ACPI: x86: Drop quirk for HP Elitebook
[linux-block.git] / drivers / acpi / pptt.c
CommitLineData
2bd00bcd
JL
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * pptt.c - parsing of Processor Properties Topology Table (PPTT)
4 *
5 * Copyright (C) 2018, ARM
6 *
7 * This file implements parsing of the Processor Properties Topology Table
8 * which is optionally used to describe the processor and cache topology.
9 * Due to the relative pointers used throughout the table, this doesn't
10 * leverage the existing subtable parsing in the kernel.
11 *
12 * The PPTT structure is an inverted tree, with each node potentially
13 * holding one or two inverted tree data structures describing
14 * the caches available at that level. Each cache structure optionally
15 * contains properties describing the cache at a given level which can be
16 * used to override hardware probed values.
17 */
18#define pr_fmt(fmt) "ACPI PPTT: " fmt
19
20#include <linux/acpi.h>
21#include <linux/cacheinfo.h>
22#include <acpi/processor.h>
23
24static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
25 u32 pptt_ref)
26{
27 struct acpi_subtable_header *entry;
28
29 /* there isn't a subtable at reference 0 */
30 if (pptt_ref < sizeof(struct acpi_subtable_header))
31 return NULL;
32
33 if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
34 return NULL;
35
36 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
37
38 if (entry->length == 0)
39 return NULL;
40
41 if (pptt_ref + entry->length > table_hdr->length)
42 return NULL;
43
44 return entry;
45}
46
47static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
48 u32 pptt_ref)
49{
50 return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
51}
52
53static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
54 u32 pptt_ref)
55{
56 return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
57}
58
59static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
60 struct acpi_pptt_processor *node,
61 int resource)
62{
63 u32 *ref;
64
65 if (resource >= node->number_of_priv_resources)
66 return NULL;
67
68 ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
69 ref += resource;
70
71 return fetch_pptt_subtable(table_hdr, *ref);
72}
73
74static inline bool acpi_pptt_match_type(int table_type, int type)
75{
76 return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
77 table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
78}
79
80/**
81 * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
82 * @table_hdr: Pointer to the head of the PPTT table
83 * @local_level: passed res reflects this cache level
84 * @res: cache resource in the PPTT we want to walk
85 * @found: returns a pointer to the requested level if found
86 * @level: the requested cache level
87 * @type: the requested cache type
88 *
89 * Attempt to find a given cache level, while counting the max number
90 * of cache levels for the cache node.
91 *
92 * Given a pptt resource, verify that it is a cache node, then walk
93 * down each level of caches, counting how many levels are found
94 * as well as checking the cache type (icache, dcache, unified). If a
95 * level & type match, then we set found, and continue the search.
96 * Once the entire cache branch has been walked return its max
97 * depth.
98 *
99 * Return: The cache structure and the level we terminated with.
100 */
643956e6
TT
101static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
102 unsigned int local_level,
103 struct acpi_subtable_header *res,
104 struct acpi_pptt_cache **found,
105 unsigned int level, int type)
2bd00bcd
JL
106{
107 struct acpi_pptt_cache *cache;
108
109 if (res->type != ACPI_PPTT_TYPE_CACHE)
110 return 0;
111
112 cache = (struct acpi_pptt_cache *) res;
113 while (cache) {
114 local_level++;
115
116 if (local_level == level &&
117 cache->flags & ACPI_PPTT_CACHE_TYPE_VALID &&
118 acpi_pptt_match_type(cache->attributes, type)) {
119 if (*found != NULL && cache != *found)
120 pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
121
643956e6 122 pr_debug("Found cache @ level %u\n", level);
2bd00bcd
JL
123 *found = cache;
124 /*
125 * continue looking at this node's resource list
126 * to verify that we don't find a duplicate
127 * cache node.
