Commit | Line | Data |
---|---|---|
f1939f7c SW |
1 | /* |
2 | * Modified to interface to the Linux kernel | |
3 | * Copyright (c) 2009, Intel Corporation. | |
4 | * | |
5 | * This program is free software; you can redistribute it and/or modify it | |
6 | * under the terms and conditions of the GNU General Public License, | |
7 | * version 2, as published by the Free Software Foundation. | |
8 | * | |
9 | * This program is distributed in the hope it will be useful, but WITHOUT | |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
12 | * more details. | |
13 | * | |
14 | * You should have received a copy of the GNU General Public License along with | |
15 | * this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |
16 | * Place - Suite 330, Boston, MA 02111-1307 USA. | |
17 | */ | |
18 | ||
19 | /* -------------------------------------------------------------------------- | |
20 | * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai. | |
21 | * This implementation is herby placed in the public domain. | |
22 | * The authors offers no warranty. Use at your own risk. | |
23 | * Please send bug reports to the authors. | |
24 | * Last modified: 17 APR 08, 1700 PDT | |
25 | * ----------------------------------------------------------------------- */ | |
26 | ||
27 | #include <linux/init.h> | |
28 | #include <linux/types.h> | |
29 | #include <linux/crypto.h> | |
30 | #include <linux/scatterlist.h> | |
31 | #include <asm/byteorder.h> | |
32 | #include <crypto/scatterwalk.h> | |
33 | #include <crypto/vmac.h> | |
34 | #include <crypto/internal/hash.h> | |
35 | ||
36 | /* | |
37 | * Constants and masks | |
38 | */ | |
39 | #define UINT64_C(x) x##ULL | |
40 | const u64 p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */ | |
41 | const u64 m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */ | |
42 | const u64 m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */ | |
43 | const u64 m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */ | |
44 | const u64 mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */ | |
45 | ||
304a204e SW |
46 | #define pe64_to_cpup le64_to_cpup /* Prefer little endian */ |
47 | ||
f1939f7c SW |
48 | #ifdef __LITTLE_ENDIAN |
49 | #define INDEX_HIGH 1 | |
50 | #define INDEX_LOW 0 | |
51 | #else | |
52 | #define INDEX_HIGH 0 | |
53 | #define INDEX_LOW 1 | |
54 | #endif | |
55 | ||
56 | /* | |
57 | * The following routines are used in this implementation. They are | |
58 | * written via macros to simulate zero-overhead call-by-reference. | |
59 | * | |
60 | * MUL64: 64x64->128-bit multiplication | |
61 | * PMUL64: assumes top bits cleared on inputs | |
62 | * ADD128: 128x128->128-bit addition | |
63 | */ | |
64 | ||
65 | #define ADD128(rh, rl, ih, il) \ | |
66 | do { \ | |
67 | u64 _il = (il); \ | |
68 | (rl) += (_il); \ | |
69 | if ((rl) < (_il)) \ | |
70 | (rh)++; \ | |
71 | (rh) += (ih); \ | |
72 | } while (0) | |
73 | ||
74 | #define MUL32(i1, i2) ((u64)(u32)(i1)*(u32)(i2)) | |
75 | ||
76 | #define PMUL64(rh, rl, i1, i2) /* Assumes m doesn't overflow */ \ | |
77 | do { \ | |
78 | u64 _i1 = (i1), _i2 = (i2); \ | |
79 | u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2); \ | |
80 | rh = MUL32(_i1>>32, _i2>>32); \ | |
81 | rl = MUL32(_i1, _i2); \ | |
82 | ADD128(rh, rl, (m >> 32), (m << 32)); \ | |
83 | } while (0) | |
84 | ||
85 | #define MUL64(rh, rl, i1, i2) \ | |
86 | do { \ | |
87 | u64 _i1 = (i1), _i2 = (i2); \ | |
88 | u64 m1 = MUL32(_i1, _i2>>32); \ | |
89 | u64 m2 = MUL32(_i1>>32, _i2); \ | |
