matches it, keep the device.
4067 */
4068 if (dev->n_native_sectors == n_native_sectors &&
4069 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
a9a79dfe
JP
4070 ata_dev_warn(dev,
4071 "new n_sectors matches native, probably "
4072 "late HPA unlock, n_sectors updated\n");
68939ce5 4073 /* use the larger n_sectors */
445d211b 4074 return 0;
6ddcd3b0
TH
4075 }
4076
445d211b
TH
4077 /*
4078 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4079 * unlocking HPA in those cases.
4080 *
4081 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4082 */
4083 if (dev->n_native_sectors == n_native_sectors &&
4084 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4085 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
a9a79dfe
JP
4086 ata_dev_warn(dev,
4087 "old n_sectors matches native, probably "
4088 "late HPA lock, will try to unlock HPA\n");
445d211b
TH
4089 /* try unlocking HPA */
4090 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4091 rc = -EIO;
4092 } else
4093 rc = -ENODEV;
623a3128 4094
445d211b
TH
4095 /* restore original n_[native_]sectors and fail */
4096 dev->n_native_sectors = n_native_sectors;
4097 dev->n_sectors = n_sectors;
623a3128 4098 fail:
a9a79dfe 4099 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4100 return rc;
4101}
4102
6919a0a6
AC
4103struct ata_blacklist_entry {
4104 const char *model_num;
4105 const char *model_rev;
4106 unsigned long horkage;
4107};
4108
4109static const struct ata_blacklist_entry ata_device_blacklist [] = {
4110 /* Devices with DMA related problems under Linux */
4111 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4112 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4113 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4114 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4115 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4116 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4117 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4118 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4119 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
7da4c935 4120 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4121 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4122 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4123 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4124 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4125 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
7da4c935 4126 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4127 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4128 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4129 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4130 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4131 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4132 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4133 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4134 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4135 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4136 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4137 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4138 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
d17d794c 4139 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
3af9a77a 4140 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4141 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4142
18d6e9d5 4143 /* Weird ATAPI devices */
40a1d531 4144 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
6a87e42e 4145 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
a32450e1 4146 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
0523f037 4147 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
18d6e9d5 4148
6919a0a6
AC
4149 /* Devices we expect to fail diagnostics */
4150
4151 /* Devices where NCQ should be avoided */
4152 /* NCQ is slow */
2dcb407e 4153 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4154 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4155 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4156 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4157 /* NCQ is broken */
539cc7c7 4158 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4159 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4160 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4161 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
5ccfca97 4162 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
539cc7c7 4163
ac70a964 4164 /* Seagate NCQ + FLUSH CACHE firmware bug */
4d1f9082 4165 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964 4166 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4167
4d1f9082 4168 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4169 ATA_HORKAGE_FIRMWARE_WARN },
4170
4d1f9082 4171 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4172 ATA_HORKAGE_FIRMWARE_WARN },
4173
4d1f9082 4174 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964
TH
4175 ATA_HORKAGE_FIRMWARE_WARN },
4176
87809942
MB
4177 /* Seagate Momentus SpinPoint M8 seem to have FPMDA_AA issues */
4178 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
b28a613e 4179 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
87809942 4180
36e337d0
RH
4181 /* Blacklist entries taken from Silicon Image 3124/3132
4182 Windows driver .inf file - also several Linux problem reports */
4183 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4184 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4185 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4186
68b0ddb2
TH
4187 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4188 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4189
16c55b03
TH
4190 /* devices which puke on READ_NATIVE_MAX */
4191 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4192 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4193 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4194 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4195
7831387b
TH
4196 /* this one allows HPA unlocking but fails IOs on the area */
4197 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4198
93328e11
AC
4199 /* Devices which report 1 sector over size HPA */
4200 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4201 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4202 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4203
6bbfd53d
AC
4204 /* Devices which get the IVB wrong */
4205 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5 4206 /* Maybe we should just blacklist TSSTcorp... */
7da4c935 4207 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
6bbfd53d 4208
9ce8e307
JA
4209 /* Devices that do not need bridging limits applied */
4210 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
04d0f1b8 4211 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
9ce8e307 4212
9062712f
TH
4213 /* Devices which aren't very happy with higher link speeds */
4214 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
c531077f 4215 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
9062712f 4216
d0cb43b3
TH
4217 /*
4218 * Devices which choke on SETXFER. Applies only if both the
4219 * device and controller are SATA.
4220 */
cd691876 4221 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
3a25179e
VL
4222 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4223 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
cd691876
TH
4224 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4225 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
d0cb43b3 4226
f78dea06 4227 /* devices that don't properly handle queued TRIM commands */
ff7f53fb
MP
4228 { "Micron_M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4229 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4230 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4231 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4232 { "Micron_M5[15]0*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4233 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4234 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4235 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4236 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
e61f7d1c 4237 ATA_HORKAGE_ZERO_AFTER_TRIM, },
9a9324d3 4238 { "Samsung SSD 8*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
6fc4d97a 4239 ATA_HORKAGE_ZERO_AFTER_TRIM, },
e61f7d1c
MP
4240
4241 /*
4242 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4243 * (Return Zero After Trim) flags in the ATA Command Set are
4244 * unreliable in the sense that they only define what happens if
4245 * the device successfully executed the DSM TRIM command. TRIM
4246 * is only advisory, however, and the device is free to silently
4247 * ignore all or parts of the request.
4248 *
4249 * Whitelist drives that are known to reliably return zeroes
4250 * after TRIM.
4251 */
4252
4253 /*
4254 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4255 * that model before whitelisting all other intel SSDs.
4256 */
4257 { "INTEL*SSDSC2MH*", NULL, 0, },
4258
ff7f53fb
MP
4259 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4260 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
e61f7d1c
MP
4261 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4262 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4263 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4264 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4265 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
f78dea06 4266
ecd75ad5
TH
4267 /*
4268 * Some WD SATA-I drives spin up and down erratically when the link
4269 * is put into the slumber mode. We don't have full list of the
4270 * affected devices. Disable LPM if the device matches one of the
4271 * known prefixes and is SATA-1. As a side effect LPM partial is
4272 * lost too.
4273 *
4274 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4275 */
4276 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4277 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4278 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4279 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4280 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4281 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4282 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4283
6919a0a6
AC
4284 /* End Marker */
4285 { }
1da177e4 4286};
2e9edbf8 4287
75683fe7 4288static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4289{
8bfa79fc
TH
4290 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4291 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4292 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4293
8bfa79fc
TH
4294 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4295 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4296
6919a0a6 4297 while (ad->model_num) {
1c402799 4298 if (glob_match(ad->model_num, model_num)) {
6919a0a6
AC
4299 if (ad->model_rev == NULL)
4300 return ad->horkage;
1c402799 4301 if (glob_match(ad->model_rev, model_rev))
6919a0a6 4302 return ad->horkage;
f4b15fef 4303 }
6919a0a6 4304 ad++;
f4b15fef 4305 }
1da177e4
LT
4306 return 0;
4307}
4308
6919a0a6
AC
4309static int ata_dma_blacklisted(const struct ata_device *dev)
4310{
4311 /* We don't support polling DMA.
4312 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4313 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4314 */
9af5c9c9 4315 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4316 (dev->flags & ATA_DFLAG_CDB_INTR))
4317 return 1;
75683fe7 4318 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4319}
4320
6bbfd53d
AC
4321/**
4322 * ata_is_40wire - check drive side detection
4323 * @dev: device
4324 *
4325 * Perform drive side detection decoding, allowing for device vendors
4326 * who can't follow the documentation.
4327 */
4328
4329static int ata_is_40wire(struct ata_device *dev)
4330{
4331 if (dev->horkage & ATA_HORKAGE_IVB)
4332 return ata_drive_40wire_relaxed(dev->id);
4333 return ata_drive_40wire(dev->id);
4334}
4335
15a5551c
AC
4336/**
4337 * cable_is_40wire - 40/80/SATA decider
4338 * @ap: port to consider
4339 *
4340 * This function encapsulates the policy for speed management
4341 * in one place. At the moment we don't cache the result but
4342 * there is a good case for setting ap->cbl to the result when
4343 * we are called with unknown cables (and figuring out if it
4344 * impacts hotplug at all).
4345 *
4346 * Return 1 if the cable appears to be 40 wire.
4347 */
4348
4349static int cable_is_40wire(struct ata_port *ap)
4350{
4351 struct ata_link *link;
4352 struct ata_device *dev;
4353
4a9c7b33 4354 /* If the controller thinks we are 40 wire, we are. */
15a5551c
AC
4355 if (ap->cbl == ATA_CBL_PATA40)
4356 return 1;
4a9c7b33
TH
4357
4358 /* If the controller thinks we are 80 wire, we are. */
15a5551c
AC
4359 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4360 return 0;
4a9c7b33
TH
4361
4362 /* If the system is known to be 40 wire short cable (eg
4363 * laptop), then we allow 80 wire modes even if the drive
4364 * isn't sure.
4365 */
f792068e
AC
4366 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4367 return 0;
4a9c7b33
TH
4368
4369 /* If the controller doesn't know, we scan.
4370 *
4371 * Note: We look for all 40 wire detects at this point. Any
4372 * 80 wire detect is taken to be 80 wire cable because
4373 * - in many setups only the one drive (slave if present) will
4374 * give a valid detect
4375 * - if you have a non detect capable drive you don't want it
4376 * to colour the choice
4377 */
1eca4365
TH
4378 ata_for_each_link(link, ap, EDGE) {
4379 ata_for_each_dev(dev, link, ENABLED) {
4380 if (!ata_is_40wire(dev))
15a5551c
AC
4381 return 0;
4382 }
4383 }
4384 return 1;
4385}
4386
a6d5a51c
TH
4387/**
4388 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4389 * @dev: Device to compute xfermask for
4390 *
acf356b1
TH
4391 * Compute supported xfermask of @dev and store it in
4392 * dev->*_mask. This function is responsible for applying all
4393 * known limits including host controller limits, device
4394 * blacklist, etc...
a6d5a51c
TH
4395 *
4396 * LOCKING:
4397 * None.
a6d5a51c 4398 */
3373efd8 4399static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4400{
9af5c9c9
TH
4401 struct ata_link *link = dev->link;
4402 struct ata_port *ap = link->ap;
cca3974e 4403 struct ata_host *host = ap->host;
a6d5a51c 4404 unsigned long xfer_mask;
1da177e4 4405
37deecb5 4406 /* controller modes available */
565083e1
TH
4407 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4408 ap->mwdma_mask, ap->udma_mask);
4409
8343f889 4410 /* drive modes available */
37deecb5
TH
4411 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4412 dev->mwdma_mask, dev->udma_mask);
4413 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4414
b352e57d
AC
4415 /*
4416 * CFA Advanced TrueIDE timings are not allowed on a shared
4417 * cable
4418 */
4419 if (ata_dev_pair(dev)) {
4420 /* No PIO5 or PIO6 */
4421 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4422 /* No MWDMA3 or MWDMA 4 */
4423 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4424 }
4425
37deecb5
TH
4426 if (ata_dma_blacklisted(dev)) {
4427 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4428 ata_dev_warn(dev,
4429 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4430 }
a6d5a51c 4431
14d66ab7 4432 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4433 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5 4434 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4435 ata_dev_warn(dev,
4436 "simplex DMA is claimed by other device, disabling DMA\n");
5444a6f4 4437 }
565083e1 4438
e424675f
JG
4439 if (ap->flags & ATA_FLAG_NO_IORDY)
4440 xfer_mask &= ata_pio_mask_no_iordy(dev);
4441
5444a6f4 4442 if (ap->ops->mode_filter)
a76b62ca 4443 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4444
8343f889
RH
4445 /* Apply cable rule here. Don't apply it early because when
4446 * we handle hot plug the cable type can itself change.
4447 * Check this last so that we know if the transfer rate was
4448 * solely limited by the cable.
4449 * Unknown or 80 wire cables reported host side are checked
4450 * drive side as well. Cases where we know a 40wire cable
4451 * is used safely for 80 are not checked here.
4452 */
4453 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4454 /* UDMA/44 or higher would be available */
15a5551c 4455 if (cable_is_40wire(ap)) {
a9a79dfe
JP
4456 ata_dev_warn(dev,
4457 "limited to UDMA/33 due to 40-wire cable\n");
8343f889
RH
4458 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4459 }
4460
565083e1
TH
4461 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4462 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4463}
4464
1da177e4
LT
4465/**
4466 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4467 * @dev: Device to which command will be sent
4468 *
780a87f7
JG
4469 * Issue SET FEATURES - XFER MODE command to device @dev
4470 * on port @ap.
