Merge tag 'v6.10-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux-block.git] / crypto / ecc.c
CommitLineData
3c4b2390 1/*
0d7a7864
VC
2 * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved.
3 * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org>
3c4b2390
SB
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
14bb7676 27#include <crypto/ecc_curve.h>
4a2289da 28#include <linux/module.h>
3c4b2390
SB
29#include <linux/random.h>
30#include <linux/slab.h>
31#include <linux/swab.h>
32#include <linux/fips.h>
33#include <crypto/ecdh.h>
6755fd26 34#include <crypto/rng.h>
a745d3ac 35#include <crypto/internal/ecc.h>
0d7a7864
VC
36#include <asm/unaligned.h>
37#include <linux/ratelimit.h>
3c4b2390 38
3c4b2390
SB
39#include "ecc_curve_defs.h"
40
41typedef struct {
42 u64 m_low;
43 u64 m_high;
44} uint128_t;
45
8fb9340e
MY
46/* Returns curv25519 curve param */
47const struct ecc_curve *ecc_get_curve25519(void)
48{
49 return &ecc_25519;
50}
51EXPORT_SYMBOL(ecc_get_curve25519);
14bb7676
MY
52
53const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
3c4b2390
SB
54{
55 switch (curve_id) {
56 /* In FIPS mode only allow P256 and higher */
57 case ECC_CURVE_NIST_P192:
58 return fips_enabled ? NULL : &nist_p192;
59 case ECC_CURVE_NIST_P256:
60 return &nist_p256;
703c748d
SA
61 case ECC_CURVE_NIST_P384:
62 return &nist_p384;
288b46c5
SB
63 case ECC_CURVE_NIST_P521:
64 return &nist_p521;
3c4b2390
SB
65 default:
66 return NULL;
67 }
68}
14bb7676 69EXPORT_SYMBOL(ecc_get_curve);
3c4b2390
SB
70
71static u64 *ecc_alloc_digits_space(unsigned int ndigits)
72{
73 size_t len = ndigits * sizeof(u64);
74
75 if (!len)
76 return NULL;
77
78 return kmalloc(len, GFP_KERNEL);
79}
80
81static void ecc_free_digits_space(u64 *space)
82{
453431a5 83 kfree_sensitive(space);
3c4b2390
SB
84}
85
eaffe377 86struct ecc_point *ecc_alloc_point(unsigned int ndigits)
3c4b2390
SB
87{
88 struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
89
90 if (!p)
91 return NULL;
92
93 p->x = ecc_alloc_digits_space(ndigits);
94 if (!p->x)
95 goto err_alloc_x;
96
97 p->y = ecc_alloc_digits_space(ndigits);
98 if (!p->y)
99 goto err_alloc_y;
100
101 p->ndigits = ndigits;
102
103 return p;
104
105err_alloc_y:
106 ecc_free_digits_space(p->x);
107err_alloc_x:
108 kfree(p);
109 return NULL;
110}
eaffe377 111EXPORT_SYMBOL(ecc_alloc_point);
3c4b2390 112
eaffe377 113void ecc_free_point(struct ecc_point *p)
3c4b2390
SB
114{
115 if (!p)
116 return;
117
453431a5
WL
118 kfree_sensitive(p->x);
119 kfree_sensitive(p->y);
120 kfree_sensitive(p);
3c4b2390 121}
eaffe377 122EXPORT_SYMBOL(ecc_free_point);
3c4b2390
SB
123
124static void vli_clear(u64 *vli, unsigned int ndigits)
125{
126 int i;
127
128 for (i = 0; i < ndigits; i++)
129 vli[i] = 0;
130}
131
132/* Returns true if vli == 0, false otherwise. */
4a2289da 133bool vli_is_zero(const u64 *vli, unsigned int ndigits)
3c4b2390
SB
134{
135 int i;
136
137 for (i = 0; i < ndigits; i++) {
138 if (vli[i])
139 return false;
140 }
141
142 return true;
143}
4a2289da 144EXPORT_SYMBOL(vli_is_zero);
3c4b2390 145
0193b32f 146/* Returns nonzero if bit of vli is set. */
3c4b2390
SB
147static u64 vli_test_bit(const u64 *vli, unsigned int bit)
148{
149 return (vli[bit / 64] & ((u64)1 << (bit % 64)));
150}
151
0d7a7864
VC
152static bool vli_is_negative(const u64 *vli, unsigned int ndigits)
153{
154 return vli_test_bit(vli, ndigits * 64 - 1);
155}
156
3c4b2390
SB
157/* Counts the number of 64-bit "digits" in vli. */
158static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
159{
160 int i;
161
162 /* Search from the end until we find a non-zero digit.
163 * We do it in reverse because we expect that most digits will
164 * be nonzero.
165 */
166 for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
167
168 return (i + 1);
169}
170
171/* Counts the number of bits required for vli. */
eaffe377 172unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
3c4b2390
SB
173{
174 unsigned int i, num_digits;
175 u64 digit;
176
177 num_digits = vli_num_digits(vli, ndigits);
178 if (num_digits == 0)
179 return 0;
180
181 digit = vli[num_digits - 1];
182 for (i = 0; digit; i++)
183 digit >>= 1;
184
185 return ((num_digits - 1) * 64 + i);
186}
eaffe377 187EXPORT_SYMBOL(vli_num_bits);
3c4b2390 188
0d7a7864
VC
189/* Set dest from unaligned bit string src. */
190void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits)
191{
192 int i;
193 const u64 *from = src;
194
195 for (i = 0; i < ndigits; i++)
196 dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]);
197}
198EXPORT_SYMBOL(vli_from_be64);
199
200void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits)
201{
202 int i;
203 const u64 *from = src;
204
205 for (i = 0; i < ndigits; i++)
206 dest[i] = get_unaligned_le64(&from[i]);
207}
208EXPORT_SYMBOL(vli_from_le64);
209
3c4b2390
SB
210/* Sets dest = src. */
211static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
212{
213 int i;
214
215 for (i = 0; i < ndigits; i++)
216 dest[i] = src[i];
217}
218
219/* Returns sign of left - right. */
4a2289da 220int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
3c4b2390
SB
221{
222 int i;
223
224 for (i = ndigits - 1; i >= 0; i--) {
225 if (left[i] > right[i])
226 return 1;
227 else if (left[i] < right[i])
228 return -1;
229 }
230
231 return 0;
232}
4a2289da 233EXPORT_SYMBOL(vli_cmp);
3c4b2390
SB
234
235/* Computes result = in << c, returning carry. Can modify in place
236 * (if result == in). 0 < shift < 64.
