Merge tag 'xfs-5.17-merge-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[linux-2.6-block.git] / block / kyber-iosched.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
00e04393
OS
2/*
3 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
4 * scalable techniques.
5 *
6 * Copyright (C) 2017 Facebook
00e04393
OS
7 */
8
9#include <linux/kernel.h>
10#include <linux/blkdev.h>
11#include <linux/blk-mq.h>
00e04393
OS
12#include <linux/module.h>
13#include <linux/sbitmap.h>
14
b357e4a6
CK
15#include <trace/events/block.h>
16
2e9bc346 17#include "elevator.h"
00e04393
OS
18#include "blk.h"
19#include "blk-mq.h"
16b738f6 20#include "blk-mq-debugfs.h"
00e04393
OS
21#include "blk-mq-sched.h"
22#include "blk-mq-tag.h"
00e04393 23
6c3b7af1
OS
24#define CREATE_TRACE_POINTS
25#include <trace/events/kyber.h>
26
6e25cb01
OS
27/*
28 * Scheduling domains: the device is divided into multiple domains based on the
29 * request type.
30 */
00e04393
OS
31enum {
32 KYBER_READ,
6e25cb01
OS
33 KYBER_WRITE,
34 KYBER_DISCARD,
35 KYBER_OTHER,
00e04393
OS
36 KYBER_NUM_DOMAINS,
37};
38
6c3b7af1
OS
39static const char *kyber_domain_names[] = {
40 [KYBER_READ] = "READ",
41 [KYBER_WRITE] = "WRITE",
42 [KYBER_DISCARD] = "DISCARD",
43 [KYBER_OTHER] = "OTHER",
44};
45
00e04393 46enum {
00e04393
OS
47 /*
48 * In order to prevent starvation of synchronous requests by a flood of
49 * asynchronous requests, we reserve 25% of requests for synchronous
50 * operations.
51 */
52 KYBER_ASYNC_PERCENT = 75,
53};
54
55/*
6e25cb01 56 * Maximum device-wide depth for each scheduling domain.
00e04393 57 *
6e25cb01
OS
58 * Even for fast devices with lots of tags like NVMe, you can saturate the
59 * device with only a fraction of the maximum possible queue depth. So, we cap
60 * these to a reasonable value.
00e04393
OS
61 */
62static const unsigned int kyber_depth[] = {
63 [KYBER_READ] = 256,
6e25cb01
OS
64 [KYBER_WRITE] = 128,
65 [KYBER_DISCARD] = 64,
66 [KYBER_OTHER] = 16,
00e04393
OS
67};
68
69/*
6e25cb01
OS
70 * Default latency targets for each scheduling domain.
71 */
72static const u64 kyber_latency_targets[] = {
f0a0cddd
OS
73 [KYBER_READ] = 2ULL * NSEC_PER_MSEC,
74 [KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
75 [KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
6e25cb01
OS
76};
77
78/*
79 * Batch size (number of requests we'll dispatch in a row) for each scheduling
80 * domain.
00e04393
OS
81 */
82static const unsigned int kyber_batch_size[] = {
83 [KYBER_READ] = 16,
6e25cb01
OS
84 [KYBER_WRITE] = 8,
85 [KYBER_DISCARD] = 1,
86 [KYBER_OTHER] = 1,
87};
88
89/*
90 * Requests latencies are recorded in a histogram with buckets defined relative
91 * to the target latency:
92 *
93 * <= 1/4 * target latency
94 * <= 1/2 * target latency
95 * <= 3/4 * target latency
96 * <= target latency
97 * <= 1 1/4 * target latency
98 * <= 1 1/2 * target latency
99 * <= 1 3/4 * target latency
100 * > 1 3/4 * target latency
101 */
102enum {
103 /*
104 * The width of the latency histogram buckets is
105 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
106 */
107 KYBER_LATENCY_SHIFT = 2,
108 /*
109 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
110 * thus, "good".
111 */
112 KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
113 /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
114 KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
115};
116
117/*
118 * We measure both the total latency and the I/O latency (i.e., latency after
119 * submitting to the device).
120 */
121enum {
122 KYBER_TOTAL_LATENCY,
123 KYBER_IO_LATENCY,
124};
125
6c3b7af1
OS
126static const char *kyber_latency_type_names[] = {
127 [KYBER_TOTAL_LATENCY] = "total",
128 [KYBER_IO_LATENCY] = "I/O",
129};
130
6e25cb01
OS
131/*
132 * Per-cpu latency histograms: total latency and I/O latency for each scheduling
133 * domain except for KYBER_OTHER.
134 */
135struct kyber_cpu_latency {
136 atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
00e04393
OS
137};
138
a6088845
JW
139/*
140 * There is a same mapping between ctx & hctx and kcq & khd,
141 * we use request->mq_ctx->index_hw to index the kcq in khd.
