Commit | Line | Data |
---|---|---|
b2441318 | 1 | # SPDX-License-Identifier: GPL-2.0 |
685784aa DW |
2 | # |
3 | # Generic algorithms support | |
4 | # | |
5 | config XOR_BLOCKS | |
6 | tristate | |
7 | ||
1da177e4 | 8 | # |
9bc89cd8 | 9 | # async_tx api: hardware offloaded memory transfer/transform support |
1da177e4 | 10 | # |
9bc89cd8 | 11 | source "crypto/async_tx/Kconfig" |
1da177e4 | 12 | |
9bc89cd8 DW |
13 | # |
14 | # Cryptographic API Configuration | |
15 | # | |
2e290f43 | 16 | menuconfig CRYPTO |
c3715cb9 | 17 | tristate "Cryptographic API" |
7033b937 | 18 | select CRYPTO_LIB_UTILS |
1da177e4 LT |
19 | help |
20 | This option provides the core Cryptographic API. | |
21 | ||
cce9e06d HX |
22 | if CRYPTO |
23 | ||
f1f142ad | 24 | menu "Crypto core or helper" |
584fffc8 | 25 | |
ccb778e1 NH |
26 | config CRYPTO_FIPS |
27 | bool "FIPS 200 compliance" | |
40b99697 | 28 | depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && CRYPTO_SELFTESTS |
1f696097 | 29 | depends on (MODULE_SIG || !MODULES) |
ccb778e1 | 30 | help |
d99324c2 GU |
31 | This option enables the fips boot option which is |
32 | required if you want the system to operate in a FIPS 200 | |
ccb778e1 | 33 | certification. You should say no unless you know what |
e84c5480 | 34 | this is. |
ccb778e1 | 35 | |
5a44749f VD |
36 | config CRYPTO_FIPS_NAME |
37 | string "FIPS Module Name" | |
38 | default "Linux Kernel Cryptographic API" | |
39 | depends on CRYPTO_FIPS | |
40 | help | |
41 | This option sets the FIPS Module name reported by the Crypto API via | |
42 | the /proc/sys/crypto/fips_name file. | |
43 | ||
44 | config CRYPTO_FIPS_CUSTOM_VERSION | |
45 | bool "Use Custom FIPS Module Version" | |
46 | depends on CRYPTO_FIPS | |
47 | default n | |
48 | ||
49 | config CRYPTO_FIPS_VERSION | |
50 | string "FIPS Module Version" | |
51 | default "(none)" | |
52 | depends on CRYPTO_FIPS_CUSTOM_VERSION | |
53 | help | |
54 | This option provides the ability to override the FIPS Module Version. | |
55 | By default the KERNELRELEASE value is used. | |
56 | ||
cce9e06d HX |
57 | config CRYPTO_ALGAPI |
58 | tristate | |
6a0fcbb4 | 59 | select CRYPTO_ALGAPI2 |
cce9e06d HX |
60 | help |
61 | This option provides the API for cryptographic algorithms. | |
62 | ||
6a0fcbb4 HX |
63 | config CRYPTO_ALGAPI2 |
64 | tristate | |
65 | ||
1ae97820 HX |
66 | config CRYPTO_AEAD |
67 | tristate | |
6a0fcbb4 | 68 | select CRYPTO_AEAD2 |
1ae97820 HX |
69 | select CRYPTO_ALGAPI |
70 | ||
6a0fcbb4 HX |
71 | config CRYPTO_AEAD2 |
72 | tristate | |
73 | select CRYPTO_ALGAPI2 | |
74 | ||
6cb8815f HX |
75 | config CRYPTO_SIG |
76 | tristate | |
77 | select CRYPTO_SIG2 | |
78 | select CRYPTO_ALGAPI | |
79 | ||
80 | config CRYPTO_SIG2 | |
81 | tristate | |
82 | select CRYPTO_ALGAPI2 | |
83 | ||
b95bba5d | 84 | config CRYPTO_SKCIPHER |
5cde0af2 | 85 | tristate |
b95bba5d | 86 | select CRYPTO_SKCIPHER2 |
5cde0af2 | 87 | select CRYPTO_ALGAPI |
84534684 | 88 | select CRYPTO_ECB |
6a0fcbb4 | 89 | |
b95bba5d | 90 | config CRYPTO_SKCIPHER2 |
6a0fcbb4 HX |
91 | tristate |
92 | select CRYPTO_ALGAPI2 | |
5cde0af2 | 93 | |
055bcee3 HX |
94 | config CRYPTO_HASH |
95 | tristate | |
6a0fcbb4 | 96 | select CRYPTO_HASH2 |
055bcee3 HX |
97 | select CRYPTO_ALGAPI |
98 | ||
6a0fcbb4 HX |
99 | config CRYPTO_HASH2 |
100 | tristate | |
101 | select CRYPTO_ALGAPI2 | |
102 | ||
17f0f4a4 NH |
103 | config CRYPTO_RNG |
104 | tristate | |
6a0fcbb4 | 105 | select CRYPTO_RNG2 |
17f0f4a4 NH |
106 | select CRYPTO_ALGAPI |
107 | ||
6a0fcbb4 HX |
108 | config CRYPTO_RNG2 |
109 | tristate | |
110 | select CRYPTO_ALGAPI2 | |
111 | ||
401e4238 HX |
112 | config CRYPTO_RNG_DEFAULT |
113 | tristate | |
114 | select CRYPTO_DRBG_MENU | |
115 | ||
3c339ab8 TS |
116 | config CRYPTO_AKCIPHER2 |
117 | tristate | |
118 | select CRYPTO_ALGAPI2 | |
119 | ||
120 | config CRYPTO_AKCIPHER | |
121 | tristate | |
122 | select CRYPTO_AKCIPHER2 | |
123 | select CRYPTO_ALGAPI | |
124 | ||
4e5f2c40 SB |
125 | config CRYPTO_KPP2 |
126 | tristate | |
127 | select CRYPTO_ALGAPI2 | |
128 | ||
129 | config CRYPTO_KPP | |
130 | tristate | |
131 | select CRYPTO_ALGAPI | |
132 | select CRYPTO_KPP2 | |
133 | ||
2ebda74f GC |
134 | config CRYPTO_ACOMP2 |
135 | tristate | |
136 | select CRYPTO_ALGAPI2 | |
8cd579d2 | 137 | select SGL_ALLOC |
2ebda74f GC |
138 | |
139 | config CRYPTO_ACOMP | |
140 | tristate | |
141 | select CRYPTO_ALGAPI | |
142 | select CRYPTO_ACOMP2 | |
143 | ||
3241cd0c HR |
144 | config CRYPTO_HKDF |
145 | tristate | |
40b99697 EB |
146 | select CRYPTO_SHA256 if CRYPTO_SELFTESTS |
147 | select CRYPTO_SHA512 if CRYPTO_SELFTESTS | |
3241cd0c HR |
148 | select CRYPTO_HASH2 |
149 | ||
2b8c19db | 150 | config CRYPTO_MANAGER |
6f9d0f53 | 151 | tristate |
57999ed1 | 152 | default CRYPTO_ALGAPI if CRYPTO_SELFTESTS |
6a0fcbb4 | 153 | select CRYPTO_MANAGER2 |
2b8c19db | 154 | help |
57999ed1 EB |
155 | This provides the support for instantiating templates such as |
156 | cbc(aes), and the support for the crypto self-tests. | |
2b8c19db | 157 | |
6a0fcbb4 HX |
158 | config CRYPTO_MANAGER2 |
159 | def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) | |
fb28fabf | 160 | select CRYPTO_ACOMP2 |
6a0fcbb4 | 161 | select CRYPTO_AEAD2 |
946cc463 | 162 | select CRYPTO_AKCIPHER2 |
6cb8815f | 163 | select CRYPTO_SIG2 |
fb28fabf | 164 | select CRYPTO_HASH2 |
4e5f2c40 | 165 | select CRYPTO_KPP2 |
fb28fabf HX |
166 | select CRYPTO_RNG2 |
167 | select CRYPTO_SKCIPHER2 | |
6a0fcbb4 | 168 | |
a38f7907 SK |
169 | config CRYPTO_USER |
170 | tristate "Userspace cryptographic algorithm configuration" | |
5db017aa | 171 | depends on NET |
a38f7907 SK |
172 | select CRYPTO_MANAGER |
173 | help | |
d19978f5 | 174 | Userspace configuration for cryptographic instantiations such as |
a38f7907 SK |
175 | cbc(aes). |
176 | ||
40b99697 EB |
177 | config CRYPTO_SELFTESTS |
178 | bool "Enable cryptographic self-tests" | |
ac90aad0 | 179 | depends on EXPERT |
0b767f96 | 180 | help |
40b99697 EB |
181 | Enable the cryptographic self-tests. |
182 | ||
183 | The cryptographic self-tests run at boot time, or at algorithm | |
184 | registration time if algorithms are dynamically loaded later. | |
185 | ||
ac90aad0 EB |
186 | There are two main use cases for these tests: |
187 | ||
188 | - Development and pre-release testing. In this case, also enable | |
189 | CRYPTO_SELFTESTS_FULL to get the full set of tests. All crypto code | |
190 | in the kernel is expected to pass the full set of tests. | |
191 | ||
192 | - Production kernels, to help prevent buggy drivers from being used | |
193 | and/or meet FIPS 140-3 pre-operational testing requirements. In | |
194 | this case, enable CRYPTO_SELFTESTS but not CRYPTO_SELFTESTS_FULL. | |
195 | ||
196 | config CRYPTO_SELFTESTS_FULL | |
197 | bool "Enable the full set of cryptographic self-tests" | |
198 | depends on CRYPTO_SELFTESTS | |
199 | help | |
200 | Enable the full set of cryptographic self-tests for each algorithm. | |
201 | ||
202 | The full set of tests should be enabled for development and | |
203 | pre-release testing, but not in production kernels. | |
204 | ||
205 | All crypto code in the kernel is expected to pass the full tests. | |
0b767f96 | 206 | |
1da177e4 LT |
207 | config CRYPTO_NULL |
208 | tristate "Null algorithms" | |
bde39305 EB |
209 | select CRYPTO_ALGAPI |
210 | select CRYPTO_SKCIPHER | |
211 | select CRYPTO_HASH | |
1da177e4 LT |
212 | help |
213 | These are 'Null' algorithms, used by IPsec, which do nothing. | |