4471 *
1da177e4 4472 * LOCKING:
0cba632b 4473 * PCI/etc. bus probe sem.
83206a29
TH
4474 *
4475 * RETURNS:
4476 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4477 */
4478
3373efd8 4479static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4480{
a0123703 4481 struct ata_taskfile tf;
83206a29 4482 unsigned int err_mask;
1da177e4
LT
4483
4484 /* set up set-features taskfile */
4485 DPRINTK("set features - xfer mode\n");
4486
464cf177
TH
4487 /* Some controllers and ATAPI devices show flaky interrupt
4488 * behavior after setting xfer mode. Use polling instead.
4489 */
3373efd8 4490 ata_tf_init(dev, &tf);
a0123703
TH
4491 tf.command = ATA_CMD_SET_FEATURES;
4492 tf.feature = SETFEATURES_XFER;
464cf177 4493 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4494 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4495 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4496 if (ata_pio_need_iordy(dev))
4497 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4498 /* If the device has IORDY and the controller does not - turn it off */
4499 else if (ata_id_has_iordy(dev->id))
11b7becc 4500 tf.nsect = 0x01;
b9f8ab2d
AC
4501 else /* In the ancient relic department - skip all of this */
4502 return 0;
1da177e4 4503
2b789108 4504 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4505
4506 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4507 return err_mask;
4508}
1152b261 4509
9f45cbd3 4510/**
218f3d30 4511 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4512 * @dev: Device to which command will be sent
4513 * @enable: Whether to enable or disable the feature
218f3d30 4514 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4515 *
4516 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4517 * on port @ap with sector count
9f45cbd3
KCA
4518 *
4519 * LOCKING:
4520 * PCI/etc. bus probe sem.
4521 *
4522 * RETURNS:
4523 * 0 on success, AC_ERR_* mask otherwise.
4524 */
1152b261 4525unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
9f45cbd3
KCA
4526{
4527 struct ata_taskfile tf;
4528 unsigned int err_mask;
4529
4530 /* set up set-features taskfile */
4531 DPRINTK("set features - SATA features\n");
4532
4533 ata_tf_init(dev, &tf);
4534 tf.command = ATA_CMD_SET_FEATURES;
4535 tf.feature = enable;
4536 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4537 tf.protocol = ATA_PROT_NODATA;
218f3d30 4538 tf.nsect = feature;
9f45cbd3 4539
2b789108 4540 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4541
83206a29
TH
4542 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4543 return err_mask;
1da177e4 4544}
633de4cc 4545EXPORT_SYMBOL_GPL(ata_dev_set_feature);
1da177e4 4546
8bf62ece
AL
4547/**
4548 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4549 * @dev: Device to which command will be sent
e2a7f77a
RD
4550 * @heads: Number of heads (taskfile parameter)
4551 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4552 *
4553 * LOCKING:
6aff8f1f
TH
4554 * Kernel thread context (may sleep)
4555 *
4556 * RETURNS:
4557 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4558 */
3373efd8
TH
4559static unsigned int ata_dev_init_params(struct ata_device *dev,
4560 u16 heads, u16 sectors)
8bf62ece 4561{
a0123703 4562 struct ata_taskfile tf;
6aff8f1f 4563 unsigned int err_mask;
8bf62ece
AL
4564
4565 /* Number of sectors per track 1-255. Number of heads 1-16 */
4566 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4567 return AC_ERR_INVALID;
8bf62ece
AL
4568
4569 /* set up init dev params taskfile */
4570 DPRINTK("init dev params \n");
4571
3373efd8 4572 ata_tf_init(dev, &tf);
a0123703
TH
4573 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4574 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4575 tf.protocol = ATA_PROT_NODATA;
4576 tf.nsect = sectors;
4577 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4578
2b789108 4579 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4580 /* A clean abort indicates an original or just out of spec drive
4581 and we should continue as we issue the setup based on the
4582 drive reported working geometry */
4583 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4584 err_mask = 0;
8bf62ece 4585
6aff8f1f
TH
4586 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4587 return err_mask;
8bf62ece
AL
4588}
4589
1da177e4 4590/**
0cba632b
JG
4591 * ata_sg_clean - Unmap DMA memory associated with command
4592 * @qc: Command containing DMA memory to be released
4593 *
4594 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4595 *
4596 * LOCKING:
cca3974e 4597 * spin_lock_irqsave(host lock)
1da177e4 4598 */
70e6ad0c 4599void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4600{
4601 struct ata_port *ap = qc->ap;
ff2aeb1e 4602 struct scatterlist *sg = qc->sg;
1da177e4
LT
4603 int dir = qc->dma_dir;
4604
efcb3cf7 4605 WARN_ON_ONCE(sg == NULL);
1da177e4 4606
dde20207 4607 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4608
dde20207 4609 if (qc->n_elem)
5825627c 4610 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
1da177e4
LT
4611
4612 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4613 qc->sg = NULL;
1da177e4
LT
4614}
4615
1da177e4 4616/**
5895ef9a 4617 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4618 * @qc: Metadata associated with taskfile to check
4619 *
780a87f7
JG
4620 * Allow low-level driver to filter ATA PACKET commands, returning
4621 * a status indicating whether or not it is OK to use DMA for the
4622 * supplied PACKET command.
4623 *
1da177e4 4624 * LOCKING:
624d5c51
TH
4625 * spin_lock_irqsave(host lock)
4626 *
4627 * RETURNS: 0 when ATAPI DMA can be used
4628 * nonzero otherwise
4629 */
5895ef9a 4630int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4631{
4632 struct ata_port *ap = qc->ap;
71601958 4633
624d5c51
TH
4634 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4635 * few ATAPI devices choke on such DMA requests.
4636 */
6a87e42e
TH
4637 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4638 unlikely(qc->nbytes & 15))
624d5c51 4639 return 1;
e2cec771 4640
624d5c51
TH
4641 if (ap->ops->check_atapi_dma)
4642 return ap->ops->check_atapi_dma(qc);
e2cec771 4643
624d5c51
TH
4644 return 0;
4645}
1da177e4 4646
624d5c51
TH
4647/**
4648 * ata_std_qc_defer - Check whether a qc needs to be deferred
4649 * @qc: ATA command in question
4650 *
4651 * Non-NCQ commands cannot run with any other command, NCQ or
4652 * not. As upper layer only knows the queue depth, we are
4653 * responsible for maintaining exclusion. This function checks
4654 * whether a new command @qc can be issued.
4655 *
4656 * LOCKING:
4657 * spin_lock_irqsave(host lock)
4658 *
4659 * RETURNS:
4660 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4661 */
4662int ata_std_qc_defer(struct ata_queued_cmd *qc)
4663{
4664 struct ata_link *link = qc->dev->link;
e2cec771 4665
624d5c51
TH
4666 if (qc->tf.protocol == ATA_PROT_NCQ) {
4667 if (!ata_tag_valid(link->active_tag))
4668 return 0;
4669 } else {
4670 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4671 return 0;
4672 }
e2cec771 4673
624d5c51
TH
4674 return ATA_DEFER_LINK;
4675}
6912ccd5 4676
624d5c51 4677void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4678
624d5c51
TH
4679/**
4680 * ata_sg_init - Associate command with scatter-gather table.
4681 * @qc: Command to be associated
4682 * @sg: Scatter-gather table.
4683 * @n_elem: Number of elements in s/g table.
4684 *
4685 * Initialize the data-related elements of queued_cmd @qc
4686 * to point to a scatter-gather table @sg, containing @n_elem
4687 * elements.
4688 *
4689 * LOCKING:
4690 * spin_lock_irqsave(host lock)
4691 */
4692void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4693 unsigned int n_elem)
4694{
4695 qc->sg = sg;
4696 qc->n_elem = n_elem;
4697 qc->cursg = qc->sg;
4698}
bb5cb290 4699
624d5c51
TH
4700/**
4701 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4702 * @qc: Command with scatter-gather table to be mapped.
4703 *
4704 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4705 *
4706 * LOCKING:
4707 * spin_lock_irqsave(host lock)
4708 *
4709 * RETURNS:
4710 * Zero on success, negative on error.
4711 *
4712 */
4713static int ata_sg_setup(struct ata_queued_cmd *qc)
4714{
4715 struct ata_port *ap = qc->ap;
4716 unsigned int n_elem;
1da177e4 4717
624d5c51 4718 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 4719
624d5c51
TH
4720 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4721 if (n_elem < 1)
4722 return -1;
bb5cb290 4723
624d5c51 4724 DPRINTK("%d sg elements mapped\n", n_elem);
5825627c 4725 qc->orig_n_elem = qc->n_elem;
624d5c51
TH
4726 qc->n_elem = n_elem;
4727 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 4728
624d5c51 4729 return 0;
1da177e4
LT
4730}
4731
624d5c51
TH
4732/**
4733 * swap_buf_le16 - swap halves of 16-bit words in place
4734 * @buf: Buffer to swap
4735 * @buf_words: Number of 16-bit words in buffer.
4736 *
4737 * Swap halves of 16-bit words if needed to convert from
4738 * little-endian byte order to native cpu byte order, or
4739 * vice-versa.
4740 *
4741 * LOCKING:
4742 * Inherited from caller.
4743 */
4744void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 4745{
624d5c51
TH
4746#ifdef __BIG_ENDIAN
4747 unsigned int i;
8061f5f0 4748
624d5c51
TH
4749 for (i = 0; i < buf_words; i++)
4750 buf[i] = le16_to_cpu(buf[i]);
4751#endif /* __BIG_ENDIAN */
8061f5f0
TH
4752}
4753
8a8bc223 4754/**
98bd4be1
SL
4755 * ata_qc_new_init - Request an available ATA command, and initialize it
4756 * @dev: Device from whom we request an available command structure
1871ee13 4757 *
8a8bc223
TH
4758 * LOCKING:
4759 * None.
4760 */
4761
98bd4be1 4762struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
8a8bc223 4763{
98bd4be1 4764 struct ata_port *ap = dev->link->ap;
12cb5ce1 4765 struct ata_queued_cmd *qc;
8a8bc223
TH
4766
4767 /* no command while frozen */
4768 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4769 return NULL;
4770
98bd4be1 4771 /* libsas case */
5067c046 4772 if (ap->flags & ATA_FLAG_SAS_HOST) {
98bd4be1
SL
4773 tag = ata_sas_allocate_tag(ap);
4774 if (tag < 0)
4775 return NULL;
8a4aeec8 4776 }
8a8bc223 4777
98bd4be1
SL
4778 qc = __ata_qc_from_tag(ap, tag);
4779 qc->tag = tag;
4780 qc->scsicmd = NULL;
4781 qc->ap = ap;
4782 qc->dev = dev;
1da177e4 4783
98bd4be1 4784 ata_qc_reinit(qc);
1da177e4
LT
4785
4786 return qc;
4787}
4788
8a8bc223
TH
4789/**
4790 * ata_qc_free - free unused ata_queued_cmd
4791 * @qc: Command to complete
4792 *
4793 * Designed to free unused ata_queued_cmd object
4794 * in case something prevents using it.
