Merge branch 'pm-cpufreq'
[linux-2.6-block.git] / drivers / acpi / cppc_acpi.c
CommitLineData
b886d83c 1// SPDX-License-Identifier: GPL-2.0-only
337aadff
AC
2/*
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4 *
5 * (C) Copyright 2014, 2015 Linaro Ltd.
6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7 *
337aadff
AC
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
13 *
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
16 * operation involves:
17 *
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
19 *
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
22 *
23 * - Platform conveys its decision back to OS
24 *
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
29 *
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
32 */
33
34#define pr_fmt(fmt) "ACPI CPPC: " fmt
35
337aadff 36#include <linux/delay.h>
58e1c035 37#include <linux/iopoll.h>
ad62e1e6 38#include <linux/ktime.h>
80b8286a
PP
39#include <linux/rwsem.h>
40#include <linux/wait.h>
41ea6672 41#include <linux/topology.h>
50b813b1
VG
42#include <linux/dmi.h>
43#include <linux/units.h>
44#include <asm/unaligned.h>
337aadff
AC
45
46#include <acpi/cppc_acpi.h>
80b8286a 47
8482ef8c 48struct cppc_pcc_data {
7b6da7fe 49 struct pcc_mbox_chan *pcc_channel;
8482ef8c 50 void __iomem *pcc_comm_addr;
8482ef8c 51 bool pcc_channel_acquired;
58e1c035 52 unsigned int deadline_us;
8482ef8c 53 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
80b8286a 54
8482ef8c 55 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
139aee73 56 bool platform_owns_pcc; /* Ownership of PCC subspace */
8482ef8c 57 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
80b8286a 58
8482ef8c
PP
59 /*
60 * Lock to provide controlled access to the PCC channel.
61 *
62 * For performance critical usecases(currently cppc_set_perf)
63 * We need to take read_lock and check if channel belongs to OSPM
64 * before reading or writing to PCC subspace
65 * We need to take write_lock before transferring the channel
66 * ownership to the platform via a Doorbell
67 * This allows us to batch a number of CPPC requests if they happen
68 * to originate in about the same time
69 *
70 * For non-performance critical usecases(init)
71 * Take write_lock for all purposes which gives exclusive access
72 */
73 struct rw_semaphore pcc_lock;
74
75 /* Wait queue for CPUs whose requests were batched */
76 wait_queue_head_t pcc_write_wait_q;
85b1407b
GC
77 ktime_t last_cmd_cmpl_time;
78 ktime_t last_mpar_reset;
79 int mpar_count;
80 int refcount;
8482ef8c 81};
80b8286a 82
603fadf3 83/* Array to represent the PCC channel per subspace ID */
85b1407b 84static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
603fadf3 85/* The cpu_pcc_subspace_idx contains per CPU subspace ID */
85b1407b 86static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
337aadff
AC
87
88/*
89 * The cpc_desc structure contains the ACPI register details
90 * as described in the per CPU _CPC tables. The details
91 * include the type of register (e.g. PCC, System IO, FFH etc.)
92 * and destination addresses which lets us READ/WRITE CPU performance
93 * information using the appropriate I/O methods.
94 */
95static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
96
77e3d86f 97/* pcc mapped address + header size + offset within PCC subspace */
85b1407b
GC
98#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
99 0x8 + (offs))
77e3d86f 100
ad61dd30 101/* Check if a CPC register is in PCC */
80b8286a
PP
102#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
103 (cpc)->cpc_entry.reg.space_id == \
104 ACPI_ADR_SPACE_PLATFORM_COMM)
105
6380b7b2
PG
106/* Check if a CPC register is in SystemMemory */
107#define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
108 (cpc)->cpc_entry.reg.space_id == \
109 ACPI_ADR_SPACE_SYSTEM_MEMORY)
110
111/* Check if a CPC register is in SystemIo */
112#define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
113 (cpc)->cpc_entry.reg.space_id == \
114 ACPI_ADR_SPACE_SYSTEM_IO)
115
935ab850 116/* Evaluates to True if reg is a NULL register descriptor */
158c998e
AC
117#define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
118 (reg)->address == 0 && \
119 (reg)->bit_width == 0 && \
120 (reg)->bit_offset == 0 && \
121 (reg)->access_width == 0)
122
935ab850 123/* Evaluates to True if an optional cpc field is supported */
158c998e
AC
124#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
125 !!(cpc)->cpc_entry.int_value : \
126 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
337aadff
AC
127/*
128 * Arbitrary Retries in case the remote processor is slow to respond
ad62e1e6
AC
129 * to PCC commands. Keeping it high enough to cover emulators where
130 * the processors run painfully slow.
337aadff 131 */
b52f4511 132#define NUM_RETRIES 500ULL
337aadff 133
a2c8f92b
SN
134#define OVER_16BTS_MASK ~0xFFFFULL
135
158c998e 136#define define_one_cppc_ro(_name) \
2bc6262c 137static struct kobj_attribute _name = \
158c998e
AC
138__ATTR(_name, 0444, show_##_name, NULL)
139
140#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
141
2c74d847
PP
142#define show_cppc_data(access_fn, struct_name, member_name) \
143 static ssize_t show_##member_name(struct kobject *kobj, \
2bc6262c 144 struct kobj_attribute *attr, char *buf) \
2c74d847
PP
145 { \
146 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
147 struct struct_name st_name = {0}; \
148 int ret; \
149 \
150 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
151 if (ret) \
152 return ret; \
153 \
92266c65 154 return sysfs_emit(buf, "%llu\n", \
2c74d847
PP
155 (u64)st_name.member_name); \
156 } \
157 define_one_cppc_ro(member_name)
158
159show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
160show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
161show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
162show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
4773e77c
PP
163show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
164show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
165
2c74d847
PP
166show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
167show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
168
2f4a4d63
JW
169/* Check for valid access_width, otherwise, fallback to using bit_width */
170#define GET_BIT_WIDTH(reg) ((reg)->access_width ? (8 << ((reg)->access_width - 1)) : (reg)->bit_width)
171
172/* Shift and apply the mask for CPC reads/writes */
05d92ee7
JW
173#define MASK_VAL(reg, val) (((val) >> (reg)->bit_offset) & \
174 GENMASK(((reg)->bit_width) - 1, 0))
2f4a4d63 175
158c998e 176static ssize_t show_feedback_ctrs(struct kobject *kobj,
2bc6262c 177 struct kobj_attribute *attr, char *buf)
158c998e
AC
178{
179 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
180 struct cppc_perf_fb_ctrs fb_ctrs = {0};
2c74d847 181 int ret;
158c998e 182
2c74d847
PP
183 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
184 if (ret)
185 return ret;
158c998e 186
92266c65 187 return sysfs_emit(buf, "ref:%llu del:%llu\n",
158c998e
AC
188 fb_ctrs.reference, fb_ctrs.delivered);
189}
190define_one_cppc_ro(feedback_ctrs);
191
158c998e
AC
192static struct attribute *cppc_attrs[] = {
193 &feedback_ctrs.attr,
194 &reference_perf.attr,
195 &wraparound_time.attr,
2c74d847
PP
196 &highest_perf.attr,
197 &lowest_perf.attr,
198 &lowest_nonlinear_perf.attr,
199 &nominal_perf.attr,
4773e77c
PP
200 &nominal_freq.attr,
201 &lowest_freq.attr,
158c998e
AC
202 NULL
203};
17f18417 204ATTRIBUTE_GROUPS(cppc);
158c998e 205
a527b011 206static const struct kobj_type cppc_ktype = {
158c998e 207 .sysfs_ops = &kobj_sysfs_ops,
17f18417 208 .default_groups = cppc_groups,
158c998e
AC
209};
210
85b1407b 211static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
ad62e1e6 212{
58e1c035 213 int ret, status;
85b1407b
GC
214 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
215 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
216 pcc_ss_data->pcc_comm_addr;
ad62e1e6 217
85b1407b 218 if (!pcc_ss_data->platform_owns_pcc)
139aee73
PP
219 return 0;
220
58e1c035
PP
221 /*
222 * Poll PCC status register every 3us(delay_us) for maximum of
223 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
224 */
225 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
226 status & PCC_CMD_COMPLETE_MASK, 3,
227 pcc_ss_data->deadline_us);
ad62e1e6 228
58e1c035 229 if (likely(!ret)) {
85b1407b 230 pcc_ss_data->platform_owns_pcc = false;
58e1c035
PP
231 if (chk_err_bit && (status & PCC_ERROR_MASK))
232 ret = -EIO;
233 }
234
235 if (unlikely(ret))
236 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
237 pcc_ss_id, ret);
139aee73 238
ad62e1e6
AC
239 return ret;
240}
241
80b8286a
PP
242/*
243 * This function transfers the ownership of the PCC to the platform
244 * So it must be called while holding write_lock(pcc_lock)
245 */
85b1407b 246static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
337aadff 247{
80b8286a 248 int ret = -EIO, i;
85b1407b 249 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
1d9b4abe
IV
250 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
251 pcc_ss_data->pcc_comm_addr;
f387e5b9 252 unsigned int time_delta;
337aadff 253
ad62e1e6
AC
254 /*
255 * For CMD_WRITE we know for a fact the caller should have checked
256 * the channel before writing to PCC space
257 */
258 if (cmd == CMD_READ) {
80b8286a
PP
259 /*
260 * If there are pending cpc_writes, then we stole the channel
261 * before write completion, so first send a WRITE command to
262 * platform
263 */
85b1407b
GC
264 if (pcc_ss_data->pending_pcc_write_cmd)
265 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
80b8286a 266
85b1407b 267 ret = check_pcc_chan(pcc_ss_id, false);
ad62e1e6 268 if (ret)
80b8286a
PP
269 goto end;
270 } else /* CMD_WRITE */
85b1407b 271 pcc_ss_data->pending_pcc_write_cmd = FALSE;
337aadff 272
f387e5b9
PP
273 /*
274 * Handle the Minimum Request Turnaround Time(MRTT)
275 * "The minimum amount of time that OSPM must wait after the completion
276 * of a command before issuing the next command, in microseconds"
277 */
85b1407b
GC
278 if (pcc_ss_data->pcc_mrtt) {
279 time_delta = ktime_us_delta(ktime_get(),
280 pcc_ss_data->last_cmd_cmpl_time);
281 if (pcc_ss_data->pcc_mrtt > time_delta)
282 udelay(pcc_ss_data->pcc_mrtt - time_delta);
f387e5b9
PP
283 }
284
285 /*
286 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
287 * "The maximum number of periodic requests that the subspace channel can
288 * support, reported in commands per minute. 0 indicates no limitation."