142 */
143struct kyber_ctx_queue {
144 /*
145 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
146 * Also protect the rqs on rq_list when merge.
147 */
148 spinlock_t lock;
149 struct list_head rq_list[KYBER_NUM_DOMAINS];
150} ____cacheline_aligned_in_smp;
151
00e04393 152struct kyber_queue_data {
6c3b7af1 153 struct request_queue *q;
c4110804 154 dev_t dev;
6c3b7af1 155
00e04393 156 /*
6e25cb01
OS
157 * Each scheduling domain has a limited number of in-flight requests
158 * device-wide, limited by these tokens.
00e04393
OS
159 */
160 struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
161
162 /*
163 * Async request percentage, converted to per-word depth for
164 * sbitmap_get_shallow().
165 */
166 unsigned int async_depth;
167
6e25cb01
OS
168 struct kyber_cpu_latency __percpu *cpu_latency;
169
170 /* Timer for stats aggregation and adjusting domain tokens. */
171 struct timer_list timer;
172
173 unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
174
175 unsigned long latency_timeout[KYBER_OTHER];
176
177 int domain_p99[KYBER_OTHER];
178
00e04393 179 /* Target latencies in nanoseconds. */
6e25cb01 180 u64 latency_targets[KYBER_OTHER];
00e04393
OS
181};
182
183struct kyber_hctx_data {
184 spinlock_t lock;
185 struct list_head rqs[KYBER_NUM_DOMAINS];
186 unsigned int cur_domain;
187 unsigned int batching;
a6088845
JW
188 struct kyber_ctx_queue *kcqs;
189 struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
00203ba4 190 struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
fcf38cdf 191 struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
00e04393
OS
192 atomic_t wait_index[KYBER_NUM_DOMAINS];
193};
194
fcf38cdf
OS
195static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
196 void *key);
197
a6088845 198static unsigned int kyber_sched_domain(unsigned int op)
00e04393 199{
6e25cb01
OS
200 switch (op & REQ_OP_MASK) {
201 case REQ_OP_READ:
00e04393 202 return KYBER_READ;
6e25cb01
OS
203 case REQ_OP_WRITE:
204 return KYBER_WRITE;
205 case REQ_OP_DISCARD:
206 return KYBER_DISCARD;
207 default:
00e04393 208 return KYBER_OTHER;
6e25cb01 209 }
00e04393
OS
210}
211
6e25cb01
OS
212static void flush_latency_buckets(struct kyber_queue_data *kqd,
213 struct kyber_cpu_latency *cpu_latency,
214 unsigned int sched_domain, unsigned int type)
00e04393 215{
6e25cb01
OS
216 unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
217 atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
218 unsigned int bucket;
00e04393 219
6e25cb01
OS
220 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
221 buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
00e04393
OS
222}
223
224/*
6e25cb01
OS
225 * Calculate the histogram bucket with the given percentile rank, or -1 if there
226 * aren't enough samples yet.
00e04393 227 */
6e25cb01
OS
228static int calculate_percentile(struct kyber_queue_data *kqd,
229 unsigned int sched_domain, unsigned int type,
230 unsigned int percentile)
00e04393 231{
6e25cb01
OS
232 unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
233 unsigned int bucket, samples = 0, percentile_samples;
234
235 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
236 samples += buckets[bucket];
237
238 if (!samples)
239 return -1;
00e04393
OS
240
241 /*
6e25cb01
OS
242 * We do the calculation once we have 500 samples or one second passes
243 * since the first sample was recorded, whichever comes first.
