mfd: kempld-core: Constify variables that point to const structure
[linux-2.6-block.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
8c3d3d4b 4 * Maintained by: Tejun Heo <tj@kernel.org>
af36d7f0
JG
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
19285f3c 28 * as Documentation/driver-api/libata.rst
af36d7f0
JG
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
848c3920 53#include <linux/time.h>
1da177e4
LT
54#include <linux/interrupt.h>
55#include <linux/completion.h>
56#include <linux/suspend.h>
57#include <linux/workqueue.h>
378f058c 58#include <linux/scatterlist.h>
2dcb407e 59#include <linux/io.h>
79318057 60#include <linux/async.h>
e18086d6 61#include <linux/log2.h>
5a0e3ad6 62#include <linux/slab.h>
428ac5fc 63#include <linux/glob.h>
1da177e4 64#include <scsi/scsi.h>
193515d5 65#include <scsi/scsi_cmnd.h>
1da177e4
LT
66#include <scsi/scsi_host.h>
67#include <linux/libata.h>
1da177e4 68#include <asm/byteorder.h>
fe5af0cc 69#include <asm/unaligned.h>
140b5e59 70#include <linux/cdrom.h>
9990b6f3 71#include <linux/ratelimit.h>
eb25cb99 72#include <linux/leds.h>
9ee4f393 73#include <linux/pm_runtime.h>
b7db04d9 74#include <linux/platform_device.h>
1da177e4 75
255c03d1
HR
76#define CREATE_TRACE_POINTS
77#include <trace/events/libata.h>
78
1da177e4 79#include "libata.h"
d9027470 80#include "libata-transport.h"
fda0efc5 81
d7bb4cc7 82/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
83const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
84const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
85const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 86
029cfd6b 87const struct ata_port_operations ata_base_port_ops = {
0aa1113d 88 .prereset = ata_std_prereset,
203c75b8 89 .postreset = ata_std_postreset,
a1efdaba 90 .error_handler = ata_std_error_handler,
e4a9c373
DW
91 .sched_eh = ata_std_sched_eh,
92 .end_eh = ata_std_end_eh,
029cfd6b
TH
93};
94
95const struct ata_port_operations sata_port_ops = {
96 .inherits = &ata_base_port_ops,
97
98 .qc_defer = ata_std_qc_defer,
57c9efdf 99 .hardreset = sata_std_hardreset,
029cfd6b
TH
100};
101
3373efd8
TH
102static unsigned int ata_dev_init_params(struct ata_device *dev,
103 u16 heads, u16 sectors);
104static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
105static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 106static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 107
a78f57af 108atomic_t ata_print_id = ATOMIC_INIT(0);
1da177e4 109
33267325
TH
110struct ata_force_param {
111 const char *name;
112 unsigned int cbl;
113 int spd_limit;
114 unsigned long xfer_mask;
115 unsigned int horkage_on;
116 unsigned int horkage_off;
05944bdf 117 unsigned int lflags;
33267325
TH
118};
119
120struct ata_force_ent {
121 int port;
122 int device;
123 struct ata_force_param param;
124};
125
126static struct ata_force_ent *ata_force_tbl;
127static int ata_force_tbl_size;
128
129static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
130/* param_buf is thrown away after initialization, disallow read */
131module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
8c27ceff 132MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
33267325 133
2486fa56 134static int atapi_enabled = 1;
1623c81e 135module_param(atapi_enabled, int, 0444);
ad5d8eac 136MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
1623c81e 137
c5c61bda 138static int atapi_dmadir = 0;
95de719a 139module_param(atapi_dmadir, int, 0444);
ad5d8eac 140MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
95de719a 141
baf4fdfa
ML
142int atapi_passthru16 = 1;
143module_param(atapi_passthru16, int, 0444);
ad5d8eac 144MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
baf4fdfa 145
c3c013a2
JG
146int libata_fua = 0;
147module_param_named(fua, libata_fua, int, 0444);
ad5d8eac 148MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
c3c013a2 149
2dcb407e 150static int ata_ignore_hpa;
1e999736
AC
151module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
152MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
153
b3a70601
AC
154static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
155module_param_named(dma, libata_dma_mask, int, 0444);
156MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
157
87fbc5a0 158static int ata_probe_timeout;
a8601e5f
AM
159module_param(ata_probe_timeout, int, 0444);
160MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
161
6ebe9d86 162int libata_noacpi = 0;
d7d0dad6 163module_param_named(noacpi, libata_noacpi, int, 0444);
ad5d8eac 164MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
11ef697b 165
ae8d4ee7
AC
166int libata_allow_tpm = 0;
167module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
ad5d8eac 168MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
ae8d4ee7 169
e7ecd435
TH
170static int atapi_an;
171module_param(atapi_an, int, 0444);
172MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
173
1da177e4
LT
174MODULE_AUTHOR("Jeff Garzik");
175MODULE_DESCRIPTION("Library module for ATA devices");
176MODULE_LICENSE("GPL");
177MODULE_VERSION(DRV_VERSION);
178
0baab86b 179
9913ff8a
TH
180static bool ata_sstatus_online(u32 sstatus)
181{
182 return (sstatus & 0xf) == 0x3;
183}
184
1eca4365
TH
185/**
186 * ata_link_next - link iteration helper
187 * @link: the previous link, NULL to start
188 * @ap: ATA port containing links to iterate
189 * @mode: iteration mode, one of ATA_LITER_*
190 *
191 * LOCKING:
192 * Host lock or EH context.
aadffb68 193 *
1eca4365
TH
194 * RETURNS:
195 * Pointer to the next link.
aadffb68 196 */
1eca4365
TH
197struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
198 enum ata_link_iter_mode mode)
aadffb68 199{
1eca4365
TH
200 BUG_ON(mode != ATA_LITER_EDGE &&
201 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
202
aadffb68 203 /* NULL link indicates start of iteration */
1eca4365
TH
204 if (!link)
205 switch (mode) {
206 case ATA_LITER_EDGE:
207 case ATA_LITER_PMP_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_HOST_FIRST:
212 return &ap->link;
213 }
aadffb68 214
1eca4365
TH
215 /* we just iterated over the host link, what's next? */
216 if (link == &ap->link)
217 switch (mode) {
218 case ATA_LITER_HOST_FIRST:
219 if (sata_pmp_attached(ap))
220 return ap->pmp_link;
221 /* fall through */
222 case ATA_LITER_PMP_FIRST:
223 if (unlikely(ap->slave_link))
b1c72916 224 return ap->slave_link;
1eca4365
TH
225 /* fall through */
226 case ATA_LITER_EDGE:
aadffb68 227 return NULL;
b1c72916 228 }
aadffb68 229
b1c72916
TH
230 /* slave_link excludes PMP */
231 if (unlikely(link == ap->slave_link))
232 return NULL;
233
1eca4365 234 /* we were over a PMP link */
aadffb68
TH
235 if (++link < ap->pmp_link + ap->nr_pmp_links)
236 return link;
1eca4365
TH
237
238 if (mode == ATA_LITER_PMP_FIRST)
239 return &ap->link;
240
aadffb68
TH
241 return NULL;
242}
243
1eca4365
TH
244/**
245 * ata_dev_next - device iteration helper
246 * @dev: the previous device, NULL to start
247 * @link: ATA link containing devices to iterate
248 * @mode: iteration mode, one of ATA_DITER_*
249 *
250 * LOCKING:
251 * Host lock or EH context.
252 *
253 * RETURNS:
254 * Pointer to the next device.
255 */
256struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
257 enum ata_dev_iter_mode mode)
258{
259 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
260 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
261
262 /* NULL dev indicates start of iteration */
263 if (!dev)
264 switch (mode) {
265 case ATA_DITER_ENABLED:
266 case ATA_DITER_ALL:
267 dev = link->device;
268 goto check;
269 case ATA_DITER_ENABLED_REVERSE:
270 case ATA_DITER_ALL_REVERSE:
271 dev = link->device + ata_link_max_devices(link) - 1;
272 goto check;
273 }
274
275 next:
276 /* move to the next one */
277 switch (mode) {
278 case ATA_DITER_ENABLED:
279 case ATA_DITER_ALL:
280 if (++dev < link->device + ata_link_max_devices(link))
281 goto check;
282 return NULL;
283 case ATA_DITER_ENABLED_REVERSE:
284 case ATA_DITER_ALL_REVERSE:
285 if (--dev >= link->device)
286 goto check;
287 return NULL;
288 }
289
290 check:
291 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
292 !ata_dev_enabled(dev))
293 goto next;
294 return dev;
295}
296
b1c72916
TH
297/**
298 * ata_dev_phys_link - find physical link for a device
299 * @dev: ATA device to look up physical link for
300 *
301 * Look up physical link which @dev is attached to. Note that
302 * this is different from @dev->link only when @dev is on slave
303 * link. For all other cases, it's the same as @dev->link.
304 *
305 * LOCKING:
306 * Don't care.
307 *
308 * RETURNS:
309 * Pointer to the found physical link.
310 */
311struct ata_link *ata_dev_phys_link(struct ata_device *dev)
312{
313 struct ata_port *ap = dev->link->ap;
314
315 if (!ap->slave_link)
316 return dev->link;
317 if (!dev->devno)
318 return &ap->link;
319 return ap->slave_link;
320}
321
33267325
TH
322/**
323 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 324 * @ap: ATA port of interest
33267325
TH
325 *
326 * Force cable type according to libata.force and whine about it.
327 * The last entry which has matching port number is used, so it
328 * can be specified as part of device force parameters. For
329 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
330 * same effect.
331 *
332 * LOCKING:
333 * EH context.
334 */
335void ata_force_cbl(struct ata_port *ap)
336{
337 int i;
338
339 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
340 const struct ata_force_ent *fe = &ata_force_tbl[i];
341
342 if (fe->port != -1 && fe->port != ap->print_id)
343 continue;
344
345 if (fe->param.cbl == ATA_CBL_NONE)
346 continue;
347
348 ap->cbl = fe->param.cbl;
a9a79dfe 349 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
33267325
TH
350 return;
351 }
352}
353
354/**
05944bdf 355 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
356 * @link: ATA link of interest
357 *
05944bdf
TH
358 * Force link flags and SATA spd limit according to libata.force
359 * and whine about it. When only the port part is specified
360 * (e.g. 1:), the limit applies to all links connected to both
361 * the host link and all fan-out ports connected via PMP. If the
362 * device part is specified as 0 (e.g. 1.00:), it specifies the
363 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
364 * points to the host link whether PMP is attached or not. If the
365 * controller has slave link, device number 16 points to it.
33267325
TH
366 *
367 * LOCKING:
368 * EH context.
369 */
05944bdf 370static void ata_force_link_limits(struct ata_link *link)
33267325 371{
05944bdf 372 bool did_spd = false;
b1c72916
TH
373 int linkno = link->pmp;
374 int i;
33267325
TH
375
376 if (ata_is_host_link(link))
b1c72916 377 linkno += 15;
33267325
TH
378
379 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
380 const struct ata_force_ent *fe = &ata_force_tbl[i];
381
382 if (fe->port != -1 && fe->port != link->ap->print_id)
383 continue;
384
385 if (fe->device != -1 && fe->device != linkno)
386 continue;
387
05944bdf
TH
388 /* only honor the first spd limit */
389 if (!did_spd && fe->param.spd_limit) {
390 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
a9a79dfe 391 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
05944bdf
TH
392 fe->param.name);
393 did_spd = true;
394 }
33267325 395
05944bdf
TH
396 /* let lflags stack */
397 if (fe->param.lflags) {
398 link->flags |= fe->param.lflags;
a9a79dfe 399 ata_link_notice(link,
05944bdf
TH
400 "FORCE: link flag 0x%x forced -> 0x%x\n",
401 fe->param.lflags, link->flags);
402 }
33267325
TH
403 }
404}
405
406/**
407 * ata_force_xfermask - force xfermask according to libata.force
408 * @dev: ATA device of interest
409 *
410 * Force xfer_mask according to libata.force and whine about it.
411 * For consistency with link selection, device number 15 selects
412 * the first device connected to the host link.
413 *
414 * LOCKING:
415 * EH context.
416 */
417static void ata_force_xfermask(struct ata_device *dev)
418{
419 int devno = dev->link->pmp + dev->devno;
420 int alt_devno = devno;
421 int i;
422
b1c72916
TH
423 /* allow n.15/16 for devices attached to host port */
424 if (ata_is_host_link(dev->link))
425 alt_devno += 15;
33267325
TH
426
427 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
428 const struct ata_force_ent *fe = &ata_force_tbl[i];
429 unsigned long pio_mask, mwdma_mask, udma_mask;
430
431 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
432 continue;
433
434 if (fe->device != -1 && fe->device != devno &&
435 fe->device != alt_devno)
436 continue;
437
438 if (!fe->param.xfer_mask)
439 continue;
440
441 ata_unpack_xfermask(fe->param.xfer_mask,
442 &pio_mask, &mwdma_mask, &udma_mask);
443 if (udma_mask)
444 dev->udma_mask = udma_mask;
445 else if (mwdma_mask) {
446 dev->udma_mask = 0;
447 dev->mwdma_mask = mwdma_mask;
448 } else {
449 dev->udma_mask = 0;
450 dev->mwdma_mask = 0;
451 dev->pio_mask = pio_mask;
452 }
453
a9a79dfe
JP
454 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
455 fe->param.name);
33267325
TH
456 return;
457 }
458}
459
460/**
461 * ata_force_horkage - force horkage according to libata.force
462 * @dev: ATA device of interest
463 *
464 * Force horkage according to libata.force and whine about it.
465 * For consistency with link selection, device number 15 selects
466 * the first device connected to the host link.
467 *
468 * LOCKING:
469 * EH context.
470 */
471static void ata_force_horkage(struct ata_device *dev)
472{
473 int devno = dev->link->pmp + dev->devno;
474 int alt_devno = devno;
475 int i;
476
b1c72916
TH
477 /* allow n.15/16 for devices attached to host port */
478 if (ata_is_host_link(dev->link))
479 alt_devno += 15;
33267325
TH
480
481 for (i = 0; i < ata_force_tbl_size; i++) {
482 const struct ata_force_ent *fe = &ata_force_tbl[i];
483
484 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
485 continue;
486
487 if (fe->device != -1 && fe->device != devno &&
488 fe->device != alt_devno)
489 continue;
490
491 if (!(~dev->horkage & fe->param.horkage_on) &&
492 !(dev->horkage & fe->param.horkage_off))
493 continue;
494
495 dev->horkage |= fe->param.horkage_on;
496 dev->horkage &= ~fe->param.horkage_off;
497
a9a79dfe
JP
498 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
499 fe->param.name);
33267325
TH
500 }
501}
502
436d34b3
TH
503/**
504 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505 * @opcode: SCSI opcode
506 *
507 * Determine ATAPI command type from @opcode.
508 *
509 * LOCKING:
510 * None.
511 *
512 * RETURNS:
513 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
514 */
515int atapi_cmd_type(u8 opcode)
516{
517 switch (opcode) {
518 case GPCMD_READ_10:
519 case GPCMD_READ_12:
520 return ATAPI_READ;
521
522 case GPCMD_WRITE_10:
523 case GPCMD_WRITE_12:
524 case GPCMD_WRITE_AND_VERIFY_10:
525 return ATAPI_WRITE;
526
527 case GPCMD_READ_CD:
528 case GPCMD_READ_CD_MSF:
529 return ATAPI_READ_CD;
530
e52dcc48
TH
531 case ATA_16:
532 case ATA_12:
533 if (atapi_passthru16)
534 return ATAPI_PASS_THRU;
535 /* fall thru */
436d34b3
TH
536 default:
537 return ATAPI_MISC;
538 }
539}
540
1da177e4
LT
541/**
542 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543 * @tf: Taskfile to convert
1da177e4 544 * @pmp: Port multiplier port
9977126c
TH
545 * @is_cmd: This FIS is for command
546 * @fis: Buffer into which data will output
1da177e4
LT
547 *
548 * Converts a standard ATA taskfile to a Serial ATA
549 * FIS structure (Register - Host to Device).
550 *
551 * LOCKING:
552 * Inherited from caller.
553 */
9977126c 554void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 555{
9977126c
TH
556 fis[0] = 0x27; /* Register - Host to Device FIS */
557 fis[1] = pmp & 0xf; /* Port multiplier number*/
558 if (is_cmd)
559 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
560
1da177e4
LT
561 fis[2] = tf->command;
562 fis[3] = tf->feature;
563
564 fis[4] = tf->lbal;
565 fis[5] = tf->lbam;
566 fis[6] = tf->lbah;
567 fis[7] = tf->device;
568
569 fis[8] = tf->hob_lbal;
570 fis[9] = tf->hob_lbam;
571 fis[10] = tf->hob_lbah;
572 fis[11] = tf->hob_feature;
573
574 fis[12] = tf->nsect;
575 fis[13] = tf->hob_nsect;
576 fis[14] = 0;
577 fis[15] = tf->ctl;
578
86a565e6
MC
579 fis[16] = tf->auxiliary & 0xff;
580 fis[17] = (tf->auxiliary >> 8) & 0xff;
581 fis[18] = (tf->auxiliary >> 16) & 0xff;
582 fis[19] = (tf->auxiliary >> 24) & 0xff;
1da177e4
LT
583}
584
585/**
586 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587 * @fis: Buffer from which data will be input
588 * @tf: Taskfile to output
589 *
e12a1be6 590 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
591 *
592 * LOCKING:
593 * Inherited from caller.
594 */
595
057ace5e 596void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
597{
598 tf->command = fis[2]; /* status */
599 tf->feature = fis[3]; /* error */
600
601 tf->lbal = fis[4];
602 tf->lbam = fis[5];
603 tf->lbah = fis[6];
604 tf->device = fis[7];
605
606 tf->hob_lbal = fis[8];
607 tf->hob_lbam = fis[9];
608 tf->hob_lbah = fis[10];
609
610 tf->nsect = fis[12];
611 tf->hob_nsect = fis[13];
612}
613
8cbd6df1
AL
614static const u8 ata_rw_cmds[] = {
615 /* pio multi */
616 ATA_CMD_READ_MULTI,
617 ATA_CMD_WRITE_MULTI,
618 ATA_CMD_READ_MULTI_EXT,
619 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
620 0,
621 0,
622 0,
623 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
624 /* pio */
625 ATA_CMD_PIO_READ,
626 ATA_CMD_PIO_WRITE,
627 ATA_CMD_PIO_READ_EXT,
628 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
629 0,
630 0,
631 0,
632 0,
8cbd6df1
AL
633 /* dma */
634 ATA_CMD_READ,
635 ATA_CMD_WRITE,
636 ATA_CMD_READ_EXT,
9a3dccc4
TH
637 ATA_CMD_WRITE_EXT,
638 0,
639 0,
640 0,
641 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 642};
1da177e4
LT
643
644/**
8cbd6df1 645 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
646 * @tf: command to examine and configure
647 * @dev: device tf belongs to
1da177e4 648 *
2e9edbf8 649 * Examine the device configuration and tf->flags to calculate
8cbd6df1 650 * the proper read/write commands and protocol to use.
1da177e4
LT
651 *
652 * LOCKING:
653 * caller.
654 */
bd056d7e 655static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 656{
9a3dccc4 657 u8 cmd;
1da177e4 658
9a3dccc4 659 int index, fua, lba48, write;
2e9edbf8 660
9a3dccc4 661 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
662 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
663 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 664
8cbd6df1
AL
665 if (dev->flags & ATA_DFLAG_PIO) {
666 tf->protocol = ATA_PROT_PIO;
9a3dccc4 667 index = dev->multi_count ? 0 : 8;
9af5c9c9 668 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
669 /* Unable to use DMA due to host limitation */
670 tf->protocol = ATA_PROT_PIO;
0565c26d 671 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
672 } else {
673 tf->protocol = ATA_PROT_DMA;
9a3dccc4 674 index = 16;
8cbd6df1 675 }
1da177e4 676
9a3dccc4
TH
677 cmd = ata_rw_cmds[index + fua + lba48 + write];
678 if (cmd) {
679 tf->command = cmd;
680 return 0;
681 }
682 return -1;
1da177e4
LT
683}
684
35b649fe
TH
685/**
686 * ata_tf_read_block - Read block address from ATA taskfile
687 * @tf: ATA taskfile of interest
688 * @dev: ATA device @tf belongs to
689 *
690 * LOCKING:
691 * None.
692 *
693 * Read block address from @tf. This function can handle all
694 * three address formats - LBA, LBA48 and CHS. tf->protocol and
695 * flags select the address format to use.
696 *
697 * RETURNS:
698 * Block address read from @tf.
699 */
cffd1ee9 700u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
35b649fe
TH
701{
702 u64 block = 0;
703
fe16d4f2 704 if (tf->flags & ATA_TFLAG_LBA) {
35b649fe
TH
705 if (tf->flags & ATA_TFLAG_LBA48) {
706 block |= (u64)tf->hob_lbah << 40;
707 block |= (u64)tf->hob_lbam << 32;
44901a96 708 block |= (u64)tf->hob_lbal << 24;
35b649fe
TH
709 } else
710 block |= (tf->device & 0xf) << 24;
711
712 block |= tf->lbah << 16;
713 block |= tf->lbam << 8;
714 block |= tf->lbal;
715 } else {
716 u32 cyl, head, sect;
717
718 cyl = tf->lbam | (tf->lbah << 8);
719 head = tf->device & 0xf;
720 sect = tf->lbal;
721
ac8672ea 722 if (!sect) {
a9a79dfe
JP
723 ata_dev_warn(dev,
724 "device reported invalid CHS sector 0\n");
cffd1ee9 725 return U64_MAX;
ac8672ea
TH
726 }
727
728 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
35b649fe
TH
729 }
730
731 return block;
732}
733
bd056d7e
TH
734/**
735 * ata_build_rw_tf - Build ATA taskfile for given read/write request
736 * @tf: Target ATA taskfile
737 * @dev: ATA device @tf belongs to
738 * @block: Block address
739 * @n_block: Number of blocks
740 * @tf_flags: RW/FUA etc...
741 * @tag: tag
8e061784 742 * @class: IO priority class
bd056d7e
TH
743 *
744 * LOCKING:
745 * None.
746 *
747 * Build ATA taskfile @tf for read/write request described by
748 * @block, @n_block, @tf_flags and @tag on @dev.
749 *
750 * RETURNS:
751 *
752 * 0 on success, -ERANGE if the request is too large for @dev,
753 * -EINVAL if the request is invalid.
754 */
755int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
756 u64 block, u32 n_block, unsigned int tf_flags,
8e061784 757 unsigned int tag, int class)
bd056d7e
TH
758{
759 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
760 tf->flags |= tf_flags;
761
2e2cc676 762 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
bd056d7e
TH
763 /* yay, NCQ */
764 if (!lba_48_ok(block, n_block))
765 return -ERANGE;
766
767 tf->protocol = ATA_PROT_NCQ;
768 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
769
770 if (tf->flags & ATA_TFLAG_WRITE)
771 tf->command = ATA_CMD_FPDMA_WRITE;
772 else
773 tf->command = ATA_CMD_FPDMA_READ;
774
775 tf->nsect = tag << 3;
776 tf->hob_feature = (n_block >> 8) & 0xff;
777 tf->feature = n_block & 0xff;
778
779 tf->hob_lbah = (block >> 40) & 0xff;
780 tf->hob_lbam = (block >> 32) & 0xff;
781 tf->hob_lbal = (block >> 24) & 0xff;
782 tf->lbah = (block >> 16) & 0xff;
783 tf->lbam = (block >> 8) & 0xff;
784 tf->lbal = block & 0xff;
785
9ca7cfa4 786 tf->device = ATA_LBA;
bd056d7e
TH
787 if (tf->flags & ATA_TFLAG_FUA)
788 tf->device |= 1 << 7;
8e061784 789
9f56eca3 790 if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
8e061784
AM
791 if (class == IOPRIO_CLASS_RT)
792 tf->hob_nsect |= ATA_PRIO_HIGH <<
793 ATA_SHIFT_PRIO;
794 }
bd056d7e
TH
795 } else if (dev->flags & ATA_DFLAG_LBA) {
796 tf->flags |= ATA_TFLAG_LBA;
797
798 if (lba_28_ok(block, n_block)) {
799 /* use LBA28 */
800 tf->device |= (block >> 24) & 0xf;
801 } else if (lba_48_ok(block, n_block)) {
802 if (!(dev->flags & ATA_DFLAG_LBA48))
803 return -ERANGE;
804
805 /* use LBA48 */
806 tf->flags |= ATA_TFLAG_LBA48;
807
808 tf->hob_nsect = (n_block >> 8) & 0xff;
809
810 tf->hob_lbah = (block >> 40) & 0xff;
811 tf->hob_lbam = (block >> 32) & 0xff;
812 tf->hob_lbal = (block >> 24) & 0xff;
813 } else
814 /* request too large even for LBA48 */
815 return -ERANGE;
816
817 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
818 return -EINVAL;
819
820 tf->nsect = n_block & 0xff;
821
822 tf->lbah = (block >> 16) & 0xff;
823 tf->lbam = (block >> 8) & 0xff;
824 tf->lbal = block & 0xff;
825
826 tf->device |= ATA_LBA;
827 } else {
828 /* CHS */
829 u32 sect, head, cyl, track;
830
831 /* The request -may- be too large for CHS addressing. */
832 if (!lba_28_ok(block, n_block))
833 return -ERANGE;
834
835 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
836 return -EINVAL;
837
838 /* Convert LBA to CHS */
839 track = (u32)block / dev->sectors;
840 cyl = track / dev->heads;
841 head = track % dev->heads;
842 sect = (u32)block % dev->sectors + 1;
843
844 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
845 (u32)block, track, cyl, head, sect);
846
847 /* Check whether the converted CHS can fit.
848 Cylinder: 0-65535
849 Head: 0-15
850 Sector: 1-255*/
851 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
852 return -ERANGE;
853
854 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
855 tf->lbal = sect;
856 tf->lbam = cyl;
857 tf->lbah = cyl >> 8;
858 tf->device |= head;
859 }
860
861 return 0;
862}
863
cb95d562
TH
864/**
865 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
866 * @pio_mask: pio_mask
867 * @mwdma_mask: mwdma_mask
868 * @udma_mask: udma_mask
869 *
870 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
871 * unsigned int xfer_mask.
872 *
873 * LOCKING:
874 * None.
875 *
876 * RETURNS:
877 * Packed xfer_mask.
878 */
7dc951ae
TH
879unsigned long ata_pack_xfermask(unsigned long pio_mask,
880 unsigned long mwdma_mask,
881 unsigned long udma_mask)
cb95d562
TH
882{
883 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
884 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
885 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
886}
887
c0489e4e
TH
888/**
889 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
890 * @xfer_mask: xfer_mask to unpack
891 * @pio_mask: resulting pio_mask
892 * @mwdma_mask: resulting mwdma_mask
893 * @udma_mask: resulting udma_mask
894 *
895 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
c9b5560a 896 * Any NULL destination masks will be ignored.
c0489e4e 897 */
7dc951ae
TH
898void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
899 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
900{
901 if (pio_mask)
902 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
903 if (mwdma_mask)
904 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
905 if (udma_mask)
906 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
907}
908
cb95d562 909static const struct ata_xfer_ent {
be9a50c8 910 int shift, bits;
cb95d562
TH
911 u8 base;
912} ata_xfer_tbl[] = {
70cd071e
TH
913 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
914 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
915 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
916 { -1, },
917};
918
919/**
920 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
921 * @xfer_mask: xfer_mask of interest
922 *
923 * Return matching XFER_* value for @xfer_mask. Only the highest
924 * bit of @xfer_mask is considered.
925 *
926 * LOCKING:
927 * None.
928 *
929 * RETURNS:
70cd071e 930 * Matching XFER_* value, 0xff if no match found.
cb95d562 931 */
7dc951ae 932u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
933{
934 int highbit = fls(xfer_mask) - 1;
935 const struct ata_xfer_ent *ent;
936
937 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
938 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
939 return ent->base + highbit - ent->shift;
70cd071e 940 return 0xff;
cb95d562
TH
941}
942
943/**
944 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
945 * @xfer_mode: XFER_* of interest
946 *
947 * Return matching xfer_mask for @xfer_mode.
948 *
949 * LOCKING:
950 * None.
951 *
952 * RETURNS:
953 * Matching xfer_mask, 0 if no match found.
954 */
7dc951ae 955unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
956{
957 const struct ata_xfer_ent *ent;
958
959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
961 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
962 & ~((1 << ent->shift) - 1);
cb95d562
TH
963 return 0;
964}
965
966/**
967 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
968 * @xfer_mode: XFER_* of interest
969 *
970 * Return matching xfer_shift for @xfer_mode.
971 *
972 * LOCKING:
973 * None.
974 *
975 * RETURNS:
976 * Matching xfer_shift, -1 if no match found.
977 */
7dc951ae 978int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
979{
980 const struct ata_xfer_ent *ent;
981
982 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
983 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
984 return ent->shift;
985 return -1;
986}
987
1da177e4 988/**
1da7b0d0
TH
989 * ata_mode_string - convert xfer_mask to string
990 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
991 *
992 * Determine string which represents the highest speed
1da7b0d0 993 * (highest bit in @modemask).
1da177e4
LT
994 *
995 * LOCKING:
996 * None.
997 *
998 * RETURNS:
999 * Constant C string representing highest speed listed in
1da7b0d0 1000 * @mode_mask, or the constant C string "<n/a>".
1da177e4 1001 */
7dc951ae 1002const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 1003{
75f554bc
TH
1004 static const char * const xfer_mode_str[] = {
1005 "PIO0",
1006 "PIO1",
1007 "PIO2",
1008 "PIO3",
1009 "PIO4",
b352e57d
AC
1010 "PIO5",
1011 "PIO6",
75f554bc
TH
1012 "MWDMA0",
1013 "MWDMA1",
1014 "MWDMA2",
b352e57d
AC
1015 "MWDMA3",
1016 "MWDMA4",
75f554bc
TH
1017 "UDMA/16",
1018 "UDMA/25",
1019 "UDMA/33",
1020 "UDMA/44",
1021 "UDMA/66",
1022 "UDMA/100",
1023 "UDMA/133",
1024 "UDMA7",
1025 };
1da7b0d0 1026 int highbit;
1da177e4 1027
1da7b0d0
TH
1028 highbit = fls(xfer_mask) - 1;
1029 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1030 return xfer_mode_str[highbit];
1da177e4 1031 return "<n/a>";
1da177e4
LT
1032}
1033
d9027470 1034const char *sata_spd_string(unsigned int spd)
4c360c81
TH
1035{
1036 static const char * const spd_str[] = {
1037 "1.5 Gbps",
1038 "3.0 Gbps",
8522ee25 1039 "6.0 Gbps",
4c360c81
TH
1040 };
1041
1042 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1043 return "<unknown>";
1044 return spd_str[spd - 1];
1045}
1046
1da177e4
LT
1047/**
1048 * ata_dev_classify - determine device type based on ATA-spec signature
1049 * @tf: ATA taskfile register set for device to be identified
1050 *
1051 * Determine from taskfile register contents whether a device is
1052 * ATA or ATAPI, as per "Signature and persistence" section
1053 * of ATA/PI spec (volume 1, sect 5.14).