289 *
290 * This parameter should be ideally zero or large enough so that it can
291 * handle maximum number of requests that all the cores in the system can
292 * collectively generate. If it is not, we will follow the spec and just
293 * not send the request to the platform after hitting the MPAR limit in
294 * any 60s window
295 */
85b1407b
GC
296 if (pcc_ss_data->pcc_mpar) {
297 if (pcc_ss_data->mpar_count == 0) {
298 time_delta = ktime_ms_delta(ktime_get(),
299 pcc_ss_data->last_mpar_reset);
300 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
d29abc83
GC
301 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
302 pcc_ss_id);
80b8286a
PP
303 ret = -EIO;
304 goto end;
f387e5b9 305 }
85b1407b
GC
306 pcc_ss_data->last_mpar_reset = ktime_get();
307 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
f387e5b9 308 }
85b1407b 309 pcc_ss_data->mpar_count--;
f387e5b9
PP
310 }
311
337aadff 312 /* Write to the shared comm region. */
beee23ae 313 writew_relaxed(cmd, &generic_comm_base->command);
337aadff
AC
314
315 /* Flip CMD COMPLETE bit */
beee23ae 316 writew_relaxed(0, &generic_comm_base->status);
337aadff 317
85b1407b 318 pcc_ss_data->platform_owns_pcc = true;
139aee73 319
337aadff 320 /* Ring doorbell */
7b6da7fe 321 ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
ad62e1e6 322 if (ret < 0) {
d29abc83
GC
323 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
324 pcc_ss_id, cmd, ret);
80b8286a 325 goto end;
337aadff
AC
326 }
327
9e12eb82 328 /* wait for completion and check for PCC error bit */
85b1407b 329 ret = check_pcc_chan(pcc_ss_id, true);
139aee73 330
85b1407b
GC
331 if (pcc_ss_data->pcc_mrtt)
332 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
337aadff 333
7b6da7fe
SH
334 if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
335 mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
b59c4b3d 336 else
7b6da7fe 337 mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
80b8286a
PP
338
339end:
340 if (cmd == CMD_WRITE) {
341 if (unlikely(ret)) {
342 for_each_possible_cpu(i) {
343 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
e69ae675 344
80b8286a
PP
345 if (!desc)
346 continue;
347
85b1407b 348 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
80b8286a
PP
349 desc->write_cmd_status = ret;
350 }
351 }
85b1407b
GC
352 pcc_ss_data->pcc_write_cnt++;
353 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
80b8286a
PP
354 }
355
ad62e1e6 356 return ret;
337aadff
AC
357}
358
359static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
360{
ad62e1e6 361 if (ret < 0)
337aadff
AC
362 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
363 *(u16 *)msg, ret);
364 else
365 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
366 *(u16 *)msg, ret);
367}
368
5c447c18 369static struct mbox_client cppc_mbox_cl = {
337aadff
AC
370 .tx_done = cppc_chan_tx_done,
371 .knows_txdone = true,
372};
373
374static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
375{
376 int result = -EFAULT;
377 acpi_status status = AE_OK;
378 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
379 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
380 struct acpi_buffer state = {0, NULL};
381 union acpi_object *psd = NULL;
382 struct acpi_psd_package *pdomain;
383
4c4cdc4c
AS
384 status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
385 &buffer, ACPI_TYPE_PACKAGE);
386 if (status == AE_NOT_FOUND) /* _PSD is optional */
387 return 0;
337aadff
AC
388 if (ACPI_FAILURE(status))
389 return -ENODEV;
390
391 psd = buffer.pointer;
392 if (!psd || psd->package.count != 1) {
393 pr_debug("Invalid _PSD data\n");
394 goto end;
395 }
396
397 pdomain = &(cpc_ptr->domain_info);
398
399 state.length = sizeof(struct acpi_psd_package);
400 state.pointer = pdomain;
401
402 status = acpi_extract_package(&(psd->package.elements[0]),
403 &format, &state);
404 if (ACPI_FAILURE(status)) {
405 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
406 goto end;
407 }
408
409 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
410 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
411 goto end;
412 }
413
414 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
415 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
416 goto end;
417 }
418
419 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
420 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
421 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
422 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
423 goto end;
424 }
425
426 result = 0;
427end:
428 kfree(buffer.pointer);
429 return result;
430}
431
a28b2bfc
IV
432bool acpi_cpc_valid(void)
433{
434 struct cpc_desc *cpc_ptr;
435 int cpu;
436
a2a9d185
PY
437 if (acpi_disabled)
438 return false;
439
2aeca6bd 440 for_each_present_cpu(cpu) {
a28b2bfc
IV
441 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
442 if (!cpc_ptr)
443 return false;
444 }
445
446 return true;
447}
448EXPORT_SYMBOL_GPL(acpi_cpc_valid);
449
3cc30dd0
PG
450bool cppc_allow_fast_switch(void)
451{
452 struct cpc_register_resource *desired_reg;
453 struct cpc_desc *cpc_ptr;
454 int cpu;
455
456 for_each_possible_cpu(cpu) {
457 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
458 desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
459 if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
460 !CPC_IN_SYSTEM_IO(desired_reg))
461 return false;
462 }
463
464 return true;
465}
466EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
467
337aadff 468/**
a28b2bfc
IV
469 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
470 * @cpu: Find all CPUs that share a domain with cpu.
471 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
337aadff
AC
472 *
473 * Return: 0 for success or negative value for err.
474 */
a28b2bfc 475int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
337aadff 476{
337aadff 477 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
a28b2bfc
IV
478 struct acpi_psd_package *match_pdomain;
479 struct acpi_psd_package *pdomain;
480 int count_target, i;
337aadff
AC
481
482 /*
603fadf3 483 * Now that we have _PSD data from all CPUs, let's setup P-state
337aadff
AC
484 * domain info.