90 | rh = MUL32(_i1>>32, _i2>>32); \ | |
91 | rl = MUL32(_i1, _i2); \ | |
92 | ADD128(rh, rl, (m1 >> 32), (m1 << 32)); \ | |
93 | ADD128(rh, rl, (m2 >> 32), (m2 << 32)); \ | |
94 | } while (0) | |
95 | ||
96 | /* | |
97 | * For highest performance the L1 NH and L2 polynomial hashes should be | |
25985edc | 98 | * carefully implemented to take advantage of one's target architecture. |
f1939f7c SW |
99 | * Here these two hash functions are defined multiple time; once for |
100 | * 64-bit architectures, once for 32-bit SSE2 architectures, and once | |
101 | * for the rest (32-bit) architectures. | |
102 | * For each, nh_16 *must* be defined (works on multiples of 16 bytes). | |
103 | * Optionally, nh_vmac_nhbytes can be defined (for multiples of | |
104 | * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two | |
105 | * NH computations at once). | |
106 | */ | |
107 | ||
108 | #ifdef CONFIG_64BIT | |
109 | ||
110 | #define nh_16(mp, kp, nw, rh, rl) \ | |
111 | do { \ | |
112 | int i; u64 th, tl; \ | |
113 | rh = rl = 0; \ | |
114 | for (i = 0; i < nw; i += 2) { \ | |
304a204e SW |
115 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
116 | pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ | |
f1939f7c SW |
117 | ADD128(rh, rl, th, tl); \ |
118 | } \ | |
119 | } while (0) | |
120 | ||
121 | #define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \ | |
122 | do { \ | |
123 | int i; u64 th, tl; \ | |
124 | rh1 = rl1 = rh = rl = 0; \ | |
125 | for (i = 0; i < nw; i += 2) { \ | |
304a204e SW |
126 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
127 | pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ | |
f1939f7c | 128 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
129 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \ |
130 | pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \ | |
f1939f7c SW |
131 | ADD128(rh1, rl1, th, tl); \ |
132 | } \ | |
133 | } while (0) | |
134 | ||
135 | #if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */ | |
136 | #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ | |
137 | do { \ | |
138 | int i; u64 th, tl; \ | |
139 | rh = rl = 0; \ | |
140 | for (i = 0; i < nw; i += 8) { \ | |
304a204e SW |
141 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
142 | pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ | |
f1939f7c | 143 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
144 | MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \ |
145 | pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \ | |
f1939f7c | 146 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
147 | MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \ |
148 | pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \ | |
f1939f7c | 149 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
150 | MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \ |
151 | pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \ | |
f1939f7c SW |
152 | ADD128(rh, rl, th, tl); \ |
153 | } \ | |
154 | } while (0) | |
155 | ||
156 | #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \ | |
157 | do { \ | |
158 | int i; u64 th, tl; \ | |
159 | rh1 = rl1 = rh = rl = 0; \ | |
160 | for (i = 0; i < nw; i += 8) { \ | |
304a204e SW |
161 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
162 | pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ | |
f1939f7c | 163 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
164 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \ |
165 | pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \ | |
f1939f7c | 166 | ADD128(rh1, rl1, th, tl); \ |
304a204e SW |
167 | MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \ |
168 | pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \ | |
f1939f7c | 169 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
170 | MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4], \ |
171 | pe64_to_cpup((mp)+i+3)+(kp)[i+5]); \ | |
f1939f7c | 172 | ADD128(rh1, rl1, th, tl); \ |
304a204e SW |
173 | MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \ |
174 | pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \ | |
f1939f7c | 175 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
176 | MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6], \ |
177 | pe64_to_cpup((mp)+i+5)+(kp)[i+7]); \ | |
f1939f7c | 178 | ADD128(rh1, rl1, th, tl); \ |
304a204e SW |
179 | MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \ |
180 | pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \ | |
f1939f7c | 181 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
182 | MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8], \ |
183 | pe64_to_cpup((mp)+i+7)+(kp)[i+9]); \ | |
f1939f7c SW |
184 | ADD128(rh1, rl1, th, tl); \ |
185 | } \ | |
186 | } while (0) | |
187 | #endif | |
188 | ||
189 | #define poly_step(ah, al, kh, kl, mh, ml) \ | |
190 | do { \ | |
191 | u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0; \ | |
192 | /* compute ab*cd, put bd into result registers */ \ | |
193 | PMUL64(t3h, t3l, al, kh); \ | |
194 | PMUL64(t2h, t2l, ah, kl); \ | |
195 | PMUL64(t1h, t1l, ah, 2*kh); \ | |
196 | PMUL64(ah, al, al, kl); \ | |
197 | /* add 2 * ac to result */ \ | |
198 | ADD128(ah, al, t1h, t1l); \ | |
199 | /* add together ad + bc */ \ | |
200 | ADD128(t2h, t2l, t3h, t3l); \ | |
201 | /* now (ah,al), (t2l,2*t2h) need summing */ \ | |
202 | /* first add the high registers, carrying into t2h */ \ | |
203 | ADD128(t2h, ah, z, t2l); \ | |
204 | /* double t2h and add top bit of ah */ \ | |
205 | t2h = 2 * t2h + (ah >> 63); \ | |
206 | ah &= m63; \ | |
207 | /* now add the low registers */ \ | |
208 | ADD128(ah, al, mh, ml); \ | |
209 | ADD128(ah, al, z, t2h); \ | |
210 | } while (0) | |
211 | ||
212 | #else /* ! CONFIG_64BIT */ | |
213 | ||
214 | #ifndef nh_16 | |
215 | #define nh_16(mp, kp, nw, rh, rl) \ | |
216 | do { \ | |
217 | u64 t1, t2, m1, m2, t; \ | |
218 | int i; \ | |
219 | rh = rl = t = 0; \ | |
220 | for (i = 0; i < nw; i += 2) { \ | |
304a204e SW |
221 | t1 = pe64_to_cpup(mp+i) + kp[i]; \ |
222 | t2 = pe64_to_cpup(mp+i+1) + kp[i+1]; \ | |
f1939f7c SW |
223 | m2 = MUL32(t1 >> 32, t2); \ |
224 | m1 = MUL32(t1, t2 >> 32); \ | |
225 | ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32), \ | |
226 | MUL32(t1, t2)); \ | |
227 | rh += (u64)(u32)(m1 >> 32) \ | |
228 | + (u32)(m2 >> 32); \ | |
229 | t += (u64)(u32)m1 + (u32)m2; \ | |
230 | } \ | |
231 | ADD128(rh, rl, (t >> 32), (t << 32)); \ | |
232 | } while (0) | |
233 | #endif | |
234 | ||
235 | static void poly_step_func(u64 *ahi, u64 *alo, | |
236 | const u64 *kh, const u64 *kl, | |
237 | const u64 *mh, const u64 *ml) | |
238 | { | |
239 | #define a0 (*(((u32 *)alo)+INDEX_LOW)) | |
240 | #define a1 (*(((u32 *)alo)+INDEX_HIGH)) | |
241 | #define a2 (*(((u32 *)ahi)+INDEX_LOW)) | |
242 | #define a3 (*(((u32 *)ahi)+INDEX_HIGH)) | |
243 | #define k0 (*(((u32 *)kl)+INDEX_LOW)) | |
244 | #define k1 (*(((u32 *)kl)+INDEX_HIGH)) | |
245 | #define k2 (*(((u32 *)kh)+INDEX_LOW)) | |