1054 *
1055 * LOCKING:
1056 * None.
1057 *
1058 * RETURNS:
9162c657
HR
1059 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1060 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1061 */
057ace5e 1062unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1063{
1064 /* Apple's open source Darwin code hints that some devices only
1065 * put a proper signature into the LBA mid/high registers,
1066 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1067 *
1068 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1069 * signatures for ATA and ATAPI devices attached on SerialATA,
1070 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1071 * spec has never mentioned about using different signatures
1072 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1073 * Multiplier specification began to use 0x69/0x96 to identify
1074 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1075 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1076 * 0x69/0x96 shortly and described them as reserved for
1077 * SerialATA.
1078 *
1079 * We follow the current spec and consider that 0x69/0x96
1080 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
79b42bab
TH
1081 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1082 * SEMB signature. This is worked around in
1083 * ata_dev_read_id().
1da177e4 1084 */
633273a3 1085 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1086 DPRINTK("found ATA device by sig\n");
1087 return ATA_DEV_ATA;
1088 }
1089
633273a3 1090 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1091 DPRINTK("found ATAPI device by sig\n");
1092 return ATA_DEV_ATAPI;
1093 }
1094
633273a3
TH
1095 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1096 DPRINTK("found PMP device by sig\n");
1097 return ATA_DEV_PMP;
1098 }
1099
1100 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
79b42bab
TH
1101 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1102 return ATA_DEV_SEMB;
633273a3
TH
1103 }
1104
9162c657
HR
1105 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1106 DPRINTK("found ZAC device by sig\n");
1107 return ATA_DEV_ZAC;
1108 }
1109
1da177e4
LT
1110 DPRINTK("unknown device\n");
1111 return ATA_DEV_UNKNOWN;
1112}
1113
1da177e4 1114/**
6a62a04d 1115 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1116 * @id: IDENTIFY DEVICE results we will examine
1117 * @s: string into which data is output
1118 * @ofs: offset into identify device page
1119 * @len: length of string to return. must be an even number.
1120 *
1121 * The strings in the IDENTIFY DEVICE page are broken up into
1122 * 16-bit chunks. Run through the string, and output each
1123 * 8-bit chunk linearly, regardless of platform.
1124 *
1125 * LOCKING:
1126 * caller.
1127 */
1128
6a62a04d
TH
1129void ata_id_string(const u16 *id, unsigned char *s,
1130 unsigned int ofs, unsigned int len)
1da177e4
LT
1131{
1132 unsigned int c;
1133
963e4975
AC
1134 BUG_ON(len & 1);
1135
1da177e4
LT
1136 while (len > 0) {
1137 c = id[ofs] >> 8;
1138 *s = c;
1139 s++;
1140
1141 c = id[ofs] & 0xff;
1142 *s = c;
1143 s++;
1144
1145 ofs++;
1146 len -= 2;
1147 }
1148}
1149
0e949ff3 1150/**
6a62a04d 1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1152 * @id: IDENTIFY DEVICE results we will examine
1153 * @s: string into which data is output
1154 * @ofs: offset into identify device page
1155 * @len: length of string to return. must be an odd number.
1156 *
6a62a04d 1157 * This function is identical to ata_id_string except that it
0e949ff3
TH
1158 * trims trailing spaces and terminates the resulting string with
1159 * null. @len must be actual maximum length (even number) + 1.
1160 *
1161 * LOCKING:
1162 * caller.
1163 */
6a62a04d
TH
1164void ata_id_c_string(const u16 *id, unsigned char *s,
1165 unsigned int ofs, unsigned int len)
0e949ff3
TH
1166{
1167 unsigned char *p;
1168
6a62a04d 1169 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1170
1171 p = s + strnlen(s, len - 1);
1172 while (p > s && p[-1] == ' ')
1173 p--;
1174 *p = '\0';
1175}
0baab86b 1176
db6f8759
TH
1177static u64 ata_id_n_sectors(const u16 *id)
1178{
1179 if (ata_id_has_lba(id)) {
1180 if (ata_id_has_lba48(id))
968e594a 1181 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
db6f8759 1182 else
968e594a 1183 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
db6f8759
TH
1184 } else {
1185 if (ata_id_current_chs_valid(id))
968e594a
RH
1186 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1187 id[ATA_ID_CUR_SECTORS];
db6f8759 1188 else
968e594a
RH
1189 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1190 id[ATA_ID_SECTORS];
db6f8759
TH
1191 }
1192}
1193
a5987e0a 1194u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1195{
1196 u64 sectors = 0;
1197
1198 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
ba14a9c2 1200 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1e999736
AC
1201 sectors |= (tf->lbah & 0xff) << 16;
1202 sectors |= (tf->lbam & 0xff) << 8;
1203 sectors |= (tf->lbal & 0xff);
1204
a5987e0a 1205 return sectors;
1e999736
AC
1206}
1207
a5987e0a 1208u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1209{
1210 u64 sectors = 0;
1211
1212 sectors |= (tf->device & 0x0f) << 24;
1213 sectors |= (tf->lbah & 0xff) << 16;
1214 sectors |= (tf->lbam & 0xff) << 8;
1215 sectors |= (tf->lbal & 0xff);
1216
a5987e0a 1217 return sectors;
1e999736
AC
1218}
1219
1220/**
c728a914
TH
1221 * ata_read_native_max_address - Read native max address
1222 * @dev: target device
1223 * @max_sectors: out parameter for the result native max address
1e999736 1224 *
c728a914
TH
1225 * Perform an LBA48 or LBA28 native size query upon the device in
1226 * question.
1e999736 1227 *
c728a914
TH
1228 * RETURNS:
1229 * 0 on success, -EACCES if command is aborted by the drive.
1230 * -EIO on other errors.
1e999736 1231 */
c728a914 1232static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1233{
c728a914 1234 unsigned int err_mask;
1e999736 1235 struct ata_taskfile tf;
c728a914 1236 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1237
1238 ata_tf_init(dev, &tf);
1239
c728a914 1240 /* always clear all address registers */
1e999736 1241 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1242
c728a914
TH
1243 if (lba48) {
1244 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245 tf.flags |= ATA_TFLAG_LBA48;
1246 } else
1247 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1248
bd18bc04 1249 tf.protocol = ATA_PROT_NODATA;
c728a914
TH
1250 tf.device |= ATA_LBA;
1251
2b789108 1252 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1253 if (err_mask) {
a9a79dfe
JP
1254 ata_dev_warn(dev,
1255 "failed to read native max address (err_mask=0x%x)\n",
1256 err_mask);
c728a914
TH
1257 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1258 return -EACCES;
1259 return -EIO;
1260 }
1e999736 1261
c728a914 1262 if (lba48)
a5987e0a 1263 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1264 else
a5987e0a 1265 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1266 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1267 (*max_sectors)--;
c728a914 1268 return 0;
1e999736
AC
1269}
1270
1271/**
c728a914
TH
1272 * ata_set_max_sectors - Set max sectors
1273 * @dev: target device
6b38d1d1 1274 * @new_sectors: new max sectors value to set for the device
1e999736 1275 *
c728a914
TH
1276 * Set max sectors of @dev to @new_sectors.
1277 *
1278 * RETURNS:
1279 * 0 on success, -EACCES if command is aborted or denied (due to
1280 * previous non-volatile SET_MAX) by the drive. -EIO on other
1281 * errors.
1e999736 1282 */
05027adc 1283static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1284{
c728a914 1285 unsigned int err_mask;
1e999736 1286 struct ata_taskfile tf;
c728a914 1287 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1288
1289 new_sectors--;
1290
1291 ata_tf_init(dev, &tf);
1292
1e999736 1293 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1294
1295 if (lba48) {
1296 tf.command = ATA_CMD_SET_MAX_EXT;
1297 tf.flags |= ATA_TFLAG_LBA48;
1298
1299 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1300 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1301 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1302 } else {
c728a914
TH
1303 tf.command = ATA_CMD_SET_MAX;
1304
1e582ba4
TH
1305 tf.device |= (new_sectors >> 24) & 0xf;
1306 }
1307
bd18bc04 1308 tf.protocol = ATA_PROT_NODATA;
c728a914 1309 tf.device |= ATA_LBA;
1e999736
AC
1310
1311 tf.lbal = (new_sectors >> 0) & 0xff;
1312 tf.lbam = (new_sectors >> 8) & 0xff;
1313 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1314
2b789108 1315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1316 if (err_mask) {
a9a79dfe
JP
1317 ata_dev_warn(dev,
1318 "failed to set max address (err_mask=0x%x)\n",
1319 err_mask);
c728a914
TH
1320 if (err_mask == AC_ERR_DEV &&
1321 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1322 return -EACCES;
1323 return -EIO;
1324 }
1325
c728a914 1326 return 0;
1e999736
AC
1327}
1328
1329/**
1330 * ata_hpa_resize - Resize a device with an HPA set
1331 * @dev: Device to resize
1332 *
1333 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1334 * it if required to the full size of the media. The caller must check
1335 * the drive has the HPA feature set enabled.
05027adc
TH
1336 *
1337 * RETURNS:
1338 * 0 on success, -errno on failure.
1e999736 1339 */
05027adc 1340static int ata_hpa_resize(struct ata_device *dev)
1e999736 1341{
05027adc
TH
1342 struct ata_eh_context *ehc = &dev->link->eh_context;
1343 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
445d211b 1344 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
05027adc
TH
1345 u64 sectors = ata_id_n_sectors(dev->id);
1346 u64 native_sectors;
c728a914 1347 int rc;
a617c09f 1348
05027adc 1349 /* do we need to do it? */
9162c657 1350 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
05027adc
TH
1351 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1352 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1353 return 0;
1e999736 1354
05027adc
TH
1355 /* read native max address */
1356 rc = ata_read_native_max_address(dev, &native_sectors);
1357 if (rc) {
dda7aba1
TH
1358 /* If device aborted the command or HPA isn't going to
1359 * be unlocked, skip HPA resizing.
05027adc 1360 */
445d211b 1361 if (rc == -EACCES || !unlock_hpa) {
a9a79dfe
JP
1362 ata_dev_warn(dev,
1363 "HPA support seems broken, skipping HPA handling\n");
05027adc
TH
1364 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1365
1366 /* we can continue if device aborted the command */
1367 if (rc == -EACCES)
1368 rc = 0;
1e999736 1369 }
37301a55 1370
05027adc
TH
1371 return rc;
1372 }
5920dadf 1373 dev->n_native_sectors = native_sectors;
05027adc
TH
1374
1375 /* nothing to do? */
445d211b 1376 if (native_sectors <= sectors || !unlock_hpa) {
05027adc
TH
1377 if (!print_info || native_sectors == sectors)
1378 return 0;
1379
1380 if (native_sectors > sectors)
a9a79dfe 1381 ata_dev_info(dev,
05027adc
TH
1382 "HPA detected: current %llu, native %llu\n",
1383 (unsigned long long)sectors,
1384 (unsigned long long)native_sectors);
1385 else if (native_sectors < sectors)
a9a79dfe
JP
1386 ata_dev_warn(dev,
1387 "native sectors (%llu) is smaller than sectors (%llu)\n",
05027adc
TH
1388 (unsigned long long)native_sectors,
1389 (unsigned long long)sectors);
1390 return 0;
1391 }
1392
1393 /* let's unlock HPA */
1394 rc = ata_set_max_sectors(dev, native_sectors);
1395 if (rc == -EACCES) {
1396 /* if device aborted the command, skip HPA resizing */
a9a79dfe
JP
1397 ata_dev_warn(dev,
1398 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1399 (unsigned long long)sectors,
1400 (unsigned long long)native_sectors);
05027adc
TH
1401 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1402 return 0;
1403 } else if (rc)
1404 return rc;
1405
1406 /* re-read IDENTIFY data */
1407 rc = ata_dev_reread_id(dev, 0);
1408 if (rc) {
a9a79dfe
JP
1409 ata_dev_err(dev,
1410 "failed to re-read IDENTIFY data after HPA resizing\n");
05027adc
TH
1411 return rc;
1412 }
1413
1414 if (print_info) {
1415 u64 new_sectors = ata_id_n_sectors(dev->id);
a9a79dfe 1416 ata_dev_info(dev,
05027adc
TH
1417 "HPA unlocked: %llu -> %llu, native %llu\n",
1418 (unsigned long long)sectors,
1419 (unsigned long long)new_sectors,
1420 (unsigned long long)native_sectors);
1421 }
1422
1423 return 0;
1e999736
AC
1424}
1425
1da177e4
LT
1426/**
1427 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1428 * @id: IDENTIFY DEVICE page to dump
1da177e4 1429 *
0bd3300a
TH
1430 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1431 * page.
1da177e4
LT
1432 *
1433 * LOCKING:
1434 * caller.
1435 */
1436
0bd3300a 1437static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1438{
1439 DPRINTK("49==0x%04x "
1440 "53==0x%04x "
1441 "63==0x%04x "
1442 "64==0x%04x "
1443 "75==0x%04x \n",
0bd3300a
TH
1444 id[49],
1445 id[53],
1446 id[63],
1447 id[64],
1448 id[75]);
1da177e4
LT
1449 DPRINTK("80==0x%04x "
1450 "81==0x%04x "
1451 "82==0x%04x "
1452 "83==0x%04x "
1453 "84==0x%04x \n",
0bd3300a
TH
1454 id[80],
1455 id[81],
1456 id[82],
1457 id[83],
1458 id[84]);
1da177e4
LT
1459 DPRINTK("88==0x%04x "
1460 "93==0x%04x\n",
0bd3300a
TH
1461 id[88],
1462 id[93]);
1da177e4
LT
1463}
1464
cb95d562
TH
1465/**
1466 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1467 * @id: IDENTIFY data to compute xfer mask from
1468 *
1469 * Compute the xfermask for this device. This is not as trivial
1470 * as it seems if we must consider early devices correctly.
1471 *
1472 * FIXME: pre IDE drive timing (do we care ?).
1473 *
1474 * LOCKING:
1475 * None.
1476 *
1477 * RETURNS:
1478 * Computed xfermask
1479 */
7dc951ae 1480unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1481{
7dc951ae 1482 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1483
1484 /* Usual case. Word 53 indicates word 64 is valid */
1485 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1486 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1487 pio_mask <<= 3;
1488 pio_mask |= 0x7;
1489 } else {
1490 /* If word 64 isn't valid then Word 51 high byte holds
1491 * the PIO timing number for the maximum. Turn it into
1492 * a mask.
1493 */
7a0f1c8a 1494 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1495 if (mode < 5) /* Valid PIO range */
2dcb407e 1496 pio_mask = (2 << mode) - 1;
46767aeb
AC
1497 else
1498 pio_mask = 1;
cb95d562
TH
1499
1500 /* But wait.. there's more. Design your standards by
1501 * committee and you too can get a free iordy field to
1502 * process. However its the speeds not the modes that
1503 * are supported... Note drivers using the timing API
1504 * will get this right anyway
1505 */
1506 }
1507
1508 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1509
b352e57d
AC
1510 if (ata_id_is_cfa(id)) {
1511 /*
1512 * Process compact flash extended modes
1513 */
62afe5d7
SS
1514 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1515 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
b352e57d
AC
1516
1517 if (pio)
1518 pio_mask |= (1 << 5);
1519 if (pio > 1)
1520 pio_mask |= (1 << 6);
1521 if (dma)
1522 mwdma_mask |= (1 << 3);
1523 if (dma > 1)
1524 mwdma_mask |= (1 << 4);
1525 }
1526
fb21f0d0
TH
1527 udma_mask = 0;
1528 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1529 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1530
1531 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1532}
1533
7102d230 1534static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1535{
77853bf2 1536 struct completion *waiting = qc->private_data;
a2a7a662 1537
a2a7a662 1538 complete(waiting);
a2a7a662
TH
1539}
1540
1541/**
2432697b 1542 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1543 * @dev: Device to which the command is sent
1544 * @tf: Taskfile registers for the command and the result
d69cf37d 1545 * @cdb: CDB for packet command
e227867f 1546 * @dma_dir: Data transfer direction of the command
5c1ad8b3 1547 * @sgl: sg list for the data buffer of the command
2432697b 1548 * @n_elem: Number of sg entries
2b789108 1549 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1550 *
1551 * Executes libata internal command with timeout. @tf contains
1552 * command on entry and result on return. Timeout and error
1553 * conditions are reported via return value. No recovery action
1554 * is taken after a command times out. It's caller's duty to
1555 * clean up after timeout.
1556 *
1557 * LOCKING:
1558 * None. Should be called with kernel context, might sleep.
551e8889
TH
1559 *
1560 * RETURNS:
1561 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1562 */
2432697b
TH
1563unsigned ata_exec_internal_sg(struct ata_device *dev,
1564 struct ata_taskfile *tf, const u8 *cdb,
87260216 1565 int dma_dir, struct scatterlist *sgl,
2b789108 1566 unsigned int n_elem, unsigned long timeout)
a2a7a662 1567{
9af5c9c9
TH
1568 struct ata_link *link = dev->link;
1569 struct ata_port *ap = link->ap;
a2a7a662 1570 u8 command = tf->command;
87fbc5a0 1571 int auto_timeout = 0;
a2a7a662 1572 struct ata_queued_cmd *qc;
28361c40 1573 unsigned int preempted_tag;
e3ed8939
JA
1574 u32 preempted_sactive;
1575 u64 preempted_qc_active;
da917d69 1576 int preempted_nr_active_links;
60be6b9a 1577 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1578 unsigned long flags;
77853bf2 1579 unsigned int err_mask;
d95a717f 1580 int rc;
a2a7a662 1581
ba6a1308 1582 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1583
e3180499 1584 /* no internal command while frozen */
b51e9e5d 1585 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1586 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1587 return AC_ERR_SYSTEM;
1588 }
1589
2ab7db1f 1590 /* initialize internal qc */
28361c40 1591 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
a2a7a662 1592
28361c40
JA
1593 qc->tag = ATA_TAG_INTERNAL;
1594 qc->hw_tag = 0;
2ab7db1f
TH
1595 qc->scsicmd = NULL;
1596 qc->ap = ap;
1597 qc->dev = dev;
1598 ata_qc_reinit(qc);
1599
9af5c9c9
TH
1600 preempted_tag = link->active_tag;
1601 preempted_sactive = link->sactive;
dedaf2b0 1602 preempted_qc_active = ap->qc_active;
da917d69 1603 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1604 link->active_tag = ATA_TAG_POISON;
1605 link->sactive = 0;
dedaf2b0 1606 ap->qc_active = 0;
da917d69 1607 ap->nr_active_links = 0;
2ab7db1f
TH
1608
1609 /* prepare & issue qc */
a2a7a662 1610 qc->tf = *tf;
d69cf37d
TH
1611 if (cdb)
1612 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e771451c
VP
1613
1614 /* some SATA bridges need us to indicate data xfer direction */
1615 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1616 dma_dir == DMA_FROM_DEVICE)
1617 qc->tf.feature |= ATAPI_DMADIR;
1618
e61e0672 1619 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1620 qc->dma_dir = dma_dir;
1621 if (dma_dir != DMA_NONE) {
2432697b 1622 unsigned int i, buflen = 0;
87260216 1623 struct scatterlist *sg;
2432697b 1624
87260216
JA
1625 for_each_sg(sgl, sg, n_elem, i)
1626 buflen += sg->length;
2432697b 1627
87260216 1628 ata_sg_init(qc, sgl, n_elem);
49c80429 1629 qc->nbytes = buflen;
a2a7a662
TH
1630 }
1631
77853bf2 1632 qc->private_data = &wait;
a2a7a662
TH
1633 qc->complete_fn = ata_qc_complete_internal;
1634
8e0e694a 1635 ata_qc_issue(qc);
a2a7a662 1636
ba6a1308 1637 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1638
87fbc5a0
TH
1639 if (!timeout) {
1640 if (ata_probe_timeout)
1641 timeout = ata_probe_timeout * 1000;
1642 else {
1643 timeout = ata_internal_cmd_timeout(dev, command);
1644 auto_timeout = 1;
1645 }
1646 }
2b789108 1647
c0c362b6
TH
1648 if (ap->ops->error_handler)
1649 ata_eh_release(ap);
1650
2b789108 1651 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f 1652
c0c362b6
TH
1653 if (ap->ops->error_handler)
1654 ata_eh_acquire(ap);
1655
c429137a 1656 ata_sff_flush_pio_task(ap);
41ade50c 1657
d95a717f 1658 if (!rc) {
ba6a1308 1659 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1660
1661 /* We're racing with irq here. If we lose, the
1662 * following test prevents us from completing the qc
d95a717f
TH
1663 * twice. If we win, the port is frozen and will be
1664 * cleaned up by ->post_internal_cmd().
a2a7a662 1665 */
77853bf2 1666 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1667 qc->err_mask |= AC_ERR_TIMEOUT;
1668
1669 if (ap->ops->error_handler)
1670 ata_port_freeze(ap);
1671 else
1672 ata_qc_complete(qc);
f15a1daf 1673
0dd4b21f 1674 if (ata_msg_warn(ap))
a9a79dfe
JP
1675 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1676 command);
a2a7a662
TH
1677 }
1678
ba6a1308 1679 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1680 }
1681
d95a717f
TH
1682 /* do post_internal_cmd */
1683 if (ap->ops->post_internal_cmd)
1684 ap->ops->post_internal_cmd(qc);
1685
a51d644a
TH
1686 /* perform minimal error analysis */
1687 if (qc->flags & ATA_QCFLAG_FAILED) {
1688 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1689 qc->err_mask |= AC_ERR_DEV;
1690
1691 if (!qc->err_mask)
1692 qc->err_mask |= AC_ERR_OTHER;
1693
1694 if (qc->err_mask & ~AC_ERR_OTHER)
1695 qc->err_mask &= ~AC_ERR_OTHER;
2dae9955
DLM
1696 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1697 qc->result_tf.command |= ATA_SENSE;
d95a717f
TH
1698 }
1699
15869303 1700 /* finish up */
ba6a1308 1701 spin_lock_irqsave(ap->lock, flags);
15869303 1702
e61e0672 1703 *tf = qc->result_tf;
77853bf2
TH
1704 err_mask = qc->err_mask;
1705
1706 ata_qc_free(qc);
9af5c9c9
TH
1707 link->active_tag = preempted_tag;
1708 link->sactive = preempted_sactive;
dedaf2b0 1709 ap->qc_active = preempted_qc_active;
da917d69 1710 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1711
ba6a1308 1712 spin_unlock_irqrestore(ap->lock, flags);
15869303 1713
87fbc5a0
TH
1714 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1715 ata_internal_cmd_timed_out(dev, command);
1716
77853bf2 1717 return err_mask;
a2a7a662
TH
1718}
1719
2432697b 1720/**
33480a0e 1721 * ata_exec_internal - execute libata internal command
2432697b
TH
1722 * @dev: Device to which the command is sent
1723 * @tf: Taskfile registers for the command and the result
1724 * @cdb: CDB for packet command
e227867f 1725 * @dma_dir: Data transfer direction of the command
2432697b
TH
1726 * @buf: Data buffer of the command
1727 * @buflen: Length of data buffer
2b789108 1728 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1729 *
1730 * Wrapper around ata_exec_internal_sg() which takes simple
1731 * buffer instead of sg list.
1732 *
1733 * LOCKING:
1734 * None. Should be called with kernel context, might sleep.
1735 *
1736 * RETURNS:
1737 * Zero on success, AC_ERR_* mask on failure
1738 */
1739unsigned ata_exec_internal(struct ata_device *dev,
1740 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1741 int dma_dir, void *buf, unsigned int buflen,
1742 unsigned long timeout)
2432697b 1743{
33480a0e
TH
1744 struct scatterlist *psg = NULL, sg;
1745 unsigned int n_elem = 0;
2432697b 1746
33480a0e
TH
1747 if (dma_dir != DMA_NONE) {
1748 WARN_ON(!buf);
1749 sg_init_one(&sg, buf, buflen);
1750 psg = &sg;
1751 n_elem++;
1752 }
2432697b 1753
2b789108
TH
1754 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1755 timeout);
2432697b
TH
1756}
1757
1bc4ccff
AC
1758/**
1759 * ata_pio_need_iordy - check if iordy needed
1760 * @adev: ATA device
1761 *
1762 * Check if the current speed of the device requires IORDY. Used
1763 * by various controllers for chip configuration.
1764 */
1bc4ccff
AC
1765unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1766{
0d9e6659
TH
1767 /* Don't set IORDY if we're preparing for reset. IORDY may
1768 * lead to controller lock up on certain controllers if the
1769 * port is not occupied. See bko#11703 for details.
1770 */
1771 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1772 return 0;
1773 /* Controller doesn't support IORDY. Probably a pointless
1774 * check as the caller should know this.
1775 */
9af5c9c9 1776 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1777 return 0;
5c18c4d2
DD
1778 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1779 if (ata_id_is_cfa(adev->id)
1780 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1781 return 0;
432729f0
AC
1782 /* PIO3 and higher it is mandatory */
1783 if (adev->pio_mode > XFER_PIO_2)
1784 return 1;
1785 /* We turn it on when possible */
1786 if (ata_id_has_iordy(adev->id))
1bc4ccff 1787 return 1;
432729f0
AC
1788 return 0;
1789}
2e9edbf8 1790
432729f0
AC
1791/**
1792 * ata_pio_mask_no_iordy - Return the non IORDY mask
1793 * @adev: ATA device
1794 *
1795 * Compute the highest mode possible if we are not using iordy. Return
1796 * -1 if no iordy mode is available.
1797 */
432729f0
AC
1798static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1799{
1bc4ccff 1800 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1801 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1802 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1803 /* Is the speed faster than the drive allows non IORDY ? */
1804 if (pio) {
1805 /* This is cycle times not frequency - watch the logic! */
1806 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1807 return 3 << ATA_SHIFT_PIO;
1808 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1809 }
1810 }
432729f0 1811 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1812}
1813
963e4975
AC
1814/**
1815 * ata_do_dev_read_id - default ID read method
1816 * @dev: device
1817 * @tf: proposed taskfile
1818 * @id: data buffer
1819 *
1820 * Issue the identify taskfile and hand back the buffer containing
1821 * identify data. For some RAID controllers and for pre ATA devices
1822 * this function is wrapped or replaced by the driver
1823 */
1824unsigned int ata_do_dev_read_id(struct ata_device *dev,
1825 struct ata_taskfile *tf, u16 *id)
1826{
1827 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1828 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1829}
1830
1da177e4 1831/**
49016aca 1832 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1833 * @dev: target device
1834 * @p_class: pointer to class of the target device (may be changed)
bff04647 1835 * @flags: ATA_READID_* flags
fe635c7e 1836 * @id: buffer to read IDENTIFY data into
1da177e4 1837 *
49016aca
TH
1838 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1839 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1840 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1841 * for pre-ATA4 drives.
1da177e4 1842 *
50a99018 1843 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1844 * now we abort if we hit that case.
50a99018 1845 *
1da177e4 1846 * LOCKING:
49016aca
TH
1847 * Kernel thread context (may sleep)
1848 *
1849 * RETURNS:
1850 * 0 on success, -errno otherwise.
1da177e4 1851 */
a9beec95 1852int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1853 unsigned int flags, u16 *id)
1da177e4 1854{
9af5c9c9 1855 struct ata_port *ap = dev->link->ap;
49016aca 1856 unsigned int class = *p_class;
a0123703 1857 struct ata_taskfile tf;
49016aca
TH
1858 unsigned int err_mask = 0;
1859 const char *reason;
79b42bab 1860 bool is_semb = class == ATA_DEV_SEMB;
54936f8b 1861 int may_fallback = 1, tried_spinup = 0;
49016aca 1862 int rc;
1da177e4 1863
0dd4b21f 1864 if (ata_msg_ctl(ap))
a9a79dfe 1865 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 1866
963e4975 1867retry:
3373efd8 1868 ata_tf_init(dev, &tf);
a0123703 1869
49016aca 1870 switch (class) {
79b42bab
TH
1871 case ATA_DEV_SEMB:
1872 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
05b83605 1873 /* fall through */
49016aca 1874 case ATA_DEV_ATA:
9162c657 1875 case ATA_DEV_ZAC:
a0123703 1876 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1877 break;
1878 case ATA_DEV_ATAPI:
a0123703 1879 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1880 break;
1881 default:
1882 rc = -ENODEV;
1883 reason = "unsupported class";
1884 goto err_out;
1da177e4
LT
1885 }
1886
a0123703 1887 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1888
1889 /* Some devices choke if TF registers contain garbage. Make
1890 * sure those are properly initialized.
1891 */
1892 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1893
1894 /* Device presence detection is unreliable on some
1895 * controllers. Always poll IDENTIFY if available.
1896 */
1897 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1898
963e4975
AC
1899 if (ap->ops->read_id)
1900 err_mask = ap->ops->read_id(dev, &tf, id);
1901 else
1902 err_mask = ata_do_dev_read_id(dev, &tf, id);
1903
a0123703 1904 if (err_mask) {
800b3996 1905 if (err_mask & AC_ERR_NODEV_HINT) {
a9a79dfe 1906 ata_dev_dbg(dev, "NODEV after polling detection\n");
55a8e2c8
TH
1907 return -ENOENT;
1908 }
1909
79b42bab 1910 if (is_semb) {
a9a79dfe
JP
1911 ata_dev_info(dev,
1912 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
79b42bab
TH
1913 /* SEMB is not supported yet */
1914 *p_class = ATA_DEV_SEMB_UNSUP;
1915 return 0;
1916 }
1917
1ffc151f
TH
1918 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1919 /* Device or controller might have reported
1920 * the wrong device class. Give a shot at the
1921 * other IDENTIFY if the current one is
1922 * aborted by the device.