485 */
a28b2bfc
IV
486 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
487 if (!cpc_ptr)
488 return -EFAULT;
337aadff 489
a28b2bfc
IV
490 pdomain = &(cpc_ptr->domain_info);
491 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
492 if (pdomain->num_processors <= 1)
493 return 0;
337aadff 494
a28b2bfc
IV
495 /* Validate the Domain info */
496 count_target = pdomain->num_processors;
497 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
498 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
499 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
500 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
501 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
502 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
337aadff 503
a28b2bfc
IV
504 for_each_possible_cpu(i) {
505 if (i == cpu)
506 continue;
337aadff 507
a28b2bfc
IV
508 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
509 if (!match_cpc_ptr)
510 goto err_fault;
337aadff 511
a28b2bfc
IV
512 match_pdomain = &(match_cpc_ptr->domain_info);
513 if (match_pdomain->domain != pdomain->domain)
514 continue;
337aadff 515
a28b2bfc
IV
516 /* Here i and cpu are in the same domain */
517 if (match_pdomain->num_processors != count_target)
518 goto err_fault;
337aadff 519
a28b2bfc
IV
520 if (pdomain->coord_type != match_pdomain->coord_type)
521 goto err_fault;
337aadff 522
a28b2bfc 523 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
337aadff
AC
524 }
525
a28b2bfc 526 return 0;
337aadff 527
a28b2bfc
IV
528err_fault:
529 /* Assume no coordination on any error parsing domain info */
530 cpumask_clear(cpu_data->shared_cpu_map);
531 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
532 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
533
534 return -EFAULT;
337aadff
AC
535}
536EXPORT_SYMBOL_GPL(acpi_get_psd_map);
537
85b1407b 538static int register_pcc_channel(int pcc_ss_idx)
337aadff 539{
7b6da7fe 540 struct pcc_mbox_chan *pcc_chan;
ad62e1e6 541 u64 usecs_lat;
337aadff 542
85b1407b 543 if (pcc_ss_idx >= 0) {
7b6da7fe 544 pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
337aadff 545
7b6da7fe 546 if (IS_ERR(pcc_chan)) {
d29abc83
GC
547 pr_err("Failed to find PCC channel for subspace %d\n",
548 pcc_ss_idx);
337aadff
AC
549 return -ENODEV;
550 }
551
7b6da7fe 552 pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
ad62e1e6
AC
553 /*
554 * cppc_ss->latency is just a Nominal value. In reality
555 * the remote processor could be much slower to reply.
556 * So add an arbitrary amount of wait on top of Nominal.
557 */
7b6da7fe 558 usecs_lat = NUM_RETRIES * pcc_chan->latency;
58e1c035 559 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
7b6da7fe
SH
560 pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
561 pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
562 pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
85b1407b
GC
563
564 pcc_data[pcc_ss_idx]->pcc_comm_addr =
7b6da7fe
SH
565 acpi_os_ioremap(pcc_chan->shmem_base_addr,
566 pcc_chan->shmem_size);
85b1407b 567 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
d29abc83
GC
568 pr_err("Failed to ioremap PCC comm region mem for %d\n",
569 pcc_ss_idx);
337aadff
AC
570 return -ENOMEM;
571 }
572
603fadf3 573 /* Set flag so that we don't come here for each CPU. */
85b1407b 574 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
337aadff
AC
575 }
576
577 return 0;
578}
579
a6cbcdd5
SP
580/**
581 * cpc_ffh_supported() - check if FFH reading supported
582 *
583 * Check if the architecture has support for functional fixed hardware
584 * read/write capability.
585 *
586 * Return: true for supported, false for not supported
587 */
588bool __weak cpc_ffh_supported(void)
589{
590 return false;
591}
592
8b356e53
ML
593/**
594 * cpc_supported_by_cpu() - check if CPPC is supported by CPU
595 *
596 * Check if the architectural support for CPPC is present even
597 * if the _OSC hasn't prescribed it
598 *
599 * Return: true for supported, false for not supported
600 */
601bool __weak cpc_supported_by_cpu(void)
602{
603 return false;
604}
605
85b1407b
GC
606/**
607 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
fda7be20 608 * @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package.
85b1407b
GC
609 *
610 * Check and allocate the cppc_pcc_data memory.
611 * In some processor configurations it is possible that same subspace
603fadf3 612 * is shared between multiple CPUs. This is seen especially in CPUs
85b1407b
GC
613 * with hardware multi-threading support.
614 *
615 * Return: 0 for success, errno for failure
616 */
5c447c18 617static int pcc_data_alloc(int pcc_ss_id)
85b1407b
GC
618{
619 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
620 return -EINVAL;
621
622 if (pcc_data[pcc_ss_id]) {
623 pcc_data[pcc_ss_id]->refcount++;
624 } else {
625 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
626 GFP_KERNEL);
627 if (!pcc_data[pcc_ss_id])
628 return -ENOMEM;
629 pcc_data[pcc_ss_id]->refcount++;
630 }
631
632 return 0;
633}
4773e77c 634
337aadff
AC
635/*
636 * An example CPC table looks like the following.
637 *
1a901c91
AS
638 * Name (_CPC, Package() {
639 * 17, // NumEntries
640 * 1, // Revision
641 * ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)}, // Highest Performance
642 * ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)}, // Nominal Performance
643 * ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)}, // Lowest Nonlinear Performance
644 * ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)}, // Lowest Performance
645 * ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)}, // Guaranteed Performance Register
646 * ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)}, // Desired Performance Register
647 * ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
648 * ...
649 * ...
650 * ...
651 * }
337aadff
AC
652 * Each Register() encodes how to access that specific register.
653 * e.g. a sample PCC entry has the following encoding:
654 *
1a901c91
AS
655 * Register (
656 * PCC, // AddressSpaceKeyword
657 * 8, // RegisterBitWidth
658 * 8, // RegisterBitOffset
659 * 0x30, // RegisterAddress
660 * 9, // AccessSize (subspace ID)
661 * )
337aadff
AC
662 */
663
1132e6de
IV
664#ifndef arch_init_invariance_cppc
665static inline void arch_init_invariance_cppc(void) { }
41ea6672
NF
666#endif
667
337aadff
AC
668/**
669 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
603fadf3 670 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
337aadff
AC
671 *
672 * Return: 0 for success or negative value for err.
673 */
674int acpi_cppc_processor_probe(struct acpi_processor *pr)
675{
676 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
677 union acpi_object *out_obj, *cpc_obj;
678 struct cpc_desc *cpc_ptr;
679 struct cpc_reg *gas_t;
158c998e 680 struct device *cpu_dev;
337aadff
AC
681 acpi_handle handle = pr->handle;
682 unsigned int num_ent, i, cpc_rev;
85b1407b 683 int pcc_subspace_id = -1;
337aadff 684 acpi_status status;
f21a3509 685 int ret = -ENODATA;
337aadff 686
7feec743
ML
687 if (!osc_sb_cppc2_support_acked) {
688 pr_debug("CPPC v2 _OSC not acked\n");
5f8f9bc4
PY
689 if (!cpc_supported_by_cpu()) {
690 pr_debug("CPPC is not supported by the CPU\n");
8b356e53 691 return -ENODEV;
5f8f9bc4 692 }
7feec743 693 }
c42fa24b 694
603fadf3 695 /* Parse the ACPI _CPC table for this CPU. */
337aadff
AC
696 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
697 ACPI_TYPE_PACKAGE);
698 if (ACPI_FAILURE(status)) {
699 ret = -ENODEV;
700 goto out_buf_free;
701 }
702
703 out_obj = (union acpi_object *) output.pointer;
704
705 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
706 if (!cpc_ptr) {
707 ret = -ENOMEM;
708 goto out_buf_free;
709 }
710
711 /* First entry is NumEntries. */
712 cpc_obj = &out_obj->package.elements[0];
713 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
714 num_ent = cpc_obj->integer.value;
40d8abf3
RW
715 if (num_ent <= 1) {
716 pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
717 num_ent, pr->id);
718 goto out_free;
719 }
337aadff 720 } else {
f21a3509
RW
721 pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
722 cpc_obj->type, pr->id);
337aadff
AC
723 goto out_free;
724 }
5bbb86aa 725
337aadff
AC
726 /* Second entry should be revision. */
727 cpc_obj = &out_obj->package.elements[1];
728 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
729 cpc_rev = cpc_obj->integer.value;
730 } else {
f21a3509
RW
731 pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
732 cpc_obj->type, pr->id);
337aadff
AC
733 goto out_free;
734 }
735
4f4179fc
RW
736 if (cpc_rev < CPPC_V2_REV) {
737 pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
738 pr->id);
337aadff 739 goto out_free;
4f4179fc
RW
740 }
741
742 /*
743 * Disregard _CPC if the number of entries in the return pachage is not
744 * as expected, but support future revisions being proper supersets of
745 * the v3 and only causing more entries to be returned by _CPC.