237 */
238static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
239 unsigned int ndigits)
240{
241 u64 carry = 0;
242 int i;
243
244 for (i = 0; i < ndigits; i++) {
245 u64 temp = in[i];
246
247 result[i] = (temp << shift) | carry;
248 carry = temp >> (64 - shift);
249 }
250
251 return carry;
252}
253
254/* Computes vli = vli >> 1. */
255static void vli_rshift1(u64 *vli, unsigned int ndigits)
256{
257 u64 *end = vli;
258 u64 carry = 0;
259
260 vli += ndigits;
261
262 while (vli-- > end) {
263 u64 temp = *vli;
264 *vli = (temp >> 1) | carry;
265 carry = temp << 63;
266 }
267}
268
269/* Computes result = left + right, returning carry. Can modify in place. */
270static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
271 unsigned int ndigits)
272{
273 u64 carry = 0;
274 int i;
275
276 for (i = 0; i < ndigits; i++) {
277 u64 sum;
278
279 sum = left[i] + right[i] + carry;
280 if (sum != left[i])
281 carry = (sum < left[i]);
282
283 result[i] = sum;
284 }
285
286 return carry;
287}
288
0d7a7864
VC
289/* Computes result = left + right, returning carry. Can modify in place. */
290static u64 vli_uadd(u64 *result, const u64 *left, u64 right,
291 unsigned int ndigits)
292{
293 u64 carry = right;
294 int i;
295
296 for (i = 0; i < ndigits; i++) {
297 u64 sum;
298
299 sum = left[i] + carry;
300 if (sum != left[i])
301 carry = (sum < left[i]);
302 else
303 carry = !!carry;
304
305 result[i] = sum;
306 }
307
308 return carry;
309}
310
3c4b2390 311/* Computes result = left - right, returning borrow. Can modify in place. */
4a2289da 312u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
3c4b2390
SB
313 unsigned int ndigits)
314{
315 u64 borrow = 0;
316 int i;
317
318 for (i = 0; i < ndigits; i++) {
319 u64 diff;
320
321 diff = left[i] - right[i] - borrow;
322 if (diff != left[i])
323 borrow = (diff > left[i]);
324
325 result[i] = diff;
326 }
327
328 return borrow;
329}
4a2289da 330EXPORT_SYMBOL(vli_sub);
3c4b2390 331
0d7a7864
VC
332/* Computes result = left - right, returning borrow. Can modify in place. */
333static u64 vli_usub(u64 *result, const u64 *left, u64 right,
334 unsigned int ndigits)
335{
336 u64 borrow = right;
337 int i;
338
339 for (i = 0; i < ndigits; i++) {
340 u64 diff;
341
342 diff = left[i] - borrow;
343 if (diff != left[i])
344 borrow = (diff > left[i]);
345
346 result[i] = diff;
347 }
348
349 return borrow;
350}
351
3c4b2390
SB
352static uint128_t mul_64_64(u64 left, u64 right)
353{
0d7a7864 354 uint128_t result;
c12d3362 355#if defined(CONFIG_ARCH_SUPPORTS_INT128)
0d7a7864
VC
356 unsigned __int128 m = (unsigned __int128)left * right;
357
358 result.m_low = m;
359 result.m_high = m >> 64;
360#else
3c4b2390
SB
361 u64 a0 = left & 0xffffffffull;
362 u64 a1 = left >> 32;
363 u64 b0 = right & 0xffffffffull;
364 u64 b1 = right >> 32;
365 u64 m0 = a0 * b0;
366 u64 m1 = a0 * b1;
367 u64 m2 = a1 * b0;
368 u64 m3 = a1 * b1;
3c4b2390
SB
369
370 m2 += (m0 >> 32);
371 m2 += m1;
372
373 /* Overflow */
374 if (m2 < m1)
375 m3 += 0x100000000ull;
376
377 result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
378 result.m_high = m3 + (m2 >> 32);
0d7a7864 379#endif
3c4b2390
SB
380 return result;
381}
382
383static uint128_t add_128_128(uint128_t a, uint128_t b)
384{
385 uint128_t result;
386
387 result.m_low = a.m_low + b.m_low;
388 result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
389
390 return result;
391}
392
393static void vli_mult(u64 *result, const u64 *left, const u64 *right,
394 unsigned int ndigits)
395{
396 uint128_t r01 = { 0, 0 };
397 u64 r2 = 0;
398 unsigned int i, k;
399
400 /* Compute each digit of result in sequence, maintaining the
401 * carries.
402 */
403 for (k = 0; k < ndigits * 2 - 1; k++) {
404 unsigned int min;
405
406 if (k < ndigits)
407 min = 0;
408 else
409 min = (k + 1) - ndigits;
410
411 for (i = min; i <= k && i < ndigits; i++) {
412 uint128_t product;
413
414 product = mul_64_64(left[i], right[k - i]);
415
416 r01 = add_128_128(r01, product);
417 r2 += (r01.m_high < product.m_high);
418 }
419
420 result[k] = r01.m_low;
421 r01.m_low = r01.m_high;
422 r01.m_high = r2;
423 r2 = 0;
424 }
425
426 result[ndigits * 2 - 1] = r01.m_low;
427}
428
0d7a7864
VC
429/* Compute product = left * right, for a small right value. */
430static void vli_umult(u64 *result, const u64 *left, u32 right,
431 unsigned int ndigits)
432{
433 uint128_t r01 = { 0 };
434 unsigned int k;
435
436 for (k = 0; k < ndigits; k++) {
437 uint128_t product;
438
439 product = mul_64_64(left[k], right);
440 r01 = add_128_128(r01, product);
441 /* no carry */
442 result[k] = r01.m_low;
443 r01.m_low = r01.m_high;
444 r01.m_high = 0;
445 }
446 result[k] = r01.m_low;
447 for (++k; k < ndigits * 2; k++)
448 result[k] = 0;
449}
450
3c4b2390
SB
451static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
452{
453 uint128_t r01 = { 0, 0 };
454 u64 r2 = 0;
455 int i, k;
456
457 for (k = 0; k < ndigits * 2 - 1; k++) {
458 unsigned int min;
459
460 if (k < ndigits)
461 min = 0;
462 else
463 min = (k + 1) - ndigits;
464
465 for (i = min; i <= k && i <= k - i; i++) {
466 uint128_t product;
467
468 product = mul_64_64(left[i], left[k - i]);
469
470 if (i < k - i) {
471 r2 += product.m_high >> 63;
472 product.m_high = (product.m_high << 1) |
473 (product.m_low >> 63);
474 product.m_low <<= 1;
475 }
476
477 r01 = add_128_128(r01, product);
478 r2 += (r01.m_high < product.m_high);
479 }
480
481 result[k] = r01.m_low;
482 r01.m_low = r01.m_high;
483 r01.m_high = r2;
484 r2 = 0;
485 }
486
487 result[ndigits * 2 - 1] = r01.m_low;
488}
489
490/* Computes result = (left + right) % mod.
491 * Assumes that left < mod and right < mod, result != mod.
492 */
493static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
494 const u64 *mod, unsigned int ndigits)
495{
496 u64 carry;
497
498 carry = vli_add(result, left, right, ndigits);
499
500 /* result > mod (result = mod + remainder), so subtract mod to
501 * get remainder.
502 */
503 if (carry || vli_cmp(result, mod, ndigits) >= 0)
504 vli_sub(result, result, mod, ndigits);
505}
506
507/* Computes result = (left - right) % mod.
508 * Assumes that left < mod and right < mod, result != mod.
509 */
510static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
511 const u64 *mod, unsigned int ndigits)
512{
513 u64 borrow = vli_sub(result, left, right, ndigits);
514
515 /* In this case, p_result == -diff == (max int) - diff.
516 * Since -x % d == d - x, we can get the correct result from
517 * result + mod (with overflow).
518 */
519 if (borrow)
520 vli_add(result, result, mod, ndigits);
521}
522
0d7a7864
VC
523/*
524 * Computes result = product % mod
525 * for special form moduli: p = 2^k-c, for small c (note the minus sign)
526 *
527 * References:
528 * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective.
529 * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form
530 * Algorithm 9.2.13 (Fast mod operation for special-form moduli).
531 */
532static void vli_mmod_special(u64 *result, const u64 *product,
533 const u64 *mod, unsigned int ndigits)
534{
535 u64 c = -mod[0];
536 u64 t[ECC_MAX_DIGITS * 2];
537 u64 r[ECC_MAX_DIGITS * 2];
538
539 vli_set(r, product, ndigits * 2);
540 while (!vli_is_zero(r + ndigits, ndigits)) {
541 vli_umult(t, r + ndigits, c, ndigits);
542 vli_clear(r + ndigits, ndigits);
543 vli_add(r, r, t, ndigits * 2);
544 }
545 vli_set(t, mod, ndigits);
546 vli_clear(t + ndigits, ndigits);
547 while (vli_cmp(r, t, ndigits * 2) >= 0)
548 vli_sub(r, r, t, ndigits * 2);
549 vli_set(result, r, ndigits);
550}
551
552/*
553 * Computes result = product % mod
554 * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign)
555 * where k-1 does not fit into qword boundary by -1 bit (such as 255).
556
557 * References (loosely based on):
558 * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography.
559 * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47.
560 * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf
561 *
562 * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren.
563 * Handbook of Elliptic and Hyperelliptic Curve Cryptography.