1923 */
1924 if (may_fallback) {
1925 may_fallback = 0;
1926
1927 if (class == ATA_DEV_ATA)
1928 class = ATA_DEV_ATAPI;
1929 else
1930 class = ATA_DEV_ATA;
1931 goto retry;
1932 }
1933
1934 /* Control reaches here iff the device aborted
1935 * both flavors of IDENTIFYs which happens
1936 * sometimes with phantom devices.
1937 */
a9a79dfe
JP
1938 ata_dev_dbg(dev,
1939 "both IDENTIFYs aborted, assuming NODEV\n");
1ffc151f 1940 return -ENOENT;
54936f8b
TH
1941 }
1942
49016aca
TH
1943 rc = -EIO;
1944 reason = "I/O error";
1da177e4
LT
1945 goto err_out;
1946 }
1947
43c9c591 1948 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
a9a79dfe
JP
1949 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1950 "class=%d may_fallback=%d tried_spinup=%d\n",
1951 class, may_fallback, tried_spinup);
43c9c591
TH
1952 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1953 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1954 }
1955
54936f8b
TH
1956 /* Falling back doesn't make sense if ID data was read
1957 * successfully at least once.
1958 */
1959 may_fallback = 0;
1960
49016aca 1961 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1962
49016aca 1963 /* sanity check */
a4f5749b 1964 rc = -EINVAL;
6070068b 1965 reason = "device reports invalid type";
a4f5749b 1966
9162c657 1967 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
a4f5749b
TH
1968 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1969 goto err_out;
db63a4c8
AW
1970 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1971 ata_id_is_ata(id)) {
1972 ata_dev_dbg(dev,
1973 "host indicates ignore ATA devices, ignored\n");
1974 return -ENOENT;
1975 }
a4f5749b
TH
1976 } else {
1977 if (ata_id_is_ata(id))
1978 goto err_out;
49016aca
TH
1979 }
1980
169439c2
ML
1981 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1982 tried_spinup = 1;
1983 /*
1984 * Drive powered-up in standby mode, and requires a specific
1985 * SET_FEATURES spin-up subcommand before it will accept
1986 * anything other than the original IDENTIFY command.
1987 */
218f3d30 1988 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1989 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1990 rc = -EIO;
1991 reason = "SPINUP failed";
1992 goto err_out;
1993 }
1994 /*
1995 * If the drive initially returned incomplete IDENTIFY info,
1996 * we now must reissue the IDENTIFY command.
1997 */
1998 if (id[2] == 0x37c8)
1999 goto retry;
2000 }
2001
9162c657
HR
2002 if ((flags & ATA_READID_POSTRESET) &&
2003 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
49016aca
TH
2004 /*
2005 * The exact sequence expected by certain pre-ATA4 drives is:
2006 * SRST RESET
50a99018
AC
2007 * IDENTIFY (optional in early ATA)
2008 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2009 * anything else..
2010 * Some drives were very specific about that exact sequence.
50a99018
AC
2011 *
2012 * Note that ATA4 says lba is mandatory so the second check
c9404c9c 2013 * should never trigger.
49016aca
TH
2014 */
2015 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2016 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2017 if (err_mask) {
2018 rc = -EIO;
2019 reason = "INIT_DEV_PARAMS failed";
2020 goto err_out;
2021 }
2022
2023 /* current CHS translation info (id[53-58]) might be
2024 * changed. reread the identify device info.
2025 */
bff04647 2026 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2027 goto retry;
2028 }
2029 }
2030
2031 *p_class = class;
fe635c7e 2032
49016aca
TH
2033 return 0;
2034
2035 err_out:
88574551 2036 if (ata_msg_warn(ap))
a9a79dfe
JP
2037 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2038 reason, err_mask);
49016aca
TH
2039 return rc;
2040}
2041
f01f62c2
CH
2042/**
2043 * ata_read_log_page - read a specific log page
2044 * @dev: target device
2045 * @log: log to read
2046 * @page: page to read
2047 * @buf: buffer to store read page
2048 * @sectors: number of sectors to read
2049 *
2050 * Read log page using READ_LOG_EXT command.
2051 *
2052 * LOCKING:
2053 * Kernel thread context (may sleep).
2054 *
2055 * RETURNS:
2056 * 0 on success, AC_ERR_* mask otherwise.
2057 */
2058unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2059 u8 page, void *buf, unsigned int sectors)
2060{
2061 unsigned long ap_flags = dev->link->ap->flags;
2062 struct ata_taskfile tf;
2063 unsigned int err_mask;
2064 bool dma = false;
2065
2066 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2067
2068 /*
2069 * Return error without actually issuing the command on controllers
2070 * which e.g. lockup on a read log page.
2071 */
2072 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2073 return AC_ERR_DEV;
2074
2075retry:
2076 ata_tf_init(dev, &tf);
2077 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
7cfdfdc8 2078 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
f01f62c2
CH
2079 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2080 tf.protocol = ATA_PROT_DMA;
2081 dma = true;
2082 } else {
2083 tf.command = ATA_CMD_READ_LOG_EXT;
2084 tf.protocol = ATA_PROT_PIO;
2085 dma = false;
2086 }
2087 tf.lbal = log;
2088 tf.lbam = page;
2089 tf.nsect = sectors;
2090 tf.hob_nsect = sectors >> 8;
2091 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2092
2093 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2094 buf, sectors * ATA_SECT_SIZE, 0);
2095
2096 if (err_mask && dma) {
7cfdfdc8
DLM
2097 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2098 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
f01f62c2
CH
2099 goto retry;
2100 }
2101
2102 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2103 return err_mask;
2104}
2105
efe205a3
CH
2106static bool ata_log_supported(struct ata_device *dev, u8 log)
2107{
2108 struct ata_port *ap = dev->link->ap;
2109
2110 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2111 return false;
2112 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2113}
2114
a0fd2454
CH
2115static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2116{
2117 struct ata_port *ap = dev->link->ap;
2118 unsigned int err, i;
2119
2120 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2121 ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2122 return false;
2123 }
2124
2125 /*
2126 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2127 * supported.
2128 */
2129 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2130 1);
2131 if (err) {
2132 ata_dev_info(dev,
2133 "failed to get Device Identify Log Emask 0x%x\n",
2134 err);
2135 return false;
2136 }
2137
2138 for (i = 0; i < ap->sector_buf[8]; i++) {
2139 if (ap->sector_buf[9 + i] == page)
2140 return true;
2141 }
2142
2143 return false;
2144}
2145
9062712f
TH
2146static int ata_do_link_spd_horkage(struct ata_device *dev)
2147{
2148 struct ata_link *plink = ata_dev_phys_link(dev);
2149 u32 target, target_limit;
2150
2151 if (!sata_scr_valid(plink))
2152 return 0;
2153
2154 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2155 target = 1;
2156 else
2157 return 0;
2158
2159 target_limit = (1 << target) - 1;
2160
2161 /* if already on stricter limit, no need to push further */
2162 if (plink->sata_spd_limit <= target_limit)
2163 return 0;
2164
2165 plink->sata_spd_limit = target_limit;
2166
2167 /* Request another EH round by returning -EAGAIN if link is
2168 * going faster than the target speed. Forward progress is
2169 * guaranteed by setting sata_spd_limit to target_limit above.
2170 */
2171 if (plink->sata_spd > target) {
a9a79dfe
JP
2172 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2173 sata_spd_string(target));
9062712f
TH
2174 return -EAGAIN;
2175 }
2176 return 0;
2177}
2178
3373efd8 2179static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2180{
9af5c9c9 2181 struct ata_port *ap = dev->link->ap;
9ce8e307
JA
2182
2183 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2184 return 0;
2185
9af5c9c9 2186 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2187}
2188
5a233551
HR
2189static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2190{
2191 struct ata_port *ap = dev->link->ap;
2192 unsigned int err_mask;
2193
efe205a3
CH
2194 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2195 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
fe5af0cc
HR
2196 return;
2197 }
5a233551
HR
2198 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2199 0, ap->sector_buf, 1);
2200 if (err_mask) {
2201 ata_dev_dbg(dev,
2202 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2203 err_mask);
2204 } else {
2205 u8 *cmds = dev->ncq_send_recv_cmds;
2206
2207 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2208 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2209
2210 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2211 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2212 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2213 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2214 }
2215 }
2216}
2217
284b3b77
HR
2218static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2219{
2220 struct ata_port *ap = dev->link->ap;
2221 unsigned int err_mask;
284b3b77 2222
efe205a3 2223 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
284b3b77
HR
2224 ata_dev_warn(dev,
2225 "NCQ Send/Recv Log not supported\n");
2226 return;
2227 }
2228 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2229 0, ap->sector_buf, 1);
2230 if (err_mask) {
2231 ata_dev_dbg(dev,
2232 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2233 err_mask);
2234 } else {
2235 u8 *cmds = dev->ncq_non_data_cmds;
2236
2237 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2238 }
2239}
2240
8e061784
AM
2241static void ata_dev_config_ncq_prio(struct ata_device *dev)
2242{
2243 struct ata_port *ap = dev->link->ap;
2244 unsigned int err_mask;
2245
9f56eca3
AM
2246 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2247 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2248 return;
2249 }
2250
8e061784 2251 err_mask = ata_read_log_page(dev,
1d51d5f3 2252 ATA_LOG_IDENTIFY_DEVICE,
8e061784
AM
2253 ATA_LOG_SATA_SETTINGS,
2254 ap->sector_buf,
2255 1);
2256 if (err_mask) {
2257 ata_dev_dbg(dev,
2258 "failed to get Identify Device data, Emask 0x%x\n",
2259 err_mask);
2260 return;
2261 }
2262
9f56eca3 2263 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
8e061784 2264 dev->flags |= ATA_DFLAG_NCQ_PRIO;
9f56eca3
AM
2265 } else {
2266 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
8e061784 2267 ata_dev_dbg(dev, "SATA page does not support priority\n");
9f56eca3 2268 }
8e061784
AM
2269
2270}
2271
388539f3 2272static int ata_dev_config_ncq(struct ata_device *dev,
a6e6ce8e
TH
2273 char *desc, size_t desc_sz)
2274{
9af5c9c9 2275 struct ata_port *ap = dev->link->ap;
a6e6ce8e 2276 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
388539f3
SL
2277 unsigned int err_mask;
2278 char *aa_desc = "";
a6e6ce8e
TH
2279
2280 if (!ata_id_has_ncq(dev->id)) {
2281 desc[0] = '\0';
388539f3 2282 return 0;
a6e6ce8e 2283 }
75683fe7 2284 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6 2285 snprintf(desc, desc_sz, "NCQ (not used)");
388539f3 2286 return 0;
6919a0a6 2287 }
a6e6ce8e 2288 if (ap->flags & ATA_FLAG_NCQ) {
69278f79 2289 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
a6e6ce8e
TH
2290 dev->flags |= ATA_DFLAG_NCQ;
2291 }
2292
388539f3
SL
2293 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2294 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2295 ata_id_has_fpdma_aa(dev->id)) {
2296 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2297 SATA_FPDMA_AA);
2298 if (err_mask) {
a9a79dfe
JP
2299 ata_dev_err(dev,
2300 "failed to enable AA (error_mask=0x%x)\n",
2301 err_mask);
388539f3
SL
2302 if (err_mask != AC_ERR_DEV) {
2303 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2304 return -EIO;
2305 }
2306 } else
2307 aa_desc = ", AA";
2308 }
2309
a6e6ce8e 2310 if (hdepth >= ddepth)
388539f3 2311 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
a6e6ce8e 2312 else
388539f3
SL
2313 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2314 ddepth, aa_desc);
ed36911c 2315
284b3b77
HR
2316 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2317 if (ata_id_has_ncq_send_and_recv(dev->id))
2318 ata_dev_config_ncq_send_recv(dev);
2319 if (ata_id_has_ncq_non_data(dev->id))
2320 ata_dev_config_ncq_non_data(dev);
8e061784
AM
2321 if (ata_id_has_ncq_prio(dev->id))
2322 ata_dev_config_ncq_prio(dev);
284b3b77 2323 }
f78dea06 2324
388539f3 2325 return 0;
a6e6ce8e 2326}
f78dea06 2327
e87fd28c
HR
2328static void ata_dev_config_sense_reporting(struct ata_device *dev)
2329{
2330 unsigned int err_mask;
2331
2332 if (!ata_id_has_sense_reporting(dev->id))
2333 return;
2334
2335 if (ata_id_sense_reporting_enabled(dev->id))
2336 return;
2337
2338 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2339 if (err_mask) {
2340 ata_dev_dbg(dev,
2341 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2342 err_mask);
2343 }
2344}
2345
6d1003ae
HR
2346static void ata_dev_config_zac(struct ata_device *dev)
2347{
2348 struct ata_port *ap = dev->link->ap;
2349 unsigned int err_mask;
2350 u8 *identify_buf = ap->sector_buf;
6d1003ae
HR
2351
2352 dev->zac_zones_optimal_open = U32_MAX;
2353 dev->zac_zones_optimal_nonseq = U32_MAX;
2354 dev->zac_zones_max_open = U32_MAX;
2355
2356 /*
2357 * Always set the 'ZAC' flag for Host-managed devices.
2358 */
2359 if (dev->class == ATA_DEV_ZAC)
2360 dev->flags |= ATA_DFLAG_ZAC;
2361 else if (ata_id_zoned_cap(dev->id) == 0x01)
2362 /*
2363 * Check for host-aware devices.
2364 */
2365 dev->flags |= ATA_DFLAG_ZAC;
2366
2367 if (!(dev->flags & ATA_DFLAG_ZAC))
2368 return;
2369
a0fd2454 2370 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
6d1003ae
HR
2371 ata_dev_warn(dev,
2372 "ATA Zoned Information Log not supported\n");
2373 return;
2374 }
ed36911c 2375
6d1003ae
HR
2376 /*
2377 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2378 */
1d51d5f3 2379 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
6d1003ae
HR
2380 ATA_LOG_ZONED_INFORMATION,
2381 identify_buf, 1);
2382 if (!err_mask) {
2383 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2384
2385 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2386 if ((zoned_cap >> 63))
2387 dev->zac_zoned_cap = (zoned_cap & 1);
2388 opt_open = get_unaligned_le64(&identify_buf[24]);
2389 if ((opt_open >> 63))
2390 dev->zac_zones_optimal_open = (u32)opt_open;
2391 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2392 if ((opt_nonseq >> 63))
2393 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2394 max_open = get_unaligned_le64(&identify_buf[40]);
2395 if ((max_open >> 63))
2396 dev->zac_zones_max_open = (u32)max_open;
2397 }
a6e6ce8e
TH
2398}
2399
818831c8
CH
2400static void ata_dev_config_trusted(struct ata_device *dev)
2401{
2402 struct ata_port *ap = dev->link->ap;
2403 u64 trusted_cap;
2404 unsigned int err;
2405
e8f11db9
CH
2406 if (!ata_id_has_trusted(dev->id))
2407 return;
2408
818831c8
CH
2409 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2410 ata_dev_warn(dev,
2411 "Security Log not supported\n");
2412 return;
2413 }
2414
2415 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2416 ap->sector_buf, 1);
2417 if (err) {
2418 ata_dev_dbg(dev,
2419 "failed to read Security Log, Emask 0x%x\n", err);
2420 return;
2421 }
2422
2423 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2424 if (!(trusted_cap & (1ULL << 63))) {
2425 ata_dev_dbg(dev,
2426 "Trusted Computing capability qword not valid!\n");
2427 return;
2428 }
2429
2430 if (trusted_cap & (1 << 0))
2431 dev->flags |= ATA_DFLAG_TRUSTED;
2432}
2433
49016aca 2434/**
ffeae418 2435 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2436 * @dev: Target device to configure
2437 *
2438 * Configure @dev according to @dev->id. Generic and low-level
2439 * driver specific fixups are also applied.
49016aca
TH
2440 *
2441 * LOCKING:
ffeae418
TH
2442 * Kernel thread context (may sleep)
2443 *
2444 * RETURNS:
2445 * 0 on success, -errno otherwise
49016aca 2446 */
efdaedc4 2447int ata_dev_configure(struct ata_device *dev)
49016aca 2448{
9af5c9c9
TH
2449 struct ata_port *ap = dev->link->ap;
2450 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2451 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2452 const u16 *id = dev->id;
7dc951ae 2453 unsigned long xfer_mask;
65fe1f0f 2454 unsigned int err_mask;
b352e57d 2455 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2456 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2457 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2458 int rc;
49016aca 2459
0dd4b21f 2460 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
a9a79dfe 2461 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
ffeae418 2462 return 0;
49016aca
TH
2463 }
2464
0dd4b21f 2465 if (ata_msg_probe(ap))
a9a79dfe 2466 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 2467
75683fe7
TH
2468 /* set horkage */
2469 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2470 ata_force_horkage(dev);
75683fe7 2471
50af2fa1 2472 if (dev->horkage & ATA_HORKAGE_DISABLE) {
a9a79dfe 2473 ata_dev_info(dev, "unsupported device, disabling\n");
50af2fa1
TH
2474 ata_dev_disable(dev);
2475 return 0;
2476 }
2477
2486fa56
TH
2478 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2479 dev->class == ATA_DEV_ATAPI) {
a9a79dfe
JP
2480 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2481 atapi_enabled ? "not supported with this driver"
2482 : "disabled");
2486fa56
TH
2483 ata_dev_disable(dev);
2484 return 0;
2485 }
2486
9062712f
TH
2487 rc = ata_do_link_spd_horkage(dev);
2488 if (rc)
2489 return rc;
2490
ecd75ad5
TH
2491 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2492 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2493 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2494 dev->horkage |= ATA_HORKAGE_NOLPM;
2495
2496 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2497 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2498 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2499 }
2500
6746544c
TH
2501 /* let ACPI work its magic */
2502 rc = ata_acpi_on_devcfg(dev);
2503 if (rc)
2504 return rc;
08573a86 2505
05027adc
TH
2506 /* massage HPA, do it early as it might change IDENTIFY data */
2507 rc = ata_hpa_resize(dev);
2508 if (rc)
2509 return rc;
2510
c39f5ebe 2511 /* print device capabilities */
0dd4b21f 2512 if (ata_msg_probe(ap))
a9a79dfe
JP
2513 ata_dev_dbg(dev,
2514 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2515 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2516 __func__,
2517 id[49], id[82], id[83], id[84],
2518 id[85], id[86], id[87], id[88]);
c39f5ebe 2519
208a9933 2520 /* initialize to-be-configured parameters */
ea1dd4e1 2521 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2522 dev->max_sectors = 0;
2523 dev->cdb_len = 0;
2524 dev->n_sectors = 0;
2525 dev->cylinders = 0;
2526 dev->heads = 0;
2527 dev->sectors = 0;
e18086d6 2528 dev->multi_count = 0;
208a9933 2529
1da177e4
LT
2530 /*
2531 * common ATA, ATAPI feature tests
2532 */
2533
ff8854b2 2534 /* find max transfer mode; for printk only */
1148c3a7 2535 xfer_mask = ata_id_xfermask(id);
1da177e4 2536
0dd4b21f
BP
2537 if (ata_msg_probe(ap))
2538 ata_dump_id(id);
1da177e4 2539
ef143d57
AL
2540 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2541 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2542 sizeof(fwrevbuf));
2543
2544 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2545 sizeof(modelbuf));
2546
1da177e4 2547 /* ATA-specific feature tests */
9162c657 2548 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
b352e57d 2549 if (ata_id_is_cfa(id)) {
62afe5d7
SS
2550 /* CPRM may make this media unusable */
2551 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
a9a79dfe
JP
2552 ata_dev_warn(dev,
2553 "supports DRM functions and may not be fully accessible\n");
b352e57d 2554 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2555 } else {
2dcb407e 2556 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2557 /* Warn the user if the device has TPM extensions */
2558 if (ata_id_has_tpm(id))
a9a79dfe
JP
2559 ata_dev_warn(dev,
2560 "supports DRM functions and may not be fully accessible\n");
ae8d4ee7 2561 }
b352e57d 2562
1148c3a7 2563 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2564
e18086d6
ML
2565 /* get current R/W Multiple count setting */
2566 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2567 unsigned int max = dev->id[47] & 0xff;
2568 unsigned int cnt = dev->id[59] & 0xff;
2569 /* only recognize/allow powers of two here */
2570 if (is_power_of_2(max) && is_power_of_2(cnt))
2571 if (cnt <= max)
2572 dev->multi_count = cnt;
2573 }
3f64f565 2574
1148c3a7 2575 if (ata_id_has_lba(id)) {
4c2d721a 2576 const char *lba_desc;
388539f3 2577 char ncq_desc[24];
8bf62ece 2578
4c2d721a
TH
2579 lba_desc = "LBA";
2580 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2581 if (ata_id_has_lba48(id)) {
8bf62ece 2582 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2583 lba_desc = "LBA48";
6fc49adb
TH
2584
2585 if (dev->n_sectors >= (1UL << 28) &&
2586 ata_id_has_flush_ext(id))
2587 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2588 }
8bf62ece 2589
a6e6ce8e 2590 /* config NCQ */
388539f3
SL
2591 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2592 if (rc)
2593 return rc;
a6e6ce8e 2594
8bf62ece 2595 /* print device info to dmesg */
3f64f565 2596 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2597 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2598 revbuf, modelbuf, fwrevbuf,
2599 ata_mode_string(xfer_mask));
2600 ata_dev_info(dev,
2601 "%llu sectors, multi %u: %s %s\n",
f15a1daf 2602 (unsigned long long)dev->n_sectors,
3f64f565
EM
2603 dev->multi_count, lba_desc, ncq_desc);
2604 }
ffeae418 2605 } else {
8bf62ece
AL
2606 /* CHS */
2607
2608 /* Default translation */
1148c3a7
TH
2609 dev->cylinders = id[1];
2610 dev->heads = id[3];
2611 dev->sectors = id[6];
8bf62ece 2612
1148c3a7 2613 if (ata_id_current_chs_valid(id)) {
8bf62ece 2614 /* Current CHS translation is valid. */
1148c3a7
TH
2615 dev->cylinders = id[54];
2616 dev->heads = id[55];
2617 dev->sectors = id[56];
8bf62ece
AL
2618 }
2619
2620 /* print device info to dmesg */
3f64f565 2621 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2622 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2623 revbuf, modelbuf, fwrevbuf,
2624 ata_mode_string(xfer_mask));
2625 ata_dev_info(dev,
2626 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2627 (unsigned long long)dev->n_sectors,
2628 dev->multi_count, dev->cylinders,
2629 dev->heads, dev->sectors);
3f64f565 2630 }
07f6f7d0
AL
2631 }
2632
803739d2
SH
2633 /* Check and mark DevSlp capability. Get DevSlp timing variables
2634 * from SATA Settings page of Identify Device Data Log.
65fe1f0f 2635 */
803739d2 2636 if (ata_id_has_devslp(dev->id)) {
8e725c7f 2637 u8 *sata_setting = ap->sector_buf;
803739d2
SH
2638 int i, j;
2639
2640 dev->flags |= ATA_DFLAG_DEVSLP;
65fe1f0f 2641 err_mask = ata_read_log_page(dev,
1d51d5f3 2642 ATA_LOG_IDENTIFY_DEVICE,
65fe1f0f 2643 ATA_LOG_SATA_SETTINGS,
803739d2 2644 sata_setting,
65fe1f0f
SH
2645 1);
2646 if (err_mask)
2647 ata_dev_dbg(dev,
2648 "failed to get Identify Device Data, Emask 0x%x\n",
2649 err_mask);
803739d2
SH
2650 else
2651 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2652 j = ATA_LOG_DEVSLP_OFFSET + i;
2653 dev->devslp_timing[i] = sata_setting[j];
2654 }
65fe1f0f 2655 }
e87fd28c 2656 ata_dev_config_sense_reporting(dev);
6d1003ae 2657 ata_dev_config_zac(dev);
818831c8 2658 ata_dev_config_trusted(dev);
b1ffbf85 2659 dev->cdb_len = 32;
1da177e4
LT
2660 }
2661
2662 /* ATAPI-specific feature tests */
2c13b7ce 2663 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2664 const char *cdb_intr_string = "";
2665 const char *atapi_an_string = "";
91163006 2666 const char *dma_dir_string = "";
7d77b247 2667 u32 sntf;
08a556db 2668
1148c3a7 2669 rc = atapi_cdb_len(id);
1da177e4 2670 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2671 if (ata_msg_warn(ap))
a9a79dfe 2672 ata_dev_warn(dev, "unsupported CDB len\n");
ffeae418 2673 rc = -EINVAL;
1da177e4
LT
2674 goto err_out_nosup;
2675 }
6e7846e9 2676 dev->cdb_len = (unsigned int) rc;
1da177e4 2677
7d77b247
TH
2678 /* Enable ATAPI AN if both the host and device have
2679 * the support. If PMP is attached, SNTF is required
2680 * to enable ATAPI AN to discern between PHY status
2681 * changed notifications and ATAPI ANs.
9f45cbd3 2682 */
e7ecd435
TH
2683 if (atapi_an &&
2684 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2685 (!sata_pmp_attached(ap) ||
7d77b247 2686 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
9f45cbd3 2687 /* issue SET feature command to turn this on */
218f3d30
JG
2688 err_mask = ata_dev_set_feature(dev,
2689 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2690 if (err_mask)
a9a79dfe
JP
2691 ata_dev_err(dev,
2692 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2693 err_mask);
854c73a2 2694 else {
9f45cbd3 2695 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2696 atapi_an_string = ", ATAPI AN";
2697 }
9f45cbd3
KCA
2698 }
2699
08a556db 2700 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2701 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2702 cdb_intr_string = ", CDB intr";
2703 }
312f7da2 2704
966fbe19 2705 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
91163006
TH
2706 dev->flags |= ATA_DFLAG_DMADIR;
2707 dma_dir_string = ", DMADIR";
2708 }
2709
afe75951 2710 if (ata_id_has_da(dev->id)) {
b1354cbb 2711 dev->flags |= ATA_DFLAG_DA;
afe75951
AL
2712 zpodd_init(dev);
2713 }
b1354cbb 2714
1da177e4 2715 /* print device info to dmesg */
5afc8142 2716 if (ata_msg_drv(ap) && print_info)
a9a79dfe
JP
2717 ata_dev_info(dev,
2718 "ATAPI: %s, %s, max %s%s%s%s\n",
2719 modelbuf, fwrevbuf,
2720 ata_mode_string(xfer_mask),
2721 cdb_intr_string, atapi_an_string,
2722 dma_dir_string);
1da177e4
LT
2723 }
2724
914ed354
TH
2725 /* determine max_sectors */
2726 dev->max_sectors = ATA_MAX_SECTORS;
2727 if (dev->flags & ATA_DFLAG_LBA48)
2728 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2729
c5038fc0
AC
2730 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2731 200 sectors */
3373efd8 2732 if (ata_dev_knobble(dev)) {
5afc8142 2733 if (ata_msg_drv(ap) && print_info)
a9a79dfe 2734 ata_dev_info(dev, "applying bridge limits\n");
5a529139 2735 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2736 dev->max_sectors = ATA_MAX_SECTORS;
2737 }
2738
f8d8e579 2739 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2740 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2741 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2742 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2743 }
f8d8e579 2744
75683fe7 2745 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2746 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2747 dev->max_sectors);
18d6e9d5 2748
af34d637
DM
2749 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2750 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2751 dev->max_sectors);
2752
a32450e1
SH
2753 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2754 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2755
4b2f3ede 2756 if (ap->ops->dev_config)
cd0d3bbc 2757 ap->ops->dev_config(dev);
4b2f3ede 2758
c5038fc0
AC
2759 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2760 /* Let the user know. We don't want to disallow opens for
2761 rescue purposes, or in case the vendor is just a blithering
2762 idiot. Do this after the dev_config call as some controllers
2763 with buggy firmware may want to avoid reporting false device
2764 bugs */
2765
2766 if (print_info) {
a9a79dfe 2767 ata_dev_warn(dev,
c5038fc0 2768"Drive reports diagnostics failure. This may indicate a drive\n");
a9a79dfe 2769 ata_dev_warn(dev,
c5038fc0
AC
2770"fault or invalid emulation. Contact drive vendor for information.\n");
2771 }
2772 }
2773
ac70a964 2774 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
a9a79dfe
JP
2775 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2776 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
ac70a964
TH
2777 }
2778
ffeae418 2779 return 0;
1da177e4
LT
2780
2781err_out_nosup:
0dd4b21f 2782 if (ata_msg_probe(ap))
a9a79dfe 2783 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
ffeae418 2784 return rc;
1da177e4
LT
2785}
2786
be0d18df 2787/**
2e41e8e6 2788 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2789 * @ap: port
2790 *
2e41e8e6 2791 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2792 * detection.
2793 */
2794
2795int ata_cable_40wire(struct ata_port *ap)
2796{
2797 return ATA_CBL_PATA40;
2798}
2799
2800/**
2e41e8e6 2801 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2802 * @ap: port
2803 *
2e41e8e6 2804 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2805 * detection.
2806 */
2807
2808int ata_cable_80wire(struct ata_port *ap)
2809{
2810 return ATA_CBL_PATA80;
2811}
2812
2813/**
2814 * ata_cable_unknown - return unknown PATA cable.
2815 * @ap: port
2816 *
2817 * Helper method for drivers which have no PATA cable detection.
2818 */
2819
2820int ata_cable_unknown(struct ata_port *ap)
2821{
2822 return ATA_CBL_PATA_UNK;
2823}
2824
c88f90c3
TH
2825/**
2826 * ata_cable_ignore - return ignored PATA cable.
2827 * @ap: port
2828 *
2829 * Helper method for drivers which don't use cable type to limit
2830 * transfer mode.
2831 */
2832int ata_cable_ignore(struct ata_port *ap)
2833{
2834 return ATA_CBL_PATA_IGN;
2835}
2836
be0d18df
AC
2837/**
2838 * ata_cable_sata - return SATA cable type
2839 * @ap: port
2840 *
2841 * Helper method for drivers which have SATA cables
2842 */
2843
2844int ata_cable_sata(struct ata_port *ap)
2845{
2846 return ATA_CBL_SATA;
2847}
2848
1da177e4
LT
2849/**
2850 * ata_bus_probe - Reset and probe ATA bus
2851 * @ap: Bus to probe
2852 *
0cba632b
JG
2853 * Master ATA bus probing function. Initiates a hardware-dependent
2854 * bus reset, then attempts to identify any devices found on
2855 * the bus.