746 */
747 if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
748 (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
749 (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
750 pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
751 num_ent, pr->id);
752 goto out_free;
753 }
754 if (cpc_rev > CPPC_V3_REV) {
755 num_ent = CPPC_V3_NUM_ENT;
756 cpc_rev = CPPC_V3_REV;
757 }
758
759 cpc_ptr->num_entries = num_ent;
760 cpc_ptr->version = cpc_rev;
337aadff
AC
761
762 /* Iterate through remaining entries in _CPC */
763 for (i = 2; i < num_ent; i++) {
764 cpc_obj = &out_obj->package.elements[i];
765
766 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
767 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
768 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
769 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
770 gas_t = (struct cpc_reg *)
771 cpc_obj->buffer.pointer;
772
773 /*
774 * The PCC Subspace index is encoded inside
775 * the CPC table entries. The same PCC index
776 * will be used for all the PCC entries,
777 * so extract it only once.
778 */
779 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
85b1407b
GC
780 if (pcc_subspace_id < 0) {
781 pcc_subspace_id = gas_t->access_width;
782 if (pcc_data_alloc(pcc_subspace_id))
783 goto out_free;
784 } else if (pcc_subspace_id != gas_t->access_width) {
f21a3509
RW
785 pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
786 pr->id);
337aadff
AC
787 goto out_free;
788 }
5bbb86aa
AC
789 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
790 if (gas_t->address) {
791 void __iomem *addr;
2f4a4d63 792 size_t access_width;
5bbb86aa 793
0651ab90
PG
794 if (!osc_cpc_flexible_adr_space_confirmed) {
795 pr_debug("Flexible address space capability not supported\n");
09073396
ML
796 if (!cpc_supported_by_cpu())
797 goto out_free;
0651ab90
PG
798 }
799
2f4a4d63
JW
800 access_width = GET_BIT_WIDTH(gas_t) / 8;
801 addr = ioremap(gas_t->address, access_width);
5bbb86aa
AC
802 if (!addr)
803 goto out_free;
804 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
805 }
a2c8f92b
SN
806 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
807 if (gas_t->access_width < 1 || gas_t->access_width > 3) {
808 /*
809 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
810 * SystemIO doesn't implement 64-bit
811 * registers.
812 */
f21a3509
RW
813 pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
814 gas_t->access_width);
a2c8f92b
SN
815 goto out_free;
816 }
817 if (gas_t->address & OVER_16BTS_MASK) {
818 /* SystemIO registers use 16-bit integer addresses */
f21a3509
RW
819 pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
820 gas_t->address);
a2c8f92b
SN
821 goto out_free;
822 }
0651ab90
PG
823 if (!osc_cpc_flexible_adr_space_confirmed) {
824 pr_debug("Flexible address space capability not supported\n");
09073396
ML
825 if (!cpc_supported_by_cpu())
826 goto out_free;
0651ab90 827 }
5bbb86aa 828 } else {
a6cbcdd5 829 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
a2c8f92b 830 /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
f21a3509
RW
831 pr_debug("Unsupported register type (%d) in _CPC\n",
832 gas_t->space_id);
a6cbcdd5
SP
833 goto out_free;
834 }
337aadff
AC
835 }
836
837 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
838 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
839 } else {
f21a3509
RW
840 pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
841 i, pr->id);
337aadff
AC
842 goto out_free;
843 }
844 }
85b1407b 845 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
4773e77c
PP
846
847 /*
848 * Initialize the remaining cpc_regs as unsupported.
849 * Example: In case FW exposes CPPC v2, the below loop will initialize
850 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
851 */
852 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
853 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
854 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
855 }
856
857
337aadff
AC
858 /* Store CPU Logical ID */
859 cpc_ptr->cpu_id = pr->id;
860
337aadff
AC
861 /* Parse PSD data for this CPU */
862 ret = acpi_get_psd(cpc_ptr, handle);
863 if (ret)
864 goto out_free;
865
603fadf3 866 /* Register PCC channel once for all PCC subspace ID. */
85b1407b
GC
867 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
868 ret = register_pcc_channel(pcc_subspace_id);
337aadff
AC
869 if (ret)
870 goto out_free;
8482ef8c 871
85b1407b
GC
872 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
873 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
337aadff
AC
874 }
875
876 /* Everything looks okay */
877 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
878
158c998e
AC
879 /* Add per logical CPU nodes for reading its feedback counters. */
880 cpu_dev = get_cpu_device(pr->id);
50163475
DC
881 if (!cpu_dev) {
882 ret = -EINVAL;
158c998e 883 goto out_free;
50163475 884 }
158c998e 885
603fadf3 886 /* Plug PSD data into this CPU's CPC descriptor. */
28076483
RW
887 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
888
158c998e
AC
889 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
890 "acpi_cppc");
28076483
RW
891 if (ret) {
892 per_cpu(cpc_desc_ptr, pr->id) = NULL;
4d8be4bc 893 kobject_put(&cpc_ptr->kobj);
158c998e 894 goto out_free;
28076483 895 }
158c998e 896
1132e6de 897 arch_init_invariance_cppc();
41ea6672 898
337aadff
AC
899 kfree(output.pointer);
900 return 0;
901
902out_free:
5bbb86aa
AC
903 /* Free all the mapped sys mem areas for this CPU */
904 for (i = 2; i < cpc_ptr->num_entries; i++) {
905 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
906
907 if (addr)
908 iounmap(addr);
909 }
337aadff
AC
910 kfree(cpc_ptr);
911
912out_buf_free:
913 kfree(output.pointer);
914 return ret;
915}
916EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
917
918/**
919 * acpi_cppc_processor_exit - Cleanup CPC structs.
603fadf3 920 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
337aadff
AC
921 *
922 * Return: Void
923 */
924void acpi_cppc_processor_exit(struct acpi_processor *pr)
925{
926 struct cpc_desc *cpc_ptr;
5bbb86aa
AC
927 unsigned int i;
928 void __iomem *addr;
85b1407b
GC
929 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
930
e69ae675 931 if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
85b1407b
GC
932 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
933 pcc_data[pcc_ss_id]->refcount--;
934 if (!pcc_data[pcc_ss_id]->refcount) {
935 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
85b1407b 936 kfree(pcc_data[pcc_ss_id]);
56a0b978 937 pcc_data[pcc_ss_id] = NULL;
85b1407b
GC
938 }
939 }
940 }
158c998e 941
337aadff 942 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
9e9d68da
SAS
943 if (!cpc_ptr)
944 return;
5bbb86aa
AC
945
946 /* Free all the mapped sys mem areas for this CPU */
947 for (i = 2; i < cpc_ptr->num_entries; i++) {
948 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
949 if (addr)
950 iounmap(addr);
951 }
952
158c998e 953 kobject_put(&cpc_ptr->kobj);
337aadff
AC
954 kfree(cpc_ptr);
955}
956EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
957
a6cbcdd5
SP
958/**
959 * cpc_read_ffh() - Read FFH register
603fadf3 960 * @cpunum: CPU number to read
a6cbcdd5
SP
961 * @reg: cppc register information
962 * @val: place holder for return value
963 *
964 * Read bit_width bits from a specified address and bit_offset
965 *
966 * Return: 0 for success and error code
967 */
968int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
969{
970 return -ENOTSUPP;
971}
972
973/**
974 * cpc_write_ffh() - Write FFH register
603fadf3 975 * @cpunum: CPU number to write
a6cbcdd5
SP
976 * @reg: cppc register information
977 * @val: value to write
978 *
979 * Write value of bit_width bits to a specified address and bit_offset
980 *
981 * Return: 0 for success and error code
982 */
983int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
984{
985 return -ENOTSUPP;
986}
987
77e3d86f
PP
988/*
989 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
990 * as fast as possible. We have already mapped the PCC subspace during init, so
991 * we can directly write to it.
