Merge branch 'linus' of master.kernel.org:/pub/scm/linux/kernel/git/perex/alsa
[linux-block.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
cb48cab7 62#define DRV_VERSION "2.20" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
1da177e4 74
f3187195 75unsigned int ata_print_id = 1;
1da177e4
LT
76static struct workqueue_struct *ata_wq;
77
453b07ac
TH
78struct workqueue_struct *ata_aux_wq;
79
418dc1f5 80int atapi_enabled = 1;
1623c81e
JG
81module_param(atapi_enabled, int, 0444);
82MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
95de719a
AL
84int atapi_dmadir = 0;
85module_param(atapi_dmadir, int, 0444);
86MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
c3c013a2
JG
88int libata_fua = 0;
89module_param_named(fua, libata_fua, int, 0444);
90MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
1e999736
AC
92static int ata_ignore_hpa = 0;
93module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
95
a8601e5f
AM
96static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97module_param(ata_probe_timeout, int, 0444);
98MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
99
d7d0dad6
JG
100int libata_noacpi = 1;
101module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
102MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
103
1da177e4
LT
104MODULE_AUTHOR("Jeff Garzik");
105MODULE_DESCRIPTION("Library module for ATA devices");
106MODULE_LICENSE("GPL");
107MODULE_VERSION(DRV_VERSION);
108
0baab86b 109
1da177e4
LT
110/**
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
115 *
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
122
057ace5e 123void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
124{
125 fis[0] = 0x27; /* Register - Host to Device FIS */
126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis[2] = tf->command;
129 fis[3] = tf->feature;
130
131 fis[4] = tf->lbal;
132 fis[5] = tf->lbam;
133 fis[6] = tf->lbah;
134 fis[7] = tf->device;
135
136 fis[8] = tf->hob_lbal;
137 fis[9] = tf->hob_lbam;
138 fis[10] = tf->hob_lbah;
139 fis[11] = tf->hob_feature;
140
141 fis[12] = tf->nsect;
142 fis[13] = tf->hob_nsect;
143 fis[14] = 0;
144 fis[15] = tf->ctl;
145
146 fis[16] = 0;
147 fis[17] = 0;
148 fis[18] = 0;
149 fis[19] = 0;
150}
151
152/**
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
156 *
e12a1be6 157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
158 *
159 * LOCKING:
160 * Inherited from caller.
161 */
162
057ace5e 163void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
164{
165 tf->command = fis[2]; /* status */
166 tf->feature = fis[3]; /* error */
167
168 tf->lbal = fis[4];
169 tf->lbam = fis[5];
170 tf->lbah = fis[6];
171 tf->device = fis[7];
172
173 tf->hob_lbal = fis[8];
174 tf->hob_lbam = fis[9];
175 tf->hob_lbah = fis[10];
176
177 tf->nsect = fis[12];
178 tf->hob_nsect = fis[13];
179}
180
8cbd6df1
AL
181static const u8 ata_rw_cmds[] = {
182 /* pio multi */
183 ATA_CMD_READ_MULTI,
184 ATA_CMD_WRITE_MULTI,
185 ATA_CMD_READ_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
187 0,
188 0,
189 0,
190 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
191 /* pio */
192 ATA_CMD_PIO_READ,
193 ATA_CMD_PIO_WRITE,
194 ATA_CMD_PIO_READ_EXT,
195 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
196 0,
197 0,
198 0,
199 0,
8cbd6df1
AL
200 /* dma */
201 ATA_CMD_READ,
202 ATA_CMD_WRITE,
203 ATA_CMD_READ_EXT,
9a3dccc4
TH
204 ATA_CMD_WRITE_EXT,
205 0,
206 0,
207 0,
208 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 209};
1da177e4
LT
210
211/**
8cbd6df1 212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
1da177e4 215 *
2e9edbf8 216 * Examine the device configuration and tf->flags to calculate
8cbd6df1 217 * the proper read/write commands and protocol to use.
1da177e4
LT
218 *
219 * LOCKING:
220 * caller.
221 */
bd056d7e 222static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 223{
9a3dccc4 224 u8 cmd;
1da177e4 225
9a3dccc4 226 int index, fua, lba48, write;
2e9edbf8 227
9a3dccc4 228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 231
8cbd6df1
AL
232 if (dev->flags & ATA_DFLAG_PIO) {
233 tf->protocol = ATA_PROT_PIO;
9a3dccc4 234 index = dev->multi_count ? 0 : 8;
bd056d7e 235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
236 /* Unable to use DMA due to host limitation */
237 tf->protocol = ATA_PROT_PIO;
0565c26d 238 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
239 } else {
240 tf->protocol = ATA_PROT_DMA;
9a3dccc4 241 index = 16;
8cbd6df1 242 }
1da177e4 243
9a3dccc4
TH
244 cmd = ata_rw_cmds[index + fua + lba48 + write];
245 if (cmd) {
246 tf->command = cmd;
247 return 0;
248 }
249 return -1;
1da177e4
LT
250}
251
35b649fe
TH
252/**
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
256 *
257 * LOCKING:
258 * None.
259 *
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
263 *
264 * RETURNS:
265 * Block address read from @tf.
266 */
267u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
268{
269 u64 block = 0;
270
271 if (tf->flags & ATA_TFLAG_LBA) {
272 if (tf->flags & ATA_TFLAG_LBA48) {
273 block |= (u64)tf->hob_lbah << 40;
274 block |= (u64)tf->hob_lbam << 32;
275 block |= tf->hob_lbal << 24;
276 } else
277 block |= (tf->device & 0xf) << 24;
278
279 block |= tf->lbah << 16;
280 block |= tf->lbam << 8;
281 block |= tf->lbal;
282 } else {
283 u32 cyl, head, sect;
284
285 cyl = tf->lbam | (tf->lbah << 8);
286 head = tf->device & 0xf;
287 sect = tf->lbal;
288
289 block = (cyl * dev->heads + head) * dev->sectors + sect;
290 }
291
292 return block;
293}
294
bd056d7e
TH
295/**
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
302 * @tag: tag
303 *
304 * LOCKING:
305 * None.
306 *
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
309 *
310 * RETURNS:
311 *
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
314 */
315int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 u64 block, u32 n_block, unsigned int tf_flags,
317 unsigned int tag)
318{
319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 tf->flags |= tf_flags;
321
6d1245bf 322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
323 /* yay, NCQ */
324 if (!lba_48_ok(block, n_block))
325 return -ERANGE;
326
327 tf->protocol = ATA_PROT_NCQ;
328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
329
330 if (tf->flags & ATA_TFLAG_WRITE)
331 tf->command = ATA_CMD_FPDMA_WRITE;
332 else
333 tf->command = ATA_CMD_FPDMA_READ;
334
335 tf->nsect = tag << 3;
336 tf->hob_feature = (n_block >> 8) & 0xff;
337 tf->feature = n_block & 0xff;
338
339 tf->hob_lbah = (block >> 40) & 0xff;
340 tf->hob_lbam = (block >> 32) & 0xff;
341 tf->hob_lbal = (block >> 24) & 0xff;
342 tf->lbah = (block >> 16) & 0xff;
343 tf->lbam = (block >> 8) & 0xff;
344 tf->lbal = block & 0xff;
345
346 tf->device = 1 << 6;
347 if (tf->flags & ATA_TFLAG_FUA)
348 tf->device |= 1 << 7;
349 } else if (dev->flags & ATA_DFLAG_LBA) {
350 tf->flags |= ATA_TFLAG_LBA;
351
352 if (lba_28_ok(block, n_block)) {
353 /* use LBA28 */
354 tf->device |= (block >> 24) & 0xf;
355 } else if (lba_48_ok(block, n_block)) {
356 if (!(dev->flags & ATA_DFLAG_LBA48))
357 return -ERANGE;
358
359 /* use LBA48 */
360 tf->flags |= ATA_TFLAG_LBA48;
361
362 tf->hob_nsect = (n_block >> 8) & 0xff;
363
364 tf->hob_lbah = (block >> 40) & 0xff;
365 tf->hob_lbam = (block >> 32) & 0xff;
366 tf->hob_lbal = (block >> 24) & 0xff;
367 } else
368 /* request too large even for LBA48 */
369 return -ERANGE;
370
371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 return -EINVAL;
373
374 tf->nsect = n_block & 0xff;
375
376 tf->lbah = (block >> 16) & 0xff;
377 tf->lbam = (block >> 8) & 0xff;
378 tf->lbal = block & 0xff;
379
380 tf->device |= ATA_LBA;
381 } else {
382 /* CHS */
383 u32 sect, head, cyl, track;
384
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block, n_block))
387 return -ERANGE;
388
389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 return -EINVAL;
391
392 /* Convert LBA to CHS */
393 track = (u32)block / dev->sectors;
394 cyl = track / dev->heads;
395 head = track % dev->heads;
396 sect = (u32)block % dev->sectors + 1;
397
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32)block, track, cyl, head, sect);
400
401 /* Check whether the converted CHS can fit.
402 Cylinder: 0-65535
403 Head: 0-15
404 Sector: 1-255*/
405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 return -ERANGE;
407
408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 tf->lbal = sect;
410 tf->lbam = cyl;
411 tf->lbah = cyl >> 8;
412 tf->device |= head;
413 }
414
415 return 0;
416}
417
cb95d562
TH
418/**
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
423 *
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
426 *
427 * LOCKING:
428 * None.
429 *
430 * RETURNS:
431 * Packed xfer_mask.
432 */
433static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 unsigned int mwdma_mask,
435 unsigned int udma_mask)
436{
437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
440}
441
c0489e4e
TH
442/**
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
448 *
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
451 */
452static void ata_unpack_xfermask(unsigned int xfer_mask,
453 unsigned int *pio_mask,
454 unsigned int *mwdma_mask,
455 unsigned int *udma_mask)
456{
457 if (pio_mask)
458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 if (mwdma_mask)
460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 if (udma_mask)
462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463}
464
cb95d562 465static const struct ata_xfer_ent {
be9a50c8 466 int shift, bits;
cb95d562
TH
467 u8 base;
468} ata_xfer_tbl[] = {
469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 { -1, },
473};
474
475/**
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
478 *
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
481 *
482 * LOCKING:
483 * None.
484 *
485 * RETURNS:
486 * Matching XFER_* value, 0 if no match found.
487 */
488static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
489{
490 int highbit = fls(xfer_mask) - 1;
491 const struct ata_xfer_ent *ent;
492
493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 return ent->base + highbit - ent->shift;
496 return 0;
497}
498
499/**
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
502 *
503 * Return matching xfer_mask for @xfer_mode.
504 *
505 * LOCKING:
506 * None.
507 *
508 * RETURNS:
509 * Matching xfer_mask, 0 if no match found.
510 */
511static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
512{
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 return 1 << (ent->shift + xfer_mode - ent->base);
518 return 0;
519}
520
521/**
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_shift for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_shift, -1 if no match found.
532 */
533static int ata_xfer_mode2shift(unsigned int xfer_mode)
534{
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ent->shift;
540 return -1;
541}
542
1da177e4 543/**
1da7b0d0
TH
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
546 *
547 * Determine string which represents the highest speed
1da7b0d0 548 * (highest bit in @modemask).
1da177e4
LT
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Constant C string representing highest speed listed in
1da7b0d0 555 * @mode_mask, or the constant C string "<n/a>".
1da177e4 556 */
1da7b0d0 557static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 558{
75f554bc
TH
559 static const char * const xfer_mode_str[] = {
560 "PIO0",
561 "PIO1",
562 "PIO2",
563 "PIO3",
564 "PIO4",
b352e57d
AC
565 "PIO5",
566 "PIO6",
75f554bc
TH
567 "MWDMA0",
568 "MWDMA1",
569 "MWDMA2",
b352e57d
AC
570 "MWDMA3",
571 "MWDMA4",
75f554bc
TH
572 "UDMA/16",
573 "UDMA/25",
574 "UDMA/33",
575 "UDMA/44",
576 "UDMA/66",
577 "UDMA/100",
578 "UDMA/133",
579 "UDMA7",
580 };
1da7b0d0 581 int highbit;
1da177e4 582
1da7b0d0
TH
583 highbit = fls(xfer_mask) - 1;
584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 return xfer_mode_str[highbit];
1da177e4 586 return "<n/a>";
1da177e4
LT
587}
588
4c360c81
TH
589static const char *sata_spd_string(unsigned int spd)
590{
591 static const char * const spd_str[] = {
592 "1.5 Gbps",
593 "3.0 Gbps",
594 };
595
596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 return "<unknown>";
598 return spd_str[spd - 1];
599}
600
3373efd8 601void ata_dev_disable(struct ata_device *dev)
0b8efb0a 602{
0dd4b21f 603 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 604 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
605 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
606 ATA_DNXFER_QUIET);
0b8efb0a
TH
607 dev->class++;
608 }
609}
610
1da177e4 611/**
0d5ff566 612 * ata_devchk - PATA device presence detection
1da177e4
LT
613 * @ap: ATA channel to examine
614 * @device: Device to examine (starting at zero)
615 *
616 * This technique was originally described in
617 * Hale Landis's ATADRVR (www.ata-atapi.com), and
618 * later found its way into the ATA/ATAPI spec.
619 *
620 * Write a pattern to the ATA shadow registers,
621 * and if a device is present, it will respond by
622 * correctly storing and echoing back the
623 * ATA shadow register contents.
624 *
625 * LOCKING:
626 * caller.
627 */
628
0d5ff566 629static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
630{
631 struct ata_ioports *ioaddr = &ap->ioaddr;
632 u8 nsect, lbal;
633
634 ap->ops->dev_select(ap, device);
635
0d5ff566
TH
636 iowrite8(0x55, ioaddr->nsect_addr);
637 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 638
0d5ff566
TH
639 iowrite8(0xaa, ioaddr->nsect_addr);
640 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 641
0d5ff566
TH
642 iowrite8(0x55, ioaddr->nsect_addr);
643 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 644
0d5ff566
TH
645 nsect = ioread8(ioaddr->nsect_addr);
646 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
647
648 if ((nsect == 0x55) && (lbal == 0xaa))
649 return 1; /* we found a device */
650
651 return 0; /* nothing found */
652}
653
1da177e4
LT
654/**
655 * ata_dev_classify - determine device type based on ATA-spec signature
656 * @tf: ATA taskfile register set for device to be identified
657 *
658 * Determine from taskfile register contents whether a device is
659 * ATA or ATAPI, as per "Signature and persistence" section
660 * of ATA/PI spec (volume 1, sect 5.14).
661 *
662 * LOCKING:
663 * None.
664 *
665 * RETURNS:
666 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
667 * the event of failure.
668 */
669
057ace5e 670unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
671{
672 /* Apple's open source Darwin code hints that some devices only
673 * put a proper signature into the LBA mid/high registers,
674 * So, we only check those. It's sufficient for uniqueness.
675 */
676
677 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
678 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
679 DPRINTK("found ATA device by sig\n");
680 return ATA_DEV_ATA;
681 }
682
683 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
684 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
685 DPRINTK("found ATAPI device by sig\n");
686 return ATA_DEV_ATAPI;
687 }
688
689 DPRINTK("unknown device\n");
690 return ATA_DEV_UNKNOWN;
691}
692
693/**
694 * ata_dev_try_classify - Parse returned ATA device signature
695 * @ap: ATA channel to examine
696 * @device: Device to examine (starting at zero)
b4dc7623 697 * @r_err: Value of error register on completion
1da177e4
LT
698 *
699 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
700 * an ATA/ATAPI-defined set of values is placed in the ATA
701 * shadow registers, indicating the results of device detection
702 * and diagnostics.
703 *
704 * Select the ATA device, and read the values from the ATA shadow
705 * registers. Then parse according to the Error register value,
706 * and the spec-defined values examined by ata_dev_classify().
707 *
708 * LOCKING:
709 * caller.
b4dc7623
TH
710 *
711 * RETURNS:
712 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
713 */
714
a619f981 715unsigned int
b4dc7623 716ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 717{
1da177e4
LT
718 struct ata_taskfile tf;
719 unsigned int class;
720 u8 err;
721
722 ap->ops->dev_select(ap, device);
723
724 memset(&tf, 0, sizeof(tf));
725
1da177e4 726 ap->ops->tf_read(ap, &tf);
0169e284 727 err = tf.feature;
b4dc7623
TH
728 if (r_err)
729 *r_err = err;
1da177e4 730
93590859
AC
731 /* see if device passed diags: if master then continue and warn later */
732 if (err == 0 && device == 0)
733 /* diagnostic fail : do nothing _YET_ */
734 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
735 else if (err == 1)
1da177e4
LT
736 /* do nothing */ ;
737 else if ((device == 0) && (err == 0x81))
738 /* do nothing */ ;
739 else
b4dc7623 740 return ATA_DEV_NONE;
1da177e4 741
b4dc7623 742 /* determine if device is ATA or ATAPI */
1da177e4 743 class = ata_dev_classify(&tf);
b4dc7623 744
1da177e4 745 if (class == ATA_DEV_UNKNOWN)
b4dc7623 746 return ATA_DEV_NONE;
1da177e4 747 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
748 return ATA_DEV_NONE;
749 return class;
1da177e4
LT
750}
751
752/**
6a62a04d 753 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
754 * @id: IDENTIFY DEVICE results we will examine
755 * @s: string into which data is output
756 * @ofs: offset into identify device page
757 * @len: length of string to return. must be an even number.
758 *
759 * The strings in the IDENTIFY DEVICE page are broken up into
760 * 16-bit chunks. Run through the string, and output each
761 * 8-bit chunk linearly, regardless of platform.
762 *
763 * LOCKING:
764 * caller.
765 */
766
6a62a04d
TH
767void ata_id_string(const u16 *id, unsigned char *s,
768 unsigned int ofs, unsigned int len)
1da177e4
LT
769{
770 unsigned int c;
771
772 while (len > 0) {
773 c = id[ofs] >> 8;
774 *s = c;
775 s++;
776
777 c = id[ofs] & 0xff;
778 *s = c;
779 s++;
780
781 ofs++;
782 len -= 2;
783 }
784}
785
0e949ff3 786/**
6a62a04d 787 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
788 * @id: IDENTIFY DEVICE results we will examine
789 * @s: string into which data is output
790 * @ofs: offset into identify device page
791 * @len: length of string to return. must be an odd number.
792 *
6a62a04d 793 * This function is identical to ata_id_string except that it
0e949ff3
TH
794 * trims trailing spaces and terminates the resulting string with
795 * null. @len must be actual maximum length (even number) + 1.
796 *
797 * LOCKING:
798 * caller.
799 */
6a62a04d
TH
800void ata_id_c_string(const u16 *id, unsigned char *s,
801 unsigned int ofs, unsigned int len)
0e949ff3
TH
802{
803 unsigned char *p;
804
805 WARN_ON(!(len & 1));
806
6a62a04d 807 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
808
809 p = s + strnlen(s, len - 1);
810 while (p > s && p[-1] == ' ')
811 p--;
812 *p = '\0';
813}
0baab86b 814
1e999736
AC
815static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
816{
817 u64 sectors = 0;
818
819 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
820 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
821 sectors |= (tf->hob_lbal & 0xff) << 24;
822 sectors |= (tf->lbah & 0xff) << 16;
823 sectors |= (tf->lbam & 0xff) << 8;
824 sectors |= (tf->lbal & 0xff);
825
826 return ++sectors;
827}
828
829static u64 ata_tf_to_lba(struct ata_taskfile *tf)
830{
831 u64 sectors = 0;
832
833 sectors |= (tf->device & 0x0f) << 24;
834 sectors |= (tf->lbah & 0xff) << 16;
835 sectors |= (tf->lbam & 0xff) << 8;
836 sectors |= (tf->lbal & 0xff);
837
838 return ++sectors;
839}
840
841/**
842 * ata_read_native_max_address_ext - LBA48 native max query
843 * @dev: Device to query
844 *
845 * Perform an LBA48 size query upon the device in question. Return the
846 * actual LBA48 size or zero if the command fails.
847 */
848
849static u64 ata_read_native_max_address_ext(struct ata_device *dev)
850{
851 unsigned int err;
852 struct ata_taskfile tf;
853
854 ata_tf_init(dev, &tf);
855
856 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
857 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
858 tf.protocol |= ATA_PROT_NODATA;
859 tf.device |= 0x40;
860
861 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
862 if (err)
863 return 0;
864
865 return ata_tf_to_lba48(&tf);
866}
867
868/**
869 * ata_read_native_max_address - LBA28 native max query
870 * @dev: Device to query
871 *
872 * Performa an LBA28 size query upon the device in question. Return the
873 * actual LBA28 size or zero if the command fails.
874 */
875
876static u64 ata_read_native_max_address(struct ata_device *dev)
877{
878 unsigned int err;
879 struct ata_taskfile tf;
880
881 ata_tf_init(dev, &tf);
882
883 tf.command = ATA_CMD_READ_NATIVE_MAX;
884 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
885 tf.protocol |= ATA_PROT_NODATA;
886 tf.device |= 0x40;
887
888 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
889 if (err)
890 return 0;
891
892 return ata_tf_to_lba(&tf);
893}
894
895/**
896 * ata_set_native_max_address_ext - LBA48 native max set
897 * @dev: Device to query
6b38d1d1 898 * @new_sectors: new max sectors value to set for the device
1e999736
AC
899 *
900 * Perform an LBA48 size set max upon the device in question. Return the
901 * actual LBA48 size or zero if the command fails.
902 */
903
904static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
905{
906 unsigned int err;
907 struct ata_taskfile tf;
908
909 new_sectors--;
910
911 ata_tf_init(dev, &tf);
912
913 tf.command = ATA_CMD_SET_MAX_EXT;
914 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
915 tf.protocol |= ATA_PROT_NODATA;
916 tf.device |= 0x40;
917
918 tf.lbal = (new_sectors >> 0) & 0xff;
919 tf.lbam = (new_sectors >> 8) & 0xff;
920 tf.lbah = (new_sectors >> 16) & 0xff;
921
922 tf.hob_lbal = (new_sectors >> 24) & 0xff;
923 tf.hob_lbam = (new_sectors >> 32) & 0xff;
924 tf.hob_lbah = (new_sectors >> 40) & 0xff;
925
926 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
927 if (err)
928 return 0;
929
930 return ata_tf_to_lba48(&tf);
931}
932
933/**
934 * ata_set_native_max_address - LBA28 native max set
935 * @dev: Device to query
6b38d1d1 936 * @new_sectors: new max sectors value to set for the device
1e999736
AC
937 *
938 * Perform an LBA28 size set max upon the device in question. Return the
939 * actual LBA28 size or zero if the command fails.
940 */
941
942static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
943{
944 unsigned int err;
945 struct ata_taskfile tf;
946
947 new_sectors--;
948
949 ata_tf_init(dev, &tf);
950
951 tf.command = ATA_CMD_SET_MAX;
952 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
953 tf.protocol |= ATA_PROT_NODATA;
954
955 tf.lbal = (new_sectors >> 0) & 0xff;
956 tf.lbam = (new_sectors >> 8) & 0xff;
957 tf.lbah = (new_sectors >> 16) & 0xff;
958 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
959
960 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
961 if (err)
962 return 0;
963
964 return ata_tf_to_lba(&tf);
965}
966
967/**
968 * ata_hpa_resize - Resize a device with an HPA set
969 * @dev: Device to resize
970 *
971 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
972 * it if required to the full size of the media. The caller must check
973 * the drive has the HPA feature set enabled.
974 */
975
976static u64 ata_hpa_resize(struct ata_device *dev)
977{
978 u64 sectors = dev->n_sectors;
979 u64 hpa_sectors;
980
981 if (ata_id_has_lba48(dev->id))
982 hpa_sectors = ata_read_native_max_address_ext(dev);
983 else
984 hpa_sectors = ata_read_native_max_address(dev);
985
986 /* if no hpa, both should be equal */
bd1d5ec6
AM
987 ata_dev_printk(dev, KERN_INFO, "%s 1: sectors = %lld, "
988 "hpa_sectors = %lld\n",
989 __FUNCTION__, (long long)sectors, (long long)hpa_sectors);
1e999736
AC
990
991 if (hpa_sectors > sectors) {
992 ata_dev_printk(dev, KERN_INFO,
993 "Host Protected Area detected:\n"
994 "\tcurrent size: %lld sectors\n"
995 "\tnative size: %lld sectors\n",
bd1d5ec6 996 (long long)sectors, (long long)hpa_sectors);
1e999736
AC
997
998 if (ata_ignore_hpa) {
999 if (ata_id_has_lba48(dev->id))
1000 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1001 else
bd1d5ec6
AM
1002 hpa_sectors = ata_set_native_max_address(dev,
1003 hpa_sectors);
1e999736
AC
1004
1005 if (hpa_sectors) {
bd1d5ec6
AM
1006 ata_dev_printk(dev, KERN_INFO, "native size "
1007 "increased to %lld sectors\n",
1008 (long long)hpa_sectors);
1e999736
AC
1009 return hpa_sectors;
1010 }
1011 }
1012 }
1013 return sectors;
1014}
1015
2940740b
TH
1016static u64 ata_id_n_sectors(const u16 *id)
1017{
1018 if (ata_id_has_lba(id)) {
1019 if (ata_id_has_lba48(id))
1020 return ata_id_u64(id, 100);
1021 else
1022 return ata_id_u32(id, 60);
1023 } else {
1024 if (ata_id_current_chs_valid(id))
1025 return ata_id_u32(id, 57);
1026 else
1027 return id[1] * id[3] * id[6];
1028 }
1029}
1030
10305f0f
A
1031/**
1032 * ata_id_to_dma_mode - Identify DMA mode from id block
1033 * @dev: device to identify
cc261267 1034 * @unknown: mode to assume if we cannot tell
10305f0f
A
1035 *
1036 * Set up the timing values for the device based upon the identify
1037 * reported values for the DMA mode. This function is used by drivers
1038 * which rely upon firmware configured modes, but wish to report the
1039 * mode correctly when possible.
1040 *
1041 * In addition we emit similarly formatted messages to the default
1042 * ata_dev_set_mode handler, in order to provide consistency of
1043 * presentation.