2856 *
1da177e4 2857 * LOCKING:
0cba632b 2858 * PCI/etc. bus probe sem.
1da177e4
LT
2859 *
2860 * RETURNS:
96072e69 2861 * Zero on success, negative errno otherwise.
1da177e4
LT
2862 */
2863
80289167 2864int ata_bus_probe(struct ata_port *ap)
1da177e4 2865{
28ca5c57 2866 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2867 int tries[ATA_MAX_DEVICES];
f58229f8 2868 int rc;
e82cbdb9 2869 struct ata_device *dev;
1da177e4 2870
1eca4365 2871 ata_for_each_dev(dev, &ap->link, ALL)
f58229f8 2872 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2873
2874 retry:
1eca4365 2875 ata_for_each_dev(dev, &ap->link, ALL) {
cdeab114
TH
2876 /* If we issue an SRST then an ATA drive (not ATAPI)
2877 * may change configuration and be in PIO0 timing. If
2878 * we do a hard reset (or are coming from power on)
2879 * this is true for ATA or ATAPI. Until we've set a
2880 * suitable controller mode we should not touch the
2881 * bus as we may be talking too fast.
2882 */
2883 dev->pio_mode = XFER_PIO_0;
5416912a 2884 dev->dma_mode = 0xff;
cdeab114
TH
2885
2886 /* If the controller has a pio mode setup function
2887 * then use it to set the chipset to rights. Don't
2888 * touch the DMA setup as that will be dealt with when
2889 * configuring devices.
2890 */
2891 if (ap->ops->set_piomode)
2892 ap->ops->set_piomode(ap, dev);
2893 }
2894
2044470c 2895 /* reset and determine device classes */
52783c5d 2896 ap->ops->phy_reset(ap);
2061a47a 2897
1eca4365 2898 ata_for_each_dev(dev, &ap->link, ALL) {
3e4ec344 2899 if (dev->class != ATA_DEV_UNKNOWN)
52783c5d
TH
2900 classes[dev->devno] = dev->class;
2901 else
2902 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2903
52783c5d 2904 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2905 }
1da177e4 2906
f31f0cc2
JG
2907 /* read IDENTIFY page and configure devices. We have to do the identify
2908 specific sequence bass-ackwards so that PDIAG- is released by
2909 the slave device */
2910
1eca4365 2911 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
f58229f8
TH
2912 if (tries[dev->devno])
2913 dev->class = classes[dev->devno];
ffeae418 2914
14d2bac1 2915 if (!ata_dev_enabled(dev))
ffeae418 2916 continue;
ffeae418 2917
bff04647
TH
2918 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2919 dev->id);
14d2bac1
TH
2920 if (rc)
2921 goto fail;
f31f0cc2
JG
2922 }
2923
be0d18df
AC
2924 /* Now ask for the cable type as PDIAG- should have been released */
2925 if (ap->ops->cable_detect)
2926 ap->cbl = ap->ops->cable_detect(ap);
2927
1eca4365
TH
2928 /* We may have SATA bridge glue hiding here irrespective of
2929 * the reported cable types and sensed types. When SATA
2930 * drives indicate we have a bridge, we don't know which end
2931 * of the link the bridge is which is a problem.
2932 */
2933 ata_for_each_dev(dev, &ap->link, ENABLED)
614fe29b
AC
2934 if (ata_id_is_sata(dev->id))
2935 ap->cbl = ATA_CBL_SATA;
614fe29b 2936
f31f0cc2
JG
2937 /* After the identify sequence we can now set up the devices. We do
2938 this in the normal order so that the user doesn't get confused */
2939
1eca4365 2940 ata_for_each_dev(dev, &ap->link, ENABLED) {
9af5c9c9 2941 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2942 rc = ata_dev_configure(dev);
9af5c9c9 2943 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2944 if (rc)
2945 goto fail;
1da177e4
LT
2946 }
2947
e82cbdb9 2948 /* configure transfer mode */
0260731f 2949 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2950 if (rc)
51713d35 2951 goto fail;
1da177e4 2952
1eca4365
TH
2953 ata_for_each_dev(dev, &ap->link, ENABLED)
2954 return 0;
1da177e4 2955
96072e69 2956 return -ENODEV;
14d2bac1
TH
2957
2958 fail:
4ae72a1e
TH
2959 tries[dev->devno]--;
2960
14d2bac1
TH
2961 switch (rc) {
2962 case -EINVAL:
4ae72a1e 2963 /* eeek, something went very wrong, give up */
14d2bac1
TH
2964 tries[dev->devno] = 0;
2965 break;
4ae72a1e
TH
2966
2967 case -ENODEV:
2968 /* give it just one more chance */
2969 tries[dev->devno] = min(tries[dev->devno], 1);
05b83605 2970 /* fall through */
14d2bac1 2971 case -EIO:
4ae72a1e
TH
2972 if (tries[dev->devno] == 1) {
2973 /* This is the last chance, better to slow
2974 * down than lose it.
2975 */
a07d499b 2976 sata_down_spd_limit(&ap->link, 0);
4ae72a1e
TH
2977 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2978 }
14d2bac1
TH
2979 }
2980
4ae72a1e 2981 if (!tries[dev->devno])
3373efd8 2982 ata_dev_disable(dev);
ec573755 2983
14d2bac1 2984 goto retry;
1da177e4
LT
2985}
2986
3be680b7
TH
2987/**
2988 * sata_print_link_status - Print SATA link status
936fd732 2989 * @link: SATA link to printk link status about
3be680b7
TH
2990 *
2991 * This function prints link speed and status of a SATA link.
2992 *
2993 * LOCKING:
2994 * None.
2995 */
6bdb4fc9 2996static void sata_print_link_status(struct ata_link *link)
3be680b7 2997{
6d5f9732 2998 u32 sstatus, scontrol, tmp;
3be680b7 2999
936fd732 3000 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 3001 return;
936fd732 3002 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 3003
b1c72916 3004 if (ata_phys_link_online(link)) {
3be680b7 3005 tmp = (sstatus >> 4) & 0xf;
a9a79dfe
JP
3006 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3007 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 3008 } else {
a9a79dfe
JP
3009 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3010 sstatus, scontrol);
3be680b7
TH
3011 }
3012}
3013
ebdfca6e
AC
3014/**
3015 * ata_dev_pair - return other device on cable
ebdfca6e
AC
3016 * @adev: device
3017 *
3018 * Obtain the other device on the same cable, or if none is
3019 * present NULL is returned
3020 */
2e9edbf8 3021
3373efd8 3022struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 3023{
9af5c9c9
TH
3024 struct ata_link *link = adev->link;
3025 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 3026 if (!ata_dev_enabled(pair))
ebdfca6e
AC
3027 return NULL;
3028 return pair;
3029}
3030
1c3fae4d 3031/**
3c567b7d 3032 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 3033 * @link: Link to adjust SATA spd limit for
a07d499b 3034 * @spd_limit: Additional limit
1c3fae4d 3035 *
936fd732 3036 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 3037 * function only adjusts the limit. The change must be applied
3c567b7d 3038 * using sata_set_spd().
1c3fae4d 3039 *
a07d499b
TH
3040 * If @spd_limit is non-zero, the speed is limited to equal to or
3041 * lower than @spd_limit if such speed is supported. If
3042 * @spd_limit is slower than any supported speed, only the lowest
3043 * supported speed is allowed.
3044 *
1c3fae4d
TH
3045 * LOCKING:
3046 * Inherited from caller.
3047 *
3048 * RETURNS:
3049 * 0 on success, negative errno on failure
3050 */
a07d499b 3051int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
1c3fae4d 3052{
81952c54 3053 u32 sstatus, spd, mask;
a07d499b 3054 int rc, bit;
1c3fae4d 3055
936fd732 3056 if (!sata_scr_valid(link))
008a7896
TH
3057 return -EOPNOTSUPP;
3058
3059 /* If SCR can be read, use it to determine the current SPD.
936fd732 3060 * If not, use cached value in link->sata_spd.
008a7896 3061 */
936fd732 3062 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
9913ff8a 3063 if (rc == 0 && ata_sstatus_online(sstatus))
008a7896
TH
3064 spd = (sstatus >> 4) & 0xf;
3065 else
936fd732 3066 spd = link->sata_spd;
1c3fae4d 3067
936fd732 3068 mask = link->sata_spd_limit;
1c3fae4d
TH
3069 if (mask <= 1)
3070 return -EINVAL;
008a7896
TH
3071
3072 /* unconditionally mask off the highest bit */
a07d499b
TH
3073 bit = fls(mask) - 1;
3074 mask &= ~(1 << bit);
1c3fae4d 3075
2dc0b46b
DM
3076 /*
3077 * Mask off all speeds higher than or equal to the current one. At
3078 * this point, if current SPD is not available and we previously
3079 * recorded the link speed from SStatus, the driver has already
3080 * masked off the highest bit so mask should already be 1 or 0.
3081 * Otherwise, we should not force 1.5Gbps on a link where we have
3082 * not previously recorded speed from SStatus. Just return in this
3083 * case.
008a7896
TH
3084 */
3085 if (spd > 1)
3086 mask &= (1 << (spd - 1)) - 1;
3087 else
2dc0b46b 3088 return -EINVAL;
008a7896
TH
3089
3090 /* were we already at the bottom? */
1c3fae4d
TH
3091 if (!mask)
3092 return -EINVAL;
3093
a07d499b
TH
3094 if (spd_limit) {
3095 if (mask & ((1 << spd_limit) - 1))
3096 mask &= (1 << spd_limit) - 1;
3097 else {
3098 bit = ffs(mask) - 1;
3099 mask = 1 << bit;
3100 }
3101 }
3102
936fd732 3103 link->sata_spd_limit = mask;
1c3fae4d 3104
a9a79dfe
JP
3105 ata_link_warn(link, "limiting SATA link speed to %s\n",
3106 sata_spd_string(fls(mask)));
1c3fae4d
TH
3107
3108 return 0;
3109}
3110
936fd732 3111static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 3112{
5270222f
TH
3113 struct ata_link *host_link = &link->ap->link;
3114 u32 limit, target, spd;
1c3fae4d 3115
5270222f
TH
3116 limit = link->sata_spd_limit;
3117
3118 /* Don't configure downstream link faster than upstream link.
3119 * It doesn't speed up anything and some PMPs choke on such
3120 * configuration.
3121 */
3122 if (!ata_is_host_link(link) && host_link->sata_spd)
3123 limit &= (1 << host_link->sata_spd) - 1;
3124
3125 if (limit == UINT_MAX)
3126 target = 0;
1c3fae4d 3127 else
5270222f 3128 target = fls(limit);
1c3fae4d
TH
3129
3130 spd = (*scontrol >> 4) & 0xf;
5270222f 3131 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 3132
5270222f 3133 return spd != target;
1c3fae4d
TH
3134}
3135
3136/**
3c567b7d 3137 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 3138 * @link: Link in question
1c3fae4d
TH
3139 *
3140 * Test whether the spd limit in SControl matches
936fd732 3141 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
3142 * whether hardreset is necessary to apply SATA spd
3143 * configuration.
3144 *
3145 * LOCKING:
3146 * Inherited from caller.
3147 *
3148 * RETURNS:
3149 * 1 if SATA spd configuration is needed, 0 otherwise.
3150 */
1dc55e87 3151static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
3152{
3153 u32 scontrol;
3154
936fd732 3155 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 3156 return 1;
1c3fae4d 3157
936fd732 3158 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
3159}
3160
3161/**
3c567b7d 3162 * sata_set_spd - set SATA spd according to spd limit
936fd732 3163 * @link: Link to set SATA spd for
1c3fae4d 3164 *
936fd732 3165 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
3166 *
3167 * LOCKING:
3168 * Inherited from caller.
3169 *
3170 * RETURNS:
3171 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 3172 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 3173 */
936fd732 3174int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
3175{
3176 u32 scontrol;
81952c54 3177 int rc;
1c3fae4d 3178
936fd732 3179 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3180 return rc;
1c3fae4d 3181
936fd732 3182 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
3183 return 0;
3184
936fd732 3185 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
3186 return rc;
3187
1c3fae4d
TH
3188 return 1;
3189}
3190
452503f9
AC
3191/*
3192 * This mode timing computation functionality is ported over from
3193 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3194 */
3195/*
b352e57d 3196 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 3197 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
3198 * for UDMA6, which is currently supported only by Maxtor drives.
3199 *
3200 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
3201 */
3202
3203static const struct ata_timing ata_timing[] = {
3ada9c12
DD
3204/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3205 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3206 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3207 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3208 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3209 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3210 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3211 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3212
3213 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3214 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3215 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3216
3217 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3218 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3219 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3220 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3221 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3222
3223/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3224 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3225 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3226 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3227 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3228 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3229 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3230 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
3231
3232 { 0xFF }
3233};
3234
2dcb407e 3235#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
23e4c67a 3236#define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0)
452503f9
AC
3237
3238static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3239{
23e4c67a
AB
3240 q->setup = EZ(t->setup, T);
3241 q->act8b = EZ(t->act8b, T);
3242 q->rec8b = EZ(t->rec8b, T);
3243 q->cyc8b = EZ(t->cyc8b, T);
3244 q->active = EZ(t->active, T);
3245 q->recover = EZ(t->recover, T);
3246 q->dmack_hold = EZ(t->dmack_hold, T);
3247 q->cycle = EZ(t->cycle, T);
3248 q->udma = EZ(t->udma, UT);
452503f9
AC
3249}
3250
3251void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3252 struct ata_timing *m, unsigned int what)
3253{
3254 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3255 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3256 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3257 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3258 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3259 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3ada9c12 3260 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
452503f9
AC
3261 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3262 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3263}
3264
6357357c 3265const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 3266{
70cd071e
TH
3267 const struct ata_timing *t = ata_timing;
3268
3269 while (xfer_mode > t->mode)
3270 t++;
452503f9 3271
70cd071e
TH
3272 if (xfer_mode == t->mode)
3273 return t;
cd705d5a
BP
3274
3275 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3276 __func__, xfer_mode);
3277
70cd071e 3278 return NULL;
452503f9
AC
3279}
3280
3281int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3282 struct ata_timing *t, int T, int UT)
3283{
9e8808a9 3284 const u16 *id = adev->id;
452503f9
AC
3285 const struct ata_timing *s;
3286 struct ata_timing p;
3287
3288 /*
2e9edbf8 3289 * Find the mode.
75b1f2f8 3290 */
452503f9
AC
3291
3292 if (!(s = ata_timing_find_mode(speed)))
3293 return -EINVAL;
3294
75b1f2f8
AL
3295 memcpy(t, s, sizeof(*s));
3296
452503f9
AC
3297 /*
3298 * If the drive is an EIDE drive, it can tell us it needs extended
3299 * PIO/MW_DMA cycle timing.
3300 */
3301
9e8808a9 3302 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
452503f9 3303 memset(&p, 0, sizeof(p));
9e8808a9 3304
bff00256 3305 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
9e8808a9
BZ
3306 if (speed <= XFER_PIO_2)
3307 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3308 else if ((speed <= XFER_PIO_4) ||
3309 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3310 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3311 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3312 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3313
452503f9
AC
3314 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3315 }
3316
3317 /*
3318 * Convert the timing to bus clock counts.
3319 */
3320
75b1f2f8 3321 ata_timing_quantize(t, t, T, UT);
452503f9
AC
3322
3323 /*
c893a3ae
RD
3324 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3325 * S.M.A.R.T * and some other commands. We have to ensure that the
3326 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
3327 */
3328
fd3367af 3329 if (speed > XFER_PIO_6) {
452503f9
AC
3330 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3331 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3332 }
3333
3334 /*
c893a3ae 3335 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
3336 */
3337
3338 if (t->act8b + t->rec8b < t->cyc8b) {
3339 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3340 t->rec8b = t->cyc8b - t->act8b;
3341 }
3342
3343 if (t->active + t->recover < t->cycle) {
3344 t->active += (t->cycle - (t->active + t->recover)) / 2;
3345 t->recover = t->cycle - t->active;
3346 }
a617c09f 3347
4f701d1e
AC
3348 /* In a few cases quantisation may produce enough errors to
3349 leave t->cycle too low for the sum of active and recovery
3350 if so we must correct this */
3351 if (t->active + t->recover > t->cycle)
3352 t->cycle = t->active + t->recover;
452503f9
AC
3353
3354 return 0;
3355}
3356
a0f79b92
TH
3357/**
3358 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3359 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3360 * @cycle: cycle duration in ns
3361 *
3362 * Return matching xfer mode for @cycle. The returned mode is of
3363 * the transfer type specified by @xfer_shift. If @cycle is too
3364 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3365 * than the fastest known mode, the fasted mode is returned.
3366 *
3367 * LOCKING:
3368 * None.
3369 *
3370 * RETURNS:
3371 * Matching xfer_mode, 0xff if no match found.
3372 */
3373u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3374{
3375 u8 base_mode = 0xff, last_mode = 0xff;
3376 const struct ata_xfer_ent *ent;
3377 const struct ata_timing *t;
3378
3379 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3380 if (ent->shift == xfer_shift)
3381 base_mode = ent->base;
3382
3383 for (t = ata_timing_find_mode(base_mode);
3384 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3385 unsigned short this_cycle;
3386
3387 switch (xfer_shift) {
3388 case ATA_SHIFT_PIO:
3389 case ATA_SHIFT_MWDMA:
3390 this_cycle = t->cycle;
3391 break;
3392 case ATA_SHIFT_UDMA:
3393 this_cycle = t->udma;
3394 break;
3395 default:
3396 return 0xff;
3397 }
3398
3399 if (cycle > this_cycle)
3400 break;
3401
3402 last_mode = t->mode;
3403 }
3404
3405 return last_mode;
3406}
3407
cf176e1a
TH
3408/**
3409 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3410 * @dev: Device to adjust xfer masks
458337db 3411 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3412 *
3413 * Adjust xfer masks of @dev downward. Note that this function
3414 * does not apply the change. Invoking ata_set_mode() afterwards
3415 * will apply the limit.
3416 *
3417 * LOCKING:
3418 * Inherited from caller.
3419 *
3420 * RETURNS:
3421 * 0 on success, negative errno on failure
3422 */
458337db 3423int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3424{
458337db 3425 char buf[32];
7dc951ae
TH
3426 unsigned long orig_mask, xfer_mask;
3427 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3428 int quiet, highbit;
cf176e1a 3429
458337db
TH
3430 quiet = !!(sel & ATA_DNXFER_QUIET);
3431 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3432
458337db
TH
3433 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3434 dev->mwdma_mask,
3435 dev->udma_mask);
3436 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3437
458337db
TH
3438 switch (sel) {
3439 case ATA_DNXFER_PIO:
3440 highbit = fls(pio_mask) - 1;
3441 pio_mask &= ~(1 << highbit);
3442 break;
3443
3444 case ATA_DNXFER_DMA:
3445 if (udma_mask) {
3446 highbit = fls(udma_mask) - 1;
3447 udma_mask &= ~(1 << highbit);
3448 if (!udma_mask)
3449 return -ENOENT;
3450 } else if (mwdma_mask) {
3451 highbit = fls(mwdma_mask) - 1;
3452 mwdma_mask &= ~(1 << highbit);
3453 if (!mwdma_mask)
3454 return -ENOENT;
3455 }
3456 break;
3457
3458 case ATA_DNXFER_40C:
3459 udma_mask &= ATA_UDMA_MASK_40C;
3460 break;
3461
3462 case ATA_DNXFER_FORCE_PIO0:
3463 pio_mask &= 1;
05b83605 3464 /* fall through */
458337db
TH
3465 case ATA_DNXFER_FORCE_PIO:
3466 mwdma_mask = 0;
3467 udma_mask = 0;
3468 break;
3469
458337db
TH
3470 default:
3471 BUG();
3472 }
3473
3474 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3475
3476 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3477 return -ENOENT;
3478
3479 if (!quiet) {
3480 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3481 snprintf(buf, sizeof(buf), "%s:%s",
3482 ata_mode_string(xfer_mask),
3483 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3484 else
3485 snprintf(buf, sizeof(buf), "%s",
3486 ata_mode_string(xfer_mask));
3487
a9a79dfe 3488 ata_dev_warn(dev, "limiting speed to %s\n", buf);
458337db 3489 }
cf176e1a
TH
3490
3491 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3492 &dev->udma_mask);
3493
cf176e1a 3494 return 0;
cf176e1a
TH
3495}
3496
3373efd8 3497static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3498{
d0cb43b3 3499 struct ata_port *ap = dev->link->ap;
9af5c9c9 3500 struct ata_eh_context *ehc = &dev->link->eh_context;
d0cb43b3 3501 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
4055dee7
TH
3502 const char *dev_err_whine = "";
3503 int ign_dev_err = 0;
d0cb43b3 3504 unsigned int err_mask = 0;
83206a29 3505 int rc;
1da177e4 3506
e8384607 3507 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3508 if (dev->xfer_shift == ATA_SHIFT_PIO)
3509 dev->flags |= ATA_DFLAG_PIO;
3510
d0cb43b3
TH
3511 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3512 dev_err_whine = " (SET_XFERMODE skipped)";
3513 else {
3514 if (nosetxfer)
a9a79dfe
JP
3515 ata_dev_warn(dev,
3516 "NOSETXFER but PATA detected - can't "
3517 "skip SETXFER, might malfunction\n");
d0cb43b3
TH
3518 err_mask = ata_dev_set_xfermode(dev);
3519 }
2dcb407e 3520
4055dee7
TH
3521 if (err_mask & ~AC_ERR_DEV)
3522 goto fail;
3523
3524 /* revalidate */
3525 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3526 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3527 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3528 if (rc)
3529 return rc;
3530
b93fda12
AC
3531 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3532 /* Old CFA may refuse this command, which is just fine */
3533 if (ata_id_is_cfa(dev->id))
3534 ign_dev_err = 1;
3535 /* Catch several broken garbage emulations plus some pre
3536 ATA devices */
3537 if (ata_id_major_version(dev->id) == 0 &&
3538 dev->pio_mode <= XFER_PIO_2)
3539 ign_dev_err = 1;
3540 /* Some very old devices and some bad newer ones fail
3541 any kind of SET_XFERMODE request but support PIO0-2
3542 timings and no IORDY */
3543 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3544 ign_dev_err = 1;
3545 }
3acaf94b
AC
3546 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3547 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3548 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3549 dev->dma_mode == XFER_MW_DMA_0 &&
3550 (dev->id[63] >> 8) & 1)
4055dee7 3551 ign_dev_err = 1;
3acaf94b 3552
4055dee7
TH
3553 /* if the device is actually configured correctly, ignore dev err */
3554 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3555 ign_dev_err = 1;
1da177e4 3556
4055dee7
TH
3557 if (err_mask & AC_ERR_DEV) {
3558 if (!ign_dev_err)
3559 goto fail;
3560 else
3561 dev_err_whine = " (device error ignored)";
3562 }
48a8a14f 3563
23e71c3d
TH
3564 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3565 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3566
07b9b6d6
DLM
3567 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3568 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3569 ata_dev_info(dev, "configured for %s%s\n",
3570 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3571 dev_err_whine);
4055dee7 3572
83206a29 3573 return 0;
4055dee7
TH
3574
3575 fail:
a9a79dfe 3576 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
4055dee7 3577 return -EIO;
1da177e4
LT
3578}
3579
1da177e4 3580/**
04351821 3581 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3582 * @link: link on which timings will be programmed
1967b7ff 3583 * @r_failed_dev: out parameter for failed device
1da177e4 3584 *
04351821
A
3585 * Standard implementation of the function used to tune and set
3586 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3587 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3588 * returned in @r_failed_dev.
780a87f7 3589 *
1da177e4 3590 * LOCKING:
0cba632b 3591 * PCI/etc. bus probe sem.
e82cbdb9
TH
3592 *
3593 * RETURNS:
3594 * 0 on success, negative errno otherwise
1da177e4 3595 */
04351821 3596
0260731f 3597int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3598{
0260731f 3599 struct ata_port *ap = link->ap;
e8e0619f 3600 struct ata_device *dev;
f58229f8 3601 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3602
a6d5a51c 3603 /* step 1: calculate xfer_mask */
1eca4365 3604 ata_for_each_dev(dev, link, ENABLED) {
7dc951ae 3605 unsigned long pio_mask, dma_mask;
b3a70601 3606 unsigned int mode_mask;
a6d5a51c 3607
b3a70601
AC
3608 mode_mask = ATA_DMA_MASK_ATA;
3609 if (dev->class == ATA_DEV_ATAPI)
3610 mode_mask = ATA_DMA_MASK_ATAPI;
3611 else if (ata_id_is_cfa(dev->id))
3612 mode_mask = ATA_DMA_MASK_CFA;
3613
3373efd8 3614 ata_dev_xfermask(dev);
33267325 3615 ata_force_xfermask(dev);
1da177e4 3616
acf356b1 3617 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
b3a70601
AC
3618
3619 if (libata_dma_mask & mode_mask)
80a9c430
SS
3620 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3621 dev->udma_mask);
b3a70601
AC
3622 else
3623 dma_mask = 0;
3624
acf356b1
TH
3625 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3626 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3627
4f65977d 3628 found = 1;
b15b3eba 3629 if (ata_dma_enabled(dev))
5444a6f4 3630 used_dma = 1;
a6d5a51c 3631 }
4f65977d 3632 if (!found)
e82cbdb9 3633 goto out;
a6d5a51c
TH
3634
3635 /* step 2: always set host PIO timings */
1eca4365 3636 ata_for_each_dev(dev, link, ENABLED) {
70cd071e 3637 if (dev->pio_mode == 0xff) {
a9a79dfe 3638 ata_dev_warn(dev, "no PIO support\n");
e8e0619f 3639 rc = -EINVAL;
e82cbdb9 3640 goto out;
e8e0619f
TH
3641 }
3642
3643 dev->xfer_mode = dev->pio_mode;
3644 dev->xfer_shift = ATA_SHIFT_PIO;
3645 if (ap->ops->set_piomode)
3646 ap->ops->set_piomode(ap, dev);
3647 }
1da177e4 3648
a6d5a51c 3649 /* step 3: set host DMA timings */
1eca4365
TH
3650 ata_for_each_dev(dev, link, ENABLED) {
3651 if (!ata_dma_enabled(dev))
e8e0619f
TH
3652 continue;
3653
3654 dev->xfer_mode = dev->dma_mode;
3655 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3656 if (ap->ops->set_dmamode)
3657 ap->ops->set_dmamode(ap, dev);
3658 }
1da177e4
LT
3659
3660 /* step 4: update devices' xfer mode */
1eca4365 3661 ata_for_each_dev(dev, link, ENABLED) {
3373efd8 3662 rc = ata_dev_set_mode(dev);
5bbc53f4 3663 if (rc)
e82cbdb9 3664 goto out;
83206a29 3665 }
1da177e4 3666
e8e0619f
TH
3667 /* Record simplex status. If we selected DMA then the other
3668 * host channels are not permitted to do so.
5444a6f4 3669 */
cca3974e 3670 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3671 ap->host->simplex_claimed = ap;
5444a6f4 3672
e82cbdb9
TH
3673 out:
3674 if (rc)
3675 *r_failed_dev = dev;
3676 return rc;
1da177e4
LT
3677}
3678
aa2731ad
TH
3679/**
3680 * ata_wait_ready - wait for link to become ready
3681 * @link: link to be waited on
3682 * @deadline: deadline jiffies for the operation
3683 * @check_ready: callback to check link readiness
3684 *
3685 * Wait for @link to become ready. @check_ready should return
3686 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3687 * link doesn't seem to be occupied, other errno for other error
3688 * conditions.
3689 *
3690 * Transient -ENODEV conditions are allowed for
3691 * ATA_TMOUT_FF_WAIT.
3692 *
3693 * LOCKING:
3694 * EH context.
3695 *
3696 * RETURNS:
c9b5560a 3697 * 0 if @link is ready before @deadline; otherwise, -errno.
aa2731ad
TH
3698 */
3699int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3700 int (*check_ready)(struct ata_link *link))
3701{
3702 unsigned long start = jiffies;
b48d58f5 3703 unsigned long nodev_deadline;
aa2731ad
TH
3704 int warned = 0;
3705
b48d58f5
TH
3706 /* choose which 0xff timeout to use, read comment in libata.h */
3707 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3708 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3709 else
3710 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3711
b1c72916
TH
3712 /* Slave readiness can't be tested separately from master. On
3713 * M/S emulation configuration, this function should be called
3714 * only on the master and it will handle both master and slave.
3715 */
3716 WARN_ON(link == link->ap->slave_link);
3717
aa2731ad
TH
3718 if (time_after(nodev_deadline, deadline))
3719 nodev_deadline = deadline;
3720
3721 while (1) {
3722 unsigned long now = jiffies;
3723 int ready, tmp;
3724
3725 ready = tmp = check_ready(link);
3726 if (ready > 0)
3727 return 0;
3728
b48d58f5
TH
3729 /*
3730 * -ENODEV could be transient. Ignore -ENODEV if link
aa2731ad 3731 * is online. Also, some SATA devices take a long
b48d58f5
TH
3732 * time to clear 0xff after reset. Wait for
3733 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3734 * offline.
aa2731ad
TH
3735 *
3736 * Note that some PATA controllers (pata_ali) explode
3737 * if status register is read more than once when
3738 * there's no device attached.
3739 */
3740 if (ready == -ENODEV) {
3741 if (ata_link_online(link))
3742 ready = 0;
3743 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3744 !ata_link_offline(link) &&
3745 time_before(now, nodev_deadline))
3746 ready = 0;
3747 }
3748
3749 if (ready)
3750 return ready;
3751 if (time_after(now, deadline))
3752 return -EBUSY;
3753
3754 if (!warned && time_after(now, start + 5 * HZ) &&
3755 (deadline - now > 3 * HZ)) {
a9a79dfe 3756 ata_link_warn(link,
aa2731ad
TH
3757 "link is slow to respond, please be patient "
3758 "(ready=%d)\n", tmp);
3759 warned = 1;
3760 }
3761
97750ceb 3762 ata_msleep(link->ap, 50);
aa2731ad
TH
3763 }
3764}
3765
3766/**
3767 * ata_wait_after_reset - wait for link to become ready after reset
3768 * @link: link to be waited on
3769 * @deadline: deadline jiffies for the operation
3770 * @check_ready: callback to check link readiness
3771 *
3772 * Wait for @link to become ready after reset.