564 * Algorithm 10.25 Fast reduction for special form moduli
565 */
566static void vli_mmod_special2(u64 *result, const u64 *product,
567 const u64 *mod, unsigned int ndigits)
568{
569 u64 c2 = mod[0] * 2;
570 u64 q[ECC_MAX_DIGITS];
571 u64 r[ECC_MAX_DIGITS * 2];
572 u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */
573 int carry; /* last bit that doesn't fit into q */
574 int i;
575
576 vli_set(m, mod, ndigits);
577 vli_clear(m + ndigits, ndigits);
578
579 vli_set(r, product, ndigits);
580 /* q and carry are top bits */
581 vli_set(q, product + ndigits, ndigits);
582 vli_clear(r + ndigits, ndigits);
583 carry = vli_is_negative(r, ndigits);
584 if (carry)
585 r[ndigits - 1] &= (1ull << 63) - 1;
586 for (i = 1; carry || !vli_is_zero(q, ndigits); i++) {
587 u64 qc[ECC_MAX_DIGITS * 2];
588
589 vli_umult(qc, q, c2, ndigits);
590 if (carry)
591 vli_uadd(qc, qc, mod[0], ndigits * 2);
592 vli_set(q, qc + ndigits, ndigits);
593 vli_clear(qc + ndigits, ndigits);
594 carry = vli_is_negative(qc, ndigits);
595 if (carry)
596 qc[ndigits - 1] &= (1ull << 63) - 1;
597 if (i & 1)
598 vli_sub(r, r, qc, ndigits * 2);
599 else
600 vli_add(r, r, qc, ndigits * 2);
601 }
602 while (vli_is_negative(r, ndigits * 2))
603 vli_add(r, r, m, ndigits * 2);
604 while (vli_cmp(r, m, ndigits * 2) >= 0)
605 vli_sub(r, r, m, ndigits * 2);
606
607 vli_set(result, r, ndigits);
608}
609
610/*
611 * Computes result = product % mod, where product is 2N words long.
612 * Reference: Ken MacKay's micro-ecc.
613 * Currently only designed to work for curve_p or curve_n.
614 */
615static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod,
616 unsigned int ndigits)
617{
618 u64 mod_m[2 * ECC_MAX_DIGITS];
619 u64 tmp[2 * ECC_MAX_DIGITS];
620 u64 *v[2] = { tmp, product };
621 u64 carry = 0;
622 unsigned int i;
623 /* Shift mod so its highest set bit is at the maximum position. */
624 int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits);
625 int word_shift = shift / 64;
626 int bit_shift = shift % 64;
627
628 vli_clear(mod_m, word_shift);
629 if (bit_shift > 0) {
630 for (i = 0; i < ndigits; ++i) {
631 mod_m[word_shift + i] = (mod[i] << bit_shift) | carry;
632 carry = mod[i] >> (64 - bit_shift);
633 }
634 } else
635 vli_set(mod_m + word_shift, mod, ndigits);
636
637 for (i = 1; shift >= 0; --shift) {
638 u64 borrow = 0;
639 unsigned int j;
640
641 for (j = 0; j < ndigits * 2; ++j) {
642 u64 diff = v[i][j] - mod_m[j] - borrow;
643
644 if (diff != v[i][j])
645 borrow = (diff > v[i][j]);
646 v[1 - i][j] = diff;
647 }
648 i = !(i ^ borrow); /* Swap the index if there was no borrow */
649 vli_rshift1(mod_m, ndigits);
650 mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1);
651 vli_rshift1(mod_m + ndigits, ndigits);
652 }
653 vli_set(result, v[i], ndigits);
654}
655
656/* Computes result = product % mod using Barrett's reduction with precomputed
657 * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have
658 * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits
659 * boundary.
660 *
661 * Reference:
662 * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010.
663 * 2.4.1 Barrett's algorithm. Algorithm 2.5.
664 */
665static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod,
666 unsigned int ndigits)
667{
668 u64 q[ECC_MAX_DIGITS * 2];
669 u64 r[ECC_MAX_DIGITS * 2];
670 const u64 *mu = mod + ndigits;
671
672 vli_mult(q, product + ndigits, mu, ndigits);
673 if (mu[ndigits])
674 vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits);
675 vli_mult(r, mod, q + ndigits, ndigits);
676 vli_sub(r, product, r, ndigits * 2);
677 while (!vli_is_zero(r + ndigits, ndigits) ||
678 vli_cmp(r, mod, ndigits) != -1) {
679 u64 carry;
680
681 carry = vli_sub(r, r, mod, ndigits);
682 vli_usub(r + ndigits, r + ndigits, carry, ndigits);
683 }
684 vli_set(result, r, ndigits);
685}
686
3c4b2390
SB
687/* Computes p_result = p_product % curve_p.
688 * See algorithm 5 and 6 from
689 * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
690 */
691static void vli_mmod_fast_192(u64 *result, const u64 *product,
692 const u64 *curve_prime, u64 *tmp)
693{
526d23fc 694 const unsigned int ndigits = ECC_CURVE_NIST_P192_DIGITS;
3c4b2390
SB
695 int carry;
696
697 vli_set(result, product, ndigits);
698
699 vli_set(tmp, &product[3], ndigits);
700 carry = vli_add(result, result, tmp, ndigits);
701
702 tmp[0] = 0;
703 tmp[1] = product[3];
704 tmp[2] = product[4];
705 carry += vli_add(result, result, tmp, ndigits);
706
707 tmp[0] = tmp[1] = product[5];
708 tmp[2] = 0;
709 carry += vli_add(result, result, tmp, ndigits);
710
711 while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
712 carry -= vli_sub(result, result, curve_prime, ndigits);
713}
714
715/* Computes result = product % curve_prime
716 * from http://www.nsa.gov/ia/_files/nist-routines.pdf
717 */
718static void vli_mmod_fast_256(u64 *result, const u64 *product,
719 const u64 *curve_prime, u64 *tmp)
720{
721 int carry;
526d23fc 722 const unsigned int ndigits = ECC_CURVE_NIST_P256_DIGITS;
3c4b2390
SB
723
724 /* t */
725 vli_set(result, product, ndigits);
726
727 /* s1 */
728 tmp[0] = 0;
729 tmp[1] = product[5] & 0xffffffff00000000ull;
730 tmp[2] = product[6];
731 tmp[3] = product[7];
732 carry = vli_lshift(tmp, tmp, 1, ndigits);
733 carry += vli_add(result, result, tmp, ndigits);
734
735 /* s2 */
736 tmp[1] = product[6] << 32;
737 tmp[2] = (product[6] >> 32) | (product[7] << 32);
738 tmp[3] = product[7] >> 32;
739 carry += vli_lshift(tmp, tmp, 1, ndigits);
740 carry += vli_add(result, result, tmp, ndigits);
741
742 /* s3 */
743 tmp[0] = product[4];
744 tmp[1] = product[5] & 0xffffffff;
745 tmp[2] = 0;
746 tmp[3] = product[7];
747 carry += vli_add(result, result, tmp, ndigits);
748
749 /* s4 */
750 tmp[0] = (product[4] >> 32) | (product[5] << 32);
751 tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
752 tmp[2] = product[7];
753 tmp[3] = (product[6] >> 32) | (product[4] << 32);