4795 *
4796 * LOCKING:
4797 * spin_lock_irqsave(host lock)
4798 */
4799void ata_qc_free(struct ata_queued_cmd *qc)
4800{
a1104016 4801 struct ata_port *ap;
8a8bc223
TH
4802 unsigned int tag;
4803
efcb3cf7 4804 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
a1104016 4805 ap = qc->ap;
8a8bc223
TH
4806
4807 qc->flags = 0;
4808 tag = qc->tag;
4809 if (likely(ata_tag_valid(tag))) {
4810 qc->tag = ATA_TAG_POISON;
5067c046 4811 if (ap->flags & ATA_FLAG_SAS_HOST)
98bd4be1 4812 ata_sas_free_tag(tag, ap);
8a8bc223
TH
4813 }
4814}
4815
76014427 4816void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4817{
a1104016
JL
4818 struct ata_port *ap;
4819 struct ata_link *link;
dedaf2b0 4820
efcb3cf7
TH
4821 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4822 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
a1104016
JL
4823 ap = qc->ap;
4824 link = qc->dev->link;
1da177e4
LT
4825
4826 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4827 ata_sg_clean(qc);
4828
7401abf2 4829 /* command should be marked inactive atomically with qc completion */
da917d69 4830 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 4831 link->sactive &= ~(1 << qc->tag);
da917d69
TH
4832 if (!link->sactive)
4833 ap->nr_active_links--;
4834 } else {
9af5c9c9 4835 link->active_tag = ATA_TAG_POISON;
da917d69
TH
4836 ap->nr_active_links--;
4837 }
4838
4839 /* clear exclusive status */
4840 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4841 ap->excl_link == link))
4842 ap->excl_link = NULL;
7401abf2 4843
3f3791d3
AL
4844 /* atapi: mark qc as inactive to prevent the interrupt handler
4845 * from completing the command twice later, before the error handler
4846 * is called. (when rc != 0 and atapi request sense is needed)
4847 */
4848 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4849 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4850
1da177e4 4851 /* call completion callback */
77853bf2 4852 qc->complete_fn(qc);
1da177e4
LT
4853}
4854
39599a53
TH
4855static void fill_result_tf(struct ata_queued_cmd *qc)
4856{
4857 struct ata_port *ap = qc->ap;
4858
39599a53 4859 qc->result_tf.flags = qc->tf.flags;
22183bf5 4860 ap->ops->qc_fill_rtf(qc);
39599a53
TH
4861}
4862
00115e0f
TH
4863static void ata_verify_xfer(struct ata_queued_cmd *qc)
4864{
4865 struct ata_device *dev = qc->dev;
4866
00115e0f
TH
4867 if (ata_is_nodata(qc->tf.protocol))
4868 return;
4869
4870 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4871 return;
4872
4873 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4874}
4875
f686bcb8
TH
4876/**
4877 * ata_qc_complete - Complete an active ATA command
4878 * @qc: Command to complete
f686bcb8 4879 *
1aadf5c3
TH
4880 * Indicate to the mid and upper layers that an ATA command has
4881 * completed, with either an ok or not-ok status.
4882 *
4883 * Refrain from calling this function multiple times when
4884 * successfully completing multiple NCQ commands.
4885 * ata_qc_complete_multiple() should be used instead, which will
4886 * properly update IRQ expect state.
f686bcb8
TH
4887 *
4888 * LOCKING:
cca3974e 4889 * spin_lock_irqsave(host lock)
f686bcb8
TH
4890 */
4891void ata_qc_complete(struct ata_queued_cmd *qc)
4892{
4893 struct ata_port *ap = qc->ap;
4894
4895 /* XXX: New EH and old EH use different mechanisms to
4896 * synchronize EH with regular execution path.
4897 *
4898 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4899 * Normal execution path is responsible for not accessing a
4900 * failed qc. libata core enforces the rule by returning NULL
4901 * from ata_qc_from_tag() for failed qcs.
4902 *
4903 * Old EH depends on ata_qc_complete() nullifying completion
4904 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4905 * not synchronize with interrupt handler. Only PIO task is
4906 * taken care of.
4907 */
4908 if (ap->ops->error_handler) {
4dbfa39b
TH
4909 struct ata_device *dev = qc->dev;
4910 struct ata_eh_info *ehi = &dev->link->eh_info;
4911
f686bcb8
TH
4912 if (unlikely(qc->err_mask))
4913 qc->flags |= ATA_QCFLAG_FAILED;
4914
f08dc1ac
TH
4915 /*
4916 * Finish internal commands without any further processing
4917 * and always with the result TF filled.
4918 */
4919 if (unlikely(ata_tag_internal(qc->tag))) {
f4b31db9 4920 fill_result_tf(qc);
255c03d1 4921 trace_ata_qc_complete_internal(qc);
f08dc1ac
TH
4922 __ata_qc_complete(qc);
4923 return;
4924 }
f4b31db9 4925
f08dc1ac
TH
4926 /*
4927 * Non-internal qc has failed. Fill the result TF and
4928 * summon EH.
4929 */
4930 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4931 fill_result_tf(qc);
255c03d1 4932 trace_ata_qc_complete_failed(qc);
f08dc1ac 4933 ata_qc_schedule_eh(qc);
f4b31db9 4934 return;
f686bcb8
TH
4935 }
4936
4dc738ed
TH
4937 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4938
f686bcb8
TH
4939 /* read result TF if requested */
4940 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4941 fill_result_tf(qc);
f686bcb8 4942
255c03d1 4943 trace_ata_qc_complete_done(qc);
4dbfa39b
TH
4944 /* Some commands need post-processing after successful
4945 * completion.
4946 */
4947 switch (qc->tf.command) {
4948 case ATA_CMD_SET_FEATURES:
4949 if (qc->tf.feature != SETFEATURES_WC_ON &&
4950 qc->tf.feature != SETFEATURES_WC_OFF)
4951 break;
4952 /* fall through */
4953 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4954 case ATA_CMD_SET_MULTI: /* multi_count changed */
4955 /* revalidate device */
4956 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4957 ata_port_schedule_eh(ap);
4958 break;
054a5fba
TH
4959
4960 case ATA_CMD_SLEEP:
4961 dev->flags |= ATA_DFLAG_SLEEPING;
4962 break;
4dbfa39b
TH
4963 }
4964
00115e0f
TH
4965 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4966 ata_verify_xfer(qc);
4967
f686bcb8
TH
4968 __ata_qc_complete(qc);
4969 } else {
4970 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4971 return;
4972
4973 /* read result TF if failed or requested */
4974 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4975 fill_result_tf(qc);
f686bcb8
TH
4976
4977 __ata_qc_complete(qc);
4978 }
4979}
4980
dedaf2b0
TH
4981/**
4982 * ata_qc_complete_multiple - Complete multiple qcs successfully
4983 * @ap: port in question
4984 * @qc_active: new qc_active mask
dedaf2b0
TH
4985 *
4986 * Complete in-flight commands. This functions is meant to be
4987 * called from low-level driver's interrupt routine to complete
4988 * requests normally. ap->qc_active and @qc_active is compared
4989 * and commands are completed accordingly.
4990 *
1aadf5c3
TH
4991 * Always use this function when completing multiple NCQ commands
4992 * from IRQ handlers instead of calling ata_qc_complete()
4993 * multiple times to keep IRQ expect status properly in sync.
4994 *
dedaf2b0 4995 * LOCKING:
cca3974e 4996 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4997 *
4998 * RETURNS:
4999 * Number of completed commands on success, -errno otherwise.
5000 */
79f97dad 5001int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
dedaf2b0
TH
5002{
5003 int nr_done = 0;
5004 u32 done_mask;
dedaf2b0
TH
5005
5006 done_mask = ap->qc_active ^ qc_active;
5007
5008 if (unlikely(done_mask & qc_active)) {
a9a79dfe
JP
5009 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5010 ap->qc_active, qc_active);
dedaf2b0
TH
5011 return -EINVAL;
5012 }
5013
43768180 5014 while (done_mask) {
dedaf2b0 5015 struct ata_queued_cmd *qc;
43768180 5016 unsigned int tag = __ffs(done_mask);
dedaf2b0 5017
43768180
JA
5018 qc = ata_qc_from_tag(ap, tag);
5019 if (qc) {
dedaf2b0
TH
5020 ata_qc_complete(qc);
5021 nr_done++;
5022 }
43768180 5023 done_mask &= ~(1 << tag);
dedaf2b0
TH
5024 }
5025
5026 return nr_done;
5027}
5028
1da177e4
LT
5029/**
5030 * ata_qc_issue - issue taskfile to device
5031 * @qc: command to issue to device
5032 *
5033 * Prepare an ATA command to submission to device.
5034 * This includes mapping the data into a DMA-able
5035 * area, filling in the S/G table, and finally
5036 * writing the taskfile to hardware, starting the command.
5037 *
5038 * LOCKING:
cca3974e 5039 * spin_lock_irqsave(host lock)
1da177e4 5040 */
8e0e694a 5041void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5042{
5043 struct ata_port *ap = qc->ap;
9af5c9c9 5044 struct ata_link *link = qc->dev->link;
405e66b3 5045 u8 prot = qc->tf.protocol;
1da177e4 5046
dedaf2b0
TH
5047 /* Make sure only one non-NCQ command is outstanding. The
5048 * check is skipped for old EH because it reuses active qc to
5049 * request ATAPI sense.
5050 */
efcb3cf7 5051 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5052
1973a023 5053 if (ata_is_ncq(prot)) {
efcb3cf7 5054 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
da917d69
TH
5055
5056 if (!link->sactive)
5057 ap->nr_active_links++;
9af5c9c9 5058 link->sactive |= 1 << qc->tag;
dedaf2b0 5059 } else {
efcb3cf7 5060 WARN_ON_ONCE(link->sactive);
da917d69
TH
5061
5062 ap->nr_active_links++;
9af5c9c9 5063 link->active_tag = qc->tag;
dedaf2b0
TH
5064 }
5065
e4a70e76 5066 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5067 ap->qc_active |= 1 << qc->tag;
e4a70e76 5068
60f5d6ef
TH
5069 /*
5070 * We guarantee to LLDs that they will have at least one
f92a2636
TH
5071 * non-zero sg if the command is a data command.
5072 */
60f5d6ef
TH
5073 if (WARN_ON_ONCE(ata_is_data(prot) &&
5074 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5075 goto sys_err;
f92a2636 5076
405e66b3 5077 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5078 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7 5079 if (ata_sg_setup(qc))
60f5d6ef 5080 goto sys_err;
1da177e4 5081
cf480626 5082 /* if device is sleeping, schedule reset and abort the link */
054a5fba 5083 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 5084 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
5085 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5086 ata_link_abort(link);
5087 return;
5088 }
5089
1da177e4 5090 ap->ops->qc_prep(qc);
255c03d1 5091 trace_ata_qc_issue(qc);
8e0e694a
TH
5092 qc->err_mask |= ap->ops->qc_issue(qc);
5093 if (unlikely(qc->err_mask))
5094 goto err;
5095 return;
1da177e4 5096
60f5d6ef 5097sys_err:
8e0e694a
TH
5098 qc->err_mask |= AC_ERR_SYSTEM;
5099err:
5100 ata_qc_complete(qc);
1da177e4
LT
5101}
5102
34bf2170
TH
5103/**
5104 * sata_scr_valid - test whether SCRs are accessible
936fd732 5105 * @link: ATA link to test SCR accessibility for
34bf2170 5106 *
936fd732 5107 * Test whether SCRs are accessible for @link.
34bf2170
TH
5108 *
5109 * LOCKING:
5110 * None.
5111 *
5112 * RETURNS:
5113 * 1 if SCRs are accessible, 0 otherwise.
5114 */
936fd732 5115int sata_scr_valid(struct ata_link *link)
34bf2170 5116{
936fd732
TH
5117 struct ata_port *ap = link->ap;
5118
a16abc0b 5119 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5120}
5121
5122/**
5123 * sata_scr_read - read SCR register of the specified port
936fd732 5124 * @link: ATA link to read SCR for
34bf2170
TH
5125 * @reg: SCR to read
5126 * @val: Place to store read value
5127 *
936fd732 5128 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
5129 * guaranteed to succeed if @link is ap->link, the cable type of
5130 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5131 *
5132 * LOCKING:
633273a3 5133 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5134 *
5135 * RETURNS:
5136 * 0 on success, negative errno on failure.
5137 */
936fd732 5138int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5139{
633273a3 5140 if (ata_is_host_link(link)) {
633273a3 5141 if (sata_scr_valid(link))
82ef04fb 5142 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
5143 return -EOPNOTSUPP;
5144 }
5145
5146 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
5147}
5148
5149/**
5150 * sata_scr_write - write SCR register of the specified port
936fd732 5151 * @link: ATA link to write SCR for
34bf2170
TH
5152 * @reg: SCR to write
5153 * @val: value to write
5154 *
936fd732 5155 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
5156 * guaranteed to succeed if @link is ap->link, the cable type of
5157 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5158 *
5159 * LOCKING:
633273a3 5160 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5161 *
5162 * RETURNS:
5163 * 0 on success, negative errno on failure.