246 | #define k3 (*(((u32 *)kh)+INDEX_HIGH)) | |
247 | ||
248 | u64 p, q, t; | |
249 | u32 t2; | |
250 | ||
251 | p = MUL32(a3, k3); | |
252 | p += p; | |
253 | p += *(u64 *)mh; | |
254 | p += MUL32(a0, k2); | |
255 | p += MUL32(a1, k1); | |
256 | p += MUL32(a2, k0); | |
257 | t = (u32)(p); | |
258 | p >>= 32; | |
259 | p += MUL32(a0, k3); | |
260 | p += MUL32(a1, k2); | |
261 | p += MUL32(a2, k1); | |
262 | p += MUL32(a3, k0); | |
263 | t |= ((u64)((u32)p & 0x7fffffff)) << 32; | |
264 | p >>= 31; | |
265 | p += (u64)(((u32 *)ml)[INDEX_LOW]); | |
266 | p += MUL32(a0, k0); | |
267 | q = MUL32(a1, k3); | |
268 | q += MUL32(a2, k2); | |
269 | q += MUL32(a3, k1); | |
270 | q += q; | |
271 | p += q; | |
272 | t2 = (u32)(p); | |
273 | p >>= 32; | |
274 | p += (u64)(((u32 *)ml)[INDEX_HIGH]); | |
275 | p += MUL32(a0, k1); | |
276 | p += MUL32(a1, k0); | |
277 | q = MUL32(a2, k3); | |
278 | q += MUL32(a3, k2); | |
279 | q += q; | |
280 | p += q; | |
281 | *(u64 *)(alo) = (p << 32) | t2; | |
282 | p >>= 32; | |
283 | *(u64 *)(ahi) = p + t; | |
284 | ||
285 | #undef a0 | |
286 | #undef a1 | |
287 | #undef a2 | |
288 | #undef a3 | |
289 | #undef k0 | |
290 | #undef k1 | |
291 | #undef k2 | |
292 | #undef k3 | |
293 | } | |
294 | ||
295 | #define poly_step(ah, al, kh, kl, mh, ml) \ | |
296 | poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml)) | |
297 | ||
298 | #endif /* end of specialized NH and poly definitions */ | |
299 | ||
300 | /* At least nh_16 is defined. Defined others as needed here */ | |
301 | #ifndef nh_16_2 | |
302 | #define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \ | |
303 | do { \ | |
304 | nh_16(mp, kp, nw, rh, rl); \ | |
305 | nh_16(mp, ((kp)+2), nw, rh2, rl2); \ | |
306 | } while (0) | |
307 | #endif | |
308 | #ifndef nh_vmac_nhbytes | |
309 | #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ | |
310 | nh_16(mp, kp, nw, rh, rl) | |
311 | #endif | |
312 | #ifndef nh_vmac_nhbytes_2 | |
313 | #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \ | |
314 | do { \ | |
315 | nh_vmac_nhbytes(mp, kp, nw, rh, rl); \ | |
316 | nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \ | |
317 | } while (0) | |
318 | #endif | |
319 | ||
320 | static void vhash_abort(struct vmac_ctx *ctx) | |
321 | { | |
322 | ctx->polytmp[0] = ctx->polykey[0] ; | |
323 | ctx->polytmp[1] = ctx->polykey[1] ; | |
324 | ctx->first_block_processed = 0; | |
325 | } | |
326 | ||
304a204e | 327 | static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len) |
f1939f7c SW |
328 | { |
329 | u64 rh, rl, t, z = 0; | |
330 | ||
331 | /* fully reduce (p1,p2)+(len,0) mod p127 */ | |
332 | t = p1 >> 63; | |
333 | p1 &= m63; | |
334 | ADD128(p1, p2, len, t); | |
335 | /* At this point, (p1,p2) is at most 2^127+(len<<64) */ | |
336 | t = (p1 > m63) + ((p1 == m63) && (p2 == m64)); | |
337 | ADD128(p1, p2, z, t); | |
338 | p1 &= m63; | |
339 | ||
340 | /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */ | |
341 | t = p1 + (p2 >> 32); | |
342 | t += (t >> 32); | |
343 | t += (u32)t > 0xfffffffeu; | |
344 | p1 += (t >> 32); | |
345 | p2 += (p1 << 32); | |
346 | ||
347 | /* compute (p1+k1)%p64 and (p2+k2)%p64 */ | |
348 | p1 += k1; | |
349 | p1 += (0 - (p1 < k1)) & 257; | |
350 | p2 += k2; | |
351 | p2 += (0 - (p2 < k2)) & 257; | |
352 | ||
353 | /* compute (p1+k1)*(p2+k2)%p64 */ | |
354 | MUL64(rh, rl, p1, p2); | |
355 | t = rh >> 56; | |
356 | ADD128(t, rl, z, rh); | |
357 | rh <<= 8; | |
358 | ADD128(t, rl, z, rh); | |
359 | t += t << 8; | |
360 | rl += t; | |