754 carry += vli_add(result, result, tmp, ndigits);
755
756 /* d1 */
757 tmp[0] = (product[5] >> 32) | (product[6] << 32);
758 tmp[1] = (product[6] >> 32);
759 tmp[2] = 0;
760 tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
761 carry -= vli_sub(result, result, tmp, ndigits);
762
763 /* d2 */
764 tmp[0] = product[6];
765 tmp[1] = product[7];
766 tmp[2] = 0;
767 tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
768 carry -= vli_sub(result, result, tmp, ndigits);
769
770 /* d3 */
771 tmp[0] = (product[6] >> 32) | (product[7] << 32);
772 tmp[1] = (product[7] >> 32) | (product[4] << 32);
773 tmp[2] = (product[4] >> 32) | (product[5] << 32);
774 tmp[3] = (product[6] << 32);
775 carry -= vli_sub(result, result, tmp, ndigits);
776
777 /* d4 */
778 tmp[0] = product[7];
779 tmp[1] = product[4] & 0xffffffff00000000ull;
780 tmp[2] = product[5];
781 tmp[3] = product[6] & 0xffffffff00000000ull;
782 carry -= vli_sub(result, result, tmp, ndigits);
783
784 if (carry < 0) {
785 do {
786 carry += vli_add(result, result, curve_prime, ndigits);
787 } while (carry < 0);
788 } else {
789 while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
790 carry -= vli_sub(result, result, curve_prime, ndigits);
791 }
792}
793
149ca161
SA
794#define SL32OR32(x32, y32) (((u64)x32 << 32) | y32)
795#define AND64H(x64) (x64 & 0xffFFffFF00000000ull)
796#define AND64L(x64) (x64 & 0x00000000ffFFffFFull)
797
798/* Computes result = product % curve_prime
799 * from "Mathematical routines for the NIST prime elliptic curves"
800 */
801static void vli_mmod_fast_384(u64 *result, const u64 *product,
802 const u64 *curve_prime, u64 *tmp)
803{
804 int carry;
526d23fc 805 const unsigned int ndigits = ECC_CURVE_NIST_P384_DIGITS;
149ca161
SA
806
807 /* t */
808 vli_set(result, product, ndigits);
809
810 /* s1 */
811 tmp[0] = 0; // 0 || 0
812 tmp[1] = 0; // 0 || 0
813 tmp[2] = SL32OR32(product[11], (product[10]>>32)); //a22||a21
814 tmp[3] = product[11]>>32; // 0 ||a23
815 tmp[4] = 0; // 0 || 0
816 tmp[5] = 0; // 0 || 0
817 carry = vli_lshift(tmp, tmp, 1, ndigits);
818 carry += vli_add(result, result, tmp, ndigits);
819
820 /* s2 */
821 tmp[0] = product[6]; //a13||a12
822 tmp[1] = product[7]; //a15||a14
823 tmp[2] = product[8]; //a17||a16
824 tmp[3] = product[9]; //a19||a18
825 tmp[4] = product[10]; //a21||a20
826 tmp[5] = product[11]; //a23||a22
827 carry += vli_add(result, result, tmp, ndigits);
828
829 /* s3 */
830 tmp[0] = SL32OR32(product[11], (product[10]>>32)); //a22||a21
831 tmp[1] = SL32OR32(product[6], (product[11]>>32)); //a12||a23
832 tmp[2] = SL32OR32(product[7], (product[6])>>32); //a14||a13
833 tmp[3] = SL32OR32(product[8], (product[7]>>32)); //a16||a15
834 tmp[4] = SL32OR32(product[9], (product[8]>>32)); //a18||a17
835 tmp[5] = SL32OR32(product[10], (product[9]>>32)); //a20||a19
836 carry += vli_add(result, result, tmp, ndigits);
837
838 /* s4 */
839 tmp[0] = AND64H(product[11]); //a23|| 0
840 tmp[1] = (product[10]<<32); //a20|| 0
841 tmp[2] = product[6]; //a13||a12
842 tmp[3] = product[7]; //a15||a14
843 tmp[4] = product[8]; //a17||a16
844 tmp[5] = product[9]; //a19||a18
845 carry += vli_add(result, result, tmp, ndigits);
846
847 /* s5 */
848 tmp[0] = 0; // 0|| 0
849 tmp[1] = 0; // 0|| 0
850 tmp[2] = product[10]; //a21||a20
851 tmp[3] = product[11]; //a23||a22
852 tmp[4] = 0; // 0|| 0
853 tmp[5] = 0; // 0|| 0
854 carry += vli_add(result, result, tmp, ndigits);
855
856 /* s6 */
857 tmp[0] = AND64L(product[10]); // 0 ||a20
858 tmp[1] = AND64H(product[10]); //a21|| 0
859 tmp[2] = product[11]; //a23||a22
860 tmp[3] = 0; // 0 || 0
861 tmp[4] = 0; // 0 || 0
862 tmp[5] = 0; // 0 || 0
863 carry += vli_add(result, result, tmp, ndigits);
864
865 /* d1 */
866 tmp[0] = SL32OR32(product[6], (product[11]>>32)); //a12||a23
867 tmp[1] = SL32OR32(product[7], (product[6]>>32)); //a14||a13
868 tmp[2] = SL32OR32(product[8], (product[7]>>32)); //a16||a15
869 tmp[3] = SL32OR32(product[9], (product[8]>>32)); //a18||a17
870 tmp[4] = SL32OR32(product[10], (product[9]>>32)); //a20||a19
871 tmp[5] = SL32OR32(product[11], (product[10]>>32)); //a22||a21
872 carry -= vli_sub(result, result, tmp, ndigits);
873
874 /* d2 */
875 tmp[0] = (product[10]<<32); //a20|| 0
876 tmp[1] = SL32OR32(product[11], (product[10]>>32)); //a22||a21
877 tmp[2] = (product[11]>>32); // 0 ||a23
878 tmp[3] = 0; // 0 || 0
879 tmp[4] = 0; // 0 || 0
880 tmp[5] = 0; // 0 || 0
881 carry -= vli_sub(result, result, tmp, ndigits);
882
883 /* d3 */
884 tmp[0] = 0; // 0 || 0
885 tmp[1] = AND64H(product[11]); //a23|| 0
886 tmp[2] = product[11]>>32; // 0 ||a23
887 tmp[3] = 0; // 0 || 0
888 tmp[4] = 0; // 0 || 0
889 tmp[5] = 0; // 0 || 0
890 carry -= vli_sub(result, result, tmp, ndigits);
891
892 if (carry < 0) {
893 do {
894 carry += vli_add(result, result, curve_prime, ndigits);
895 } while (carry < 0);
896 } else {
897 while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
898 carry -= vli_sub(result, result, curve_prime, ndigits);
899 }
900
901}
902
903#undef SL32OR32
904#undef AND64H
905#undef AND64L
906
e7fb0627
SB
907/*
908 * Computes result = product % curve_prime
909 * from "Recommendations for Discrete Logarithm-Based Cryptography:
910 * Elliptic Curve Domain Parameters" section G.1.4
911 */
912static void vli_mmod_fast_521(u64 *result, const u64 *product,
913 const u64 *curve_prime, u64 *tmp)
914{
915 const unsigned int ndigits = ECC_CURVE_NIST_P521_DIGITS;
916 size_t i;
917
918 /* Initialize result with lowest 521 bits from product */
919 vli_set(result, product, ndigits);
920 result[8] &= 0x1ff;
921
922 for (i = 0; i < ndigits; i++)
923 tmp[i] = (product[8 + i] >> 9) | (product[9 + i] << 55);
924 tmp[8] &= 0x1ff;
925
926 vli_mod_add(result, result, tmp, curve_prime, ndigits);
927}
928
0d7a7864
VC
929/* Computes result = product % curve_prime for different curve_primes.
930 *
931 * Note that curve_primes are distinguished just by heuristic check and
932 * not by complete conformance check.