128 */
129 }
130 cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
131 }
132 return local_level;
133}
134
643956e6
TT
135static struct acpi_pptt_cache *
136acpi_find_cache_level(struct acpi_table_header *table_hdr,
137 struct acpi_pptt_processor *cpu_node,
138 unsigned int *starting_level, unsigned int level,
139 int type)
2bd00bcd
JL
140{
141 struct acpi_subtable_header *res;
643956e6 142 unsigned int number_of_levels = *starting_level;
2bd00bcd
JL
143 int resource = 0;
144 struct acpi_pptt_cache *ret = NULL;
643956e6 145 unsigned int local_level;
2bd00bcd
JL
146
147 /* walk down from processor node */
148 while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
149 resource++;
150
151 local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
152 res, &ret, level, type);
153 /*
154 * we are looking for the max depth. Since its potentially
155 * possible for a given node to have resources with differing
156 * depths verify that the depth we have found is the largest.
157 */
158 if (number_of_levels < local_level)
159 number_of_levels = local_level;
160 }
161 if (number_of_levels > *starting_level)
162 *starting_level = number_of_levels;
163
164 return ret;
165}
166
167/**
603fadf3 168 * acpi_count_levels() - Given a PPTT table, and a CPU node, count the caches
2bd00bcd
JL
169 * @table_hdr: Pointer to the head of the PPTT table
170 * @cpu_node: processor node we wish to count caches for
171 *
172 * Given a processor node containing a processing unit, walk into it and count
173 * how many levels exist solely for it, and then walk up each level until we hit
174 * the root node (ignore the package level because it may be possible to have
175 * caches that exist across packages). Count the number of cache levels that
176 * exist at each level on the way up.
177 *
178 * Return: Total number of levels found.
179 */
180static int acpi_count_levels(struct acpi_table_header *table_hdr,
181 struct acpi_pptt_processor *cpu_node)
182{
183 int total_levels = 0;
184
185 do {
186 acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
187 cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
188 } while (cpu_node);
189
190 return total_levels;
191}
192
193/**
194 * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
195 * @table_hdr: Pointer to the head of the PPTT table
196 * @node: passed node is checked to see if its a leaf
197 *
198 * Determine if the *node parameter is a leaf node by iterating the
199 * PPTT table, looking for nodes which reference it.
200 *
201 * Return: 0 if we find a node referencing the passed node (or table error),
202 * or 1 if we don't.
203 */
204static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
205 struct acpi_pptt_processor *node)
206{
207 struct acpi_subtable_header *entry;
208 unsigned long table_end;
209 u32 node_entry;
210 struct acpi_pptt_processor *cpu_node;
211 u32 proc_sz;
212
4909e6df
JL
213 if (table_hdr->revision > 1)
214 return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE);
215
2bd00bcd
JL
216 table_end = (unsigned long)table_hdr + table_hdr->length;
217 node_entry = ACPI_PTR_DIFF(node, table_hdr);
218 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
219 sizeof(struct acpi_table_pptt));
220 proc_sz = sizeof(struct acpi_pptt_processor *);
221
222 while ((unsigned long)entry + proc_sz < table_end) {
223 cpu_node = (struct acpi_pptt_processor *)entry;
224 if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
225 cpu_node->parent == node_entry)
226 return 0;
227 if (entry->length == 0)
228 return 0;
229 entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
230 entry->length);
231
232 }
233 return 1;
234}
235
236/**
237 * acpi_find_processor_node() - Given a PPTT table find the requested processor
238 * @table_hdr: Pointer to the head of the PPTT table
603fadf3 239 * @acpi_cpu_id: CPU we are searching for
2bd00bcd
JL
240 *
241 * Find the subtable entry describing the provided processor.
242 * This is done by iterating the PPTT table looking for processor nodes
243 * which have an acpi_processor_id that matches the acpi_cpu_id parameter
244 * passed into the function. If we find a node that matches this criteria
245 * we verify that its a leaf node in the topology rather than depending
246 * on the valid flag, which doesn't need to be set for leaf nodes.