1044 */
1045
1046void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1047{
1048 unsigned int mask;
1049 u8 mode;
1050
1051 /* Pack the DMA modes */
1052 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1053 if (dev->id[53] & 0x04)
1054 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1055
1056 /* Select the mode in use */
1057 mode = ata_xfer_mask2mode(mask);
1058
1059 if (mode != 0) {
1060 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1061 ata_mode_string(mask));
1062 } else {
1063 /* SWDMA perhaps ? */
1064 mode = unknown;
1065 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1066 }
1067
1068 /* Configure the device reporting */
1069 dev->xfer_mode = mode;
1070 dev->xfer_shift = ata_xfer_mode2shift(mode);
1071}
1072
0baab86b
EF
1073/**
1074 * ata_noop_dev_select - Select device 0/1 on ATA bus
1075 * @ap: ATA channel to manipulate
1076 * @device: ATA device (numbered from zero) to select
1077 *
1078 * This function performs no actual function.
1079 *
1080 * May be used as the dev_select() entry in ata_port_operations.
1081 *
1082 * LOCKING:
1083 * caller.
1084 */
1da177e4
LT
1085void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1086{
1087}
1088
0baab86b 1089
1da177e4
LT
1090/**
1091 * ata_std_dev_select - Select device 0/1 on ATA bus
1092 * @ap: ATA channel to manipulate
1093 * @device: ATA device (numbered from zero) to select
1094 *
1095 * Use the method defined in the ATA specification to
1096 * make either device 0, or device 1, active on the
0baab86b
EF
1097 * ATA channel. Works with both PIO and MMIO.
1098 *
1099 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1100 *
1101 * LOCKING:
1102 * caller.
1103 */
1104
1105void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1106{
1107 u8 tmp;
1108
1109 if (device == 0)
1110 tmp = ATA_DEVICE_OBS;
1111 else
1112 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1113
0d5ff566 1114 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1115 ata_pause(ap); /* needed; also flushes, for mmio */
1116}
1117
1118/**
1119 * ata_dev_select - Select device 0/1 on ATA bus
1120 * @ap: ATA channel to manipulate
1121 * @device: ATA device (numbered from zero) to select
1122 * @wait: non-zero to wait for Status register BSY bit to clear
1123 * @can_sleep: non-zero if context allows sleeping
1124 *
1125 * Use the method defined in the ATA specification to
1126 * make either device 0, or device 1, active on the
1127 * ATA channel.
1128 *
1129 * This is a high-level version of ata_std_dev_select(),
1130 * which additionally provides the services of inserting
1131 * the proper pauses and status polling, where needed.
1132 *
1133 * LOCKING:
1134 * caller.
1135 */
1136
1137void ata_dev_select(struct ata_port *ap, unsigned int device,
1138 unsigned int wait, unsigned int can_sleep)
1139{
88574551 1140 if (ata_msg_probe(ap))
44877b4e
TH
1141 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1142 "device %u, wait %u\n", device, wait);
1da177e4
LT
1143
1144 if (wait)
1145 ata_wait_idle(ap);
1146
1147 ap->ops->dev_select(ap, device);
1148
1149 if (wait) {
1150 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1151 msleep(150);
1152 ata_wait_idle(ap);
1153 }
1154}
1155
1156/**
1157 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1158 * @id: IDENTIFY DEVICE page to dump
1da177e4 1159 *
0bd3300a
TH
1160 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1161 * page.
1da177e4
LT
1162 *
1163 * LOCKING:
1164 * caller.
1165 */
1166
0bd3300a 1167static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1168{
1169 DPRINTK("49==0x%04x "
1170 "53==0x%04x "
1171 "63==0x%04x "
1172 "64==0x%04x "
1173 "75==0x%04x \n",
0bd3300a
TH
1174 id[49],
1175 id[53],
1176 id[63],
1177 id[64],
1178 id[75]);
1da177e4
LT
1179 DPRINTK("80==0x%04x "
1180 "81==0x%04x "
1181 "82==0x%04x "
1182 "83==0x%04x "
1183 "84==0x%04x \n",
0bd3300a
TH
1184 id[80],
1185 id[81],
1186 id[82],
1187 id[83],
1188 id[84]);
1da177e4
LT
1189 DPRINTK("88==0x%04x "
1190 "93==0x%04x\n",
0bd3300a
TH
1191 id[88],
1192 id[93]);
1da177e4
LT
1193}
1194
cb95d562
TH
1195/**
1196 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1197 * @id: IDENTIFY data to compute xfer mask from
1198 *
1199 * Compute the xfermask for this device. This is not as trivial
1200 * as it seems if we must consider early devices correctly.
1201 *
1202 * FIXME: pre IDE drive timing (do we care ?).
1203 *
1204 * LOCKING:
1205 * None.
1206 *
1207 * RETURNS:
1208 * Computed xfermask
1209 */
1210static unsigned int ata_id_xfermask(const u16 *id)
1211{
1212 unsigned int pio_mask, mwdma_mask, udma_mask;
1213
1214 /* Usual case. Word 53 indicates word 64 is valid */
1215 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1216 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1217 pio_mask <<= 3;
1218 pio_mask |= 0x7;
1219 } else {
1220 /* If word 64 isn't valid then Word 51 high byte holds
1221 * the PIO timing number for the maximum. Turn it into
1222 * a mask.
1223 */
7a0f1c8a 1224 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1225 if (mode < 5) /* Valid PIO range */
1226 pio_mask = (2 << mode) - 1;
1227 else
1228 pio_mask = 1;
cb95d562
TH
1229
1230 /* But wait.. there's more. Design your standards by
1231 * committee and you too can get a free iordy field to
1232 * process. However its the speeds not the modes that
1233 * are supported... Note drivers using the timing API
1234 * will get this right anyway
1235 */
1236 }
1237
1238 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1239
b352e57d
AC
1240 if (ata_id_is_cfa(id)) {
1241 /*
1242 * Process compact flash extended modes
1243 */
1244 int pio = id[163] & 0x7;
1245 int dma = (id[163] >> 3) & 7;
1246
1247 if (pio)
1248 pio_mask |= (1 << 5);
1249 if (pio > 1)
1250 pio_mask |= (1 << 6);
1251 if (dma)
1252 mwdma_mask |= (1 << 3);
1253 if (dma > 1)
1254 mwdma_mask |= (1 << 4);
1255 }
1256
fb21f0d0
TH
1257 udma_mask = 0;
1258 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1259 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1260
1261 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1262}
1263
86e45b6b
TH
1264/**
1265 * ata_port_queue_task - Queue port_task
1266 * @ap: The ata_port to queue port_task for
e2a7f77a 1267 * @fn: workqueue function to be scheduled
65f27f38 1268 * @data: data for @fn to use
e2a7f77a 1269 * @delay: delay time for workqueue function
86e45b6b
TH
1270 *
1271 * Schedule @fn(@data) for execution after @delay jiffies using
1272 * port_task. There is one port_task per port and it's the
1273 * user(low level driver)'s responsibility to make sure that only
1274 * one task is active at any given time.
1275 *
1276 * libata core layer takes care of synchronization between
1277 * port_task and EH. ata_port_queue_task() may be ignored for EH
1278 * synchronization.
1279 *
1280 * LOCKING:
1281 * Inherited from caller.
1282 */
65f27f38 1283void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1284 unsigned long delay)
1285{
1286 int rc;
1287
b51e9e5d 1288 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
1289 return;
1290
65f27f38
DH
1291 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1292 ap->port_task_data = data;
86e45b6b 1293
52bad64d 1294 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1295
1296 /* rc == 0 means that another user is using port task */
1297 WARN_ON(rc == 0);
1298}
1299
1300/**
1301 * ata_port_flush_task - Flush port_task
1302 * @ap: The ata_port to flush port_task for
1303 *
1304 * After this function completes, port_task is guranteed not to
1305 * be running or scheduled.
1306 *
1307 * LOCKING:
1308 * Kernel thread context (may sleep)
1309 */
1310void ata_port_flush_task(struct ata_port *ap)
1311{
1312 unsigned long flags;
1313
1314 DPRINTK("ENTER\n");
1315
ba6a1308 1316 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1317 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1318 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
1319
1320 DPRINTK("flush #1\n");
28e53bdd 1321 cancel_work_sync(&ap->port_task.work); /* akpm: seems unneeded */
86e45b6b
TH
1322
1323 /*
1324 * At this point, if a task is running, it's guaranteed to see
1325 * the FLUSH flag; thus, it will never queue pio tasks again.
1326 * Cancel and flush.
1327 */
1328 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 1329 if (ata_msg_ctl(ap))
88574551
TH
1330 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1331 __FUNCTION__);
28e53bdd 1332 cancel_work_sync(&ap->port_task.work);
86e45b6b
TH
1333 }
1334
ba6a1308 1335 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1336 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1337 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 1338
0dd4b21f
BP
1339 if (ata_msg_ctl(ap))
1340 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1341}
1342
7102d230 1343static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1344{
77853bf2 1345 struct completion *waiting = qc->private_data;
a2a7a662 1346
a2a7a662 1347 complete(waiting);
a2a7a662
TH
1348}
1349
1350/**
2432697b 1351 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1352 * @dev: Device to which the command is sent
1353 * @tf: Taskfile registers for the command and the result
d69cf37d 1354 * @cdb: CDB for packet command
a2a7a662 1355 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1356 * @sg: sg list for the data buffer of the command
1357 * @n_elem: Number of sg entries
a2a7a662
TH
1358 *
1359 * Executes libata internal command with timeout. @tf contains
1360 * command on entry and result on return. Timeout and error
1361 * conditions are reported via return value. No recovery action
1362 * is taken after a command times out. It's caller's duty to
1363 * clean up after timeout.
1364 *
1365 * LOCKING:
1366 * None. Should be called with kernel context, might sleep.
551e8889
TH
1367 *
1368 * RETURNS:
1369 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1370 */
2432697b
TH
1371unsigned ata_exec_internal_sg(struct ata_device *dev,
1372 struct ata_taskfile *tf, const u8 *cdb,
1373 int dma_dir, struct scatterlist *sg,
1374 unsigned int n_elem)
a2a7a662 1375{
3373efd8 1376 struct ata_port *ap = dev->ap;
a2a7a662
TH
1377 u8 command = tf->command;
1378 struct ata_queued_cmd *qc;
2ab7db1f 1379 unsigned int tag, preempted_tag;
dedaf2b0 1380 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1381 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1382 unsigned long flags;
77853bf2 1383 unsigned int err_mask;
d95a717f 1384 int rc;
a2a7a662 1385
ba6a1308 1386 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1387
e3180499 1388 /* no internal command while frozen */
b51e9e5d 1389 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1390 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1391 return AC_ERR_SYSTEM;
1392 }
1393
2ab7db1f 1394 /* initialize internal qc */
a2a7a662 1395
2ab7db1f
TH
1396 /* XXX: Tag 0 is used for drivers with legacy EH as some
1397 * drivers choke if any other tag is given. This breaks
1398 * ata_tag_internal() test for those drivers. Don't use new
1399 * EH stuff without converting to it.
1400 */
1401 if (ap->ops->error_handler)
1402 tag = ATA_TAG_INTERNAL;
1403 else
1404 tag = 0;
1405
6cec4a39 1406 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1407 BUG();
f69499f4 1408 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1409
1410 qc->tag = tag;
1411 qc->scsicmd = NULL;
1412 qc->ap = ap;
1413 qc->dev = dev;
1414 ata_qc_reinit(qc);
1415
1416 preempted_tag = ap->active_tag;
dedaf2b0
TH
1417 preempted_sactive = ap->sactive;
1418 preempted_qc_active = ap->qc_active;
2ab7db1f 1419 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1420 ap->sactive = 0;
1421 ap->qc_active = 0;
2ab7db1f
TH
1422
1423 /* prepare & issue qc */
a2a7a662 1424 qc->tf = *tf;
d69cf37d
TH
1425 if (cdb)
1426 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1427 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1428 qc->dma_dir = dma_dir;
1429 if (dma_dir != DMA_NONE) {
2432697b
TH
1430 unsigned int i, buflen = 0;
1431
1432 for (i = 0; i < n_elem; i++)
1433 buflen += sg[i].length;
1434
1435 ata_sg_init(qc, sg, n_elem);
49c80429 1436 qc->nbytes = buflen;
a2a7a662
TH
1437 }
1438
77853bf2 1439 qc->private_data = &wait;
a2a7a662
TH
1440 qc->complete_fn = ata_qc_complete_internal;
1441
8e0e694a 1442 ata_qc_issue(qc);
a2a7a662 1443
ba6a1308 1444 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1445
a8601e5f 1446 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1447
1448 ata_port_flush_task(ap);
41ade50c 1449
d95a717f 1450 if (!rc) {
ba6a1308 1451 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1452
1453 /* We're racing with irq here. If we lose, the
1454 * following test prevents us from completing the qc
d95a717f
TH
1455 * twice. If we win, the port is frozen and will be
1456 * cleaned up by ->post_internal_cmd().
a2a7a662 1457 */
77853bf2 1458 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1459 qc->err_mask |= AC_ERR_TIMEOUT;
1460
1461 if (ap->ops->error_handler)
1462 ata_port_freeze(ap);
1463 else
1464 ata_qc_complete(qc);
f15a1daf 1465
0dd4b21f
BP
1466 if (ata_msg_warn(ap))
1467 ata_dev_printk(dev, KERN_WARNING,
88574551 1468 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1469 }
1470
ba6a1308 1471 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1472 }
1473
d95a717f
TH
1474 /* do post_internal_cmd */
1475 if (ap->ops->post_internal_cmd)
1476 ap->ops->post_internal_cmd(qc);
1477
a51d644a
TH
1478 /* perform minimal error analysis */
1479 if (qc->flags & ATA_QCFLAG_FAILED) {
1480 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1481 qc->err_mask |= AC_ERR_DEV;
1482
1483 if (!qc->err_mask)
1484 qc->err_mask |= AC_ERR_OTHER;
1485
1486 if (qc->err_mask & ~AC_ERR_OTHER)
1487 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1488 }
1489
15869303 1490 /* finish up */
ba6a1308 1491 spin_lock_irqsave(ap->lock, flags);
15869303 1492
e61e0672 1493 *tf = qc->result_tf;
77853bf2
TH
1494 err_mask = qc->err_mask;
1495
1496 ata_qc_free(qc);
2ab7db1f 1497 ap->active_tag = preempted_tag;
dedaf2b0
TH
1498 ap->sactive = preempted_sactive;
1499 ap->qc_active = preempted_qc_active;
77853bf2 1500
1f7dd3e9
TH
1501 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1502 * Until those drivers are fixed, we detect the condition
1503 * here, fail the command with AC_ERR_SYSTEM and reenable the
1504 * port.
1505 *
1506 * Note that this doesn't change any behavior as internal
1507 * command failure results in disabling the device in the
1508 * higher layer for LLDDs without new reset/EH callbacks.
1509 *
1510 * Kill the following code as soon as those drivers are fixed.
1511 */
198e0fed 1512 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1513 err_mask |= AC_ERR_SYSTEM;
1514 ata_port_probe(ap);
1515 }
1516
ba6a1308 1517 spin_unlock_irqrestore(ap->lock, flags);
15869303 1518
77853bf2 1519 return err_mask;
a2a7a662
TH
1520}
1521
2432697b 1522/**
33480a0e 1523 * ata_exec_internal - execute libata internal command
2432697b
TH
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data tranfer direction of the command
1528 * @buf: Data buffer of the command
1529 * @buflen: Length of data buffer
1530 *
1531 * Wrapper around ata_exec_internal_sg() which takes simple
1532 * buffer instead of sg list.
1533 *
1534 * LOCKING:
1535 * None. Should be called with kernel context, might sleep.
1536 *
1537 * RETURNS:
1538 * Zero on success, AC_ERR_* mask on failure
1539 */
1540unsigned ata_exec_internal(struct ata_device *dev,
1541 struct ata_taskfile *tf, const u8 *cdb,
1542 int dma_dir, void *buf, unsigned int buflen)
1543{
33480a0e
TH
1544 struct scatterlist *psg = NULL, sg;
1545 unsigned int n_elem = 0;
2432697b 1546
33480a0e
TH
1547 if (dma_dir != DMA_NONE) {
1548 WARN_ON(!buf);
1549 sg_init_one(&sg, buf, buflen);
1550 psg = &sg;
1551 n_elem++;
1552 }
2432697b 1553
33480a0e 1554 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1555}
1556
977e6b9f
TH
1557/**
1558 * ata_do_simple_cmd - execute simple internal command
1559 * @dev: Device to which the command is sent
1560 * @cmd: Opcode to execute
1561 *
1562 * Execute a 'simple' command, that only consists of the opcode
1563 * 'cmd' itself, without filling any other registers
1564 *
1565 * LOCKING:
1566 * Kernel thread context (may sleep).
1567 *
1568 * RETURNS:
1569 * Zero on success, AC_ERR_* mask on failure
e58eb583 1570 */
77b08fb5 1571unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1572{
1573 struct ata_taskfile tf;
e58eb583
TH
1574
1575 ata_tf_init(dev, &tf);
1576
1577 tf.command = cmd;
1578 tf.flags |= ATA_TFLAG_DEVICE;
1579 tf.protocol = ATA_PROT_NODATA;
1580
977e6b9f 1581 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1582}
1583
1bc4ccff
AC
1584/**
1585 * ata_pio_need_iordy - check if iordy needed
1586 * @adev: ATA device
1587 *
1588 * Check if the current speed of the device requires IORDY. Used
1589 * by various controllers for chip configuration.
1590 */
432729f0 1591
1bc4ccff
AC
1592unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1593{
432729f0
AC
1594 /* Controller doesn't support IORDY. Probably a pointless check
1595 as the caller should know this */
1596 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1597 return 0;
432729f0
AC
1598 /* PIO3 and higher it is mandatory */
1599 if (adev->pio_mode > XFER_PIO_2)
1600 return 1;
1601 /* We turn it on when possible */
1602 if (ata_id_has_iordy(adev->id))
1bc4ccff 1603 return 1;
432729f0
AC
1604 return 0;
1605}
2e9edbf8 1606
432729f0
AC
1607/**
1608 * ata_pio_mask_no_iordy - Return the non IORDY mask
1609 * @adev: ATA device
1610 *
1611 * Compute the highest mode possible if we are not using iordy. Return
1612 * -1 if no iordy mode is available.
1613 */
1614
1615static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1616{
1bc4ccff 1617 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1618 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1619 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1620 /* Is the speed faster than the drive allows non IORDY ? */
1621 if (pio) {
1622 /* This is cycle times not frequency - watch the logic! */
1623 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1624 return 3 << ATA_SHIFT_PIO;
1625 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1626 }
1627 }
432729f0 1628 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1629}
1630
1da177e4 1631/**
49016aca 1632 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1633 * @dev: target device
1634 * @p_class: pointer to class of the target device (may be changed)
bff04647 1635 * @flags: ATA_READID_* flags
fe635c7e 1636 * @id: buffer to read IDENTIFY data into
1da177e4 1637 *
49016aca
TH
1638 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1639 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1640 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1641 * for pre-ATA4 drives.
1da177e4
LT
1642 *
1643 * LOCKING:
49016aca
TH
1644 * Kernel thread context (may sleep)
1645 *
1646 * RETURNS:
1647 * 0 on success, -errno otherwise.
1da177e4 1648 */
a9beec95 1649int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1650 unsigned int flags, u16 *id)
1da177e4 1651{
3373efd8 1652 struct ata_port *ap = dev->ap;
49016aca 1653 unsigned int class = *p_class;
a0123703 1654 struct ata_taskfile tf;
49016aca
TH
1655 unsigned int err_mask = 0;
1656 const char *reason;
169439c2 1657 int tried_spinup = 0;
49016aca 1658 int rc;
1da177e4 1659
0dd4b21f 1660 if (ata_msg_ctl(ap))
44877b4e 1661 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1662
49016aca 1663 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1664 retry:
3373efd8 1665 ata_tf_init(dev, &tf);
a0123703 1666
49016aca
TH
1667 switch (class) {
1668 case ATA_DEV_ATA:
a0123703 1669 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1670 break;
1671 case ATA_DEV_ATAPI:
a0123703 1672 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1673 break;
1674 default:
1675 rc = -ENODEV;
1676 reason = "unsupported class";
1677 goto err_out;
1da177e4
LT
1678 }
1679
a0123703 1680 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1681
1682 /* Some devices choke if TF registers contain garbage. Make
1683 * sure those are properly initialized.
1684 */
1685 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1686
1687 /* Device presence detection is unreliable on some
1688 * controllers. Always poll IDENTIFY if available.
1689 */
1690 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1691
3373efd8 1692 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1693 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1694 if (err_mask) {
800b3996 1695 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1696 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1697 ap->print_id, dev->devno);
55a8e2c8
TH
1698 return -ENOENT;
1699 }
1700
49016aca
TH
1701 rc = -EIO;
1702 reason = "I/O error";
1da177e4
LT
1703 goto err_out;
1704 }
1705
49016aca 1706 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1707
49016aca 1708 /* sanity check */
a4f5749b
TH
1709 rc = -EINVAL;
1710 reason = "device reports illegal type";
1711
1712 if (class == ATA_DEV_ATA) {
1713 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1714 goto err_out;
1715 } else {
1716 if (ata_id_is_ata(id))
1717 goto err_out;
49016aca
TH
1718 }
1719
169439c2
ML
1720 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1721 tried_spinup = 1;
1722 /*
1723 * Drive powered-up in standby mode, and requires a specific
1724 * SET_FEATURES spin-up subcommand before it will accept
1725 * anything other than the original IDENTIFY command.
1726 */
1727 ata_tf_init(dev, &tf);
1728 tf.command = ATA_CMD_SET_FEATURES;
1729 tf.feature = SETFEATURES_SPINUP;
1730 tf.protocol = ATA_PROT_NODATA;
1731 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1732 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1733 if (err_mask) {
1734 rc = -EIO;
1735 reason = "SPINUP failed";
1736 goto err_out;
1737 }
1738 /*
1739 * If the drive initially returned incomplete IDENTIFY info,
1740 * we now must reissue the IDENTIFY command.
1741 */
1742 if (id[2] == 0x37c8)
1743 goto retry;
1744 }
1745
bff04647 1746 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1747 /*
1748 * The exact sequence expected by certain pre-ATA4 drives is:
1749 * SRST RESET
1750 * IDENTIFY
1751 * INITIALIZE DEVICE PARAMETERS
1752 * anything else..
1753 * Some drives were very specific about that exact sequence.
1754 */
1755 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1756 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1757 if (err_mask) {
1758 rc = -EIO;
1759 reason = "INIT_DEV_PARAMS failed";
1760 goto err_out;
1761 }
1762
1763 /* current CHS translation info (id[53-58]) might be
1764 * changed. reread the identify device info.
1765 */
bff04647 1766 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1767 goto retry;
1768 }
1769 }
1770
1771 *p_class = class;
fe635c7e 1772
49016aca
TH
1773 return 0;
1774
1775 err_out:
88574551 1776 if (ata_msg_warn(ap))
0dd4b21f 1777 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1778 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1779 return rc;
1780}
1781
3373efd8 1782static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1783{
3373efd8 1784 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1785}
1786
a6e6ce8e
TH
1787static void ata_dev_config_ncq(struct ata_device *dev,
1788 char *desc, size_t desc_sz)
1789{
1790 struct ata_port *ap = dev->ap;
1791 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1792
1793 if (!ata_id_has_ncq(dev->id)) {
1794 desc[0] = '\0';
1795 return;
1796 }
6919a0a6
AC
1797 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1798 snprintf(desc, desc_sz, "NCQ (not used)");
1799 return;
1800 }
a6e6ce8e 1801 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1802 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1803 dev->flags |= ATA_DFLAG_NCQ;
1804 }
1805
1806 if (hdepth >= ddepth)
1807 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1808 else
1809 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1810}
1811
49016aca 1812/**
ffeae418 1813 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1814 * @dev: Target device to configure
1815 *
1816 * Configure @dev according to @dev->id. Generic and low-level
1817 * driver specific fixups are also applied.