933 */
3c4b2390 934static bool vli_mmod_fast(u64 *result, u64 *product,
149ca161 935 const struct ecc_curve *curve)
3c4b2390 936{
d5c3b178 937 u64 tmp[2 * ECC_MAX_DIGITS];
149ca161
SA
938 const u64 *curve_prime = curve->p;
939 const unsigned int ndigits = curve->g.ndigits;
3c4b2390 940
149ca161
SA
941 /* All NIST curves have name prefix 'nist_' */
942 if (strncmp(curve->name, "nist_", 5) != 0) {
0d7a7864
VC
943 /* Try to handle Pseudo-Marsenne primes. */
944 if (curve_prime[ndigits - 1] == -1ull) {
945 vli_mmod_special(result, product, curve_prime,
946 ndigits);
947 return true;
948 } else if (curve_prime[ndigits - 1] == 1ull << 63 &&
949 curve_prime[ndigits - 2] == 0) {
950 vli_mmod_special2(result, product, curve_prime,
951 ndigits);
952 return true;
953 }
954 vli_mmod_barrett(result, product, curve_prime, ndigits);
955 return true;
956 }
957
3c4b2390 958 switch (ndigits) {
526d23fc 959 case ECC_CURVE_NIST_P192_DIGITS:
3c4b2390
SB
960 vli_mmod_fast_192(result, product, curve_prime, tmp);
961 break;
526d23fc 962 case ECC_CURVE_NIST_P256_DIGITS:
3c4b2390
SB
963 vli_mmod_fast_256(result, product, curve_prime, tmp);
964 break;
526d23fc 965 case ECC_CURVE_NIST_P384_DIGITS:
149ca161
SA
966 vli_mmod_fast_384(result, product, curve_prime, tmp);
967 break;
e7fb0627
SB
968 case ECC_CURVE_NIST_P521_DIGITS:
969 vli_mmod_fast_521(result, product, curve_prime, tmp);
970 break;
3c4b2390 971 default:
0d7a7864 972 pr_err_ratelimited("ecc: unsupported digits size!\n");
3c4b2390
SB
973 return false;
974 }
975
976 return true;
977}
978
0d7a7864
VC
979/* Computes result = (left * right) % mod.
980 * Assumes that mod is big enough curve order.
981 */
982void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
983 const u64 *mod, unsigned int ndigits)
984{
985 u64 product[ECC_MAX_DIGITS * 2];
986
987 vli_mult(product, left, right, ndigits);
988 vli_mmod_slow(result, product, mod, ndigits);
989}
990EXPORT_SYMBOL(vli_mod_mult_slow);
991
3c4b2390
SB
992/* Computes result = (left * right) % curve_prime. */
993static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
149ca161 994 const struct ecc_curve *curve)
3c4b2390 995{
d5c3b178 996 u64 product[2 * ECC_MAX_DIGITS];
3c4b2390 997
149ca161
SA
998 vli_mult(product, left, right, curve->g.ndigits);
999 vli_mmod_fast(result, product, curve);
3c4b2390
SB
1000}
1001
1002/* Computes result = left^2 % curve_prime. */
1003static void vli_mod_square_fast(u64 *result, const u64 *left,
149ca161 1004 const struct ecc_curve *curve)
3c4b2390 1005{
d5c3b178 1006 u64 product[2 * ECC_MAX_DIGITS];
3c4b2390 1007
149ca161
SA
1008 vli_square(product, left, curve->g.ndigits);
1009 vli_mmod_fast(result, product, curve);
3c4b2390
SB
1010}
1011
1012#define EVEN(vli) (!(vli[0] & 1))
1013/* Computes result = (1 / p_input) % mod. All VLIs are the same size.
1014 * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
1015 * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
1016 */
4a2289da 1017void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
3c4b2390
SB
1018 unsigned int ndigits)
1019{
d5c3b178
KC
1020 u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS];
1021 u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS];
3c4b2390
SB
1022 u64 carry;
1023 int cmp_result;
1024
1025 if (vli_is_zero(input, ndigits)) {
1026 vli_clear(result, ndigits);
1027 return;
1028 }
1029
1030 vli_set(a, input, ndigits);
1031 vli_set(b, mod, ndigits);
1032 vli_clear(u, ndigits);
1033 u[0] = 1;
1034 vli_clear(v, ndigits);
1035
1036 while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
1037 carry = 0;
1038
1039 if (EVEN(a)) {
1040 vli_rshift1(a, ndigits);
1041
1042 if (!EVEN(u))
1043 carry = vli_add(u, u, mod, ndigits);
1044
1045 vli_rshift1(u, ndigits);
1046 if (carry)
1047 u[ndigits - 1] |= 0x8000000000000000ull;
1048 } else if (EVEN(b)) {
1049 vli_rshift1(b, ndigits);
1050
1051 if (!EVEN(v))
1052 carry = vli_add(v, v, mod, ndigits);
1053
1054 vli_rshift1(v, ndigits);
1055 if (carry)
1056 v[ndigits - 1] |= 0x8000000000000000ull;
1057 } else if (cmp_result > 0) {
1058 vli_sub(a, a, b, ndigits);
1059 vli_rshift1(a, ndigits);
1060
1061 if (vli_cmp(u, v, ndigits) < 0)
1062 vli_add(u, u, mod, ndigits);
1063
1064 vli_sub(u, u, v, ndigits);
1065 if (!EVEN(u))
1066 carry = vli_add(u, u, mod, ndigits);
1067
1068 vli_rshift1(u, ndigits);
1069 if (carry)
1070 u[ndigits - 1] |= 0x8000000000000000ull;
1071 } else {
1072 vli_sub(b, b, a, ndigits);
1073 vli_rshift1(b, ndigits);
1074
1075 if (vli_cmp(v, u, ndigits) < 0)
1076 vli_add(v, v, mod, ndigits);
1077
1078 vli_sub(v, v, u, ndigits);
1079 if (!EVEN(v))
1080 carry = vli_add(v, v, mod, ndigits);
1081
1082 vli_rshift1(v, ndigits);
1083 if (carry)
1084 v[ndigits - 1] |= 0x8000000000000000ull;
1085 }
1086 }
1087
1088 vli_set(result, u, ndigits);
1089}
4a2289da 1090EXPORT_SYMBOL(vli_mod_inv);
3c4b2390
SB
1091
1092/* ------ Point operations ------ */
1093
1094/* Returns true if p_point is the point at infinity, false otherwise. */
eaffe377 1095bool ecc_point_is_zero(const struct ecc_point *point)
3c4b2390
SB
1096{
1097 return (vli_is_zero(point->x, point->ndigits) &&
1098 vli_is_zero(point->y, point->ndigits));
1099}
eaffe377 1100EXPORT_SYMBOL(ecc_point_is_zero);
3c4b2390
SB
1101
1102/* Point multiplication algorithm using Montgomery's ladder with co-Z
9332a9e7 1103 * coordinates. From https://eprint.iacr.org/2011/338.pdf
3c4b2390
SB
1104 */
1105
1106/* Double in place */
1107static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
149ca161 1108 const struct ecc_curve *curve)
3c4b2390
SB
1109{
1110 /* t1 = x, t2 = y, t3 = z */
d5c3b178
KC
1111 u64 t4[ECC_MAX_DIGITS];
1112 u64 t5[ECC_MAX_DIGITS];
149ca161
SA
1113 const u64 *curve_prime = curve->p;
1114 const unsigned int ndigits = curve->g.ndigits;
3c4b2390
SB
1115
1116 if (vli_is_zero(z1, ndigits))
1117 return;
1118
1119 /* t4 = y1^2 */
149ca161 1120 vli_mod_square_fast(t4, y1, curve);
3c4b2390 1121 /* t5 = x1*y1^2 = A */
149ca161 1122 vli_mod_mult_fast(t5, x1, t4, curve);
3c4b2390 1123 /* t4 = y1^4 */
149ca161 1124 vli_mod_square_fast(t4, t4, curve);
3c4b2390 1125 /* t2 = y1*z1 = z3 */
149ca161 1126 vli_mod_mult_fast(y1, y1, z1, curve);
3c4b2390 1127 /* t3 = z1^2 */
149ca161 1128 vli_mod_square_fast(z1, z1, curve);
3c4b2390
SB
1129
1130 /* t1 = x1 + z1^2 */
1131 vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1132 /* t3 = 2*z1^2 */
1133 vli_mod_add(z1, z1, z1, curve_prime, ndigits);
1134 /* t3 = x1 - z1^2 */
1135 vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