5164 */
936fd732 5165int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5166{
633273a3 5167 if (ata_is_host_link(link)) {
633273a3 5168 if (sata_scr_valid(link))
82ef04fb 5169 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
5170 return -EOPNOTSUPP;
5171 }
936fd732 5172
633273a3 5173 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5174}
5175
5176/**
5177 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5178 * @link: ATA link to write SCR for
34bf2170
TH
5179 * @reg: SCR to write
5180 * @val: value to write
5181 *
5182 * This function is identical to sata_scr_write() except that this
5183 * function performs flush after writing to the register.
5184 *
5185 * LOCKING:
633273a3 5186 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5187 *
5188 * RETURNS:
5189 * 0 on success, negative errno on failure.
5190 */
936fd732 5191int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5192{
633273a3 5193 if (ata_is_host_link(link)) {
633273a3 5194 int rc;
da3dbb17 5195
633273a3 5196 if (sata_scr_valid(link)) {
82ef04fb 5197 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 5198 if (rc == 0)
82ef04fb 5199 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
5200 return rc;
5201 }
5202 return -EOPNOTSUPP;
34bf2170 5203 }
633273a3
TH
5204
5205 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5206}
5207
5208/**
b1c72916 5209 * ata_phys_link_online - test whether the given link is online
936fd732 5210 * @link: ATA link to test
34bf2170 5211 *
936fd732
TH
5212 * Test whether @link is online. Note that this function returns
5213 * 0 if online status of @link cannot be obtained, so
5214 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5215 *
5216 * LOCKING:
5217 * None.
5218 *
5219 * RETURNS:
b5b3fa38 5220 * True if the port online status is available and online.
34bf2170 5221 */
b1c72916 5222bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5223{
5224 u32 sstatus;
5225
936fd732 5226 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5227 ata_sstatus_online(sstatus))
b5b3fa38
TH
5228 return true;
5229 return false;
34bf2170
TH
5230}
5231
5232/**
b1c72916 5233 * ata_phys_link_offline - test whether the given link is offline
936fd732 5234 * @link: ATA link to test
34bf2170 5235 *
936fd732
TH
5236 * Test whether @link is offline. Note that this function
5237 * returns 0 if offline status of @link cannot be obtained, so
5238 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5239 *
5240 * LOCKING:
5241 * None.
5242 *
5243 * RETURNS:
b5b3fa38 5244 * True if the port offline status is available and offline.
34bf2170 5245 */
b1c72916 5246bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5247{
5248 u32 sstatus;
5249
936fd732 5250 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5251 !ata_sstatus_online(sstatus))
b5b3fa38
TH
5252 return true;
5253 return false;
34bf2170 5254}
0baab86b 5255
b1c72916
TH
5256/**
5257 * ata_link_online - test whether the given link is online
5258 * @link: ATA link to test
5259 *
5260 * Test whether @link is online. This is identical to
5261 * ata_phys_link_online() when there's no slave link. When
5262 * there's a slave link, this function should only be called on
5263 * the master link and will return true if any of M/S links is
5264 * online.
5265 *
5266 * LOCKING:
5267 * None.
5268 *
5269 * RETURNS:
5270 * True if the port online status is available and online.
5271 */
5272bool ata_link_online(struct ata_link *link)
5273{
5274 struct ata_link *slave = link->ap->slave_link;
5275
5276 WARN_ON(link == slave); /* shouldn't be called on slave link */
5277
5278 return ata_phys_link_online(link) ||
5279 (slave && ata_phys_link_online(slave));
5280}
5281
5282/**
5283 * ata_link_offline - test whether the given link is offline
5284 * @link: ATA link to test
5285 *
5286 * Test whether @link is offline. This is identical to
5287 * ata_phys_link_offline() when there's no slave link. When
5288 * there's a slave link, this function should only be called on
5289 * the master link and will return true if both M/S links are
5290 * offline.
5291 *
5292 * LOCKING:
5293 * None.
5294 *
5295 * RETURNS:
5296 * True if the port offline status is available and offline.
5297 */
5298bool ata_link_offline(struct ata_link *link)
5299{
5300 struct ata_link *slave = link->ap->slave_link;
5301
5302 WARN_ON(link == slave); /* shouldn't be called on slave link */
5303
5304 return ata_phys_link_offline(link) &&
5305 (!slave || ata_phys_link_offline(slave));
5306}
5307
6ffa01d8 5308#ifdef CONFIG_PM
bc6e7c4b
DW
5309static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5310 unsigned int action, unsigned int ehi_flags,
5311 bool async)
500530f6 5312{
5ef41082 5313 struct ata_link *link;
500530f6 5314 unsigned long flags;
500530f6 5315
5ef41082
LM
5316 /* Previous resume operation might still be in
5317 * progress. Wait for PM_PENDING to clear.
5318 */
5319 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5320 ata_port_wait_eh(ap);
5321 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5322 }
500530f6 5323
5ef41082
LM
5324 /* request PM ops to EH */
5325 spin_lock_irqsave(ap->lock, flags);
500530f6 5326
5ef41082 5327 ap->pm_mesg = mesg;
5ef41082
LM
5328 ap->pflags |= ATA_PFLAG_PM_PENDING;
5329 ata_for_each_link(link, ap, HOST_FIRST) {
5330 link->eh_info.action |= action;
5331 link->eh_info.flags |= ehi_flags;
5332 }
500530f6 5333
5ef41082 5334 ata_port_schedule_eh(ap);
500530f6 5335
5ef41082 5336 spin_unlock_irqrestore(ap->lock, flags);
500530f6 5337
2fcbdcb4 5338 if (!async) {
5ef41082
LM
5339 ata_port_wait_eh(ap);
5340 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
500530f6 5341 }
500530f6
TH
5342}
5343
bc6e7c4b
DW
5344/*
5345 * On some hardware, device fails to respond after spun down for suspend. As
5346 * the device won't be used before being resumed, we don't need to touch the
5347 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5348 *
5349 * http://thread.gmane.org/gmane.linux.ide/46764
5350 */
5351static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5352 | ATA_EHI_NO_AUTOPSY
5353 | ATA_EHI_NO_RECOVERY;
5354
5355static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5ef41082 5356{
bc6e7c4b 5357 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5ef41082
LM
5358}
5359
bc6e7c4b 5360static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
2fcbdcb4 5361{
bc6e7c4b 5362 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
2fcbdcb4
DW
5363}
5364
bc6e7c4b 5365static int ata_port_pm_suspend(struct device *dev)
5ef41082 5366{
bc6e7c4b
DW
5367 struct ata_port *ap = to_ata_port(dev);
5368
5ef41082
LM
5369 if (pm_runtime_suspended(dev))
5370 return 0;
5371
bc6e7c4b
DW
5372 ata_port_suspend(ap, PMSG_SUSPEND);
5373 return 0;
33574d68
LM
5374}
5375
bc6e7c4b 5376static int ata_port_pm_freeze(struct device *dev)
33574d68 5377{
bc6e7c4b
DW
5378 struct ata_port *ap = to_ata_port(dev);
5379
33574d68 5380 if (pm_runtime_suspended(dev))
f5e6d0d0 5381 return 0;
33574d68 5382
bc6e7c4b
DW
5383 ata_port_suspend(ap, PMSG_FREEZE);
5384 return 0;
33574d68
LM
5385}
5386
bc6e7c4b 5387static int ata_port_pm_poweroff(struct device *dev)
33574d68 5388{
bc6e7c4b
DW
5389 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5390 return 0;
5ef41082
LM
5391}
5392
bc6e7c4b
DW
5393static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5394 | ATA_EHI_QUIET;
5ef41082 5395
bc6e7c4b
DW
5396static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5397{
5398 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5ef41082
LM
5399}
5400
bc6e7c4b 5401static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
2fcbdcb4 5402{
bc6e7c4b 5403 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
2fcbdcb4
DW
5404}
5405
bc6e7c4b 5406static int ata_port_pm_resume(struct device *dev)
e90b1e5a 5407{
200421a8 5408 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
bc6e7c4b
DW
5409 pm_runtime_disable(dev);
5410 pm_runtime_set_active(dev);
5411 pm_runtime_enable(dev);
5412 return 0;
e90b1e5a
LM
5413}
5414
7e15e9be
AL
5415/*
5416 * For ODDs, the upper layer will poll for media change every few seconds,
5417 * which will make it enter and leave suspend state every few seconds. And
5418 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5419 * is very little and the ODD may malfunction after constantly being reset.
5420 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5421 * ODD is attached to the port.
5422 */
9ee4f393
LM
5423static int ata_port_runtime_idle(struct device *dev)
5424{
7e15e9be
AL
5425 struct ata_port *ap = to_ata_port(dev);
5426 struct ata_link *link;
5427 struct ata_device *adev;
5428
5429 ata_for_each_link(link, ap, HOST_FIRST) {
5430 ata_for_each_dev(adev, link, ENABLED)
5431 if (adev->class == ATA_DEV_ATAPI &&
5432 !zpodd_dev_enabled(adev))
5433 return -EBUSY;
5434 }
5435
45f0a85c 5436 return 0;
9ee4f393
LM
5437}
5438
a7ff60db
AL
5439static int ata_port_runtime_suspend(struct device *dev)
5440{
bc6e7c4b
DW
5441 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5442 return 0;
a7ff60db
AL
5443}
5444
5445static int ata_port_runtime_resume(struct device *dev)
5446{
bc6e7c4b
DW
5447 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5448 return 0;
a7ff60db
AL
5449}
5450
5ef41082 5451static const struct dev_pm_ops ata_port_pm_ops = {
bc6e7c4b
DW
5452 .suspend = ata_port_pm_suspend,
5453 .resume = ata_port_pm_resume,
5454 .freeze = ata_port_pm_freeze,
5455 .thaw = ata_port_pm_resume,
5456 .poweroff = ata_port_pm_poweroff,
5457 .restore = ata_port_pm_resume,
9ee4f393 5458
a7ff60db
AL
5459 .runtime_suspend = ata_port_runtime_suspend,
5460 .runtime_resume = ata_port_runtime_resume,
9ee4f393 5461 .runtime_idle = ata_port_runtime_idle,
5ef41082
LM
5462};
5463
2fcbdcb4
DW
5464/* sas ports don't participate in pm runtime management of ata_ports,
5465 * and need to resume ata devices at the domain level, not the per-port
5466 * level. sas suspend/resume is async to allow parallel port recovery
5467 * since sas has multiple ata_port instances per Scsi_Host.
5468 */
bc6e7c4b 5469void ata_sas_port_suspend(struct ata_port *ap)
2fcbdcb4 5470{
bc6e7c4b 5471 ata_port_suspend_async(ap, PMSG_SUSPEND);
2fcbdcb4 5472}
bc6e7c4b 5473EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
2fcbdcb4 5474
bc6e7c4b 5475void ata_sas_port_resume(struct ata_port *ap)
2fcbdcb4 5476{
bc6e7c4b 5477 ata_port_resume_async(ap, PMSG_RESUME);
2fcbdcb4 5478}
bc6e7c4b 5479EXPORT_SYMBOL_GPL(ata_sas_port_resume);
2fcbdcb4 5480
500530f6 5481/**
cca3974e
JG
5482 * ata_host_suspend - suspend host
5483 * @host: host to suspend
500530f6
TH
5484 * @mesg: PM message
5485 *
5ef41082 5486 * Suspend @host. Actual operation is performed by port suspend.
500530f6 5487 */
cca3974e 5488int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5489{
5ef41082
LM
5490 host->dev->power.power_state = mesg;
5491 return 0;
500530f6
TH
5492}
5493
5494/**
cca3974e
JG
5495 * ata_host_resume - resume host
5496 * @host: host to resume
500530f6 5497 *
5ef41082 5498 * Resume @host. Actual operation is performed by port resume.
500530f6 5499 */
cca3974e 5500void ata_host_resume(struct ata_host *host)
500530f6 5501{
72ad6ec4 5502 host->dev->power.power_state = PMSG_ON;
500530f6 5503}
6ffa01d8 5504#endif
500530f6 5505
5ef41082
LM
5506struct device_type ata_port_type = {
5507 .name = "ata_port",
5508#ifdef CONFIG_PM
5509 .pm = &ata_port_pm_ops,
5510#endif
5511};
5512
3ef3b43d
TH
5513/**
5514 * ata_dev_init - Initialize an ata_device structure
5515 * @dev: Device structure to initialize
5516 *
5517 * Initialize @dev in preparation for probing.
5518 *
5519 * LOCKING:
5520 * Inherited from caller.