247 *
248 * Return: NULL, or the processors acpi_pptt_processor*
249 */
250static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
251 u32 acpi_cpu_id)
252{
253 struct acpi_subtable_header *entry;
254 unsigned long table_end;
255 struct acpi_pptt_processor *cpu_node;
256 u32 proc_sz;
257
258 table_end = (unsigned long)table_hdr + table_hdr->length;
259 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
260 sizeof(struct acpi_table_pptt));
261 proc_sz = sizeof(struct acpi_pptt_processor *);
262
263 /* find the processor structure associated with this cpuid */
264 while ((unsigned long)entry + proc_sz < table_end) {
265 cpu_node = (struct acpi_pptt_processor *)entry;
266
267 if (entry->length == 0) {
268 pr_warn("Invalid zero length subtable\n");
269 break;
270 }
271 if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
272 acpi_cpu_id == cpu_node->acpi_processor_id &&
273 acpi_pptt_leaf_node(table_hdr, cpu_node)) {
274 return (struct acpi_pptt_processor *)entry;
275 }
276
277 entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
278 entry->length);
279 }
280
281 return NULL;
282}
283
284static int acpi_find_cache_levels(struct acpi_table_header *table_hdr,
285 u32 acpi_cpu_id)
286{
287 int number_of_levels = 0;
288 struct acpi_pptt_processor *cpu;
289
290 cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
291 if (cpu)
292 number_of_levels = acpi_count_levels(table_hdr, cpu);
293
294 return number_of_levels;
295}
296
297static u8 acpi_cache_type(enum cache_type type)
298{
299 switch (type) {
300 case CACHE_TYPE_DATA:
301 pr_debug("Looking for data cache\n");
302 return ACPI_PPTT_CACHE_TYPE_DATA;
303 case CACHE_TYPE_INST:
304 pr_debug("Looking for instruction cache\n");
305 return ACPI_PPTT_CACHE_TYPE_INSTR;
306 default:
307 case CACHE_TYPE_UNIFIED:
308 pr_debug("Looking for unified cache\n");
309 /*
310 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
311 * contains the bit pattern that will match both
312 * ACPI unified bit patterns because we use it later
313 * to match both cases.
314 */
315 return ACPI_PPTT_CACHE_TYPE_UNIFIED;
316 }
317}
318
319static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
320 u32 acpi_cpu_id,
321 enum cache_type type,
322 unsigned int level,
323 struct acpi_pptt_processor **node)
324{
643956e6 325 unsigned int total_levels = 0;
2bd00bcd
JL
326 struct acpi_pptt_cache *found = NULL;
327 struct acpi_pptt_processor *cpu_node;
328 u8 acpi_type = acpi_cache_type(type);
329
643956e6 330 pr_debug("Looking for CPU %d's level %u cache type %d\n",
2bd00bcd
JL
331 acpi_cpu_id, level, acpi_type);
332
333 cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
334
335 while (cpu_node && !found) {
336 found = acpi_find_cache_level(table_hdr, cpu_node,
337 &total_levels, level, acpi_type);
338 *node = cpu_node;
339 cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
340 }
341
342 return found;
343}
344
2bd00bcd
JL
345/**
346 * update_cache_properties() - Update cacheinfo for the given processor
347 * @this_leaf: Kernel cache info structure being updated
348 * @found_cache: The PPTT node describing this cache instance
349 * @cpu_node: A unique reference to describe this cache instance
7ca1a801 350 * @revision: The revision of the PPTT table
2bd00bcd
JL
351 *
352 * The ACPI spec implies that the fields in the cache structures are used to
353 * extend and correct the information probed from the hardware. Lets only
354 * set fields that we determine are VALID.