1136 /* t1 = x1^2 - z1^4 */
149ca161 1137 vli_mod_mult_fast(x1, x1, z1, curve);
3c4b2390
SB
1138
1139 /* t3 = 2*(x1^2 - z1^4) */
1140 vli_mod_add(z1, x1, x1, curve_prime, ndigits);
1141 /* t1 = 3*(x1^2 - z1^4) */
1142 vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1143 if (vli_test_bit(x1, 0)) {
1144 u64 carry = vli_add(x1, x1, curve_prime, ndigits);
1145
1146 vli_rshift1(x1, ndigits);
1147 x1[ndigits - 1] |= carry << 63;
1148 } else {
1149 vli_rshift1(x1, ndigits);
1150 }
1151 /* t1 = 3/2*(x1^2 - z1^4) = B */
1152
1153 /* t3 = B^2 */
149ca161 1154 vli_mod_square_fast(z1, x1, curve);
3c4b2390
SB
1155 /* t3 = B^2 - A */
1156 vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1157 /* t3 = B^2 - 2A = x3 */
1158 vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1159 /* t5 = A - x3 */
1160 vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
1161 /* t1 = B * (A - x3) */
149ca161 1162 vli_mod_mult_fast(x1, x1, t5, curve);
3c4b2390
SB
1163 /* t4 = B * (A - x3) - y1^4 = y3 */
1164 vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
1165
1166 vli_set(x1, z1, ndigits);
1167 vli_set(z1, y1, ndigits);
1168 vli_set(y1, t4, ndigits);
1169}
1170
1171/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
149ca161 1172static void apply_z(u64 *x1, u64 *y1, u64 *z, const struct ecc_curve *curve)
3c4b2390 1173{
d5c3b178 1174 u64 t1[ECC_MAX_DIGITS];
3c4b2390 1175
149ca161
SA
1176 vli_mod_square_fast(t1, z, curve); /* z^2 */
1177 vli_mod_mult_fast(x1, x1, t1, curve); /* x1 * z^2 */
1178 vli_mod_mult_fast(t1, t1, z, curve); /* z^3 */
1179 vli_mod_mult_fast(y1, y1, t1, curve); /* y1 * z^3 */
3c4b2390
SB
1180}
1181
1182/* P = (x1, y1) => 2P, (x2, y2) => P' */
1183static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
149ca161 1184 u64 *p_initial_z, const struct ecc_curve *curve)
3c4b2390 1185{
d5c3b178 1186 u64 z[ECC_MAX_DIGITS];
149ca161 1187 const unsigned int ndigits = curve->g.ndigits;
3c4b2390
SB
1188
1189 vli_set(x2, x1, ndigits);
1190 vli_set(y2, y1, ndigits);
1191
1192 vli_clear(z, ndigits);
1193 z[0] = 1;
1194
1195 if (p_initial_z)
1196 vli_set(z, p_initial_z, ndigits);
1197
149ca161 1198 apply_z(x1, y1, z, curve);
3c4b2390 1199
149ca161 1200 ecc_point_double_jacobian(x1, y1, z, curve);
3c4b2390 1201
149ca161 1202 apply_z(x2, y2, z, curve);
3c4b2390
SB
1203}
1204
1205/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1206 * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
1207 * or P => P', Q => P + Q
1208 */
149ca161
SA
1209static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1210 const struct ecc_curve *curve)
3c4b2390
SB
1211{
1212 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
d5c3b178 1213 u64 t5[ECC_MAX_DIGITS];
149ca161
SA
1214 const u64 *curve_prime = curve->p;
1215 const unsigned int ndigits = curve->g.ndigits;
3c4b2390
SB
1216
1217 /* t5 = x2 - x1 */
1218 vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1219 /* t5 = (x2 - x1)^2 = A */
149ca161 1220 vli_mod_square_fast(t5, t5, curve);
3c4b2390 1221 /* t1 = x1*A = B */
149ca161 1222 vli_mod_mult_fast(x1, x1, t5, curve);
3c4b2390 1223 /* t3 = x2*A = C */
149ca161 1224 vli_mod_mult_fast(x2, x2, t5, curve);
3c4b2390
SB
1225 /* t4 = y2 - y1 */
1226 vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1227 /* t5 = (y2 - y1)^2 = D */
149ca161 1228 vli_mod_square_fast(t5, y2, curve);
3c4b2390
SB
1229
1230 /* t5 = D - B */
1231 vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
1232 /* t5 = D - B - C = x3 */
1233 vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
1234 /* t3 = C - B */
1235 vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
1236 /* t2 = y1*(C - B) */
149ca161 1237 vli_mod_mult_fast(y1, y1, x2, curve);
3c4b2390
SB
1238 /* t3 = B - x3 */
1239 vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
1240 /* t4 = (y2 - y1)*(B - x3) */
149ca161 1241 vli_mod_mult_fast(y2, y2, x2, curve);
3c4b2390
SB
1242 /* t4 = y3 */
1243 vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1244
1245 vli_set(x2, t5, ndigits);
1246}
1247
1248/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1249 * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
1250 * or P => P - Q, Q => P + Q
1251 */
149ca161
SA
1252static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1253 const struct ecc_curve *curve)
3c4b2390
SB
1254{
1255 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
d5c3b178
KC
1256 u64 t5[ECC_MAX_DIGITS];
1257 u64 t6[ECC_MAX_DIGITS];
1258 u64 t7[ECC_MAX_DIGITS];
149ca161
SA
1259 const u64 *curve_prime = curve->p;
1260 const unsigned int ndigits = curve->g.ndigits;
3c4b2390
SB
1261
1262 /* t5 = x2 - x1 */
1263 vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1264 /* t5 = (x2 - x1)^2 = A */
149ca161 1265 vli_mod_square_fast(t5, t5, curve);
3c4b2390 1266 /* t1 = x1*A = B */
149ca161 1267 vli_mod_mult_fast(x1, x1, t5, curve);
3c4b2390 1268 /* t3 = x2*A = C */
149ca161 1269 vli_mod_mult_fast(x2, x2, t5, curve);
3c4b2390
SB
1270 /* t4 = y2 + y1 */
1271 vli_mod_add(t5, y2, y1, curve_prime, ndigits);
1272 /* t4 = y2 - y1 */
1273 vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1274
1275 /* t6 = C - B */
1276 vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
1277 /* t2 = y1 * (C - B) */
149ca161 1278 vli_mod_mult_fast(y1, y1, t6, curve);
3c4b2390
SB
1279 /* t6 = B + C */
1280 vli_mod_add(t6, x1, x2, curve_prime, ndigits);
1281 /* t3 = (y2 - y1)^2 */
149ca161 1282 vli_mod_square_fast(x2, y2, curve);
3c4b2390
SB
1283 /* t3 = x3 */
1284 vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
1285
1286 /* t7 = B - x3 */
1287 vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
1288 /* t4 = (y2 - y1)*(B - x3) */
149ca161 1289 vli_mod_mult_fast(y2, y2, t7, curve);
3c4b2390
SB
1290 /* t4 = y3 */
1291 vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1292
1293 /* t7 = (y2 + y1)^2 = F */
149ca161 1294 vli_mod_square_fast(t7, t5, curve);
3c4b2390
SB
1295 /* t7 = x3' */
1296 vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
1297 /* t6 = x3' - B */
1298 vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
1299 /* t6 = (y2 + y1)*(x3' - B) */
149ca161 1300 vli_mod_mult_fast(t6, t6, t5, curve);
3c4b2390
SB
1301 /* t2 = y3' */
1302 vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
1303
1304 vli_set(x1, t7, ndigits);
1305}
1306
1307static void ecc_point_mult(struct ecc_point *result,
1308 const struct ecc_point *point, const u64 *scalar,
3da2c1df 1309 u64 *initial_z, const struct ecc_curve *curve,
3c4b2390
SB