00e04393 244 */
6e25cb01
OS
245 if (!kqd->latency_timeout[sched_domain])
246 kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
247 if (samples < 500 &&
248 time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
249 return -1;
250 }
251 kqd->latency_timeout[sched_domain] = 0;
00e04393 252
6e25cb01
OS
253 percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
254 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
255 if (buckets[bucket] >= percentile_samples)
00e04393 256 break;
6e25cb01 257 percentile_samples -= buckets[bucket];
00e04393 258 }
6e25cb01 259 memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
00e04393 260
c4110804 261 trace_kyber_latency(kqd->dev, kyber_domain_names[sched_domain],
6c3b7af1
OS
262 kyber_latency_type_names[type], percentile,
263 bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
264
6e25cb01
OS
265 return bucket;
266}
267
268static void kyber_resize_domain(struct kyber_queue_data *kqd,
269 unsigned int sched_domain, unsigned int depth)
270{
00e04393 271 depth = clamp(depth, 1U, kyber_depth[sched_domain]);
6c3b7af1 272 if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
00e04393 273 sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
c4110804 274 trace_kyber_adjust(kqd->dev, kyber_domain_names[sched_domain],
6c3b7af1
OS
275 depth);
276 }
00e04393
OS
277}
278
6e25cb01
OS
279static void kyber_timer_fn(struct timer_list *t)
280{
281 struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
282 unsigned int sched_domain;
283 int cpu;
284 bool bad = false;
285
286 /* Sum all of the per-cpu latency histograms. */
287 for_each_online_cpu(cpu) {
288 struct kyber_cpu_latency *cpu_latency;
289
290 cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
291 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
292 flush_latency_buckets(kqd, cpu_latency, sched_domain,
293 KYBER_TOTAL_LATENCY);
294 flush_latency_buckets(kqd, cpu_latency, sched_domain,
295 KYBER_IO_LATENCY);
00e04393
OS
296 }
297 }
298
6e25cb01
OS
299 /*
300 * Check if any domains have a high I/O latency, which might indicate
301 * congestion in the device. Note that we use the p90; we don't want to
302 * be too sensitive to outliers here.
303 */
304 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
305 int p90;
00e04393 306
6e25cb01
OS
307 p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
308 90);
309 if (p90 >= KYBER_GOOD_BUCKETS)
310 bad = true;
311 }
00e04393
OS
312
313 /*
6e25cb01
OS
314 * Adjust the scheduling domain depths. If we determined that there was
315 * congestion, we throttle all domains with good latencies. Either way,
316 * we ease up on throttling domains with bad latencies.
00e04393 317 */
6e25cb01
OS
318 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
319 unsigned int orig_depth, depth;
320 int p99;
321
322 p99 = calculate_percentile(kqd, sched_domain,
323 KYBER_TOTAL_LATENCY, 99);
324 /*
325 * This is kind of subtle: different domains will not
326 * necessarily have enough samples to calculate the latency
327 * percentiles during the same window, so we have to remember
328 * the p99 for the next time we observe congestion; once we do,
329 * we don't want to throttle again until we get more data, so we
330 * reset it to -1.
331 */
332 if (bad) {
333 if (p99 < 0)
334 p99 = kqd->domain_p99[sched_domain];
335 kqd->domain_p99[sched_domain] = -1;
336 } else if (p99 >= 0) {
337 kqd->domain_p99[sched_domain] = p99;
338 }
339 if (p99 < 0)
340 continue;
341
342 /*
343 * If this domain has bad latency, throttle less. Otherwise,
344 * throttle more iff we determined that there is congestion.
345 *
346 * The new depth is scaled linearly with the p99 latency vs the
347 * latency target. E.g., if the p99 is 3/4 of the target, then
348 * we throttle down to 3/4 of the current depth, and if the p99
349 * is 2x the target, then we double the depth.
350 */
351 if (bad || p99 >= KYBER_GOOD_BUCKETS) {
352 orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
353 depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
354 kyber_resize_domain(kqd, sched_domain, depth);
355 }
356 }
00e04393
OS
357}
358
00e04393
OS
359static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
360{
361 struct kyber_queue_data *kqd;
00e04393
OS
362 int ret = -ENOMEM;
363 int i;
364
6e25cb01 365 kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
00e04393
OS
366 if (!kqd)
367 goto err;
00e04393 368
6c3b7af1 369 kqd->q = q;
c4110804 370 kqd->dev = disk_devt(q->disk);
6c3b7af1 371
6e25cb01
OS
372 kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
373 GFP_KERNEL | __GFP_ZERO);
374 if (!kqd->cpu_latency)
00e04393
OS
375 goto err_kqd;
376
6e25cb01
OS
377 timer_setup(&kqd->timer, kyber_timer_fn, 0);
378
00e04393
OS
379 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
380 WARN_ON(!kyber_depth[i]);
381 WARN_ON(!kyber_batch_size[i]);