992 */
337aadff 993
a6cbcdd5 994static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
337aadff 995{
26692cd9 996 void __iomem *vaddr = NULL;
2f4a4d63 997 int size;
85b1407b 998 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
5bbb86aa
AC
999 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1000
1001 if (reg_res->type == ACPI_TYPE_INTEGER) {
1002 *val = reg_res->cpc_entry.int_value;
f684b107 1003 return 0;
5bbb86aa 1004 }
77e3d86f
PP
1005
1006 *val = 0;
f489c948 1007 size = GET_BIT_WIDTH(reg);
a2c8f92b
SN
1008
1009 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
5f51c7ce 1010 u32 val_u32;
a2c8f92b
SN
1011 acpi_status status;
1012
1013 status = acpi_os_read_port((acpi_io_address)reg->address,
f489c948 1014 &val_u32, size);
a2c8f92b
SN
1015 if (ACPI_FAILURE(status)) {
1016 pr_debug("Error: Failed to read SystemIO port %llx\n",
1017 reg->address);
1018 return -EFAULT;
1019 }
1020
5f51c7ce 1021 *val = val_u32;
a2c8f92b 1022 return 0;
f489c948
VK
1023 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
1024 /*
1025 * For registers in PCC space, the register size is determined
1026 * by the bit width field; the access size is used to indicate
1027 * the PCC subspace id.
1028 */
1029 size = reg->bit_width;
85b1407b 1030 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
f489c948 1031 }
5bbb86aa
AC
1032 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1033 vaddr = reg_res->sys_mem_vaddr;
a6cbcdd5
SP
1034 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1035 return cpc_read_ffh(cpu, reg, val);
5bbb86aa
AC
1036 else
1037 return acpi_os_read_memory((acpi_physical_address)reg->address,
f489c948 1038 val, size);
2f4a4d63
JW
1039
1040 switch (size) {
e69ae675
XT
1041 case 8:
1042 *val = readb_relaxed(vaddr);
1043 break;
1044 case 16:
1045 *val = readw_relaxed(vaddr);
1046 break;
1047 case 32:
1048 *val = readl_relaxed(vaddr);
1049 break;
1050 case 64:
1051 *val = readq_relaxed(vaddr);
1052 break;
1053 default:
f489c948
VK
1054 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1055 pr_debug("Error: Cannot read %u bit width from system memory: 0x%llx\n",
1056 size, reg->address);
1057 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
1058 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1059 size, pcc_ss_id);
1060 }
f684b107 1061 return -EFAULT;
5bbb86aa
AC
1062 }
1063
2f4a4d63
JW
1064 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1065 *val = MASK_VAL(reg, *val);
1066
f684b107 1067 return 0;
337aadff
AC
1068}
1069
a6cbcdd5 1070static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
337aadff 1071{
77e3d86f 1072 int ret_val = 0;
2f4a4d63 1073 int size;
26692cd9 1074 void __iomem *vaddr = NULL;
85b1407b 1075 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
5bbb86aa 1076 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
77e3d86f 1077
f489c948
VK
1078 size = GET_BIT_WIDTH(reg);
1079
a2c8f92b 1080 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
a2c8f92b
SN
1081 acpi_status status;
1082
1083 status = acpi_os_write_port((acpi_io_address)reg->address,
f489c948 1084 (u32)val, size);
a2c8f92b
SN
1085 if (ACPI_FAILURE(status)) {
1086 pr_debug("Error: Failed to write SystemIO port %llx\n",
1087 reg->address);
1088 return -EFAULT;
1089 }
1090
1091 return 0;
f489c948
VK
1092 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
1093 /*
1094 * For registers in PCC space, the register size is determined
1095 * by the bit width field; the access size is used to indicate
1096 * the PCC subspace id.
1097 */
1098 size = reg->bit_width;
85b1407b 1099 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
f489c948 1100 }
5bbb86aa
AC
1101 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1102 vaddr = reg_res->sys_mem_vaddr;
a6cbcdd5
SP
1103 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1104 return cpc_write_ffh(cpu, reg, val);
5bbb86aa
AC
1105 else
1106 return acpi_os_write_memory((acpi_physical_address)reg->address,
f489c948 1107 val, size);
2f4a4d63
JW
1108
1109 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1110 val = MASK_VAL(reg, val);
1111
1112 switch (size) {
e69ae675
XT
1113 case 8:
1114 writeb_relaxed(val, vaddr);
1115 break;
1116 case 16:
1117 writew_relaxed(val, vaddr);
1118 break;
1119 case 32:
1120 writel_relaxed(val, vaddr);
1121 break;
1122 case 64:
1123 writeq_relaxed(val, vaddr);
1124 break;
1125 default:
f489c948
VK
1126 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1127 pr_debug("Error: Cannot write %u bit width to system memory: 0x%llx\n",
1128 size, reg->address);
1129 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
1130 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1131 size, pcc_ss_id);
1132 }
e69ae675
XT
1133 ret_val = -EFAULT;
1134 break;
5bbb86aa
AC
1135 }
1136
77e3d86f 1137 return ret_val;
337aadff
AC
1138}
1139
0654cf05 1140static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1757d05f
XW
1141{
1142 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
935dff30
RW
1143 struct cpc_register_resource *reg;
1144
1145 if (!cpc_desc) {
1146 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1147 return -ENODEV;
1148 }
1149
1150 reg = &cpc_desc->cpc_regs[reg_idx];
1757d05f 1151
0654cf05
RW
1152 if (CPC_IN_PCC(reg)) {
1153 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1154 struct cppc_pcc_data *pcc_ss_data = NULL;
1757d05f
XW
1155 int ret = 0;
1156
1157 if (pcc_ss_id < 0)
1158 return -EIO;
1159
1160 pcc_ss_data = pcc_data[pcc_ss_id];
1161
1162 down_write(&pcc_ss_data->pcc_lock);
1163
1164 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
0654cf05 1165 cpc_read(cpunum, reg, perf);
1757d05f
XW
1166 else
1167 ret = -EIO;
1168
1169 up_write(&pcc_ss_data->pcc_lock);
1170
1171 return ret;
1172 }
1173
0654cf05 1174 cpc_read(cpunum, reg, perf);
1757d05f
XW
1175
1176 return 0;
1177}
0654cf05
RW
1178
1179/**
1180 * cppc_get_desired_perf - Get the desired performance register value.
1181 * @cpunum: CPU from which to get desired performance.
1182 * @desired_perf: Return address.
1183 *
1184 * Return: 0 for success, -EIO otherwise.
1185 */
1186int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1187{
1188 return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1189}
1757d05f
XW
1190EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1191
0654cf05
RW
1192/**
1193 * cppc_get_nominal_perf - Get the nominal performance register value.
1194 * @cpunum: CPU from which to get nominal performance.
1195 * @nominal_perf: Return address.
1196 *
1197 * Return: 0 for success, -EIO otherwise.
1198 */
1199int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1200{
1201 return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1202}
1203
12753d71
ML
1204/**
1205 * cppc_get_highest_perf - Get the highest performance register value.
1206 * @cpunum: CPU from which to get highest performance.
1207 * @highest_perf: Return address.
1208 *
1209 * Return: 0 for success, -EIO otherwise.
1210 */
1211int cppc_get_highest_perf(int cpunum, u64 *highest_perf)
1212{
1213 return cppc_get_perf(cpunum, HIGHEST_PERF, highest_perf);
1214}
1215EXPORT_SYMBOL_GPL(cppc_get_highest_perf);
1216
7bc1fcd3
PY
1217/**
1218 * cppc_get_epp_perf - Get the epp register value.
1219 * @cpunum: CPU from which to get epp preference value.
1220 * @epp_perf: Return address.
1221 *
1222 * Return: 0 for success, -EIO otherwise.
1223 */
1224int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
1225{
1226 return cppc_get_perf(cpunum, ENERGY_PERF, epp_perf);
1227}
1228EXPORT_SYMBOL_GPL(cppc_get_epp_perf);
1229
337aadff 1230/**
603fadf3 1231 * cppc_get_perf_caps - Get a CPU's performance capabilities.
337aadff
AC
1232 * @cpunum: CPU from which to get capabilities info.