49016aca
TH
1818 *
1819 * LOCKING:
ffeae418
TH
1820 * Kernel thread context (may sleep)
1821 *
1822 * RETURNS:
1823 * 0 on success, -errno otherwise
49016aca 1824 */
efdaedc4 1825int ata_dev_configure(struct ata_device *dev)
49016aca 1826{
3373efd8 1827 struct ata_port *ap = dev->ap;
efdaedc4 1828 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1829 const u16 *id = dev->id;
ff8854b2 1830 unsigned int xfer_mask;
b352e57d 1831 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1832 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1833 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1834 int rc;
49016aca 1835
0dd4b21f 1836 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1837 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1838 __FUNCTION__);
ffeae418 1839 return 0;
49016aca
TH
1840 }
1841
0dd4b21f 1842 if (ata_msg_probe(ap))
44877b4e 1843 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1844
08573a86
KCA
1845 /* set _SDD */
1846 rc = ata_acpi_push_id(ap, dev->devno);
1847 if (rc) {
1848 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1849 rc);
1850 }
1851
1852 /* retrieve and execute the ATA task file of _GTF */
1853 ata_acpi_exec_tfs(ap);
1854
c39f5ebe 1855 /* print device capabilities */
0dd4b21f 1856 if (ata_msg_probe(ap))
88574551
TH
1857 ata_dev_printk(dev, KERN_DEBUG,
1858 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1859 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1860 __FUNCTION__,
f15a1daf
TH
1861 id[49], id[82], id[83], id[84],
1862 id[85], id[86], id[87], id[88]);
c39f5ebe 1863
208a9933 1864 /* initialize to-be-configured parameters */
ea1dd4e1 1865 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1866 dev->max_sectors = 0;
1867 dev->cdb_len = 0;
1868 dev->n_sectors = 0;
1869 dev->cylinders = 0;
1870 dev->heads = 0;
1871 dev->sectors = 0;
1872
1da177e4
LT
1873 /*
1874 * common ATA, ATAPI feature tests
1875 */
1876
ff8854b2 1877 /* find max transfer mode; for printk only */
1148c3a7 1878 xfer_mask = ata_id_xfermask(id);
1da177e4 1879
0dd4b21f
BP
1880 if (ata_msg_probe(ap))
1881 ata_dump_id(id);
1da177e4
LT
1882
1883 /* ATA-specific feature tests */
1884 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1885 if (ata_id_is_cfa(id)) {
1886 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1887 ata_dev_printk(dev, KERN_WARNING,
1888 "supports DRM functions and may "
1889 "not be fully accessable.\n");
b352e57d
AC
1890 snprintf(revbuf, 7, "CFA");
1891 }
1892 else
1893 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1894
1148c3a7 1895 dev->n_sectors = ata_id_n_sectors(id);
1e999736 1896 dev->n_sectors_boot = dev->n_sectors;
2940740b 1897
3f64f565 1898 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
591a6e8e 1899 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
3f64f565
EM
1900 sizeof(fwrevbuf));
1901
591a6e8e 1902 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
3f64f565
EM
1903 sizeof(modelbuf));
1904
1905 if (dev->id[59] & 0x100)
1906 dev->multi_count = dev->id[59] & 0xff;
1907
1148c3a7 1908 if (ata_id_has_lba(id)) {
4c2d721a 1909 const char *lba_desc;
a6e6ce8e 1910 char ncq_desc[20];
8bf62ece 1911
4c2d721a
TH
1912 lba_desc = "LBA";
1913 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1914 if (ata_id_has_lba48(id)) {
8bf62ece 1915 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1916 lba_desc = "LBA48";
6fc49adb
TH
1917
1918 if (dev->n_sectors >= (1UL << 28) &&
1919 ata_id_has_flush_ext(id))
1920 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1921 }
8bf62ece 1922
1e999736
AC
1923 if (ata_id_hpa_enabled(dev->id))
1924 dev->n_sectors = ata_hpa_resize(dev);
1925
a6e6ce8e
TH
1926 /* config NCQ */
1927 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1928
8bf62ece 1929 /* print device info to dmesg */
3f64f565
EM
1930 if (ata_msg_drv(ap) && print_info) {
1931 ata_dev_printk(dev, KERN_INFO,
1932 "%s: %s, %s, max %s\n",
1933 revbuf, modelbuf, fwrevbuf,
1934 ata_mode_string(xfer_mask));
1935 ata_dev_printk(dev, KERN_INFO,
1936 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1937 (unsigned long long)dev->n_sectors,
3f64f565
EM
1938 dev->multi_count, lba_desc, ncq_desc);
1939 }
ffeae418 1940 } else {
8bf62ece
AL
1941 /* CHS */
1942
1943 /* Default translation */
1148c3a7
TH
1944 dev->cylinders = id[1];
1945 dev->heads = id[3];
1946 dev->sectors = id[6];
8bf62ece 1947
1148c3a7 1948 if (ata_id_current_chs_valid(id)) {
8bf62ece 1949 /* Current CHS translation is valid. */
1148c3a7
TH
1950 dev->cylinders = id[54];
1951 dev->heads = id[55];
1952 dev->sectors = id[56];
8bf62ece
AL
1953 }
1954
1955 /* print device info to dmesg */
3f64f565 1956 if (ata_msg_drv(ap) && print_info) {
88574551 1957 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1958 "%s: %s, %s, max %s\n",
1959 revbuf, modelbuf, fwrevbuf,
1960 ata_mode_string(xfer_mask));
a84471fe 1961 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1962 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1963 (unsigned long long)dev->n_sectors,
1964 dev->multi_count, dev->cylinders,
1965 dev->heads, dev->sectors);
1966 }
07f6f7d0
AL
1967 }
1968
6e7846e9 1969 dev->cdb_len = 16;
1da177e4
LT
1970 }
1971
1972 /* ATAPI-specific feature tests */
2c13b7ce 1973 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1974 char *cdb_intr_string = "";
1975
1148c3a7 1976 rc = atapi_cdb_len(id);
1da177e4 1977 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1978 if (ata_msg_warn(ap))
88574551
TH
1979 ata_dev_printk(dev, KERN_WARNING,
1980 "unsupported CDB len\n");
ffeae418 1981 rc = -EINVAL;
1da177e4
LT
1982 goto err_out_nosup;
1983 }
6e7846e9 1984 dev->cdb_len = (unsigned int) rc;
1da177e4 1985
08a556db 1986 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1987 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1988 cdb_intr_string = ", CDB intr";
1989 }
312f7da2 1990
1da177e4 1991 /* print device info to dmesg */
5afc8142 1992 if (ata_msg_drv(ap) && print_info)
12436c30
TH
1993 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1994 ata_mode_string(xfer_mask),
1995 cdb_intr_string);
1da177e4
LT
1996 }
1997
914ed354
TH
1998 /* determine max_sectors */
1999 dev->max_sectors = ATA_MAX_SECTORS;
2000 if (dev->flags & ATA_DFLAG_LBA48)
2001 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2002
93590859
AC
2003 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2004 /* Let the user know. We don't want to disallow opens for
2005 rescue purposes, or in case the vendor is just a blithering
2006 idiot */
2007 if (print_info) {
2008 ata_dev_printk(dev, KERN_WARNING,
2009"Drive reports diagnostics failure. This may indicate a drive\n");
2010 ata_dev_printk(dev, KERN_WARNING,
2011"fault or invalid emulation. Contact drive vendor for information.\n");
2012 }
2013 }
2014
4b2f3ede 2015 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2016 if (ata_dev_knobble(dev)) {
5afc8142 2017 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2018 ata_dev_printk(dev, KERN_INFO,
2019 "applying bridge limits\n");
5a529139 2020 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2021 dev->max_sectors = ATA_MAX_SECTORS;
2022 }
2023
18d6e9d5 2024 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2025 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2026 dev->max_sectors);
18d6e9d5 2027
6f23a31d
AL
2028 /* limit ATAPI DMA to R/W commands only */
2029 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
2030 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
2031
4b2f3ede 2032 if (ap->ops->dev_config)
cd0d3bbc 2033 ap->ops->dev_config(dev);
4b2f3ede 2034
0dd4b21f
BP
2035 if (ata_msg_probe(ap))
2036 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2037 __FUNCTION__, ata_chk_status(ap));
ffeae418 2038 return 0;
1da177e4
LT
2039
2040err_out_nosup:
0dd4b21f 2041 if (ata_msg_probe(ap))
88574551
TH
2042 ata_dev_printk(dev, KERN_DEBUG,
2043 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2044 return rc;
1da177e4
LT
2045}
2046
be0d18df 2047/**
2e41e8e6 2048 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2049 * @ap: port
2050 *
2e41e8e6 2051 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2052 * detection.
2053 */
2054
2055int ata_cable_40wire(struct ata_port *ap)
2056{
2057 return ATA_CBL_PATA40;
2058}
2059
2060/**
2e41e8e6 2061 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2062 * @ap: port
2063 *
2e41e8e6 2064 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2065 * detection.
2066 */
2067
2068int ata_cable_80wire(struct ata_port *ap)
2069{
2070 return ATA_CBL_PATA80;
2071}
2072
2073/**
2074 * ata_cable_unknown - return unknown PATA cable.
2075 * @ap: port
2076 *
2077 * Helper method for drivers which have no PATA cable detection.
2078 */
2079
2080int ata_cable_unknown(struct ata_port *ap)
2081{
2082 return ATA_CBL_PATA_UNK;
2083}
2084
2085/**
2086 * ata_cable_sata - return SATA cable type
2087 * @ap: port
2088 *
2089 * Helper method for drivers which have SATA cables
2090 */
2091
2092int ata_cable_sata(struct ata_port *ap)
2093{
2094 return ATA_CBL_SATA;
2095}
2096
1da177e4
LT
2097/**
2098 * ata_bus_probe - Reset and probe ATA bus
2099 * @ap: Bus to probe
2100 *
0cba632b
JG
2101 * Master ATA bus probing function. Initiates a hardware-dependent
2102 * bus reset, then attempts to identify any devices found on
2103 * the bus.
2104 *
1da177e4 2105 * LOCKING:
0cba632b 2106 * PCI/etc. bus probe sem.
1da177e4
LT
2107 *
2108 * RETURNS:
96072e69 2109 * Zero on success, negative errno otherwise.
1da177e4
LT
2110 */
2111
80289167 2112int ata_bus_probe(struct ata_port *ap)
1da177e4 2113{
28ca5c57 2114 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2115 int tries[ATA_MAX_DEVICES];
4ae72a1e 2116 int i, rc;
e82cbdb9 2117 struct ata_device *dev;
1da177e4 2118
28ca5c57 2119 ata_port_probe(ap);
c19ba8af 2120
14d2bac1
TH
2121 for (i = 0; i < ATA_MAX_DEVICES; i++)
2122 tries[i] = ATA_PROBE_MAX_TRIES;
2123
2124 retry:
2044470c 2125 /* reset and determine device classes */
52783c5d 2126 ap->ops->phy_reset(ap);
2061a47a 2127
52783c5d
TH
2128 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2129 dev = &ap->device[i];
c19ba8af 2130
52783c5d
TH
2131 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2132 dev->class != ATA_DEV_UNKNOWN)
2133 classes[dev->devno] = dev->class;
2134 else
2135 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2136
52783c5d 2137 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2138 }
1da177e4 2139
52783c5d 2140 ata_port_probe(ap);
2044470c 2141
b6079ca4
AC
2142 /* after the reset the device state is PIO 0 and the controller
2143 state is undefined. Record the mode */
2144
2145 for (i = 0; i < ATA_MAX_DEVICES; i++)
2146 ap->device[i].pio_mode = XFER_PIO_0;
2147
f31f0cc2
JG
2148 /* read IDENTIFY page and configure devices. We have to do the identify
2149 specific sequence bass-ackwards so that PDIAG- is released by
2150 the slave device */
2151
2152 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
e82cbdb9 2153 dev = &ap->device[i];
28ca5c57 2154
ec573755
TH
2155 if (tries[i])
2156 dev->class = classes[i];
ffeae418 2157
14d2bac1 2158 if (!ata_dev_enabled(dev))
ffeae418 2159 continue;
ffeae418 2160
bff04647
TH
2161 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2162 dev->id);
14d2bac1
TH
2163 if (rc)
2164 goto fail;
f31f0cc2
JG
2165 }
2166
be0d18df
AC
2167 /* Now ask for the cable type as PDIAG- should have been released */
2168 if (ap->ops->cable_detect)
2169 ap->cbl = ap->ops->cable_detect(ap);
2170
f31f0cc2
JG
2171 /* After the identify sequence we can now set up the devices. We do
2172 this in the normal order so that the user doesn't get confused */
2173
2174 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2175 dev = &ap->device[i];
2176 if (!ata_dev_enabled(dev))
2177 continue;
14d2bac1 2178
efdaedc4
TH
2179 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2180 rc = ata_dev_configure(dev);
2181 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2182 if (rc)
2183 goto fail;
1da177e4
LT
2184 }
2185
e82cbdb9 2186 /* configure transfer mode */
3adcebb2 2187 rc = ata_set_mode(ap, &dev);
4ae72a1e 2188 if (rc)
51713d35 2189 goto fail;
1da177e4 2190
e82cbdb9
TH
2191 for (i = 0; i < ATA_MAX_DEVICES; i++)
2192 if (ata_dev_enabled(&ap->device[i]))
2193 return 0;
1da177e4 2194
e82cbdb9
TH
2195 /* no device present, disable port */
2196 ata_port_disable(ap);
1da177e4 2197 ap->ops->port_disable(ap);
96072e69 2198 return -ENODEV;
14d2bac1
TH
2199
2200 fail:
4ae72a1e
TH
2201 tries[dev->devno]--;
2202
14d2bac1
TH
2203 switch (rc) {
2204 case -EINVAL:
4ae72a1e 2205 /* eeek, something went very wrong, give up */
14d2bac1
TH
2206 tries[dev->devno] = 0;
2207 break;
4ae72a1e
TH
2208
2209 case -ENODEV:
2210 /* give it just one more chance */
2211 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2212 case -EIO:
4ae72a1e
TH
2213 if (tries[dev->devno] == 1) {
2214 /* This is the last chance, better to slow
2215 * down than lose it.
2216 */
2217 sata_down_spd_limit(ap);
2218 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2219 }
14d2bac1
TH
2220 }
2221
4ae72a1e 2222 if (!tries[dev->devno])
3373efd8 2223 ata_dev_disable(dev);
ec573755 2224
14d2bac1 2225 goto retry;
1da177e4
LT
2226}
2227
2228/**
0cba632b
JG
2229 * ata_port_probe - Mark port as enabled
2230 * @ap: Port for which we indicate enablement
1da177e4 2231 *
0cba632b
JG
2232 * Modify @ap data structure such that the system
2233 * thinks that the entire port is enabled.
2234 *
cca3974e 2235 * LOCKING: host lock, or some other form of
0cba632b 2236 * serialization.
1da177e4
LT
2237 */
2238
2239void ata_port_probe(struct ata_port *ap)
2240{
198e0fed 2241 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2242}
2243
3be680b7
TH
2244/**
2245 * sata_print_link_status - Print SATA link status
2246 * @ap: SATA port to printk link status about
2247 *
2248 * This function prints link speed and status of a SATA link.
2249 *
2250 * LOCKING:
2251 * None.
2252 */
43727fbc 2253void sata_print_link_status(struct ata_port *ap)
3be680b7 2254{
6d5f9732 2255 u32 sstatus, scontrol, tmp;
3be680b7 2256
81952c54 2257 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 2258 return;
81952c54 2259 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 2260
81952c54 2261 if (ata_port_online(ap)) {
3be680b7 2262 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
2263 ata_port_printk(ap, KERN_INFO,
2264 "SATA link up %s (SStatus %X SControl %X)\n",
2265 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2266 } else {
f15a1daf
TH
2267 ata_port_printk(ap, KERN_INFO,
2268 "SATA link down (SStatus %X SControl %X)\n",
2269 sstatus, scontrol);
3be680b7
TH
2270 }
2271}
2272
1da177e4 2273/**
780a87f7
JG
2274 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2275 * @ap: SATA port associated with target SATA PHY.
1da177e4 2276 *
780a87f7
JG
2277 * This function issues commands to standard SATA Sxxx
2278 * PHY registers, to wake up the phy (and device), and
2279 * clear any reset condition.
1da177e4
LT
2280 *
2281 * LOCKING:
0cba632b 2282 * PCI/etc. bus probe sem.
1da177e4
LT
2283 *
2284 */
2285void __sata_phy_reset(struct ata_port *ap)
2286{
2287 u32 sstatus;
2288 unsigned long timeout = jiffies + (HZ * 5);
2289
2290 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2291 /* issue phy wake/reset */
81952c54 2292 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
2293 /* Couldn't find anything in SATA I/II specs, but
2294 * AHCI-1.1 10.4.2 says at least 1 ms. */
2295 mdelay(1);
1da177e4 2296 }
81952c54
TH
2297 /* phy wake/clear reset */
2298 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
2299
2300 /* wait for phy to become ready, if necessary */
2301 do {
2302 msleep(200);
81952c54 2303 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
2304 if ((sstatus & 0xf) != 1)
2305 break;
2306 } while (time_before(jiffies, timeout));
2307
3be680b7
TH
2308 /* print link status */
2309 sata_print_link_status(ap);
656563e3 2310
3be680b7 2311 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2312 if (!ata_port_offline(ap))
1da177e4 2313 ata_port_probe(ap);
3be680b7 2314 else
1da177e4 2315 ata_port_disable(ap);
1da177e4 2316
198e0fed 2317 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2318 return;
2319
2320 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2321 ata_port_disable(ap);
2322 return;
2323 }
2324
2325 ap->cbl = ATA_CBL_SATA;
2326}
2327
2328/**
780a87f7
JG
2329 * sata_phy_reset - Reset SATA bus.
2330 * @ap: SATA port associated with target SATA PHY.
1da177e4 2331 *
780a87f7
JG
2332 * This function resets the SATA bus, and then probes
2333 * the bus for devices.
1da177e4
LT
2334 *
2335 * LOCKING:
0cba632b 2336 * PCI/etc. bus probe sem.
1da177e4
LT
2337 *
2338 */
2339void sata_phy_reset(struct ata_port *ap)
2340{
2341 __sata_phy_reset(ap);
198e0fed 2342 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2343 return;
2344 ata_bus_reset(ap);
2345}
2346
ebdfca6e
AC
2347/**
2348 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2349 * @adev: device
2350 *
2351 * Obtain the other device on the same cable, or if none is
2352 * present NULL is returned
2353 */
2e9edbf8 2354
3373efd8 2355struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2356{
3373efd8 2357 struct ata_port *ap = adev->ap;
ebdfca6e 2358 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2359 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2360 return NULL;
2361 return pair;
2362}
2363
1da177e4 2364/**
780a87f7
JG
2365 * ata_port_disable - Disable port.
2366 * @ap: Port to be disabled.
1da177e4 2367 *
780a87f7
JG
2368 * Modify @ap data structure such that the system
2369 * thinks that the entire port is disabled, and should
2370 * never attempt to probe or communicate with devices
2371 * on this port.
2372 *
cca3974e 2373 * LOCKING: host lock, or some other form of
780a87f7 2374 * serialization.
1da177e4
LT
2375 */
2376
2377void ata_port_disable(struct ata_port *ap)
2378{
2379 ap->device[0].class = ATA_DEV_NONE;
2380 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2381 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2382}
2383
1c3fae4d 2384/**
3c567b7d 2385 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2386 * @ap: Port to adjust SATA spd limit for
2387 *
2388 * Adjust SATA spd limit of @ap downward. Note that this
2389 * function only adjusts the limit. The change must be applied
3c567b7d 2390 * using sata_set_spd().
1c3fae4d
TH
2391 *
2392 * LOCKING:
2393 * Inherited from caller.
2394 *
2395 * RETURNS:
2396 * 0 on success, negative errno on failure
2397 */
3c567b7d 2398int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2399{
81952c54
TH
2400 u32 sstatus, spd, mask;
2401 int rc, highbit;
1c3fae4d 2402
81952c54
TH
2403 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2404 if (rc)
2405 return rc;
1c3fae4d
TH
2406
2407 mask = ap->sata_spd_limit;
2408 if (mask <= 1)
2409 return -EINVAL;
2410 highbit = fls(mask) - 1;
2411 mask &= ~(1 << highbit);
2412
81952c54 2413 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
2414 if (spd <= 1)
2415 return -EINVAL;
2416 spd--;
2417 mask &= (1 << spd) - 1;
2418 if (!mask)
2419 return -EINVAL;
2420
2421 ap->sata_spd_limit = mask;
2422
f15a1daf
TH
2423 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2424 sata_spd_string(fls(mask)));
1c3fae4d
TH
2425
2426 return 0;
2427}
2428
3c567b7d 2429static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2430{
2431 u32 spd, limit;
2432
2433 if (ap->sata_spd_limit == UINT_MAX)
2434 limit = 0;
2435 else
2436 limit = fls(ap->sata_spd_limit);
2437
2438 spd = (*scontrol >> 4) & 0xf;
2439 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2440
2441 return spd != limit;
2442}
2443
2444/**
3c567b7d 2445 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2446 * @ap: Port in question
2447 *
2448 * Test whether the spd limit in SControl matches
2449 * @ap->sata_spd_limit. This function is used to determine
2450 * whether hardreset is necessary to apply SATA spd
2451 * configuration.
2452 *
2453 * LOCKING:
2454 * Inherited from caller.
2455 *
2456 * RETURNS:
2457 * 1 if SATA spd configuration is needed, 0 otherwise.
2458 */
3c567b7d 2459int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2460{
2461 u32 scontrol;
2462
81952c54 2463 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2464 return 0;
2465
3c567b7d 2466 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2467}
2468
2469/**
3c567b7d 2470 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2471 * @ap: Port to set SATA spd for
2472 *
2473 * Set SATA spd of @ap according to sata_spd_limit.
2474 *
2475 * LOCKING:
2476 * Inherited from caller.
2477 *
2478 * RETURNS:
2479 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2480 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2481 */
3c567b7d 2482int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2483{
2484 u32 scontrol;
81952c54 2485 int rc;
1c3fae4d 2486
81952c54
TH
2487 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2488 return rc;
1c3fae4d 2489
3c567b7d 2490 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2491 return 0;
2492
81952c54
TH
2493 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2494 return rc;
2495
1c3fae4d
TH
2496 return 1;
2497}
2498
452503f9
AC
2499/*
2500 * This mode timing computation functionality is ported over from
2501 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2502 */
2503/*
b352e57d 2504 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2505 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2506 * for UDMA6, which is currently supported only by Maxtor drives.
2507 *
2508 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2509 */
2510
2511static const struct ata_timing ata_timing[] = {
2512
2513 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2514 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2515 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2516 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2517
b352e57d
AC
2518 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2519 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2520 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2521 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2522 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2523
2524/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2525
452503f9
AC
2526 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2527 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2528 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2529
452503f9
AC
2530 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2531 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2532 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2533
b352e57d
AC
2534 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2535 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2536 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2537 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2538
2539 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2540 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2541 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2542
2543/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2544
2545 { 0xFF }
2546};
2547
2548#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2549#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2550
2551static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2552{
2553 q->setup = EZ(t->setup * 1000, T);
2554 q->act8b = EZ(t->act8b * 1000, T);
2555 q->rec8b = EZ(t->rec8b * 1000, T);
2556 q->cyc8b = EZ(t->cyc8b * 1000, T);
2557 q->active = EZ(t->active * 1000, T);
2558 q->recover = EZ(t->recover * 1000, T);
2559 q->cycle = EZ(t->cycle * 1000, T);
2560 q->udma = EZ(t->udma * 1000, UT);
2561}
2562
2563void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2564 struct ata_timing *m, unsigned int what)
2565{
2566 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2567 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2568 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2569 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2570 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2571 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2572 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2573 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2574}
2575
2576static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2577{
2578 const struct ata_timing *t;
2579
2580 for (t = ata_timing; t->mode != speed; t++)
91190758 2581 if (t->mode == 0xFF)
452503f9 2582 return NULL;
2e9edbf8 2583 return t;
452503f9
AC
2584}
2585
2586int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2587 struct ata_timing *t, int T, int UT)
2588{
2589 const struct ata_timing *s;
2590 struct ata_timing p;
2591
2592 /*
2e9edbf8 2593 * Find the mode.
75b1f2f8 2594 */
452503f9
AC
2595
2596 if (!(s = ata_timing_find_mode(speed)))
2597 return -EINVAL;
2598
75b1f2f8
AL
2599 memcpy(t, s, sizeof(*s));
2600
452503f9
AC
2601 /*
2602 * If the drive is an EIDE drive, it can tell us it needs extended
2603 * PIO/MW_DMA cycle timing.
2604 */
2605
2606 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2607 memset(&p, 0, sizeof(p));
2608 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2609 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2610 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2611 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2612 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2613 }
2614 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2615 }
2616
2617 /*
2618 * Convert the timing to bus clock counts.
2619 */
2620
75b1f2f8 2621 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2622
2623 /*
c893a3ae
RD
2624 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2625 * S.M.A.R.T * and some other commands. We have to ensure that the
2626 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2627 */
2628
fd3367af 2629 if (speed > XFER_PIO_6) {
452503f9
AC
2630 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2631 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2632 }
2633
2634 /*
c893a3ae 2635 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2636 */
2637
2638 if (t->act8b + t->rec8b < t->cyc8b) {
2639 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2640 t->rec8b = t->cyc8b - t->act8b;
2641 }
2642
2643 if (t->active + t->recover < t->cycle) {
2644 t->active += (t->cycle - (t->active + t->recover)) / 2;
2645 t->recover = t->cycle - t->active;
2646 }
4f701d1e
AC
2647
2648 /* In a few cases quantisation may produce enough errors to
2649 leave t->cycle too low for the sum of active and recovery
2650 if so we must correct this */
2651 if (t->active + t->recover > t->cycle)
2652 t->cycle = t->active + t->recover;
452503f9
AC
2653
2654 return 0;
2655}
2656
cf176e1a
TH
2657/**
2658 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2659 * @dev: Device to adjust xfer masks
458337db 2660 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2661 *
2662 * Adjust xfer masks of @dev downward. Note that this function
2663 * does not apply the change. Invoking ata_set_mode() afterwards
2664 * will apply the limit.
2665 *
2666 * LOCKING:
2667 * Inherited from caller.
2668 *
2669 * RETURNS:
2670 * 0 on success, negative errno on failure
2671 */
458337db 2672int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2673{
458337db
TH
2674 char buf[32];
2675 unsigned int orig_mask, xfer_mask;
2676 unsigned int pio_mask, mwdma_mask, udma_mask;
2677 int quiet, highbit;
cf176e1a 2678
458337db
TH
2679 quiet = !!(sel & ATA_DNXFER_QUIET);
2680 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2681
458337db
TH
2682 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2683 dev->mwdma_mask,
2684 dev->udma_mask);
2685 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2686
458337db
TH
2687 switch (sel) {
2688 case ATA_DNXFER_PIO:
2689 highbit = fls(pio_mask) - 1;
2690 pio_mask &= ~(1 << highbit);
2691 break;
2692
2693 case ATA_DNXFER_DMA:
2694 if (udma_mask) {
2695 highbit = fls(udma_mask) - 1;
2696 udma_mask &= ~(1 << highbit);
2697 if (!udma_mask)
2698 return -ENOENT;
2699 } else if (mwdma_mask) {
2700 highbit = fls(mwdma_mask) - 1;
2701 mwdma_mask &= ~(1 << highbit);
2702 if (!mwdma_mask)
2703 return -ENOENT;
2704 }
2705 break;
2706
2707 case ATA_DNXFER_40C:
2708 udma_mask &= ATA_UDMA_MASK_40C;
2709 break;
2710
2711 case ATA_DNXFER_FORCE_PIO0:
2712 pio_mask &= 1;
2713 case ATA_DNXFER_FORCE_PIO:
2714 mwdma_mask = 0;
2715 udma_mask = 0;
2716 break;
2717
458337db
TH
2718 default:
2719 BUG();
2720 }
2721
2722 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2723
2724 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2725 return -ENOENT;
2726
2727 if (!quiet) {
2728 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2729 snprintf(buf, sizeof(buf), "%s:%s",
2730 ata_mode_string(xfer_mask),
2731 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2732 else
2733 snprintf(buf, sizeof(buf), "%s",
2734 ata_mode_string(xfer_mask));
2735
2736 ata_dev_printk(dev, KERN_WARNING,
2737 "limiting speed to %s\n", buf);
2738 }
cf176e1a
TH
2739
2740 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2741 &dev->udma_mask);
2742
cf176e1a 2743 return 0;
cf176e1a
TH
2744}
2745
3373efd8 2746static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2747{
baa1e78a 2748 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2749 unsigned int err_mask;
2750 int rc;
1da177e4 2751
e8384607 2752 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2753 if (dev->xfer_shift == ATA_SHIFT_PIO)
2754 dev->flags |= ATA_DFLAG_PIO;
2755
3373efd8 2756 err_mask = ata_dev_set_xfermode(dev);
11750a40
A
2757 /* Old CFA may refuse this command, which is just fine */
2758 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2759 err_mask &= ~AC_ERR_DEV;
2760
83206a29 2761 if (err_mask) {
f15a1daf
TH
2762 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2763 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2764 return -EIO;
2765 }
1da177e4 2766
baa1e78a 2767 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2768 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2769 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2770 if (rc)
83206a29 2771 return rc;
48a8a14f 2772
23e71c3d
TH
2773 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2774 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2775
f15a1daf
TH
2776 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2777 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2778 return 0;
1da177e4
LT
2779}
2780
1da177e4 2781/**
04351821 2782 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
1da177e4 2783 * @ap: port on which timings will be programmed
e82cbdb9 2784 * @r_failed_dev: out paramter for failed device
1da177e4 2785 *
04351821
A
2786 * Standard implementation of the function used to tune and set
2787 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2788 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2789 * returned in @r_failed_dev.