382 ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
fa2a1f60
OS
383 kyber_depth[i], -1, false,
384 GFP_KERNEL, q->node);
00e04393
OS
385 if (ret) {
386 while (--i >= 0)
387 sbitmap_queue_free(&kqd->domain_tokens[i]);
6e25cb01 388 goto err_buckets;
00e04393 389 }
00e04393
OS
390 }
391
6e25cb01
OS
392 for (i = 0; i < KYBER_OTHER; i++) {
393 kqd->domain_p99[i] = -1;
394 kqd->latency_targets[i] = kyber_latency_targets[i];
395 }
00e04393 396
00e04393
OS
397 return kqd;
398
6e25cb01
OS
399err_buckets:
400 free_percpu(kqd->cpu_latency);
00e04393
OS
401err_kqd:
402 kfree(kqd);
403err:
404 return ERR_PTR(ret);
405}
406
407static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
408{
409 struct kyber_queue_data *kqd;
410 struct elevator_queue *eq;
411
412 eq = elevator_alloc(q, e);
413 if (!eq)
414 return -ENOMEM;
415
416 kqd = kyber_queue_data_alloc(q);
417 if (IS_ERR(kqd)) {
418 kobject_put(&eq->kobj);
419 return PTR_ERR(kqd);
420 }
421
6e25cb01
OS
422 blk_stat_enable_accounting(q);
423
00e04393
OS
424 eq->elevator_data = kqd;
425 q->elevator = eq;
426
00e04393
OS
427 return 0;
428}
429
430static void kyber_exit_sched(struct elevator_queue *e)
431{
432 struct kyber_queue_data *kqd = e->elevator_data;
00e04393
OS
433 int i;
434
6e25cb01 435 del_timer_sync(&kqd->timer);
68497092 436 blk_stat_disable_accounting(kqd->q);
00e04393
OS
437
438 for (i = 0; i < KYBER_NUM_DOMAINS; i++)
439 sbitmap_queue_free(&kqd->domain_tokens[i]);
6e25cb01 440 free_percpu(kqd->cpu_latency);
00e04393
OS
441 kfree(kqd);
442}
443
a6088845
JW
444static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
445{
446 unsigned int i;
447
448 spin_lock_init(&kcq->lock);
449 for (i = 0; i < KYBER_NUM_DOMAINS; i++)
450 INIT_LIST_HEAD(&kcq->rq_list[i]);
451}
452
ffa772cf 453static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx)
00e04393 454{
28820640 455 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
ffa772cf 456 struct blk_mq_tags *tags = hctx->sched_tags;
ae0f1a73 457 unsigned int shift = tags->bitmap_tags.sb.shift;
ffa772cf
YY
458
459 kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
460
ae0f1a73 461 sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, kqd->async_depth);
ffa772cf
YY
462}
463
464static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
465{
00e04393
OS
466 struct kyber_hctx_data *khd;
467 int i;
468
469 khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
470 if (!khd)
471 return -ENOMEM;
472
a6088845
JW
473 khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
474 sizeof(struct kyber_ctx_queue),
475 GFP_KERNEL, hctx->numa_node);
476 if (!khd->kcqs)
477 goto err_khd;
478
479 for (i = 0; i < hctx->nr_ctx; i++)
480 kyber_ctx_queue_init(&khd->kcqs[i]);
481
482 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
483 if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
efe1f3a1 484 ilog2(8), GFP_KERNEL, hctx->numa_node,
c548e62b 485 false, false)) {
a6088845
JW
486 while (--i >= 0)
487 sbitmap_free(&khd->kcq_map[i]);
488 goto err_kcqs;
489 }
490 }
491
00e04393
OS
492 spin_lock_init(&khd->lock);
493
494 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
495 INIT_LIST_HEAD(&khd->rqs[i]);
00203ba4
JA
496 khd->domain_wait[i].sbq = NULL;
497 init_waitqueue_func_entry(&khd->domain_wait[i].wait,
fcf38cdf 498 kyber_domain_wake);
00203ba4
JA
499 khd->domain_wait[i].wait.private = hctx;
500 INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
00e04393
OS
501 atomic_set(&khd->wait_index[i], 0);
502 }
503
504 khd->cur_domain = 0;
505 khd->batching = 0;
506
507 hctx->sched_data = khd;
ffa772cf 508 kyber_depth_updated(hctx);
00e04393
OS
509
510 return 0;
a6088845
JW
511
512err_kcqs:
513 kfree(khd->kcqs);
514err_khd:
515 kfree(khd);
516 return -ENOMEM;
00e04393
OS
517}
518
519static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
520{
a6088845
JW
521 struct kyber_hctx_data *khd = hctx->sched_data;
522 int i;
523
524 for (i = 0; i < KYBER_NUM_DOMAINS; i++)
525 sbitmap_free(&khd->kcq_map[i]);
526 kfree(khd->kcqs);
00e04393
OS
527 kfree(hctx->sched_data);
528}
529
530static int rq_get_domain_token(struct request *rq)
531{
532 return (long)rq->elv.priv[0];
533}
534
535static void rq_set_domain_token(struct request *rq, int token)
536{
537 rq->elv.priv[0] = (void *)(long)token;
538}
539
540static void rq_clear_domain_token(struct kyber_queue_data *kqd,
541 struct request *rq)
542{
543 unsigned int sched_domain;
544 int nr;
545
546 nr = rq_get_domain_token(rq);
547 if (nr != -1) {
a6088845 548 sched_domain = kyber_sched_domain(rq->cmd_flags);
00e04393
OS
549 sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
550 rq->mq_ctx->cpu);
551 }
552}
553
5bbf4e5a 554static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
00e04393 555{
00e04393
OS
556 /*
557 * We use the scheduler tags as per-hardware queue queueing tokens.