214 | ||
5068c7a8 | 215 | config CRYPTO_PCRYPT |
3b4afaf2 KC |
216 | tristate "Parallel crypto engine" |
217 | depends on SMP | |
5068c7a8 SK |
218 | select PADATA |
219 | select CRYPTO_MANAGER | |
220 | select CRYPTO_AEAD | |
221 | help | |
222 | This converts an arbitrary crypto algorithm into a parallel | |
223 | algorithm that executes in kernel threads. | |
224 | ||
584fffc8 SS |
225 | config CRYPTO_CRYPTD |
226 | tristate "Software async crypto daemon" | |
b95bba5d | 227 | select CRYPTO_SKCIPHER |
b8a28251 | 228 | select CRYPTO_HASH |
584fffc8 | 229 | select CRYPTO_MANAGER |
1da177e4 | 230 | help |
584fffc8 SS |
231 | This is a generic software asynchronous crypto daemon that |
232 | converts an arbitrary synchronous software crypto algorithm | |
233 | into an asynchronous algorithm that executes in a kernel thread. | |
1da177e4 | 234 | |
584fffc8 SS |
235 | config CRYPTO_AUTHENC |
236 | tristate "Authenc support" | |
237 | select CRYPTO_AEAD | |
b95bba5d | 238 | select CRYPTO_SKCIPHER |
584fffc8 SS |
239 | select CRYPTO_MANAGER |
240 | select CRYPTO_HASH | |
1da177e4 | 241 | help |
584fffc8 | 242 | Authenc: Combined mode wrapper for IPsec. |
cf514b2a RE |
243 | |
244 | This is required for IPSec ESP (XFRM_ESP). | |
1da177e4 | 245 | |
d1775a17 DH |
246 | config CRYPTO_KRB5ENC |
247 | tristate "Kerberos 5 combined hash+cipher support" | |
248 | select CRYPTO_AEAD | |
249 | select CRYPTO_SKCIPHER | |
250 | select CRYPTO_MANAGER | |
251 | select CRYPTO_HASH | |
d1775a17 DH |
252 | help |
253 | Combined hash and cipher support for Kerberos 5 RFC3961 simplified | |
254 | profile. This is required for Kerberos 5-style encryption, used by | |
255 | sunrpc/NFS and rxrpc/AFS. | |
256 | ||
3357b6c9 EB |
257 | config CRYPTO_BENCHMARK |
258 | tristate "Crypto benchmarking module" | |
00ea27f1 | 259 | depends on m || EXPERT |
da7f033d | 260 | select CRYPTO_MANAGER |
1da177e4 | 261 | help |
3357b6c9 EB |
262 | Quick & dirty crypto benchmarking module. |
263 | ||
264 | This is mainly intended for use by people developing cryptographic | |
265 | algorithms in the kernel. It should not be enabled in production | |
266 | kernels. | |
1da177e4 | 267 | |
266d0516 HX |
268 | config CRYPTO_SIMD |
269 | tristate | |
ffaf9156 JK |
270 | select CRYPTO_CRYPTD |
271 | ||
735d37b5 BW |
272 | config CRYPTO_ENGINE |
273 | tristate | |
274 | ||
f1f142ad RE |
275 | endmenu |
276 | ||
277 | menu "Public-key cryptography" | |
3d6228a5 VC |
278 | |
279 | config CRYPTO_RSA | |
05b37465 | 280 | tristate "RSA (Rivest-Shamir-Adleman)" |
3d6228a5 VC |
281 | select CRYPTO_AKCIPHER |
282 | select CRYPTO_MANAGER | |
1e562dea | 283 | select CRYPTO_SIG |
3d6228a5 VC |
284 | select MPILIB |
285 | select ASN1 | |
286 | help | |
05b37465 | 287 | RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017) |
3d6228a5 VC |
288 | |
289 | config CRYPTO_DH | |
05b37465 | 290 | tristate "DH (Diffie-Hellman)" |
3d6228a5 VC |
291 | select CRYPTO_KPP |
292 | select MPILIB | |
293 | help | |
05b37465 | 294 | DH (Diffie-Hellman) key exchange algorithm |
3d6228a5 | 295 | |
7dce5981 | 296 | config CRYPTO_DH_RFC7919_GROUPS |
05b37465 | 297 | bool "RFC 7919 FFDHE groups" |
7dce5981 | 298 | depends on CRYPTO_DH |
1e207964 | 299 | select CRYPTO_RNG_DEFAULT |
7dce5981 | 300 | help |
05b37465 RE |
301 | FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups |
302 | defined in RFC7919. | |
303 | ||
304 | Support these finite-field groups in DH key exchanges: | |
305 | - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192 | |
306 | ||
307 | If unsure, say N. | |
7dce5981 | 308 | |
4a2289da VC |
309 | config CRYPTO_ECC |
310 | tristate | |
38aa192a | 311 | select CRYPTO_RNG_DEFAULT |
4a2289da | 312 | |
3d6228a5 | 313 | config CRYPTO_ECDH |
05b37465 | 314 | tristate "ECDH (Elliptic Curve Diffie-Hellman)" |
4a2289da | 315 | select CRYPTO_ECC |
3d6228a5 | 316 | select CRYPTO_KPP |
3d6228a5 | 317 | help |
05b37465 RE |
318 | ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm |
319 | using curves P-192, P-256, and P-384 (FIPS 186) | |
3d6228a5 | 320 | |
4e660291 | 321 | config CRYPTO_ECDSA |
05b37465 | 322 | tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)" |
4e660291 | 323 | select CRYPTO_ECC |
ef132350 | 324 | select CRYPTO_SIG |
4e660291 SB |
325 | select ASN1 |
326 | help | |
05b37465 RE |
327 | ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186, |
328 | ISO/IEC 14888-3) | |
91790c7a | 329 | using curves P-192, P-256, P-384 and P-521 |
05b37465 RE |
330 | |
331 | Only signature verification is implemented. | |
4e660291 | 332 | |
0d7a7864 | 333 | config CRYPTO_ECRDSA |
05b37465 | 334 | tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)" |
0d7a7864 | 335 | select CRYPTO_ECC |
ae117924 | 336 | select CRYPTO_SIG |
0d7a7864 | 337 | select CRYPTO_STREEBOG |
1036633e VC |
338 | select OID_REGISTRY |
339 | select ASN1 | |
0d7a7864 VC |
340 | help |
341 | Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, | |
05b37465 RE |
342 | RFC 7091, ISO/IEC 14888-3) |
343 | ||
344 | One of the Russian cryptographic standard algorithms (called GOST | |
345 | algorithms). Only signature verification is implemented. | |
0d7a7864 | 346 | |
ee772cb6 | 347 | config CRYPTO_CURVE25519 |
05b37465 | 348 | tristate "Curve25519" |
ee772cb6 AB |
349 | select CRYPTO_KPP |
350 | select CRYPTO_LIB_CURVE25519_GENERIC | |
17ec3e71 | 351 | select CRYPTO_LIB_CURVE25519_INTERNAL |
05b37465 RE |
352 | help |
353 | Curve25519 elliptic curve (RFC7748) | |
ee772cb6 | 354 | |
f1f142ad | 355 | endmenu |
cd12fb90 | 356 | |
f1f142ad | 357 | menu "Block ciphers" |
1da177e4 | 358 | |
f1f142ad | 359 | config CRYPTO_AES |
cf514b2a | 360 | tristate "AES (Advanced Encryption Standard)" |
f1f142ad RE |
361 | select CRYPTO_ALGAPI |
362 | select CRYPTO_LIB_AES | |
1da177e4 | 363 | help |
cf514b2a | 364 | AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3) |
1da177e4 | 365 | |
f1f142ad RE |
366 | Rijndael appears to be consistently a very good performer in |
367 | both hardware and software across a wide range of computing | |
368 | environments regardless of its use in feedback or non-feedback | |
369 | modes. Its key setup time is excellent, and its key agility is | |
370 | good. Rijndael's very low memory requirements make it very well | |
371 | suited for restricted-space environments, in which it also | |
372 | demonstrates excellent performance. Rijndael's operations are | |
373 | among the easiest to defend against power and timing attacks. | |
71ebc4d1 | 374 | |
f1f142ad | 375 | The AES specifies three key sizes: 128, 192 and 256 bits |
71ebc4d1 | 376 | |
f1f142ad | 377 | config CRYPTO_AES_TI |
cf514b2a | 378 | tristate "AES (Advanced Encryption Standard) (fixed time)" |
f1f142ad RE |
379 | select CRYPTO_ALGAPI |
380 | select CRYPTO_LIB_AES | |
f606a88e | 381 | help |
cf514b2a RE |
382 | AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3) |
383 | ||
f1f142ad RE |
384 | This is a generic implementation of AES that attempts to eliminate |
385 | data dependent latencies as much as possible without affecting | |
386 | performance too much. It is intended for use by the generic CCM | |
387 | and GCM drivers, and other CTR or CMAC/XCBC based modes that rely | |
388 | solely on encryption (although decryption is supported as well, but | |
389 | with a more dramatic performance hit) | |
f606a88e | 390 | |
f1f142ad RE |
391 | Instead of using 16 lookup tables of 1 KB each, (8 for encryption and |