780a87f7 2790 *
1da177e4 2791 * LOCKING:
0cba632b 2792 * PCI/etc. bus probe sem.
e82cbdb9
TH
2793 *
2794 * RETURNS:
2795 * 0 on success, negative errno otherwise
1da177e4 2796 */
04351821
A
2797
2798int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2799{
e8e0619f 2800 struct ata_device *dev;
e82cbdb9 2801 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2802
3adcebb2 2803
a6d5a51c
TH
2804 /* step 1: calculate xfer_mask */
2805 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2806 unsigned int pio_mask, dma_mask;
a6d5a51c 2807
e8e0619f
TH
2808 dev = &ap->device[i];
2809
e1211e3f 2810 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2811 continue;
2812
3373efd8 2813 ata_dev_xfermask(dev);
1da177e4 2814
acf356b1
TH
2815 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2816 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2817 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2818 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2819
4f65977d 2820 found = 1;
5444a6f4
AC
2821 if (dev->dma_mode)
2822 used_dma = 1;
a6d5a51c 2823 }
4f65977d 2824 if (!found)
e82cbdb9 2825 goto out;
a6d5a51c
TH
2826
2827 /* step 2: always set host PIO timings */
e8e0619f
TH
2828 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2829 dev = &ap->device[i];
2830 if (!ata_dev_enabled(dev))
2831 continue;
2832
2833 if (!dev->pio_mode) {
f15a1daf 2834 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2835 rc = -EINVAL;
e82cbdb9 2836 goto out;
e8e0619f
TH
2837 }
2838
2839 dev->xfer_mode = dev->pio_mode;
2840 dev->xfer_shift = ATA_SHIFT_PIO;
2841 if (ap->ops->set_piomode)
2842 ap->ops->set_piomode(ap, dev);
2843 }
1da177e4 2844
a6d5a51c 2845 /* step 3: set host DMA timings */
e8e0619f
TH
2846 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2847 dev = &ap->device[i];
2848
2849 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2850 continue;
2851
2852 dev->xfer_mode = dev->dma_mode;
2853 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2854 if (ap->ops->set_dmamode)
2855 ap->ops->set_dmamode(ap, dev);
2856 }
1da177e4
LT
2857
2858 /* step 4: update devices' xfer mode */
83206a29 2859 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2860 dev = &ap->device[i];
1da177e4 2861
18d90deb 2862 /* don't update suspended devices' xfer mode */
02670bf3 2863 if (!ata_dev_ready(dev))
83206a29
TH
2864 continue;
2865
3373efd8 2866 rc = ata_dev_set_mode(dev);
5bbc53f4 2867 if (rc)
e82cbdb9 2868 goto out;
83206a29 2869 }
1da177e4 2870
e8e0619f
TH
2871 /* Record simplex status. If we selected DMA then the other
2872 * host channels are not permitted to do so.
5444a6f4 2873 */
cca3974e 2874 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2875 ap->host->simplex_claimed = ap;
5444a6f4 2876
e8e0619f 2877 /* step5: chip specific finalisation */
1da177e4
LT
2878 if (ap->ops->post_set_mode)
2879 ap->ops->post_set_mode(ap);
e82cbdb9
TH
2880 out:
2881 if (rc)
2882 *r_failed_dev = dev;
2883 return rc;
1da177e4
LT
2884}
2885
04351821
A
2886/**
2887 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2888 * @ap: port on which timings will be programmed
2889 * @r_failed_dev: out paramter for failed device
2890 *
2891 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2892 * ata_set_mode() fails, pointer to the failing device is
2893 * returned in @r_failed_dev.
2894 *
2895 * LOCKING:
2896 * PCI/etc. bus probe sem.
2897 *
2898 * RETURNS:
2899 * 0 on success, negative errno otherwise
2900 */
2901int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2902{
2903 /* has private set_mode? */
2904 if (ap->ops->set_mode)
2905 return ap->ops->set_mode(ap, r_failed_dev);
2906 return ata_do_set_mode(ap, r_failed_dev);
2907}
2908
1fdffbce
JG
2909/**
2910 * ata_tf_to_host - issue ATA taskfile to host controller
2911 * @ap: port to which command is being issued
2912 * @tf: ATA taskfile register set
2913 *
2914 * Issues ATA taskfile register set to ATA host controller,
2915 * with proper synchronization with interrupt handler and
2916 * other threads.
2917 *
2918 * LOCKING:
cca3974e 2919 * spin_lock_irqsave(host lock)
1fdffbce
JG
2920 */
2921
2922static inline void ata_tf_to_host(struct ata_port *ap,
2923 const struct ata_taskfile *tf)
2924{
2925 ap->ops->tf_load(ap, tf);
2926 ap->ops->exec_command(ap, tf);
2927}
2928
1da177e4
LT
2929/**
2930 * ata_busy_sleep - sleep until BSY clears, or timeout
2931 * @ap: port containing status register to be polled
2932 * @tmout_pat: impatience timeout
2933 * @tmout: overall timeout
2934 *
780a87f7
JG
2935 * Sleep until ATA Status register bit BSY clears,
2936 * or a timeout occurs.
2937 *
d1adc1bb
TH
2938 * LOCKING:
2939 * Kernel thread context (may sleep).
2940 *
2941 * RETURNS:
2942 * 0 on success, -errno otherwise.
1da177e4 2943 */
d1adc1bb
TH
2944int ata_busy_sleep(struct ata_port *ap,
2945 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2946{
2947 unsigned long timer_start, timeout;
2948 u8 status;
2949
2950 status = ata_busy_wait(ap, ATA_BUSY, 300);
2951 timer_start = jiffies;
2952 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2953 while (status != 0xff && (status & ATA_BUSY) &&
2954 time_before(jiffies, timeout)) {
1da177e4
LT
2955 msleep(50);
2956 status = ata_busy_wait(ap, ATA_BUSY, 3);
2957 }
2958
d1adc1bb 2959 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2960 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2961 "port is slow to respond, please be patient "
2962 "(Status 0x%x)\n", status);
1da177e4
LT
2963
2964 timeout = timer_start + tmout;
d1adc1bb
TH
2965 while (status != 0xff && (status & ATA_BUSY) &&
2966 time_before(jiffies, timeout)) {
1da177e4
LT
2967 msleep(50);
2968 status = ata_chk_status(ap);
2969 }
2970
d1adc1bb
TH
2971 if (status == 0xff)
2972 return -ENODEV;
2973
1da177e4 2974 if (status & ATA_BUSY) {
f15a1daf 2975 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2976 "(%lu secs, Status 0x%x)\n",
2977 tmout / HZ, status);
d1adc1bb 2978 return -EBUSY;
1da177e4
LT
2979 }
2980
2981 return 0;
2982}
2983
d4b2bab4
TH
2984/**
2985 * ata_wait_ready - sleep until BSY clears, or timeout
2986 * @ap: port containing status register to be polled
2987 * @deadline: deadline jiffies for the operation
2988 *
2989 * Sleep until ATA Status register bit BSY clears, or timeout
2990 * occurs.
2991 *
2992 * LOCKING:
2993 * Kernel thread context (may sleep).
2994 *
2995 * RETURNS:
2996 * 0 on success, -errno otherwise.
2997 */
2998int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
2999{
3000 unsigned long start = jiffies;
3001 int warned = 0;
3002
3003 while (1) {
3004 u8 status = ata_chk_status(ap);
3005 unsigned long now = jiffies;
3006
3007 if (!(status & ATA_BUSY))
3008 return 0;
3009 if (status == 0xff)
3010 return -ENODEV;
3011 if (time_after(now, deadline))
3012 return -EBUSY;
3013
3014 if (!warned && time_after(now, start + 5 * HZ) &&
3015 (deadline - now > 3 * HZ)) {
3016 ata_port_printk(ap, KERN_WARNING,
3017 "port is slow to respond, please be patient "
3018 "(Status 0x%x)\n", status);
3019 warned = 1;
3020 }
3021
3022 msleep(50);
3023 }
3024}
3025
3026static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3027 unsigned long deadline)
1da177e4
LT
3028{
3029 struct ata_ioports *ioaddr = &ap->ioaddr;
3030 unsigned int dev0 = devmask & (1 << 0);
3031 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3032 int rc, ret = 0;
1da177e4
LT
3033
3034 /* if device 0 was found in ata_devchk, wait for its
3035 * BSY bit to clear
3036 */
d4b2bab4
TH
3037 if (dev0) {
3038 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3039 if (rc) {
3040 if (rc != -ENODEV)
3041 return rc;
3042 ret = rc;
3043 }
d4b2bab4 3044 }
1da177e4
LT
3045
3046 /* if device 1 was found in ata_devchk, wait for
3047 * register access, then wait for BSY to clear
3048 */
1da177e4
LT
3049 while (dev1) {
3050 u8 nsect, lbal;
3051
3052 ap->ops->dev_select(ap, 1);
0d5ff566
TH
3053 nsect = ioread8(ioaddr->nsect_addr);
3054 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
3055 if ((nsect == 1) && (lbal == 1))
3056 break;
d4b2bab4
TH
3057 if (time_after(jiffies, deadline))
3058 return -EBUSY;
1da177e4
LT
3059 msleep(50); /* give drive a breather */
3060 }
d4b2bab4
TH
3061 if (dev1) {
3062 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3063 if (rc) {
3064 if (rc != -ENODEV)
3065 return rc;
3066 ret = rc;
3067 }
d4b2bab4 3068 }
1da177e4
LT
3069
3070 /* is all this really necessary? */
3071 ap->ops->dev_select(ap, 0);
3072 if (dev1)
3073 ap->ops->dev_select(ap, 1);
3074 if (dev0)
3075 ap->ops->dev_select(ap, 0);
d4b2bab4 3076
9b89391c 3077 return ret;
1da177e4
LT
3078}
3079
d4b2bab4
TH
3080static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3081 unsigned long deadline)
1da177e4
LT
3082{
3083 struct ata_ioports *ioaddr = &ap->ioaddr;
3084
44877b4e 3085 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3086
3087 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3088 iowrite8(ap->ctl, ioaddr->ctl_addr);
3089 udelay(20); /* FIXME: flush */
3090 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3091 udelay(20); /* FIXME: flush */
3092 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3093
3094 /* spec mandates ">= 2ms" before checking status.
3095 * We wait 150ms, because that was the magic delay used for
3096 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3097 * between when the ATA command register is written, and then
3098 * status is checked. Because waiting for "a while" before
3099 * checking status is fine, post SRST, we perform this magic
3100 * delay here as well.
09c7ad79
AC
3101 *
3102 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3103 */
3104 msleep(150);
3105
2e9edbf8 3106 /* Before we perform post reset processing we want to see if
298a41ca
TH
3107 * the bus shows 0xFF because the odd clown forgets the D7
3108 * pulldown resistor.
3109 */
d1adc1bb 3110 if (ata_check_status(ap) == 0xFF)
9b89391c 3111 return -ENODEV;
09c7ad79 3112
d4b2bab4 3113 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3114}
3115
3116/**
3117 * ata_bus_reset - reset host port and associated ATA channel
3118 * @ap: port to reset
3119 *
3120 * This is typically the first time we actually start issuing
3121 * commands to the ATA channel. We wait for BSY to clear, then
3122 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3123 * result. Determine what devices, if any, are on the channel
3124 * by looking at the device 0/1 error register. Look at the signature
3125 * stored in each device's taskfile registers, to determine if
3126 * the device is ATA or ATAPI.
3127 *
3128 * LOCKING:
0cba632b 3129 * PCI/etc. bus probe sem.
cca3974e 3130 * Obtains host lock.
1da177e4
LT
3131 *
3132 * SIDE EFFECTS:
198e0fed 3133 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3134 */
3135
3136void ata_bus_reset(struct ata_port *ap)
3137{
3138 struct ata_ioports *ioaddr = &ap->ioaddr;
3139 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3140 u8 err;
aec5c3c1 3141 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3142 int rc;
1da177e4 3143
44877b4e 3144 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3145
3146 /* determine if device 0/1 are present */
3147 if (ap->flags & ATA_FLAG_SATA_RESET)
3148 dev0 = 1;
3149 else {
3150 dev0 = ata_devchk(ap, 0);
3151 if (slave_possible)
3152 dev1 = ata_devchk(ap, 1);
3153 }
3154
3155 if (dev0)
3156 devmask |= (1 << 0);
3157 if (dev1)
3158 devmask |= (1 << 1);
3159
3160 /* select device 0 again */
3161 ap->ops->dev_select(ap, 0);
3162
3163 /* issue bus reset */
9b89391c
TH
3164 if (ap->flags & ATA_FLAG_SRST) {
3165 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3166 if (rc && rc != -ENODEV)
aec5c3c1 3167 goto err_out;
9b89391c 3168 }
1da177e4
LT
3169
3170 /*
3171 * determine by signature whether we have ATA or ATAPI devices
3172 */
b4dc7623 3173 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 3174 if ((slave_possible) && (err != 0x81))
b4dc7623 3175 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
3176
3177 /* re-enable interrupts */
83625006 3178 ap->ops->irq_on(ap);
1da177e4
LT
3179
3180 /* is double-select really necessary? */
3181 if (ap->device[1].class != ATA_DEV_NONE)
3182 ap->ops->dev_select(ap, 1);
3183 if (ap->device[0].class != ATA_DEV_NONE)
3184 ap->ops->dev_select(ap, 0);
3185
3186 /* if no devices were detected, disable this port */
3187 if ((ap->device[0].class == ATA_DEV_NONE) &&
3188 (ap->device[1].class == ATA_DEV_NONE))
3189 goto err_out;
3190
3191 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3192 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3193 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3194 }
3195
3196 DPRINTK("EXIT\n");
3197 return;
3198
3199err_out:
f15a1daf 3200 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
3201 ap->ops->port_disable(ap);
3202
3203 DPRINTK("EXIT\n");
3204}
3205
d7bb4cc7
TH
3206/**
3207 * sata_phy_debounce - debounce SATA phy status
3208 * @ap: ATA port to debounce SATA phy status for
3209 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3210 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3211 *
3212 * Make sure SStatus of @ap reaches stable state, determined by
3213 * holding the same value where DET is not 1 for @duration polled
3214 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3215 * beginning of the stable state. Because DET gets stuck at 1 on
3216 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3217 * until timeout then returns 0 if DET is stable at 1.
3218 *
d4b2bab4
TH
3219 * @timeout is further limited by @deadline. The sooner of the
3220 * two is used.
3221 *
d7bb4cc7
TH
3222 * LOCKING:
3223 * Kernel thread context (may sleep)
3224 *
3225 * RETURNS:
3226 * 0 on success, -errno on failure.
3227 */
d4b2bab4
TH
3228int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3229 unsigned long deadline)
7a7921e8 3230{
d7bb4cc7 3231 unsigned long interval_msec = params[0];
d4b2bab4
TH
3232 unsigned long duration = msecs_to_jiffies(params[1]);
3233 unsigned long last_jiffies, t;
d7bb4cc7
TH
3234 u32 last, cur;
3235 int rc;
3236
d4b2bab4
TH
3237 t = jiffies + msecs_to_jiffies(params[2]);
3238 if (time_before(t, deadline))
3239 deadline = t;
3240
d7bb4cc7
TH
3241 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3242 return rc;
3243 cur &= 0xf;
3244
3245 last = cur;
3246 last_jiffies = jiffies;
3247
3248 while (1) {
3249 msleep(interval_msec);
3250 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3251 return rc;
3252 cur &= 0xf;
3253
3254 /* DET stable? */
3255 if (cur == last) {
d4b2bab4 3256 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3257 continue;
3258 if (time_after(jiffies, last_jiffies + duration))
3259 return 0;
3260 continue;
3261 }
3262
3263 /* unstable, start over */
3264 last = cur;
3265 last_jiffies = jiffies;
3266
d4b2bab4
TH
3267 /* check deadline */
3268 if (time_after(jiffies, deadline))
d7bb4cc7
TH
3269 return -EBUSY;
3270 }
3271}
3272
3273/**
3274 * sata_phy_resume - resume SATA phy
3275 * @ap: ATA port to resume SATA phy for
3276 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3277 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3278 *
3279 * Resume SATA phy of @ap and debounce it.
3280 *
3281 * LOCKING:
3282 * Kernel thread context (may sleep)
3283 *
3284 * RETURNS:
3285 * 0 on success, -errno on failure.
3286 */
d4b2bab4
TH
3287int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3288 unsigned long deadline)
d7bb4cc7
TH
3289{
3290 u32 scontrol;
81952c54
TH
3291 int rc;
3292
3293 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3294 return rc;
7a7921e8 3295
852ee16a 3296 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
3297
3298 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3299 return rc;
7a7921e8 3300
d7bb4cc7
TH
3301 /* Some PHYs react badly if SStatus is pounded immediately
3302 * after resuming. Delay 200ms before debouncing.
3303 */
3304 msleep(200);
7a7921e8 3305
d4b2bab4 3306 return sata_phy_debounce(ap, params, deadline);
7a7921e8
TH
3307}
3308
f5914a46
TH
3309/**
3310 * ata_std_prereset - prepare for reset
3311 * @ap: ATA port to be reset
d4b2bab4 3312 * @deadline: deadline jiffies for the operation
f5914a46 3313 *
b8cffc6a
TH
3314 * @ap is about to be reset. Initialize it. Failure from
3315 * prereset makes libata abort whole reset sequence and give up
3316 * that port, so prereset should be best-effort. It does its
3317 * best to prepare for reset sequence but if things go wrong, it
3318 * should just whine, not fail.
f5914a46
TH
3319 *
3320 * LOCKING:
3321 * Kernel thread context (may sleep)
3322 *
3323 * RETURNS:
3324 * 0 on success, -errno otherwise.
3325 */
d4b2bab4 3326int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
f5914a46
TH
3327{
3328 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 3329 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3330 int rc;
3331
31daabda 3332 /* handle link resume */
28324304
TH
3333 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3334 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3335 ehc->i.action |= ATA_EH_HARDRESET;
3336
f5914a46
TH
3337 /* if we're about to do hardreset, nothing more to do */
3338 if (ehc->i.action & ATA_EH_HARDRESET)
3339 return 0;
3340
3341 /* if SATA, resume phy */
3342 if (ap->cbl == ATA_CBL_SATA) {
d4b2bab4 3343 rc = sata_phy_resume(ap, timing, deadline);
b8cffc6a
TH
3344 /* whine about phy resume failure but proceed */
3345 if (rc && rc != -EOPNOTSUPP)
f5914a46
TH
3346 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3347 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3348 }
3349
3350 /* Wait for !BSY if the controller can wait for the first D2H
3351 * Reg FIS and we don't know that no device is attached.
3352 */
b8cffc6a
TH
3353 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3354 rc = ata_wait_ready(ap, deadline);
3355 if (rc) {
3356 ata_port_printk(ap, KERN_WARNING, "device not ready "
3357 "(errno=%d), forcing hardreset\n", rc);
3358 ehc->i.action |= ATA_EH_HARDRESET;
3359 }
3360 }
f5914a46
TH
3361
3362 return 0;
3363}
3364
c2bd5804
TH
3365/**
3366 * ata_std_softreset - reset host port via ATA SRST
3367 * @ap: port to reset
c2bd5804 3368 * @classes: resulting classes of attached devices
d4b2bab4 3369 * @deadline: deadline jiffies for the operation
c2bd5804 3370 *
52783c5d 3371 * Reset host port using ATA SRST.
c2bd5804
TH
3372 *
3373 * LOCKING:
3374 * Kernel thread context (may sleep)
3375 *
3376 * RETURNS:
3377 * 0 on success, -errno otherwise.
3378 */
d4b2bab4
TH
3379int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3380 unsigned long deadline)
c2bd5804
TH
3381{
3382 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3383 unsigned int devmask = 0;
3384 int rc;
c2bd5804
TH
3385 u8 err;
3386
3387 DPRINTK("ENTER\n");
3388
81952c54 3389 if (ata_port_offline(ap)) {
3a39746a
TH
3390 classes[0] = ATA_DEV_NONE;
3391 goto out;
3392 }
3393
c2bd5804
TH
3394 /* determine if device 0/1 are present */
3395 if (ata_devchk(ap, 0))
3396 devmask |= (1 << 0);
3397 if (slave_possible && ata_devchk(ap, 1))
3398 devmask |= (1 << 1);
3399
c2bd5804
TH
3400 /* select device 0 again */
3401 ap->ops->dev_select(ap, 0);
3402
3403 /* issue bus reset */
3404 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3405 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c
TH
3406 /* if link is occupied, -ENODEV too is an error */
3407 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
d4b2bab4
TH
3408 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3409 return rc;
c2bd5804
TH
3410 }
3411
3412 /* determine by signature whether we have ATA or ATAPI devices */
3413 classes[0] = ata_dev_try_classify(ap, 0, &err);
3414 if (slave_possible && err != 0x81)
3415 classes[1] = ata_dev_try_classify(ap, 1, &err);
3416
3a39746a 3417 out:
c2bd5804
TH
3418 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3419 return 0;
3420}
3421
3422/**
b6103f6d 3423 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3424 * @ap: port to reset
b6103f6d 3425 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3426 * @deadline: deadline jiffies for the operation
c2bd5804
TH
3427 *
3428 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3429 *
3430 * LOCKING:
3431 * Kernel thread context (may sleep)
3432 *
3433 * RETURNS:
3434 * 0 on success, -errno otherwise.
3435 */
d4b2bab4
TH
3436int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3437 unsigned long deadline)
c2bd5804 3438{
852ee16a 3439 u32 scontrol;
81952c54 3440 int rc;
852ee16a 3441
c2bd5804
TH
3442 DPRINTK("ENTER\n");
3443
3c567b7d 3444 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3445 /* SATA spec says nothing about how to reconfigure
3446 * spd. To be on the safe side, turn off phy during
3447 * reconfiguration. This works for at least ICH7 AHCI
3448 * and Sil3124.
3449 */
81952c54 3450 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3451 goto out;
81952c54 3452
a34b6fc0 3453 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3454
3455 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3456 goto out;
1c3fae4d 3457
3c567b7d 3458 sata_set_spd(ap);
1c3fae4d
TH
3459 }
3460
3461 /* issue phy wake/reset */
81952c54 3462 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3463 goto out;
81952c54 3464
852ee16a 3465 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3466
3467 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3468 goto out;
c2bd5804 3469
1c3fae4d 3470 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3471 * 10.4.2 says at least 1 ms.
3472 */
3473 msleep(1);
3474
1c3fae4d 3475 /* bring phy back */
d4b2bab4 3476 rc = sata_phy_resume(ap, timing, deadline);
b6103f6d
TH
3477 out:
3478 DPRINTK("EXIT, rc=%d\n", rc);
3479 return rc;
3480}
3481
3482/**
3483 * sata_std_hardreset - reset host port via SATA phy reset
3484 * @ap: port to reset
3485 * @class: resulting class of attached device
d4b2bab4 3486 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3487 *
3488 * SATA phy-reset host port using DET bits of SControl register,
3489 * wait for !BSY and classify the attached device.
3490 *
3491 * LOCKING:
3492 * Kernel thread context (may sleep)
3493 *
3494 * RETURNS:
3495 * 0 on success, -errno otherwise.