558 * Async requests can be limited at this stage.
559 */
5bbf4e5a
CH
560 if (!op_is_sync(op)) {
561 struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
562
00e04393 563 data->shallow_depth = kqd->async_depth;
5bbf4e5a
CH
564 }
565}
00e04393 566
efed9a33 567static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
14ccb66b 568 unsigned int nr_segs)
a6088845 569{
efed9a33
OS
570 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
571 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
a6088845 572 struct kyber_hctx_data *khd = hctx->sched_data;
f31967f0 573 struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
a6088845
JW
574 unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
575 struct list_head *rq_list = &kcq->rq_list[sched_domain];
576 bool merged;
577
578 spin_lock(&kcq->lock);
bdc6a287 579 merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
a6088845 580 spin_unlock(&kcq->lock);
a6088845
JW
581
582 return merged;
583}
584
5d9c305b 585static void kyber_prepare_request(struct request *rq)
5bbf4e5a
CH
586{
587 rq_set_domain_token(rq, -1);
00e04393
OS
588}
589
a6088845
JW
590static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
591 struct list_head *rq_list, bool at_head)
592{
593 struct kyber_hctx_data *khd = hctx->sched_data;
594 struct request *rq, *next;
595
596 list_for_each_entry_safe(rq, next, rq_list, queuelist) {
597 unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
f31967f0 598 struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
a6088845
JW
599 struct list_head *head = &kcq->rq_list[sched_domain];
600
601 spin_lock(&kcq->lock);
fb7b9b02 602 trace_block_rq_insert(rq);
a6088845
JW
603 if (at_head)
604 list_move(&rq->queuelist, head);
605 else
606 list_move_tail(&rq->queuelist, head);
607 sbitmap_set_bit(&khd->kcq_map[sched_domain],
f31967f0 608 rq->mq_ctx->index_hw[hctx->type]);
a6088845
JW
609 spin_unlock(&kcq->lock);
610 }
611}
612
7b9e9361 613static void kyber_finish_request(struct request *rq)
00e04393 614{
7b9e9361 615 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
00e04393
OS
616
617 rq_clear_domain_token(kqd, rq);
00e04393
OS
618}
619
6e25cb01
OS
620static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
621 unsigned int sched_domain, unsigned int type,
622 u64 target, u64 latency)
00e04393 623{
6e25cb01
OS
624 unsigned int bucket;
625 u64 divisor;
00e04393 626
6e25cb01
OS
627 if (latency > 0) {
628 divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
629 bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
630 KYBER_LATENCY_BUCKETS - 1);
631 } else {
632 bucket = 0;
00e04393
OS
633 }
634
6e25cb01
OS
635 atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
636}
00e04393 637
6e25cb01
OS
638static void kyber_completed_request(struct request *rq, u64 now)
639{
640 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
641 struct kyber_cpu_latency *cpu_latency;
642 unsigned int sched_domain;
643 u64 target;
644
645 sched_domain = kyber_sched_domain(rq->cmd_flags);
646 if (sched_domain == KYBER_OTHER)
00e04393
OS
647 return;
648
6e25cb01
OS
649 cpu_latency = get_cpu_ptr(kqd->cpu_latency);
650 target = kqd->latency_targets[sched_domain];
651 add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
652 target, now - rq->start_time_ns);
653 add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
654 now - rq->io_start_time_ns);
655 put_cpu_ptr(kqd->cpu_latency);
00e04393 656
6e25cb01 657 timer_reduce(&kqd->timer, jiffies + HZ / 10);
00e04393
OS
658}
659
a6088845
JW
660struct flush_kcq_data {
661 struct kyber_hctx_data *khd;
662 unsigned int sched_domain;
663 struct list_head *list;
664};
665
666static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
00e04393 667{
a6088845
JW
668 struct flush_kcq_data *flush_data = data;
669 struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
00e04393 670
a6088845
JW
671 spin_lock(&kcq->lock);
672 list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
673 flush_data->list);
674 sbitmap_clear_bit(sb, bitnr);
675 spin_unlock(&kcq->lock);
00e04393 676
a6088845
JW
677 return true;
678}
679
680static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
681 unsigned int sched_domain,
682 struct list_head *list)
683{
684 struct flush_kcq_data data = {
685 .khd = khd,
686 .sched_domain = sched_domain,
687 .list = list,
688 };
689
690 sbitmap_for_each_set(&khd->kcq_map[sched_domain],
691 flush_busy_kcq, &data);
00e04393
OS
692}
693
00203ba4 694static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
00e04393
OS
695 void *key)
696{
00203ba4
JA
697 struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
698 struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
00e04393 699
00203ba4 700 sbitmap_del_wait_queue(wait);
00e04393
OS
701 blk_mq_run_hw_queue(hctx, true);
702 return 1;
703}
704
705static int kyber_get_domain_token(struct kyber_queue_data *kqd,
706 struct kyber_hctx_data *khd,
707 struct blk_mq_hw_ctx *hctx)
708{
709 unsigned int sched_domain = khd->cur_domain;
710 struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
00203ba4 711 struct sbq_wait *wait = &khd->domain_wait[sched_domain];
00e04393
OS
712 struct sbq_wait_state *ws;
713 int nr;
714
715 nr = __sbitmap_queue_get(domain_tokens);
00e04393
OS
716
717 /*
718 * If we failed to get a domain token, make sure the hardware queue is
719 * run when one becomes available. Note that this is serialized on
720 * khd->lock, but we still need to be careful about the waker.