392 | 8 for decryption), this implementation only uses just two S-boxes of | |
393 | 256 bytes each, and attempts to eliminate data dependent latencies by | |
394 | prefetching the entire table into the cache at the start of each | |
395 | block. Interrupts are also disabled to avoid races where cachelines | |
396 | are evicted when the CPU is interrupted to do something else. | |
a4397635 | 397 | |
f1f142ad | 398 | config CRYPTO_ANUBIS |
cf514b2a | 399 | tristate "Anubis" |
f1f142ad RE |
400 | depends on CRYPTO_USER_API_ENABLE_OBSOLETE |
401 | select CRYPTO_ALGAPI | |
1da177e4 | 402 | help |
cf514b2a | 403 | Anubis cipher algorithm |
1da177e4 | 404 | |
f1f142ad RE |
405 | Anubis is a variable key length cipher which can use keys from |
406 | 128 bits to 320 bits in length. It was evaluated as a entrant | |
407 | in the NESSIE competition. | |
a10f554f | 408 | |
cf514b2a RE |
409 | See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html |
410 | for further information. | |
c494e070 | 411 | |
f1f142ad | 412 | config CRYPTO_ARIA |
cf514b2a | 413 | tristate "ARIA" |
f1f142ad | 414 | select CRYPTO_ALGAPI |
db131ef9 | 415 | help |
cf514b2a | 416 | ARIA cipher algorithm (RFC5794) |
db131ef9 | 417 | |
f1f142ad RE |
418 | ARIA is a standard encryption algorithm of the Republic of Korea. |
419 | The ARIA specifies three key sizes and rounds. | |
420 | 128-bit: 12 rounds. | |
421 | 192-bit: 14 rounds. | |
422 | 256-bit: 16 rounds. | |
a7d85e06 | 423 | |
cf514b2a RE |
424 | See: |
425 | https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do | |
db131ef9 | 426 | |
f1f142ad | 427 | config CRYPTO_BLOWFISH |
cf514b2a | 428 | tristate "Blowfish" |
f1f142ad RE |
429 | select CRYPTO_ALGAPI |
430 | select CRYPTO_BLOWFISH_COMMON | |
584fffc8 | 431 | help |
cf514b2a | 432 | Blowfish cipher algorithm, by Bruce Schneier |
584fffc8 | 433 | |
f1f142ad RE |
434 | This is a variable key length cipher which can use keys from 32 |
435 | bits to 448 bits in length. It's fast, simple and specifically | |
436 | designed for use on "large microprocessors". | |
ecd6d5c9 | 437 | |
cf514b2a | 438 | See https://www.schneier.com/blowfish.html for further information. |
f1f142ad RE |
439 | |
440 | config CRYPTO_BLOWFISH_COMMON | |
441 | tristate | |
91652be5 | 442 | help |
f1f142ad RE |
443 | Common parts of the Blowfish cipher algorithm shared by the |
444 | generic c and the assembler implementations. | |
91652be5 | 445 | |
f1f142ad | 446 | config CRYPTO_CAMELLIA |
cf514b2a | 447 | tristate "Camellia" |
f1f142ad | 448 | select CRYPTO_ALGAPI |
64470f1b | 449 | help |
cf514b2a | 450 | Camellia cipher algorithms (ISO/IEC 18033-3) |
64470f1b | 451 | |
f1f142ad RE |
452 | Camellia is a symmetric key block cipher developed jointly |
453 | at NTT and Mitsubishi Electric Corporation. | |
454 | ||
455 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
456 | ||
cf514b2a | 457 | See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information. |
f1f142ad RE |
458 | |
459 | config CRYPTO_CAST_COMMON | |
460 | tristate | |
e497c518 | 461 | help |
f1f142ad RE |
462 | Common parts of the CAST cipher algorithms shared by the |
463 | generic c and the assembler implementations. | |
e497c518 | 464 | |
f1f142ad | 465 | config CRYPTO_CAST5 |
cf514b2a | 466 | tristate "CAST5 (CAST-128)" |
f1f142ad RE |
467 | select CRYPTO_ALGAPI |
468 | select CRYPTO_CAST_COMMON | |
584fffc8 | 469 | help |
cf514b2a | 470 | CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3) |
584fffc8 | 471 | |
f1f142ad | 472 | config CRYPTO_CAST6 |
cf514b2a | 473 | tristate "CAST6 (CAST-256)" |
f1f142ad RE |
474 | select CRYPTO_ALGAPI |
475 | select CRYPTO_CAST_COMMON | |
17fee07a | 476 | help |
cf514b2a | 477 | CAST6 (CAST-256) encryption algorithm (RFC2612) |
17fee07a | 478 | |
f1f142ad | 479 | config CRYPTO_DES |
cf514b2a | 480 | tristate "DES and Triple DES EDE" |
f1f142ad RE |
481 | select CRYPTO_ALGAPI |
482 | select CRYPTO_LIB_DES | |
f19f5111 | 483 | help |
cf514b2a RE |
484 | DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and |
485 | Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3) | |
486 | cipher algorithms | |
f19f5111 | 487 | |
f1f142ad | 488 | config CRYPTO_FCRYPT |
cf514b2a | 489 | tristate "FCrypt" |
f1f142ad | 490 | select CRYPTO_ALGAPI |
b95bba5d | 491 | select CRYPTO_SKCIPHER |
1c49678e | 492 | help |
cf514b2a RE |
493 | FCrypt algorithm used by RxRPC |
494 | ||
495 | See https://ota.polyonymo.us/fcrypt-paper.txt | |
1c49678e | 496 | |
f1f142ad | 497 | config CRYPTO_KHAZAD |
cf514b2a | 498 | tristate "Khazad" |
f1f142ad RE |
499 | depends on CRYPTO_USER_API_ENABLE_OBSOLETE |
500 | select CRYPTO_ALGAPI | |
501 | help | |
cf514b2a | 502 | Khazad cipher algorithm |
f1f142ad RE |
503 | |
504 | Khazad was a finalist in the initial NESSIE competition. It is | |
505 | an algorithm optimized for 64-bit processors with good performance | |
506 | on 32-bit processors. Khazad uses an 128 bit key size. | |
507 | ||
cf514b2a RE |
508 | See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html |
509 | for further information. | |
f1f142ad RE |
510 | |
511 | config CRYPTO_SEED | |
cf514b2a | 512 | tristate "SEED" |
f1f142ad RE |
513 | depends on CRYPTO_USER_API_ENABLE_OBSOLETE |
514 | select CRYPTO_ALGAPI | |
515 | help | |
cf514b2a | 516 | SEED cipher algorithm (RFC4269, ISO/IEC 18033-3) |
f1f142ad RE |
517 | |
518 | SEED is a 128-bit symmetric key block cipher that has been | |
519 | developed by KISA (Korea Information Security Agency) as a | |
520 | national standard encryption algorithm of the Republic of Korea. | |
521 | It is a 16 round block cipher with the key size of 128 bit. | |
522 | ||
cf514b2a RE |
523 | See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do |
524 | for further information. | |
f1f142ad RE |
525 | |
526 | config CRYPTO_SERPENT | |
cf514b2a | 527 | tristate "Serpent" |
f1f142ad RE |
528 | select CRYPTO_ALGAPI |
529 | help | |
cf514b2a | 530 | Serpent cipher algorithm, by Anderson, Biham & Knudsen |
f1f142ad RE |
531 | |
532 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
533 | of 8 bits. | |
534 | ||
cf514b2a | 535 | See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information. |
f1f142ad RE |
536 | |
537 | config CRYPTO_SM4 | |
538 | tristate | |
539 | ||
540 | config CRYPTO_SM4_GENERIC | |
cf514b2a | 541 | tristate "SM4 (ShangMi 4)" |
f1f142ad RE |
542 | select CRYPTO_ALGAPI |
543 | select CRYPTO_SM4 | |
544 | help | |
cf514b2a RE |
545 | SM4 cipher algorithms (OSCCA GB/T 32907-2016, |
546 | ISO/IEC 18033-3:2010/Amd 1:2021) | |
f1f142ad RE |
547 | |
548 | SM4 (GBT.32907-2016) is a cryptographic standard issued by the | |
549 | Organization of State Commercial Administration of China (OSCCA) | |
550 | as an authorized cryptographic algorithms for the use within China. | |
551 | ||
552 | SMS4 was originally created for use in protecting wireless | |
553 | networks, and is mandated in the Chinese National Standard for | |
554 | Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) | |
555 | (GB.15629.11-2003). | |
556 | ||
557 | The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and | |
558 | standardized through TC 260 of the Standardization Administration | |
559 | of the People's Republic of China (SAC). | |
560 | ||
561 | The input, output, and key of SMS4 are each 128 bits. | |
562 | ||
cf514b2a | 563 | See https://eprint.iacr.org/2008/329.pdf for further information. |
f1f142ad RE |
564 | |
565 | If unsure, say N. | |