3773 *
3774 * LOCKING:
3775 * EH context.
3776 *
3777 * RETURNS:
c9b5560a 3778 * 0 if @link is ready before @deadline; otherwise, -errno.
aa2731ad 3779 */
2b4221bb 3780int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3781 int (*check_ready)(struct ata_link *link))
3782{
97750ceb 3783 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3784
3785 return ata_wait_ready(link, deadline, check_ready);
3786}
3787
d7bb4cc7 3788/**
936fd732
TH
3789 * sata_link_debounce - debounce SATA phy status
3790 * @link: ATA link to debounce SATA phy status for
c9b5560a 3791 * @params: timing parameters { interval, duration, timeout } in msec
d4b2bab4 3792 * @deadline: deadline jiffies for the operation
d7bb4cc7 3793 *
1152b261 3794 * Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3795 * holding the same value where DET is not 1 for @duration polled
3796 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3797 * beginning of the stable state. Because DET gets stuck at 1 on
3798 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3799 * until timeout then returns 0 if DET is stable at 1.
3800 *
d4b2bab4
TH
3801 * @timeout is further limited by @deadline. The sooner of the
3802 * two is used.
3803 *
d7bb4cc7
TH
3804 * LOCKING:
3805 * Kernel thread context (may sleep)
3806 *
3807 * RETURNS:
3808 * 0 on success, -errno on failure.
3809 */
936fd732
TH
3810int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3811 unsigned long deadline)
7a7921e8 3812{
341c2c95
TH
3813 unsigned long interval = params[0];
3814 unsigned long duration = params[1];
d4b2bab4 3815 unsigned long last_jiffies, t;
d7bb4cc7
TH
3816 u32 last, cur;
3817 int rc;
3818
341c2c95 3819 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3820 if (time_before(t, deadline))
3821 deadline = t;
3822
936fd732 3823 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3824 return rc;
3825 cur &= 0xf;
3826
3827 last = cur;
3828 last_jiffies = jiffies;
3829
3830 while (1) {
97750ceb 3831 ata_msleep(link->ap, interval);
936fd732 3832 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3833 return rc;
3834 cur &= 0xf;
3835
3836 /* DET stable? */
3837 if (cur == last) {
d4b2bab4 3838 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3839 continue;
341c2c95
TH
3840 if (time_after(jiffies,
3841 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3842 return 0;
3843 continue;
3844 }
3845
3846 /* unstable, start over */
3847 last = cur;
3848 last_jiffies = jiffies;
3849
f1545154
TH
3850 /* Check deadline. If debouncing failed, return
3851 * -EPIPE to tell upper layer to lower link speed.
3852 */
d4b2bab4 3853 if (time_after(jiffies, deadline))
f1545154 3854 return -EPIPE;
d7bb4cc7
TH
3855 }
3856}
3857
3858/**
936fd732
TH
3859 * sata_link_resume - resume SATA link
3860 * @link: ATA link to resume SATA
c9b5560a 3861 * @params: timing parameters { interval, duration, timeout } in msec
d4b2bab4 3862 * @deadline: deadline jiffies for the operation
d7bb4cc7 3863 *
936fd732 3864 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3865 *
3866 * LOCKING:
3867 * Kernel thread context (may sleep)
3868 *
3869 * RETURNS:
3870 * 0 on success, -errno on failure.
3871 */
936fd732
TH
3872int sata_link_resume(struct ata_link *link, const unsigned long *params,
3873 unsigned long deadline)
d7bb4cc7 3874{
5040ab67 3875 int tries = ATA_LINK_RESUME_TRIES;
ac371987 3876 u32 scontrol, serror;
81952c54
TH
3877 int rc;
3878
936fd732 3879 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3880 return rc;
7a7921e8 3881
5040ab67
TH
3882 /*
3883 * Writes to SControl sometimes get ignored under certain
3884 * controllers (ata_piix SIDPR). Make sure DET actually is
3885 * cleared.
3886 */
3887 do {
3888 scontrol = (scontrol & 0x0f0) | 0x300;
3889 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3890 return rc;
3891 /*
3892 * Some PHYs react badly if SStatus is pounded
3893 * immediately after resuming. Delay 200ms before
3894 * debouncing.
3895 */
e39b2bb3
DP
3896 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3897 ata_msleep(link->ap, 200);
81952c54 3898
5040ab67
TH
3899 /* is SControl restored correctly? */
3900 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3901 return rc;
3902 } while ((scontrol & 0xf0f) != 0x300 && --tries);
7a7921e8 3903
5040ab67 3904 if ((scontrol & 0xf0f) != 0x300) {
38941c95 3905 ata_link_warn(link, "failed to resume link (SControl %X)\n",
a9a79dfe 3906 scontrol);
5040ab67
TH
3907 return 0;
3908 }
3909
3910 if (tries < ATA_LINK_RESUME_TRIES)
a9a79dfe
JP
3911 ata_link_warn(link, "link resume succeeded after %d retries\n",
3912 ATA_LINK_RESUME_TRIES - tries);
7a7921e8 3913
ac371987
TH
3914 if ((rc = sata_link_debounce(link, params, deadline)))
3915 return rc;
3916
f046519f 3917 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3918 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3919 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3920
f046519f 3921 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3922}
3923
1152b261
TH
3924/**
3925 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3926 * @link: ATA link to manipulate SControl for
3927 * @policy: LPM policy to configure
3928 * @spm_wakeup: initiate LPM transition to active state
3929 *
3930 * Manipulate the IPM field of the SControl register of @link
3931 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3932 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3933 * the link. This function also clears PHYRDY_CHG before
3934 * returning.
3935 *
3936 * LOCKING:
3937 * EH context.
3938 *
3939 * RETURNS:
8485187b 3940 * 0 on success, -errno otherwise.
1152b261
TH
3941 */
3942int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3943 bool spm_wakeup)
3944{
3945 struct ata_eh_context *ehc = &link->eh_context;
3946 bool woken_up = false;
3947 u32 scontrol;
3948 int rc;
3949
3950 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3951 if (rc)
3952 return rc;
3953
3954 switch (policy) {
3955 case ATA_LPM_MAX_POWER:
3956 /* disable all LPM transitions */
65fe1f0f 3957 scontrol |= (0x7 << 8);
1152b261
TH
3958 /* initiate transition to active state */
3959 if (spm_wakeup) {
3960 scontrol |= (0x4 << 12);
3961 woken_up = true;
3962 }
3963 break;
3964 case ATA_LPM_MED_POWER:
3965 /* allow LPM to PARTIAL */
3966 scontrol &= ~(0x1 << 8);
65fe1f0f 3967 scontrol |= (0x6 << 8);
1152b261 3968 break;
f4ac6476 3969 case ATA_LPM_MED_POWER_WITH_DIPM:
1152b261 3970 case ATA_LPM_MIN_POWER:
8a745f1f
KCA
3971 if (ata_link_nr_enabled(link) > 0)
3972 /* no restrictions on LPM transitions */
65fe1f0f 3973 scontrol &= ~(0x7 << 8);
8a745f1f
KCA
3974 else {
3975 /* empty port, power off */
3976 scontrol &= ~0xf;
3977 scontrol |= (0x1 << 2);
3978 }
1152b261
TH
3979 break;
3980 default:
3981 WARN_ON(1);
3982 }
3983
3984 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3985 if (rc)
3986 return rc;
3987
3988 /* give the link time to transit out of LPM state */
3989 if (woken_up)
3990 msleep(10);
3991
3992 /* clear PHYRDY_CHG from SError */
3993 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3994 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3995}
3996
f5914a46 3997/**
0aa1113d 3998 * ata_std_prereset - prepare for reset
cc0680a5 3999 * @link: ATA link to be reset
d4b2bab4 4000 * @deadline: deadline jiffies for the operation
f5914a46 4001 *
cc0680a5 4002 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
4003 * prereset makes libata abort whole reset sequence and give up
4004 * that port, so prereset should be best-effort. It does its
4005 * best to prepare for reset sequence but if things go wrong, it
4006 * should just whine, not fail.
f5914a46
TH
4007 *
4008 * LOCKING:
4009 * Kernel thread context (may sleep)
4010 *
4011 * RETURNS:
4012 * 0 on success, -errno otherwise.
4013 */
0aa1113d 4014int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 4015{
cc0680a5 4016 struct ata_port *ap = link->ap;
936fd732 4017 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 4018 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
4019 int rc;
4020
f5914a46
TH
4021 /* if we're about to do hardreset, nothing more to do */
4022 if (ehc->i.action & ATA_EH_HARDRESET)
4023 return 0;
4024
936fd732 4025 /* if SATA, resume link */
a16abc0b 4026 if (ap->flags & ATA_FLAG_SATA) {
936fd732 4027 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
4028 /* whine about phy resume failure but proceed */
4029 if (rc && rc != -EOPNOTSUPP)
a9a79dfe
JP
4030 ata_link_warn(link,
4031 "failed to resume link for reset (errno=%d)\n",
4032 rc);
f5914a46
TH
4033 }
4034
45db2f6c 4035 /* no point in trying softreset on offline link */
b1c72916 4036 if (ata_phys_link_offline(link))
45db2f6c
TH
4037 ehc->i.action &= ~ATA_EH_SOFTRESET;
4038
f5914a46
TH
4039 return 0;
4040}
4041
c2bd5804 4042/**
624d5c51
TH
4043 * sata_link_hardreset - reset link via SATA phy reset
4044 * @link: link to reset
c9b5560a 4045 * @timing: timing parameters { interval, duration, timeout } in msec
d4b2bab4 4046 * @deadline: deadline jiffies for the operation
9dadd45b
TH
4047 * @online: optional out parameter indicating link onlineness
4048 * @check_ready: optional callback to check link readiness
c2bd5804 4049 *
624d5c51 4050 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
4051 * After hardreset, link readiness is waited upon using
4052 * ata_wait_ready() if @check_ready is specified. LLDs are
4053 * allowed to not specify @check_ready and wait itself after this
4054 * function returns. Device classification is LLD's
4055 * responsibility.
4056 *
4057 * *@online is set to one iff reset succeeded and @link is online
4058 * after reset.
c2bd5804
TH
4059 *
4060 * LOCKING:
4061 * Kernel thread context (may sleep)
4062 *
4063 * RETURNS:
4064 * 0 on success, -errno otherwise.
4065 */
624d5c51 4066int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
4067 unsigned long deadline,
4068 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 4069{
624d5c51 4070 u32 scontrol;
81952c54 4071 int rc;
852ee16a 4072
c2bd5804
TH
4073 DPRINTK("ENTER\n");
4074
9dadd45b
TH
4075 if (online)
4076 *online = false;
4077
936fd732 4078 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
4079 /* SATA spec says nothing about how to reconfigure
4080 * spd. To be on the safe side, turn off phy during
4081 * reconfiguration. This works for at least ICH7 AHCI
4082 * and Sil3124.
4083 */
936fd732 4084 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 4085 goto out;
81952c54 4086
a34b6fc0 4087 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 4088
936fd732 4089 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 4090 goto out;
1c3fae4d 4091
936fd732 4092 sata_set_spd(link);
1c3fae4d
TH
4093 }
4094
4095 /* issue phy wake/reset */
936fd732 4096 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 4097 goto out;
81952c54 4098
852ee16a 4099 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 4100
936fd732 4101 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 4102 goto out;
c2bd5804 4103
1c3fae4d 4104 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
4105 * 10.4.2 says at least 1 ms.
4106 */
97750ceb 4107 ata_msleep(link->ap, 1);
c2bd5804 4108
936fd732
TH
4109 /* bring link back */
4110 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
4111 if (rc)
4112 goto out;
4113 /* if link is offline nothing more to do */
b1c72916 4114 if (ata_phys_link_offline(link))
9dadd45b
TH
4115 goto out;
4116
4117 /* Link is online. From this point, -ENODEV too is an error. */
4118 if (online)
4119 *online = true;
4120
071f44b1 4121 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
4122 /* If PMP is supported, we have to do follow-up SRST.
4123 * Some PMPs don't send D2H Reg FIS after hardreset if
4124 * the first port is empty. Wait only for
4125 * ATA_TMOUT_PMP_SRST_WAIT.
4126 */
4127 if (check_ready) {
4128 unsigned long pmp_deadline;
4129
341c2c95
TH
4130 pmp_deadline = ata_deadline(jiffies,
4131 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
4132 if (time_after(pmp_deadline, deadline))
4133 pmp_deadline = deadline;
4134 ata_wait_ready(link, pmp_deadline, check_ready);
4135 }
4136 rc = -EAGAIN;
4137 goto out;
4138 }
4139
4140 rc = 0;
4141 if (check_ready)
4142 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 4143 out:
0cbf0711
TH
4144 if (rc && rc != -EAGAIN) {
4145 /* online is set iff link is online && reset succeeded */
4146 if (online)
4147 *online = false;
a9a79dfe 4148 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
0cbf0711 4149 }
b6103f6d
TH
4150 DPRINTK("EXIT, rc=%d\n", rc);
4151 return rc;
4152}
4153
57c9efdf
TH
4154/**
4155 * sata_std_hardreset - COMRESET w/o waiting or classification
4156 * @link: link to reset
4157 * @class: resulting class of attached device
4158 * @deadline: deadline jiffies for the operation
4159 *
4160 * Standard SATA COMRESET w/o waiting or classification.
4161 *
4162 * LOCKING:
4163 * Kernel thread context (may sleep)
4164 *
4165 * RETURNS:
4166 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4167 */
4168int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4169 unsigned long deadline)
4170{
4171 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4172 bool online;
4173 int rc;
4174
4175 /* do hardreset */
4176 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
4177 return online ? -EAGAIN : rc;
4178}
4179
c2bd5804 4180/**
203c75b8 4181 * ata_std_postreset - standard postreset callback
cc0680a5 4182 * @link: the target ata_link
c2bd5804
TH
4183 * @classes: classes of attached devices
4184 *
4185 * This function is invoked after a successful reset. Note that
4186 * the device might have been reset more than once using
4187 * different reset methods before postreset is invoked.
c2bd5804 4188 *
c2bd5804
TH
4189 * LOCKING:
4190 * Kernel thread context (may sleep)
4191 */
203c75b8 4192void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 4193{
f046519f
TH
4194 u32 serror;
4195
c2bd5804
TH
4196 DPRINTK("ENTER\n");
4197
f046519f
TH
4198 /* reset complete, clear SError */
4199 if (!sata_scr_read(link, SCR_ERROR, &serror))
4200 sata_scr_write(link, SCR_ERROR, serror);
4201
c2bd5804 4202 /* print link status */
936fd732 4203 sata_print_link_status(link);
c2bd5804 4204
c2bd5804
TH
4205 DPRINTK("EXIT\n");
4206}
4207
623a3128
TH
4208/**
4209 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
4210 * @dev: device to compare against
4211 * @new_class: class of the new device
4212 * @new_id: IDENTIFY page of the new device
4213 *
4214 * Compare @new_class and @new_id against @dev and determine
4215 * whether @dev is the device indicated by @new_class and
4216 * @new_id.
4217 *
4218 * LOCKING:
4219 * None.
4220 *
4221 * RETURNS:
4222 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4223 */
3373efd8
TH
4224static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4225 const u16 *new_id)
623a3128
TH
4226{
4227 const u16 *old_id = dev->id;
a0cf733b
TH
4228 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4229 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
4230
4231 if (dev->class != new_class) {
a9a79dfe
JP
4232 ata_dev_info(dev, "class mismatch %d != %d\n",
4233 dev->class, new_class);
623a3128
TH
4234 return 0;
4235 }
4236
a0cf733b
TH
4237 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4238 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4239 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4240 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
4241
4242 if (strcmp(model[0], model[1])) {
a9a79dfe
JP
4243 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4244 model[0], model[1]);
623a3128
TH
4245 return 0;
4246 }
4247
4248 if (strcmp(serial[0], serial[1])) {
a9a79dfe
JP
4249 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4250 serial[0], serial[1]);
623a3128
TH
4251 return 0;
4252 }
4253
623a3128
TH
4254 return 1;
4255}
4256
4257/**
fe30911b 4258 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4259 * @dev: target ATA device
bff04647 4260 * @readid_flags: read ID flags
623a3128
TH
4261 *
4262 * Re-read IDENTIFY page and make sure @dev is still attached to
4263 * the port.
4264 *
4265 * LOCKING:
4266 * Kernel thread context (may sleep)
4267 *
4268 * RETURNS:
4269 * 0 on success, negative errno otherwise
4270 */
fe30911b 4271int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4272{
5eb45c02 4273 unsigned int class = dev->class;
9af5c9c9 4274 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4275 int rc;
4276
fe635c7e 4277 /* read ID data */
bff04647 4278 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4279 if (rc)
fe30911b 4280 return rc;
623a3128
TH
4281
4282 /* is the device still there? */
fe30911b
TH
4283 if (!ata_dev_same_device(dev, class, id))
4284 return -ENODEV;
623a3128 4285
fe635c7e 4286 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4287 return 0;
4288}
4289
4290/**
4291 * ata_dev_revalidate - Revalidate ATA device
4292 * @dev: device to revalidate
422c9daa 4293 * @new_class: new class code
fe30911b
TH
4294 * @readid_flags: read ID flags
4295 *
4296 * Re-read IDENTIFY page, make sure @dev is still attached to the
4297 * port and reconfigure it according to the new IDENTIFY page.
4298 *
4299 * LOCKING:
4300 * Kernel thread context (may sleep)
4301 *
4302 * RETURNS:
4303 * 0 on success, negative errno otherwise
4304 */
422c9daa
TH
4305int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4306 unsigned int readid_flags)
fe30911b 4307{
6ddcd3b0 4308 u64 n_sectors = dev->n_sectors;
5920dadf 4309 u64 n_native_sectors = dev->n_native_sectors;
fe30911b
TH
4310 int rc;
4311
4312 if (!ata_dev_enabled(dev))
4313 return -ENODEV;
4314
422c9daa
TH
4315 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4316 if (ata_class_enabled(new_class) &&
f0d0613d
BP
4317 new_class != ATA_DEV_ATA &&
4318 new_class != ATA_DEV_ATAPI &&
9162c657 4319 new_class != ATA_DEV_ZAC &&
f0d0613d 4320 new_class != ATA_DEV_SEMB) {
a9a79dfe
JP
4321 ata_dev_info(dev, "class mismatch %u != %u\n",
4322 dev->class, new_class);
422c9daa
TH
4323 rc = -ENODEV;
4324 goto fail;
4325 }
4326
fe30911b
TH
4327 /* re-read ID */
4328 rc = ata_dev_reread_id(dev, readid_flags);
4329 if (rc)
4330 goto fail;
623a3128
TH
4331
4332 /* configure device according to the new ID */
efdaedc4 4333 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4334 if (rc)
4335 goto fail;
4336
4337 /* verify n_sectors hasn't changed */
445d211b
TH
4338 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4339 dev->n_sectors == n_sectors)
4340 return 0;
4341
4342 /* n_sectors has changed */
a9a79dfe
JP
4343 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4344 (unsigned long long)n_sectors,
4345 (unsigned long long)dev->n_sectors);
445d211b
TH
4346
4347 /*
4348 * Something could have caused HPA to be unlocked
4349 * involuntarily. If n_native_sectors hasn't changed and the
4350 * new size matches it, keep the device.
4351 */
4352 if (dev->n_native_sectors == n_native_sectors &&
4353 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
a9a79dfe
JP
4354 ata_dev_warn(dev,
4355 "new n_sectors matches native, probably "
4356 "late HPA unlock, n_sectors updated\n");
68939ce5 4357 /* use the larger n_sectors */
445d211b 4358 return 0;
6ddcd3b0
TH
4359 }
4360
445d211b
TH
4361 /*
4362 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4363 * unlocking HPA in those cases.
4364 *
4365 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4366 */
4367 if (dev->n_native_sectors == n_native_sectors &&
4368 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4369 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
a9a79dfe
JP
4370 ata_dev_warn(dev,
4371 "old n_sectors matches native, probably "
4372 "late HPA lock, will try to unlock HPA\n");
445d211b
TH
4373 /* try unlocking HPA */
4374 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4375 rc = -EIO;
4376 } else
4377 rc = -ENODEV;
623a3128 4378
445d211b
TH
4379 /* restore original n_[native_]sectors and fail */
4380 dev->n_native_sectors = n_native_sectors;
4381 dev->n_sectors = n_sectors;
623a3128 4382 fail:
a9a79dfe 4383 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4384 return rc;
4385}
4386
6919a0a6
AC
4387struct ata_blacklist_entry {
4388 const char *model_num;
4389 const char *model_rev;
4390 unsigned long horkage;
4391};
4392
4393static const struct ata_blacklist_entry ata_device_blacklist [] = {
4394 /* Devices with DMA related problems under Linux */
4395 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4396 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4397 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4398 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4399 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4400 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4401 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4402 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4403 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
7da4c935 4404 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4405 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4406 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4407 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4408 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4409 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
7da4c935 4410 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4411 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4412 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4413 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4414 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4415 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4416 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4417 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4418 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4419 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4420 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4421 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4422 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
d17d794c 4423 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
b00622fc 4424 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
3af9a77a 4425 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4426 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4427
18d6e9d5 4428 /* Weird ATAPI devices */
40a1d531 4429 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
6a87e42e 4430 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
a32450e1 4431 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
0523f037 4432 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
18d6e9d5 4433
af34d637
DM
4434 /*
4435 * Causes silent data corruption with higher max sects.
4436 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4437 */
4438 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
1488a1e3
TH
4439
4440 /*
e0edc8c5 4441 * These devices time out with higher max sects.
1488a1e3
TH
4442 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4443 */
e0edc8c5 4444 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
db5ff909 4445 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
af34d637 4446
6919a0a6
AC
4447 /* Devices we expect to fail diagnostics */
4448
4449 /* Devices where NCQ should be avoided */
4450 /* NCQ is slow */
2dcb407e 4451 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4452 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4453 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4454 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4455 /* NCQ is broken */
539cc7c7 4456 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4457 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4458 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4459 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
5ccfca97 4460 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
539cc7c7 4461
ac70a964 4462 /* Seagate NCQ + FLUSH CACHE firmware bug */
4d1f9082 4463 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964 4464 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4465
4d1f9082 4466 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4467 ATA_HORKAGE_FIRMWARE_WARN },
4468
4d1f9082 4469 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4470 ATA_HORKAGE_FIRMWARE_WARN },
4471
4d1f9082 4472 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964
TH
4473 ATA_HORKAGE_FIRMWARE_WARN },
4474
08c85d2a 4475 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
87809942 4476 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
b28a613e 4477 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
08c85d2a 4478 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
87809942 4479
36e337d0
RH
4480 /* Blacklist entries taken from Silicon Image 3124/3132
4481 Windows driver .inf file - also several Linux problem reports */
4482 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4483 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4484 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4485
68b0ddb2
TH
4486 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4487 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4488
322579dc
TH
4489 /* Some Sandisk SSDs lock up hard with NCQ enabled. Reported on
4490 SD7SN6S256G and SD8SN8U256G */
4491 { "SanDisk SD[78]SN*G", NULL, ATA_HORKAGE_NONCQ, },
4492
16c55b03
TH
4493 /* devices which puke on READ_NATIVE_MAX */
4494 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4495 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4496 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4497 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4498
7831387b
TH
4499 /* this one allows HPA unlocking but fails IOs on the area */
4500 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4501
93328e11
AC
4502 /* Devices which report 1 sector over size HPA */
4503 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4504 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4505 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4506
6bbfd53d
AC
4507 /* Devices which get the IVB wrong */
4508 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5 4509 /* Maybe we should just blacklist TSSTcorp... */
7da4c935 4510 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
6bbfd53d 4511
9ce8e307
JA
4512 /* Devices that do not need bridging limits applied */
4513 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
04d0f1b8 4514 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
9ce8e307 4515
9062712f
TH
4516 /* Devices which aren't very happy with higher link speeds */
4517 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
c531077f 4518 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
9062712f 4519
d0cb43b3
TH
4520 /*
4521 * Devices which choke on SETXFER. Applies only if both the
4522 * device and controller are SATA.
4523 */
cd691876 4524 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
3a25179e
VL
4525 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4526 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
cd691876
TH
4527 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4528 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
d0cb43b3 4529
b17e5729 4530 /* Crucial BX100 SSD 500GB has broken LPM support */
3bf7b5d6 4531 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
b17e5729 4532
d418ff56
HG
4533 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4534 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
9c7be59f
HG
4535 ATA_HORKAGE_ZERO_AFTER_TRIM |
4536 ATA_HORKAGE_NOLPM, },
d418ff56
HG
4537 /* 512GB MX100 with newer firmware has only LPM issues */
4538 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
4539 ATA_HORKAGE_NOLPM, },
9c7be59f 4540
62ac3f73
HG
4541 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4542 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4543 ATA_HORKAGE_ZERO_AFTER_TRIM |
4544 ATA_HORKAGE_NOLPM, },
4545 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4546 ATA_HORKAGE_ZERO_AFTER_TRIM |
4547 ATA_HORKAGE_NOLPM, },
4548
76936e9a 4549 /* These specific Samsung models/firmware-revs do not handle LPM well */
b5b4d3a5 4550 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
76936e9a 4551 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, },
b5b4d3a5 4552
f78dea06 4553 /* devices that don't properly handle queued TRIM commands */
136d769e
SM
4554 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4555 ATA_HORKAGE_ZERO_AFTER_TRIM, },
243918be 4556 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
ff7f53fb
MP
4557 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4558 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4559 ATA_HORKAGE_ZERO_AFTER_TRIM, },
9051bd39 4560 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
ff7f53fb
MP
4561 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4562 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4563 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4564 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
e61f7d1c 4565 ATA_HORKAGE_ZERO_AFTER_TRIM, },
ca6bfcb2
JHP
4566 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4567 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4568 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
6fc4d97a 4569 ATA_HORKAGE_ZERO_AFTER_TRIM, },
7a7184b0
GA
4570 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4571 ATA_HORKAGE_ZERO_AFTER_TRIM, },
e61f7d1c 4572
cda57b1b
AF
4573 /* devices that don't properly handle TRIM commands */
4574 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4575
e61f7d1c
MP
4576 /*
4577 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4578 * (Return Zero After Trim) flags in the ATA Command Set are
4579 * unreliable in the sense that they only define what happens if
4580 * the device successfully executed the DSM TRIM command. TRIM
4581 * is only advisory, however, and the device is free to silently
4582 * ignore all or parts of the request.
4583 *
4584 * Whitelist drives that are known to reliably return zeroes
4585 * after TRIM.
4586 */
4587
4588 /*
4589 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4590 * that model before whitelisting all other intel SSDs.
4591 */
4592 { "INTEL*SSDSC2MH*", NULL, 0, },
4593
ff7f53fb
MP
4594 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4595 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
e61f7d1c
MP
4596 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4597 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4598 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4599 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4600 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
f78dea06 4601
ecd75ad5
TH
4602 /*
4603 * Some WD SATA-I drives spin up and down erratically when the link
4604 * is put into the slumber mode. We don't have full list of the
4605 * affected devices. Disable LPM if the device matches one of the
4606 * known prefixes and is SATA-1. As a side effect LPM partial is
4607 * lost too.
4608 *
4609 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4610 */
4611 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4612 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4613 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4614 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4615 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4616 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4617 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4618
6919a0a6
AC
4619 /* End Marker */
4620 { }
1da177e4 4621};
2e9edbf8 4622
75683fe7 4623static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4624{
8bfa79fc
TH
4625 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4626 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4627 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4628
8bfa79fc
TH
4629 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4630 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4631
6919a0a6 4632 while (ad->model_num) {
1c402799 4633 if (glob_match(ad->model_num, model_num)) {
6919a0a6
AC
4634 if (ad->model_rev == NULL)
4635 return ad->horkage;
1c402799 4636 if (glob_match(ad->model_rev, model_rev))
6919a0a6 4637 return ad->horkage;
f4b15fef 4638 }
6919a0a6 4639 ad++;
f4b15fef 4640 }
1da177e4
LT
4641 return 0;
4642}
4643
6919a0a6
AC
4644static int ata_dma_blacklisted(const struct ata_device *dev)
4645{
4646 /* We don't support polling DMA.
4647 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4648 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4649 */
9af5c9c9 4650 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4651 (dev->flags & ATA_DFLAG_CDB_INTR))
4652 return 1;
75683fe7 4653 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4654}
4655
6bbfd53d
AC
4656/**
4657 * ata_is_40wire - check drive side detection
4658 * @dev: device
4659 *
4660 * Perform drive side detection decoding, allowing for device vendors
4661 * who can't follow the documentation.
4662 */
4663
4664static int ata_is_40wire(struct ata_device *dev)
4665{
4666 if (dev->horkage & ATA_HORKAGE_IVB)
4667 return ata_drive_40wire_relaxed(dev->id);
4668 return ata_drive_40wire(dev->id);
4669}
4670
15a5551c
AC
4671/**
4672 * cable_is_40wire - 40/80/SATA decider
4673 * @ap: port to consider
4674 *
4675 * This function encapsulates the policy for speed management
4676 * in one place. At the moment we don't cache the result but
4677 * there is a good case for setting ap->cbl to the result when
4678 * we are called with unknown cables (and figuring out if it
4679 * impacts hotplug at all).
4680 *
4681 * Return 1 if the cable appears to be 40 wire.
4682 */
4683
4684static int cable_is_40wire(struct ata_port *ap)
4685{
4686 struct ata_link *link;
4687 struct ata_device *dev;
4688
4a9c7b33 4689 /* If the controller thinks we are 40 wire, we are. */
15a5551c
AC
4690 if (ap->cbl == ATA_CBL_PATA40)
4691 return 1;
4a9c7b33
TH
4692
4693 /* If the controller thinks we are 80 wire, we are. */
15a5551c
AC
4694 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4695 return 0;
4a9c7b33
TH
4696
4697 /* If the system is known to be 40 wire short cable (eg
4698 * laptop), then we allow 80 wire modes even if the drive
4699 * isn't sure.
4700 */
f792068e
AC
4701 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4702 return 0;
4a9c7b33
TH
4703
4704 /* If the controller doesn't know, we scan.