721 */
00203ba4 722 if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
00e04393
OS
723 ws = sbq_wait_ptr(domain_tokens,
724 &khd->wait_index[sched_domain]);
fcf38cdf 725 khd->domain_ws[sched_domain] = ws;
00203ba4 726 sbitmap_add_wait_queue(domain_tokens, ws, wait);
00e04393
OS
727
728 /*
729 * Try again in case a token was freed before we got on the wait
fcf38cdf 730 * queue.
00e04393
OS
731 */
732 nr = __sbitmap_queue_get(domain_tokens);
fcf38cdf 733 }
8cf46660 734
fcf38cdf
OS
735 /*
736 * If we got a token while we were on the wait queue, remove ourselves
737 * from the wait queue to ensure that all wake ups make forward
738 * progress. It's possible that the waker already deleted the entry
739 * between the !list_empty_careful() check and us grabbing the lock, but
740 * list_del_init() is okay with that.
741 */
00203ba4 742 if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
fcf38cdf
OS
743 ws = khd->domain_ws[sched_domain];
744 spin_lock_irq(&ws->wait.lock);
00203ba4 745 sbitmap_del_wait_queue(wait);
fcf38cdf 746 spin_unlock_irq(&ws->wait.lock);
00e04393 747 }
fcf38cdf 748
00e04393
OS
749 return nr;
750}
751
752static struct request *
753kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
754 struct kyber_hctx_data *khd,
a6088845 755 struct blk_mq_hw_ctx *hctx)
00e04393
OS
756{
757 struct list_head *rqs;
758 struct request *rq;
759 int nr;
760
761 rqs = &khd->rqs[khd->cur_domain];
00e04393
OS
762
763 /*
a6088845
JW
764 * If we already have a flushed request, then we just need to get a
765 * token for it. Otherwise, if there are pending requests in the kcqs,
766 * flush the kcqs, but only if we can get a token. If not, we should
767 * leave the requests in the kcqs so that they can be merged. Note that
768 * khd->lock serializes the flushes, so if we observed any bit set in
769 * the kcq_map, we will always get a request.
00e04393 770 */
a6088845 771 rq = list_first_entry_or_null(rqs, struct request, queuelist);
00e04393
OS
772 if (rq) {
773 nr = kyber_get_domain_token(kqd, khd, hctx);
774 if (nr >= 0) {
775 khd->batching++;
776 rq_set_domain_token(rq, nr);
777 list_del_init(&rq->queuelist);
778 return rq;
6c3b7af1 779 } else {
c4110804 780 trace_kyber_throttled(kqd->dev,
6c3b7af1 781 kyber_domain_names[khd->cur_domain]);
00e04393 782 }
a6088845
JW
783 } else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
784 nr = kyber_get_domain_token(kqd, khd, hctx);
785 if (nr >= 0) {
786 kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
787 rq = list_first_entry(rqs, struct request, queuelist);
788 khd->batching++;
789 rq_set_domain_token(rq, nr);
790 list_del_init(&rq->queuelist);
791 return rq;
6c3b7af1 792 } else {
c4110804 793 trace_kyber_throttled(kqd->dev,
6c3b7af1 794 kyber_domain_names[khd->cur_domain]);
a6088845 795 }
00e04393
OS
796 }
797
798 /* There were either no pending requests or no tokens. */
799 return NULL;
800}
801
802static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
803{
804 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
805 struct kyber_hctx_data *khd = hctx->sched_data;
00e04393
OS
806 struct request *rq;
807 int i;
808
809 spin_lock(&khd->lock);
810
811 /*
812 * First, if we are still entitled to batch, try to dispatch a request
813 * from the batch.