566 | ||
567 | config CRYPTO_TEA | |
cf514b2a | 568 | tristate "TEA, XTEA and XETA" |
f1f142ad RE |
569 | depends on CRYPTO_USER_API_ENABLE_OBSOLETE |
570 | select CRYPTO_ALGAPI | |
571 | help | |
cf514b2a | 572 | TEA (Tiny Encryption Algorithm) cipher algorithms |
f1f142ad RE |
573 | |
574 | Tiny Encryption Algorithm is a simple cipher that uses | |
575 | many rounds for security. It is very fast and uses | |
576 | little memory. | |
577 | ||
578 | Xtendend Tiny Encryption Algorithm is a modification to | |
579 | the TEA algorithm to address a potential key weakness | |
580 | in the TEA algorithm. | |
581 | ||
582 | Xtendend Encryption Tiny Algorithm is a mis-implementation | |
583 | of the XTEA algorithm for compatibility purposes. | |
584 | ||
585 | config CRYPTO_TWOFISH | |
cf514b2a | 586 | tristate "Twofish" |
f1f142ad RE |
587 | select CRYPTO_ALGAPI |
588 | select CRYPTO_TWOFISH_COMMON | |
589 | help | |
cf514b2a | 590 | Twofish cipher algorithm |
f1f142ad RE |
591 | |
592 | Twofish was submitted as an AES (Advanced Encryption Standard) | |
593 | candidate cipher by researchers at CounterPane Systems. It is a | |
594 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
595 | bits. | |
596 | ||
cf514b2a | 597 | See https://www.schneier.com/twofish.html for further information. |
f1f142ad RE |
598 | |
599 | config CRYPTO_TWOFISH_COMMON | |
600 | tristate | |
601 | help | |
602 | Common parts of the Twofish cipher algorithm shared by the | |
603 | generic c and the assembler implementations. | |
604 | ||
605 | endmenu | |
606 | ||
607 | menu "Length-preserving ciphers and modes" | |
26609a21 | 608 | |
059c2a4d | 609 | config CRYPTO_ADIANTUM |
cf514b2a | 610 | tristate "Adiantum" |
059c2a4d | 611 | select CRYPTO_CHACHA20 |
48ea8c6e | 612 | select CRYPTO_LIB_POLY1305_GENERIC |
059c2a4d | 613 | select CRYPTO_NHPOLY1305 |
c8a3315a | 614 | select CRYPTO_MANAGER |
059c2a4d | 615 | help |
cf514b2a RE |
616 | Adiantum tweakable, length-preserving encryption mode |
617 | ||
618 | Designed for fast and secure disk encryption, especially on | |
059c2a4d EB |
619 | CPUs without dedicated crypto instructions. It encrypts |
620 | each sector using the XChaCha12 stream cipher, two passes of | |
621 | an ε-almost-∆-universal hash function, and an invocation of | |
622 | the AES-256 block cipher on a single 16-byte block. On CPUs | |
623 | without AES instructions, Adiantum is much faster than | |
624 | AES-XTS. | |
625 | ||
626 | Adiantum's security is provably reducible to that of its | |
627 | underlying stream and block ciphers, subject to a security | |
628 | bound. Unlike XTS, Adiantum is a true wide-block encryption | |
629 | mode, so it actually provides an even stronger notion of | |
630 | security than XTS, subject to the security bound. | |
631 | ||
632 | If unsure, say N. | |
633 | ||
f1f142ad | 634 | config CRYPTO_ARC4 |
cf514b2a | 635 | tristate "ARC4 (Alleged Rivest Cipher 4)" |
f1f142ad RE |
636 | depends on CRYPTO_USER_API_ENABLE_OBSOLETE |
637 | select CRYPTO_SKCIPHER | |
638 | select CRYPTO_LIB_ARC4 | |
7ff554ce | 639 | help |
cf514b2a | 640 | ARC4 cipher algorithm |
7ff554ce | 641 | |
f1f142ad RE |
642 | ARC4 is a stream cipher using keys ranging from 8 bits to 2048 |
643 | bits in length. This algorithm is required for driver-based | |
644 | WEP, but it should not be for other purposes because of the | |
645 | weakness of the algorithm. | |
646 | ||
647 | config CRYPTO_CHACHA20 | |
cf514b2a | 648 | tristate "ChaCha" |
879f4754 | 649 | select CRYPTO_LIB_CHACHA |
f1f142ad RE |
650 | select CRYPTO_LIB_CHACHA_GENERIC |
651 | select CRYPTO_SKCIPHER | |
be1eb7f7 | 652 | help |
cf514b2a | 653 | The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms |
be1eb7f7 | 654 | |
f1f142ad RE |
655 | ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. |
656 | Bernstein and further specified in RFC7539 for use in IETF protocols. | |
cf514b2a RE |
657 | This is the portable C implementation of ChaCha20. See |
658 | https://cr.yp.to/chacha/chacha-20080128.pdf for further information. | |
be1eb7f7 | 659 | |
f1f142ad RE |
660 | XChaCha20 is the application of the XSalsa20 construction to ChaCha20 |
661 | rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length | |
662 | from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, | |
cf514b2a RE |
663 | while provably retaining ChaCha20's security. See |
664 | https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information. | |
be1eb7f7 | 665 | |
f1f142ad RE |
666 | XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly |
667 | reduced security margin but increased performance. It can be needed | |
668 | in some performance-sensitive scenarios. | |
584fffc8 | 669 | |
f1f142ad | 670 | config CRYPTO_CBC |
cf514b2a | 671 | tristate "CBC (Cipher Block Chaining)" |
f1f142ad | 672 | select CRYPTO_SKCIPHER |
93b5e86a JK |
673 | select CRYPTO_MANAGER |
674 | help | |
cf514b2a RE |
675 | CBC (Cipher Block Chaining) mode (NIST SP800-38A) |
676 | ||
677 | This block cipher mode is required for IPSec ESP (XFRM_ESP). | |
93b5e86a | 678 | |
f1f142ad | 679 | config CRYPTO_CTR |
cf514b2a | 680 | tristate "CTR (Counter)" |
f1f142ad | 681 | select CRYPTO_SKCIPHER |
584fffc8 | 682 | select CRYPTO_MANAGER |
76cb9521 | 683 | help |
cf514b2a | 684 | CTR (Counter) mode (NIST SP800-38A) |
76cb9521 | 685 | |
f1f142ad | 686 | config CRYPTO_CTS |
cf514b2a | 687 | tristate "CTS (Cipher Text Stealing)" |
f1f142ad | 688 | select CRYPTO_SKCIPHER |
f1939f7c SW |
689 | select CRYPTO_MANAGER |
690 | help | |
cf514b2a RE |
691 | CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST |
692 | Addendum to SP800-38A (October 2010)) | |
693 | ||
f1f142ad RE |
694 | This mode is required for Kerberos gss mechanism support |
695 | for AES encryption. | |
f1939f7c | 696 | |
f1f142ad | 697 | config CRYPTO_ECB |
cf514b2a | 698 | tristate "ECB (Electronic Codebook)" |
84534684 | 699 | select CRYPTO_SKCIPHER2 |
f1f142ad | 700 | select CRYPTO_MANAGER |
4a49b499 | 701 | help |
cf514b2a | 702 | ECB (Electronic Codebook) mode (NIST SP800-38A) |
4a49b499 | 703 | |
f1f142ad | 704 | config CRYPTO_HCTR2 |
cf514b2a | 705 | tristate "HCTR2" |
f1f142ad RE |
706 | select CRYPTO_XCTR |
707 | select CRYPTO_POLYVAL | |
708 | select CRYPTO_MANAGER | |
78c37d19 | 709 | help |
cf514b2a RE |
710 | HCTR2 length-preserving encryption mode |
711 | ||
712 | A mode for storage encryption that is efficient on processors with | |
713 | instructions to accelerate AES and carryless multiplication, e.g. | |
714 | x86 processors with AES-NI and CLMUL, and ARM processors with the | |
715 | ARMv8 crypto extensions. | |
716 | ||
717 | See https://eprint.iacr.org/2021/1441 | |
78c37d19 | 718 | |
f1f142ad | 719 | config CRYPTO_LRW |
cf514b2a | 720 | tristate "LRW (Liskov Rivest Wagner)" |
61c581a4 | 721 | select CRYPTO_LIB_GF128MUL |
f1f142ad RE |
722 | select CRYPTO_SKCIPHER |
723 | select CRYPTO_MANAGER | |
f1f142ad | 724 | select CRYPTO_ECB |
f3c923a0 | 725 | help |
cf514b2a RE |
726 | LRW (Liskov Rivest Wagner) mode |
727 | ||
728 | A tweakable, non malleable, non movable | |
f1f142ad RE |
729 | narrow block cipher mode for dm-crypt. Use it with cipher |
730 | specification string aes-lrw-benbi, the key must be 256, 320 or 384. | |
731 | The first 128, 192 or 256 bits in the key are used for AES and the | |
732 | rest is used to tie each cipher block to its logical position. | |
f3c923a0 | 733 | |
cf514b2a RE |
734 | See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf |
735 | ||
f1f142ad | 736 | config CRYPTO_PCBC |
cf514b2a | 737 | tristate "PCBC (Propagating Cipher Block Chaining)" |
f1f142ad RE |
738 | select CRYPTO_SKCIPHER |
739 | select CRYPTO_MANAGER | |
124b53d0 | 740 | help |
cf514b2a RE |
741 | PCBC (Propagating Cipher Block Chaining) mode |
742 | ||
743 | This block cipher mode is required for RxRPC. | |
124b53d0 | 744 | |
f1f142ad RE |
745 | config CRYPTO_XCTR |
746 | tristate | |
747 | select CRYPTO_SKCIPHER | |
748 | select CRYPTO_MANAGER | |
1da177e4 | 749 | help |
cf514b2a RE |
750 | XCTR (XOR Counter) mode for HCTR2 |
751 | ||
752 | This blockcipher mode is a variant of CTR mode using XORs and little-endian | |
753 | addition rather than big-endian arithmetic. | |
754 | ||
f1f142ad | 755 | XCTR mode is used to implement HCTR2. |
1da177e4 | 756 | |
f1f142ad | 757 | config CRYPTO_XTS |
cf514b2a | 758 | tristate "XTS (XOR Encrypt XOR with ciphertext stealing)" |
f1f142ad RE |
759 | select CRYPTO_SKCIPHER |
760 | select CRYPTO_MANAGER | |
761 | select CRYPTO_ECB | |
90831639 | 762 | help |
cf514b2a RE |
763 | XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E |
764 | and IEEE 1619) | |
765 | ||
766 | Use with aes-xts-plain, key size 256, 384 or 512 bits. This | |
767 | implementation currently can't handle a sectorsize which is not a | |
768 | multiple of 16 bytes. | |
90831639 | 769 | |
f1f142ad RE |
770 | config CRYPTO_NHPOLY1305 |
771 | tristate | |
e5835fba | 772 | select CRYPTO_HASH |
f1f142ad | 773 | select CRYPTO_LIB_POLY1305_GENERIC |
534fe2c1 | 774 | |
f1f142ad | 775 | endmenu |
534fe2c1 | 776 | |
f1f142ad | 777 | menu "AEAD (authenticated encryption with associated data) ciphers" |
1da177e4 | 778 | |
f1f142ad | 779 | config CRYPTO_AEGIS128 |
e3d2eadd | 780 | tristate "AEGIS-128" |
f1f142ad RE |
781 | select CRYPTO_AEAD |
782 | select CRYPTO_AES # for AES S-box tables | |
1da177e4 | 783 | help |
e3d2eadd | 784 | AEGIS-128 AEAD algorithm |
2729bb42 | 785 | |
f1f142ad | 786 | config CRYPTO_AEGIS128_SIMD |
e3d2eadd | 787 | bool "AEGIS-128 (arm NEON, arm64 NEON)" |
f1f142ad RE |
788 | depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) |
789 | default y | |
e3d2eadd RE |
790 | help |
791 | AEGIS-128 AEAD algorithm | |
792 | ||
793 | Architecture: arm or arm64 using: | |
794 | - NEON (Advanced SIMD) extension | |
584fffc8 | 795 | |
f1f142ad | 796 | config CRYPTO_CHACHA20POLY1305 |
e3d2eadd | 797 | tristate "ChaCha20-Poly1305" |
f1f142ad | 798 | select CRYPTO_CHACHA20 |
f1f142ad | 799 | select CRYPTO_AEAD |
a298765e | 800 | select CRYPTO_LIB_POLY1305 |
f1f142ad | 801 | select CRYPTO_MANAGER |
b9f535ff | 802 | help |
e3d2eadd RE |
803 | ChaCha20 stream cipher and Poly1305 authenticator combined |
804 | mode (RFC8439) | |
b9f535ff | 805 | |
f1f142ad | 806 | config CRYPTO_CCM |
cf514b2a | 807 | tristate "CCM (Counter with Cipher Block Chaining-MAC)" |
f1f142ad | 808 | select CRYPTO_CTR |
53964b9e | 809 | select CRYPTO_HASH |
f1f142ad RE |
810 | select CRYPTO_AEAD |
811 | select CRYPTO_MANAGER | |
53964b9e | 812 | help |
e3d2eadd RE |
813 | CCM (Counter with Cipher Block Chaining-Message Authentication Code) |
814 | authenticated encryption mode (NIST SP800-38C) | |
d2825fa9 | 815 | |
f1f142ad | 816 | config CRYPTO_GCM |
cf514b2a | 817 | tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)" |
f1f142ad RE |
818 | select CRYPTO_CTR |
819 | select CRYPTO_AEAD | |
820 | select CRYPTO_GHASH | |
f1f142ad | 821 | select CRYPTO_MANAGER |
4f0fc160 | 822 | help |
e3d2eadd RE |
823 | GCM (Galois/Counter Mode) authenticated encryption mode and GMAC |
824 | (GCM Message Authentication Code) (NIST SP800-38D) | |
825 | ||
826 | This is required for IPSec ESP (XFRM_ESP). | |
4f0fc160 | 827 | |
ba51738f HX |
828 | config CRYPTO_GENIV |
829 | tristate | |
f1f142ad | 830 | select CRYPTO_AEAD |
f1f142ad | 831 | select CRYPTO_MANAGER |
ba51738f HX |
832 | select CRYPTO_RNG_DEFAULT |
833 | ||
834 | config CRYPTO_SEQIV | |
835 | tristate "Sequence Number IV Generator" | |
836 | select CRYPTO_GENIV | |
fe18957e | 837 | help |
e3d2eadd RE |
838 | Sequence Number IV generator |
839 | ||
f1f142ad | 840 | This IV generator generates an IV based on a sequence number by |
e3d2eadd RE |
841 | xoring it with a salt. This algorithm is mainly useful for CTR. |
842 | ||
843 | This is required for IPsec ESP (XFRM_ESP). | |
fe18957e | 844 | |
f1f142ad RE |
845 | config CRYPTO_ECHAINIV |
846 | tristate "Encrypted Chain IV Generator" | |
ba51738f | 847 | select CRYPTO_GENIV |
1da177e4 | 848 | help |
e3d2eadd RE |
849 | Encrypted Chain IV generator |
850 | ||
f1f142ad RE |
851 | This IV generator generates an IV based on the encryption of |
852 | a sequence number xored with a salt. This is the default | |
853 | algorithm for CBC. | |
1da177e4 | 854 | |
f1f142ad | 855 | config CRYPTO_ESSIV |
e3d2eadd | 856 | tristate "Encrypted Salt-Sector IV Generator" |
f1f142ad | 857 | select CRYPTO_AUTHENC |
1da177e4 | 858 | help |
e3d2eadd RE |
859 | Encrypted Salt-Sector IV generator |
860 | ||
861 | This IV generator is used in some cases by fscrypt and/or | |
f1f142ad RE |
862 | dm-crypt. It uses the hash of the block encryption key as the |
863 | symmetric key for a block encryption pass applied to the input | |
864 | IV, making low entropy IV sources more suitable for block | |
865 | encryption. | |
1da177e4 | 866 | |
f1f142ad RE |
867 | This driver implements a crypto API template that can be |
868 | instantiated either as an skcipher or as an AEAD (depending on the | |
869 | type of the first template argument), and which defers encryption | |
870 | and decryption requests to the encapsulated cipher after applying | |
871 | ESSIV to the input IV. Note that in the AEAD case, it is assumed | |
872 | that the keys are presented in the same format used by the authenc | |
873 | template, and that the IV appears at the end of the authenticated | |
874 | associated data (AAD) region (which is how dm-crypt uses it.) | |
1da177e4 | 875 | |
f1f142ad RE |
876 | Note that the use of ESSIV is not recommended for new deployments, |
877 | and so this only needs to be enabled when interoperability with | |
878 | existing encrypted volumes of filesystems is required, or when | |
879 | building for a particular system that requires it (e.g., when | |
880 | the SoC in question has accelerated CBC but not XTS, making CBC | |
881 | combined with ESSIV the only feasible mode for h/w accelerated | |
882 | block encryption) | |
1da177e4 | 883 | |
f1f142ad | 884 | endmenu |
b5e0b032 | 885 | |
f1f142ad | 886 | menu "Hashes, digests, and MACs" |
b5e0b032 | 887 | |
f1f142ad | 888 | config CRYPTO_BLAKE2B |
3f342a23 | 889 | tristate "BLAKE2b" |
f1f142ad | 890 | select CRYPTO_HASH |
584fffc8 | 891 | help |
3f342a23 | 892 | BLAKE2b cryptographic hash function (RFC 7693) |
584fffc8 | 893 | |
3f342a23 RE |
894 | BLAKE2b is optimized for 64-bit platforms and can produce digests |
895 | of any size between 1 and 64 bytes. The keyed hash is also implemented. | |
584fffc8 | 896 | |
3f342a23 | 897 | This module provides the following algorithms: |
f1f142ad RE |
898 | - blake2b-160 |
899 | - blake2b-256 | |
900 | - blake2b-384 | |
901 | - blake2b-512 | |
584fffc8 | 902 | |
3f342a23 RE |
903 | Used by the btrfs filesystem. |
904 | ||
f1f142ad | 905 | See https://blake2.net for further information. |
584fffc8 | 906 | |
f1f142ad | 907 | config CRYPTO_CMAC |
3f342a23 | 908 | tristate "CMAC (Cipher-based MAC)" |
f1f142ad RE |