355 *
356 * Return: nothing. Side effect of updating the global cacheinfo
357 */
358static void update_cache_properties(struct cacheinfo *this_leaf,
359 struct acpi_pptt_cache *found_cache,
7ca1a801
JM
360 struct acpi_pptt_processor *cpu_node,
361 u8 revision)
2bd00bcd 362{
7ca1a801
JM
363 struct acpi_pptt_cache_v1* found_cache_v1;
364
2bd00bcd 365 this_leaf->fw_token = cpu_node;
59bbff37 366 if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
2bd00bcd 367 this_leaf->size = found_cache->size;
59bbff37 368 if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
2bd00bcd 369 this_leaf->coherency_line_size = found_cache->line_size;
59bbff37 370 if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
2bd00bcd 371 this_leaf->number_of_sets = found_cache->number_of_sets;
59bbff37 372 if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
2bd00bcd 373 this_leaf->ways_of_associativity = found_cache->associativity;
2bd00bcd
JL
374 if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
375 switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
376 case ACPI_PPTT_CACHE_POLICY_WT:
377 this_leaf->attributes = CACHE_WRITE_THROUGH;
378 break;
379 case ACPI_PPTT_CACHE_POLICY_WB:
380 this_leaf->attributes = CACHE_WRITE_BACK;
381 break;
382 }
383 }
384 if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
385 switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
386 case ACPI_PPTT_CACHE_READ_ALLOCATE:
387 this_leaf->attributes |= CACHE_READ_ALLOCATE;
388 break;
389 case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
390 this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
391 break;
392 case ACPI_PPTT_CACHE_RW_ALLOCATE:
393 case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
394 this_leaf->attributes |=
395 CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
396 break;
397 }
398 }
399 /*
59bbff37
JH
400 * If cache type is NOCACHE, then the cache hasn't been specified
401 * via other mechanisms. Update the type if a cache type has been
402 * provided.
403 *
404 * Note, we assume such caches are unified based on conventional system
405 * design and known examples. Significant work is required elsewhere to
406 * fully support data/instruction only type caches which are only
407 * specified in PPTT.
2bd00bcd
JL
408 */
409 if (this_leaf->type == CACHE_TYPE_NOCACHE &&
59bbff37 410 found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
2bd00bcd 411 this_leaf->type = CACHE_TYPE_UNIFIED;
7ca1a801
JM
412
413 if (revision >= 3 && (found_cache->flags & ACPI_PPTT_CACHE_ID_VALID)) {
414 found_cache_v1 = ACPI_ADD_PTR(struct acpi_pptt_cache_v1,
415 found_cache, sizeof(struct acpi_pptt_cache));
416 this_leaf->id = found_cache_v1->cache_id;
417 this_leaf->attributes |= CACHE_ID;
418 }
2bd00bcd
JL
419}
420
421static void cache_setup_acpi_cpu(struct acpi_table_header *table,
422 unsigned int cpu)
423{
424 struct acpi_pptt_cache *found_cache;
425 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
426 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
427 struct cacheinfo *this_leaf;
428 unsigned int index = 0;
429 struct acpi_pptt_processor *cpu_node = NULL;
430
431 while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
432 this_leaf = this_cpu_ci->info_list + index;
433 found_cache = acpi_find_cache_node(table, acpi_cpu_id,
434 this_leaf->type,
435 this_leaf->level,
436 &cpu_node);
437 pr_debug("found = %p %p\n", found_cache, cpu_node);
438 if (found_cache)
7ca1a801 439 update_cache_properties(this_leaf, found_cache,
0d4c331a
SH
440 ACPI_TO_POINTER(ACPI_PTR_DIFF(cpu_node, table)),
441 table->revision);
2bd00bcd
JL
442
443 index++;
444 }
445}
446
ed2b664f
JL
447static bool flag_identical(struct acpi_table_header *table_hdr,
448 struct acpi_pptt_processor *cpu)
449{
450 struct acpi_pptt_processor *next;
451
452 /* heterogeneous machines must use PPTT revision > 1 */
453 if (table_hdr->revision < 2)
454 return false;
455
456 /* Locate the last node in the tree with IDENTICAL set */