4705 *
4706 * Note: We look for all 40 wire detects at this point. Any
4707 * 80 wire detect is taken to be 80 wire cable because
4708 * - in many setups only the one drive (slave if present) will
4709 * give a valid detect
4710 * - if you have a non detect capable drive you don't want it
4711 * to colour the choice
4712 */
1eca4365
TH
4713 ata_for_each_link(link, ap, EDGE) {
4714 ata_for_each_dev(dev, link, ENABLED) {
4715 if (!ata_is_40wire(dev))
15a5551c
AC
4716 return 0;
4717 }
4718 }
4719 return 1;
4720}
4721
a6d5a51c
TH
4722/**
4723 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4724 * @dev: Device to compute xfermask for
4725 *
acf356b1
TH
4726 * Compute supported xfermask of @dev and store it in
4727 * dev->*_mask. This function is responsible for applying all
4728 * known limits including host controller limits, device
4729 * blacklist, etc...
a6d5a51c
TH
4730 *
4731 * LOCKING:
4732 * None.
a6d5a51c 4733 */
3373efd8 4734static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4735{
9af5c9c9
TH
4736 struct ata_link *link = dev->link;
4737 struct ata_port *ap = link->ap;
cca3974e 4738 struct ata_host *host = ap->host;
a6d5a51c 4739 unsigned long xfer_mask;
1da177e4 4740
37deecb5 4741 /* controller modes available */
565083e1
TH
4742 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4743 ap->mwdma_mask, ap->udma_mask);
4744
8343f889 4745 /* drive modes available */
37deecb5
TH
4746 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4747 dev->mwdma_mask, dev->udma_mask);
4748 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4749
b352e57d
AC
4750 /*
4751 * CFA Advanced TrueIDE timings are not allowed on a shared
4752 * cable
4753 */
4754 if (ata_dev_pair(dev)) {
4755 /* No PIO5 or PIO6 */
4756 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4757 /* No MWDMA3 or MWDMA 4 */
4758 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4759 }
4760
37deecb5
TH
4761 if (ata_dma_blacklisted(dev)) {
4762 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4763 ata_dev_warn(dev,
4764 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4765 }
a6d5a51c 4766
14d66ab7 4767 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4768 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5 4769 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4770 ata_dev_warn(dev,
4771 "simplex DMA is claimed by other device, disabling DMA\n");
5444a6f4 4772 }
565083e1 4773
e424675f
JG
4774 if (ap->flags & ATA_FLAG_NO_IORDY)
4775 xfer_mask &= ata_pio_mask_no_iordy(dev);
4776
5444a6f4 4777 if (ap->ops->mode_filter)
a76b62ca 4778 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4779
8343f889
RH
4780 /* Apply cable rule here. Don't apply it early because when
4781 * we handle hot plug the cable type can itself change.
4782 * Check this last so that we know if the transfer rate was
4783 * solely limited by the cable.
4784 * Unknown or 80 wire cables reported host side are checked
4785 * drive side as well. Cases where we know a 40wire cable
4786 * is used safely for 80 are not checked here.
4787 */
4788 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4789 /* UDMA/44 or higher would be available */
15a5551c 4790 if (cable_is_40wire(ap)) {
a9a79dfe
JP
4791 ata_dev_warn(dev,
4792 "limited to UDMA/33 due to 40-wire cable\n");
8343f889
RH
4793 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4794 }
4795
565083e1
TH
4796 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4797 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4798}
4799
1da177e4
LT
4800/**
4801 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4802 * @dev: Device to which command will be sent
4803 *
780a87f7
JG
4804 * Issue SET FEATURES - XFER MODE command to device @dev
4805 * on port @ap.
4806 *
1da177e4 4807 * LOCKING:
0cba632b 4808 * PCI/etc. bus probe sem.
83206a29
TH
4809 *
4810 * RETURNS:
4811 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4812 */
4813
3373efd8 4814static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4815{
a0123703 4816 struct ata_taskfile tf;
83206a29 4817 unsigned int err_mask;
1da177e4
LT
4818
4819 /* set up set-features taskfile */
4820 DPRINTK("set features - xfer mode\n");
4821
464cf177
TH
4822 /* Some controllers and ATAPI devices show flaky interrupt
4823 * behavior after setting xfer mode. Use polling instead.
4824 */
3373efd8 4825 ata_tf_init(dev, &tf);
a0123703
TH
4826 tf.command = ATA_CMD_SET_FEATURES;
4827 tf.feature = SETFEATURES_XFER;
464cf177 4828 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4829 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4830 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4831 if (ata_pio_need_iordy(dev))
4832 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4833 /* If the device has IORDY and the controller does not - turn it off */
4834 else if (ata_id_has_iordy(dev->id))
11b7becc 4835 tf.nsect = 0x01;
b9f8ab2d
AC
4836 else /* In the ancient relic department - skip all of this */
4837 return 0;
1da177e4 4838
d531be2c
MP
4839 /* On some disks, this command causes spin-up, so we need longer timeout */
4840 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
9f45cbd3
KCA
4841
4842 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4843 return err_mask;
4844}
1152b261 4845
9f45cbd3 4846/**
218f3d30 4847 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4848 * @dev: Device to which command will be sent
4849 * @enable: Whether to enable or disable the feature
218f3d30 4850 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4851 *
4852 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4853 * on port @ap with sector count
9f45cbd3
KCA
4854 *
4855 * LOCKING:
4856 * PCI/etc. bus probe sem.
4857 *
4858 * RETURNS:
4859 * 0 on success, AC_ERR_* mask otherwise.
4860 */
1152b261 4861unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
9f45cbd3
KCA
4862{
4863 struct ata_taskfile tf;
4864 unsigned int err_mask;
974e0a45 4865 unsigned long timeout = 0;
9f45cbd3
KCA
4866
4867 /* set up set-features taskfile */
4868 DPRINTK("set features - SATA features\n");
4869
4870 ata_tf_init(dev, &tf);
4871 tf.command = ATA_CMD_SET_FEATURES;
4872 tf.feature = enable;
4873 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4874 tf.protocol = ATA_PROT_NODATA;
218f3d30 4875 tf.nsect = feature;
9f45cbd3 4876
974e0a45
DLM
4877 if (enable == SETFEATURES_SPINUP)
4878 timeout = ata_probe_timeout ?
4879 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4880 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
1da177e4 4881
83206a29
TH
4882 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4883 return err_mask;
1da177e4 4884}
633de4cc 4885EXPORT_SYMBOL_GPL(ata_dev_set_feature);
1da177e4 4886
8bf62ece
AL
4887/**
4888 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4889 * @dev: Device to which command will be sent
e2a7f77a
RD
4890 * @heads: Number of heads (taskfile parameter)
4891 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4892 *
4893 * LOCKING:
6aff8f1f
TH
4894 * Kernel thread context (may sleep)
4895 *
4896 * RETURNS:
4897 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4898 */
3373efd8
TH
4899static unsigned int ata_dev_init_params(struct ata_device *dev,
4900 u16 heads, u16 sectors)
8bf62ece 4901{
a0123703 4902 struct ata_taskfile tf;
6aff8f1f 4903 unsigned int err_mask;
8bf62ece
AL
4904
4905 /* Number of sectors per track 1-255. Number of heads 1-16 */
4906 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4907 return AC_ERR_INVALID;
8bf62ece
AL
4908
4909 /* set up init dev params taskfile */
4910 DPRINTK("init dev params \n");
4911
3373efd8 4912 ata_tf_init(dev, &tf);
a0123703
TH
4913 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4914 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4915 tf.protocol = ATA_PROT_NODATA;
4916 tf.nsect = sectors;
4917 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4918
2b789108 4919 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4920 /* A clean abort indicates an original or just out of spec drive
4921 and we should continue as we issue the setup based on the
4922 drive reported working geometry */
4923 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4924 err_mask = 0;
8bf62ece 4925
6aff8f1f
TH
4926 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4927 return err_mask;
8bf62ece
AL
4928}
4929
1da177e4 4930/**
5895ef9a 4931 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4932 * @qc: Metadata associated with taskfile to check
4933 *
780a87f7
JG
4934 * Allow low-level driver to filter ATA PACKET commands, returning
4935 * a status indicating whether or not it is OK to use DMA for the
4936 * supplied PACKET command.
4937 *
1da177e4 4938 * LOCKING:
624d5c51
TH
4939 * spin_lock_irqsave(host lock)
4940 *
4941 * RETURNS: 0 when ATAPI DMA can be used
4942 * nonzero otherwise
4943 */
5895ef9a 4944int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4945{
4946 struct ata_port *ap = qc->ap;
71601958 4947
624d5c51
TH
4948 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4949 * few ATAPI devices choke on such DMA requests.
4950 */
6a87e42e
TH
4951 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4952 unlikely(qc->nbytes & 15))
624d5c51 4953 return 1;
e2cec771 4954
624d5c51
TH
4955 if (ap->ops->check_atapi_dma)
4956 return ap->ops->check_atapi_dma(qc);
e2cec771 4957
624d5c51
TH
4958 return 0;
4959}
1da177e4 4960
624d5c51
TH
4961/**
4962 * ata_std_qc_defer - Check whether a qc needs to be deferred
4963 * @qc: ATA command in question
4964 *
4965 * Non-NCQ commands cannot run with any other command, NCQ or
4966 * not. As upper layer only knows the queue depth, we are
4967 * responsible for maintaining exclusion. This function checks
4968 * whether a new command @qc can be issued.
4969 *
4970 * LOCKING:
4971 * spin_lock_irqsave(host lock)
4972 *
4973 * RETURNS:
4974 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4975 */
4976int ata_std_qc_defer(struct ata_queued_cmd *qc)
4977{
4978 struct ata_link *link = qc->dev->link;
e2cec771 4979
179b310a 4980 if (ata_is_ncq(qc->tf.protocol)) {
624d5c51
TH
4981 if (!ata_tag_valid(link->active_tag))
4982 return 0;
4983 } else {
4984 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4985 return 0;
4986 }
e2cec771 4987
624d5c51
TH
4988 return ATA_DEFER_LINK;
4989}
6912ccd5 4990
624d5c51 4991void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4992
624d5c51
TH
4993/**
4994 * ata_sg_init - Associate command with scatter-gather table.
4995 * @qc: Command to be associated
4996 * @sg: Scatter-gather table.
4997 * @n_elem: Number of elements in s/g table.
4998 *
4999 * Initialize the data-related elements of queued_cmd @qc
5000 * to point to a scatter-gather table @sg, containing @n_elem
5001 * elements.
5002 *
5003 * LOCKING:
5004 * spin_lock_irqsave(host lock)
5005 */
5006void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
5007 unsigned int n_elem)
5008{
5009 qc->sg = sg;
5010 qc->n_elem = n_elem;
5011 qc->cursg = qc->sg;
5012}
bb5cb290 5013
2874d5ee
GU
5014#ifdef CONFIG_HAS_DMA
5015
5016/**
5017 * ata_sg_clean - Unmap DMA memory associated with command
5018 * @qc: Command containing DMA memory to be released
5019 *
5020 * Unmap all mapped DMA memory associated with this command.
5021 *
5022 * LOCKING:
5023 * spin_lock_irqsave(host lock)
5024 */
af27e01c 5025static void ata_sg_clean(struct ata_queued_cmd *qc)
2874d5ee
GU
5026{
5027 struct ata_port *ap = qc->ap;
5028 struct scatterlist *sg = qc->sg;
5029 int dir = qc->dma_dir;
5030
5031 WARN_ON_ONCE(sg == NULL);
5032
5033 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
5034
5035 if (qc->n_elem)
5036 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
5037
5038 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5039 qc->sg = NULL;
5040}
5041
624d5c51
TH
5042/**
5043 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5044 * @qc: Command with scatter-gather table to be mapped.
5045 *
5046 * DMA-map the scatter-gather table associated with queued_cmd @qc.
5047 *
5048 * LOCKING:
5049 * spin_lock_irqsave(host lock)
5050 *
5051 * RETURNS:
5052 * Zero on success, negative on error.
5053 *
5054 */
5055static int ata_sg_setup(struct ata_queued_cmd *qc)
5056{
5057 struct ata_port *ap = qc->ap;
5058 unsigned int n_elem;
1da177e4 5059
624d5c51 5060 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 5061
624d5c51
TH
5062 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5063 if (n_elem < 1)
5064 return -1;
bb5cb290 5065
624d5c51 5066 DPRINTK("%d sg elements mapped\n", n_elem);
5825627c 5067 qc->orig_n_elem = qc->n_elem;
624d5c51
TH
5068 qc->n_elem = n_elem;
5069 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 5070
624d5c51 5071 return 0;
1da177e4
LT
5072}
5073
2874d5ee
GU
5074#else /* !CONFIG_HAS_DMA */
5075
5076static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
5077static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5078
5079#endif /* !CONFIG_HAS_DMA */
5080
624d5c51
TH
5081/**
5082 * swap_buf_le16 - swap halves of 16-bit words in place
5083 * @buf: Buffer to swap
5084 * @buf_words: Number of 16-bit words in buffer.
5085 *
5086 * Swap halves of 16-bit words if needed to convert from
5087 * little-endian byte order to native cpu byte order, or
5088 * vice-versa.
5089 *
5090 * LOCKING:
5091 * Inherited from caller.
5092 */
5093void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 5094{
624d5c51
TH
5095#ifdef __BIG_ENDIAN
5096 unsigned int i;
8061f5f0 5097
624d5c51
TH
5098 for (i = 0; i < buf_words; i++)
5099 buf[i] = le16_to_cpu(buf[i]);
5100#endif /* __BIG_ENDIAN */
8061f5f0
TH
5101}
5102
8a8bc223 5103/**
98bd4be1
SL
5104 * ata_qc_new_init - Request an available ATA command, and initialize it
5105 * @dev: Device from whom we request an available command structure
38755e89 5106 * @tag: tag
1871ee13 5107 *
8a8bc223
TH
5108 * LOCKING:
5109 * None.
5110 */
5111
98bd4be1 5112struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
8a8bc223 5113{
98bd4be1 5114 struct ata_port *ap = dev->link->ap;
12cb5ce1 5115 struct ata_queued_cmd *qc;
8a8bc223
TH
5116
5117 /* no command while frozen */
5118 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5119 return NULL;
5120
98bd4be1 5121 /* libsas case */
5067c046 5122 if (ap->flags & ATA_FLAG_SAS_HOST) {
98bd4be1
SL
5123 tag = ata_sas_allocate_tag(ap);
5124 if (tag < 0)
5125 return NULL;
8a4aeec8 5126 }
8a8bc223 5127
98bd4be1 5128 qc = __ata_qc_from_tag(ap, tag);
5ac40790 5129 qc->tag = qc->hw_tag = tag;
98bd4be1
SL
5130 qc->scsicmd = NULL;
5131 qc->ap = ap;
5132 qc->dev = dev;
1da177e4 5133
98bd4be1 5134 ata_qc_reinit(qc);
1da177e4
LT
5135
5136 return qc;
5137}
5138
8a8bc223
TH
5139/**
5140 * ata_qc_free - free unused ata_queued_cmd
5141 * @qc: Command to complete
5142 *
5143 * Designed to free unused ata_queued_cmd object
5144 * in case something prevents using it.
5145 *
5146 * LOCKING:
5147 * spin_lock_irqsave(host lock)
5148 */
5149void ata_qc_free(struct ata_queued_cmd *qc)
5150{
a1104016 5151 struct ata_port *ap;
8a8bc223
TH
5152 unsigned int tag;
5153
efcb3cf7 5154 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
a1104016 5155 ap = qc->ap;
8a8bc223
TH
5156
5157 qc->flags = 0;
5158 tag = qc->tag;
28361c40 5159 if (ata_tag_valid(tag)) {
8a8bc223 5160 qc->tag = ATA_TAG_POISON;
5067c046 5161 if (ap->flags & ATA_FLAG_SAS_HOST)
98bd4be1 5162 ata_sas_free_tag(tag, ap);
8a8bc223
TH
5163 }
5164}
5165
76014427 5166void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5167{
a1104016
JL
5168 struct ata_port *ap;
5169 struct ata_link *link;
dedaf2b0 5170
efcb3cf7
TH
5171 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5172 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
a1104016
JL
5173 ap = qc->ap;
5174 link = qc->dev->link;
1da177e4
LT
5175
5176 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5177 ata_sg_clean(qc);
5178
7401abf2 5179 /* command should be marked inactive atomically with qc completion */
179b310a 5180 if (ata_is_ncq(qc->tf.protocol)) {
4e5b6260 5181 link->sactive &= ~(1 << qc->hw_tag);
da917d69
TH
5182 if (!link->sactive)
5183 ap->nr_active_links--;
5184 } else {
9af5c9c9 5185 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5186 ap->nr_active_links--;
5187 }
5188
5189 /* clear exclusive status */
5190 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5191 ap->excl_link == link))
5192 ap->excl_link = NULL;
7401abf2 5193
3f3791d3
AL
5194 /* atapi: mark qc as inactive to prevent the interrupt handler
5195 * from completing the command twice later, before the error handler
5196 * is called. (when rc != 0 and atapi request sense is needed)
5197 */
5198 qc->flags &= ~ATA_QCFLAG_ACTIVE;
e3ed8939 5199 ap->qc_active &= ~(1ULL << qc->tag);
3f3791d3 5200
1da177e4 5201 /* call completion callback */
77853bf2 5202 qc->complete_fn(qc);
1da177e4
LT
5203}
5204
39599a53
TH
5205static void fill_result_tf(struct ata_queued_cmd *qc)
5206{
5207 struct ata_port *ap = qc->ap;
5208
39599a53 5209 qc->result_tf.flags = qc->tf.flags;
22183bf5 5210 ap->ops->qc_fill_rtf(qc);
39599a53
TH
5211}
5212
00115e0f
TH
5213static void ata_verify_xfer(struct ata_queued_cmd *qc)
5214{
5215 struct ata_device *dev = qc->dev;
5216
eb0effdf 5217 if (!ata_is_data(qc->tf.protocol))
00115e0f
TH
5218 return;
5219
5220 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5221 return;
5222
5223 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5224}
5225
f686bcb8
TH
5226/**
5227 * ata_qc_complete - Complete an active ATA command
5228 * @qc: Command to complete
f686bcb8 5229 *
1aadf5c3
TH
5230 * Indicate to the mid and upper layers that an ATA command has
5231 * completed, with either an ok or not-ok status.
5232 *
5233 * Refrain from calling this function multiple times when
5234 * successfully completing multiple NCQ commands.
5235 * ata_qc_complete_multiple() should be used instead, which will
5236 * properly update IRQ expect state.
f686bcb8
TH
5237 *
5238 * LOCKING:
cca3974e 5239 * spin_lock_irqsave(host lock)
f686bcb8
TH
5240 */
5241void ata_qc_complete(struct ata_queued_cmd *qc)
5242{
5243 struct ata_port *ap = qc->ap;
5244
eb25cb99 5245 /* Trigger the LED (if available) */
d1ed7c55 5246 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
eb25cb99 5247
f686bcb8
TH
5248 /* XXX: New EH and old EH use different mechanisms to
5249 * synchronize EH with regular execution path.
5250 *
5251 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5252 * Normal execution path is responsible for not accessing a
5253 * failed qc. libata core enforces the rule by returning NULL
5254 * from ata_qc_from_tag() for failed qcs.
5255 *
5256 * Old EH depends on ata_qc_complete() nullifying completion
5257 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5258 * not synchronize with interrupt handler. Only PIO task is
5259 * taken care of.
5260 */
5261 if (ap->ops->error_handler) {
4dbfa39b
TH
5262 struct ata_device *dev = qc->dev;
5263 struct ata_eh_info *ehi = &dev->link->eh_info;
5264
f686bcb8
TH
5265 if (unlikely(qc->err_mask))
5266 qc->flags |= ATA_QCFLAG_FAILED;
5267
f08dc1ac
TH
5268 /*
5269 * Finish internal commands without any further processing
5270 * and always with the result TF filled.
5271 */
5272 if (unlikely(ata_tag_internal(qc->tag))) {
f4b31db9 5273 fill_result_tf(qc);
255c03d1 5274 trace_ata_qc_complete_internal(qc);
f08dc1ac
TH
5275 __ata_qc_complete(qc);
5276 return;
5277 }
f4b31db9 5278
f08dc1ac
TH
5279 /*
5280 * Non-internal qc has failed. Fill the result TF and
5281 * summon EH.
5282 */
5283 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5284 fill_result_tf(qc);
255c03d1 5285 trace_ata_qc_complete_failed(qc);
f08dc1ac 5286 ata_qc_schedule_eh(qc);
f4b31db9 5287 return;
f686bcb8
TH
5288 }
5289
4dc738ed
TH
5290 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5291
f686bcb8
TH
5292 /* read result TF if requested */
5293 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5294 fill_result_tf(qc);
f686bcb8 5295
255c03d1 5296 trace_ata_qc_complete_done(qc);
4dbfa39b
TH
5297 /* Some commands need post-processing after successful
5298 * completion.
5299 */
5300 switch (qc->tf.command) {
5301 case ATA_CMD_SET_FEATURES:
5302 if (qc->tf.feature != SETFEATURES_WC_ON &&
0c12735e
TY
5303 qc->tf.feature != SETFEATURES_WC_OFF &&
5304 qc->tf.feature != SETFEATURES_RA_ON &&
5305 qc->tf.feature != SETFEATURES_RA_OFF)
4dbfa39b
TH
5306 break;
5307 /* fall through */
5308 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5309 case ATA_CMD_SET_MULTI: /* multi_count changed */
5310 /* revalidate device */
5311 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5312 ata_port_schedule_eh(ap);
5313 break;
054a5fba
TH
5314
5315 case ATA_CMD_SLEEP:
5316 dev->flags |= ATA_DFLAG_SLEEPING;
5317 break;
4dbfa39b
TH
5318 }
5319
00115e0f
TH
5320 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5321 ata_verify_xfer(qc);
5322
f686bcb8
TH
5323 __ata_qc_complete(qc);
5324 } else {
5325 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5326 return;
5327
5328 /* read result TF if failed or requested */
5329 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5330 fill_result_tf(qc);
f686bcb8
TH
5331
5332 __ata_qc_complete(qc);
5333 }
5334}
5335
dedaf2b0
TH
5336/**
5337 * ata_qc_complete_multiple - Complete multiple qcs successfully
5338 * @ap: port in question
5339 * @qc_active: new qc_active mask
dedaf2b0
TH
5340 *
5341 * Complete in-flight commands. This functions is meant to be
5342 * called from low-level driver's interrupt routine to complete
5343 * requests normally. ap->qc_active and @qc_active is compared
5344 * and commands are completed accordingly.
5345 *
1aadf5c3
TH
5346 * Always use this function when completing multiple NCQ commands
5347 * from IRQ handlers instead of calling ata_qc_complete()
5348 * multiple times to keep IRQ expect status properly in sync.
5349 *
dedaf2b0 5350 * LOCKING:
cca3974e 5351 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5352 *
5353 * RETURNS:
5354 * Number of completed commands on success, -errno otherwise.
5355 */
e3ed8939 5356int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active)
dedaf2b0
TH
5357{
5358 int nr_done = 0;
e3ed8939 5359 u64 done_mask;
dedaf2b0
TH
5360
5361 done_mask = ap->qc_active ^ qc_active;
5362
5363 if (unlikely(done_mask & qc_active)) {
e3ed8939 5364 ata_port_err(ap, "illegal qc_active transition (%08llx->%08llx)\n",
a9a79dfe 5365 ap->qc_active, qc_active);
dedaf2b0
TH
5366 return -EINVAL;
5367 }
5368
43768180 5369 while (done_mask) {
dedaf2b0 5370 struct ata_queued_cmd *qc;
e3ed8939 5371 unsigned int tag = __ffs64(done_mask);
dedaf2b0 5372
43768180
JA
5373 qc = ata_qc_from_tag(ap, tag);
5374 if (qc) {
dedaf2b0
TH
5375 ata_qc_complete(qc);
5376 nr_done++;
5377 }
e3ed8939 5378 done_mask &= ~(1ULL << tag);
dedaf2b0
TH
5379 }
5380
5381 return nr_done;
5382}
5383
1da177e4
LT
5384/**
5385 * ata_qc_issue - issue taskfile to device
5386 * @qc: command to issue to device
5387 *
5388 * Prepare an ATA command to submission to device.
5389 * This includes mapping the data into a DMA-able
5390 * area, filling in the S/G table, and finally
5391 * writing the taskfile to hardware, starting the command.
5392 *
5393 * LOCKING:
cca3974e 5394 * spin_lock_irqsave(host lock)
1da177e4 5395 */
8e0e694a 5396void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5397{
5398 struct ata_port *ap = qc->ap;
9af5c9c9 5399 struct ata_link *link = qc->dev->link;
405e66b3 5400 u8 prot = qc->tf.protocol;
1da177e4 5401
dedaf2b0
TH
5402 /* Make sure only one non-NCQ command is outstanding. The
5403 * check is skipped for old EH because it reuses active qc to
5404 * request ATAPI sense.
5405 */
efcb3cf7 5406 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5407
1973a023 5408 if (ata_is_ncq(prot)) {
4e5b6260 5409 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
da917d69
TH
5410
5411 if (!link->sactive)
5412 ap->nr_active_links++;
4e5b6260 5413 link->sactive |= 1 << qc->hw_tag;
dedaf2b0 5414 } else {
efcb3cf7 5415 WARN_ON_ONCE(link->sactive);
da917d69
TH
5416
5417 ap->nr_active_links++;
9af5c9c9 5418 link->active_tag = qc->tag;
dedaf2b0
TH
5419 }
5420
e4a70e76 5421 qc->flags |= ATA_QCFLAG_ACTIVE;
e3ed8939 5422 ap->qc_active |= 1ULL << qc->tag;
e4a70e76 5423
60f5d6ef
TH
5424 /*
5425 * We guarantee to LLDs that they will have at least one
f92a2636
TH
5426 * non-zero sg if the command is a data command.
5427 */
9173e5e8 5428 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
60f5d6ef 5429 goto sys_err;
f92a2636 5430
405e66b3 5431 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5432 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7 5433 if (ata_sg_setup(qc))
60f5d6ef 5434 goto sys_err;
1da177e4 5435
cf480626 5436 /* if device is sleeping, schedule reset and abort the link */
054a5fba 5437 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 5438 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
5439 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5440 ata_link_abort(link);
5441 return;
5442 }
5443
1da177e4 5444 ap->ops->qc_prep(qc);
255c03d1 5445 trace_ata_qc_issue(qc);
8e0e694a
TH
5446 qc->err_mask |= ap->ops->qc_issue(qc);
5447 if (unlikely(qc->err_mask))
5448 goto err;
5449 return;
1da177e4 5450
60f5d6ef 5451sys_err:
8e0e694a
TH
5452 qc->err_mask |= AC_ERR_SYSTEM;
5453err:
5454 ata_qc_complete(qc);
1da177e4
LT
5455}
5456
34bf2170
TH
5457/**
5458 * sata_scr_valid - test whether SCRs are accessible
936fd732 5459 * @link: ATA link to test SCR accessibility for
34bf2170 5460 *
936fd732 5461 * Test whether SCRs are accessible for @link.
34bf2170
TH
5462 *
5463 * LOCKING:
5464 * None.
5465 *
5466 * RETURNS:
5467 * 1 if SCRs are accessible, 0 otherwise.
5468 */
936fd732 5469int sata_scr_valid(struct ata_link *link)
34bf2170 5470{
936fd732
TH
5471 struct ata_port *ap = link->ap;
5472
a16abc0b 5473 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5474}
5475
5476/**
5477 * sata_scr_read - read SCR register of the specified port
936fd732 5478 * @link: ATA link to read SCR for
34bf2170
TH
5479 * @reg: SCR to read
5480 * @val: Place to store read value
5481 *
936fd732 5482 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
5483 * guaranteed to succeed if @link is ap->link, the cable type of
5484 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5485 *
5486 * LOCKING:
633273a3 5487 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5488 *
5489 * RETURNS:
5490 * 0 on success, negative errno on failure.
5491 */
936fd732 5492int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5493{
633273a3 5494 if (ata_is_host_link(link)) {
633273a3 5495 if (sata_scr_valid(link))
82ef04fb 5496 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
5497 return -EOPNOTSUPP;
5498 }
5499
5500 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
5501}
5502
5503/**
5504 * sata_scr_write - write SCR register of the specified port
936fd732 5505 * @link: ATA link to write SCR for
34bf2170
TH
5506 * @reg: SCR to write
5507 * @val: value to write
5508 *
936fd732 5509 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
5510 * guaranteed to succeed if @link is ap->link, the cable type of
5511 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5512 *
5513 * LOCKING:
633273a3 5514 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5515 *
5516 * RETURNS:
5517 * 0 on success, negative errno on failure.
5518 */
936fd732 5519int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5520{
633273a3 5521 if (ata_is_host_link(link)) {
633273a3 5522 if (sata_scr_valid(link))
82ef04fb 5523 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
5524 return -EOPNOTSUPP;
5525 }
936fd732 5526
633273a3 5527 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5528}
5529
5530/**
5531 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5532 * @link: ATA link to write SCR for
34bf2170
TH
5533 * @reg: SCR to write
5534 * @val: value to write
5535 *
5536 * This function is identical to sata_scr_write() except that this
5537 * function performs flush after writing to the register.
5538 *
5539 * LOCKING:
633273a3 5540 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5541 *
5542 * RETURNS:
5543 * 0 on success, negative errno on failure.
5544 */
936fd732 5545int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5546{
633273a3 5547 if (ata_is_host_link(link)) {
633273a3 5548 int rc;
da3dbb17 5549
633273a3 5550 if (sata_scr_valid(link)) {
82ef04fb 5551 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 5552 if (rc == 0)
82ef04fb 5553 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
5554 return rc;
5555 }
5556 return -EOPNOTSUPP;
34bf2170 5557 }
633273a3
TH
5558
5559 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5560}
5561
5562/**
b1c72916 5563 * ata_phys_link_online - test whether the given link is online
936fd732 5564 * @link: ATA link to test
34bf2170 5565 *
936fd732
TH
5566 * Test whether @link is online. Note that this function returns
5567 * 0 if online status of @link cannot be obtained, so
5568 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5569 *
5570 * LOCKING:
5571 * None.
5572 *
5573 * RETURNS:
b5b3fa38 5574 * True if the port online status is available and online.