3496 */
d4b2bab4
TH
3497int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3498 unsigned long deadline)
b6103f6d
TH
3499{
3500 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3501 int rc;
3502
3503 DPRINTK("ENTER\n");
3504
3505 /* do hardreset */
d4b2bab4 3506 rc = sata_port_hardreset(ap, timing, deadline);
b6103f6d
TH
3507 if (rc) {
3508 ata_port_printk(ap, KERN_ERR,
3509 "COMRESET failed (errno=%d)\n", rc);
3510 return rc;
3511 }
c2bd5804 3512
c2bd5804 3513 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3514 if (ata_port_offline(ap)) {
c2bd5804
TH
3515 *class = ATA_DEV_NONE;
3516 DPRINTK("EXIT, link offline\n");
3517 return 0;
3518 }
3519
34fee227
TH
3520 /* wait a while before checking status, see SRST for more info */
3521 msleep(150);
3522
d4b2bab4 3523 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3524 /* link occupied, -ENODEV too is an error */
3525 if (rc) {
f15a1daf 3526 ata_port_printk(ap, KERN_ERR,
d4b2bab4
TH
3527 "COMRESET failed (errno=%d)\n", rc);
3528 return rc;
c2bd5804
TH
3529 }
3530
3a39746a
TH
3531 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3532
c2bd5804
TH
3533 *class = ata_dev_try_classify(ap, 0, NULL);
3534
3535 DPRINTK("EXIT, class=%u\n", *class);
3536 return 0;
3537}
3538
3539/**
3540 * ata_std_postreset - standard postreset callback
3541 * @ap: the target ata_port
3542 * @classes: classes of attached devices
3543 *
3544 * This function is invoked after a successful reset. Note that
3545 * the device might have been reset more than once using
3546 * different reset methods before postreset is invoked.
c2bd5804 3547 *
c2bd5804
TH
3548 * LOCKING:
3549 * Kernel thread context (may sleep)
3550 */
3551void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3552{
dc2b3515
TH
3553 u32 serror;
3554
c2bd5804
TH
3555 DPRINTK("ENTER\n");
3556
c2bd5804 3557 /* print link status */
81952c54 3558 sata_print_link_status(ap);
c2bd5804 3559
dc2b3515
TH
3560 /* clear SError */
3561 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3562 sata_scr_write(ap, SCR_ERROR, serror);
3563
3a39746a 3564 /* re-enable interrupts */
83625006
AI
3565 if (!ap->ops->error_handler)
3566 ap->ops->irq_on(ap);
c2bd5804
TH
3567
3568 /* is double-select really necessary? */
3569 if (classes[0] != ATA_DEV_NONE)
3570 ap->ops->dev_select(ap, 1);
3571 if (classes[1] != ATA_DEV_NONE)
3572 ap->ops->dev_select(ap, 0);
3573
3a39746a
TH
3574 /* bail out if no device is present */
3575 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3576 DPRINTK("EXIT, no device\n");
3577 return;
3578 }
3579
3580 /* set up device control */
0d5ff566
TH
3581 if (ap->ioaddr.ctl_addr)
3582 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3583
3584 DPRINTK("EXIT\n");
3585}
3586
623a3128
TH
3587/**
3588 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3589 * @dev: device to compare against
3590 * @new_class: class of the new device
3591 * @new_id: IDENTIFY page of the new device
3592 *
3593 * Compare @new_class and @new_id against @dev and determine
3594 * whether @dev is the device indicated by @new_class and
3595 * @new_id.
3596 *
3597 * LOCKING:
3598 * None.
3599 *
3600 * RETURNS:
3601 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3602 */
3373efd8
TH
3603static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3604 const u16 *new_id)
623a3128
TH
3605{
3606 const u16 *old_id = dev->id;
a0cf733b
TH
3607 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3608 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3609 u64 new_n_sectors;
3610
3611 if (dev->class != new_class) {
f15a1daf
TH
3612 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3613 dev->class, new_class);
623a3128
TH
3614 return 0;
3615 }
3616
a0cf733b
TH
3617 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3618 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3619 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3620 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3621 new_n_sectors = ata_id_n_sectors(new_id);
3622
3623 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3624 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3625 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3626 return 0;
3627 }
3628
3629 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3630 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3631 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3632 return 0;
3633 }
3634
3635 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
3636 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3637 "%llu != %llu\n",
3638 (unsigned long long)dev->n_sectors,
3639 (unsigned long long)new_n_sectors);
1e999736
AC
3640 /* Are we the boot time size - if so we appear to be the
3641 same disk at this point and our HPA got reapplied */
3642 if (ata_ignore_hpa && dev->n_sectors_boot == new_n_sectors
3643 && ata_id_hpa_enabled(new_id))
3644 return 1;
623a3128
TH
3645 return 0;
3646 }
3647
3648 return 1;
3649}
3650
3651/**
3652 * ata_dev_revalidate - Revalidate ATA device
623a3128 3653 * @dev: device to revalidate
bff04647 3654 * @readid_flags: read ID flags
623a3128
TH
3655 *
3656 * Re-read IDENTIFY page and make sure @dev is still attached to
3657 * the port.
3658 *
3659 * LOCKING:
3660 * Kernel thread context (may sleep)
3661 *
3662 * RETURNS:
3663 * 0 on success, negative errno otherwise
3664 */
bff04647 3665int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
623a3128 3666{
5eb45c02 3667 unsigned int class = dev->class;
f15a1daf 3668 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3669 int rc;
3670
5eb45c02
TH
3671 if (!ata_dev_enabled(dev)) {
3672 rc = -ENODEV;
3673 goto fail;
3674 }
623a3128 3675
fe635c7e 3676 /* read ID data */
bff04647 3677 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128
TH
3678 if (rc)
3679 goto fail;
3680
3681 /* is the device still there? */
3373efd8 3682 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
3683 rc = -ENODEV;
3684 goto fail;
3685 }
3686
fe635c7e 3687 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
3688
3689 /* configure device according to the new ID */
efdaedc4 3690 rc = ata_dev_configure(dev);
5eb45c02
TH
3691 if (rc == 0)
3692 return 0;
623a3128
TH
3693
3694 fail:
f15a1daf 3695 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3696 return rc;
3697}
3698
6919a0a6
AC
3699struct ata_blacklist_entry {
3700 const char *model_num;
3701 const char *model_rev;
3702 unsigned long horkage;
3703};
3704
3705static const struct ata_blacklist_entry ata_device_blacklist [] = {
3706 /* Devices with DMA related problems under Linux */
3707 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3708 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3709 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3710 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3711 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3712 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3713 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3714 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3715 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3716 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3717 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3718 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3719 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3720 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3721 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3722 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3723 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3724 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3725 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3726 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3727 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3728 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3729 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3730 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3731 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3732 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3733 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3734 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3735 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3736
18d6e9d5 3737 /* Weird ATAPI devices */
6f23a31d
AL
3738 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
3739 ATA_HORKAGE_DMA_RW_ONLY },
18d6e9d5 3740
6919a0a6
AC
3741 /* Devices we expect to fail diagnostics */
3742
3743 /* Devices where NCQ should be avoided */
3744 /* NCQ is slow */
3745 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3746 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3747 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30
PR
3748 /* NCQ is broken */
3749 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
96442925
JA
3750 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3751 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
36e337d0
RH
3752 /* Blacklist entries taken from Silicon Image 3124/3132
3753 Windows driver .inf file - also several Linux problem reports */
3754 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3755 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3756 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6
AC
3757
3758 /* Devices with NCQ limits */
3759
3760 /* End Marker */
3761 { }
1da177e4 3762};
2e9edbf8 3763
6919a0a6 3764unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3765{
8bfa79fc
TH
3766 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3767 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3768 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3769
8bfa79fc
TH
3770 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3771 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3772
6919a0a6 3773 while (ad->model_num) {
8bfa79fc 3774 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3775 if (ad->model_rev == NULL)
3776 return ad->horkage;
8bfa79fc 3777 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3778 return ad->horkage;
f4b15fef 3779 }
6919a0a6 3780 ad++;
f4b15fef 3781 }
1da177e4
LT
3782 return 0;
3783}
3784
6919a0a6
AC
3785static int ata_dma_blacklisted(const struct ata_device *dev)
3786{
3787 /* We don't support polling DMA.
3788 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3789 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3790 */
3791 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3792 (dev->flags & ATA_DFLAG_CDB_INTR))
3793 return 1;
3794 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3795}
3796
a6d5a51c
TH
3797/**
3798 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3799 * @dev: Device to compute xfermask for
3800 *
acf356b1
TH
3801 * Compute supported xfermask of @dev and store it in
3802 * dev->*_mask. This function is responsible for applying all
3803 * known limits including host controller limits, device
3804 * blacklist, etc...
a6d5a51c
TH
3805 *
3806 * LOCKING:
3807 * None.
a6d5a51c 3808 */
3373efd8 3809static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3810{
3373efd8 3811 struct ata_port *ap = dev->ap;
cca3974e 3812 struct ata_host *host = ap->host;
a6d5a51c 3813 unsigned long xfer_mask;
1da177e4 3814
37deecb5 3815 /* controller modes available */
565083e1
TH
3816 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3817 ap->mwdma_mask, ap->udma_mask);
3818
8343f889 3819 /* drive modes available */
37deecb5
TH
3820 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3821 dev->mwdma_mask, dev->udma_mask);
3822 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3823
b352e57d
AC
3824 /*
3825 * CFA Advanced TrueIDE timings are not allowed on a shared
3826 * cable
3827 */
3828 if (ata_dev_pair(dev)) {
3829 /* No PIO5 or PIO6 */
3830 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3831 /* No MWDMA3 or MWDMA 4 */
3832 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3833 }
3834
37deecb5
TH
3835 if (ata_dma_blacklisted(dev)) {
3836 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3837 ata_dev_printk(dev, KERN_WARNING,
3838 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3839 }
a6d5a51c 3840
14d66ab7
PV
3841 if ((host->flags & ATA_HOST_SIMPLEX) &&
3842 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3843 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3844 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3845 "other device, disabling DMA\n");
5444a6f4 3846 }
565083e1 3847
e424675f
JG
3848 if (ap->flags & ATA_FLAG_NO_IORDY)
3849 xfer_mask &= ata_pio_mask_no_iordy(dev);
3850
5444a6f4 3851 if (ap->ops->mode_filter)
a76b62ca 3852 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3853
8343f889
RH
3854 /* Apply cable rule here. Don't apply it early because when
3855 * we handle hot plug the cable type can itself change.
3856 * Check this last so that we know if the transfer rate was
3857 * solely limited by the cable.
3858 * Unknown or 80 wire cables reported host side are checked
3859 * drive side as well. Cases where we know a 40wire cable
3860 * is used safely for 80 are not checked here.
3861 */
3862 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3863 /* UDMA/44 or higher would be available */
3864 if((ap->cbl == ATA_CBL_PATA40) ||
3865 (ata_drive_40wire(dev->id) &&
3866 (ap->cbl == ATA_CBL_PATA_UNK ||
3867 ap->cbl == ATA_CBL_PATA80))) {
3868 ata_dev_printk(dev, KERN_WARNING,
3869 "limited to UDMA/33 due to 40-wire cable\n");
3870 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3871 }
3872
565083e1
TH
3873 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3874 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3875}
3876
1da177e4
LT
3877/**
3878 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3879 * @dev: Device to which command will be sent
3880 *
780a87f7
JG
3881 * Issue SET FEATURES - XFER MODE command to device @dev
3882 * on port @ap.
3883 *
1da177e4 3884 * LOCKING:
0cba632b 3885 * PCI/etc. bus probe sem.
83206a29
TH
3886 *
3887 * RETURNS:
3888 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3889 */
3890
3373efd8 3891static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3892{
a0123703 3893 struct ata_taskfile tf;
83206a29 3894 unsigned int err_mask;
1da177e4
LT
3895
3896 /* set up set-features taskfile */
3897 DPRINTK("set features - xfer mode\n");
3898
3373efd8 3899 ata_tf_init(dev, &tf);
a0123703
TH
3900 tf.command = ATA_CMD_SET_FEATURES;
3901 tf.feature = SETFEATURES_XFER;
3902 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3903 tf.protocol = ATA_PROT_NODATA;
3904 tf.nsect = dev->xfer_mode;
1da177e4 3905
3373efd8 3906 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3907
83206a29
TH
3908 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3909 return err_mask;
1da177e4
LT
3910}
3911
8bf62ece
AL
3912/**
3913 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3914 * @dev: Device to which command will be sent
e2a7f77a
RD
3915 * @heads: Number of heads (taskfile parameter)
3916 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3917 *
3918 * LOCKING:
6aff8f1f
TH
3919 * Kernel thread context (may sleep)
3920 *
3921 * RETURNS:
3922 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3923 */
3373efd8
TH
3924static unsigned int ata_dev_init_params(struct ata_device *dev,
3925 u16 heads, u16 sectors)
8bf62ece 3926{
a0123703 3927 struct ata_taskfile tf;
6aff8f1f 3928 unsigned int err_mask;
8bf62ece
AL
3929
3930 /* Number of sectors per track 1-255. Number of heads 1-16 */
3931 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3932 return AC_ERR_INVALID;
8bf62ece
AL
3933
3934 /* set up init dev params taskfile */
3935 DPRINTK("init dev params \n");
3936
3373efd8 3937 ata_tf_init(dev, &tf);
a0123703
TH
3938 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3939 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3940 tf.protocol = ATA_PROT_NODATA;
3941 tf.nsect = sectors;
3942 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3943
3373efd8 3944 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3945
6aff8f1f
TH
3946 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3947 return err_mask;
8bf62ece
AL
3948}
3949
1da177e4 3950/**
0cba632b
JG
3951 * ata_sg_clean - Unmap DMA memory associated with command
3952 * @qc: Command containing DMA memory to be released
3953 *
3954 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3955 *
3956 * LOCKING:
cca3974e 3957 * spin_lock_irqsave(host lock)
1da177e4 3958 */
70e6ad0c 3959void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
3960{
3961 struct ata_port *ap = qc->ap;
cedc9a47 3962 struct scatterlist *sg = qc->__sg;
1da177e4 3963 int dir = qc->dma_dir;
cedc9a47 3964 void *pad_buf = NULL;
1da177e4 3965
a4631474
TH
3966 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3967 WARN_ON(sg == NULL);
1da177e4
LT
3968
3969 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3970 WARN_ON(qc->n_elem > 1);
1da177e4 3971
2c13b7ce 3972 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3973
cedc9a47
JG
3974 /* if we padded the buffer out to 32-bit bound, and data
3975 * xfer direction is from-device, we must copy from the
3976 * pad buffer back into the supplied buffer
3977 */
3978 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3979 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3980
3981 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3982 if (qc->n_elem)
2f1f610b 3983 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3984 /* restore last sg */
3985 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3986 if (pad_buf) {
3987 struct scatterlist *psg = &qc->pad_sgent;
3988 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3989 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3990 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3991 }
3992 } else {
2e242fa9 3993 if (qc->n_elem)
2f1f610b 3994 dma_unmap_single(ap->dev,
e1410f2d
JG
3995 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3996 dir);
cedc9a47
JG
3997 /* restore sg */
3998 sg->length += qc->pad_len;
3999 if (pad_buf)
4000 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4001 pad_buf, qc->pad_len);
4002 }
1da177e4
LT
4003
4004 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4005 qc->__sg = NULL;
1da177e4
LT
4006}
4007
4008/**
4009 * ata_fill_sg - Fill PCI IDE PRD table
4010 * @qc: Metadata associated with taskfile to be transferred
4011 *
780a87f7
JG
4012 * Fill PCI IDE PRD (scatter-gather) table with segments
4013 * associated with the current disk command.
4014 *
1da177e4 4015 * LOCKING:
cca3974e 4016 * spin_lock_irqsave(host lock)
1da177e4
LT
4017 *
4018 */
4019static void ata_fill_sg(struct ata_queued_cmd *qc)
4020{
1da177e4 4021 struct ata_port *ap = qc->ap;
cedc9a47
JG
4022 struct scatterlist *sg;
4023 unsigned int idx;
1da177e4 4024
a4631474 4025 WARN_ON(qc->__sg == NULL);
f131883e 4026 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4027
4028 idx = 0;
cedc9a47 4029 ata_for_each_sg(sg, qc) {
1da177e4
LT
4030 u32 addr, offset;
4031 u32 sg_len, len;
4032
4033 /* determine if physical DMA addr spans 64K boundary.
4034 * Note h/w doesn't support 64-bit, so we unconditionally
4035 * truncate dma_addr_t to u32.
4036 */
4037 addr = (u32) sg_dma_address(sg);
4038 sg_len = sg_dma_len(sg);
4039
4040 while (sg_len) {
4041 offset = addr & 0xffff;
4042 len = sg_len;
4043 if ((offset + sg_len) > 0x10000)
4044 len = 0x10000 - offset;
4045
4046 ap->prd[idx].addr = cpu_to_le32(addr);
4047 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4048 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4049
4050 idx++;
4051 sg_len -= len;
4052 addr += len;
4053 }
4054 }
4055
4056 if (idx)
4057 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4058}
4059/**
4060 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4061 * @qc: Metadata associated with taskfile to check
4062 *
780a87f7
JG
4063 * Allow low-level driver to filter ATA PACKET commands, returning
4064 * a status indicating whether or not it is OK to use DMA for the
4065 * supplied PACKET command.
4066 *
1da177e4 4067 * LOCKING:
cca3974e 4068 * spin_lock_irqsave(host lock)
0cba632b 4069 *
1da177e4
LT
4070 * RETURNS: 0 when ATAPI DMA can be used
4071 * nonzero otherwise
4072 */
4073int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4074{
4075 struct ata_port *ap = qc->ap;
4076 int rc = 0; /* Assume ATAPI DMA is OK by default */
4077
6f23a31d
AL
4078 /* some drives can only do ATAPI DMA on read/write */
4079 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
4080 struct scsi_cmnd *cmd = qc->scsicmd;
4081 u8 *scsicmd = cmd->cmnd;
4082
4083 switch (scsicmd[0]) {
4084 case READ_10:
4085 case WRITE_10:
4086 case READ_12:
4087 case WRITE_12:
4088 case READ_6:
4089 case WRITE_6:
4090 /* atapi dma maybe ok */
4091 break;
4092 default:
4093 /* turn off atapi dma */
4094 return 1;
4095 }
4096 }
4097
1da177e4
LT
4098 if (ap->ops->check_atapi_dma)
4099 rc = ap->ops->check_atapi_dma(qc);
4100
4101 return rc;
4102}
4103/**
4104 * ata_qc_prep - Prepare taskfile for submission
4105 * @qc: Metadata associated with taskfile to be prepared
4106 *
780a87f7
JG
4107 * Prepare ATA taskfile for submission.
4108 *
1da177e4 4109 * LOCKING:
cca3974e 4110 * spin_lock_irqsave(host lock)
1da177e4
LT
4111 */
4112void ata_qc_prep(struct ata_queued_cmd *qc)
4113{
4114 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4115 return;
4116
4117 ata_fill_sg(qc);
4118}
4119
e46834cd
BK
4120void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4121
0cba632b
JG
4122/**
4123 * ata_sg_init_one - Associate command with memory buffer
4124 * @qc: Command to be associated
4125 * @buf: Memory buffer
4126 * @buflen: Length of memory buffer, in bytes.
4127 *
4128 * Initialize the data-related elements of queued_cmd @qc
4129 * to point to a single memory buffer, @buf of byte length @buflen.
4130 *
4131 * LOCKING:
cca3974e 4132 * spin_lock_irqsave(host lock)
0cba632b
JG
4133 */
4134
1da177e4
LT
4135void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4136{
1da177e4
LT
4137 qc->flags |= ATA_QCFLAG_SINGLE;
4138
cedc9a47 4139 qc->__sg = &qc->sgent;
1da177e4 4140 qc->n_elem = 1;
cedc9a47 4141 qc->orig_n_elem = 1;
1da177e4 4142 qc->buf_virt = buf;
233277ca 4143 qc->nbytes = buflen;
1da177e4 4144
61c0596c 4145 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4146}
4147
0cba632b
JG
4148/**
4149 * ata_sg_init - Associate command with scatter-gather table.
4150 * @qc: Command to be associated
4151 * @sg: Scatter-gather table.
4152 * @n_elem: Number of elements in s/g table.
4153 *
4154 * Initialize the data-related elements of queued_cmd @qc
4155 * to point to a scatter-gather table @sg, containing @n_elem
4156 * elements.
4157 *
4158 * LOCKING:
cca3974e 4159 * spin_lock_irqsave(host lock)
0cba632b
JG
4160 */
4161
1da177e4
LT
4162void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4163 unsigned int n_elem)
4164{
4165 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4166 qc->__sg = sg;
1da177e4 4167 qc->n_elem = n_elem;
cedc9a47 4168 qc->orig_n_elem = n_elem;
1da177e4
LT
4169}
4170
4171/**
0cba632b
JG
4172 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4173 * @qc: Command with memory buffer to be mapped.
4174 *
4175 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4176 *
4177 * LOCKING:
cca3974e 4178 * spin_lock_irqsave(host lock)
1da177e4
LT
4179 *
4180 * RETURNS:
0cba632b 4181 * Zero on success, negative on error.
1da177e4
LT
4182 */
4183
4184static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4185{
4186 struct ata_port *ap = qc->ap;
4187 int dir = qc->dma_dir;
cedc9a47 4188 struct scatterlist *sg = qc->__sg;
1da177e4 4189 dma_addr_t dma_address;
2e242fa9 4190 int trim_sg = 0;
1da177e4 4191
cedc9a47
JG
4192 /* we must lengthen transfers to end on a 32-bit boundary */
4193 qc->pad_len = sg->length & 3;
4194 if (qc->pad_len) {
4195 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4196 struct scatterlist *psg = &qc->pad_sgent;
4197
a4631474 4198 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4199
4200 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4201
4202 if (qc->tf.flags & ATA_TFLAG_WRITE)
4203 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4204 qc->pad_len);
4205
4206 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4207 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4208 /* trim sg */
4209 sg->length -= qc->pad_len;
2e242fa9
TH
4210 if (sg->length == 0)
4211 trim_sg = 1;
cedc9a47
JG
4212
4213 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4214 sg->length, qc->pad_len);
4215 }
4216
2e242fa9
TH
4217 if (trim_sg) {
4218 qc->n_elem--;
e1410f2d
JG
4219 goto skip_map;
4220 }
4221
2f1f610b 4222 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4223 sg->length, dir);
537a95d9
TH
4224 if (dma_mapping_error(dma_address)) {
4225 /* restore sg */
4226 sg->length += qc->pad_len;
1da177e4 4227 return -1;
537a95d9 4228 }
1da177e4
LT
4229
4230 sg_dma_address(sg) = dma_address;
32529e01 4231 sg_dma_len(sg) = sg->length;
1da177e4 4232
2e242fa9 4233skip_map:
1da177e4
LT
4234 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4235 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4236
4237 return 0;
4238}
4239
4240/**
0cba632b
JG
4241 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4242 * @qc: Command with scatter-gather table to be mapped.
4243 *
4244 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4245 *
4246 * LOCKING:
cca3974e 4247 * spin_lock_irqsave(host lock)
1da177e4
LT
4248 *
4249 * RETURNS:
0cba632b 4250 * Zero on success, negative on error.
1da177e4
LT
4251 *
4252 */
4253
4254static int ata_sg_setup(struct ata_queued_cmd *qc)
4255{
4256 struct ata_port *ap = qc->ap;
cedc9a47
JG
4257 struct scatterlist *sg = qc->__sg;
4258 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4259 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4260
44877b4e 4261 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4262 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4263
cedc9a47
JG
4264 /* we must lengthen transfers to end on a 32-bit boundary */
4265 qc->pad_len = lsg->length & 3;
4266 if (qc->pad_len) {
4267 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4268 struct scatterlist *psg = &qc->pad_sgent;
4269 unsigned int offset;
4270
a4631474 4271 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4272
4273 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4274
4275 /*
4276 * psg->page/offset are used to copy to-be-written
4277 * data in this function or read data in ata_sg_clean.
4278 */
4279 offset = lsg->offset + lsg->length - qc->pad_len;
4280 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4281 psg->offset = offset_in_page(offset);
4282
4283 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4284 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4285 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4286 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4287 }
4288
4289 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4290 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4291 /* trim last sg */
4292 lsg->length -= qc->pad_len;
e1410f2d
JG
4293 if (lsg->length == 0)
4294 trim_sg = 1;
cedc9a47
JG
4295
4296 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4297 qc->n_elem - 1, lsg->length, qc->pad_len);
4298 }
4299
e1410f2d
JG
4300 pre_n_elem = qc->n_elem;
4301 if (trim_sg && pre_n_elem)
4302 pre_n_elem--;
4303
4304 if (!pre_n_elem) {
4305 n_elem = 0;
4306 goto skip_map;
4307 }
4308
1da177e4 4309 dir = qc->dma_dir;
2f1f610b 4310 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4311 if (n_elem < 1) {
4312 /* restore last sg */
4313 lsg->length += qc->pad_len;
1da177e4 4314 return -1;
537a95d9 4315 }
1da177e4
LT
4316
4317 DPRINTK("%d sg elements mapped\n", n_elem);
4318
e1410f2d 4319skip_map:
1da177e4
LT
4320 qc->n_elem = n_elem;
4321
4322 return 0;
4323}
4324
0baab86b 4325/**
c893a3ae 4326 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4327 * @buf: Buffer to swap
4328 * @buf_words: Number of 16-bit words in buffer.
4329 *
4330 * Swap halves of 16-bit words if needed to convert from
4331 * little-endian byte order to native cpu byte order, or
4332 * vice-versa.
4333 *
4334 * LOCKING:
6f0ef4fa 4335 * Inherited from caller.
0baab86b 4336 */
1da177e4
LT
4337void swap_buf_le16(u16 *buf, unsigned int buf_words)
4338{
4339#ifdef __BIG_ENDIAN
4340 unsigned int i;
4341
4342 for (i = 0; i < buf_words; i++)
4343 buf[i] = le16_to_cpu(buf[i]);
4344#endif /* __BIG_ENDIAN */
4345}
4346
6ae4cfb5 4347/**
0d5ff566 4348 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4349 * @adev: device to target
6ae4cfb5
AL
4350 * @buf: data buffer
4351 * @buflen: buffer length
344babaa 4352 * @write_data: read/write
6ae4cfb5
AL
4353 *
4354 * Transfer data from/to the device data register by PIO.
4355 *
4356 * LOCKING:
4357 * Inherited from caller.
6ae4cfb5 4358 */
0d5ff566
TH
4359void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4360 unsigned int buflen, int write_data)
1da177e4 4361{
a6b2c5d4 4362 struct ata_port *ap = adev->ap;
6ae4cfb5 4363 unsigned int words = buflen >> 1;
1da177e4 4364
6ae4cfb5 4365 /* Transfer multiple of 2 bytes */
1da177e4 4366 if (write_data)
0d5ff566 4367 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4368 else
0d5ff566 4369 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4370
4371 /* Transfer trailing 1 byte, if any. */
4372 if (unlikely(buflen & 0x01)) {
4373 u16 align_buf[1] = { 0 };
4374 unsigned char *trailing_buf = buf + buflen - 1;
4375
4376 if (write_data) {
4377 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4378 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4379 } else {
0d5ff566 4380 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4381 memcpy(trailing_buf, align_buf, 1);
4382 }
4383 }
1da177e4
LT
4384}
4385
75e99585 4386/**
0d5ff566 4387 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4388 * @adev: device to target
4389 * @buf: data buffer
4390 * @buflen: buffer length
4391 * @write_data: read/write
4392 *
88574551 4393 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4394 * transfer with interrupts disabled.
4395 *
4396 * LOCKING:
4397 * Inherited from caller.