1233 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1234 *
1235 * Return: 0 for success with perf_caps populated else -ERRNO.
1236 */
1237int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1238{
1239 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
368520a6 1240 struct cpc_register_resource *highest_reg, *lowest_reg,
29523f09 1241 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
4773e77c 1242 *low_freq_reg = NULL, *nom_freq_reg = NULL;
29523f09 1243 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
85b1407b 1244 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
6fa12d58 1245 struct cppc_pcc_data *pcc_ss_data = NULL;
850d64a4 1246 int ret = 0, regs_in_pcc = 0;
337aadff 1247
6fa12d58 1248 if (!cpc_desc) {
337aadff
AC
1249 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1250 return -ENODEV;
1251 }
1252
1253 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1254 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
368520a6
PP
1255 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1256 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
4773e77c
PP
1257 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1258 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
29523f09 1259 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
337aadff 1260
337aadff 1261 /* Are any of the regs PCC ?*/
80b8286a 1262 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
4773e77c
PP
1263 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1264 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
6fa12d58
PP
1265 if (pcc_ss_id < 0) {
1266 pr_debug("Invalid pcc_ss_id\n");
1267 return -ENODEV;
1268 }
1269 pcc_ss_data = pcc_data[pcc_ss_id];
850d64a4 1270 regs_in_pcc = 1;
85b1407b 1271 down_write(&pcc_ss_data->pcc_lock);
337aadff 1272 /* Ring doorbell once to update PCC subspace */
85b1407b 1273 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
337aadff
AC
1274 ret = -EIO;
1275 goto out_err;
1276 }
1277 }
1278
a6cbcdd5 1279 cpc_read(cpunum, highest_reg, &high);
337aadff
AC
1280 perf_caps->highest_perf = high;
1281
a6cbcdd5 1282 cpc_read(cpunum, lowest_reg, &low);
337aadff
AC
1283 perf_caps->lowest_perf = low;
1284
368520a6 1285 cpc_read(cpunum, nominal_reg, &nom);
337aadff
AC
1286 perf_caps->nominal_perf = nom;
1287
edef1ef1
SP
1288 if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
1289 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1290 perf_caps->guaranteed_perf = 0;
1291 } else {
1292 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1293 perf_caps->guaranteed_perf = guaranteed;
1294 }
29523f09 1295
368520a6
PP
1296 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1297 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1298
1299 if (!high || !low || !nom || !min_nonlinear)
337aadff
AC
1300 ret = -EFAULT;
1301
4773e77c
PP
1302 /* Read optional lowest and nominal frequencies if present */
1303 if (CPC_SUPPORTED(low_freq_reg))
1304 cpc_read(cpunum, low_freq_reg, &low_f);
1305
1306 if (CPC_SUPPORTED(nom_freq_reg))
1307 cpc_read(cpunum, nom_freq_reg, &nom_f);
1308
1309 perf_caps->lowest_freq = low_f;
1310 perf_caps->nominal_freq = nom_f;
1311
1312
337aadff 1313out_err:
850d64a4 1314 if (regs_in_pcc)
85b1407b 1315 up_write(&pcc_ss_data->pcc_lock);
337aadff
AC
1316 return ret;
1317}
1318EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1319
ae2df912
JL
1320/**
1321 * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
1322 *
1323 * CPPC has flexibility about how CPU performance counters are accessed.
1324 * One of the choices is PCC regions, which can have a high access latency. This
1325 * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
1326 *
1327 * Return: true if any of the counters are in PCC regions, false otherwise
1328 */
1329bool cppc_perf_ctrs_in_pcc(void)
1330{
1331 int cpu;
1332
1333 for_each_present_cpu(cpu) {
1334 struct cpc_register_resource *ref_perf_reg;
1335 struct cpc_desc *cpc_desc;
1336
1337 cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1338
1339 if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
1340 CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
1341 CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
1342 return true;
1343
1344
1345 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1346
1347 /*
1348 * If reference perf register is not supported then we should
1349 * use the nominal perf value
1350 */
1351 if (!CPC_SUPPORTED(ref_perf_reg))
1352 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1353
1354 if (CPC_IN_PCC(ref_perf_reg))
1355 return true;
1356 }
1357
1358 return false;
1359}
1360EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
1361
337aadff 1362/**
603fadf3 1363 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
337aadff
AC
1364 * @cpunum: CPU from which to read counters.
1365 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1366 *
1367 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1368 */
1369int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1370{
1371 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
158c998e
AC
1372 struct cpc_register_resource *delivered_reg, *reference_reg,
1373 *ref_perf_reg, *ctr_wrap_reg;
85b1407b 1374 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
6fa12d58 1375 struct cppc_pcc_data *pcc_ss_data = NULL;
158c998e 1376 u64 delivered, reference, ref_perf, ctr_wrap_time;
850d64a4 1377 int ret = 0, regs_in_pcc = 0;
337aadff 1378
6fa12d58 1379 if (!cpc_desc) {
337aadff
AC
1380 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1381 return -ENODEV;
1382 }
1383
1384 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1385 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
158c998e
AC
1386 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1387 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1388
1389 /*
603fadf3 1390 * If reference perf register is not supported then we should
158c998e
AC
1391 * use the nominal perf value
1392 */
1393 if (!CPC_SUPPORTED(ref_perf_reg))
1394 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
337aadff 1395
337aadff 1396 /* Are any of the regs PCC ?*/
158c998e
AC
1397 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1398 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
6fa12d58
PP
1399 if (pcc_ss_id < 0) {
1400 pr_debug("Invalid pcc_ss_id\n");
1401 return -ENODEV;
1402 }
1403 pcc_ss_data = pcc_data[pcc_ss_id];
85b1407b 1404 down_write(&pcc_ss_data->pcc_lock);
850d64a4 1405 regs_in_pcc = 1;
337aadff 1406 /* Ring doorbell once to update PCC subspace */
85b1407b 1407 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
337aadff
AC
1408 ret = -EIO;
1409 goto out_err;
1410 }
1411 }
1412
a6cbcdd5
SP
1413 cpc_read(cpunum, delivered_reg, &delivered);
1414 cpc_read(cpunum, reference_reg, &reference);
1415 cpc_read(cpunum, ref_perf_reg, &ref_perf);
158c998e
AC
1416
1417 /*
1418 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1419 * performance counters are assumed to never wrap during the lifetime of
1420 * platform
1421 */
1422 ctr_wrap_time = (u64)(~((u64)0));
1423 if (CPC_SUPPORTED(ctr_wrap_reg))
a6cbcdd5 1424 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
337aadff 1425
158c998e 1426 if (!delivered || !reference || !ref_perf) {
337aadff
AC
1427 ret = -EFAULT;
1428 goto out_err;
1429 }
1430
1431 perf_fb_ctrs->delivered = delivered;
1432 perf_fb_ctrs->reference = reference;
158c998e 1433 perf_fb_ctrs->reference_perf = ref_perf;
2c74d847 1434 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
337aadff 1435out_err:
850d64a4 1436 if (regs_in_pcc)
85b1407b 1437 up_write(&pcc_ss_data->pcc_lock);
337aadff
AC
1438 return ret;
1439}
1440EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1441
7bc1fcd3
PY
1442/*
1443 * Set Energy Performance Preference Register value through
1444 * Performance Controls Interface
1445 */
1446int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
1447{
1448 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1449 struct cpc_register_resource *epp_set_reg;
1450 struct cpc_register_resource *auto_sel_reg;
1451 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1452 struct cppc_pcc_data *pcc_ss_data = NULL;
1453 int ret;
1454
1455 if (!cpc_desc) {
1456 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1457 return -ENODEV;
1458 }
1459
1460 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1461 epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF];
1462
1463 if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) {
1464 if (pcc_ss_id < 0) {
1465 pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu);
1466 return -ENODEV;
1467 }
1468
1469 if (CPC_SUPPORTED(auto_sel_reg)) {
1470 ret = cpc_write(cpu, auto_sel_reg, enable);
1471 if (ret)
1472 return ret;
1473 }
1474
1475 if (CPC_SUPPORTED(epp_set_reg)) {
1476 ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1477 if (ret)
1478 return ret;
1479 }
1480
1481 pcc_ss_data = pcc_data[pcc_ss_id];
1482
1483 down_write(&pcc_ss_data->pcc_lock);
1484 /* after writing CPC, transfer the ownership of PCC to platform */
1485 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1486 up_write(&pcc_ss_data->pcc_lock);
1487 } else {
1488 ret = -ENOTSUPP;
1489 pr_debug("_CPC in PCC is not supported\n");
1490 }
1491
1492 return ret;
1493}
1494EXPORT_SYMBOL_GPL(cppc_set_epp_perf);
1495
c984f5d5
WK
1496/**
1497 * cppc_get_auto_sel_caps - Read autonomous selection register.