361 | rl += (0 - (rl < t)) & 257; | |
362 | rl += (0 - (rl > p64-1)) & 257; | |
363 | return rl; | |
364 | } | |
365 | ||
366 | static void vhash_update(const unsigned char *m, | |
367 | unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */ | |
368 | struct vmac_ctx *ctx) | |
369 | { | |
370 | u64 rh, rl, *mptr; | |
371 | const u64 *kptr = (u64 *)ctx->nhkey; | |
372 | int i; | |
373 | u64 ch, cl; | |
374 | u64 pkh = ctx->polykey[0]; | |
375 | u64 pkl = ctx->polykey[1]; | |
376 | ||
377 | mptr = (u64 *)m; | |
378 | i = mbytes / VMAC_NHBYTES; /* Must be non-zero */ | |
379 | ||
380 | ch = ctx->polytmp[0]; | |
381 | cl = ctx->polytmp[1]; | |
382 | ||
383 | if (!ctx->first_block_processed) { | |
384 | ctx->first_block_processed = 1; | |
385 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); | |
386 | rh &= m62; | |
387 | ADD128(ch, cl, rh, rl); | |
388 | mptr += (VMAC_NHBYTES/sizeof(u64)); | |
389 | i--; | |
390 | } | |
391 | ||
392 | while (i--) { | |
393 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); | |
394 | rh &= m62; | |
395 | poly_step(ch, cl, pkh, pkl, rh, rl); | |
396 | mptr += (VMAC_NHBYTES/sizeof(u64)); | |
397 | } | |
398 | ||
399 | ctx->polytmp[0] = ch; | |
400 | ctx->polytmp[1] = cl; | |
401 | } | |
402 | ||
403 | static u64 vhash(unsigned char m[], unsigned int mbytes, | |
404 | u64 *tagl, struct vmac_ctx *ctx) | |
405 | { | |
406 | u64 rh, rl, *mptr; | |
407 | const u64 *kptr = (u64 *)ctx->nhkey; | |
408 | int i, remaining; | |
409 | u64 ch, cl; | |
410 | u64 pkh = ctx->polykey[0]; | |
411 | u64 pkl = ctx->polykey[1]; | |
412 | ||
413 | mptr = (u64 *)m; | |
414 | i = mbytes / VMAC_NHBYTES; | |
415 | remaining = mbytes % VMAC_NHBYTES; | |
416 | ||
417 | if (ctx->first_block_processed) { | |
418 | ch = ctx->polytmp[0]; | |
419 | cl = ctx->polytmp[1]; | |
420 | } else if (i) { | |
421 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, ch, cl); | |
422 | ch &= m62; | |
423 | ADD128(ch, cl, pkh, pkl); | |
424 | mptr += (VMAC_NHBYTES/sizeof(u64)); | |
425 | i--; | |
426 | } else if (remaining) { | |
427 | nh_16(mptr, kptr, 2*((remaining+15)/16), ch, cl); | |
428 | ch &= m62; | |
429 | ADD128(ch, cl, pkh, pkl); | |
430 | mptr += (VMAC_NHBYTES/sizeof(u64)); | |
431 | goto do_l3; | |
432 | } else {/* Empty String */ | |
433 | ch = pkh; cl = pkl; | |
434 | goto do_l3; | |
435 | } | |
436 | ||
437 | while (i--) { | |
438 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); | |
439 | rh &= m62; | |
440 | poly_step(ch, cl, pkh, pkl, rh, rl); | |
441 | mptr += (VMAC_NHBYTES/sizeof(u64)); | |
442 | } | |
443 | if (remaining) { | |
444 | nh_16(mptr, kptr, 2*((remaining+15)/16), rh, rl); | |
445 | rh &= m62; | |
446 | poly_step(ch, cl, pkh, pkl, rh, rl); | |
447 | } | |
448 | ||
449 | do_l3: | |
450 | vhash_abort(ctx); | |
451 | remaining *= 8; | |
452 | return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1], remaining); | |
453 | } | |
454 | ||
455 | static u64 vmac(unsigned char m[], unsigned int mbytes, | |
456 | unsigned char n[16], u64 *tagl, | |
457 | struct vmac_ctx_t *ctx) | |
458 | { | |
459 | u64 *in_n, *out_p; | |
460 | u64 p, h; | |
461 | int i; | |
462 | ||
463 | in_n = ctx->__vmac_ctx.cached_nonce; | |
464 | out_p = ctx->__vmac_ctx.cached_aes; | |
465 | ||
466 | i = n[15] & 1; | |
467 | if ((*(u64 *)(n+8) != in_n[1]) || (*(u64 *)(n) != in_n[0])) { | |
468 | in_n[0] = *(u64 *)(n); | |
469 | in_n[1] = *(u64 *)(n+8); | |
470 | ((unsigned char *)in_n)[15] &= 0xFE; | |
471 | crypto_cipher_encrypt_one(ctx->child, | |