5521 */
5522void ata_dev_init(struct ata_device *dev)
5523{
b1c72916 5524 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5525 struct ata_port *ap = link->ap;
72fa4b74
TH
5526 unsigned long flags;
5527
b1c72916 5528 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5529 link->sata_spd_limit = link->hw_sata_spd_limit;
5530 link->sata_spd = 0;
5a04bf4b 5531
72fa4b74
TH
5532 /* High bits of dev->flags are used to record warm plug
5533 * requests which occur asynchronously. Synchronize using
cca3974e 5534 * host lock.
72fa4b74 5535 */
ba6a1308 5536 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5537 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5538 dev->horkage = 0;
ba6a1308 5539 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5540
99cf610a
TH
5541 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5542 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
3ef3b43d
TH
5543 dev->pio_mask = UINT_MAX;
5544 dev->mwdma_mask = UINT_MAX;
5545 dev->udma_mask = UINT_MAX;
5546}
5547
4fb37a25
TH
5548/**
5549 * ata_link_init - Initialize an ata_link structure
5550 * @ap: ATA port link is attached to
5551 * @link: Link structure to initialize
8989805d 5552 * @pmp: Port multiplier port number
4fb37a25
TH
5553 *
5554 * Initialize @link.
5555 *
5556 * LOCKING:
5557 * Kernel thread context (may sleep)
5558 */
fb7fd614 5559void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5560{
5561 int i;
5562
5563 /* clear everything except for devices */
d9027470
GG
5564 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5565 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
4fb37a25
TH
5566
5567 link->ap = ap;
8989805d 5568 link->pmp = pmp;
4fb37a25
TH
5569 link->active_tag = ATA_TAG_POISON;
5570 link->hw_sata_spd_limit = UINT_MAX;
5571
5572 /* can't use iterator, ap isn't initialized yet */
5573 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5574 struct ata_device *dev = &link->device[i];
5575
5576 dev->link = link;
5577 dev->devno = dev - link->device;
110f66d2
TH
5578#ifdef CONFIG_ATA_ACPI
5579 dev->gtf_filter = ata_acpi_gtf_filter;
5580#endif
4fb37a25
TH
5581 ata_dev_init(dev);
5582 }
5583}
5584
5585/**
5586 * sata_link_init_spd - Initialize link->sata_spd_limit
5587 * @link: Link to configure sata_spd_limit for
5588 *
5589 * Initialize @link->[hw_]sata_spd_limit to the currently
5590 * configured value.
5591 *
5592 * LOCKING:
5593 * Kernel thread context (may sleep).
5594 *
5595 * RETURNS:
5596 * 0 on success, -errno on failure.
5597 */
fb7fd614 5598int sata_link_init_spd(struct ata_link *link)
4fb37a25 5599{
33267325 5600 u8 spd;
4fb37a25
TH
5601 int rc;
5602
d127ea7b 5603 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5604 if (rc)
5605 return rc;
5606
d127ea7b 5607 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5608 if (spd)
5609 link->hw_sata_spd_limit &= (1 << spd) - 1;
5610
05944bdf 5611 ata_force_link_limits(link);
33267325 5612
4fb37a25
TH
5613 link->sata_spd_limit = link->hw_sata_spd_limit;
5614
5615 return 0;
5616}
5617
1da177e4 5618/**
f3187195
TH
5619 * ata_port_alloc - allocate and initialize basic ATA port resources
5620 * @host: ATA host this allocated port belongs to
1da177e4 5621 *
f3187195
TH
5622 * Allocate and initialize basic ATA port resources.
5623 *
5624 * RETURNS:
5625 * Allocate ATA port on success, NULL on failure.
0cba632b 5626 *
1da177e4 5627 * LOCKING:
f3187195 5628 * Inherited from calling layer (may sleep).
1da177e4 5629 */
f3187195 5630struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5631{
f3187195 5632 struct ata_port *ap;
1da177e4 5633
f3187195
TH
5634 DPRINTK("ENTER\n");
5635
5636 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5637 if (!ap)
5638 return NULL;
4fca377f 5639
7b3a24c5 5640 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
cca3974e 5641 ap->lock = &host->lock;
f3187195 5642 ap->print_id = -1;
e628dc99 5643 ap->local_port_no = -1;
cca3974e 5644 ap->host = host;
f3187195 5645 ap->dev = host->dev;
bd5d825c
BP
5646
5647#if defined(ATA_VERBOSE_DEBUG)
5648 /* turn on all debugging levels */
5649 ap->msg_enable = 0x00FF;
5650#elif defined(ATA_DEBUG)
5651 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5652#else
0dd4b21f 5653 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5654#endif
1da177e4 5655
ad72cf98 5656 mutex_init(&ap->scsi_scan_mutex);
65f27f38
DH
5657 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5658 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5659 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5660 init_waitqueue_head(&ap->eh_wait_q);
45fabbb7 5661 init_completion(&ap->park_req_pending);
5ddf24c5
TH
5662 init_timer_deferrable(&ap->fastdrain_timer);
5663 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5664 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 5665
838df628 5666 ap->cbl = ATA_CBL_NONE;
838df628 5667
8989805d 5668 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
5669
5670#ifdef ATA_IRQ_TRAP
5671 ap->stats.unhandled_irq = 1;
5672 ap->stats.idle_irq = 1;
5673#endif
270390e1
TH
5674 ata_sff_port_init(ap);
5675
1da177e4 5676 return ap;
1da177e4
LT
5677}
5678
f0d36efd
TH
5679static void ata_host_release(struct device *gendev, void *res)
5680{
5681 struct ata_host *host = dev_get_drvdata(gendev);
5682 int i;
5683
1aa506e4
TH
5684 for (i = 0; i < host->n_ports; i++) {
5685 struct ata_port *ap = host->ports[i];
5686
4911487a
TH
5687 if (!ap)
5688 continue;
5689
5690 if (ap->scsi_host)
1aa506e4
TH
5691 scsi_host_put(ap->scsi_host);
5692
633273a3 5693 kfree(ap->pmp_link);
b1c72916 5694 kfree(ap->slave_link);
4911487a 5695 kfree(ap);
1aa506e4
TH
5696 host->ports[i] = NULL;
5697 }
5698
1aa56cca 5699 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5700}
5701
f3187195
TH
5702/**
5703 * ata_host_alloc - allocate and init basic ATA host resources
5704 * @dev: generic device this host is associated with
5705 * @max_ports: maximum number of ATA ports associated with this host
5706 *
5707 * Allocate and initialize basic ATA host resources. LLD calls
5708 * this function to allocate a host, initializes it fully and
5709 * attaches it using ata_host_register().
5710 *
5711 * @max_ports ports are allocated and host->n_ports is
5712 * initialized to @max_ports. The caller is allowed to decrease
5713 * host->n_ports before calling ata_host_register(). The unused
5714 * ports will be automatically freed on registration.
5715 *
5716 * RETURNS:
5717 * Allocate ATA host on success, NULL on failure.
5718 *
5719 * LOCKING:
5720 * Inherited from calling layer (may sleep).
5721 */
5722struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5723{
5724 struct ata_host *host;
5725 size_t sz;
5726 int i;
5727
5728 DPRINTK("ENTER\n");
5729
5730 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5731 return NULL;
5732
5733 /* alloc a container for our list of ATA ports (buses) */
5734 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5735 /* alloc a container for our list of ATA ports (buses) */
5736 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5737 if (!host)
5738 goto err_out;
5739
5740 devres_add(dev, host);
5741 dev_set_drvdata(dev, host);
5742
5743 spin_lock_init(&host->lock);
c0c362b6 5744 mutex_init(&host->eh_mutex);
f3187195
TH
5745 host->dev = dev;
5746 host->n_ports = max_ports;
5747
5748 /* allocate ports bound to this host */
5749 for (i = 0; i < max_ports; i++) {
5750 struct ata_port *ap;
5751
5752 ap = ata_port_alloc(host);
5753 if (!ap)
5754 goto err_out;
5755
5756 ap->port_no = i;
5757 host->ports[i] = ap;
5758 }
5759
5760 devres_remove_group(dev, NULL);
5761 return host;
5762
5763 err_out:
5764 devres_release_group(dev, NULL);
5765 return NULL;
5766}
5767
f5cda257
TH
5768/**
5769 * ata_host_alloc_pinfo - alloc host and init with port_info array
5770 * @dev: generic device this host is associated with
5771 * @ppi: array of ATA port_info to initialize host with
5772 * @n_ports: number of ATA ports attached to this host
5773 *
5774 * Allocate ATA host and initialize with info from @ppi. If NULL
5775 * terminated, @ppi may contain fewer entries than @n_ports. The
5776 * last entry will be used for the remaining ports.
5777 *
5778 * RETURNS:
5779 * Allocate ATA host on success, NULL on failure.
5780 *
5781 * LOCKING:
5782 * Inherited from calling layer (may sleep).
5783 */
5784struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5785 const struct ata_port_info * const * ppi,
5786 int n_ports)
5787{
5788 const struct ata_port_info *pi;
5789 struct ata_host *host;
5790 int i, j;
5791
5792 host = ata_host_alloc(dev, n_ports);
5793 if (!host)
5794 return NULL;
5795
5796 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5797 struct ata_port *ap = host->ports[i];
5798
5799 if (ppi[j])
5800 pi = ppi[j++];
5801
5802 ap->pio_mask = pi->pio_mask;
5803 ap->mwdma_mask = pi->mwdma_mask;
5804 ap->udma_mask = pi->udma_mask;
5805 ap->flags |= pi->flags;
0c88758b 5806 ap->link.flags |= pi->link_flags;
f5cda257
TH
5807 ap->ops = pi->port_ops;
5808
5809 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5810 host->ops = pi->port_ops;
f5cda257
TH
5811 }
5812
5813 return host;
5814}
5815
b1c72916
TH
5816/**
5817 * ata_slave_link_init - initialize slave link
5818 * @ap: port to initialize slave link for
5819 *
5820 * Create and initialize slave link for @ap. This enables slave
5821 * link handling on the port.
5822 *
5823 * In libata, a port contains links and a link contains devices.
5824 * There is single host link but if a PMP is attached to it,
5825 * there can be multiple fan-out links. On SATA, there's usually
5826 * a single device connected to a link but PATA and SATA
5827 * controllers emulating TF based interface can have two - master
5828 * and slave.
5829 *
5830 * However, there are a few controllers which don't fit into this
5831 * abstraction too well - SATA controllers which emulate TF
5832 * interface with both master and slave devices but also have
5833 * separate SCR register sets for each device. These controllers
5834 * need separate links for physical link handling
5835 * (e.g. onlineness, link speed) but should be treated like a
5836 * traditional M/S controller for everything else (e.g. command
5837 * issue, softreset).
5838 *
5839 * slave_link is libata's way of handling this class of
5840 * controllers without impacting core layer too much. For
5841 * anything other than physical link handling, the default host
5842 * link is used for both master and slave. For physical link
5843 * handling, separate @ap->slave_link is used. All dirty details
5844 * are implemented inside libata core layer. From LLD's POV, the
5845 * only difference is that prereset, hardreset and postreset are
5846 * called once more for the slave link, so the reset sequence
5847 * looks like the following.
5848 *
5849 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5850 * softreset(M) -> postreset(M) -> postreset(S)
5851 *
5852 * Note that softreset is called only for the master. Softreset
5853 * resets both M/S by definition, so SRST on master should handle
5854 * both (the standard method will work just fine).
5855 *
5856 * LOCKING:
5857 * Should be called before host is registered.
5858 *
5859 * RETURNS:
5860 * 0 on success, -errno on failure.
5861 */
5862int ata_slave_link_init(struct ata_port *ap)
5863{
5864 struct ata_link *link;
5865
5866 WARN_ON(ap->slave_link);
5867 WARN_ON(ap->flags & ATA_FLAG_PMP);
5868
5869 link = kzalloc(sizeof(*link), GFP_KERNEL);
5870 if (!link)
5871 return -ENOMEM;
5872
5873 ata_link_init(ap, link, 1);
5874 ap->slave_link = link;
5875 return 0;
5876}
5877
32ebbc0c
TH
5878static void ata_host_stop(struct device *gendev, void *res)
5879{
5880 struct ata_host *host = dev_get_drvdata(gendev);
5881 int i;
5882
5883 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5884
5885 for (i = 0; i < host->n_ports; i++) {
5886 struct ata_port *ap = host->ports[i];
5887
5888 if (ap->ops->port_stop)
5889 ap->ops->port_stop(ap);
5890 }
5891
5892 if (host->ops->host_stop)
5893 host->ops->host_stop(host);
5894}
5895
029cfd6b
TH
5896/**
5897 * ata_finalize_port_ops - finalize ata_port_operations
5898 * @ops: ata_port_operations to finalize
5899 *
5900 * An ata_port_operations can inherit from another ops and that
5901 * ops can again inherit from another. This can go on as many
5902 * times as necessary as long as there is no loop in the
5903 * inheritance chain.