1310 unsigned int ndigits)
1311{
1312 /* R0 and R1 */
d5c3b178
KC
1313 u64 rx[2][ECC_MAX_DIGITS];
1314 u64 ry[2][ECC_MAX_DIGITS];
1315 u64 z[ECC_MAX_DIGITS];
3da2c1df
VC
1316 u64 sk[2][ECC_MAX_DIGITS];
1317 u64 *curve_prime = curve->p;
3c4b2390 1318 int i, nb;
3da2c1df
VC
1319 int num_bits;
1320 int carry;
1321
1322 carry = vli_add(sk[0], scalar, curve->n, ndigits);
1323 vli_add(sk[1], sk[0], curve->n, ndigits);
1324 scalar = sk[!carry];
114e8043
SB
1325 if (curve->nbits == 521) /* NIST P521 */
1326 num_bits = curve->nbits + 2;
1327 else
1328 num_bits = sizeof(u64) * ndigits * 8 + 1;
3c4b2390
SB
1329
1330 vli_set(rx[1], point->x, ndigits);
1331 vli_set(ry[1], point->y, ndigits);
1332
149ca161 1333 xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve);
3c4b2390
SB
1334
1335 for (i = num_bits - 2; i > 0; i--) {
1336 nb = !vli_test_bit(scalar, i);
149ca161
SA
1337 xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1338 xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
3c4b2390
SB
1339 }
1340
1341 nb = !vli_test_bit(scalar, 0);
149ca161 1342 xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
3c4b2390
SB
1343
1344 /* Find final 1/Z value. */
1345 /* X1 - X0 */
1346 vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
1347 /* Yb * (X1 - X0) */
149ca161 1348 vli_mod_mult_fast(z, z, ry[1 - nb], curve);
3c4b2390 1349 /* xP * Yb * (X1 - X0) */
149ca161 1350 vli_mod_mult_fast(z, z, point->x, curve);
3c4b2390
SB
1351
1352 /* 1 / (xP * Yb * (X1 - X0)) */
1353 vli_mod_inv(z, z, curve_prime, point->ndigits);
1354
1355 /* yP / (xP * Yb * (X1 - X0)) */
149ca161 1356 vli_mod_mult_fast(z, z, point->y, curve);
3c4b2390 1357 /* Xb * yP / (xP * Yb * (X1 - X0)) */
149ca161 1358 vli_mod_mult_fast(z, z, rx[1 - nb], curve);
3c4b2390
SB
1359 /* End 1/Z calculation */
1360
149ca161 1361 xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
3c4b2390 1362
149ca161 1363 apply_z(rx[0], ry[0], z, curve);
3c4b2390
SB
1364
1365 vli_set(result->x, rx[0], ndigits);
1366 vli_set(result->y, ry[0], ndigits);
1367}
1368
0d7a7864
VC
1369/* Computes R = P + Q mod p */
1370static void ecc_point_add(const struct ecc_point *result,
1371 const struct ecc_point *p, const struct ecc_point *q,
1372 const struct ecc_curve *curve)
1373{
1374 u64 z[ECC_MAX_DIGITS];
1375 u64 px[ECC_MAX_DIGITS];
1376 u64 py[ECC_MAX_DIGITS];
1377 unsigned int ndigits = curve->g.ndigits;
1378
1379 vli_set(result->x, q->x, ndigits);
1380 vli_set(result->y, q->y, ndigits);
1381 vli_mod_sub(z, result->x, p->x, curve->p, ndigits);
1382 vli_set(px, p->x, ndigits);
1383 vli_set(py, p->y, ndigits);
149ca161 1384 xycz_add(px, py, result->x, result->y, curve);
0d7a7864 1385 vli_mod_inv(z, z, curve->p, ndigits);
149ca161 1386 apply_z(result->x, result->y, z, curve);
0d7a7864
VC
1387}
1388
1389/* Computes R = u1P + u2Q mod p using Shamir's trick.
1390 * Based on: Kenneth MacKay's micro-ecc (2014).
1391 */
1392void ecc_point_mult_shamir(const struct ecc_point *result,
1393 const u64 *u1, const struct ecc_point *p,
1394 const u64 *u2, const struct ecc_point *q,
1395 const struct ecc_curve *curve)
1396{
1397 u64 z[ECC_MAX_DIGITS];
1398 u64 sump[2][ECC_MAX_DIGITS];
1399 u64 *rx = result->x;
1400 u64 *ry = result->y;
1401 unsigned int ndigits = curve->g.ndigits;
1402 unsigned int num_bits;
1403 struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits);
1404 const struct ecc_point *points[4];
1405 const struct ecc_point *point;
1406 unsigned int idx;
1407 int i;
1408
1409 ecc_point_add(&sum, p, q, curve);
1410 points[0] = NULL;
1411 points[1] = p;
1412 points[2] = q;
1413 points[3] = &sum;
1414
149ca161 1415 num_bits = max(vli_num_bits(u1, ndigits), vli_num_bits(u2, ndigits));
0d7a7864 1416 i = num_bits - 1;
5072b1c2
HX
1417 idx = !!vli_test_bit(u1, i);
1418 idx |= (!!vli_test_bit(u2, i)) << 1;
0d7a7864
VC
1419 point = points[idx];
1420
1421 vli_set(rx, point->x, ndigits);
1422 vli_set(ry, point->y, ndigits);
1423 vli_clear(z + 1, ndigits - 1);
1424 z[0] = 1;
1425
1426 for (--i; i >= 0; i--) {
149ca161 1427 ecc_point_double_jacobian(rx, ry, z, curve);
5072b1c2
HX
1428 idx = !!vli_test_bit(u1, i);
1429 idx |= (!!vli_test_bit(u2, i)) << 1;
0d7a7864
VC
1430 point = points[idx];
1431 if (point) {
1432 u64 tx[ECC_MAX_DIGITS];
1433 u64 ty[ECC_MAX_DIGITS];
1434 u64 tz[ECC_MAX_DIGITS];
1435
1436 vli_set(tx, point->x, ndigits);
1437 vli_set(ty, point->y, ndigits);
149ca161 1438 apply_z(tx, ty, z, curve);
0d7a7864 1439 vli_mod_sub(tz, rx, tx, curve->p, ndigits);
149ca161
SA
1440 xycz_add(tx, ty, rx, ry, curve);
1441 vli_mod_mult_fast(z, z, tz, curve);
0d7a7864
VC
1442 }
1443 }
1444 vli_mod_inv(z, z, curve->p, ndigits);
149ca161 1445 apply_z(rx, ry, z, curve);
0d7a7864
VC
1446}
1447EXPORT_SYMBOL(ecc_point_mult_shamir);
1448
dbad7b69
JV
1449/*
1450 * This function performs checks equivalent to Appendix A.4.2 of FIPS 186-5.
1451 * Whereas A.4.2 results in an integer in the interval [1, n-1], this function
1452 * ensures that the integer is in the range of [2, n-3]. We are slightly
1453 * stricter because of the currently used scalar multiplication algorithm.
1454 */
2eb4942b
VC
1455static int __ecc_is_key_valid(const struct ecc_curve *curve,
1456 const u64 *private_key, unsigned int ndigits)
3c4b2390 1457{
2eb4942b
VC
1458 u64 one[ECC_MAX_DIGITS] = { 1, };
1459 u64 res[ECC_MAX_DIGITS];
3c4b2390
SB
1460
1461 if (!private_key)
1462 return -EINVAL;
1463
2eb4942b 1464 if (curve->g.ndigits != ndigits)
3c4b2390
SB
1465 return -EINVAL;
1466
2eb4942b
VC
1467 /* Make sure the private key is in the range [2, n-3]. */
1468 if (vli_cmp(one, private_key, ndigits) != -1)
3c4b2390 1469 return -EINVAL;
2eb4942b
VC
1470 vli_sub(res, curve->n, one, ndigits);
1471 vli_sub(res, res, one, ndigits);
1472 if (vli_cmp(res, private_key, ndigits) != 1)
3c4b2390
SB
1473 return -EINVAL;
1474
1475 return 0;
1476}
1477
2eb4942b
VC
1478int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
1479 const u64 *private_key, unsigned int private_key_len)
1480{
1481 int nbytes;
1482 const struct ecc_curve *curve = ecc_get_curve(curve_id);
1483
1484 nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1485
1486 if (private_key_len != nbytes)
1487 return -EINVAL;
1488
1489 return __ecc_is_key_valid(curve, private_key, ndigits);
1490}
4a2289da 1491EXPORT_SYMBOL(ecc_is_key_valid);
2eb4942b 1492
6755fd26 1493/*
dbad7b69
JV
1494 * ECC private keys are generated using the method of rejection sampling,
1495 * equivalent to that described in FIPS 186-5, Appendix A.2.2.