909 | select CRYPTO_HASH |
910 | select CRYPTO_MANAGER | |
584fffc8 | 911 | help |
3f342a23 RE |
912 | CMAC (Cipher-based Message Authentication Code) authentication |
913 | mode (NIST SP800-38B and IETF RFC4493) | |
584fffc8 | 914 | |
f1f142ad | 915 | config CRYPTO_GHASH |
3f342a23 | 916 | tristate "GHASH" |
f1f142ad | 917 | select CRYPTO_HASH |
61c581a4 | 918 | select CRYPTO_LIB_GF128MUL |
52ba867c | 919 | help |
3f342a23 | 920 | GCM GHASH function (NIST SP800-38D) |
52ba867c | 921 | |
f1f142ad | 922 | config CRYPTO_HMAC |
3f342a23 | 923 | tristate "HMAC (Keyed-Hash MAC)" |
f1f142ad RE |
924 | select CRYPTO_HASH |
925 | select CRYPTO_MANAGER | |
584fffc8 | 926 | help |
3f342a23 RE |
927 | HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and |
928 | RFC2104) | |
929 | ||
930 | This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP). | |
584fffc8 | 931 | |
f1f142ad | 932 | config CRYPTO_MD4 |
3f342a23 | 933 | tristate "MD4" |
f1f142ad | 934 | select CRYPTO_HASH |
044ab525 | 935 | help |
3f342a23 | 936 | MD4 message digest algorithm (RFC1320) |
044ab525 | 937 | |
f1f142ad | 938 | config CRYPTO_MD5 |
3f342a23 | 939 | tristate "MD5" |
f1f142ad | 940 | select CRYPTO_HASH |
1da177e4 | 941 | help |
3f342a23 | 942 | MD5 message digest algorithm (RFC1321) |
1da177e4 | 943 | |
f1f142ad | 944 | config CRYPTO_MICHAEL_MIC |
3f342a23 | 945 | tristate "Michael MIC" |
f1f142ad | 946 | select CRYPTO_HASH |
1da177e4 | 947 | help |
3f342a23 RE |
948 | Michael MIC (Message Integrity Code) (IEEE 802.11i) |
949 | ||
950 | Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol), | |
951 | known as WPA (Wif-Fi Protected Access). | |
952 | ||
953 | This algorithm is required for TKIP, but it should not be used for | |
954 | other purposes because of the weakness of the algorithm. | |
1da177e4 | 955 | |
f1f142ad RE |
956 | config CRYPTO_POLYVAL |
957 | tristate | |
f1f142ad | 958 | select CRYPTO_HASH |
61c581a4 | 959 | select CRYPTO_LIB_GF128MUL |
1da177e4 | 960 | help |
3f342a23 RE |
961 | POLYVAL hash function for HCTR2 |
962 | ||
963 | This is used in HCTR2. It is not a general-purpose | |
f1f142ad | 964 | cryptographic hash function. |
fb4f10ed | 965 | |
f1f142ad | 966 | config CRYPTO_RMD160 |
3f342a23 | 967 | tristate "RIPEMD-160" |
f1f142ad | 968 | select CRYPTO_HASH |
1da177e4 | 969 | help |
3f342a23 | 970 | RIPEMD-160 hash function (ISO/IEC 10118-3) |
1da177e4 | 971 | |
f1f142ad RE |
972 | RIPEMD-160 is a 160-bit cryptographic hash function. It is intended |
973 | to be used as a secure replacement for the 128-bit hash functions | |
974 | MD4, MD5 and its predecessor RIPEMD | |
975 | (not to be confused with RIPEMD-128). | |
1da177e4 | 976 | |
3f342a23 | 977 | Its speed is comparable to SHA-1 and there are no known attacks |
f1f142ad | 978 | against RIPEMD-160. |
1da177e4 | 979 | |
f1f142ad | 980 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
3f342a23 RE |
981 | See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html |
982 | for further information. | |
f1f142ad RE |
983 | |
984 | config CRYPTO_SHA1 | |
3f342a23 | 985 | tristate "SHA-1" |
f1f142ad RE |
986 | select CRYPTO_HASH |
987 | select CRYPTO_LIB_SHA1 | |
c08d0e64 | 988 | help |
3f342a23 | 989 | SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3) |
c08d0e64 | 990 | |
f1f142ad | 991 | config CRYPTO_SHA256 |
3f342a23 | 992 | tristate "SHA-224 and SHA-256" |
f1f142ad RE |
993 | select CRYPTO_HASH |
994 | select CRYPTO_LIB_SHA256 | |
950e5c84 | 995 | select CRYPTO_LIB_SHA256_GENERIC |
f1f142ad | 996 | help |
3f342a23 | 997 | SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC 10118-3) |
de61d7ae | 998 | |
3f342a23 RE |
999 | This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP). |
1000 | Used by the btrfs filesystem, Ceph, NFS, and SMB. | |
aa762409 | 1001 | |
f1f142ad | 1002 | config CRYPTO_SHA512 |
3f342a23 | 1003 | tristate "SHA-384 and SHA-512" |
f1f142ad | 1004 | select CRYPTO_HASH |
1da177e4 | 1005 | help |
3f342a23 | 1006 | SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC 10118-3) |
584fffc8 | 1007 | |
f1f142ad | 1008 | config CRYPTO_SHA3 |
3f342a23 | 1009 | tristate "SHA-3" |
f1f142ad | 1010 | select CRYPTO_HASH |
e4e712bb | 1011 | help |
3f342a23 | 1012 | SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3) |
e4e712bb | 1013 | |
f1f142ad | 1014 | config CRYPTO_SM3_GENERIC |
3f342a23 | 1015 | tristate "SM3 (ShangMi 3)" |
f1f142ad | 1016 | select CRYPTO_HASH |
f4065b2f | 1017 | select CRYPTO_LIB_SM3 |
1da177e4 | 1018 | help |
3f342a23 RE |
1019 | SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3) |
1020 | ||
1021 | This is part of the Chinese Commercial Cryptography suite. | |
1da177e4 | 1022 | |
f1f142ad RE |
1023 | References: |
1024 | http://www.oscca.gov.cn/UpFile/20101222141857786.pdf | |
1025 | https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash | |
584fffc8 | 1026 | |
f1f142ad | 1027 | config CRYPTO_STREEBOG |
3f342a23 | 1028 | tristate "Streebog" |
f1f142ad RE |
1029 | select CRYPTO_HASH |
1030 | help | |
3f342a23 RE |
1031 | Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3) |
1032 | ||
1033 | This is one of the Russian cryptographic standard algorithms (called | |
1034 | GOST algorithms). This setting enables two hash algorithms with | |
1035 | 256 and 512 bits output. | |
584fffc8 | 1036 | |
f1f142ad RE |
1037 | References: |
1038 | https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf | |
1039 | https://tools.ietf.org/html/rfc6986 | |
d2825fa9 | 1040 | |
f1f142ad | 1041 | config CRYPTO_WP512 |
3f342a23 | 1042 | tristate "Whirlpool" |
f1f142ad RE |
1043 | select CRYPTO_HASH |
1044 | help | |
3f342a23 RE |
1045 | Whirlpool hash function (ISO/IEC 10118-3) |
1046 | ||
1047 | 512, 384 and 256-bit hashes. | |
747c8ce4 | 1048 | |
f1f142ad | 1049 | Whirlpool-512 is part of the NESSIE cryptographic primitives. |
747c8ce4 | 1050 | |
3f342a23 RE |
1051 | See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html |
1052 | for further information. | |
747c8ce4 | 1053 | |
f1f142ad | 1054 | config CRYPTO_XCBC |
3f342a23 | 1055 | tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)" |
f1f142ad RE |
1056 | select CRYPTO_HASH |
1057 | select CRYPTO_MANAGER | |
1058 | help | |
3f342a23 RE |
1059 | XCBC-MAC (Extended Cipher Block Chaining Message Authentication |
1060 | Code) (RFC3566) | |
747c8ce4 | 1061 | |
f1f142ad | 1062 | config CRYPTO_XXHASH |
3f342a23 | 1063 | tristate "xxHash" |
f1f142ad RE |
1064 | select CRYPTO_HASH |
1065 | select XXHASH | |
1da177e4 | 1066 | help |
3f342a23 RE |
1067 | xxHash non-cryptographic hash algorithm |
1068 | ||
1069 | Extremely fast, working at speeds close to RAM limits. | |
1070 | ||
1071 | Used by the btrfs filesystem. | |
1da177e4 | 1072 | |
f1f142ad | 1073 | endmenu |
584fffc8 | 1074 | |
f1f142ad | 1075 | menu "CRCs (cyclic redundancy checks)" |
584fffc8 | 1076 | |
f1f142ad | 1077 | config CRYPTO_CRC32C |
ec84348d | 1078 | tristate "CRC32c" |
f1f142ad RE |
1079 | select CRYPTO_HASH |
1080 | select CRC32 | |
1081 | help | |
ec84348d RE |
1082 | CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720) |
1083 | ||
1084 | A 32-bit CRC (cyclic redundancy check) with a polynomial defined | |
1085 | by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic | |
1086 | Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions | |
1087 | on Communications, Vol. 41, No. 6, June 1993, selected for use with | |
1088 | iSCSI. | |
1089 | ||
1090 | Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI. | |