1498 * @cpunum : CPU from which to read register.
1499 * @perf_caps : struct where autonomous selection register value is updated.
1500 */
1501int cppc_get_auto_sel_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1502{
1503 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1504 struct cpc_register_resource *auto_sel_reg;
1505 u64 auto_sel;
1506
1507 if (!cpc_desc) {
1508 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1509 return -ENODEV;
1510 }
1511
1512 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1513
1514 if (!CPC_SUPPORTED(auto_sel_reg))
1515 pr_warn_once("Autonomous mode is not unsupported!\n");
1516
1517 if (CPC_IN_PCC(auto_sel_reg)) {
1518 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1519 struct cppc_pcc_data *pcc_ss_data = NULL;
1520 int ret = 0;
1521
1522 if (pcc_ss_id < 0)
1523 return -ENODEV;
1524
1525 pcc_ss_data = pcc_data[pcc_ss_id];
1526
1527 down_write(&pcc_ss_data->pcc_lock);
1528
1529 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) {
1530 cpc_read(cpunum, auto_sel_reg, &auto_sel);
1531 perf_caps->auto_sel = (bool)auto_sel;
1532 } else {
1533 ret = -EIO;
1534 }
1535
1536 up_write(&pcc_ss_data->pcc_lock);
1537
1538 return ret;
1539 }
1540
1541 return 0;
1542}
1543EXPORT_SYMBOL_GPL(cppc_get_auto_sel_caps);
1544
1545/**
1546 * cppc_set_auto_sel - Write autonomous selection register.
1547 * @cpu : CPU to which to write register.
1548 * @enable : the desired value of autonomous selection resiter to be updated.
1549 */
1550int cppc_set_auto_sel(int cpu, bool enable)
1551{
1552 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1553 struct cpc_register_resource *auto_sel_reg;
1554 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1555 struct cppc_pcc_data *pcc_ss_data = NULL;
1556 int ret = -EINVAL;
1557
1558 if (!cpc_desc) {
1559 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1560 return -ENODEV;
1561 }
1562
1563 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1564
1565 if (CPC_IN_PCC(auto_sel_reg)) {
1566 if (pcc_ss_id < 0) {
1567 pr_debug("Invalid pcc_ss_id\n");
1568 return -ENODEV;
1569 }
1570
1571 if (CPC_SUPPORTED(auto_sel_reg)) {
1572 ret = cpc_write(cpu, auto_sel_reg, enable);
1573 if (ret)
1574 return ret;
1575 }
1576
1577 pcc_ss_data = pcc_data[pcc_ss_id];
1578
1579 down_write(&pcc_ss_data->pcc_lock);
1580 /* after writing CPC, transfer the ownership of PCC to platform */
1581 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1582 up_write(&pcc_ss_data->pcc_lock);
1583 } else {
1584 ret = -ENOTSUPP;
1585 pr_debug("_CPC in PCC is not supported\n");
1586 }
1587
1588 return ret;
1589}
1590EXPORT_SYMBOL_GPL(cppc_set_auto_sel);
1591
fb0b00af
JS
1592/**
1593 * cppc_set_enable - Set to enable CPPC on the processor by writing the
1594 * Continuous Performance Control package EnableRegister field.
1595 * @cpu: CPU for which to enable CPPC register.
1596 * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1597 *
1598 * Return: 0 for success, -ERRNO or -EIO otherwise.
1599 */
1600int cppc_set_enable(int cpu, bool enable)
1601{
1602 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1603 struct cpc_register_resource *enable_reg;
1604 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1605 struct cppc_pcc_data *pcc_ss_data = NULL;
1606 int ret = -EINVAL;
1607
1608 if (!cpc_desc) {
1609 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1610 return -EINVAL;
1611 }
1612
1613 enable_reg = &cpc_desc->cpc_regs[ENABLE];
1614
1615 if (CPC_IN_PCC(enable_reg)) {
1616
1617 if (pcc_ss_id < 0)
1618 return -EIO;
1619
1620 ret = cpc_write(cpu, enable_reg, enable);
1621 if (ret)
1622 return ret;
1623
1624 pcc_ss_data = pcc_data[pcc_ss_id];
1625
1626 down_write(&pcc_ss_data->pcc_lock);
1627 /* after writing CPC, transfer the ownership of PCC to platfrom */
1628 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1629 up_write(&pcc_ss_data->pcc_lock);
1630 return ret;
1631 }
1632
1633 return cpc_write(cpu, enable_reg, enable);
1634}
1635EXPORT_SYMBOL_GPL(cppc_set_enable);
1636
337aadff 1637/**
603fadf3 1638 * cppc_set_perf - Set a CPU's performance controls.
337aadff
AC
1639 * @cpu: CPU for which to set performance controls.
1640 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1641 *
1642 * Return: 0 for success, -ERRNO otherwise.
1643 */
1644int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1645{
1646 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
76531df5 1647 struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg;
85b1407b 1648 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
6fa12d58 1649 struct cppc_pcc_data *pcc_ss_data = NULL;
337aadff
AC
1650 int ret = 0;
1651
6fa12d58 1652 if (!cpc_desc) {
337aadff
AC
1653 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1654 return -ENODEV;
1655 }
1656
1657 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
76531df5
WK
1658 min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF];
1659 max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF];
337aadff 1660
80b8286a
PP
1661 /*
1662 * This is Phase-I where we want to write to CPC registers
1663 * -> We want all CPUs to be able to execute this phase in parallel
1664 *
1665 * Since read_lock can be acquired by multiple CPUs simultaneously we
1666 * achieve that goal here
1667 */
76531df5 1668 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
6fa12d58
PP
1669 if (pcc_ss_id < 0) {
1670 pr_debug("Invalid pcc_ss_id\n");
1671 return -ENODEV;
1672 }
1673 pcc_ss_data = pcc_data[pcc_ss_id];
85b1407b
GC
1674 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1675 if (pcc_ss_data->platform_owns_pcc) {
1676 ret = check_pcc_chan(pcc_ss_id, false);
80b8286a 1677 if (ret) {
85b1407b 1678 up_read(&pcc_ss_data->pcc_lock);
80b8286a
PP
1679 return ret;
1680 }
80b8286a 1681 }
139aee73
PP
1682 /*
1683 * Update the pending_write to make sure a PCC CMD_READ will not
1684 * arrive and steal the channel during the switch to write lock
1685 */
85b1407b
GC
1686 pcc_ss_data->pending_pcc_write_cmd = true;
1687 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
80b8286a 1688 cpc_desc->write_cmd_status = 0;
ad62e1e6
AC
1689 }
1690
76531df5
WK
1691 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1692
337aadff 1693 /*
76531df5
WK
1694 * Only write if min_perf and max_perf not zero. Some drivers pass zero
1695 * value to min and max perf, but they don't mean to set the zero value,
1696 * they just don't want to write to those registers.
337aadff 1697 */
76531df5
WK
1698 if (perf_ctrls->min_perf)
1699 cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf);
1700 if (perf_ctrls->max_perf)
1701 cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf);
337aadff 1702
76531df5 1703 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg))
85b1407b 1704 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
80b8286a
PP
1705 /*
1706 * This is Phase-II where we transfer the ownership of PCC to Platform
1707 *
1708 * Short Summary: Basically if we think of a group of cppc_set_perf
1709 * requests that happened in short overlapping interval. The last CPU to
1710 * come out of Phase-I will enter Phase-II and ring the doorbell.
1711 *
1712 * We have the following requirements for Phase-II:
1713 * 1. We want to execute Phase-II only when there are no CPUs
1714 * currently executing in Phase-I
1715 * 2. Once we start Phase-II we want to avoid all other CPUs from
1716 * entering Phase-I.