34bf2170 5575 */
b1c72916 5576bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5577{
5578 u32 sstatus;
5579
936fd732 5580 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5581 ata_sstatus_online(sstatus))
b5b3fa38
TH
5582 return true;
5583 return false;
34bf2170
TH
5584}
5585
5586/**
b1c72916 5587 * ata_phys_link_offline - test whether the given link is offline
936fd732 5588 * @link: ATA link to test
34bf2170 5589 *
936fd732
TH
5590 * Test whether @link is offline. Note that this function
5591 * returns 0 if offline status of @link cannot be obtained, so
5592 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5593 *
5594 * LOCKING:
5595 * None.
5596 *
5597 * RETURNS:
b5b3fa38 5598 * True if the port offline status is available and offline.
34bf2170 5599 */
b1c72916 5600bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5601{
5602 u32 sstatus;
5603
936fd732 5604 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5605 !ata_sstatus_online(sstatus))
b5b3fa38
TH
5606 return true;
5607 return false;
34bf2170 5608}
0baab86b 5609
b1c72916
TH
5610/**
5611 * ata_link_online - test whether the given link is online
5612 * @link: ATA link to test
5613 *
5614 * Test whether @link is online. This is identical to
5615 * ata_phys_link_online() when there's no slave link. When
5616 * there's a slave link, this function should only be called on
5617 * the master link and will return true if any of M/S links is
5618 * online.
5619 *
5620 * LOCKING:
5621 * None.
5622 *
5623 * RETURNS:
5624 * True if the port online status is available and online.
5625 */
5626bool ata_link_online(struct ata_link *link)
5627{
5628 struct ata_link *slave = link->ap->slave_link;
5629
5630 WARN_ON(link == slave); /* shouldn't be called on slave link */
5631
5632 return ata_phys_link_online(link) ||
5633 (slave && ata_phys_link_online(slave));
5634}
5635
5636/**
5637 * ata_link_offline - test whether the given link is offline
5638 * @link: ATA link to test
5639 *
5640 * Test whether @link is offline. This is identical to
5641 * ata_phys_link_offline() when there's no slave link. When
5642 * there's a slave link, this function should only be called on
5643 * the master link and will return true if both M/S links are
5644 * offline.
5645 *
5646 * LOCKING:
5647 * None.
5648 *
5649 * RETURNS:
5650 * True if the port offline status is available and offline.
5651 */
5652bool ata_link_offline(struct ata_link *link)
5653{
5654 struct ata_link *slave = link->ap->slave_link;
5655
5656 WARN_ON(link == slave); /* shouldn't be called on slave link */
5657
5658 return ata_phys_link_offline(link) &&
5659 (!slave || ata_phys_link_offline(slave));
5660}
5661
6ffa01d8 5662#ifdef CONFIG_PM
bc6e7c4b
DW
5663static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5664 unsigned int action, unsigned int ehi_flags,
5665 bool async)
500530f6 5666{
5ef41082 5667 struct ata_link *link;
500530f6 5668 unsigned long flags;
500530f6 5669
5ef41082
LM
5670 /* Previous resume operation might still be in
5671 * progress. Wait for PM_PENDING to clear.
5672 */
5673 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5674 ata_port_wait_eh(ap);
5675 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5676 }
500530f6 5677
5ef41082
LM
5678 /* request PM ops to EH */
5679 spin_lock_irqsave(ap->lock, flags);
500530f6 5680
5ef41082 5681 ap->pm_mesg = mesg;
5ef41082
LM
5682 ap->pflags |= ATA_PFLAG_PM_PENDING;
5683 ata_for_each_link(link, ap, HOST_FIRST) {
5684 link->eh_info.action |= action;
5685 link->eh_info.flags |= ehi_flags;
5686 }
500530f6 5687
5ef41082 5688 ata_port_schedule_eh(ap);
500530f6 5689
5ef41082 5690 spin_unlock_irqrestore(ap->lock, flags);
500530f6 5691
2fcbdcb4 5692 if (!async) {
5ef41082
LM
5693 ata_port_wait_eh(ap);
5694 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
500530f6 5695 }
500530f6
TH
5696}
5697
bc6e7c4b
DW
5698/*
5699 * On some hardware, device fails to respond after spun down for suspend. As
5700 * the device won't be used before being resumed, we don't need to touch the
5701 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5702 *
5703 * http://thread.gmane.org/gmane.linux.ide/46764
5704 */
5705static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5706 | ATA_EHI_NO_AUTOPSY
5707 | ATA_EHI_NO_RECOVERY;
5708
5709static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5ef41082 5710{
bc6e7c4b 5711 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5ef41082
LM
5712}
5713
bc6e7c4b 5714static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
2fcbdcb4 5715{
bc6e7c4b 5716 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
2fcbdcb4
DW
5717}
5718
bc6e7c4b 5719static int ata_port_pm_suspend(struct device *dev)
5ef41082 5720{
bc6e7c4b
DW
5721 struct ata_port *ap = to_ata_port(dev);
5722
5ef41082
LM
5723 if (pm_runtime_suspended(dev))
5724 return 0;
5725
bc6e7c4b
DW
5726 ata_port_suspend(ap, PMSG_SUSPEND);
5727 return 0;
33574d68
LM
5728}
5729
bc6e7c4b 5730static int ata_port_pm_freeze(struct device *dev)
33574d68 5731{
bc6e7c4b
DW
5732 struct ata_port *ap = to_ata_port(dev);
5733
33574d68 5734 if (pm_runtime_suspended(dev))
f5e6d0d0 5735 return 0;
33574d68 5736
bc6e7c4b
DW
5737 ata_port_suspend(ap, PMSG_FREEZE);
5738 return 0;
33574d68
LM
5739}
5740
bc6e7c4b 5741static int ata_port_pm_poweroff(struct device *dev)
33574d68 5742{
bc6e7c4b
DW
5743 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5744 return 0;
5ef41082
LM
5745}
5746
bc6e7c4b
DW
5747static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5748 | ATA_EHI_QUIET;
5ef41082 5749
bc6e7c4b
DW
5750static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5751{
5752 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5ef41082
LM
5753}
5754
bc6e7c4b 5755static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
2fcbdcb4 5756{
bc6e7c4b 5757 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
2fcbdcb4
DW
5758}
5759
bc6e7c4b 5760static int ata_port_pm_resume(struct device *dev)
e90b1e5a 5761{
200421a8 5762 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
bc6e7c4b
DW
5763 pm_runtime_disable(dev);
5764 pm_runtime_set_active(dev);
5765 pm_runtime_enable(dev);
5766 return 0;
e90b1e5a
LM
5767}
5768
7e15e9be
AL
5769/*
5770 * For ODDs, the upper layer will poll for media change every few seconds,
5771 * which will make it enter and leave suspend state every few seconds. And
5772 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5773 * is very little and the ODD may malfunction after constantly being reset.
5774 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5775 * ODD is attached to the port.
5776 */
9ee4f393
LM
5777static int ata_port_runtime_idle(struct device *dev)
5778{
7e15e9be
AL
5779 struct ata_port *ap = to_ata_port(dev);
5780 struct ata_link *link;
5781 struct ata_device *adev;
5782
5783 ata_for_each_link(link, ap, HOST_FIRST) {
5784 ata_for_each_dev(adev, link, ENABLED)
5785 if (adev->class == ATA_DEV_ATAPI &&
5786 !zpodd_dev_enabled(adev))
5787 return -EBUSY;
5788 }
5789
45f0a85c 5790 return 0;
9ee4f393
LM
5791}
5792
a7ff60db
AL
5793static int ata_port_runtime_suspend(struct device *dev)
5794{
bc6e7c4b
DW
5795 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5796 return 0;
a7ff60db
AL
5797}
5798
5799static int ata_port_runtime_resume(struct device *dev)
5800{
bc6e7c4b
DW
5801 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5802 return 0;
a7ff60db
AL
5803}
5804
5ef41082 5805static const struct dev_pm_ops ata_port_pm_ops = {
bc6e7c4b
DW
5806 .suspend = ata_port_pm_suspend,
5807 .resume = ata_port_pm_resume,
5808 .freeze = ata_port_pm_freeze,
5809 .thaw = ata_port_pm_resume,
5810 .poweroff = ata_port_pm_poweroff,
5811 .restore = ata_port_pm_resume,
9ee4f393 5812
a7ff60db
AL
5813 .runtime_suspend = ata_port_runtime_suspend,
5814 .runtime_resume = ata_port_runtime_resume,
9ee4f393 5815 .runtime_idle = ata_port_runtime_idle,
5ef41082
LM
5816};
5817
2fcbdcb4
DW
5818/* sas ports don't participate in pm runtime management of ata_ports,
5819 * and need to resume ata devices at the domain level, not the per-port
5820 * level. sas suspend/resume is async to allow parallel port recovery
5821 * since sas has multiple ata_port instances per Scsi_Host.
5822 */
bc6e7c4b 5823void ata_sas_port_suspend(struct ata_port *ap)
2fcbdcb4 5824{
bc6e7c4b 5825 ata_port_suspend_async(ap, PMSG_SUSPEND);
2fcbdcb4 5826}
bc6e7c4b 5827EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
2fcbdcb4 5828
bc6e7c4b 5829void ata_sas_port_resume(struct ata_port *ap)
2fcbdcb4 5830{
bc6e7c4b 5831 ata_port_resume_async(ap, PMSG_RESUME);
2fcbdcb4 5832}
bc6e7c4b 5833EXPORT_SYMBOL_GPL(ata_sas_port_resume);
2fcbdcb4 5834
500530f6 5835/**
cca3974e
JG
5836 * ata_host_suspend - suspend host
5837 * @host: host to suspend
500530f6
TH
5838 * @mesg: PM message
5839 *
5ef41082 5840 * Suspend @host. Actual operation is performed by port suspend.
500530f6 5841 */
cca3974e 5842int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5843{
5ef41082
LM
5844 host->dev->power.power_state = mesg;
5845 return 0;
500530f6
TH
5846}
5847
5848/**
cca3974e
JG
5849 * ata_host_resume - resume host
5850 * @host: host to resume
500530f6 5851 *
5ef41082 5852 * Resume @host. Actual operation is performed by port resume.
500530f6 5853 */
cca3974e 5854void ata_host_resume(struct ata_host *host)
500530f6 5855{
72ad6ec4 5856 host->dev->power.power_state = PMSG_ON;
500530f6 5857}
6ffa01d8 5858#endif
500530f6 5859
8df82c13 5860const struct device_type ata_port_type = {
5ef41082
LM
5861 .name = "ata_port",
5862#ifdef CONFIG_PM
5863 .pm = &ata_port_pm_ops,
5864#endif
5865};
5866
3ef3b43d
TH
5867/**
5868 * ata_dev_init - Initialize an ata_device structure
5869 * @dev: Device structure to initialize
5870 *
5871 * Initialize @dev in preparation for probing.
5872 *
5873 * LOCKING:
5874 * Inherited from caller.
5875 */
5876void ata_dev_init(struct ata_device *dev)
5877{
b1c72916 5878 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5879 struct ata_port *ap = link->ap;
72fa4b74
TH
5880 unsigned long flags;
5881
b1c72916 5882 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5883 link->sata_spd_limit = link->hw_sata_spd_limit;
5884 link->sata_spd = 0;
5a04bf4b 5885
72fa4b74
TH
5886 /* High bits of dev->flags are used to record warm plug
5887 * requests which occur asynchronously. Synchronize using
cca3974e 5888 * host lock.
72fa4b74 5889 */
ba6a1308 5890 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5891 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5892 dev->horkage = 0;
ba6a1308 5893 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5894
99cf610a
TH
5895 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5896 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
3ef3b43d
TH
5897 dev->pio_mask = UINT_MAX;
5898 dev->mwdma_mask = UINT_MAX;
5899 dev->udma_mask = UINT_MAX;
5900}
5901
4fb37a25
TH
5902/**
5903 * ata_link_init - Initialize an ata_link structure
5904 * @ap: ATA port link is attached to
5905 * @link: Link structure to initialize
8989805d 5906 * @pmp: Port multiplier port number
4fb37a25
TH
5907 *
5908 * Initialize @link.
5909 *
5910 * LOCKING:
5911 * Kernel thread context (may sleep)
5912 */
fb7fd614 5913void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5914{
5915 int i;
5916
5917 /* clear everything except for devices */
d9027470
GG
5918 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5919 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
4fb37a25
TH
5920
5921 link->ap = ap;
8989805d 5922 link->pmp = pmp;
4fb37a25
TH
5923 link->active_tag = ATA_TAG_POISON;
5924 link->hw_sata_spd_limit = UINT_MAX;
5925
5926 /* can't use iterator, ap isn't initialized yet */
5927 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5928 struct ata_device *dev = &link->device[i];
5929
5930 dev->link = link;
5931 dev->devno = dev - link->device;
110f66d2
TH
5932#ifdef CONFIG_ATA_ACPI
5933 dev->gtf_filter = ata_acpi_gtf_filter;
5934#endif
4fb37a25
TH
5935 ata_dev_init(dev);
5936 }
5937}
5938
5939/**
5940 * sata_link_init_spd - Initialize link->sata_spd_limit
5941 * @link: Link to configure sata_spd_limit for
5942 *
5943 * Initialize @link->[hw_]sata_spd_limit to the currently
5944 * configured value.
5945 *
5946 * LOCKING:
5947 * Kernel thread context (may sleep).
5948 *
5949 * RETURNS:
5950 * 0 on success, -errno on failure.
5951 */
fb7fd614 5952int sata_link_init_spd(struct ata_link *link)
4fb37a25 5953{
33267325 5954 u8 spd;
4fb37a25
TH
5955 int rc;
5956
d127ea7b 5957 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5958 if (rc)
5959 return rc;
5960
d127ea7b 5961 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5962 if (spd)
5963 link->hw_sata_spd_limit &= (1 << spd) - 1;
5964
05944bdf 5965 ata_force_link_limits(link);
33267325 5966
4fb37a25
TH
5967 link->sata_spd_limit = link->hw_sata_spd_limit;
5968
5969 return 0;
5970}
5971
1da177e4 5972/**
f3187195
TH
5973 * ata_port_alloc - allocate and initialize basic ATA port resources
5974 * @host: ATA host this allocated port belongs to
1da177e4 5975 *
f3187195
TH
5976 * Allocate and initialize basic ATA port resources.
5977 *
5978 * RETURNS:
5979 * Allocate ATA port on success, NULL on failure.
0cba632b 5980 *
1da177e4 5981 * LOCKING:
f3187195 5982 * Inherited from calling layer (may sleep).
1da177e4 5983 */
f3187195 5984struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5985{
f3187195 5986 struct ata_port *ap;
1da177e4 5987
f3187195
TH
5988 DPRINTK("ENTER\n");
5989
5990 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5991 if (!ap)
5992 return NULL;
4fca377f 5993
7b3a24c5 5994 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
cca3974e 5995 ap->lock = &host->lock;
f3187195 5996 ap->print_id = -1;
e628dc99 5997 ap->local_port_no = -1;
cca3974e 5998 ap->host = host;
f3187195 5999 ap->dev = host->dev;
bd5d825c
BP
6000
6001#if defined(ATA_VERBOSE_DEBUG)
6002 /* turn on all debugging levels */
6003 ap->msg_enable = 0x00FF;
6004#elif defined(ATA_DEBUG)
6005 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6006#else
0dd4b21f 6007 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6008#endif
1da177e4 6009
ad72cf98 6010 mutex_init(&ap->scsi_scan_mutex);
65f27f38
DH
6011 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6012 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6013 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6014 init_waitqueue_head(&ap->eh_wait_q);
45fabbb7 6015 init_completion(&ap->park_req_pending);
b93ab338
KC
6016 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
6017 TIMER_DEFERRABLE);
1da177e4 6018
838df628 6019 ap->cbl = ATA_CBL_NONE;
838df628 6020
8989805d 6021 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6022
6023#ifdef ATA_IRQ_TRAP
6024 ap->stats.unhandled_irq = 1;
6025 ap->stats.idle_irq = 1;
6026#endif
270390e1
TH
6027 ata_sff_port_init(ap);
6028
1da177e4 6029 return ap;
1da177e4
LT
6030}
6031
2623c7a5 6032static void ata_devres_release(struct device *gendev, void *res)
f0d36efd
TH
6033{
6034 struct ata_host *host = dev_get_drvdata(gendev);
6035 int i;
6036
1aa506e4
TH
6037 for (i = 0; i < host->n_ports; i++) {
6038 struct ata_port *ap = host->ports[i];
6039
4911487a
TH
6040 if (!ap)
6041 continue;
6042
6043 if (ap->scsi_host)
1aa506e4
TH
6044 scsi_host_put(ap->scsi_host);
6045
2623c7a5
TK
6046 }
6047
6048 dev_set_drvdata(gendev, NULL);
6049 ata_host_put(host);
6050}
6051
6052static void ata_host_release(struct kref *kref)
6053{
6054 struct ata_host *host = container_of(kref, struct ata_host, kref);
6055 int i;
6056
6057 for (i = 0; i < host->n_ports; i++) {
6058 struct ata_port *ap = host->ports[i];
6059
633273a3 6060 kfree(ap->pmp_link);
b1c72916 6061 kfree(ap->slave_link);
4911487a 6062 kfree(ap);
1aa506e4
TH
6063 host->ports[i] = NULL;
6064 }
2623c7a5
TK
6065 kfree(host);
6066}
1aa506e4 6067
2623c7a5
TK
6068void ata_host_get(struct ata_host *host)
6069{
6070 kref_get(&host->kref);
6071}
6072
6073void ata_host_put(struct ata_host *host)
6074{
6075 kref_put(&host->kref, ata_host_release);
f0d36efd
TH
6076}
6077
f3187195
TH
6078/**
6079 * ata_host_alloc - allocate and init basic ATA host resources
6080 * @dev: generic device this host is associated with
6081 * @max_ports: maximum number of ATA ports associated with this host
6082 *
6083 * Allocate and initialize basic ATA host resources. LLD calls
6084 * this function to allocate a host, initializes it fully and
6085 * attaches it using ata_host_register().
6086 *
6087 * @max_ports ports are allocated and host->n_ports is
6088 * initialized to @max_ports. The caller is allowed to decrease
6089 * host->n_ports before calling ata_host_register(). The unused
6090 * ports will be automatically freed on registration.
6091 *
6092 * RETURNS:
6093 * Allocate ATA host on success, NULL on failure.
6094 *
6095 * LOCKING:
6096 * Inherited from calling layer (may sleep).
6097 */
6098struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6099{
6100 struct ata_host *host;
6101 size_t sz;
6102 int i;
2623c7a5 6103 void *dr;
f3187195
TH
6104
6105 DPRINTK("ENTER\n");
6106
f3187195
TH
6107 /* alloc a container for our list of ATA ports (buses) */
6108 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
2623c7a5 6109 host = kzalloc(sz, GFP_KERNEL);
f3187195 6110 if (!host)
2623c7a5
TK
6111 return NULL;
6112
6113 if (!devres_open_group(dev, NULL, GFP_KERNEL))
dafd6c49 6114 goto err_free;
2623c7a5
TK
6115
6116 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
6117 if (!dr)
f3187195
TH
6118 goto err_out;
6119
2623c7a5 6120 devres_add(dev, dr);
f3187195
TH
6121 dev_set_drvdata(dev, host);
6122
6123 spin_lock_init(&host->lock);
c0c362b6 6124 mutex_init(&host->eh_mutex);
f3187195
TH
6125 host->dev = dev;
6126 host->n_ports = max_ports;
2623c7a5 6127 kref_init(&host->kref);
f3187195
TH
6128
6129 /* allocate ports bound to this host */
6130 for (i = 0; i < max_ports; i++) {
6131 struct ata_port *ap;
6132
6133 ap = ata_port_alloc(host);
6134 if (!ap)
6135 goto err_out;
6136
6137 ap->port_no = i;
6138 host->ports[i] = ap;
6139 }
6140
6141 devres_remove_group(dev, NULL);
6142 return host;
6143
6144 err_out:
6145 devres_release_group(dev, NULL);
dafd6c49
CIK
6146 err_free:
6147 kfree(host);
f3187195
TH
6148 return NULL;
6149}
6150
f5cda257
TH
6151/**
6152 * ata_host_alloc_pinfo - alloc host and init with port_info array
6153 * @dev: generic device this host is associated with
6154 * @ppi: array of ATA port_info to initialize host with
6155 * @n_ports: number of ATA ports attached to this host
6156 *
6157 * Allocate ATA host and initialize with info from @ppi. If NULL
6158 * terminated, @ppi may contain fewer entries than @n_ports. The
6159 * last entry will be used for the remaining ports.
6160 *
6161 * RETURNS:
6162 * Allocate ATA host on success, NULL on failure.
6163 *
6164 * LOCKING:
6165 * Inherited from calling layer (may sleep).
6166 */
6167struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6168 const struct ata_port_info * const * ppi,
6169 int n_ports)
6170{
6171 const struct ata_port_info *pi;
6172 struct ata_host *host;
6173 int i, j;
6174
6175 host = ata_host_alloc(dev, n_ports);
6176 if (!host)
6177 return NULL;
6178
6179 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6180 struct ata_port *ap = host->ports[i];
6181
6182 if (ppi[j])
6183 pi = ppi[j++];
6184
6185 ap->pio_mask = pi->pio_mask;
6186 ap->mwdma_mask = pi->mwdma_mask;
6187 ap->udma_mask = pi->udma_mask;
6188 ap->flags |= pi->flags;
0c88758b 6189 ap->link.flags |= pi->link_flags;
f5cda257
TH
6190 ap->ops = pi->port_ops;
6191
6192 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6193 host->ops = pi->port_ops;
f5cda257
TH
6194 }
6195
6196 return host;
6197}
6198
b1c72916
TH
6199/**
6200 * ata_slave_link_init - initialize slave link
6201 * @ap: port to initialize slave link for
6202 *
6203 * Create and initialize slave link for @ap. This enables slave
6204 * link handling on the port.
6205 *
6206 * In libata, a port contains links and a link contains devices.
6207 * There is single host link but if a PMP is attached to it,
6208 * there can be multiple fan-out links. On SATA, there's usually
6209 * a single device connected to a link but PATA and SATA
6210 * controllers emulating TF based interface can have two - master
6211 * and slave.
6212 *
6213 * However, there are a few controllers which don't fit into this
6214 * abstraction too well - SATA controllers which emulate TF
6215 * interface with both master and slave devices but also have
6216 * separate SCR register sets for each device. These controllers
6217 * need separate links for physical link handling
6218 * (e.g. onlineness, link speed) but should be treated like a
6219 * traditional M/S controller for everything else (e.g. command
6220 * issue, softreset).
6221 *
6222 * slave_link is libata's way of handling this class of
6223 * controllers without impacting core layer too much. For
6224 * anything other than physical link handling, the default host
6225 * link is used for both master and slave. For physical link
6226 * handling, separate @ap->slave_link is used. All dirty details
6227 * are implemented inside libata core layer. From LLD's POV, the
6228 * only difference is that prereset, hardreset and postreset are
6229 * called once more for the slave link, so the reset sequence
6230 * looks like the following.
6231 *
6232 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6233 * softreset(M) -> postreset(M) -> postreset(S)
6234 *
6235 * Note that softreset is called only for the master. Softreset
6236 * resets both M/S by definition, so SRST on master should handle
6237 * both (the standard method will work just fine).
6238 *
6239 * LOCKING:
6240 * Should be called before host is registered.
6241 *
6242 * RETURNS:
6243 * 0 on success, -errno on failure.
6244 */
6245int ata_slave_link_init(struct ata_port *ap)
6246{
6247 struct ata_link *link;
6248
6249 WARN_ON(ap->slave_link);
6250 WARN_ON(ap->flags & ATA_FLAG_PMP);
6251
6252 link = kzalloc(sizeof(*link), GFP_KERNEL);
6253 if (!link)
6254 return -ENOMEM;
6255
6256 ata_link_init(ap, link, 1);
6257 ap->slave_link = link;
6258 return 0;
6259}
6260
32ebbc0c
TH
6261static void ata_host_stop(struct device *gendev, void *res)
6262{
6263 struct ata_host *host = dev_get_drvdata(gendev);
6264 int i;
6265
6266 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6267
6268 for (i = 0; i < host->n_ports; i++) {
6269 struct ata_port *ap = host->ports[i];
6270
6271 if (ap->ops->port_stop)
6272 ap->ops->port_stop(ap);
6273 }
6274
6275 if (host->ops->host_stop)
6276 host->ops->host_stop(host);
6277}
6278
029cfd6b
TH
6279/**
6280 * ata_finalize_port_ops - finalize ata_port_operations
6281 * @ops: ata_port_operations to finalize
6282 *
6283 * An ata_port_operations can inherit from another ops and that
6284 * ops can again inherit from another. This can go on as many
6285 * times as necessary as long as there is no loop in the
6286 * inheritance chain.
6287 *
6288 * Ops tables are finalized when the host is started. NULL or
6289 * unspecified entries are inherited from the closet ancestor
6290 * which has the method and the entry is populated with it.
6291 * After finalization, the ops table directly points to all the
6292 * methods and ->inherits is no longer necessary and cleared.
6293 *
6294 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6295 *
6296 * LOCKING:
6297 * None.
6298 */
6299static void ata_finalize_port_ops(struct ata_port_operations *ops)
6300{
2da67659 6301 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
6302 const struct ata_port_operations *cur;
6303 void **begin = (void **)ops;
6304 void **end = (void **)&ops->inherits;
6305 void **pp;
6306
6307 if (!ops || !ops->inherits)
6308 return;
6309
6310 spin_lock(&lock);
6311
6312 for (cur = ops->inherits; cur; cur = cur->inherits) {
6313 void **inherit = (void **)cur;
6314
6315 for (pp = begin; pp < end; pp++, inherit++)
6316 if (!*pp)
6317 *pp = *inherit;
6318 }
6319
6320 for (pp = begin; pp < end; pp++)
6321 if (IS_ERR(*pp))
6322 *pp = NULL;
6323
6324 ops->inherits = NULL;
6325
6326 spin_unlock(&lock);
6327}
6328
ecef7253
TH
6329/**
6330 * ata_host_start - start and freeze ports of an ATA host
6331 * @host: ATA host to start ports for
6332 *
6333 * Start and then freeze ports of @host. Started status is
6334 * recorded in host->flags, so this function can be called
6335 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6336 * once. If host->ops isn't initialized yet, its set to the
6337 * first non-dummy port ops.
ecef7253
TH
6338 *
6339 * LOCKING:
6340 * Inherited from calling layer (may sleep).
6341 *
6342 * RETURNS:
6343 * 0 if all ports are started successfully, -errno otherwise.
6344 */
6345int ata_host_start(struct ata_host *host)
6346{
32ebbc0c
TH
6347 int have_stop = 0;
6348 void *start_dr = NULL;
ecef7253
TH
6349 int i, rc;
6350
6351 if (host->flags & ATA_HOST_STARTED)
6352 return 0;
6353
029cfd6b
TH
6354 ata_finalize_port_ops(host->ops);
6355
ecef7253
TH
6356 for (i = 0; i < host->n_ports; i++) {
6357 struct ata_port *ap = host->ports[i];
6358
029cfd6b
TH
6359 ata_finalize_port_ops(ap->ops);
6360
f3187195
TH
6361 if (!host->ops && !ata_port_is_dummy(ap))
6362 host->ops = ap->ops;
6363
32ebbc0c
TH
6364 if (ap->ops->port_stop)
6365 have_stop = 1;
6366 }
6367
6368 if (host->ops->host_stop)
6369 have_stop = 1;
6370
6371 if (have_stop) {
6372 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6373 if (!start_dr)
6374 return -ENOMEM;
6375 }
6376
6377 for (i = 0; i < host->n_ports; i++) {
6378 struct ata_port *ap = host->ports[i];
6379
ecef7253
TH
6380 if (ap->ops->port_start) {
6381 rc = ap->ops->port_start(ap);
6382 if (rc) {
0f9fe9b7 6383 if (rc != -ENODEV)
a44fec1f
JP
6384 dev_err(host->dev,
6385 "failed to start port %d (errno=%d)\n",
6386 i, rc);
ecef7253
TH
6387 goto err_out;
6388 }
6389 }
ecef7253
TH
6390 ata_eh_freeze_port(ap);
6391 }
6392
32ebbc0c
TH
6393 if (start_dr)
6394 devres_add(host->dev, start_dr);
ecef7253
TH
6395 host->flags |= ATA_HOST_STARTED;
6396 return 0;
6397
6398 err_out:
6399 while (--i >= 0) {
6400 struct ata_port *ap = host->ports[i];
6401
6402 if (ap->ops->port_stop)
6403 ap->ops->port_stop(ap);
6404 }
32ebbc0c 6405 devres_free(start_dr);
ecef7253
TH
6406 return rc;
6407}
6408
b03732f0 6409/**
8d8e7d13 6410 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
cca3974e
JG
6411 * @host: host to initialize
6412 * @dev: device host is attached to
cca3974e 6413 * @ops: port_ops
b03732f0 6414 *
b03732f0 6415 */
cca3974e 6416void ata_host_init(struct ata_host *host, struct device *dev,
8d8e7d13 6417 struct ata_port_operations *ops)
b03732f0 6418{
cca3974e 6419 spin_lock_init(&host->lock);
c0c362b6 6420 mutex_init(&host->eh_mutex);
69278f79 6421 host->n_tags = ATA_MAX_QUEUE;
cca3974e 6422 host->dev = dev;
cca3974e 6423 host->ops = ops;
b03732f0
BK
6424}
6425
9508a66f 6426void __ata_port_probe(struct ata_port *ap)
79318057 6427{
9508a66f
DW
6428 struct ata_eh_info *ehi = &ap->link.eh_info;
6429 unsigned long flags;
886ad09f 6430
9508a66f
DW
6431 /* kick EH for boot probing */
6432 spin_lock_irqsave(ap->lock, flags);
79318057 6433
9508a66f
DW
6434 ehi->probe_mask |= ATA_ALL_DEVICES;
6435 ehi->action |= ATA_EH_RESET;
6436 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
79318057 6437
9508a66f
DW
6438 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6439 ap->pflags |= ATA_PFLAG_LOADING;
6440 ata_port_schedule_eh(ap);
79318057 6441
9508a66f
DW
6442 spin_unlock_irqrestore(ap->lock, flags);
6443}
79318057 6444
9508a66f
DW
6445int ata_port_probe(struct ata_port *ap)
6446{
6447 int rc = 0;
79318057 6448
9508a66f
DW
6449 if (ap->ops->error_handler) {
6450 __ata_port_probe(ap);
79318057
AV
6451 ata_port_wait_eh(ap);
6452 } else {
6453 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6454 rc = ata_bus_probe(ap);
6455 DPRINTK("ata%u: bus probe end\n", ap->print_id);
79318057 6456 }
238c9cf9
JB
6457 return rc;
6458}
6459
6460
6461static void async_port_probe(void *data, async_cookie_t cookie)
6462{
6463 struct ata_port *ap = data;
4fca377f 6464
238c9cf9
JB
6465 /*
6466 * If we're not allowed to scan this host in parallel,
6467 * we need to wait until all previous scans have completed
6468 * before going further.