472 | (unsigned char *)out_p, (unsigned char *)in_n); | |
473 | ||
474 | ((unsigned char *)in_n)[15] |= (unsigned char)(1-i); | |
475 | } | |
476 | p = be64_to_cpup(out_p + i); | |
477 | h = vhash(m, mbytes, (u64 *)0, &ctx->__vmac_ctx); | |
304a204e | 478 | return le64_to_cpu(p + h); |
f1939f7c SW |
479 | } |
480 | ||
481 | static int vmac_set_key(unsigned char user_key[], struct vmac_ctx_t *ctx) | |
482 | { | |
483 | u64 in[2] = {0}, out[2]; | |
484 | unsigned i; | |
485 | int err = 0; | |
486 | ||
487 | err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN); | |
488 | if (err) | |
489 | return err; | |
490 | ||
491 | /* Fill nh key */ | |
492 | ((unsigned char *)in)[0] = 0x80; | |
493 | for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i += 2) { | |
494 | crypto_cipher_encrypt_one(ctx->child, | |
495 | (unsigned char *)out, (unsigned char *)in); | |
496 | ctx->__vmac_ctx.nhkey[i] = be64_to_cpup(out); | |
497 | ctx->__vmac_ctx.nhkey[i+1] = be64_to_cpup(out+1); | |
498 | ((unsigned char *)in)[15] += 1; | |
499 | } | |
500 | ||
501 | /* Fill poly key */ | |
502 | ((unsigned char *)in)[0] = 0xC0; | |
503 | in[1] = 0; | |
504 | for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i += 2) { | |
505 | crypto_cipher_encrypt_one(ctx->child, | |
506 | (unsigned char *)out, (unsigned char *)in); | |
507 | ctx->__vmac_ctx.polytmp[i] = | |
508 | ctx->__vmac_ctx.polykey[i] = | |
509 | be64_to_cpup(out) & mpoly; | |
510 | ctx->__vmac_ctx.polytmp[i+1] = | |
511 | ctx->__vmac_ctx.polykey[i+1] = | |
512 | be64_to_cpup(out+1) & mpoly; | |
513 | ((unsigned char *)in)[15] += 1; | |
514 | } | |
515 | ||
516 | /* Fill ip key */ | |
517 | ((unsigned char *)in)[0] = 0xE0; | |
518 | in[1] = 0; | |
519 | for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i += 2) { | |
520 | do { | |
521 | crypto_cipher_encrypt_one(ctx->child, | |
522 | (unsigned char *)out, (unsigned char *)in); | |
523 | ctx->__vmac_ctx.l3key[i] = be64_to_cpup(out); | |
524 | ctx->__vmac_ctx.l3key[i+1] = be64_to_cpup(out+1); | |
525 | ((unsigned char *)in)[15] += 1; | |
526 | } while (ctx->__vmac_ctx.l3key[i] >= p64 | |
527 | || ctx->__vmac_ctx.l3key[i+1] >= p64); | |
528 | } | |
529 | ||
530 | /* Invalidate nonce/aes cache and reset other elements */ | |
531 | ctx->__vmac_ctx.cached_nonce[0] = (u64)-1; /* Ensure illegal nonce */ | |
532 | ctx->__vmac_ctx.cached_nonce[1] = (u64)0; /* Ensure illegal nonce */ | |
533 | ctx->__vmac_ctx.first_block_processed = 0; | |
534 | ||
535 | return err; | |
536 | } | |
537 | ||
538 | static int vmac_setkey(struct crypto_shash *parent, | |
539 | const u8 *key, unsigned int keylen) | |
540 | { | |
541 | struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); | |
542 | ||
543 | if (keylen != VMAC_KEY_LEN) { | |
544 | crypto_shash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN); | |
545 | return -EINVAL; | |
546 | } | |
547 | ||
548 | return vmac_set_key((u8 *)key, ctx); | |
549 | } | |
550 | ||
551 | static int vmac_init(struct shash_desc *pdesc) | |
552 | { | |
f1939f7c SW |
553 | return 0; |
554 | } | |
555 | ||
556 | static int vmac_update(struct shash_desc *pdesc, const u8 *p, | |
557 | unsigned int len) | |
558 | { | |
559 | struct crypto_shash *parent = pdesc->tfm; | |
560 | struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); | |
561 | ||
562 | vhash_update(p, len, &ctx->__vmac_ctx); | |
563 | ||
564 | return 0; | |
565 | } | |
566 | ||
567 | static int vmac_final(struct shash_desc *pdesc, u8 *out) | |