584fffc8 | 1091 | |
f1f142ad | 1092 | config CRYPTO_CRC32 |
ec84348d | 1093 | tristate "CRC32" |
f1f142ad RE |
1094 | select CRYPTO_HASH |
1095 | select CRC32 | |
04ac7db3 | 1096 | help |
ec84348d RE |
1097 | CRC32 CRC algorithm (IEEE 802.3) |
1098 | ||
1099 | Used by RoCEv2 and f2fs. | |
04ac7db3 | 1100 | |
f1f142ad | 1101 | endmenu |
584fffc8 | 1102 | |
f1f142ad | 1103 | menu "Compression" |
584fffc8 SS |
1104 | |
1105 | config CRYPTO_DEFLATE | |
a9a98d49 | 1106 | tristate "Deflate" |
584fffc8 | 1107 | select CRYPTO_ALGAPI |
f6ded09d | 1108 | select CRYPTO_ACOMP2 |
584fffc8 SS |
1109 | select ZLIB_INFLATE |
1110 | select ZLIB_DEFLATE | |
3c09f17c | 1111 | help |
a9a98d49 | 1112 | Deflate compression algorithm (RFC1951) |
584fffc8 | 1113 | |
a9a98d49 | 1114 | Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394) |
3c09f17c | 1115 | |
0b77abb3 | 1116 | config CRYPTO_LZO |
a9a98d49 | 1117 | tristate "LZO" |
0b77abb3 | 1118 | select CRYPTO_ALGAPI |
ac9d2c4b | 1119 | select CRYPTO_ACOMP2 |
0b77abb3 ZS |
1120 | select LZO_COMPRESS |
1121 | select LZO_DECOMPRESS | |
1122 | help | |
a9a98d49 RE |
1123 | LZO compression algorithm |
1124 | ||
1125 | See https://www.oberhumer.com/opensource/lzo/ for further information. | |
0b77abb3 | 1126 | |
35a1fc18 | 1127 | config CRYPTO_842 |
a9a98d49 | 1128 | tristate "842" |
2062c5b6 | 1129 | select CRYPTO_ALGAPI |
6a8de3ae | 1130 | select CRYPTO_ACOMP2 |
2062c5b6 DS |
1131 | select 842_COMPRESS |
1132 | select 842_DECOMPRESS | |
35a1fc18 | 1133 | help |
a9a98d49 RE |
1134 | 842 compression algorithm by IBM |
1135 | ||
1136 | See https://github.com/plauth/lib842 for further information. | |
0ea8530d CM |
1137 | |
1138 | config CRYPTO_LZ4 | |
a9a98d49 | 1139 | tristate "LZ4" |
0ea8530d | 1140 | select CRYPTO_ALGAPI |
8cd9330e | 1141 | select CRYPTO_ACOMP2 |
0ea8530d CM |
1142 | select LZ4_COMPRESS |
1143 | select LZ4_DECOMPRESS | |
1144 | help | |
a9a98d49 RE |
1145 | LZ4 compression algorithm |
1146 | ||
1147 | See https://github.com/lz4/lz4 for further information. | |
0ea8530d CM |
1148 | |
1149 | config CRYPTO_LZ4HC | |
a9a98d49 | 1150 | tristate "LZ4HC" |
0ea8530d | 1151 | select CRYPTO_ALGAPI |
91d53d96 | 1152 | select CRYPTO_ACOMP2 |
0ea8530d CM |
1153 | select LZ4HC_COMPRESS |
1154 | select LZ4_DECOMPRESS | |
1155 | help | |
a9a98d49 RE |
1156 | LZ4 high compression mode algorithm |
1157 | ||
1158 | See https://github.com/lz4/lz4 for further information. | |
35a1fc18 | 1159 | |
d28fc3db | 1160 | config CRYPTO_ZSTD |
a9a98d49 | 1161 | tristate "Zstd" |
d28fc3db NT |
1162 | select CRYPTO_ALGAPI |
1163 | select CRYPTO_ACOMP2 | |
1164 | select ZSTD_COMPRESS | |
1165 | select ZSTD_DECOMPRESS | |
1166 | help | |
a9a98d49 RE |
1167 | zstd compression algorithm |
1168 | ||
1169 | See https://github.com/facebook/zstd for further information. | |
d28fc3db | 1170 | |
f1f142ad RE |
1171 | endmenu |
1172 | ||
1173 | menu "Random number generation" | |
17f0f4a4 NH |
1174 | |
1175 | config CRYPTO_ANSI_CPRNG | |
a9a98d49 | 1176 | tristate "ANSI PRNG (Pseudo Random Number Generator)" |
17f0f4a4 NH |
1177 | select CRYPTO_AES |
1178 | select CRYPTO_RNG | |
17f0f4a4 | 1179 | help |
a9a98d49 RE |
1180 | Pseudo RNG (random number generator) (ANSI X9.31 Appendix A.2.4) |
1181 | ||
1182 | This uses the AES cipher algorithm. | |
1183 | ||
1184 | Note that this option must be enabled if CRYPTO_FIPS is selected | |
17f0f4a4 | 1185 | |
f2c89a10 | 1186 | menuconfig CRYPTO_DRBG_MENU |
a9a98d49 | 1187 | tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)" |
419090c6 | 1188 | help |
a9a98d49 RE |
1189 | DRBG (Deterministic Random Bit Generator) (NIST SP800-90A) |
1190 | ||
1191 | In the following submenu, one or more of the DRBG types must be selected. | |
419090c6 | 1192 | |
f2c89a10 | 1193 | if CRYPTO_DRBG_MENU |
419090c6 SM |
1194 | |
1195 | config CRYPTO_DRBG_HMAC | |
401e4238 | 1196 | bool |
419090c6 | 1197 | default y |
419090c6 | 1198 | select CRYPTO_HMAC |
5261cdf4 | 1199 | select CRYPTO_SHA512 |
419090c6 SM |
1200 | |
1201 | config CRYPTO_DRBG_HASH | |
a9a98d49 | 1202 | bool "Hash_DRBG" |
826775bb | 1203 | select CRYPTO_SHA256 |
419090c6 | 1204 | help |
a9a98d49 RE |
1205 | Hash_DRBG variant as defined in NIST SP800-90A. |
1206 | ||
1207 | This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms. | |
419090c6 SM |
1208 | |
1209 | config CRYPTO_DRBG_CTR | |
a9a98d49 | 1210 | bool "CTR_DRBG" |
419090c6 | 1211 | select CRYPTO_AES |
d6fc1a45 | 1212 | select CRYPTO_CTR |
419090c6 | 1213 | help |
a9a98d49 RE |
1214 | CTR_DRBG variant as defined in NIST SP800-90A. |
1215 | ||
1216 | This uses the AES cipher algorithm with the counter block mode. | |
419090c6 | 1217 | |
f2c89a10 HX |
1218 | config CRYPTO_DRBG |
1219 | tristate | |
401e4238 | 1220 | default CRYPTO_DRBG_MENU |
f2c89a10 | 1221 | select CRYPTO_RNG |
bb5530e4 | 1222 | select CRYPTO_JITTERENTROPY |
f2c89a10 HX |
1223 | |
1224 | endif # if CRYPTO_DRBG_MENU | |
419090c6 | 1225 | |
bb5530e4 | 1226 | config CRYPTO_JITTERENTROPY |
a9a98d49 | 1227 | tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)" |
2f313e02 | 1228 | select CRYPTO_RNG |
bb897c55 | 1229 | select CRYPTO_SHA3 |
bb5530e4 | 1230 | help |
a9a98d49 RE |
1231 | CPU Jitter RNG (Random Number Generator) from the Jitterentropy library |
1232 | ||
1233 | A non-physical non-deterministic ("true") RNG (e.g., an entropy source | |
1234 | compliant with NIST SP800-90B) intended to provide a seed to a | |
e63df1ec | 1235 | deterministic RNG (e.g., per NIST SP800-90C). |
a9a98d49 | 1236 | This RNG does not perform any cryptographic whitening of the generated |
e63df1ec | 1237 | random numbers. |
a9a98d49 | 1238 | |
e63df1ec | 1239 | See https://www.chronox.de/jent/ |
bb5530e4 | 1240 | |
e7ed6473 HX |
1241 | if CRYPTO_JITTERENTROPY |
1242 | if CRYPTO_FIPS && EXPERT | |
1243 | ||
59bcfd78 SM |
1244 | choice |
1245 | prompt "CPU Jitter RNG Memory Size" | |
1246 | default CRYPTO_JITTERENTROPY_MEMSIZE_2 | |
59bcfd78 SM |
1247 | help |
1248 | The Jitter RNG measures the execution time of memory accesses. | |
1249 | Multiple consecutive memory accesses are performed. If the memory | |
1250 | size fits into a cache (e.g. L1), only the memory access timing | |
1251 | to that cache is measured. The closer the cache is to the CPU | |
1252 | the less variations are measured and thus the less entropy is | |
1253 | obtained. Thus, if the memory size fits into the L1 cache, the | |
1254 | obtained entropy is less than if the memory size fits within | |
1255 | L1 + L2, which in turn is less if the memory fits into | |
1256 | L1 + L2 + L3. Thus, by selecting a different memory size, | |
1257 | the entropy rate produced by the Jitter RNG can be modified. | |
1258 | ||
1259 | config CRYPTO_JITTERENTROPY_MEMSIZE_2 | |
1260 | bool "2048 Bytes (default)" | |
1261 | ||
1262 | config CRYPTO_JITTERENTROPY_MEMSIZE_128 | |
1263 | bool "128 kBytes" | |
1264 | ||
1265 | config CRYPTO_JITTERENTROPY_MEMSIZE_1024 | |
1266 | bool "1024 kBytes" | |
1267 | ||
1268 | config CRYPTO_JITTERENTROPY_MEMSIZE_8192 | |
1269 | bool "8192 kBytes" | |
1270 | endchoice | |
1271 | ||
1272 | config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS | |
1273 | int | |
1274 | default 64 if CRYPTO_JITTERENTROPY_MEMSIZE_2 | |
1275 | default 512 if CRYPTO_JITTERENTROPY_MEMSIZE_128 | |
1276 | default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024 | |
1277 | default 4096 if CRYPTO_JITTERENTROPY_MEMSIZE_8192 | |