6755fd26
TDA
1496 *
1497 * This method generates a private key uniformly distributed in the range
dbad7b69 1498 * [2, n-3].
6755fd26 1499 */
01474b70
SB
1500int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits,
1501 u64 *private_key)
6755fd26
TDA
1502{
1503 const struct ecc_curve *curve = ecc_get_curve(curve_id);
6755fd26
TDA
1504 unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1505 unsigned int nbits = vli_num_bits(curve->n, ndigits);
1506 int err;
1507
dbad7b69
JV
1508 /*
1509 * Step 1 & 2: check that N is included in Table 1 of FIPS 186-5,
1510 * section 6.1.1.
1511 */
01474b70 1512 if (nbits < 224)
6755fd26
TDA
1513 return -EINVAL;
1514
1515 /*
dbad7b69 1516 * FIPS 186-5 recommends that the private key should be obtained from a
6755fd26
TDA
1517 * RBG with a security strength equal to or greater than the security
1518 * strength associated with N.
1519 *
1520 * The maximum security strength identified by NIST SP800-57pt1r4 for
1521 * ECC is 256 (N >= 512).
1522 *
1523 * This condition is met by the default RNG because it selects a favored
1524 * DRBG with a security strength of 256.
1525 */
1526 if (crypto_get_default_rng())
4c0e22c9 1527 return -EFAULT;
6755fd26 1528
dbad7b69 1529 /* Step 3: obtain N returned_bits from the DRBG. */
01474b70
SB
1530 err = crypto_rng_get_bytes(crypto_default_rng,
1531 (u8 *)private_key, nbytes);
6755fd26
TDA
1532 crypto_put_default_rng();
1533 if (err)
1534 return err;
1535
dbad7b69 1536 /* Step 4: make sure the private key is in the valid range. */
01474b70 1537 if (__ecc_is_key_valid(curve, private_key, ndigits))
6755fd26
TDA
1538 return -EINVAL;
1539
6755fd26
TDA
1540 return 0;
1541}
4a2289da 1542EXPORT_SYMBOL(ecc_gen_privkey);
6755fd26 1543
7380c56d
TDA
1544int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits,
1545 const u64 *private_key, u64 *public_key)
3c4b2390
SB
1546{
1547 int ret = 0;
1548 struct ecc_point *pk;
3c4b2390
SB
1549 const struct ecc_curve *curve = ecc_get_curve(curve_id);
1550
01474b70 1551 if (!private_key) {
3c4b2390
SB
1552 ret = -EINVAL;
1553 goto out;
1554 }
1555
3c4b2390
SB
1556 pk = ecc_alloc_point(ndigits);
1557 if (!pk) {
1558 ret = -ENOMEM;
1559 goto out;
1560 }
1561
01474b70 1562 ecc_point_mult(pk, &curve->g, private_key, NULL, curve, ndigits);
6914dd53
SM
1563
1564 /* SP800-56A rev 3 5.6.2.1.3 key check */
1565 if (ecc_is_pubkey_valid_full(curve, pk)) {
3c4b2390
SB
1566 ret = -EAGAIN;
1567 goto err_free_point;
1568 }
1569
ad269597
TDA
1570 ecc_swap_digits(pk->x, public_key, ndigits);
1571 ecc_swap_digits(pk->y, &public_key[ndigits], ndigits);
3c4b2390
SB
1572
1573err_free_point:
1574 ecc_free_point(pk);
1575out:
1576 return ret;
1577}
4a2289da 1578EXPORT_SYMBOL(ecc_make_pub_key);
3c4b2390 1579
ea169a30 1580/* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */
4a2289da
VC
1581int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
1582 struct ecc_point *pk)
ea169a30
SM
1583{
1584 u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS];
1585
0d7a7864
VC
1586 if (WARN_ON(pk->ndigits != curve->g.ndigits))
1587 return -EINVAL;
1588
ea169a30
SM
1589 /* Check 1: Verify key is not the zero point. */
1590 if (ecc_point_is_zero(pk))
1591 return -EINVAL;
1592
1593 /* Check 2: Verify key is in the range [1, p-1]. */
1594 if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1)
1595 return -EINVAL;
1596 if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1)
1597 return -EINVAL;
1598
1599 /* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */
149ca161
SA
1600 vli_mod_square_fast(yy, pk->y, curve); /* y^2 */
1601 vli_mod_square_fast(xxx, pk->x, curve); /* x^2 */
1602 vli_mod_mult_fast(xxx, xxx, pk->x, curve); /* x^3 */
1603 vli_mod_mult_fast(w, curve->a, pk->x, curve); /* a·x */
ea169a30
SM
1604 vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */
1605 vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */
1606 if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */
1607 return -EINVAL;
1608
1609 return 0;
ea169a30 1610}
4a2289da 1611EXPORT_SYMBOL(ecc_is_pubkey_valid_partial);
ea169a30 1612
6914dd53
SM
1613/* SP800-56A section 5.6.2.3.3 full verification */
1614int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
1615 struct ecc_point *pk)
1616{
1617 struct ecc_point *nQ;
1618
1619 /* Checks 1 through 3 */
1620 int ret = ecc_is_pubkey_valid_partial(curve, pk);
1621
1622 if (ret)
1623 return ret;
1624
1625 /* Check 4: Verify that nQ is the zero point. */
1626 nQ = ecc_alloc_point(pk->ndigits);
1627 if (!nQ)
1628 return -ENOMEM;
1629
1630 ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits);
1631 if (!ecc_point_is_zero(nQ))
1632 ret = -EINVAL;
1633
1634 ecc_free_point(nQ);
1635
1636 return ret;
1637}
1638EXPORT_SYMBOL(ecc_is_pubkey_valid_full);
1639
8f44df15 1640int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
ad269597
TDA
1641 const u64 *private_key, const u64 *public_key,
1642 u64 *secret)
3c4b2390
SB
1643{
1644 int ret = 0;
1645 struct ecc_point *product, *pk;
d5c3b178
KC
1646 u64 rand_z[ECC_MAX_DIGITS];
1647 unsigned int nbytes;
3c4b2390
SB
1648 const struct ecc_curve *curve = ecc_get_curve(curve_id);
1649
01474b70 1650 if (!private_key || !public_key || ndigits > ARRAY_SIZE(rand_z)) {
3c4b2390
SB
1651 ret = -EINVAL;
1652 goto out;
1653 }
1654
d5c3b178 1655 nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
3c4b2390 1656
d5c3b178 1657 get_random_bytes(rand_z, nbytes);
3c4b2390
SB
1658
1659 pk = ecc_alloc_point(ndigits);
1660 if (!pk) {
1661 ret = -ENOMEM;
d5c3b178 1662 goto out;
3c4b2390
SB
1663 }
1664
ea169a30
SM
1665 ecc_swap_digits(public_key, pk->x, ndigits);
1666 ecc_swap_digits(&public_key[ndigits], pk->y, ndigits);
1667 ret = ecc_is_pubkey_valid_partial(curve, pk);
1668 if (ret)
1669 goto err_alloc_product;
1670
3c4b2390
SB
1671 product = ecc_alloc_point(ndigits);
1672 if (!product) {
1673 ret = -ENOMEM;
1674 goto err_alloc_product;
1675 }
1676
01474b70 1677 ecc_point_mult(product, pk, private_key, rand_z, curve, ndigits);
3c4b2390 1678
e7d2b41e 1679 if (ecc_point_is_zero(product)) {
3c4b2390 1680 ret = -EFAULT;
e7d2b41e
SM
1681 goto err_validity;
1682 }
1683
1684 ecc_swap_digits(product->x, secret, ndigits);
3c4b2390 1685
e7d2b41e 1686err_validity:
e7d2b41e 1687 memzero_explicit(rand_z, sizeof(rand_z));
3c4b2390
SB
1688 ecc_free_point(product);
1689err_alloc_product:
1690 ecc_free_point(pk);
1691out:
1692 return ret;
1693}
4a2289da
VC
1694EXPORT_SYMBOL(crypto_ecdh_shared_secret);
1695
1696MODULE_LICENSE("Dual BSD/GPL");