457 if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) {
458 next = fetch_pptt_node(table_hdr, cpu->parent);
459 if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL))
460 return true;
461 }
462
463 return false;
464}
465
2bd00bcd
JL
466/* Passing level values greater than this will result in search termination */
467#define PPTT_ABORT_PACKAGE 0xFF
468
ed2b664f
JL
469static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr,
470 struct acpi_pptt_processor *cpu,
471 int level, int flag)
2bd00bcd
JL
472{
473 struct acpi_pptt_processor *prev_node;
474
475 while (cpu && level) {
ed2b664f
JL
476 /* special case the identical flag to find last identical */
477 if (flag == ACPI_PPTT_ACPI_IDENTICAL) {
478 if (flag_identical(table_hdr, cpu))
479 break;
480 } else if (cpu->flags & flag)
2bd00bcd
JL
481 break;
482 pr_debug("level %d\n", level);
483 prev_node = fetch_pptt_node(table_hdr, cpu->parent);
484 if (prev_node == NULL)
485 break;
486 cpu = prev_node;
487 level--;
488 }
489 return cpu;
490}
491
6cafe700
JG
492static void acpi_pptt_warn_missing(void)
493{
603fadf3 494 pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
6cafe700
JG
495}
496
2bd00bcd
JL
497/**
498 * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
499 * @table: Pointer to the head of the PPTT table
603fadf3 500 * @cpu: Kernel logical CPU number
2bd00bcd
JL
501 * @level: A level that terminates the search
502 * @flag: A flag which terminates the search
503 *
603fadf3 504 * Get a unique value given a CPU, and a topology level, that can be
2bd00bcd
JL
505 * matched to determine which cpus share common topological features
506 * at that level.
507 *
603fadf3 508 * Return: Unique value, or -ENOENT if unable to locate CPU
2bd00bcd
JL
509 */
510static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
511 unsigned int cpu, int level, int flag)
512{
513 struct acpi_pptt_processor *cpu_node;
514 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
515
516 cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
517 if (cpu_node) {
ed2b664f
JL
518 cpu_node = acpi_find_processor_tag(table, cpu_node,
519 level, flag);
30998033
SH
520 /*
521 * As per specification if the processor structure represents
522 * an actual processor, then ACPI processor ID must be valid.
523 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
524 * should be set if the UID is valid
525 */
526 if (level == 0 ||
527 cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
2bd00bcd
JL
528 return cpu_node->acpi_processor_id;
529 return ACPI_PTR_DIFF(cpu_node, table);
530 }
531 pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
532 cpu, acpi_cpu_id);
533 return -ENOENT;
534}
535
0c80f9e1
SH
536
537static struct acpi_table_header *acpi_get_pptt(void)
538{
539 static struct acpi_table_header *pptt;
540 acpi_status status;
541
542 /*
543 * PPTT will be used at runtime on every CPU hotplug in path, so we
544 * don't need to call acpi_put_table() to release the table mapping.
545 */
546 if (!pptt) {
547 status = acpi_get_table(ACPI_SIG_PPTT, 0, &pptt);
548 if (ACPI_FAILURE(status))
549 acpi_pptt_warn_missing();
550 }
551
552 return pptt;
553}
554
2bd00bcd
JL
555static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
556{
557 struct acpi_table_header *table;
2bd00bcd
JL
558 int retval;
559
0c80f9e1
SH
560 table = acpi_get_pptt();
561 if (!table)
2bd00bcd 562 return -ENOENT;
0c80f9e1 563
2bd00bcd 564 retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
603fadf3 565 pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
2bd00bcd 566 cpu, level, retval);
2bd00bcd
JL
567
568 return retval;
569}
570
bbd1b706
JL
571/**
572 * check_acpi_cpu_flag() - Determine if CPU node has a flag set
573 * @cpu: Kernel logical CPU number
574 * @rev: The minimum PPTT revision defining the flag
575 * @flag: The flag itself
576 *
577 * Check the node representing a CPU for a given flag.
578 *
579 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
580 * the table revision isn't new enough.