5904 *
5905 * Ops tables are finalized when the host is started. NULL or
5906 * unspecified entries are inherited from the closet ancestor
5907 * which has the method and the entry is populated with it.
5908 * After finalization, the ops table directly points to all the
5909 * methods and ->inherits is no longer necessary and cleared.
5910 *
5911 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5912 *
5913 * LOCKING:
5914 * None.
5915 */
5916static void ata_finalize_port_ops(struct ata_port_operations *ops)
5917{
2da67659 5918 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
5919 const struct ata_port_operations *cur;
5920 void **begin = (void **)ops;
5921 void **end = (void **)&ops->inherits;
5922 void **pp;
5923
5924 if (!ops || !ops->inherits)
5925 return;
5926
5927 spin_lock(&lock);
5928
5929 for (cur = ops->inherits; cur; cur = cur->inherits) {
5930 void **inherit = (void **)cur;
5931
5932 for (pp = begin; pp < end; pp++, inherit++)
5933 if (!*pp)
5934 *pp = *inherit;
5935 }
5936
5937 for (pp = begin; pp < end; pp++)
5938 if (IS_ERR(*pp))
5939 *pp = NULL;
5940
5941 ops->inherits = NULL;
5942
5943 spin_unlock(&lock);
5944}
5945
ecef7253
TH
5946/**
5947 * ata_host_start - start and freeze ports of an ATA host
5948 * @host: ATA host to start ports for
5949 *
5950 * Start and then freeze ports of @host. Started status is
5951 * recorded in host->flags, so this function can be called
5952 * multiple times. Ports are guaranteed to get started only
f3187195
TH
5953 * once. If host->ops isn't initialized yet, its set to the
5954 * first non-dummy port ops.
ecef7253
TH
5955 *
5956 * LOCKING:
5957 * Inherited from calling layer (may sleep).
5958 *
5959 * RETURNS:
5960 * 0 if all ports are started successfully, -errno otherwise.
5961 */
5962int ata_host_start(struct ata_host *host)
5963{
32ebbc0c
TH
5964 int have_stop = 0;
5965 void *start_dr = NULL;
ecef7253
TH
5966 int i, rc;
5967
5968 if (host->flags & ATA_HOST_STARTED)
5969 return 0;
5970
029cfd6b
TH
5971 ata_finalize_port_ops(host->ops);
5972
ecef7253
TH
5973 for (i = 0; i < host->n_ports; i++) {
5974 struct ata_port *ap = host->ports[i];
5975
029cfd6b
TH
5976 ata_finalize_port_ops(ap->ops);
5977
f3187195
TH
5978 if (!host->ops && !ata_port_is_dummy(ap))
5979 host->ops = ap->ops;
5980
32ebbc0c
TH
5981 if (ap->ops->port_stop)
5982 have_stop = 1;
5983 }
5984
5985 if (host->ops->host_stop)
5986 have_stop = 1;
5987
5988 if (have_stop) {
5989 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5990 if (!start_dr)
5991 return -ENOMEM;
5992 }
5993
5994 for (i = 0; i < host->n_ports; i++) {
5995 struct ata_port *ap = host->ports[i];
5996
ecef7253
TH
5997 if (ap->ops->port_start) {
5998 rc = ap->ops->port_start(ap);
5999 if (rc) {
0f9fe9b7 6000 if (rc != -ENODEV)
a44fec1f
JP
6001 dev_err(host->dev,
6002 "failed to start port %d (errno=%d)\n",
6003 i, rc);
ecef7253
TH
6004 goto err_out;
6005 }
6006 }
ecef7253
TH
6007 ata_eh_freeze_port(ap);
6008 }
6009
32ebbc0c
TH
6010 if (start_dr)
6011 devres_add(host->dev, start_dr);
ecef7253
TH
6012 host->flags |= ATA_HOST_STARTED;
6013 return 0;
6014
6015 err_out:
6016 while (--i >= 0) {
6017 struct ata_port *ap = host->ports[i];
6018
6019 if (ap->ops->port_stop)
6020 ap->ops->port_stop(ap);
6021 }
32ebbc0c 6022 devres_free(start_dr);
ecef7253
TH
6023 return rc;
6024}
6025
b03732f0 6026/**
8d8e7d13 6027 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
cca3974e
JG
6028 * @host: host to initialize
6029 * @dev: device host is attached to
cca3974e 6030 * @ops: port_ops
b03732f0 6031 *
b03732f0 6032 */
cca3974e 6033void ata_host_init(struct ata_host *host, struct device *dev,
8d8e7d13 6034 struct ata_port_operations *ops)
b03732f0 6035{
cca3974e 6036 spin_lock_init(&host->lock);
c0c362b6 6037 mutex_init(&host->eh_mutex);
1a112d10 6038 host->n_tags = ATA_MAX_QUEUE - 1;
cca3974e 6039 host->dev = dev;
cca3974e 6040 host->ops = ops;
b03732f0
BK
6041}
6042
9508a66f 6043void __ata_port_probe(struct ata_port *ap)
79318057 6044{
9508a66f
DW
6045 struct ata_eh_info *ehi = &ap->link.eh_info;
6046 unsigned long flags;
886ad09f 6047
9508a66f
DW
6048 /* kick EH for boot probing */
6049 spin_lock_irqsave(ap->lock, flags);
79318057 6050
9508a66f
DW
6051 ehi->probe_mask |= ATA_ALL_DEVICES;
6052 ehi->action |= ATA_EH_RESET;
6053 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
79318057 6054
9508a66f
DW
6055 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6056 ap->pflags |= ATA_PFLAG_LOADING;
6057 ata_port_schedule_eh(ap);
79318057 6058
9508a66f
DW
6059 spin_unlock_irqrestore(ap->lock, flags);
6060}
79318057 6061
9508a66f
DW
6062int ata_port_probe(struct ata_port *ap)
6063{
6064 int rc = 0;
79318057 6065
9508a66f
DW
6066 if (ap->ops->error_handler) {
6067 __ata_port_probe(ap);
79318057
AV
6068 ata_port_wait_eh(ap);
6069 } else {
6070 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6071 rc = ata_bus_probe(ap);
6072 DPRINTK("ata%u: bus probe end\n", ap->print_id);
79318057 6073 }
238c9cf9
JB
6074 return rc;
6075}
6076
6077
6078static void async_port_probe(void *data, async_cookie_t cookie)
6079{
6080 struct ata_port *ap = data;
4fca377f 6081
238c9cf9
JB
6082 /*
6083 * If we're not allowed to scan this host in parallel,
6084 * we need to wait until all previous scans have completed
6085 * before going further.
6086 * Jeff Garzik says this is only within a controller, so we
6087 * don't need to wait for port 0, only for later ports.
6088 */
6089 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6090 async_synchronize_cookie(cookie);
6091
6092 (void)ata_port_probe(ap);
f29d3b23
AV
6093
6094 /* in order to keep device order, we need to synchronize at this point */
6095 async_synchronize_cookie(cookie);
6096
6097 ata_scsi_scan_host(ap, 1);
79318057 6098}
238c9cf9 6099
f3187195
TH
6100/**
6101 * ata_host_register - register initialized ATA host
6102 * @host: ATA host to register
6103 * @sht: template for SCSI host
6104 *
6105 * Register initialized ATA host. @host is allocated using
6106 * ata_host_alloc() and fully initialized by LLD. This function
6107 * starts ports, registers @host with ATA and SCSI layers and
6108 * probe registered devices.
6109 *
6110 * LOCKING:
6111 * Inherited from calling layer (may sleep).
6112 *
6113 * RETURNS:
6114 * 0 on success, -errno otherwise.
6115 */
6116int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6117{
6118 int i, rc;
6119
1a112d10 6120 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
1871ee13 6121
f3187195
TH
6122 /* host must have been started */
6123 if (!(host->flags & ATA_HOST_STARTED)) {
a44fec1f 6124 dev_err(host->dev, "BUG: trying to register unstarted host\n");
f3187195
TH
6125 WARN_ON(1);
6126 return -EINVAL;
6127 }
6128
6129 /* Blow away unused ports. This happens when LLD can't
6130 * determine the exact number of ports to allocate at
6131 * allocation time.
6132 */
6133 for (i = host->n_ports; host->ports[i]; i++)
6134 kfree(host->ports[i]);
6135
6136 /* give ports names and add SCSI hosts */
e628dc99 6137 for (i = 0; i < host->n_ports; i++) {
85d6725b 6138 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
e628dc99
DM
6139 host->ports[i]->local_port_no = i + 1;
6140 }
4fca377f 6141
d9027470
GG
6142 /* Create associated sysfs transport objects */
6143 for (i = 0; i < host->n_ports; i++) {
6144 rc = ata_tport_add(host->dev,host->ports[i]);
6145 if (rc) {
6146 goto err_tadd;
6147 }
6148 }
6149
f3187195
TH
6150 rc = ata_scsi_add_hosts(host, sht);
6151 if (rc)
d9027470 6152 goto err_tadd;
f3187195
TH
6153
6154 /* set cable, sata_spd_limit and report */
6155 for (i = 0; i < host->n_ports; i++) {
6156 struct ata_port *ap = host->ports[i];
f3187195
TH
6157 unsigned long xfer_mask;
6158
6159 /* set SATA cable type if still unset */
6160 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6161 ap->cbl = ATA_CBL_SATA;
6162
6163 /* init sata_spd_limit to the current value */
4fb37a25 6164 sata_link_init_spd(&ap->link);
b1c72916
TH
6165 if (ap->slave_link)
6166 sata_link_init_spd(ap->slave_link);
f3187195 6167
cbcdd875 6168 /* print per-port info to dmesg */
f3187195
TH
6169 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6170 ap->udma_mask);
6171
abf6e8ed 6172 if (!ata_port_is_dummy(ap)) {
a9a79dfe
JP
6173 ata_port_info(ap, "%cATA max %s %s\n",
6174 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6175 ata_mode_string(xfer_mask),
6176 ap->link.eh_info.desc);
abf6e8ed
TH
6177 ata_ehi_clear_desc(&ap->link.eh_info);
6178 } else
a9a79dfe 6179 ata_port_info(ap, "DUMMY\n");
f3187195
TH
6180 }
6181
f6005354 6182 /* perform each probe asynchronously */
f3187195
TH
6183 for (i = 0; i < host->n_ports; i++) {
6184 struct ata_port *ap = host->ports[i];
79318057 6185 async_schedule(async_port_probe, ap);
f3187195 6186 }
f3187195
TH
6187
6188 return 0;
d9027470
GG
6189
6190 err_tadd:
6191 while (--i >= 0) {
6192 ata_tport_delete(host->ports[i]);
6193 }
6194 return rc;
6195
f3187195
TH
6196}
6197
f5cda257
TH
6198/**
6199 * ata_host_activate - start host, request IRQ and register it
6200 * @host: target ATA host
6201 * @irq: IRQ to request
6202 * @irq_handler: irq_handler used when requesting IRQ
6203 * @irq_flags: irq_flags used when requesting IRQ
6204 * @sht: scsi_host_template to use when registering the host
6205 *
6206 * After allocating an ATA host and initializing it, most libata
6207 * LLDs perform three steps to activate the host - start host,
6208 * request IRQ and register it. This helper takes necessasry
6209 * arguments and performs the three steps in one go.
6210 *
3d46b2e2
PM
6211 * An invalid IRQ skips the IRQ registration and expects the host to
6212 * have set polling mode on the port. In this case, @irq_handler
6213 * should be NULL.
6214 *
f5cda257
TH
6215 * LOCKING:
6216 * Inherited from calling layer (may sleep).
6217 *
6218 * RETURNS:
6219 * 0 on success, -errno otherwise.