6469 * Jeff Garzik says this is only within a controller, so we
6470 * don't need to wait for port 0, only for later ports.
6471 */
6472 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6473 async_synchronize_cookie(cookie);
6474
6475 (void)ata_port_probe(ap);
f29d3b23
AV
6476
6477 /* in order to keep device order, we need to synchronize at this point */
6478 async_synchronize_cookie(cookie);
6479
6480 ata_scsi_scan_host(ap, 1);
79318057 6481}
238c9cf9 6482
f3187195
TH
6483/**
6484 * ata_host_register - register initialized ATA host
6485 * @host: ATA host to register
6486 * @sht: template for SCSI host
6487 *
6488 * Register initialized ATA host. @host is allocated using
6489 * ata_host_alloc() and fully initialized by LLD. This function
6490 * starts ports, registers @host with ATA and SCSI layers and
6491 * probe registered devices.
6492 *
6493 * LOCKING:
6494 * Inherited from calling layer (may sleep).
6495 *
6496 * RETURNS:
6497 * 0 on success, -errno otherwise.
6498 */
6499int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6500{
6501 int i, rc;
6502
69278f79 6503 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
1871ee13 6504
f3187195
TH
6505 /* host must have been started */
6506 if (!(host->flags & ATA_HOST_STARTED)) {
a44fec1f 6507 dev_err(host->dev, "BUG: trying to register unstarted host\n");
f3187195
TH
6508 WARN_ON(1);
6509 return -EINVAL;
6510 }
6511
6512 /* Blow away unused ports. This happens when LLD can't
6513 * determine the exact number of ports to allocate at
6514 * allocation time.
6515 */
6516 for (i = host->n_ports; host->ports[i]; i++)
6517 kfree(host->ports[i]);
6518
6519 /* give ports names and add SCSI hosts */
e628dc99 6520 for (i = 0; i < host->n_ports; i++) {
85d6725b 6521 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
e628dc99
DM
6522 host->ports[i]->local_port_no = i + 1;
6523 }
4fca377f 6524
d9027470
GG
6525 /* Create associated sysfs transport objects */
6526 for (i = 0; i < host->n_ports; i++) {
6527 rc = ata_tport_add(host->dev,host->ports[i]);
6528 if (rc) {
6529 goto err_tadd;
6530 }
6531 }
6532
f3187195
TH
6533 rc = ata_scsi_add_hosts(host, sht);
6534 if (rc)
d9027470 6535 goto err_tadd;
f3187195
TH
6536
6537 /* set cable, sata_spd_limit and report */
6538 for (i = 0; i < host->n_ports; i++) {
6539 struct ata_port *ap = host->ports[i];
f3187195
TH
6540 unsigned long xfer_mask;
6541
6542 /* set SATA cable type if still unset */
6543 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6544 ap->cbl = ATA_CBL_SATA;
6545
6546 /* init sata_spd_limit to the current value */
4fb37a25 6547 sata_link_init_spd(&ap->link);
b1c72916
TH
6548 if (ap->slave_link)
6549 sata_link_init_spd(ap->slave_link);
f3187195 6550
cbcdd875 6551 /* print per-port info to dmesg */
f3187195
TH
6552 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6553 ap->udma_mask);
6554
abf6e8ed 6555 if (!ata_port_is_dummy(ap)) {
a9a79dfe
JP
6556 ata_port_info(ap, "%cATA max %s %s\n",
6557 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6558 ata_mode_string(xfer_mask),
6559 ap->link.eh_info.desc);
abf6e8ed
TH
6560 ata_ehi_clear_desc(&ap->link.eh_info);
6561 } else
a9a79dfe 6562 ata_port_info(ap, "DUMMY\n");
f3187195
TH
6563 }
6564
f6005354 6565 /* perform each probe asynchronously */
f3187195
TH
6566 for (i = 0; i < host->n_ports; i++) {
6567 struct ata_port *ap = host->ports[i];
79318057 6568 async_schedule(async_port_probe, ap);
f3187195 6569 }
f3187195
TH
6570
6571 return 0;
d9027470
GG
6572
6573 err_tadd:
6574 while (--i >= 0) {
6575 ata_tport_delete(host->ports[i]);
6576 }
6577 return rc;
6578
f3187195
TH
6579}
6580
f5cda257
TH
6581/**
6582 * ata_host_activate - start host, request IRQ and register it
6583 * @host: target ATA host
6584 * @irq: IRQ to request
6585 * @irq_handler: irq_handler used when requesting IRQ
6586 * @irq_flags: irq_flags used when requesting IRQ
6587 * @sht: scsi_host_template to use when registering the host
6588 *
6589 * After allocating an ATA host and initializing it, most libata
6590 * LLDs perform three steps to activate the host - start host,
c9b5560a 6591 * request IRQ and register it. This helper takes necessary
f5cda257
TH
6592 * arguments and performs the three steps in one go.
6593 *
3d46b2e2
PM
6594 * An invalid IRQ skips the IRQ registration and expects the host to
6595 * have set polling mode on the port. In this case, @irq_handler
6596 * should be NULL.
6597 *
f5cda257
TH
6598 * LOCKING:
6599 * Inherited from calling layer (may sleep).
6600 *
6601 * RETURNS:
6602 * 0 on success, -errno otherwise.
6603 */
6604int ata_host_activate(struct ata_host *host, int irq,
6605 irq_handler_t irq_handler, unsigned long irq_flags,
6606 struct scsi_host_template *sht)
6607{
cbcdd875 6608 int i, rc;
7e22c002 6609 char *irq_desc;
f5cda257
TH
6610
6611 rc = ata_host_start(host);
6612 if (rc)
6613 return rc;
6614
3d46b2e2
PM
6615 /* Special case for polling mode */
6616 if (!irq) {
6617 WARN_ON(irq_handler);
6618 return ata_host_register(host, sht);
6619 }
6620
7e22c002
HK
6621 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6622 dev_driver_string(host->dev),
6623 dev_name(host->dev));
6624 if (!irq_desc)
6625 return -ENOMEM;
6626
f5cda257 6627 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7e22c002 6628 irq_desc, host);
f5cda257
TH
6629 if (rc)
6630 return rc;
6631
cbcdd875
TH
6632 for (i = 0; i < host->n_ports; i++)
6633 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6634
f5cda257
TH
6635 rc = ata_host_register(host, sht);
6636 /* if failed, just free the IRQ and leave ports alone */
6637 if (rc)
6638 devm_free_irq(host->dev, irq, host);
6639
6640 return rc;
6641}
6642
720ba126 6643/**
c9b5560a 6644 * ata_port_detach - Detach ATA port in preparation of device removal
720ba126
TH
6645 * @ap: ATA port to be detached
6646 *
6647 * Detach all ATA devices and the associated SCSI devices of @ap;
6648 * then, remove the associated SCSI host. @ap is guaranteed to
6649 * be quiescent on return from this function.
6650 *
6651 * LOCKING:
6652 * Kernel thread context (may sleep).
6653 */
741b7763 6654static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6655{
6656 unsigned long flags;
a6f9bf4d
LK
6657 struct ata_link *link;
6658 struct ata_device *dev;
720ba126
TH
6659
6660 if (!ap->ops->error_handler)
c3cf30a9 6661 goto skip_eh;
720ba126
TH
6662
6663 /* tell EH we're leaving & flush EH */
ba6a1308 6664 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6665 ap->pflags |= ATA_PFLAG_UNLOADING;
ece180d1 6666 ata_port_schedule_eh(ap);
ba6a1308 6667 spin_unlock_irqrestore(ap->lock, flags);
720ba126 6668
ece180d1 6669 /* wait till EH commits suicide */
720ba126
TH
6670 ata_port_wait_eh(ap);
6671
ece180d1
TH
6672 /* it better be dead now */
6673 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
720ba126 6674
afe2c511 6675 cancel_delayed_work_sync(&ap->hotplug_task);
720ba126 6676
c3cf30a9 6677 skip_eh:
a6f9bf4d
LK
6678 /* clean up zpodd on port removal */
6679 ata_for_each_link(link, ap, HOST_FIRST) {
6680 ata_for_each_dev(dev, link, ALL) {
6681 if (zpodd_dev_enabled(dev))
6682 zpodd_exit(dev);
6683 }
6684 }
d9027470
GG
6685 if (ap->pmp_link) {
6686 int i;
6687 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6688 ata_tlink_delete(&ap->pmp_link[i]);
6689 }
720ba126 6690 /* remove the associated SCSI host */
cca3974e 6691 scsi_remove_host(ap->scsi_host);
c5700766 6692 ata_tport_delete(ap);
720ba126
TH
6693}
6694
0529c159
TH
6695/**
6696 * ata_host_detach - Detach all ports of an ATA host
6697 * @host: Host to detach
6698 *
6699 * Detach all ports of @host.
6700 *
6701 * LOCKING:
6702 * Kernel thread context (may sleep).
6703 */
6704void ata_host_detach(struct ata_host *host)
6705{
6706 int i;
6707
6708 for (i = 0; i < host->n_ports; i++)
6709 ata_port_detach(host->ports[i]);
562f0c2d
TH
6710
6711 /* the host is dead now, dissociate ACPI */
6712 ata_acpi_dissociate(host);
0529c159
TH
6713}
6714
374b1873
JG
6715#ifdef CONFIG_PCI
6716
1da177e4
LT
6717/**
6718 * ata_pci_remove_one - PCI layer callback for device removal
6719 * @pdev: PCI device that was removed
6720 *
b878ca5d
TH
6721 * PCI layer indicates to libata via this hook that hot-unplug or
6722 * module unload event has occurred. Detach all ports. Resource
6723 * release is handled via devres.
1da177e4
LT
6724 *
6725 * LOCKING:
6726 * Inherited from PCI layer (may sleep).
6727 */
f0d36efd 6728void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6729{
04a3f5b7 6730 struct ata_host *host = pci_get_drvdata(pdev);
1da177e4 6731
b878ca5d 6732 ata_host_detach(host);
1da177e4
LT
6733}
6734
6735/* move to PCI subsystem */
057ace5e 6736int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6737{
6738 unsigned long tmp = 0;
6739
6740 switch (bits->width) {
6741 case 1: {
6742 u8 tmp8 = 0;
6743 pci_read_config_byte(pdev, bits->reg, &tmp8);
6744 tmp = tmp8;
6745 break;
6746 }
6747 case 2: {
6748 u16 tmp16 = 0;
6749 pci_read_config_word(pdev, bits->reg, &tmp16);
6750 tmp = tmp16;
6751 break;
6752 }
6753 case 4: {
6754 u32 tmp32 = 0;
6755 pci_read_config_dword(pdev, bits->reg, &tmp32);
6756 tmp = tmp32;
6757 break;
6758 }
6759
6760 default:
6761 return -EINVAL;
6762 }
6763
6764 tmp &= bits->mask;
6765
6766 return (tmp == bits->val) ? 1 : 0;
6767}
9b847548 6768
6ffa01d8 6769#ifdef CONFIG_PM
3c5100c1 6770void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6771{
6772 pci_save_state(pdev);
4c90d971 6773 pci_disable_device(pdev);
500530f6 6774
3a2d5b70 6775 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6776 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6777}
6778
553c4aa6 6779int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6780{
553c4aa6
TH
6781 int rc;
6782
9b847548
JA
6783 pci_set_power_state(pdev, PCI_D0);
6784 pci_restore_state(pdev);
553c4aa6 6785
b878ca5d 6786 rc = pcim_enable_device(pdev);
553c4aa6 6787 if (rc) {
a44fec1f
JP
6788 dev_err(&pdev->dev,
6789 "failed to enable device after resume (%d)\n", rc);
553c4aa6
TH
6790 return rc;
6791 }
6792
9b847548 6793 pci_set_master(pdev);
553c4aa6 6794 return 0;
500530f6
TH
6795}
6796
3c5100c1 6797int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6798{
04a3f5b7 6799 struct ata_host *host = pci_get_drvdata(pdev);
500530f6
TH
6800 int rc = 0;
6801
cca3974e 6802 rc = ata_host_suspend(host, mesg);
500530f6
TH
6803 if (rc)
6804 return rc;
6805
3c5100c1 6806 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6807
6808 return 0;
6809}
6810
6811int ata_pci_device_resume(struct pci_dev *pdev)
6812{
04a3f5b7 6813 struct ata_host *host = pci_get_drvdata(pdev);
553c4aa6 6814 int rc;
500530f6 6815
553c4aa6
TH
6816 rc = ata_pci_device_do_resume(pdev);
6817 if (rc == 0)
6818 ata_host_resume(host);
6819 return rc;
9b847548 6820}
6ffa01d8
TH
6821#endif /* CONFIG_PM */
6822
1da177e4
LT
6823#endif /* CONFIG_PCI */
6824
b7db04d9
BN
6825/**
6826 * ata_platform_remove_one - Platform layer callback for device removal
6827 * @pdev: Platform device that was removed
6828 *
6829 * Platform layer indicates to libata via this hook that hot-unplug or
6830 * module unload event has occurred. Detach all ports. Resource
6831 * release is handled via devres.
6832 *
6833 * LOCKING:
6834 * Inherited from platform layer (may sleep).
6835 */
6836int ata_platform_remove_one(struct platform_device *pdev)
6837{
6838 struct ata_host *host = platform_get_drvdata(pdev);
6839
6840 ata_host_detach(host);
6841
6842 return 0;
6843}
6844
33267325
TH
6845static int __init ata_parse_force_one(char **cur,
6846 struct ata_force_ent *force_ent,
6847 const char **reason)
6848{
0f5f264b 6849 static const struct ata_force_param force_tbl[] __initconst = {
33267325
TH
6850 { "40c", .cbl = ATA_CBL_PATA40 },
6851 { "80c", .cbl = ATA_CBL_PATA80 },
6852 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6853 { "unk", .cbl = ATA_CBL_PATA_UNK },
6854 { "ign", .cbl = ATA_CBL_PATA_IGN },
6855 { "sata", .cbl = ATA_CBL_SATA },
6856 { "1.5Gbps", .spd_limit = 1 },
6857 { "3.0Gbps", .spd_limit = 2 },
6858 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6859 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
d7b16e4f
MP
6860 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6861 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
43c9c591 6862 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
33267325
TH
6863 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6864 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6865 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6866 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6867 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6868 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6869 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6870 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6871 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6872 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6873 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6874 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6875 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6876 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6877 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6878 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6879 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6880 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6881 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6882 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6883 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6884 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6885 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6886 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6887 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6888 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6889 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6890 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6891 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6892 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6893 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6894 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6895 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6896 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6897 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6898 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6899 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
ca6d43b0 6900 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
966fbe19 6901 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
b8bd6dc3 6902 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
33267325
TH
6903 };
6904 char *start = *cur, *p = *cur;
6905 char *id, *val, *endp;
6906 const struct ata_force_param *match_fp = NULL;
6907 int nr_matches = 0, i;
6908
6909 /* find where this param ends and update *cur */
6910 while (*p != '\0' && *p != ',')
6911 p++;
6912
6913 if (*p == '\0')
6914 *cur = p;
6915 else
6916 *cur = p + 1;
6917
6918 *p = '\0';
6919
6920 /* parse */
6921 p = strchr(start, ':');
6922 if (!p) {
6923 val = strstrip(start);
6924 goto parse_val;
6925 }
6926 *p = '\0';
6927
6928 id = strstrip(start);
6929 val = strstrip(p + 1);
6930
6931 /* parse id */
6932 p = strchr(id, '.');
6933 if (p) {
6934 *p++ = '\0';
6935 force_ent->device = simple_strtoul(p, &endp, 10);
6936 if (p == endp || *endp != '\0') {
6937 *reason = "invalid device";
6938 return -EINVAL;
6939 }
6940 }
6941
6942 force_ent->port = simple_strtoul(id, &endp, 10);
f7cf69ae 6943 if (id == endp || *endp != '\0') {
33267325
TH
6944 *reason = "invalid port/link";
6945 return -EINVAL;
6946 }
6947
6948 parse_val:
6949 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6950 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6951 const struct ata_force_param *fp = &force_tbl[i];
6952
6953 if (strncasecmp(val, fp->name, strlen(val)))
6954 continue;
6955
6956 nr_matches++;
6957 match_fp = fp;
6958
6959 if (strcasecmp(val, fp->name) == 0) {
6960 nr_matches = 1;
6961 break;
6962 }
6963 }
6964
6965 if (!nr_matches) {
6966 *reason = "unknown value";
6967 return -EINVAL;
6968 }
6969 if (nr_matches > 1) {
9de55351 6970 *reason = "ambiguous value";
33267325
TH
6971 return -EINVAL;
6972 }
6973
6974 force_ent->param = *match_fp;
6975
6976 return 0;
6977}
6978
6979static void __init ata_parse_force_param(void)
6980{
6981 int idx = 0, size = 1;
6982 int last_port = -1, last_device = -1;
6983 char *p, *cur, *next;
6984
6985 /* calculate maximum number of params and allocate force_tbl */
6986 for (p = ata_force_param_buf; *p; p++)
6987 if (*p == ',')
6988 size++;
6989
6396bb22 6990 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
33267325
TH
6991 if (!ata_force_tbl) {
6992 printk(KERN_WARNING "ata: failed to extend force table, "
6993 "libata.force ignored\n");
6994 return;
6995 }
6996
6997 /* parse and populate the table */
6998 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6999 const char *reason = "";
7000 struct ata_force_ent te = { .port = -1, .device = -1 };
7001
7002 next = cur;
7003 if (ata_parse_force_one(&next, &te, &reason)) {
7004 printk(KERN_WARNING "ata: failed to parse force "
7005 "parameter \"%s\" (%s)\n",
7006 cur, reason);
7007 continue;
7008 }
7009
7010 if (te.port == -1) {
7011 te.port = last_port;
7012 te.device = last_device;
7013 }
7014
7015 ata_force_tbl[idx++] = te;
7016
7017 last_port = te.port;
7018 last_device = te.device;
7019 }
7020
7021 ata_force_tbl_size = idx;
7022}
1da177e4 7023
1da177e4
LT
7024static int __init ata_init(void)
7025{
d9027470 7026 int rc;
270390e1 7027
33267325
TH
7028 ata_parse_force_param();
7029
270390e1 7030 rc = ata_sff_init();
ad72cf98
TH
7031 if (rc) {
7032 kfree(ata_force_tbl);
7033 return rc;
7034 }
453b07ac 7035
d9027470
GG
7036 libata_transport_init();
7037 ata_scsi_transport_template = ata_attach_transport();
7038 if (!ata_scsi_transport_template) {
7039 ata_sff_exit();
7040 rc = -ENOMEM;
7041 goto err_out;
4fca377f 7042 }
d9027470 7043
1da177e4
LT
7044 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7045 return 0;
d9027470
GG
7046
7047err_out:
7048 return rc;
1da177e4
LT
7049}
7050
7051static void __exit ata_exit(void)
7052{
d9027470
GG
7053 ata_release_transport(ata_scsi_transport_template);
7054 libata_transport_exit();
270390e1 7055 ata_sff_exit();
33267325 7056 kfree(ata_force_tbl);
1da177e4
LT
7057}
7058
a4625085 7059subsys_initcall(ata_init);
1da177e4
LT
7060module_exit(ata_exit);
7061
9990b6f3 7062static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
67846b30
JG
7063
7064int ata_ratelimit(void)
7065{
9990b6f3 7066 return __ratelimit(&ratelimit);
67846b30
JG
7067}
7068
c0c362b6
TH
7069/**
7070 * ata_msleep - ATA EH owner aware msleep
7071 * @ap: ATA port to attribute the sleep to
7072 * @msecs: duration to sleep in milliseconds
7073 *
7074 * Sleeps @msecs. If the current task is owner of @ap's EH, the
7075 * ownership is released before going to sleep and reacquired
7076 * after the sleep is complete. IOW, other ports sharing the
7077 * @ap->host will be allowed to own the EH while this task is
7078 * sleeping.
7079 *
7080 * LOCKING:
7081 * Might sleep.
7082 */
97750ceb
TH
7083void ata_msleep(struct ata_port *ap, unsigned int msecs)
7084{
c0c362b6
TH
7085 bool owns_eh = ap && ap->host->eh_owner == current;
7086
7087 if (owns_eh)
7088 ata_eh_release(ap);
7089
848c3920
AVM
7090 if (msecs < 20) {
7091 unsigned long usecs = msecs * USEC_PER_MSEC;
7092 usleep_range(usecs, usecs + 50);
7093 } else {
7094 msleep(msecs);
7095 }
c0c362b6
TH
7096
7097 if (owns_eh)
7098 ata_eh_acquire(ap);
97750ceb
TH
7099}
7100
c22daff4
TH
7101/**
7102 * ata_wait_register - wait until register value changes
97750ceb 7103 * @ap: ATA port to wait register for, can be NULL
c22daff4
TH
7104 * @reg: IO-mapped register
7105 * @mask: Mask to apply to read register value
7106 * @val: Wait condition
341c2c95
TH
7107 * @interval: polling interval in milliseconds
7108 * @timeout: timeout in milliseconds
c22daff4
TH
7109 *
7110 * Waiting for some bits of register to change is a common
7111 * operation for ATA controllers. This function reads 32bit LE
7112 * IO-mapped register @reg and tests for the following condition.
7113 *
7114 * (*@reg & mask) != val
7115 *
7116 * If the condition is met, it returns; otherwise, the process is
7117 * repeated after @interval_msec until timeout.
7118 *
7119 * LOCKING:
7120 * Kernel thread context (may sleep)
7121 *
7122 * RETURNS:
7123 * The final register value.
7124 */
97750ceb 7125u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
341c2c95 7126 unsigned long interval, unsigned long timeout)
c22daff4 7127{
341c2c95 7128 unsigned long deadline;
c22daff4
TH
7129 u32 tmp;
7130
7131 tmp = ioread32(reg);
7132
7133 /* Calculate timeout _after_ the first read to make sure
7134 * preceding writes reach the controller before starting to
7135 * eat away the timeout.
7136 */
341c2c95 7137 deadline = ata_deadline(jiffies, timeout);
c22daff4 7138
341c2c95 7139 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
97750ceb 7140 ata_msleep(ap, interval);
c22daff4
TH
7141 tmp = ioread32(reg);
7142 }
7143
7144 return tmp;
7145}
7146
8393b811
GM
7147/**
7148 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
7149 * @link: Link receiving the event
7150 *
7151 * Test whether the received PHY event has to be ignored or not.
7152 *
7153 * LOCKING:
7154 * None:
7155 *
7156 * RETURNS:
7157 * True if the event has to be ignored.
7158 */
7159bool sata_lpm_ignore_phy_events(struct ata_link *link)
7160{
09c5b480
GM
7161 unsigned long lpm_timeout = link->last_lpm_change +
7162 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7163
8393b811 7164 /* if LPM is enabled, PHYRDY doesn't mean anything */
09c5b480
GM
7165 if (link->lpm_policy > ATA_LPM_MAX_POWER)
7166 return true;
7167
7168 /* ignore the first PHY event after the LPM policy changed
7169 * as it is might be spurious
7170 */
7171 if ((link->flags & ATA_LFLAG_CHANGED) &&
7172 time_before(jiffies, lpm_timeout))
7173 return true;
7174
7175 return false;
8393b811
GM
7176}
7177EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7178
dd5b06c4
TH
7179/*
7180 * Dummy port_ops
7181 */
182d7bba 7182static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 7183{
182d7bba 7184 return AC_ERR_SYSTEM;
dd5b06c4
TH
7185}
7186
182d7bba 7187static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 7188{
182d7bba 7189 /* truly dummy */
dd5b06c4
TH
7190}
7191
029cfd6b 7192struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7193 .qc_prep = ata_noop_qc_prep,
7194 .qc_issue = ata_dummy_qc_issue,
182d7bba 7195 .error_handler = ata_dummy_error_handler,
e4a9c373
DW
7196 .sched_eh = ata_std_sched_eh,
7197 .end_eh = ata_std_end_eh,
dd5b06c4
TH
7198};
7199
21b0ad4f
TH
7200const struct ata_port_info ata_dummy_port_info = {
7201 .port_ops = &ata_dummy_port_ops,
7202};
7203
a9a79dfe
JP
7204/*
7205 * Utility print functions
7206 */
d7bead1b
JP
7207void ata_port_printk(const struct ata_port *ap, const char *level,
7208 const char *fmt, ...)
a9a79dfe
JP
7209{
7210 struct va_format vaf;
7211 va_list args;
a9a79dfe
JP
7212
7213 va_start(args, fmt);
7214
7215 vaf.fmt = fmt;
7216 vaf.va = &args;
7217
d7bead1b 7218 printk("%sata%u: %pV", level, ap->print_id, &vaf);
a9a79dfe
JP
7219
7220 va_end(args);
a9a79dfe
JP
7221}
7222EXPORT_SYMBOL(ata_port_printk);
7223
d7bead1b
JP
7224void ata_link_printk(const struct ata_link *link, const char *level,
7225 const char *fmt, ...)
a9a79dfe
JP
7226{
7227 struct va_format vaf;
7228 va_list args;
a9a79dfe
JP
7229
7230 va_start(args, fmt);
7231
7232 vaf.fmt = fmt;
7233 vaf.va = &args;
7234
7235 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
d7bead1b
JP
7236 printk("%sata%u.%02u: %pV",
7237 level, link->ap->print_id, link->pmp, &vaf);
a9a79dfe 7238 else
d7bead1b
JP
7239 printk("%sata%u: %pV",
7240 level, link->ap->print_id, &vaf);
a9a79dfe
JP
7241
7242 va_end(args);
a9a79dfe
JP
7243}
7244EXPORT_SYMBOL(ata_link_printk);
7245
d7bead1b 7246void ata_dev_printk(const struct ata_device *dev, const char *level,
a9a79dfe
JP
7247 const char *fmt, ...)
7248{
7249 struct va_format vaf;
7250 va_list args;
a9a79dfe
JP
7251
7252 va_start(args, fmt);
7253
7254 vaf.fmt = fmt;
7255 vaf.va = &args;
7256
d7bead1b
JP
7257 printk("%sata%u.%02u: %pV",
7258 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7259 &vaf);
a9a79dfe
JP
7260
7261 va_end(args);
a9a79dfe
JP
7262}
7263EXPORT_SYMBOL(ata_dev_printk);
7264
06296a1e
JP
7265void ata_print_version(const struct device *dev, const char *version)
7266{
7267 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7268}
7269EXPORT_SYMBOL(ata_print_version);
7270
1da177e4
LT
7271/*
7272 * libata is essentially a library of internal helper functions for
7273 * low-level ATA host controller drivers. As such, the API/ABI is
7274 * likely to change as new drivers are added and updated.
7275 * Do not depend on ABI/API stability.
7276 */
e9c83914
TH
7277EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7278EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7279EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
7280EXPORT_SYMBOL_GPL(ata_base_port_ops);
7281EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 7282EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7283EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1eca4365
TH
7284EXPORT_SYMBOL_GPL(ata_link_next);
7285EXPORT_SYMBOL_GPL(ata_dev_next);
1da177e4 7286EXPORT_SYMBOL_GPL(ata_std_bios_param);
d8d9129e 7287EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
cca3974e 7288EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7289EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7290EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 7291EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 7292EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7293EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7294EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7295EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 7296EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 7297EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7298EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 7299EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
7300EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7301EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
7302EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7303EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7304EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7305EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7306EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7307EXPORT_SYMBOL_GPL(ata_mode_string);
7308EXPORT_SYMBOL_GPL(ata_id_xfermask);
04351821 7309EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 7310EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 7311EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
10305f0f 7312EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7313EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 7314EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
7315EXPORT_SYMBOL_GPL(sata_link_debounce);
7316EXPORT_SYMBOL_GPL(sata_link_resume);
1152b261 7317EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
0aa1113d 7318EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 7319EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 7320EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 7321EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7322EXPORT_SYMBOL_GPL(ata_dev_classify);
7323EXPORT_SYMBOL_GPL(ata_dev_pair);
67846b30 7324EXPORT_SYMBOL_GPL(ata_ratelimit);
97750ceb 7325EXPORT_SYMBOL_GPL(ata_msleep);
c22daff4 7326EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4 7327EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7328EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7329EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7330EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
f6e67035 7331EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
34bf2170
TH
7332EXPORT_SYMBOL_GPL(sata_scr_valid);
7333EXPORT_SYMBOL_GPL(sata_scr_read);
7334EXPORT_SYMBOL_GPL(sata_scr_write);
7335EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7336EXPORT_SYMBOL_GPL(ata_link_online);
7337EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7338#ifdef CONFIG_PM
cca3974e
JG
7339EXPORT_SYMBOL_GPL(ata_host_suspend);
7340EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7341#endif /* CONFIG_PM */
6a62a04d
TH
7342EXPORT_SYMBOL_GPL(ata_id_string);
7343EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 7344EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
7345EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7346
1bc4ccff 7347EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 7348EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
7349EXPORT_SYMBOL_GPL(ata_timing_compute);
7350EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 7351EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 7352
1da177e4
LT
7353#ifdef CONFIG_PCI
7354EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 7355EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7356#ifdef CONFIG_PM
500530f6
TH
7357EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7358EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7359EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7360EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7361#endif /* CONFIG_PM */
1da177e4 7362#endif /* CONFIG_PCI */
9b847548 7363
b7db04d9
BN
7364EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7365
b64bbc39
TH
7366EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7367EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7368EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7369EXPORT_SYMBOL_GPL(ata_port_desc);
7370#ifdef CONFIG_PCI
7371EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7372#endif /* CONFIG_PCI */
7b70fc03 7373EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7374EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7375EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7376EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7377EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7378EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7379EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7380EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7381EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 7382EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 7383EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 7384EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
7385
7386EXPORT_SYMBOL_GPL(ata_cable_40wire);
7387EXPORT_SYMBOL_GPL(ata_cable_80wire);
7388EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 7389EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 7390EXPORT_SYMBOL_GPL(ata_cable_sata);