1717 * 3. We want only one CPU among all those who went through Phase-I
1718 * to run phase-II
1719 *
1720 * If write_trylock fails to get the lock and doesn't transfer the
1721 * PCC ownership to the platform, then one of the following will be TRUE
1722 * 1. There is at-least one CPU in Phase-I which will later execute
1723 * write_trylock, so the CPUs in Phase-I will be responsible for
1724 * executing the Phase-II.
1725 * 2. Some other CPU has beaten this CPU to successfully execute the
1726 * write_trylock and has already acquired the write_lock. We know for a
603fadf3 1727 * fact it (other CPU acquiring the write_lock) couldn't have happened
80b8286a
PP
1728 * before this CPU's Phase-I as we held the read_lock.
1729 * 3. Some other CPU executing pcc CMD_READ has stolen the
1730 * down_write, in which case, send_pcc_cmd will check for pending
1731 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1732 * So this CPU can be certain that its request will be delivered
1733 * So in all cases, this CPU knows that its request will be delivered
1734 * by another CPU and can return
1735 *
1736 * After getting the down_write we still need to check for
1737 * pending_pcc_write_cmd to take care of the following scenario
1738 * The thread running this code could be scheduled out between
1739 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1740 * could have delivered the request to Platform by triggering the
1741 * doorbell and transferred the ownership of PCC to platform. So this
1742 * avoids triggering an unnecessary doorbell and more importantly before
1743 * triggering the doorbell it makes sure that the PCC channel ownership
1744 * is still with OSPM.
1745 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1746 * there was a pcc CMD_READ waiting on down_write and it steals the lock
935ab850 1747 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
80b8286a
PP
1748 * case during a CMD_READ and if there are pending writes it delivers
1749 * the write command before servicing the read command
1750 */
76531df5 1751 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
85b1407b 1752 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
80b8286a 1753 /* Update only if there are pending write commands */
85b1407b
GC
1754 if (pcc_ss_data->pending_pcc_write_cmd)
1755 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1756 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
80b8286a
PP
1757 } else
1758 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
85b1407b
GC
1759 wait_event(pcc_ss_data->pcc_write_wait_q,
1760 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
80b8286a
PP
1761
1762 /* send_pcc_cmd updates the status in case of failure */
1763 ret = cpc_desc->write_cmd_status;
337aadff 1764 }
337aadff
AC
1765 return ret;
1766}
1767EXPORT_SYMBOL_GPL(cppc_set_perf);
be8b88d7
PP
1768
1769/**
1770 * cppc_get_transition_latency - returns frequency transition latency in ns
fda7be20 1771 * @cpu_num: CPU number for per_cpu().
be8b88d7 1772 *
935ab850
TS
1773 * ACPI CPPC does not explicitly specify how a platform can specify the
1774 * transition latency for performance change requests. The closest we have
be8b88d7
PP
1775 * is the timing information from the PCCT tables which provides the info
1776 * on the number and frequency of PCC commands the platform can handle.
6380b7b2
PG
1777 *
1778 * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1779 * then assume there is no latency.
be8b88d7
PP
1780 */
1781unsigned int cppc_get_transition_latency(int cpu_num)
1782{
1783 /*
1784 * Expected transition latency is based on the PCCT timing values
1785 * Below are definition from ACPI spec:
1786 * pcc_nominal- Expected latency to process a command, in microseconds
1787 * pcc_mpar - The maximum number of periodic requests that the subspace
1788 * channel can support, reported in commands per minute. 0
1789 * indicates no limitation.
1790 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1791 * completion of a command before issuing the next command,
1792 * in microseconds.
1793 */
1794 unsigned int latency_ns = 0;
1795 struct cpc_desc *cpc_desc;
1796 struct cpc_register_resource *desired_reg;
85b1407b 1797 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1ecbd717 1798 struct cppc_pcc_data *pcc_ss_data;
be8b88d7
PP
1799
1800 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1801 if (!cpc_desc)
1802 return CPUFREQ_ETERNAL;
1803
1804 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
6380b7b2
PG
1805 if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1806 return 0;
1807 else if (!CPC_IN_PCC(desired_reg))
be8b88d7
PP
1808 return CPUFREQ_ETERNAL;
1809
1ecbd717
GC
1810 if (pcc_ss_id < 0)
1811 return CPUFREQ_ETERNAL;
1812
1813 pcc_ss_data = pcc_data[pcc_ss_id];
85b1407b
GC
1814 if (pcc_ss_data->pcc_mpar)
1815 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
be8b88d7 1816
85b1407b
GC
1817 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1818 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
be8b88d7
PP
1819
1820 return latency_ns;
1821}
1822EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
50b813b1
VG
1823
1824/* Minimum struct length needed for the DMI processor entry we want */
1825#define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48
1826
1827/* Offset in the DMI processor structure for the max frequency */
1828#define DMI_PROCESSOR_MAX_SPEED 0x14
1829
1830/* Callback function used to retrieve the max frequency from DMI */
1831static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
1832{
1833 const u8 *dmi_data = (const u8 *)dm;
1834 u16 *mhz = (u16 *)private;
1835
1836 if (dm->type == DMI_ENTRY_PROCESSOR &&
1837 dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
1838 u16 val = (u16)get_unaligned((const u16 *)
1839 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
1840 *mhz = val > *mhz ? val : *mhz;
1841 }
1842}
1843
1844/* Look up the max frequency in DMI */
1845static u64 cppc_get_dmi_max_khz(void)
1846{
1847 u16 mhz = 0;
1848
1849 dmi_walk(cppc_find_dmi_mhz, &mhz);
1850
1851 /*
1852 * Real stupid fallback value, just in case there is no
1853 * actual value set.
1854 */
1855 mhz = mhz ? mhz : 1;
1856
1857 return KHZ_PER_MHZ * mhz;
1858}
1859
1860/*
1861 * If CPPC lowest_freq and nominal_freq registers are exposed then we can
1862 * use them to convert perf to freq and vice versa. The conversion is
1863 * extrapolated as an affine function passing by the 2 points:
1864 * - (Low perf, Low freq)
1865 * - (Nominal perf, Nominal freq)
1866 */
1867unsigned int cppc_perf_to_khz(struct cppc_perf_caps *caps, unsigned int perf)
1868{
1869 s64 retval, offset = 0;
1870 static u64 max_khz;
1871 u64 mul, div;
1872
1873 if (caps->lowest_freq && caps->nominal_freq) {
1874 mul = caps->nominal_freq - caps->lowest_freq;
1875 mul *= KHZ_PER_MHZ;
1876 div = caps->nominal_perf - caps->lowest_perf;
1877 offset = caps->nominal_freq * KHZ_PER_MHZ -
1878 div64_u64(caps->nominal_perf * mul, div);
1879 } else {
1880 if (!max_khz)
1881 max_khz = cppc_get_dmi_max_khz();
1882 mul = max_khz;
1883 div = caps->highest_perf;
1884 }
1885
1886 retval = offset + div64_u64(perf * mul, div);
1887 if (retval >= 0)
1888 return retval;
1889 return 0;
1890}
1891EXPORT_SYMBOL_GPL(cppc_perf_to_khz);
1892
1893unsigned int cppc_khz_to_perf(struct cppc_perf_caps *caps, unsigned int freq)
1894{
1895 s64 retval, offset = 0;
1896 static u64 max_khz;
1897 u64 mul, div;
1898
1899 if (caps->lowest_freq && caps->nominal_freq) {
1900 mul = caps->nominal_perf - caps->lowest_perf;
1901 div = caps->nominal_freq - caps->lowest_freq;
1902 /*
1903 * We don't need to convert to kHz for computing offset and can
1904 * directly use nominal_freq and lowest_freq as the div64_u64
1905 * will remove the frequency unit.
1906 */
1907 offset = caps->nominal_perf -
1908 div64_u64(caps->nominal_freq * mul, div);
1909 /* But we need it for computing the perf level. */
1910 div *= KHZ_PER_MHZ;
1911 } else {
1912 if (!max_khz)
1913 max_khz = cppc_get_dmi_max_khz();
1914 mul = caps->highest_perf;
1915 div = max_khz;
1916 }
1917
1918 retval = offset + div64_u64(freq * mul, div);
1919 if (retval >= 0)
1920 return retval;
1921 return 0;
1922}
1923EXPORT_SYMBOL_GPL(cppc_khz_to_perf);