814 */
815 if (khd->batching < kyber_batch_size[khd->cur_domain]) {
a6088845 816 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
00e04393
OS
817 if (rq)
818 goto out;
819 }
820
821 /*
822 * Either,
823 * 1. We were no longer entitled to a batch.
824 * 2. The domain we were batching didn't have any requests.
825 * 3. The domain we were batching was out of tokens.
826 *
827 * Start another batch. Note that this wraps back around to the original
828 * domain if no other domains have requests or tokens.
829 */
830 khd->batching = 0;
831 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
832 if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
833 khd->cur_domain = 0;
834 else
835 khd->cur_domain++;
836
a6088845 837 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
00e04393
OS
838 if (rq)
839 goto out;
840 }
841
842 rq = NULL;
843out:
844 spin_unlock(&khd->lock);
845 return rq;
846}
847
848static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
849{
850 struct kyber_hctx_data *khd = hctx->sched_data;
851 int i;
852
853 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
a6088845
JW
854 if (!list_empty_careful(&khd->rqs[i]) ||
855 sbitmap_any_bit_set(&khd->kcq_map[i]))
00e04393
OS
856 return true;
857 }
a6088845
JW
858
859 return false;
00e04393
OS
860}
861
6e25cb01
OS
862#define KYBER_LAT_SHOW_STORE(domain, name) \
863static ssize_t kyber_##name##_lat_show(struct elevator_queue *e, \
864 char *page) \
00e04393
OS
865{ \
866 struct kyber_queue_data *kqd = e->elevator_data; \
867 \
6e25cb01 868 return sprintf(page, "%llu\n", kqd->latency_targets[domain]); \
00e04393
OS
869} \
870 \
6e25cb01
OS
871static ssize_t kyber_##name##_lat_store(struct elevator_queue *e, \
872 const char *page, size_t count) \
00e04393
OS
873{ \
874 struct kyber_queue_data *kqd = e->elevator_data; \
875 unsigned long long nsec; \
876 int ret; \
877 \
878 ret = kstrtoull(page, 10, &nsec); \
879 if (ret) \
880 return ret; \
881 \
6e25cb01 882 kqd->latency_targets[domain] = nsec; \
00e04393
OS
883 \
884 return count; \
885}
6e25cb01
OS
886KYBER_LAT_SHOW_STORE(KYBER_READ, read);
887KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
00e04393
OS
888#undef KYBER_LAT_SHOW_STORE
889
890#define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
891static struct elv_fs_entry kyber_sched_attrs[] = {
892 KYBER_LAT_ATTR(read),
893 KYBER_LAT_ATTR(write),
894 __ATTR_NULL
895};
896#undef KYBER_LAT_ATTR
897
16b738f6
OS
898#ifdef CONFIG_BLK_DEBUG_FS
899#define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name) \
900static int kyber_##name##_tokens_show(void *data, struct seq_file *m) \
901{ \
902 struct request_queue *q = data; \
903 struct kyber_queue_data *kqd = q->elevator->elevator_data; \
904 \
905 sbitmap_queue_show(&kqd->domain_tokens[domain], m); \
906 return 0; \
907} \
908 \
909static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos) \
910 __acquires(&khd->lock) \
911{ \
912 struct blk_mq_hw_ctx *hctx = m->private; \
913 struct kyber_hctx_data *khd = hctx->sched_data; \
914 \
915 spin_lock(&khd->lock); \
916 return seq_list_start(&khd->rqs[domain], *pos); \
917} \
918 \
919static void *kyber_##name##_rqs_next(struct seq_file *m, void *v, \
920 loff_t *pos) \
921{ \
922 struct blk_mq_hw_ctx *hctx = m->private; \
923 struct kyber_hctx_data *khd = hctx->sched_data; \
924 \
925 return seq_list_next(v, &khd->rqs[domain], pos); \
926} \
927 \
928static void kyber_##name##_rqs_stop(struct seq_file *m, void *v) \
929 __releases(&khd->lock) \
930{ \
931 struct blk_mq_hw_ctx *hctx = m->private; \
932 struct kyber_hctx_data *khd = hctx->sched_data; \
933 \
934 spin_unlock(&khd->lock); \
935} \
936 \
937static const struct seq_operations kyber_##name##_rqs_seq_ops = { \
938 .start = kyber_##name##_rqs_start, \
939 .next = kyber_##name##_rqs_next, \
940 .stop = kyber_##name##_rqs_stop, \
941 .show = blk_mq_debugfs_rq_show, \
942}; \
943 \