581 * 1, any passed flag set
582 * 0, flag unset
583 */
584static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag)
585{
586 struct acpi_table_header *table;
bbd1b706
JL
587 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
588 struct acpi_pptt_processor *cpu_node = NULL;
589 int ret = -ENOENT;
590
0c80f9e1
SH
591 table = acpi_get_pptt();
592 if (!table)
593 return -ENOENT;
bbd1b706
JL
594
595 if (table->revision >= rev)
596 cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
597
598 if (cpu_node)
599 ret = (cpu_node->flags & flag) != 0;
600
bbd1b706
JL
601 return ret;
602}
603
2bd00bcd
JL
604/**
605 * acpi_find_last_cache_level() - Determines the number of cache levels for a PE
603fadf3 606 * @cpu: Kernel logical CPU number
2bd00bcd 607 *
603fadf3 608 * Given a logical CPU number, returns the number of levels of cache represented
2bd00bcd
JL
609 * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
610 * indicating we didn't find any cache levels.
611 *
612 * Return: Cache levels visible to this core.
613 */
614int acpi_find_last_cache_level(unsigned int cpu)
615{
616 u32 acpi_cpu_id;
617 struct acpi_table_header *table;
618 int number_of_levels = 0;
0c80f9e1
SH
619
620 table = acpi_get_pptt();
621 if (!table)
622 return -ENOENT;
2bd00bcd 623
603fadf3 624 pr_debug("Cache Setup find last level CPU=%d\n", cpu);
2bd00bcd
JL
625
626 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
0c80f9e1 627 number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id);
2bd00bcd
JL
628 pr_debug("Cache Setup find last level level=%d\n", number_of_levels);
629
630 return number_of_levels;
631}
632
633/**
634 * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
603fadf3 635 * @cpu: Kernel logical CPU number
2bd00bcd
JL
636 *
637 * Updates the global cache info provided by cpu_get_cacheinfo()
638 * when there are valid properties in the acpi_pptt_cache nodes. A
639 * successful parse may not result in any updates if none of the
603fadf3 640 * cache levels have any valid flags set. Further, a unique value is
2bd00bcd 641 * associated with each known CPU cache entry. This unique value
603fadf3 642 * can be used to determine whether caches are shared between CPUs.
2bd00bcd
JL
643 *
644 * Return: -ENOENT on failure to find table, or 0 on success
645 */
646int cache_setup_acpi(unsigned int cpu)
647{
648 struct acpi_table_header *table;
2bd00bcd 649
0c80f9e1
SH
650 table = acpi_get_pptt();
651 if (!table)
2bd00bcd 652 return -ENOENT;
0c80f9e1
SH
653
654 pr_debug("Cache Setup ACPI CPU %d\n", cpu);
2bd00bcd
JL
655
656 cache_setup_acpi_cpu(table, cpu);
2bd00bcd 657
0c80f9e1 658 return 0;
2bd00bcd
JL
659}
660
bbd1b706
JL
661/**
662 * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
663 * @cpu: Kernel logical CPU number
664 *
665 * Return: 1, a thread
666 * 0, not a thread
667 * -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
668 * the table revision isn't new enough.
669 */
670int acpi_pptt_cpu_is_thread(unsigned int cpu)
671{
672 return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD);
673}
674
2bd00bcd 675/**
603fadf3
BH
676 * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
677 * @cpu: Kernel logical CPU number
2bd00bcd
JL
678 * @level: The topological level for which we would like a unique ID
679 *
680 * Determine a topology unique ID for each thread/core/cluster/mc_grouping
681 * /socket/etc. This ID can then be used to group peers, which will have
682 * matching ids.
683 *
684 * The search terminates when either the requested level is found or
685 * we reach a root node. Levels beyond the termination point will return the
686 * same unique ID. The unique id for level 0 is the acpi processor id. All
687 * other levels beyond this use a generated value to uniquely identify
688 * a topological feature.