4398 */
0d5ff566
TH
4399void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4400 unsigned int buflen, int write_data)
75e99585
AC
4401{
4402 unsigned long flags;
4403 local_irq_save(flags);
0d5ff566 4404 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4405 local_irq_restore(flags);
4406}
4407
4408
6ae4cfb5 4409/**
5a5dbd18 4410 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4411 * @qc: Command on going
4412 *
5a5dbd18 4413 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4414 *
4415 * LOCKING:
4416 * Inherited from caller.
4417 */
4418
1da177e4
LT
4419static void ata_pio_sector(struct ata_queued_cmd *qc)
4420{
4421 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4422 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4423 struct ata_port *ap = qc->ap;
4424 struct page *page;
4425 unsigned int offset;
4426 unsigned char *buf;
4427
5a5dbd18 4428 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4429 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4430
4431 page = sg[qc->cursg].page;
726f0785 4432 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4433
4434 /* get the current page and offset */
4435 page = nth_page(page, (offset >> PAGE_SHIFT));
4436 offset %= PAGE_SIZE;
4437
1da177e4
LT
4438 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4439
91b8b313
AL
4440 if (PageHighMem(page)) {
4441 unsigned long flags;
4442
a6b2c5d4 4443 /* FIXME: use a bounce buffer */
91b8b313
AL
4444 local_irq_save(flags);
4445 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4446
91b8b313 4447 /* do the actual data transfer */
5a5dbd18 4448 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4449
91b8b313
AL
4450 kunmap_atomic(buf, KM_IRQ0);
4451 local_irq_restore(flags);
4452 } else {
4453 buf = page_address(page);
5a5dbd18 4454 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4455 }
1da177e4 4456
5a5dbd18
ML
4457 qc->curbytes += qc->sect_size;
4458 qc->cursg_ofs += qc->sect_size;
1da177e4 4459
726f0785 4460 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4461 qc->cursg++;
4462 qc->cursg_ofs = 0;
4463 }
1da177e4 4464}
1da177e4 4465
07f6f7d0 4466/**
5a5dbd18 4467 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4468 * @qc: Command on going
4469 *
5a5dbd18 4470 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4471 * ATA device for the DRQ request.
4472 *
4473 * LOCKING:
4474 * Inherited from caller.
4475 */
1da177e4 4476
07f6f7d0
AL
4477static void ata_pio_sectors(struct ata_queued_cmd *qc)
4478{
4479 if (is_multi_taskfile(&qc->tf)) {
4480 /* READ/WRITE MULTIPLE */
4481 unsigned int nsect;
4482
587005de 4483 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4484
5a5dbd18 4485 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4486 qc->dev->multi_count);
07f6f7d0
AL
4487 while (nsect--)
4488 ata_pio_sector(qc);
4489 } else
4490 ata_pio_sector(qc);
4491}
4492
c71c1857
AL
4493/**
4494 * atapi_send_cdb - Write CDB bytes to hardware
4495 * @ap: Port to which ATAPI device is attached.
4496 * @qc: Taskfile currently active
4497 *
4498 * When device has indicated its readiness to accept
4499 * a CDB, this function is called. Send the CDB.
4500 *
4501 * LOCKING:
4502 * caller.
4503 */
4504
4505static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4506{
4507 /* send SCSI cdb */
4508 DPRINTK("send cdb\n");
db024d53 4509 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4510
a6b2c5d4 4511 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4512 ata_altstatus(ap); /* flush */
4513
4514 switch (qc->tf.protocol) {
4515 case ATA_PROT_ATAPI:
4516 ap->hsm_task_state = HSM_ST;
4517 break;
4518 case ATA_PROT_ATAPI_NODATA:
4519 ap->hsm_task_state = HSM_ST_LAST;
4520 break;
4521 case ATA_PROT_ATAPI_DMA:
4522 ap->hsm_task_state = HSM_ST_LAST;
4523 /* initiate bmdma */
4524 ap->ops->bmdma_start(qc);
4525 break;
4526 }
1da177e4
LT
4527}
4528
6ae4cfb5
AL
4529/**
4530 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4531 * @qc: Command on going
4532 * @bytes: number of bytes
4533 *
4534 * Transfer Transfer data from/to the ATAPI device.
4535 *
4536 * LOCKING:
4537 * Inherited from caller.
4538 *
4539 */
4540
1da177e4
LT
4541static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4542{
4543 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4544 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4545 struct ata_port *ap = qc->ap;
4546 struct page *page;
4547 unsigned char *buf;
4548 unsigned int offset, count;
4549
563a6e1f 4550 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4551 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4552
4553next_sg:
563a6e1f 4554 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4555 /*
563a6e1f
AL
4556 * The end of qc->sg is reached and the device expects
4557 * more data to transfer. In order not to overrun qc->sg
4558 * and fulfill length specified in the byte count register,
4559 * - for read case, discard trailing data from the device
4560 * - for write case, padding zero data to the device
4561 */
4562 u16 pad_buf[1] = { 0 };
4563 unsigned int words = bytes >> 1;
4564 unsigned int i;
4565
4566 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4567 ata_dev_printk(qc->dev, KERN_WARNING,
4568 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4569
4570 for (i = 0; i < words; i++)
a6b2c5d4 4571 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4572
14be71f4 4573 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4574 return;
4575 }
4576
cedc9a47 4577 sg = &qc->__sg[qc->cursg];
1da177e4 4578
1da177e4
LT
4579 page = sg->page;
4580 offset = sg->offset + qc->cursg_ofs;
4581
4582 /* get the current page and offset */
4583 page = nth_page(page, (offset >> PAGE_SHIFT));
4584 offset %= PAGE_SIZE;
4585
6952df03 4586 /* don't overrun current sg */
32529e01 4587 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4588
4589 /* don't cross page boundaries */
4590 count = min(count, (unsigned int)PAGE_SIZE - offset);
4591
7282aa4b
AL
4592 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4593
91b8b313
AL
4594 if (PageHighMem(page)) {
4595 unsigned long flags;
4596
a6b2c5d4 4597 /* FIXME: use bounce buffer */
91b8b313
AL
4598 local_irq_save(flags);
4599 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4600
91b8b313 4601 /* do the actual data transfer */
a6b2c5d4 4602 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4603
91b8b313
AL
4604 kunmap_atomic(buf, KM_IRQ0);
4605 local_irq_restore(flags);
4606 } else {
4607 buf = page_address(page);
a6b2c5d4 4608 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4609 }
1da177e4
LT
4610
4611 bytes -= count;
4612 qc->curbytes += count;
4613 qc->cursg_ofs += count;
4614
32529e01 4615 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4616 qc->cursg++;
4617 qc->cursg_ofs = 0;
4618 }
4619
563a6e1f 4620 if (bytes)
1da177e4 4621 goto next_sg;
1da177e4
LT
4622}
4623
6ae4cfb5
AL
4624/**
4625 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4626 * @qc: Command on going
4627 *
4628 * Transfer Transfer data from/to the ATAPI device.
4629 *
4630 * LOCKING:
4631 * Inherited from caller.
6ae4cfb5
AL
4632 */
4633
1da177e4
LT
4634static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4635{
4636 struct ata_port *ap = qc->ap;
4637 struct ata_device *dev = qc->dev;
4638 unsigned int ireason, bc_lo, bc_hi, bytes;
4639 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4640
eec4c3f3
AL
4641 /* Abuse qc->result_tf for temp storage of intermediate TF
4642 * here to save some kernel stack usage.
4643 * For normal completion, qc->result_tf is not relevant. For
4644 * error, qc->result_tf is later overwritten by ata_qc_complete().
4645 * So, the correctness of qc->result_tf is not affected.
4646 */
4647 ap->ops->tf_read(ap, &qc->result_tf);
4648 ireason = qc->result_tf.nsect;
4649 bc_lo = qc->result_tf.lbam;
4650 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4651 bytes = (bc_hi << 8) | bc_lo;
4652
4653 /* shall be cleared to zero, indicating xfer of data */
4654 if (ireason & (1 << 0))
4655 goto err_out;
4656
4657 /* make sure transfer direction matches expected */
4658 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4659 if (do_write != i_write)
4660 goto err_out;
4661
44877b4e 4662 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4663
1da177e4
LT
4664 __atapi_pio_bytes(qc, bytes);
4665
4666 return;
4667
4668err_out:
f15a1daf 4669 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4670 qc->err_mask |= AC_ERR_HSM;
14be71f4 4671 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4672}
4673
4674/**
c234fb00
AL
4675 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4676 * @ap: the target ata_port
4677 * @qc: qc on going
1da177e4 4678 *
c234fb00
AL
4679 * RETURNS:
4680 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4681 */
c234fb00
AL
4682
4683static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4684{
c234fb00
AL
4685 if (qc->tf.flags & ATA_TFLAG_POLLING)
4686 return 1;
1da177e4 4687
c234fb00
AL
4688 if (ap->hsm_task_state == HSM_ST_FIRST) {
4689 if (qc->tf.protocol == ATA_PROT_PIO &&
4690 (qc->tf.flags & ATA_TFLAG_WRITE))
4691 return 1;
1da177e4 4692
c234fb00
AL
4693 if (is_atapi_taskfile(&qc->tf) &&
4694 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4695 return 1;
fe79e683
AL
4696 }
4697
c234fb00
AL
4698 return 0;
4699}
1da177e4 4700
c17ea20d
TH
4701/**
4702 * ata_hsm_qc_complete - finish a qc running on standard HSM
4703 * @qc: Command to complete
4704 * @in_wq: 1 if called from workqueue, 0 otherwise
4705 *
4706 * Finish @qc which is running on standard HSM.
4707 *
4708 * LOCKING:
cca3974e 4709 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4710 * Otherwise, none on entry and grabs host lock.
4711 */
4712static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4713{
4714 struct ata_port *ap = qc->ap;
4715 unsigned long flags;
4716
4717 if (ap->ops->error_handler) {
4718 if (in_wq) {
ba6a1308 4719 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4720
cca3974e
JG
4721 /* EH might have kicked in while host lock is
4722 * released.
c17ea20d
TH
4723 */
4724 qc = ata_qc_from_tag(ap, qc->tag);
4725 if (qc) {
4726 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4727 ap->ops->irq_on(ap);
c17ea20d
TH
4728 ata_qc_complete(qc);
4729 } else
4730 ata_port_freeze(ap);
4731 }
4732
ba6a1308 4733 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4734 } else {
4735 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4736 ata_qc_complete(qc);
4737 else
4738 ata_port_freeze(ap);
4739 }
4740 } else {
4741 if (in_wq) {
ba6a1308 4742 spin_lock_irqsave(ap->lock, flags);
83625006 4743 ap->ops->irq_on(ap);
c17ea20d 4744 ata_qc_complete(qc);
ba6a1308 4745 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4746 } else
4747 ata_qc_complete(qc);
4748 }
1da177e4 4749
c81e29b4 4750 ata_altstatus(ap); /* flush */
c17ea20d
TH
4751}
4752
bb5cb290
AL
4753/**
4754 * ata_hsm_move - move the HSM to the next state.
4755 * @ap: the target ata_port
4756 * @qc: qc on going
4757 * @status: current device status
4758 * @in_wq: 1 if called from workqueue, 0 otherwise
4759 *
4760 * RETURNS:
4761 * 1 when poll next status needed, 0 otherwise.
4762 */
9a1004d0
TH
4763int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4764 u8 status, int in_wq)
e2cec771 4765{
bb5cb290
AL
4766 unsigned long flags = 0;
4767 int poll_next;
4768
6912ccd5
AL
4769 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4770
bb5cb290
AL
4771 /* Make sure ata_qc_issue_prot() does not throw things
4772 * like DMA polling into the workqueue. Notice that
4773 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4774 */
c234fb00 4775 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4776
e2cec771 4777fsm_start:
999bb6f4 4778 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4779 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4780
e2cec771
AL
4781 switch (ap->hsm_task_state) {
4782 case HSM_ST_FIRST:
bb5cb290
AL
4783 /* Send first data block or PACKET CDB */
4784
4785 /* If polling, we will stay in the work queue after
4786 * sending the data. Otherwise, interrupt handler
4787 * takes over after sending the data.
4788 */
4789 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4790
e2cec771 4791 /* check device status */
3655d1d3
AL
4792 if (unlikely((status & ATA_DRQ) == 0)) {
4793 /* handle BSY=0, DRQ=0 as error */
4794 if (likely(status & (ATA_ERR | ATA_DF)))
4795 /* device stops HSM for abort/error */
4796 qc->err_mask |= AC_ERR_DEV;
4797 else
4798 /* HSM violation. Let EH handle this */
4799 qc->err_mask |= AC_ERR_HSM;
4800
14be71f4 4801 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4802 goto fsm_start;
1da177e4
LT
4803 }
4804
71601958
AL
4805 /* Device should not ask for data transfer (DRQ=1)
4806 * when it finds something wrong.
eee6c32f
AL
4807 * We ignore DRQ here and stop the HSM by
4808 * changing hsm_task_state to HSM_ST_ERR and
4809 * let the EH abort the command or reset the device.
71601958
AL
4810 */
4811 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4812 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4813 "error, dev_stat 0x%X\n", status);
3655d1d3 4814 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4815 ap->hsm_task_state = HSM_ST_ERR;
4816 goto fsm_start;
71601958 4817 }
1da177e4 4818
bb5cb290
AL
4819 /* Send the CDB (atapi) or the first data block (ata pio out).
4820 * During the state transition, interrupt handler shouldn't
4821 * be invoked before the data transfer is complete and
4822 * hsm_task_state is changed. Hence, the following locking.
4823 */
4824 if (in_wq)
ba6a1308 4825 spin_lock_irqsave(ap->lock, flags);
1da177e4 4826
bb5cb290
AL
4827 if (qc->tf.protocol == ATA_PROT_PIO) {
4828 /* PIO data out protocol.
4829 * send first data block.
4830 */
0565c26d 4831
bb5cb290
AL
4832 /* ata_pio_sectors() might change the state
4833 * to HSM_ST_LAST. so, the state is changed here
4834 * before ata_pio_sectors().
4835 */
4836 ap->hsm_task_state = HSM_ST;
4837 ata_pio_sectors(qc);
4838 ata_altstatus(ap); /* flush */
4839 } else
4840 /* send CDB */
4841 atapi_send_cdb(ap, qc);
4842
4843 if (in_wq)
ba6a1308 4844 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4845
4846 /* if polling, ata_pio_task() handles the rest.
4847 * otherwise, interrupt handler takes over from here.
4848 */
e2cec771 4849 break;
1c848984 4850
e2cec771
AL
4851 case HSM_ST:
4852 /* complete command or read/write the data register */
4853 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4854 /* ATAPI PIO protocol */
4855 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4856 /* No more data to transfer or device error.
4857 * Device error will be tagged in HSM_ST_LAST.
4858 */
e2cec771
AL
4859 ap->hsm_task_state = HSM_ST_LAST;
4860 goto fsm_start;
4861 }
1da177e4 4862
71601958
AL
4863 /* Device should not ask for data transfer (DRQ=1)
4864 * when it finds something wrong.
eee6c32f
AL
4865 * We ignore DRQ here and stop the HSM by
4866 * changing hsm_task_state to HSM_ST_ERR and
4867 * let the EH abort the command or reset the device.
71601958
AL
4868 */
4869 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4870 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4871 "device error, dev_stat 0x%X\n",
4872 status);
3655d1d3 4873 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4874 ap->hsm_task_state = HSM_ST_ERR;
4875 goto fsm_start;
71601958 4876 }
1da177e4 4877
e2cec771 4878 atapi_pio_bytes(qc);
7fb6ec28 4879
e2cec771
AL
4880 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4881 /* bad ireason reported by device */
4882 goto fsm_start;
1da177e4 4883
e2cec771
AL
4884 } else {
4885 /* ATA PIO protocol */
4886 if (unlikely((status & ATA_DRQ) == 0)) {
4887 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4888 if (likely(status & (ATA_ERR | ATA_DF)))
4889 /* device stops HSM for abort/error */
4890 qc->err_mask |= AC_ERR_DEV;
4891 else
55a8e2c8
TH
4892 /* HSM violation. Let EH handle this.
4893 * Phantom devices also trigger this
4894 * condition. Mark hint.
4895 */
4896 qc->err_mask |= AC_ERR_HSM |
4897 AC_ERR_NODEV_HINT;
3655d1d3 4898
e2cec771
AL
4899 ap->hsm_task_state = HSM_ST_ERR;
4900 goto fsm_start;
4901 }
1da177e4 4902
eee6c32f
AL
4903 /* For PIO reads, some devices may ask for
4904 * data transfer (DRQ=1) alone with ERR=1.
4905 * We respect DRQ here and transfer one
4906 * block of junk data before changing the
4907 * hsm_task_state to HSM_ST_ERR.
4908 *
4909 * For PIO writes, ERR=1 DRQ=1 doesn't make
4910 * sense since the data block has been
4911 * transferred to the device.
71601958
AL
4912 */
4913 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4914 /* data might be corrputed */
4915 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4916
4917 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4918 ata_pio_sectors(qc);
4919 ata_altstatus(ap);
4920 status = ata_wait_idle(ap);
4921 }
4922
3655d1d3
AL
4923 if (status & (ATA_BUSY | ATA_DRQ))
4924 qc->err_mask |= AC_ERR_HSM;
4925
eee6c32f
AL
4926 /* ata_pio_sectors() might change the
4927 * state to HSM_ST_LAST. so, the state
4928 * is changed after ata_pio_sectors().
4929 */
4930 ap->hsm_task_state = HSM_ST_ERR;
4931 goto fsm_start;
71601958
AL
4932 }
4933
e2cec771
AL
4934 ata_pio_sectors(qc);
4935
4936 if (ap->hsm_task_state == HSM_ST_LAST &&
4937 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4938 /* all data read */
4939 ata_altstatus(ap);
52a32205 4940 status = ata_wait_idle(ap);
e2cec771
AL
4941 goto fsm_start;
4942 }
4943 }
4944
4945 ata_altstatus(ap); /* flush */
bb5cb290 4946 poll_next = 1;
1da177e4
LT
4947 break;
4948
14be71f4 4949 case HSM_ST_LAST:
6912ccd5
AL
4950 if (unlikely(!ata_ok(status))) {
4951 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4952 ap->hsm_task_state = HSM_ST_ERR;
4953 goto fsm_start;
4954 }
4955
4956 /* no more data to transfer */
4332a771 4957 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 4958 ap->print_id, qc->dev->devno, status);
e2cec771 4959
6912ccd5
AL
4960 WARN_ON(qc->err_mask);
4961
e2cec771 4962 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4963
e2cec771 4964 /* complete taskfile transaction */
c17ea20d 4965 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4966
4967 poll_next = 0;
1da177e4
LT
4968 break;
4969
14be71f4 4970 case HSM_ST_ERR:
e2cec771
AL
4971 /* make sure qc->err_mask is available to
4972 * know what's wrong and recover
4973 */
4974 WARN_ON(qc->err_mask == 0);
4975
4976 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4977
999bb6f4 4978 /* complete taskfile transaction */
c17ea20d 4979 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4980
4981 poll_next = 0;
e2cec771
AL
4982 break;
4983 default:
bb5cb290 4984 poll_next = 0;
6912ccd5 4985 BUG();
1da177e4
LT
4986 }
4987
bb5cb290 4988 return poll_next;
1da177e4
LT
4989}
4990
65f27f38 4991static void ata_pio_task(struct work_struct *work)
8061f5f0 4992{
65f27f38
DH
4993 struct ata_port *ap =
4994 container_of(work, struct ata_port, port_task.work);
4995 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 4996 u8 status;
a1af3734 4997 int poll_next;
8061f5f0 4998
7fb6ec28 4999fsm_start:
a1af3734 5000 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5001
a1af3734
AL
5002 /*
5003 * This is purely heuristic. This is a fast path.
5004 * Sometimes when we enter, BSY will be cleared in
5005 * a chk-status or two. If not, the drive is probably seeking
5006 * or something. Snooze for a couple msecs, then
5007 * chk-status again. If still busy, queue delayed work.
5008 */
5009 status = ata_busy_wait(ap, ATA_BUSY, 5);
5010 if (status & ATA_BUSY) {
5011 msleep(2);
5012 status = ata_busy_wait(ap, ATA_BUSY, 10);
5013 if (status & ATA_BUSY) {
31ce6dae 5014 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5015 return;
5016 }
8061f5f0
TH
5017 }
5018
a1af3734
AL
5019 /* move the HSM */
5020 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5021
a1af3734
AL
5022 /* another command or interrupt handler
5023 * may be running at this point.
5024 */
5025 if (poll_next)
7fb6ec28 5026 goto fsm_start;
8061f5f0
TH
5027}
5028
1da177e4
LT
5029/**
5030 * ata_qc_new - Request an available ATA command, for queueing
5031 * @ap: Port associated with device @dev
5032 * @dev: Device from whom we request an available command structure
5033 *
5034 * LOCKING:
0cba632b 5035 * None.
1da177e4
LT
5036 */
5037
5038static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5039{
5040 struct ata_queued_cmd *qc = NULL;
5041 unsigned int i;
5042
e3180499 5043 /* no command while frozen */
b51e9e5d 5044 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5045 return NULL;
5046
2ab7db1f
TH
5047 /* the last tag is reserved for internal command. */
5048 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5049 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5050 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5051 break;
5052 }
5053
5054 if (qc)
5055 qc->tag = i;
5056
5057 return qc;
5058}
5059
5060/**
5061 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5062 * @dev: Device from whom we request an available command structure
5063 *
5064 * LOCKING:
0cba632b 5065 * None.
1da177e4
LT
5066 */
5067
3373efd8 5068struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5069{
3373efd8 5070 struct ata_port *ap = dev->ap;
1da177e4
LT
5071 struct ata_queued_cmd *qc;
5072
5073 qc = ata_qc_new(ap);
5074 if (qc) {
1da177e4
LT
5075 qc->scsicmd = NULL;
5076 qc->ap = ap;
5077 qc->dev = dev;
1da177e4 5078
2c13b7ce 5079 ata_qc_reinit(qc);
1da177e4
LT
5080 }
5081
5082 return qc;
5083}
5084
1da177e4
LT
5085/**
5086 * ata_qc_free - free unused ata_queued_cmd
5087 * @qc: Command to complete
5088 *
5089 * Designed to free unused ata_queued_cmd object
5090 * in case something prevents using it.
5091 *
5092 * LOCKING:
cca3974e 5093 * spin_lock_irqsave(host lock)
1da177e4
LT
5094 */
5095void ata_qc_free(struct ata_queued_cmd *qc)
5096{
4ba946e9
TH
5097 struct ata_port *ap = qc->ap;
5098 unsigned int tag;
5099
a4631474 5100 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5101
4ba946e9
TH
5102 qc->flags = 0;
5103 tag = qc->tag;
5104 if (likely(ata_tag_valid(tag))) {
4ba946e9 5105 qc->tag = ATA_TAG_POISON;
6cec4a39 5106 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5107 }
1da177e4
LT
5108}
5109
76014427 5110void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5111{
dedaf2b0
TH
5112 struct ata_port *ap = qc->ap;
5113
a4631474
TH
5114 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5115 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5116
5117 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5118 ata_sg_clean(qc);
5119
7401abf2 5120 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
5121 if (qc->tf.protocol == ATA_PROT_NCQ)
5122 ap->sactive &= ~(1 << qc->tag);
5123 else
5124 ap->active_tag = ATA_TAG_POISON;
7401abf2 5125
3f3791d3
AL
5126 /* atapi: mark qc as inactive to prevent the interrupt handler
5127 * from completing the command twice later, before the error handler
5128 * is called. (when rc != 0 and atapi request sense is needed)
5129 */
5130 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5131 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5132
1da177e4 5133 /* call completion callback */
77853bf2 5134 qc->complete_fn(qc);
1da177e4
LT
5135}
5136
39599a53
TH
5137static void fill_result_tf(struct ata_queued_cmd *qc)
5138{
5139 struct ata_port *ap = qc->ap;
5140
39599a53 5141 qc->result_tf.flags = qc->tf.flags;
4742d54f 5142 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5143}
5144
f686bcb8
TH
5145/**
5146 * ata_qc_complete - Complete an active ATA command
5147 * @qc: Command to complete
5148 * @err_mask: ATA Status register contents
5149 *
5150 * Indicate to the mid and upper layers that an ATA
5151 * command has completed, with either an ok or not-ok status.
5152 *
5153 * LOCKING:
cca3974e 5154 * spin_lock_irqsave(host lock)
f686bcb8
TH
5155 */
5156void ata_qc_complete(struct ata_queued_cmd *qc)
5157{
5158 struct ata_port *ap = qc->ap;
5159
5160 /* XXX: New EH and old EH use different mechanisms to
5161 * synchronize EH with regular execution path.
5162 *
5163 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5164 * Normal execution path is responsible for not accessing a
5165 * failed qc. libata core enforces the rule by returning NULL
5166 * from ata_qc_from_tag() for failed qcs.
5167 *
5168 * Old EH depends on ata_qc_complete() nullifying completion
5169 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5170 * not synchronize with interrupt handler. Only PIO task is
5171 * taken care of.
5172 */
5173 if (ap->ops->error_handler) {
b51e9e5d 5174 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5175
5176 if (unlikely(qc->err_mask))
5177 qc->flags |= ATA_QCFLAG_FAILED;
5178
5179 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5180 if (!ata_tag_internal(qc->tag)) {
5181 /* always fill result TF for failed qc */
39599a53 5182 fill_result_tf(qc);
f686bcb8
TH
5183 ata_qc_schedule_eh(qc);
5184 return;
5185 }
5186 }
5187
5188 /* read result TF if requested */
5189 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5190 fill_result_tf(qc);
f686bcb8
TH
5191
5192 __ata_qc_complete(qc);
5193 } else {
5194 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5195 return;
5196
5197 /* read result TF if failed or requested */
5198 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5199 fill_result_tf(qc);
f686bcb8
TH
5200
5201 __ata_qc_complete(qc);
5202 }
5203}
5204
dedaf2b0
TH
5205/**
5206 * ata_qc_complete_multiple - Complete multiple qcs successfully
5207 * @ap: port in question
5208 * @qc_active: new qc_active mask
5209 * @finish_qc: LLDD callback invoked before completing a qc
5210 *
5211 * Complete in-flight commands. This functions is meant to be
5212 * called from low-level driver's interrupt routine to complete
5213 * requests normally. ap->qc_active and @qc_active is compared
5214 * and commands are completed accordingly.