944static int kyber_##name##_waiting_show(void *data, struct seq_file *m) \
945{ \
946 struct blk_mq_hw_ctx *hctx = data; \
947 struct kyber_hctx_data *khd = hctx->sched_data; \
00203ba4 948 wait_queue_entry_t *wait = &khd->domain_wait[domain].wait; \
16b738f6 949 \
2055da97 950 seq_printf(m, "%d\n", !list_empty_careful(&wait->entry)); \
16b738f6
OS
951 return 0; \
952}
953KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
6e25cb01
OS
954KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
955KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
16b738f6
OS
956KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
957#undef KYBER_DEBUGFS_DOMAIN_ATTRS
958
959static int kyber_async_depth_show(void *data, struct seq_file *m)
960{
961 struct request_queue *q = data;
962 struct kyber_queue_data *kqd = q->elevator->elevator_data;
963
964 seq_printf(m, "%u\n", kqd->async_depth);
965 return 0;
966}
967
968static int kyber_cur_domain_show(void *data, struct seq_file *m)
969{
970 struct blk_mq_hw_ctx *hctx = data;
971 struct kyber_hctx_data *khd = hctx->sched_data;
972
6c3b7af1 973 seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
16b738f6
OS
974 return 0;
975}
976
977static int kyber_batching_show(void *data, struct seq_file *m)
978{
979 struct blk_mq_hw_ctx *hctx = data;
980 struct kyber_hctx_data *khd = hctx->sched_data;
981
982 seq_printf(m, "%u\n", khd->batching);
983 return 0;
984}
985
986#define KYBER_QUEUE_DOMAIN_ATTRS(name) \
987 {#name "_tokens", 0400, kyber_##name##_tokens_show}
988static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
989 KYBER_QUEUE_DOMAIN_ATTRS(read),
6e25cb01
OS
990 KYBER_QUEUE_DOMAIN_ATTRS(write),
991 KYBER_QUEUE_DOMAIN_ATTRS(discard),
16b738f6
OS
992 KYBER_QUEUE_DOMAIN_ATTRS(other),
993 {"async_depth", 0400, kyber_async_depth_show},
994 {},
995};
996#undef KYBER_QUEUE_DOMAIN_ATTRS
997
998#define KYBER_HCTX_DOMAIN_ATTRS(name) \
999 {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops}, \
1000 {#name "_waiting", 0400, kyber_##name##_waiting_show}
1001static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
1002 KYBER_HCTX_DOMAIN_ATTRS(read),
6e25cb01
OS
1003 KYBER_HCTX_DOMAIN_ATTRS(write),
1004 KYBER_HCTX_DOMAIN_ATTRS(discard),
16b738f6
OS
1005 KYBER_HCTX_DOMAIN_ATTRS(other),
1006 {"cur_domain", 0400, kyber_cur_domain_show},
1007 {"batching", 0400, kyber_batching_show},
1008 {},
1009};
1010#undef KYBER_HCTX_DOMAIN_ATTRS
1011#endif
1012
00e04393 1013static struct elevator_type kyber_sched = {
f9cd4bfe 1014 .ops = {
00e04393
OS
1015 .init_sched = kyber_init_sched,
1016 .exit_sched = kyber_exit_sched,
1017 .init_hctx = kyber_init_hctx,
1018 .exit_hctx = kyber_exit_hctx,
5bbf4e5a 1019 .limit_depth = kyber_limit_depth,
a6088845 1020 .bio_merge = kyber_bio_merge,
5bbf4e5a 1021 .prepare_request = kyber_prepare_request,
a6088845 1022 .insert_requests = kyber_insert_requests,
7b9e9361 1023 .finish_request = kyber_finish_request,
ba989a01 1024 .requeue_request = kyber_finish_request,
00e04393
OS
1025 .completed_request = kyber_completed_request,
1026 .dispatch_request = kyber_dispatch_request,
1027 .has_work = kyber_has_work,
ffa772cf 1028 .depth_updated = kyber_depth_updated,
00e04393 1029 },
16b738f6
OS
1030#ifdef CONFIG_BLK_DEBUG_FS
1031 .queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1032 .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1033#endif
00e04393
OS
1034 .elevator_attrs = kyber_sched_attrs,
1035 .elevator_name = "kyber",
b6e68ee8 1036 .elevator_features = ELEVATOR_F_MQ_AWARE,
00e04393
OS
1037 .elevator_owner = THIS_MODULE,
1038};
1039
1040static int __init kyber_init(void)
1041{
1042 return elv_register(&kyber_sched);
1043}
1044
1045static void __exit kyber_exit(void)
1046{
1047 elv_unregister(&kyber_sched);
1048}
1049
1050module_init(kyber_init);
1051module_exit(kyber_exit);
1052
1053MODULE_AUTHOR("Omar Sandoval");
1054MODULE_LICENSE("GPL");
1055MODULE_DESCRIPTION("Kyber I/O scheduler");