1278 | ||
1279 | config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE | |
1280 | int | |
1281 | default 32 if CRYPTO_JITTERENTROPY_MEMSIZE_2 | |
1282 | default 256 if CRYPTO_JITTERENTROPY_MEMSIZE_128 | |
1283 | default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024 | |
1284 | default 2048 if CRYPTO_JITTERENTROPY_MEMSIZE_8192 | |
1285 | ||
0baa8fab SM |
1286 | config CRYPTO_JITTERENTROPY_OSR |
1287 | int "CPU Jitter RNG Oversampling Rate" | |
1288 | range 1 15 | |
95a798d2 | 1289 | default 3 |
0baa8fab SM |
1290 | help |
1291 | The Jitter RNG allows the specification of an oversampling rate (OSR). | |
1292 | The Jitter RNG operation requires a fixed amount of timing | |
1293 | measurements to produce one output block of random numbers. The | |
1294 | OSR value is multiplied with the amount of timing measurements to | |
1295 | generate one output block. Thus, the timing measurement is oversampled | |
1296 | by the OSR factor. The oversampling allows the Jitter RNG to operate | |
1297 | on hardware whose timers deliver limited amount of entropy (e.g. | |
1298 | the timer is coarse) by setting the OSR to a higher value. The | |
1299 | trade-off, however, is that the Jitter RNG now requires more time | |
1300 | to generate random numbers. | |
1301 | ||
69f1c387 SM |
1302 | config CRYPTO_JITTERENTROPY_TESTINTERFACE |
1303 | bool "CPU Jitter RNG Test Interface" | |
69f1c387 SM |
1304 | help |
1305 | The test interface allows a privileged process to capture | |
1306 | the raw unconditioned high resolution time stamp noise that | |
1307 | is collected by the Jitter RNG for statistical analysis. As | |
1308 | this data is used at the same time to generate random bits, | |
1309 | the Jitter RNG operates in an insecure mode as long as the | |
1310 | recording is enabled. This interface therefore is only | |
1311 | intended for testing purposes and is not suitable for | |
1312 | production systems. | |
1313 | ||
1314 | The raw noise data can be obtained using the jent_raw_hires | |
1315 | debugfs file. Using the option | |
1316 | jitterentropy_testing.boot_raw_hires_test=1 the raw noise of | |
1317 | the first 1000 entropy events since boot can be sampled. | |
1318 | ||
1319 | If unsure, select N. | |
1320 | ||
e7ed6473 HX |
1321 | endif # if CRYPTO_FIPS && EXPERT |
1322 | ||
1323 | if !(CRYPTO_FIPS && EXPERT) | |
1324 | ||
1325 | config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS | |
1326 | int | |
1327 | default 64 | |
1328 | ||
1329 | config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE | |
1330 | int | |
1331 | default 32 | |
1332 | ||
1333 | config CRYPTO_JITTERENTROPY_OSR | |
1334 | int | |
1335 | default 1 | |
1336 | ||
1337 | config CRYPTO_JITTERENTROPY_TESTINTERFACE | |
1338 | bool | |
1339 | ||
1340 | endif # if !(CRYPTO_FIPS && EXPERT) | |
1341 | endif # if CRYPTO_JITTERENTROPY | |
1342 | ||
026a733e SM |
1343 | config CRYPTO_KDF800108_CTR |
1344 | tristate | |
a88592cc | 1345 | select CRYPTO_HMAC |
304b4ace | 1346 | select CRYPTO_SHA256 |
026a733e | 1347 | |
f1f142ad | 1348 | endmenu |
9bc51715 | 1349 | menu "Userspace interface" |
f1f142ad | 1350 | |
03c8efc1 HX |
1351 | config CRYPTO_USER_API |
1352 | tristate | |
1353 | ||
fe869cdb | 1354 | config CRYPTO_USER_API_HASH |
9bc51715 | 1355 | tristate "Hash algorithms" |
7451708f | 1356 | depends on NET |
fe869cdb HX |
1357 | select CRYPTO_HASH |
1358 | select CRYPTO_USER_API | |
1359 | help | |
9bc51715 RE |
1360 | Enable the userspace interface for hash algorithms. |
1361 | ||
1362 | See Documentation/crypto/userspace-if.rst and | |
1363 | https://www.chronox.de/libkcapi/html/index.html | |
fe869cdb | 1364 | |
8ff59090 | 1365 | config CRYPTO_USER_API_SKCIPHER |
9bc51715 | 1366 | tristate "Symmetric key cipher algorithms" |
7451708f | 1367 | depends on NET |
b95bba5d | 1368 | select CRYPTO_SKCIPHER |
8ff59090 HX |
1369 | select CRYPTO_USER_API |
1370 | help | |
9bc51715 RE |
1371 | Enable the userspace interface for symmetric key cipher algorithms. |
1372 | ||
1373 | See Documentation/crypto/userspace-if.rst and | |
1374 | https://www.chronox.de/libkcapi/html/index.html | |
8ff59090 | 1375 | |
2f375538 | 1376 | config CRYPTO_USER_API_RNG |
9bc51715 | 1377 | tristate "RNG (random number generator) algorithms" |
2f375538 SM |
1378 | depends on NET |
1379 | select CRYPTO_RNG | |
1380 | select CRYPTO_USER_API | |
1381 | help | |
9bc51715 RE |
1382 | Enable the userspace interface for RNG (random number generator) |
1383 | algorithms. | |
1384 | ||
1385 | See Documentation/crypto/userspace-if.rst and | |
1386 | https://www.chronox.de/libkcapi/html/index.html | |
2f375538 | 1387 | |
77ebdabe EP |
1388 | config CRYPTO_USER_API_RNG_CAVP |
1389 | bool "Enable CAVP testing of DRBG" | |
1390 | depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG | |
1391 | help | |
9bc51715 RE |
1392 | Enable extra APIs in the userspace interface for NIST CAVP |
1393 | (Cryptographic Algorithm Validation Program) testing: | |
1394 | - resetting DRBG entropy | |
1395 | - providing Additional Data | |
1396 | ||
77ebdabe EP |
1397 | This should only be enabled for CAVP testing. You should say |
1398 | no unless you know what this is. | |
1399 | ||
b64a2d95 | 1400 | config CRYPTO_USER_API_AEAD |
9bc51715 | 1401 | tristate "AEAD cipher algorithms" |
b64a2d95 HX |
1402 | depends on NET |
1403 | select CRYPTO_AEAD | |
b95bba5d | 1404 | select CRYPTO_SKCIPHER |
b64a2d95 HX |
1405 | select CRYPTO_USER_API |
1406 | help | |
9bc51715 RE |
1407 | Enable the userspace interface for AEAD cipher algorithms. |
1408 | ||
1409 | See Documentation/crypto/userspace-if.rst and | |
1410 | https://www.chronox.de/libkcapi/html/index.html | |
b64a2d95 | 1411 | |
9ace6771 | 1412 | config CRYPTO_USER_API_ENABLE_OBSOLETE |
9bc51715 | 1413 | bool "Obsolete cryptographic algorithms" |
9ace6771 AB |
1414 | depends on CRYPTO_USER_API |
1415 | default y | |
1416 | help | |
1417 | Allow obsolete cryptographic algorithms to be selected that have | |
1418 | already been phased out from internal use by the kernel, and are | |
1419 | only useful for userspace clients that still rely on them. | |
1420 | ||
f1f142ad RE |
1421 | endmenu |
1422 | ||
ee08997f DK |
1423 | config CRYPTO_HASH_INFO |
1424 | bool | |
1425 | ||
27bc50fc | 1426 | if !KMSAN # avoid false positives from assembly |
4a329fec RE |
1427 | if ARM |
1428 | source "arch/arm/crypto/Kconfig" | |
1429 | endif | |
1430 | if ARM64 | |
1431 | source "arch/arm64/crypto/Kconfig" | |
1432 | endif | |
2f164822 MZ |
1433 | if LOONGARCH |
1434 | source "arch/loongarch/crypto/Kconfig" | |
1435 | endif | |
e45f710b RE |
1436 | if MIPS |
1437 | source "arch/mips/crypto/Kconfig" | |
1438 | endif | |
6a490a4e RE |
1439 | if PPC |
1440 | source "arch/powerpc/crypto/Kconfig" | |
1441 | endif | |
178f3856 HS |
1442 | if RISCV |
1443 | source "arch/riscv/crypto/Kconfig" | |
1444 | endif | |
c9d24c97 RE |
1445 | if S390 |
1446 | source "arch/s390/crypto/Kconfig" | |
1447 | endif | |
0e9f9ea6 RE |
1448 | if SPARC |
1449 | source "arch/sparc/crypto/Kconfig" | |
1450 | endif | |
28a936ef RE |
1451 | if X86 |
1452 | source "arch/x86/crypto/Kconfig" | |
1453 | endif | |
27bc50fc | 1454 | endif |
e45f710b | 1455 | |
1da177e4 | 1456 | source "drivers/crypto/Kconfig" |
8636a1f9 MY |
1457 | source "crypto/asymmetric_keys/Kconfig" |
1458 | source "certs/Kconfig" | |
3936f02b | 1459 | source "crypto/krb5/Kconfig" |
1da177e4 | 1460 | |
cce9e06d | 1461 | endif # if CRYPTO |