568 | { | |
569 | struct crypto_shash *parent = pdesc->tfm; | |
570 | struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); | |
571 | vmac_t mac; | |
572 | u8 nonce[16] = {}; | |
573 | ||
574 | mac = vmac(NULL, 0, nonce, NULL, ctx); | |
575 | memcpy(out, &mac, sizeof(vmac_t)); | |
576 | memset(&mac, 0, sizeof(vmac_t)); | |
577 | memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx)); | |
578 | return 0; | |
579 | } | |
580 | ||
581 | static int vmac_init_tfm(struct crypto_tfm *tfm) | |
582 | { | |
583 | struct crypto_cipher *cipher; | |
584 | struct crypto_instance *inst = (void *)tfm->__crt_alg; | |
585 | struct crypto_spawn *spawn = crypto_instance_ctx(inst); | |
586 | struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); | |
587 | ||
588 | cipher = crypto_spawn_cipher(spawn); | |
589 | if (IS_ERR(cipher)) | |
590 | return PTR_ERR(cipher); | |
591 | ||
592 | ctx->child = cipher; | |
593 | return 0; | |
594 | } | |
595 | ||
596 | static void vmac_exit_tfm(struct crypto_tfm *tfm) | |
597 | { | |
598 | struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); | |
599 | crypto_free_cipher(ctx->child); | |
600 | } | |
601 | ||
602 | static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb) | |
603 | { | |
604 | struct shash_instance *inst; | |
605 | struct crypto_alg *alg; | |
606 | int err; | |
607 | ||
608 | err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH); | |
609 | if (err) | |
610 | return err; | |
611 | ||
612 | alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, | |
613 | CRYPTO_ALG_TYPE_MASK); | |
614 | if (IS_ERR(alg)) | |
615 | return PTR_ERR(alg); | |
616 | ||
617 | inst = shash_alloc_instance("vmac", alg); | |
618 | err = PTR_ERR(inst); | |
619 | if (IS_ERR(inst)) | |
620 | goto out_put_alg; | |
621 | ||
622 | err = crypto_init_spawn(shash_instance_ctx(inst), alg, | |
623 | shash_crypto_instance(inst), | |
624 | CRYPTO_ALG_TYPE_MASK); | |
625 | if (err) | |
626 | goto out_free_inst; | |
627 | ||
628 | inst->alg.base.cra_priority = alg->cra_priority; | |
629 | inst->alg.base.cra_blocksize = alg->cra_blocksize; | |
630 | inst->alg.base.cra_alignmask = alg->cra_alignmask; | |
631 | ||
632 | inst->alg.digestsize = sizeof(vmac_t); | |
633 | inst->alg.base.cra_ctxsize = sizeof(struct vmac_ctx_t); | |
634 | inst->alg.base.cra_init = vmac_init_tfm; | |
635 | inst->alg.base.cra_exit = vmac_exit_tfm; | |
636 | ||
637 | inst->alg.init = vmac_init; | |
638 | inst->alg.update = vmac_update; | |
639 | inst->alg.final = vmac_final; | |
640 | inst->alg.setkey = vmac_setkey; | |
641 | ||
642 | err = shash_register_instance(tmpl, inst); | |
643 | if (err) { | |
644 | out_free_inst: | |
645 | shash_free_instance(shash_crypto_instance(inst)); | |
646 | } | |
647 | ||
648 | out_put_alg: | |
649 | crypto_mod_put(alg); | |
650 | return err; | |
651 | } | |
652 | ||
653 | static struct crypto_template vmac_tmpl = { | |
654 | .name = "vmac", | |
655 | .create = vmac_create, | |
656 | .free = shash_free_instance, | |
657 | .module = THIS_MODULE, | |
658 | }; | |
659 | ||
660 | static int __init vmac_module_init(void) | |
661 | { | |
662 | return crypto_register_template(&vmac_tmpl); | |
663 | } | |
664 | ||
665 | static void __exit vmac_module_exit(void) | |
666 | { | |
667 | crypto_unregister_template(&vmac_tmpl); | |
668 | } | |
669 | ||
670 | module_init(vmac_module_init); | |
671 | module_exit(vmac_module_exit); | |
672 | ||
673 | MODULE_LICENSE("GPL"); | |
674 | MODULE_DESCRIPTION("VMAC hash algorithm"); | |
675 |