6220 */
6221int ata_host_activate(struct ata_host *host, int irq,
6222 irq_handler_t irq_handler, unsigned long irq_flags,
6223 struct scsi_host_template *sht)
6224{
cbcdd875 6225 int i, rc;
f5cda257
TH
6226
6227 rc = ata_host_start(host);
6228 if (rc)
6229 return rc;
6230
3d46b2e2
PM
6231 /* Special case for polling mode */
6232 if (!irq) {
6233 WARN_ON(irq_handler);
6234 return ata_host_register(host, sht);
6235 }
6236
f5cda257 6237 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
4f37b504 6238 dev_name(host->dev), host);
f5cda257
TH
6239 if (rc)
6240 return rc;
6241
cbcdd875
TH
6242 for (i = 0; i < host->n_ports; i++)
6243 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6244
f5cda257
TH
6245 rc = ata_host_register(host, sht);
6246 /* if failed, just free the IRQ and leave ports alone */
6247 if (rc)
6248 devm_free_irq(host->dev, irq, host);
6249
6250 return rc;
6251}
6252
720ba126
TH
6253/**
6254 * ata_port_detach - Detach ATA port in prepration of device removal
6255 * @ap: ATA port to be detached
6256 *
6257 * Detach all ATA devices and the associated SCSI devices of @ap;
6258 * then, remove the associated SCSI host. @ap is guaranteed to
6259 * be quiescent on return from this function.
6260 *
6261 * LOCKING:
6262 * Kernel thread context (may sleep).
6263 */
741b7763 6264static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6265{
6266 unsigned long flags;
a6f9bf4d
LK
6267 struct ata_link *link;
6268 struct ata_device *dev;
720ba126
TH
6269
6270 if (!ap->ops->error_handler)
c3cf30a9 6271 goto skip_eh;
720ba126
TH
6272
6273 /* tell EH we're leaving & flush EH */
ba6a1308 6274 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6275 ap->pflags |= ATA_PFLAG_UNLOADING;
ece180d1 6276 ata_port_schedule_eh(ap);
ba6a1308 6277 spin_unlock_irqrestore(ap->lock, flags);
720ba126 6278
ece180d1 6279 /* wait till EH commits suicide */
720ba126
TH
6280 ata_port_wait_eh(ap);
6281
ece180d1
TH
6282 /* it better be dead now */
6283 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
720ba126 6284
afe2c511 6285 cancel_delayed_work_sync(&ap->hotplug_task);
720ba126 6286
c3cf30a9 6287 skip_eh:
a6f9bf4d
LK
6288 /* clean up zpodd on port removal */
6289 ata_for_each_link(link, ap, HOST_FIRST) {
6290 ata_for_each_dev(dev, link, ALL) {
6291 if (zpodd_dev_enabled(dev))
6292 zpodd_exit(dev);
6293 }
6294 }
d9027470
GG
6295 if (ap->pmp_link) {
6296 int i;
6297 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6298 ata_tlink_delete(&ap->pmp_link[i]);
6299 }
720ba126 6300 /* remove the associated SCSI host */
cca3974e 6301 scsi_remove_host(ap->scsi_host);
c5700766 6302 ata_tport_delete(ap);
720ba126
TH
6303}
6304
0529c159
TH
6305/**
6306 * ata_host_detach - Detach all ports of an ATA host
6307 * @host: Host to detach
6308 *
6309 * Detach all ports of @host.
6310 *
6311 * LOCKING:
6312 * Kernel thread context (may sleep).
6313 */
6314void ata_host_detach(struct ata_host *host)
6315{
6316 int i;
6317
6318 for (i = 0; i < host->n_ports; i++)
6319 ata_port_detach(host->ports[i]);
562f0c2d
TH
6320
6321 /* the host is dead now, dissociate ACPI */
6322 ata_acpi_dissociate(host);
0529c159
TH
6323}
6324
374b1873
JG
6325#ifdef CONFIG_PCI
6326
1da177e4
LT
6327/**
6328 * ata_pci_remove_one - PCI layer callback for device removal
6329 * @pdev: PCI device that was removed
6330 *
b878ca5d
TH
6331 * PCI layer indicates to libata via this hook that hot-unplug or
6332 * module unload event has occurred. Detach all ports. Resource
6333 * release is handled via devres.
1da177e4
LT
6334 *
6335 * LOCKING:
6336 * Inherited from PCI layer (may sleep).
6337 */
f0d36efd 6338void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6339{
04a3f5b7 6340 struct ata_host *host = pci_get_drvdata(pdev);
1da177e4 6341
b878ca5d 6342 ata_host_detach(host);
1da177e4
LT
6343}
6344
6345/* move to PCI subsystem */
057ace5e 6346int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6347{
6348 unsigned long tmp = 0;
6349
6350 switch (bits->width) {
6351 case 1: {
6352 u8 tmp8 = 0;
6353 pci_read_config_byte(pdev, bits->reg, &tmp8);
6354 tmp = tmp8;
6355 break;
6356 }
6357 case 2: {
6358 u16 tmp16 = 0;
6359 pci_read_config_word(pdev, bits->reg, &tmp16);
6360 tmp = tmp16;
6361 break;
6362 }
6363 case 4: {
6364 u32 tmp32 = 0;
6365 pci_read_config_dword(pdev, bits->reg, &tmp32);
6366 tmp = tmp32;
6367 break;
6368 }
6369
6370 default:
6371 return -EINVAL;
6372 }
6373
6374 tmp &= bits->mask;
6375
6376 return (tmp == bits->val) ? 1 : 0;
6377}
9b847548 6378
6ffa01d8 6379#ifdef CONFIG_PM
3c5100c1 6380void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6381{
6382 pci_save_state(pdev);
4c90d971 6383 pci_disable_device(pdev);
500530f6 6384
3a2d5b70 6385 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6386 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6387}
6388
553c4aa6 6389int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6390{
553c4aa6
TH
6391 int rc;
6392
9b847548
JA
6393 pci_set_power_state(pdev, PCI_D0);
6394 pci_restore_state(pdev);
553c4aa6 6395
b878ca5d 6396 rc = pcim_enable_device(pdev);
553c4aa6 6397 if (rc) {
a44fec1f
JP
6398 dev_err(&pdev->dev,
6399 "failed to enable device after resume (%d)\n", rc);
553c4aa6
TH
6400 return rc;
6401 }
6402
9b847548 6403 pci_set_master(pdev);
553c4aa6 6404 return 0;
500530f6
TH
6405}
6406
3c5100c1 6407int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6408{
04a3f5b7 6409 struct ata_host *host = pci_get_drvdata(pdev);
500530f6
TH
6410 int rc = 0;
6411
cca3974e 6412 rc = ata_host_suspend(host, mesg);
500530f6
TH
6413 if (rc)
6414 return rc;
6415
3c5100c1 6416 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6417
6418 return 0;
6419}
6420
6421int ata_pci_device_resume(struct pci_dev *pdev)
6422{
04a3f5b7 6423 struct ata_host *host = pci_get_drvdata(pdev);
553c4aa6 6424 int rc;
500530f6 6425
553c4aa6
TH
6426 rc = ata_pci_device_do_resume(pdev);
6427 if (rc == 0)
6428 ata_host_resume(host);
6429 return rc;
9b847548 6430}
6ffa01d8
TH
6431#endif /* CONFIG_PM */
6432
1da177e4
LT
6433#endif /* CONFIG_PCI */
6434
b7db04d9
BN
6435/**
6436 * ata_platform_remove_one - Platform layer callback for device removal
6437 * @pdev: Platform device that was removed
6438 *
6439 * Platform layer indicates to libata via this hook that hot-unplug or
6440 * module unload event has occurred. Detach all ports. Resource
6441 * release is handled via devres.
6442 *
6443 * LOCKING:
6444 * Inherited from platform layer (may sleep).
6445 */
6446int ata_platform_remove_one(struct platform_device *pdev)
6447{
6448 struct ata_host *host = platform_get_drvdata(pdev);
6449
6450 ata_host_detach(host);
6451
6452 return 0;
6453}
6454
33267325
TH
6455static int __init ata_parse_force_one(char **cur,
6456 struct ata_force_ent *force_ent,
6457 const char **reason)
6458{
6459 /* FIXME: Currently, there's no way to tag init const data and
6460 * using __initdata causes build failure on some versions of
6461 * gcc. Once __initdataconst is implemented, add const to the
6462 * following structure.
6463 */
6464 static struct ata_force_param force_tbl[] __initdata = {
6465 { "40c", .cbl = ATA_CBL_PATA40 },
6466 { "80c", .cbl = ATA_CBL_PATA80 },
6467 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6468 { "unk", .cbl = ATA_CBL_PATA_UNK },
6469 { "ign", .cbl = ATA_CBL_PATA_IGN },
6470 { "sata", .cbl = ATA_CBL_SATA },
6471 { "1.5Gbps", .spd_limit = 1 },
6472 { "3.0Gbps", .spd_limit = 2 },
6473 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6474 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
43c9c591 6475 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
33267325
TH
6476 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6477 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6478 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6479 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6480 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6481 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6482 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6483 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6484 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6485 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6486 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6487 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6488 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6489 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6490 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6491 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6492 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6493 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6494 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6495 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6496 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6497 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6498 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6499 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6500 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6501 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6502 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6503 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6504 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6505 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6506 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6507 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6508 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6509 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6510 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6511 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6512 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
ca6d43b0 6513 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
966fbe19 6514 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
b8bd6dc3 6515 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
33267325
TH
6516 };
6517 char *start = *cur, *p = *cur;
6518 char *id, *val, *endp;
6519 const struct ata_force_param *match_fp = NULL;
6520 int nr_matches = 0, i;
6521
6522 /* find where this param ends and update *cur */
6523 while (*p != '\0' && *p != ',')
6524 p++;
6525
6526 if (*p == '\0')
6527 *cur = p;
6528 else
6529 *cur = p + 1;
6530
6531 *p = '\0';
6532
6533 /* parse */
6534 p = strchr(start, ':');
6535 if (!p) {
6536 val = strstrip(start);
6537 goto parse_val;
6538 }
6539 *p = '\0';
6540
6541 id = strstrip(start);
6542 val = strstrip(p + 1);
6543
6544 /* parse id */
6545 p = strchr(id, '.');
6546 if (p) {
6547 *p++ = '\0';
6548 force_ent->device = simple_strtoul(p, &endp, 10);
6549 if (p == endp || *endp != '\0') {
6550 *reason = "invalid device";
6551 return -EINVAL;
6552 }
6553 }
6554
6555 force_ent->port = simple_strtoul(id, &endp, 10);
6556 if (p == endp || *endp != '\0') {
6557 *reason = "invalid port/link";
6558 return -EINVAL;
6559 }
6560
6561 parse_val:
6562 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6563 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6564 const struct ata_force_param *fp = &force_tbl[i];
6565
6566 if (strncasecmp(val, fp->name, strlen(val)))
6567 continue;
6568
6569 nr_matches++;
6570 match_fp = fp;
6571
6572 if (strcasecmp(val, fp->name) == 0) {
6573 nr_matches = 1;
6574 break;
6575 }
6576 }
6577
6578 if (!nr_matches) {
6579 *reason = "unknown value";
6580 return -EINVAL;
6581 }
6582 if (nr_matches > 1) {
6583 *reason = "ambigious value";
6584 return -EINVAL;
6585 }
6586
6587 force_ent->param = *match_fp;
6588
6589 return 0;
6590}
6591
6592static void __init ata_parse_force_param(void)
6593{
6594 int idx = 0, size = 1;
6595 int last_port = -1, last_device = -1;
6596 char *p, *cur, *next;
6597
6598 /* calculate maximum number of params and allocate force_tbl */
6599 for (p = ata_force_param_buf; *p; p++)
6600 if (*p == ',')
6601 size++;
6602
6603 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6604 if (!ata_force_tbl) {
6605 printk(KERN_WARNING "ata: failed to extend force table, "
6606 "libata.force ignored\n");
6607 return;
6608 }
6609
6610 /* parse and populate the table */
6611 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6612 const char *reason = "";
6613 struct ata_force_ent te = { .port = -1, .device = -1 };
6614
6615 next = cur;
6616 if (ata_parse_force_one(&next, &te, &reason)) {
6617 printk(KERN_WARNING "ata: failed to parse force "
6618 "parameter \"%s\" (%s)\n",
6619 cur, reason);
6620 continue;
6621 }
6622
6623 if (te.port == -1) {
6624 te.port = last_port;
6625 te.device = last_device;
6626 }
6627
6628 ata_force_tbl[idx++] = te;
6629
6630 last_port = te.port;
6631 last_device = te.device;
6632 }
6633
6634 ata_force_tbl_size = idx;
6635}
1da177e4 6636
1da177e4
LT
6637static int __init ata_init(void)
6638{
d9027470 6639 int rc;
270390e1 6640
33267325
TH
6641 ata_parse_force_param();
6642
270390e1 6643 rc = ata_sff_init();
ad72cf98
TH
6644 if (rc) {
6645 kfree(ata_force_tbl);
6646 return rc;
6647 }
453b07ac 6648
d9027470
GG
6649 libata_transport_init();
6650 ata_scsi_transport_template = ata_attach_transport();
6651 if (!ata_scsi_transport_template) {
6652 ata_sff_exit();
6653 rc = -ENOMEM;
6654 goto err_out;
4fca377f 6655 }
d9027470 6656
1da177e4
LT
6657 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6658 return 0;
d9027470
GG
6659
6660err_out:
6661 return rc;
1da177e4
LT
6662}
6663
6664static void __exit ata_exit(void)
6665{
d9027470
GG
6666 ata_release_transport(ata_scsi_transport_template);
6667 libata_transport_exit();
270390e1 6668 ata_sff_exit();
33267325 6669 kfree(ata_force_tbl);
1da177e4
LT
6670}
6671
a4625085 6672subsys_initcall(ata_init);
1da177e4
LT
6673module_exit(ata_exit);
6674
9990b6f3 6675static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
67846b30
JG
6676
6677int ata_ratelimit(void)
6678{
9990b6f3 6679 return __ratelimit(&ratelimit);
67846b30
JG
6680}
6681
c0c362b6
TH
6682/**
6683 * ata_msleep - ATA EH owner aware msleep
6684 * @ap: ATA port to attribute the sleep to
6685 * @msecs: duration to sleep in milliseconds
6686 *
6687 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6688 * ownership is released before going to sleep and reacquired
6689 * after the sleep is complete. IOW, other ports sharing the
6690 * @ap->host will be allowed to own the EH while this task is
6691 * sleeping.