689 *
603fadf3 690 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
2bd00bcd
JL
691 * Otherwise returns a value which represents a unique topological feature.
692 */
693int find_acpi_cpu_topology(unsigned int cpu, int level)
694{
695 return find_acpi_cpu_topology_tag(cpu, level, 0);
696}
697
2bd00bcd 698/**
603fadf3
BH
699 * find_acpi_cpu_topology_package() - Determine a unique CPU package value
700 * @cpu: Kernel logical CPU number
2bd00bcd 701 *
603fadf3 702 * Determine a topology unique package ID for the given CPU.
2bd00bcd
JL
703 * This ID can then be used to group peers, which will have matching ids.
704 *
705 * The search terminates when either a level is found with the PHYSICAL_PACKAGE
706 * flag set or we reach a root node.
707 *
603fadf3
BH
708 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
709 * Otherwise returns a value which represents the package for this CPU.
2bd00bcd
JL
710 */
711int find_acpi_cpu_topology_package(unsigned int cpu)
712{
713 return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
714 ACPI_PPTT_PHYSICAL_PACKAGE);
715}
56855a99 716
c5e22fef
JC
717/**
718 * find_acpi_cpu_topology_cluster() - Determine a unique CPU cluster value
719 * @cpu: Kernel logical CPU number
720 *
721 * Determine a topology unique cluster ID for the given CPU/thread.
722 * This ID can then be used to group peers, which will have matching ids.
723 *
724 * The cluster, if present is the level of topology above CPUs. In a
725 * multi-thread CPU, it will be the level above the CPU, not the thread.
726 * It may not exist in single CPU systems. In simple multi-CPU systems,
727 * it may be equal to the package topology level.
728 *
729 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found
730 * or there is no toplogy level above the CPU..
731 * Otherwise returns a value which represents the package for this CPU.
732 */
733
734int find_acpi_cpu_topology_cluster(unsigned int cpu)
735{
736 struct acpi_table_header *table;
c5e22fef
JC
737 struct acpi_pptt_processor *cpu_node, *cluster_node;
738 u32 acpi_cpu_id;
739 int retval;
740 int is_thread;
741
0c80f9e1
SH
742 table = acpi_get_pptt();
743 if (!table)
c5e22fef 744 return -ENOENT;
c5e22fef
JC
745
746 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
747 cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
0c80f9e1
SH
748 if (!cpu_node || !cpu_node->parent)
749 return -ENOENT;
c5e22fef
JC
750
751 is_thread = cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD;
752 cluster_node = fetch_pptt_node(table, cpu_node->parent);
0c80f9e1
SH
753 if (!cluster_node)
754 return -ENOENT;
755
c5e22fef 756 if (is_thread) {
0c80f9e1
SH
757 if (!cluster_node->parent)
758 return -ENOENT;
759
c5e22fef 760 cluster_node = fetch_pptt_node(table, cluster_node->parent);
0c80f9e1
SH
761 if (!cluster_node)
762 return -ENOENT;
c5e22fef
JC
763 }
764 if (cluster_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
765 retval = cluster_node->acpi_processor_id;
766 else
767 retval = ACPI_PTR_DIFF(cluster_node, table);
768
c5e22fef
JC
769 return retval;
770}
771
56855a99
JL
772/**
773 * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
774 * @cpu: Kernel logical CPU number
775 *
776 * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
777 * implementation should have matching tags.
778 *
779 * The returned tag can be used to group peers with identical implementation.
780 *
781 * The search terminates when a level is found with the identical implementation
782 * flag set or we reach a root node.
783 *
784 * Due to limitations in the PPTT data structure, there may be rare situations
785 * where two cores in a heterogeneous machine may be identical, but won't have
786 * the same tag.
787 *
788 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
789 * Otherwise returns a value which represents a group of identical cores
790 * similar to this CPU.
791 */
792int find_acpi_cpu_topology_hetero_id(unsigned int cpu)
793{
794 return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
795 ACPI_PPTT_ACPI_IDENTICAL);
796}