5215 *
5216 * LOCKING:
cca3974e 5217 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5218 *
5219 * RETURNS:
5220 * Number of completed commands on success, -errno otherwise.
5221 */
5222int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5223 void (*finish_qc)(struct ata_queued_cmd *))
5224{
5225 int nr_done = 0;
5226 u32 done_mask;
5227 int i;
5228
5229 done_mask = ap->qc_active ^ qc_active;
5230
5231 if (unlikely(done_mask & qc_active)) {
5232 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5233 "(%08x->%08x)\n", ap->qc_active, qc_active);
5234 return -EINVAL;
5235 }
5236
5237 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5238 struct ata_queued_cmd *qc;
5239
5240 if (!(done_mask & (1 << i)))
5241 continue;
5242
5243 if ((qc = ata_qc_from_tag(ap, i))) {
5244 if (finish_qc)
5245 finish_qc(qc);
5246 ata_qc_complete(qc);
5247 nr_done++;
5248 }
5249 }
5250
5251 return nr_done;
5252}
5253
1da177e4
LT
5254static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5255{
5256 struct ata_port *ap = qc->ap;
5257
5258 switch (qc->tf.protocol) {
3dc1d881 5259 case ATA_PROT_NCQ:
1da177e4
LT
5260 case ATA_PROT_DMA:
5261 case ATA_PROT_ATAPI_DMA:
5262 return 1;
5263
5264 case ATA_PROT_ATAPI:
5265 case ATA_PROT_PIO:
1da177e4
LT
5266 if (ap->flags & ATA_FLAG_PIO_DMA)
5267 return 1;
5268
5269 /* fall through */
5270
5271 default:
5272 return 0;
5273 }
5274
5275 /* never reached */
5276}
5277
5278/**
5279 * ata_qc_issue - issue taskfile to device
5280 * @qc: command to issue to device
5281 *
5282 * Prepare an ATA command to submission to device.
5283 * This includes mapping the data into a DMA-able
5284 * area, filling in the S/G table, and finally
5285 * writing the taskfile to hardware, starting the command.
5286 *
5287 * LOCKING:
cca3974e 5288 * spin_lock_irqsave(host lock)
1da177e4 5289 */
8e0e694a 5290void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5291{
5292 struct ata_port *ap = qc->ap;
5293
dedaf2b0
TH
5294 /* Make sure only one non-NCQ command is outstanding. The
5295 * check is skipped for old EH because it reuses active qc to
5296 * request ATAPI sense.
5297 */
5298 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5299
5300 if (qc->tf.protocol == ATA_PROT_NCQ) {
5301 WARN_ON(ap->sactive & (1 << qc->tag));
5302 ap->sactive |= 1 << qc->tag;
5303 } else {
5304 WARN_ON(ap->sactive);
5305 ap->active_tag = qc->tag;
5306 }
5307
e4a70e76 5308 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5309 ap->qc_active |= 1 << qc->tag;
e4a70e76 5310
1da177e4
LT
5311 if (ata_should_dma_map(qc)) {
5312 if (qc->flags & ATA_QCFLAG_SG) {
5313 if (ata_sg_setup(qc))
8e436af9 5314 goto sg_err;
1da177e4
LT
5315 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5316 if (ata_sg_setup_one(qc))
8e436af9 5317 goto sg_err;
1da177e4
LT
5318 }
5319 } else {
5320 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5321 }
5322
5323 ap->ops->qc_prep(qc);
5324
8e0e694a
TH
5325 qc->err_mask |= ap->ops->qc_issue(qc);
5326 if (unlikely(qc->err_mask))
5327 goto err;
5328 return;
1da177e4 5329
8e436af9
TH
5330sg_err:
5331 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5332 qc->err_mask |= AC_ERR_SYSTEM;
5333err:
5334 ata_qc_complete(qc);
1da177e4
LT
5335}
5336
5337/**
5338 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5339 * @qc: command to issue to device
5340 *
5341 * Using various libata functions and hooks, this function
5342 * starts an ATA command. ATA commands are grouped into
5343 * classes called "protocols", and issuing each type of protocol
5344 * is slightly different.
5345 *
0baab86b
EF
5346 * May be used as the qc_issue() entry in ata_port_operations.
5347 *
1da177e4 5348 * LOCKING:
cca3974e 5349 * spin_lock_irqsave(host lock)
1da177e4
LT
5350 *
5351 * RETURNS:
9a3d9eb0 5352 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5353 */
5354
9a3d9eb0 5355unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5356{
5357 struct ata_port *ap = qc->ap;
5358
e50362ec
AL
5359 /* Use polling pio if the LLD doesn't handle
5360 * interrupt driven pio and atapi CDB interrupt.
5361 */
5362 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5363 switch (qc->tf.protocol) {
5364 case ATA_PROT_PIO:
e3472cbe 5365 case ATA_PROT_NODATA:
e50362ec
AL
5366 case ATA_PROT_ATAPI:
5367 case ATA_PROT_ATAPI_NODATA:
5368 qc->tf.flags |= ATA_TFLAG_POLLING;
5369 break;
5370 case ATA_PROT_ATAPI_DMA:
5371 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5372 /* see ata_dma_blacklisted() */
e50362ec
AL
5373 BUG();
5374 break;
5375 default:
5376 break;
5377 }
5378 }
5379
3d3cca37
TH
5380 /* Some controllers show flaky interrupt behavior after
5381 * setting xfer mode. Use polling instead.
5382 */
5383 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
5384 qc->tf.feature == SETFEATURES_XFER) &&
5385 (ap->flags & ATA_FLAG_SETXFER_POLLING))
5386 qc->tf.flags |= ATA_TFLAG_POLLING;
5387
312f7da2 5388 /* select the device */
1da177e4
LT
5389 ata_dev_select(ap, qc->dev->devno, 1, 0);
5390
312f7da2 5391 /* start the command */
1da177e4
LT
5392 switch (qc->tf.protocol) {
5393 case ATA_PROT_NODATA:
312f7da2
AL
5394 if (qc->tf.flags & ATA_TFLAG_POLLING)
5395 ata_qc_set_polling(qc);
5396
e5338254 5397 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5398 ap->hsm_task_state = HSM_ST_LAST;
5399
5400 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5401 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5402
1da177e4
LT
5403 break;
5404
5405 case ATA_PROT_DMA:
587005de 5406 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5407
1da177e4
LT
5408 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5409 ap->ops->bmdma_setup(qc); /* set up bmdma */
5410 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5411 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5412 break;
5413
312f7da2
AL
5414 case ATA_PROT_PIO:
5415 if (qc->tf.flags & ATA_TFLAG_POLLING)
5416 ata_qc_set_polling(qc);
1da177e4 5417
e5338254 5418 ata_tf_to_host(ap, &qc->tf);
312f7da2 5419
54f00389
AL
5420 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5421 /* PIO data out protocol */
5422 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5423 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5424
5425 /* always send first data block using
e27486db 5426 * the ata_pio_task() codepath.
54f00389 5427 */
312f7da2 5428 } else {
54f00389
AL
5429 /* PIO data in protocol */
5430 ap->hsm_task_state = HSM_ST;
5431
5432 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5433 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5434
5435 /* if polling, ata_pio_task() handles the rest.
5436 * otherwise, interrupt handler takes over from here.
5437 */
312f7da2
AL
5438 }
5439
1da177e4
LT
5440 break;
5441
1da177e4 5442 case ATA_PROT_ATAPI:
1da177e4 5443 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5444 if (qc->tf.flags & ATA_TFLAG_POLLING)
5445 ata_qc_set_polling(qc);
5446
e5338254 5447 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5448
312f7da2
AL
5449 ap->hsm_task_state = HSM_ST_FIRST;
5450
5451 /* send cdb by polling if no cdb interrupt */
5452 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5453 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5454 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5455 break;
5456
5457 case ATA_PROT_ATAPI_DMA:
587005de 5458 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5459
1da177e4
LT
5460 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5461 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5462 ap->hsm_task_state = HSM_ST_FIRST;
5463
5464 /* send cdb by polling if no cdb interrupt */
5465 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5466 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5467 break;
5468
5469 default:
5470 WARN_ON(1);
9a3d9eb0 5471 return AC_ERR_SYSTEM;
1da177e4
LT
5472 }
5473
5474 return 0;
5475}
5476
1da177e4
LT
5477/**
5478 * ata_host_intr - Handle host interrupt for given (port, task)
5479 * @ap: Port on which interrupt arrived (possibly...)
5480 * @qc: Taskfile currently active in engine
5481 *
5482 * Handle host interrupt for given queued command. Currently,
5483 * only DMA interrupts are handled. All other commands are
5484 * handled via polling with interrupts disabled (nIEN bit).
5485 *
5486 * LOCKING:
cca3974e 5487 * spin_lock_irqsave(host lock)
1da177e4
LT
5488 *
5489 * RETURNS:
5490 * One if interrupt was handled, zero if not (shared irq).
5491 */
5492
5493inline unsigned int ata_host_intr (struct ata_port *ap,
5494 struct ata_queued_cmd *qc)
5495{
ea54763f 5496 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5497 u8 status, host_stat = 0;
1da177e4 5498
312f7da2 5499 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5500 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5501
312f7da2
AL
5502 /* Check whether we are expecting interrupt in this state */
5503 switch (ap->hsm_task_state) {
5504 case HSM_ST_FIRST:
6912ccd5
AL
5505 /* Some pre-ATAPI-4 devices assert INTRQ
5506 * at this state when ready to receive CDB.
5507 */
1da177e4 5508
312f7da2
AL
5509 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5510 * The flag was turned on only for atapi devices.
5511 * No need to check is_atapi_taskfile(&qc->tf) again.
5512 */
5513 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5514 goto idle_irq;
1da177e4 5515 break;
312f7da2
AL
5516 case HSM_ST_LAST:
5517 if (qc->tf.protocol == ATA_PROT_DMA ||
5518 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5519 /* check status of DMA engine */
5520 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5521 VPRINTK("ata%u: host_stat 0x%X\n",
5522 ap->print_id, host_stat);
312f7da2
AL
5523
5524 /* if it's not our irq... */
5525 if (!(host_stat & ATA_DMA_INTR))
5526 goto idle_irq;
5527
5528 /* before we do anything else, clear DMA-Start bit */
5529 ap->ops->bmdma_stop(qc);
a4f16610
AL
5530
5531 if (unlikely(host_stat & ATA_DMA_ERR)) {
5532 /* error when transfering data to/from memory */
5533 qc->err_mask |= AC_ERR_HOST_BUS;
5534 ap->hsm_task_state = HSM_ST_ERR;
5535 }
312f7da2
AL
5536 }
5537 break;
5538 case HSM_ST:
5539 break;
1da177e4
LT
5540 default:
5541 goto idle_irq;
5542 }
5543
312f7da2
AL
5544 /* check altstatus */
5545 status = ata_altstatus(ap);
5546 if (status & ATA_BUSY)
5547 goto idle_irq;
1da177e4 5548
312f7da2
AL
5549 /* check main status, clearing INTRQ */
5550 status = ata_chk_status(ap);
5551 if (unlikely(status & ATA_BUSY))
5552 goto idle_irq;
1da177e4 5553
312f7da2
AL
5554 /* ack bmdma irq events */
5555 ap->ops->irq_clear(ap);
1da177e4 5556
bb5cb290 5557 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5558
5559 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5560 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5561 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5562
1da177e4
LT
5563 return 1; /* irq handled */
5564
5565idle_irq:
5566 ap->stats.idle_irq++;
5567
5568#ifdef ATA_IRQ_TRAP
5569 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5570 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5571 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5572 return 1;
1da177e4
LT
5573 }
5574#endif
5575 return 0; /* irq not handled */
5576}
5577
5578/**
5579 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5580 * @irq: irq line (unused)
cca3974e 5581 * @dev_instance: pointer to our ata_host information structure
1da177e4 5582 *
0cba632b
JG
5583 * Default interrupt handler for PCI IDE devices. Calls
5584 * ata_host_intr() for each port that is not disabled.
5585 *
1da177e4 5586 * LOCKING:
cca3974e 5587 * Obtains host lock during operation.
1da177e4
LT
5588 *
5589 * RETURNS:
0cba632b 5590 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5591 */
5592
7d12e780 5593irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5594{
cca3974e 5595 struct ata_host *host = dev_instance;
1da177e4
LT
5596 unsigned int i;
5597 unsigned int handled = 0;
5598 unsigned long flags;
5599
5600 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5601 spin_lock_irqsave(&host->lock, flags);
1da177e4 5602
cca3974e 5603 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5604 struct ata_port *ap;
5605
cca3974e 5606 ap = host->ports[i];
c1389503 5607 if (ap &&
029f5468 5608 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5609 struct ata_queued_cmd *qc;
5610
5611 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5612 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5613 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5614 handled |= ata_host_intr(ap, qc);
5615 }
5616 }
5617
cca3974e 5618 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5619
5620 return IRQ_RETVAL(handled);
5621}
5622
34bf2170
TH
5623/**
5624 * sata_scr_valid - test whether SCRs are accessible
5625 * @ap: ATA port to test SCR accessibility for
5626 *
5627 * Test whether SCRs are accessible for @ap.
5628 *
5629 * LOCKING:
5630 * None.
5631 *
5632 * RETURNS:
5633 * 1 if SCRs are accessible, 0 otherwise.
5634 */
5635int sata_scr_valid(struct ata_port *ap)
5636{
5637 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5638}
5639
5640/**
5641 * sata_scr_read - read SCR register of the specified port
5642 * @ap: ATA port to read SCR for
5643 * @reg: SCR to read
5644 * @val: Place to store read value
5645 *
5646 * Read SCR register @reg of @ap into *@val. This function is
5647 * guaranteed to succeed if the cable type of the port is SATA
5648 * and the port implements ->scr_read.
5649 *
5650 * LOCKING:
5651 * None.
5652 *
5653 * RETURNS:
5654 * 0 on success, negative errno on failure.
5655 */
5656int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5657{
5658 if (sata_scr_valid(ap)) {
5659 *val = ap->ops->scr_read(ap, reg);
5660 return 0;
5661 }
5662 return -EOPNOTSUPP;
5663}
5664
5665/**
5666 * sata_scr_write - write SCR register of the specified port
5667 * @ap: ATA port to write SCR for
5668 * @reg: SCR to write
5669 * @val: value to write
5670 *
5671 * Write @val to SCR register @reg of @ap. This function is
5672 * guaranteed to succeed if the cable type of the port is SATA
5673 * and the port implements ->scr_read.
5674 *
5675 * LOCKING:
5676 * None.
5677 *
5678 * RETURNS:
5679 * 0 on success, negative errno on failure.
5680 */
5681int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5682{
5683 if (sata_scr_valid(ap)) {
5684 ap->ops->scr_write(ap, reg, val);
5685 return 0;
5686 }
5687 return -EOPNOTSUPP;
5688}
5689
5690/**
5691 * sata_scr_write_flush - write SCR register of the specified port and flush
5692 * @ap: ATA port to write SCR for
5693 * @reg: SCR to write
5694 * @val: value to write
5695 *
5696 * This function is identical to sata_scr_write() except that this
5697 * function performs flush after writing to the register.
5698 *
5699 * LOCKING:
5700 * None.
5701 *
5702 * RETURNS:
5703 * 0 on success, negative errno on failure.
5704 */
5705int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5706{
5707 if (sata_scr_valid(ap)) {
5708 ap->ops->scr_write(ap, reg, val);
5709 ap->ops->scr_read(ap, reg);
5710 return 0;
5711 }
5712 return -EOPNOTSUPP;
5713}
5714
5715/**
5716 * ata_port_online - test whether the given port is online
5717 * @ap: ATA port to test
5718 *
5719 * Test whether @ap is online. Note that this function returns 0
5720 * if online status of @ap cannot be obtained, so
5721 * ata_port_online(ap) != !ata_port_offline(ap).
5722 *
5723 * LOCKING:
5724 * None.
5725 *
5726 * RETURNS:
5727 * 1 if the port online status is available and online.
5728 */
5729int ata_port_online(struct ata_port *ap)
5730{
5731 u32 sstatus;
5732
5733 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5734 return 1;
5735 return 0;
5736}
5737
5738/**
5739 * ata_port_offline - test whether the given port is offline
5740 * @ap: ATA port to test
5741 *
5742 * Test whether @ap is offline. Note that this function returns
5743 * 0 if offline status of @ap cannot be obtained, so
5744 * ata_port_online(ap) != !ata_port_offline(ap).
5745 *
5746 * LOCKING:
5747 * None.
5748 *
5749 * RETURNS:
5750 * 1 if the port offline status is available and offline.
5751 */
5752int ata_port_offline(struct ata_port *ap)
5753{
5754 u32 sstatus;
5755
5756 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5757 return 1;
5758 return 0;
5759}
0baab86b 5760
77b08fb5 5761int ata_flush_cache(struct ata_device *dev)
9b847548 5762{
977e6b9f 5763 unsigned int err_mask;
9b847548
JA
5764 u8 cmd;
5765
5766 if (!ata_try_flush_cache(dev))
5767 return 0;
5768
6fc49adb 5769 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5770 cmd = ATA_CMD_FLUSH_EXT;
5771 else
5772 cmd = ATA_CMD_FLUSH;
5773
977e6b9f
TH
5774 err_mask = ata_do_simple_cmd(dev, cmd);
5775 if (err_mask) {
5776 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5777 return -EIO;
5778 }
5779
5780 return 0;
9b847548
JA
5781}
5782
6ffa01d8 5783#ifdef CONFIG_PM
cca3974e
JG
5784static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5785 unsigned int action, unsigned int ehi_flags,
5786 int wait)
500530f6
TH
5787{
5788 unsigned long flags;
5789 int i, rc;
5790
cca3974e
JG
5791 for (i = 0; i < host->n_ports; i++) {
5792 struct ata_port *ap = host->ports[i];
500530f6
TH
5793
5794 /* Previous resume operation might still be in
5795 * progress. Wait for PM_PENDING to clear.
5796 */
5797 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5798 ata_port_wait_eh(ap);
5799 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5800 }
5801
5802 /* request PM ops to EH */
5803 spin_lock_irqsave(ap->lock, flags);
5804
5805 ap->pm_mesg = mesg;
5806 if (wait) {
5807 rc = 0;
5808 ap->pm_result = &rc;
5809 }
5810
5811 ap->pflags |= ATA_PFLAG_PM_PENDING;
5812 ap->eh_info.action |= action;
5813 ap->eh_info.flags |= ehi_flags;
5814
5815 ata_port_schedule_eh(ap);
5816
5817 spin_unlock_irqrestore(ap->lock, flags);
5818
5819 /* wait and check result */
5820 if (wait) {
5821 ata_port_wait_eh(ap);
5822 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5823 if (rc)
5824 return rc;
5825 }
5826 }
5827
5828 return 0;
5829}
5830
5831/**
cca3974e
JG
5832 * ata_host_suspend - suspend host
5833 * @host: host to suspend
500530f6
TH
5834 * @mesg: PM message
5835 *
cca3974e 5836 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5837 * function requests EH to perform PM operations and waits for EH
5838 * to finish.
5839 *
5840 * LOCKING:
5841 * Kernel thread context (may sleep).
5842 *
5843 * RETURNS:
5844 * 0 on success, -errno on failure.
5845 */
cca3974e 5846int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6
TH
5847{
5848 int i, j, rc;
5849
cca3974e 5850 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
500530f6
TH
5851 if (rc)
5852 goto fail;
5853
5854 /* EH is quiescent now. Fail if we have any ready device.
5855 * This happens if hotplug occurs between completion of device
5856 * suspension and here.
5857 */
cca3974e
JG
5858 for (i = 0; i < host->n_ports; i++) {
5859 struct ata_port *ap = host->ports[i];
500530f6
TH
5860
5861 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5862 struct ata_device *dev = &ap->device[j];
5863
5864 if (ata_dev_ready(dev)) {
5865 ata_port_printk(ap, KERN_WARNING,
5866 "suspend failed, device %d "
5867 "still active\n", dev->devno);
5868 rc = -EBUSY;
5869 goto fail;
5870 }
5871 }
5872 }
5873
cca3974e 5874 host->dev->power.power_state = mesg;
500530f6
TH
5875 return 0;
5876
5877 fail:
cca3974e 5878 ata_host_resume(host);
500530f6
TH
5879 return rc;
5880}
5881
5882/**
cca3974e
JG
5883 * ata_host_resume - resume host
5884 * @host: host to resume
500530f6 5885 *
cca3974e 5886 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5887 * function requests EH to perform PM operations and returns.
5888 * Note that all resume operations are performed parallely.
5889 *
5890 * LOCKING:
5891 * Kernel thread context (may sleep).
5892 */
cca3974e 5893void ata_host_resume(struct ata_host *host)
500530f6 5894{
cca3974e
JG
5895 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5896 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5897 host->dev->power.power_state = PMSG_ON;
500530f6 5898}
6ffa01d8 5899#endif
500530f6 5900
c893a3ae
RD
5901/**
5902 * ata_port_start - Set port up for dma.
5903 * @ap: Port to initialize
5904 *
5905 * Called just after data structures for each port are
5906 * initialized. Allocates space for PRD table.
5907 *
5908 * May be used as the port_start() entry in ata_port_operations.
5909 *
5910 * LOCKING:
5911 * Inherited from caller.
5912 */
f0d36efd 5913int ata_port_start(struct ata_port *ap)
1da177e4 5914{
2f1f610b 5915 struct device *dev = ap->dev;
6037d6bb 5916 int rc;
1da177e4 5917
f0d36efd
TH
5918 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5919 GFP_KERNEL);
1da177e4
LT
5920 if (!ap->prd)
5921 return -ENOMEM;
5922
6037d6bb 5923 rc = ata_pad_alloc(ap, dev);
f0d36efd 5924 if (rc)
6037d6bb 5925 return rc;
1da177e4 5926
f0d36efd
TH
5927 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5928 (unsigned long long)ap->prd_dma);
1da177e4
LT
5929 return 0;
5930}
5931
3ef3b43d
TH
5932/**
5933 * ata_dev_init - Initialize an ata_device structure
5934 * @dev: Device structure to initialize
5935 *
5936 * Initialize @dev in preparation for probing.
5937 *
5938 * LOCKING:
5939 * Inherited from caller.
5940 */
5941void ata_dev_init(struct ata_device *dev)
5942{
5943 struct ata_port *ap = dev->ap;
72fa4b74
TH
5944 unsigned long flags;
5945
5a04bf4b
TH
5946 /* SATA spd limit is bound to the first device */
5947 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5948
72fa4b74
TH
5949 /* High bits of dev->flags are used to record warm plug
5950 * requests which occur asynchronously. Synchronize using
cca3974e 5951 * host lock.
72fa4b74 5952 */
ba6a1308 5953 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5954 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5955 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5956
72fa4b74
TH
5957 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5958 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5959 dev->pio_mask = UINT_MAX;
5960 dev->mwdma_mask = UINT_MAX;
5961 dev->udma_mask = UINT_MAX;
5962}
5963
1da177e4 5964/**
f3187195
TH
5965 * ata_port_alloc - allocate and initialize basic ATA port resources
5966 * @host: ATA host this allocated port belongs to
1da177e4 5967 *
f3187195
TH
5968 * Allocate and initialize basic ATA port resources.
5969 *
5970 * RETURNS:
5971 * Allocate ATA port on success, NULL on failure.
0cba632b 5972 *
1da177e4 5973 * LOCKING:
f3187195 5974 * Inherited from calling layer (may sleep).
1da177e4 5975 */
f3187195 5976struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5977{
f3187195 5978 struct ata_port *ap;
1da177e4
LT
5979 unsigned int i;
5980
f3187195
TH
5981 DPRINTK("ENTER\n");
5982
5983 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5984 if (!ap)
5985 return NULL;
5986
cca3974e 5987 ap->lock = &host->lock;
198e0fed 5988 ap->flags = ATA_FLAG_DISABLED;
f3187195 5989 ap->print_id = -1;
1da177e4 5990 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5991 ap->host = host;
f3187195
TH
5992 ap->dev = host->dev;
5993
5a04bf4b 5994 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5995 ap->active_tag = ATA_TAG_POISON;
5996 ap->last_ctl = 0xFF;
bd5d825c
BP
5997
5998#if defined(ATA_VERBOSE_DEBUG)
5999 /* turn on all debugging levels */
6000 ap->msg_enable = 0x00FF;
6001#elif defined(ATA_DEBUG)
6002 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6003#else
0dd4b21f 6004 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6005#endif
1da177e4 6006
65f27f38
DH
6007 INIT_DELAYED_WORK(&ap->port_task, NULL);
6008 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6009 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6010 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6011 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 6012
838df628 6013 ap->cbl = ATA_CBL_NONE;
838df628 6014
acf356b1
TH
6015 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6016 struct ata_device *dev = &ap->device[i];
38d87234 6017 dev->ap = ap;
72fa4b74 6018 dev->devno = i;
3ef3b43d 6019 ata_dev_init(dev);
acf356b1 6020 }
1da177e4
LT
6021
6022#ifdef ATA_IRQ_TRAP
6023 ap->stats.unhandled_irq = 1;
6024 ap->stats.idle_irq = 1;
6025#endif
1da177e4 6026 return ap;
1da177e4
LT
6027}
6028
f0d36efd
TH
6029static void ata_host_release(struct device *gendev, void *res)
6030{
6031 struct ata_host *host = dev_get_drvdata(gendev);
6032 int i;
6033
6034 for (i = 0; i < host->n_ports; i++) {
6035 struct ata_port *ap = host->ports[i];
6036
ecef7253
TH
6037 if (!ap)
6038 continue;
6039
6040 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6041 ap->ops->port_stop(ap);
f0d36efd
TH
6042 }
6043
ecef7253 6044 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6045 host->ops->host_stop(host);
1aa56cca 6046
1aa506e4
TH
6047 for (i = 0; i < host->n_ports; i++) {
6048 struct ata_port *ap = host->ports[i];
6049
4911487a
TH
6050 if (!ap)
6051 continue;
6052
6053 if (ap->scsi_host)
1aa506e4
TH
6054 scsi_host_put(ap->scsi_host);
6055
4911487a 6056 kfree(ap);
1aa506e4
TH
6057 host->ports[i] = NULL;
6058 }
6059
1aa56cca 6060 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6061}
6062
f3187195
TH
6063/**
6064 * ata_host_alloc - allocate and init basic ATA host resources
6065 * @dev: generic device this host is associated with
6066 * @max_ports: maximum number of ATA ports associated with this host
6067 *
6068 * Allocate and initialize basic ATA host resources. LLD calls
6069 * this function to allocate a host, initializes it fully and
6070 * attaches it using ata_host_register().