6692 *
6693 * LOCKING:
6694 * Might sleep.
6695 */
97750ceb
TH
6696void ata_msleep(struct ata_port *ap, unsigned int msecs)
6697{
c0c362b6
TH
6698 bool owns_eh = ap && ap->host->eh_owner == current;
6699
6700 if (owns_eh)
6701 ata_eh_release(ap);
6702
97750ceb 6703 msleep(msecs);
c0c362b6
TH
6704
6705 if (owns_eh)
6706 ata_eh_acquire(ap);
97750ceb
TH
6707}
6708
c22daff4
TH
6709/**
6710 * ata_wait_register - wait until register value changes
97750ceb 6711 * @ap: ATA port to wait register for, can be NULL
c22daff4
TH
6712 * @reg: IO-mapped register
6713 * @mask: Mask to apply to read register value
6714 * @val: Wait condition
341c2c95
TH
6715 * @interval: polling interval in milliseconds
6716 * @timeout: timeout in milliseconds
c22daff4
TH
6717 *
6718 * Waiting for some bits of register to change is a common
6719 * operation for ATA controllers. This function reads 32bit LE
6720 * IO-mapped register @reg and tests for the following condition.
6721 *
6722 * (*@reg & mask) != val
6723 *
6724 * If the condition is met, it returns; otherwise, the process is
6725 * repeated after @interval_msec until timeout.
6726 *
6727 * LOCKING:
6728 * Kernel thread context (may sleep)
6729 *
6730 * RETURNS:
6731 * The final register value.
6732 */
97750ceb 6733u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
341c2c95 6734 unsigned long interval, unsigned long timeout)
c22daff4 6735{
341c2c95 6736 unsigned long deadline;
c22daff4
TH
6737 u32 tmp;
6738
6739 tmp = ioread32(reg);
6740
6741 /* Calculate timeout _after_ the first read to make sure
6742 * preceding writes reach the controller before starting to
6743 * eat away the timeout.
6744 */
341c2c95 6745 deadline = ata_deadline(jiffies, timeout);
c22daff4 6746
341c2c95 6747 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
97750ceb 6748 ata_msleep(ap, interval);
c22daff4
TH
6749 tmp = ioread32(reg);
6750 }
6751
6752 return tmp;
6753}
6754
8393b811
GM
6755/**
6756 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
6757 * @link: Link receiving the event
6758 *
6759 * Test whether the received PHY event has to be ignored or not.
6760 *
6761 * LOCKING:
6762 * None:
6763 *
6764 * RETURNS:
6765 * True if the event has to be ignored.
6766 */
6767bool sata_lpm_ignore_phy_events(struct ata_link *link)
6768{
09c5b480
GM
6769 unsigned long lpm_timeout = link->last_lpm_change +
6770 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
6771
8393b811 6772 /* if LPM is enabled, PHYRDY doesn't mean anything */
09c5b480
GM
6773 if (link->lpm_policy > ATA_LPM_MAX_POWER)
6774 return true;
6775
6776 /* ignore the first PHY event after the LPM policy changed
6777 * as it is might be spurious
6778 */
6779 if ((link->flags & ATA_LFLAG_CHANGED) &&
6780 time_before(jiffies, lpm_timeout))
6781 return true;
6782
6783 return false;
8393b811
GM
6784}
6785EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
6786
dd5b06c4
TH
6787/*
6788 * Dummy port_ops
6789 */
182d7bba 6790static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 6791{
182d7bba 6792 return AC_ERR_SYSTEM;
dd5b06c4
TH
6793}
6794
182d7bba 6795static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 6796{
182d7bba 6797 /* truly dummy */
dd5b06c4
TH
6798}
6799
029cfd6b 6800struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
6801 .qc_prep = ata_noop_qc_prep,
6802 .qc_issue = ata_dummy_qc_issue,
182d7bba 6803 .error_handler = ata_dummy_error_handler,
e4a9c373
DW
6804 .sched_eh = ata_std_sched_eh,
6805 .end_eh = ata_std_end_eh,
dd5b06c4
TH
6806};
6807
21b0ad4f
TH
6808const struct ata_port_info ata_dummy_port_info = {
6809 .port_ops = &ata_dummy_port_ops,
6810};
6811
a9a79dfe
JP
6812/*
6813 * Utility print functions
6814 */
d7bead1b
JP
6815void ata_port_printk(const struct ata_port *ap, const char *level,
6816 const char *fmt, ...)
a9a79dfe
JP
6817{
6818 struct va_format vaf;
6819 va_list args;
a9a79dfe
JP
6820
6821 va_start(args, fmt);
6822
6823 vaf.fmt = fmt;
6824 vaf.va = &args;
6825
d7bead1b 6826 printk("%sata%u: %pV", level, ap->print_id, &vaf);
a9a79dfe
JP
6827
6828 va_end(args);
a9a79dfe
JP
6829}
6830EXPORT_SYMBOL(ata_port_printk);
6831
d7bead1b
JP
6832void ata_link_printk(const struct ata_link *link, const char *level,
6833 const char *fmt, ...)
a9a79dfe
JP
6834{
6835 struct va_format vaf;
6836 va_list args;
a9a79dfe
JP
6837
6838 va_start(args, fmt);
6839
6840 vaf.fmt = fmt;
6841 vaf.va = &args;
6842
6843 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
d7bead1b
JP
6844 printk("%sata%u.%02u: %pV",
6845 level, link->ap->print_id, link->pmp, &vaf);
a9a79dfe 6846 else
d7bead1b
JP
6847 printk("%sata%u: %pV",
6848 level, link->ap->print_id, &vaf);
a9a79dfe
JP
6849
6850 va_end(args);
a9a79dfe
JP
6851}
6852EXPORT_SYMBOL(ata_link_printk);
6853
d7bead1b 6854void ata_dev_printk(const struct ata_device *dev, const char *level,
a9a79dfe
JP
6855 const char *fmt, ...)
6856{
6857 struct va_format vaf;
6858 va_list args;
a9a79dfe
JP
6859
6860 va_start(args, fmt);
6861
6862 vaf.fmt = fmt;
6863 vaf.va = &args;
6864
d7bead1b
JP
6865 printk("%sata%u.%02u: %pV",
6866 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6867 &vaf);
a9a79dfe
JP
6868
6869 va_end(args);
a9a79dfe
JP
6870}
6871EXPORT_SYMBOL(ata_dev_printk);
6872
06296a1e
JP
6873void ata_print_version(const struct device *dev, const char *version)
6874{
6875 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6876}
6877EXPORT_SYMBOL(ata_print_version);
6878
1da177e4
LT
6879/*
6880 * libata is essentially a library of internal helper functions for
6881 * low-level ATA host controller drivers. As such, the API/ABI is
6882 * likely to change as new drivers are added and updated.
6883 * Do not depend on ABI/API stability.
6884 */
e9c83914
TH
6885EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6886EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6887EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
6888EXPORT_SYMBOL_GPL(ata_base_port_ops);
6889EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 6890EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6891EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1eca4365
TH
6892EXPORT_SYMBOL_GPL(ata_link_next);
6893EXPORT_SYMBOL_GPL(ata_dev_next);
1da177e4 6894EXPORT_SYMBOL_GPL(ata_std_bios_param);
d8d9129e 6895EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
cca3974e 6896EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6897EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6898EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 6899EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 6900EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6901EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6902EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6903EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 6904EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 6905EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6906EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 6907EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
6908EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6909EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
6910EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6911EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6912EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6913EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6914EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6915EXPORT_SYMBOL_GPL(ata_mode_string);
6916EXPORT_SYMBOL_GPL(ata_id_xfermask);
04351821 6917EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 6918EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 6919EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
10305f0f 6920EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6921EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 6922EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
6923EXPORT_SYMBOL_GPL(sata_link_debounce);
6924EXPORT_SYMBOL_GPL(sata_link_resume);
1152b261 6925EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
0aa1113d 6926EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 6927EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 6928EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 6929EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6930EXPORT_SYMBOL_GPL(ata_dev_classify);
6931EXPORT_SYMBOL_GPL(ata_dev_pair);
67846b30 6932EXPORT_SYMBOL_GPL(ata_ratelimit);
97750ceb 6933EXPORT_SYMBOL_GPL(ata_msleep);
c22daff4 6934EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4 6935EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6936EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6937EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6938EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
f6e67035 6939EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
34bf2170
TH
6940EXPORT_SYMBOL_GPL(sata_scr_valid);
6941EXPORT_SYMBOL_GPL(sata_scr_read);
6942EXPORT_SYMBOL_GPL(sata_scr_write);
6943EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
6944EXPORT_SYMBOL_GPL(ata_link_online);
6945EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 6946#ifdef CONFIG_PM
cca3974e
JG
6947EXPORT_SYMBOL_GPL(ata_host_suspend);
6948EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6949#endif /* CONFIG_PM */
6a62a04d
TH
6950EXPORT_SYMBOL_GPL(ata_id_string);
6951EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 6952EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
6953EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6954
1bc4ccff 6955EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 6956EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
6957EXPORT_SYMBOL_GPL(ata_timing_compute);
6958EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 6959EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 6960
1da177e4
LT
6961#ifdef CONFIG_PCI
6962EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 6963EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6964#ifdef CONFIG_PM
500530f6
TH
6965EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6966EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6967EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6968EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6969#endif /* CONFIG_PM */
1da177e4 6970#endif /* CONFIG_PCI */
9b847548 6971
b7db04d9
BN
6972EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6973
b64bbc39
TH
6974EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6975EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6976EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
6977EXPORT_SYMBOL_GPL(ata_port_desc);
6978#ifdef CONFIG_PCI
6979EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6980#endif /* CONFIG_PCI */
7b70fc03 6981EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 6982EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 6983EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 6984EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 6985EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
6986EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6987EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6988EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6989EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 6990EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 6991EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 6992EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
6993
6994EXPORT_SYMBOL_GPL(ata_cable_40wire);
6995EXPORT_SYMBOL_GPL(ata_cable_80wire);
6996EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 6997EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 6998EXPORT_SYMBOL_GPL(ata_cable_sata);