6071 *
6072 * @max_ports ports are allocated and host->n_ports is
6073 * initialized to @max_ports. The caller is allowed to decrease
6074 * host->n_ports before calling ata_host_register(). The unused
6075 * ports will be automatically freed on registration.
6076 *
6077 * RETURNS:
6078 * Allocate ATA host on success, NULL on failure.
6079 *
6080 * LOCKING:
6081 * Inherited from calling layer (may sleep).
6082 */
6083struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6084{
6085 struct ata_host *host;
6086 size_t sz;
6087 int i;
6088
6089 DPRINTK("ENTER\n");
6090
6091 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6092 return NULL;
6093
6094 /* alloc a container for our list of ATA ports (buses) */
6095 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6096 /* alloc a container for our list of ATA ports (buses) */
6097 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6098 if (!host)
6099 goto err_out;
6100
6101 devres_add(dev, host);
6102 dev_set_drvdata(dev, host);
6103
6104 spin_lock_init(&host->lock);
6105 host->dev = dev;
6106 host->n_ports = max_ports;
6107
6108 /* allocate ports bound to this host */
6109 for (i = 0; i < max_ports; i++) {
6110 struct ata_port *ap;
6111
6112 ap = ata_port_alloc(host);
6113 if (!ap)
6114 goto err_out;
6115
6116 ap->port_no = i;
6117 host->ports[i] = ap;
6118 }
6119
6120 devres_remove_group(dev, NULL);
6121 return host;
6122
6123 err_out:
6124 devres_release_group(dev, NULL);
6125 return NULL;
6126}
6127
f5cda257
TH
6128/**
6129 * ata_host_alloc_pinfo - alloc host and init with port_info array
6130 * @dev: generic device this host is associated with
6131 * @ppi: array of ATA port_info to initialize host with
6132 * @n_ports: number of ATA ports attached to this host
6133 *
6134 * Allocate ATA host and initialize with info from @ppi. If NULL
6135 * terminated, @ppi may contain fewer entries than @n_ports. The
6136 * last entry will be used for the remaining ports.
6137 *
6138 * RETURNS:
6139 * Allocate ATA host on success, NULL on failure.
6140 *
6141 * LOCKING:
6142 * Inherited from calling layer (may sleep).
6143 */
6144struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6145 const struct ata_port_info * const * ppi,
6146 int n_ports)
6147{
6148 const struct ata_port_info *pi;
6149 struct ata_host *host;
6150 int i, j;
6151
6152 host = ata_host_alloc(dev, n_ports);
6153 if (!host)
6154 return NULL;
6155
6156 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6157 struct ata_port *ap = host->ports[i];
6158
6159 if (ppi[j])
6160 pi = ppi[j++];
6161
6162 ap->pio_mask = pi->pio_mask;
6163 ap->mwdma_mask = pi->mwdma_mask;
6164 ap->udma_mask = pi->udma_mask;
6165 ap->flags |= pi->flags;
6166 ap->ops = pi->port_ops;
6167
6168 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6169 host->ops = pi->port_ops;
6170 if (!host->private_data && pi->private_data)
6171 host->private_data = pi->private_data;
6172 }
6173
6174 return host;
6175}
6176
ecef7253
TH
6177/**
6178 * ata_host_start - start and freeze ports of an ATA host
6179 * @host: ATA host to start ports for
6180 *
6181 * Start and then freeze ports of @host. Started status is
6182 * recorded in host->flags, so this function can be called
6183 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6184 * once. If host->ops isn't initialized yet, its set to the
6185 * first non-dummy port ops.
ecef7253
TH
6186 *
6187 * LOCKING:
6188 * Inherited from calling layer (may sleep).
6189 *
6190 * RETURNS:
6191 * 0 if all ports are started successfully, -errno otherwise.
6192 */
6193int ata_host_start(struct ata_host *host)
6194{
6195 int i, rc;
6196
6197 if (host->flags & ATA_HOST_STARTED)
6198 return 0;
6199
6200 for (i = 0; i < host->n_ports; i++) {
6201 struct ata_port *ap = host->ports[i];
6202
f3187195
TH
6203 if (!host->ops && !ata_port_is_dummy(ap))
6204 host->ops = ap->ops;
6205
ecef7253
TH
6206 if (ap->ops->port_start) {
6207 rc = ap->ops->port_start(ap);
6208 if (rc) {
6209 ata_port_printk(ap, KERN_ERR, "failed to "
6210 "start port (errno=%d)\n", rc);
6211 goto err_out;
6212 }
6213 }
6214
6215 ata_eh_freeze_port(ap);
6216 }
6217
6218 host->flags |= ATA_HOST_STARTED;
6219 return 0;
6220
6221 err_out:
6222 while (--i >= 0) {
6223 struct ata_port *ap = host->ports[i];
6224
6225 if (ap->ops->port_stop)
6226 ap->ops->port_stop(ap);
6227 }
6228 return rc;
6229}
6230
b03732f0 6231/**
cca3974e
JG
6232 * ata_sas_host_init - Initialize a host struct
6233 * @host: host to initialize
6234 * @dev: device host is attached to
6235 * @flags: host flags
6236 * @ops: port_ops
b03732f0
BK
6237 *
6238 * LOCKING:
6239 * PCI/etc. bus probe sem.
6240 *
6241 */
f3187195 6242/* KILLME - the only user left is ipr */
cca3974e
JG
6243void ata_host_init(struct ata_host *host, struct device *dev,
6244 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6245{
cca3974e
JG
6246 spin_lock_init(&host->lock);
6247 host->dev = dev;
6248 host->flags = flags;
6249 host->ops = ops;
b03732f0
BK
6250}
6251
f3187195
TH
6252/**
6253 * ata_host_register - register initialized ATA host
6254 * @host: ATA host to register
6255 * @sht: template for SCSI host
6256 *
6257 * Register initialized ATA host. @host is allocated using
6258 * ata_host_alloc() and fully initialized by LLD. This function
6259 * starts ports, registers @host with ATA and SCSI layers and
6260 * probe registered devices.
6261 *
6262 * LOCKING:
6263 * Inherited from calling layer (may sleep).
6264 *
6265 * RETURNS:
6266 * 0 on success, -errno otherwise.
6267 */
6268int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6269{
6270 int i, rc;
6271
6272 /* host must have been started */
6273 if (!(host->flags & ATA_HOST_STARTED)) {
6274 dev_printk(KERN_ERR, host->dev,
6275 "BUG: trying to register unstarted host\n");
6276 WARN_ON(1);
6277 return -EINVAL;
6278 }
6279
6280 /* Blow away unused ports. This happens when LLD can't
6281 * determine the exact number of ports to allocate at
6282 * allocation time.
6283 */
6284 for (i = host->n_ports; host->ports[i]; i++)
6285 kfree(host->ports[i]);
6286
6287 /* give ports names and add SCSI hosts */
6288 for (i = 0; i < host->n_ports; i++)
6289 host->ports[i]->print_id = ata_print_id++;
6290
6291 rc = ata_scsi_add_hosts(host, sht);
6292 if (rc)
6293 return rc;
6294
6295 /* set cable, sata_spd_limit and report */
6296 for (i = 0; i < host->n_ports; i++) {
6297 struct ata_port *ap = host->ports[i];
6298 int irq_line;
6299 u32 scontrol;
6300 unsigned long xfer_mask;
6301
6302 /* set SATA cable type if still unset */
6303 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6304 ap->cbl = ATA_CBL_SATA;
6305
6306 /* init sata_spd_limit to the current value */
6307 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6308 int spd = (scontrol >> 4) & 0xf;
6309 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6310 }
6311 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6312
6313 /* report the secondary IRQ for second channel legacy */
6314 irq_line = host->irq;
6315 if (i == 1 && host->irq2)
6316 irq_line = host->irq2;
6317
6318 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6319 ap->udma_mask);
6320
6321 /* print per-port info to dmesg */
6322 if (!ata_port_is_dummy(ap))
6323 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6324 "ctl 0x%p bmdma 0x%p irq %d\n",
6325 ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6326 ata_mode_string(xfer_mask),
6327 ap->ioaddr.cmd_addr,
6328 ap->ioaddr.ctl_addr,
6329 ap->ioaddr.bmdma_addr,
6330 irq_line);
6331 else
6332 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6333 }
6334
6335 /* perform each probe synchronously */
6336 DPRINTK("probe begin\n");
6337 for (i = 0; i < host->n_ports; i++) {
6338 struct ata_port *ap = host->ports[i];
6339 int rc;
6340
6341 /* probe */
6342 if (ap->ops->error_handler) {
6343 struct ata_eh_info *ehi = &ap->eh_info;
6344 unsigned long flags;
6345
6346 ata_port_probe(ap);
6347
6348 /* kick EH for boot probing */
6349 spin_lock_irqsave(ap->lock, flags);
6350
6351 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6352 ehi->action |= ATA_EH_SOFTRESET;
6353 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6354
6355 ap->pflags |= ATA_PFLAG_LOADING;
6356 ata_port_schedule_eh(ap);
6357
6358 spin_unlock_irqrestore(ap->lock, flags);
6359
6360 /* wait for EH to finish */
6361 ata_port_wait_eh(ap);
6362 } else {
6363 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6364 rc = ata_bus_probe(ap);
6365 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6366
6367 if (rc) {
6368 /* FIXME: do something useful here?
6369 * Current libata behavior will
6370 * tear down everything when
6371 * the module is removed
6372 * or the h/w is unplugged.
6373 */
6374 }
6375 }
6376 }
6377
6378 /* probes are done, now scan each port's disk(s) */
6379 DPRINTK("host probe begin\n");
6380 for (i = 0; i < host->n_ports; i++) {
6381 struct ata_port *ap = host->ports[i];
6382
6383 ata_scsi_scan_host(ap);
6384 }
6385
6386 return 0;
6387}
6388
f5cda257
TH
6389/**
6390 * ata_host_activate - start host, request IRQ and register it
6391 * @host: target ATA host
6392 * @irq: IRQ to request
6393 * @irq_handler: irq_handler used when requesting IRQ
6394 * @irq_flags: irq_flags used when requesting IRQ
6395 * @sht: scsi_host_template to use when registering the host
6396 *
6397 * After allocating an ATA host and initializing it, most libata
6398 * LLDs perform three steps to activate the host - start host,
6399 * request IRQ and register it. This helper takes necessasry
6400 * arguments and performs the three steps in one go.
6401 *
6402 * LOCKING:
6403 * Inherited from calling layer (may sleep).
6404 *
6405 * RETURNS:
6406 * 0 on success, -errno otherwise.
6407 */
6408int ata_host_activate(struct ata_host *host, int irq,
6409 irq_handler_t irq_handler, unsigned long irq_flags,
6410 struct scsi_host_template *sht)
6411{
6412 int rc;
6413
6414 rc = ata_host_start(host);
6415 if (rc)
6416 return rc;
6417
6418 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6419 dev_driver_string(host->dev), host);
6420 if (rc)
6421 return rc;
6422
6423 rc = ata_host_register(host, sht);
6424 /* if failed, just free the IRQ and leave ports alone */
6425 if (rc)
6426 devm_free_irq(host->dev, irq, host);
6427
6428 return rc;
6429}
6430
720ba126
TH
6431/**
6432 * ata_port_detach - Detach ATA port in prepration of device removal
6433 * @ap: ATA port to be detached
6434 *
6435 * Detach all ATA devices and the associated SCSI devices of @ap;
6436 * then, remove the associated SCSI host. @ap is guaranteed to
6437 * be quiescent on return from this function.
6438 *
6439 * LOCKING:
6440 * Kernel thread context (may sleep).
6441 */
6442void ata_port_detach(struct ata_port *ap)
6443{
6444 unsigned long flags;
6445 int i;
6446
6447 if (!ap->ops->error_handler)
c3cf30a9 6448 goto skip_eh;
720ba126
TH
6449
6450 /* tell EH we're leaving & flush EH */
ba6a1308 6451 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6452 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6453 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6454
6455 ata_port_wait_eh(ap);
6456
6457 /* EH is now guaranteed to see UNLOADING, so no new device
6458 * will be attached. Disable all existing devices.
6459 */
ba6a1308 6460 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
6461
6462 for (i = 0; i < ATA_MAX_DEVICES; i++)
6463 ata_dev_disable(&ap->device[i]);
6464
ba6a1308 6465 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6466
6467 /* Final freeze & EH. All in-flight commands are aborted. EH
6468 * will be skipped and retrials will be terminated with bad
6469 * target.
6470 */
ba6a1308 6471 spin_lock_irqsave(ap->lock, flags);
720ba126 6472 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6473 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6474
6475 ata_port_wait_eh(ap);
6476
6477 /* Flush hotplug task. The sequence is similar to
6478 * ata_port_flush_task().
6479 */
28e53bdd 6480 cancel_work_sync(&ap->hotplug_task.work); /* akpm: why? */
720ba126 6481 cancel_delayed_work(&ap->hotplug_task);
28e53bdd 6482 cancel_work_sync(&ap->hotplug_task.work);
720ba126 6483
c3cf30a9 6484 skip_eh:
720ba126 6485 /* remove the associated SCSI host */
cca3974e 6486 scsi_remove_host(ap->scsi_host);
720ba126
TH
6487}
6488
0529c159
TH
6489/**
6490 * ata_host_detach - Detach all ports of an ATA host
6491 * @host: Host to detach
6492 *
6493 * Detach all ports of @host.
6494 *
6495 * LOCKING:
6496 * Kernel thread context (may sleep).
6497 */
6498void ata_host_detach(struct ata_host *host)
6499{
6500 int i;
6501
6502 for (i = 0; i < host->n_ports; i++)
6503 ata_port_detach(host->ports[i]);
6504}
6505
1da177e4
LT
6506/**
6507 * ata_std_ports - initialize ioaddr with standard port offsets.
6508 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6509 *
6510 * Utility function which initializes data_addr, error_addr,
6511 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6512 * device_addr, status_addr, and command_addr to standard offsets
6513 * relative to cmd_addr.
6514 *
6515 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6516 */
0baab86b 6517
1da177e4
LT
6518void ata_std_ports(struct ata_ioports *ioaddr)
6519{
6520 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6521 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6522 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6523 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6524 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6525 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6526 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6527 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6528 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6529 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6530}
6531
0baab86b 6532
374b1873
JG
6533#ifdef CONFIG_PCI
6534
1da177e4
LT
6535/**
6536 * ata_pci_remove_one - PCI layer callback for device removal
6537 * @pdev: PCI device that was removed
6538 *
b878ca5d
TH
6539 * PCI layer indicates to libata via this hook that hot-unplug or
6540 * module unload event has occurred. Detach all ports. Resource
6541 * release is handled via devres.
1da177e4
LT
6542 *
6543 * LOCKING:
6544 * Inherited from PCI layer (may sleep).
6545 */
f0d36efd 6546void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6547{
6548 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6549 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6550
b878ca5d 6551 ata_host_detach(host);
1da177e4
LT
6552}
6553
6554/* move to PCI subsystem */
057ace5e 6555int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6556{
6557 unsigned long tmp = 0;
6558
6559 switch (bits->width) {
6560 case 1: {
6561 u8 tmp8 = 0;
6562 pci_read_config_byte(pdev, bits->reg, &tmp8);
6563 tmp = tmp8;
6564 break;
6565 }
6566 case 2: {
6567 u16 tmp16 = 0;
6568 pci_read_config_word(pdev, bits->reg, &tmp16);
6569 tmp = tmp16;
6570 break;
6571 }
6572 case 4: {
6573 u32 tmp32 = 0;
6574 pci_read_config_dword(pdev, bits->reg, &tmp32);
6575 tmp = tmp32;
6576 break;
6577 }
6578
6579 default:
6580 return -EINVAL;
6581 }
6582
6583 tmp &= bits->mask;
6584
6585 return (tmp == bits->val) ? 1 : 0;
6586}
9b847548 6587
6ffa01d8 6588#ifdef CONFIG_PM
3c5100c1 6589void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6590{
6591 pci_save_state(pdev);
4c90d971 6592 pci_disable_device(pdev);
500530f6 6593
4c90d971 6594 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6595 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6596}
6597
553c4aa6 6598int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6599{
553c4aa6
TH
6600 int rc;
6601
9b847548
JA
6602 pci_set_power_state(pdev, PCI_D0);
6603 pci_restore_state(pdev);
553c4aa6 6604
b878ca5d 6605 rc = pcim_enable_device(pdev);
553c4aa6
TH
6606 if (rc) {
6607 dev_printk(KERN_ERR, &pdev->dev,
6608 "failed to enable device after resume (%d)\n", rc);
6609 return rc;
6610 }
6611
9b847548 6612 pci_set_master(pdev);
553c4aa6 6613 return 0;
500530f6
TH
6614}
6615
3c5100c1 6616int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6617{
cca3974e 6618 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6619 int rc = 0;
6620
cca3974e 6621 rc = ata_host_suspend(host, mesg);
500530f6
TH
6622 if (rc)
6623 return rc;
6624
3c5100c1 6625 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6626
6627 return 0;
6628}
6629
6630int ata_pci_device_resume(struct pci_dev *pdev)
6631{
cca3974e 6632 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6633 int rc;
500530f6 6634
553c4aa6
TH
6635 rc = ata_pci_device_do_resume(pdev);
6636 if (rc == 0)
6637 ata_host_resume(host);
6638 return rc;
9b847548 6639}
6ffa01d8
TH
6640#endif /* CONFIG_PM */
6641
1da177e4
LT
6642#endif /* CONFIG_PCI */
6643
6644
1da177e4
LT
6645static int __init ata_init(void)
6646{
a8601e5f 6647 ata_probe_timeout *= HZ;
1da177e4
LT
6648 ata_wq = create_workqueue("ata");
6649 if (!ata_wq)
6650 return -ENOMEM;
6651
453b07ac
TH
6652 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6653 if (!ata_aux_wq) {
6654 destroy_workqueue(ata_wq);
6655 return -ENOMEM;
6656 }
6657
1da177e4
LT
6658 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6659 return 0;
6660}
6661
6662static void __exit ata_exit(void)
6663{
6664 destroy_workqueue(ata_wq);
453b07ac 6665 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6666}
6667
a4625085 6668subsys_initcall(ata_init);
1da177e4
LT
6669module_exit(ata_exit);
6670
67846b30 6671static unsigned long ratelimit_time;
34af946a 6672static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6673
6674int ata_ratelimit(void)
6675{
6676 int rc;
6677 unsigned long flags;
6678
6679 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6680
6681 if (time_after(jiffies, ratelimit_time)) {
6682 rc = 1;
6683 ratelimit_time = jiffies + (HZ/5);
6684 } else
6685 rc = 0;
6686
6687 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6688
6689 return rc;
6690}
6691
c22daff4
TH
6692/**
6693 * ata_wait_register - wait until register value changes
6694 * @reg: IO-mapped register
6695 * @mask: Mask to apply to read register value
6696 * @val: Wait condition
6697 * @interval_msec: polling interval in milliseconds
6698 * @timeout_msec: timeout in milliseconds
6699 *
6700 * Waiting for some bits of register to change is a common
6701 * operation for ATA controllers. This function reads 32bit LE
6702 * IO-mapped register @reg and tests for the following condition.
6703 *
6704 * (*@reg & mask) != val
6705 *
6706 * If the condition is met, it returns; otherwise, the process is
6707 * repeated after @interval_msec until timeout.
6708 *
6709 * LOCKING:
6710 * Kernel thread context (may sleep)
6711 *
6712 * RETURNS:
6713 * The final register value.
6714 */
6715u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6716 unsigned long interval_msec,
6717 unsigned long timeout_msec)
6718{
6719 unsigned long timeout;
6720 u32 tmp;
6721
6722 tmp = ioread32(reg);
6723
6724 /* Calculate timeout _after_ the first read to make sure
6725 * preceding writes reach the controller before starting to
6726 * eat away the timeout.
6727 */
6728 timeout = jiffies + (timeout_msec * HZ) / 1000;
6729
6730 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6731 msleep(interval_msec);
6732 tmp = ioread32(reg);
6733 }
6734
6735 return tmp;
6736}
6737
dd5b06c4
TH
6738/*
6739 * Dummy port_ops
6740 */
6741static void ata_dummy_noret(struct ata_port *ap) { }
6742static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6743static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6744
6745static u8 ata_dummy_check_status(struct ata_port *ap)
6746{
6747 return ATA_DRDY;
6748}
6749
6750static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6751{
6752 return AC_ERR_SYSTEM;
6753}
6754
6755const struct ata_port_operations ata_dummy_port_ops = {
6756 .port_disable = ata_port_disable,
6757 .check_status = ata_dummy_check_status,
6758 .check_altstatus = ata_dummy_check_status,
6759 .dev_select = ata_noop_dev_select,
6760 .qc_prep = ata_noop_qc_prep,
6761 .qc_issue = ata_dummy_qc_issue,
6762 .freeze = ata_dummy_noret,
6763 .thaw = ata_dummy_noret,
6764 .error_handler = ata_dummy_noret,
6765 .post_internal_cmd = ata_dummy_qc_noret,
6766 .irq_clear = ata_dummy_noret,
6767 .port_start = ata_dummy_ret0,
6768 .port_stop = ata_dummy_noret,
6769};
6770
21b0ad4f
TH
6771const struct ata_port_info ata_dummy_port_info = {
6772 .port_ops = &ata_dummy_port_ops,
6773};
6774
1da177e4
LT
6775/*
6776 * libata is essentially a library of internal helper functions for
6777 * low-level ATA host controller drivers. As such, the API/ABI is
6778 * likely to change as new drivers are added and updated.
6779 * Do not depend on ABI/API stability.
6780 */
6781
e9c83914
TH
6782EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6783EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6784EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6785EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6786EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
6787EXPORT_SYMBOL_GPL(ata_std_bios_param);
6788EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6789EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6790EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6791EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 6792EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6793EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6794EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6795EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6796EXPORT_SYMBOL_GPL(ata_sg_init);
6797EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6798EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6799EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6800EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6801EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6802EXPORT_SYMBOL_GPL(ata_tf_load);
6803EXPORT_SYMBOL_GPL(ata_tf_read);
6804EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6805EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 6806EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
6807EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6808EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6809EXPORT_SYMBOL_GPL(ata_check_status);
6810EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6811EXPORT_SYMBOL_GPL(ata_exec_command);
6812EXPORT_SYMBOL_GPL(ata_port_start);
1da177e4 6813EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 6814EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
6815EXPORT_SYMBOL_GPL(ata_data_xfer);
6816EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6817EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 6818EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6819EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6820EXPORT_SYMBOL_GPL(ata_bmdma_start);
6821EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6822EXPORT_SYMBOL_GPL(ata_bmdma_status);
6823EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6824EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6825EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6826EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6827EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6828EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6829EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6830EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6831EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6832EXPORT_SYMBOL_GPL(sata_phy_debounce);
6833EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6834EXPORT_SYMBOL_GPL(sata_phy_reset);
6835EXPORT_SYMBOL_GPL(__sata_phy_reset);
6836EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6837EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6838EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6839EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6840EXPORT_SYMBOL_GPL(sata_std_hardreset);
6841EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6842EXPORT_SYMBOL_GPL(ata_dev_classify);
6843EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6844EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6845EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6846EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6847EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 6848EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 6849EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6850EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6851EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6852EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6853EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6854EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 6855EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6856EXPORT_SYMBOL_GPL(sata_scr_valid);
6857EXPORT_SYMBOL_GPL(sata_scr_read);
6858EXPORT_SYMBOL_GPL(sata_scr_write);
6859EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6860EXPORT_SYMBOL_GPL(ata_port_online);
6861EXPORT_SYMBOL_GPL(ata_port_offline);
6ffa01d8 6862#ifdef CONFIG_PM
cca3974e
JG
6863EXPORT_SYMBOL_GPL(ata_host_suspend);
6864EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6865#endif /* CONFIG_PM */
6a62a04d
TH
6866EXPORT_SYMBOL_GPL(ata_id_string);
6867EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 6868EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6919a0a6 6869EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6870EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6871
1bc4ccff 6872EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6873EXPORT_SYMBOL_GPL(ata_timing_compute);
6874EXPORT_SYMBOL_GPL(ata_timing_merge);
6875
1da177e4
LT
6876#ifdef CONFIG_PCI
6877EXPORT_SYMBOL_GPL(pci_test_config_bits);
d491b27b 6878EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
21b0ad4f 6879EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
1da177e4
LT
6880EXPORT_SYMBOL_GPL(ata_pci_init_one);
6881EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6882#ifdef CONFIG_PM
500530f6
TH
6883EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6884EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6885EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6886EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6887#endif /* CONFIG_PM */
67951ade
AC
6888EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6889EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6890#endif /* CONFIG_PCI */
9b847548 6891
6ffa01d8 6892#ifdef CONFIG_PM
9b847548
JA
6893EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6894EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6ffa01d8 6895#endif /* CONFIG_PM */
ece1d636 6896
ece1d636 6897EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6898EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6899EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6900EXPORT_SYMBOL_GPL(ata_port_freeze);
6901EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6902EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6903EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6904EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6905EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
6906EXPORT_SYMBOL_GPL(ata_irq_on);
6907EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6908EXPORT_SYMBOL_GPL(ata_irq_ack);
6909EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 6910EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
6911
6912EXPORT_SYMBOL_GPL(ata_cable_40wire);
6913EXPORT_SYMBOL_GPL(ata_cable_80wire);
6914EXPORT_SYMBOL_GPL(ata_cable_unknown);
6915EXPORT_SYMBOL_GPL(ata_cable_sata);