cfq: calculate the seek_mean per cfq_queue not per cfq_io_context
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
1da177e4 12#include <linux/rbtree.h>
22e2c507 13#include <linux/ioprio.h>
7b679138 14#include <linux/blktrace_api.h>
1da177e4
LT
15
16/*
17 * tunables
18 */
fe094d98
JA
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
64100099 21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
64100099 26static const int cfq_slice_sync = HZ / 10;
3b18152c 27static int cfq_slice_async = HZ / 25;
64100099 28static const int cfq_slice_async_rq = 2;
caaa5f9f 29static int cfq_slice_idle = HZ / 125;
22e2c507 30
d9e7620e 31/*
0871714e 32 * offset from end of service tree
d9e7620e 33 */
0871714e 34#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
35
36/*
37 * below this threshold, we consider thinktime immediate
38 */
39#define CFQ_MIN_TT (2)
40
22e2c507 41#define CFQ_SLICE_SCALE (5)
45333d5a 42#define CFQ_HW_QUEUE_MIN (5)
22e2c507 43
fe094d98
JA
44#define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 46#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 47
e18b890b
CL
48static struct kmem_cache *cfq_pool;
49static struct kmem_cache *cfq_ioc_pool;
1da177e4 50
245b2e70 51static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 52static struct completion *ioc_gone;
9a11b4ed 53static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 54
22e2c507
JA
55#define CFQ_PRIO_LISTS IOPRIO_BE_NR
56#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
57#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
206dc69b
JA
59#define sample_valid(samples) ((samples) > 80)
60
cc09e299
JA
61/*
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
66 */
67struct cfq_rb_root {
68 struct rb_root rb;
69 struct rb_node *left;
70};
71#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
72
6118b70b
JA
73/*
74 * Per process-grouping structure
75 */
76struct cfq_queue {
77 /* reference count */
78 atomic_t ref;
79 /* various state flags, see below */
80 unsigned int flags;
81 /* parent cfq_data */
82 struct cfq_data *cfqd;
83 /* service_tree member */
84 struct rb_node rb_node;
85 /* service_tree key */
86 unsigned long rb_key;
87 /* prio tree member */
88 struct rb_node p_node;
89 /* prio tree root we belong to, if any */
90 struct rb_root *p_root;
91 /* sorted list of pending requests */
92 struct rb_root sort_list;
93 /* if fifo isn't expired, next request to serve */
94 struct request *next_rq;
95 /* requests queued in sort_list */
96 int queued[2];
97 /* currently allocated requests */
98 int allocated[2];
99 /* fifo list of requests in sort_list */
100 struct list_head fifo;
101
102 unsigned long slice_end;
103 long slice_resid;
104 unsigned int slice_dispatch;
105
106 /* pending metadata requests */
107 int meta_pending;
108 /* number of requests that are on the dispatch list or inside driver */
109 int dispatched;
110
111 /* io prio of this group */
112 unsigned short ioprio, org_ioprio;
113 unsigned short ioprio_class, org_ioprio_class;
114
b2c18e1e
JM
115 unsigned int seek_samples;
116 u64 seek_total;
117 sector_t seek_mean;
118 sector_t last_request_pos;
119
6118b70b
JA
120 pid_t pid;
121};
122
22e2c507
JA
123/*
124 * Per block device queue structure
125 */
1da177e4 126struct cfq_data {
165125e1 127 struct request_queue *queue;
22e2c507
JA
128
129 /*
130 * rr list of queues with requests and the count of them
131 */
cc09e299 132 struct cfq_rb_root service_tree;
a36e71f9
JA
133
134 /*
135 * Each priority tree is sorted by next_request position. These
136 * trees are used when determining if two or more queues are
137 * interleaving requests (see cfq_close_cooperator).
138 */
139 struct rb_root prio_trees[CFQ_PRIO_LISTS];
140
22e2c507
JA
141 unsigned int busy_queues;
142
5ad531db 143 int rq_in_driver[2];
3ed9a296 144 int sync_flight;
45333d5a
AC
145
146 /*
147 * queue-depth detection
148 */
149 int rq_queued;
25776e35 150 int hw_tag;
45333d5a
AC
151 int hw_tag_samples;
152 int rq_in_driver_peak;
1da177e4 153
22e2c507
JA
154 /*
155 * idle window management
156 */
157 struct timer_list idle_slice_timer;
23e018a1 158 struct work_struct unplug_work;
1da177e4 159
22e2c507
JA
160 struct cfq_queue *active_queue;
161 struct cfq_io_context *active_cic;
22e2c507 162
c2dea2d1
VT
163 /*
164 * async queue for each priority case
165 */
166 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
167 struct cfq_queue *async_idle_cfqq;
15c31be4 168
6d048f53 169 sector_t last_position;
1da177e4 170
1da177e4
LT
171 /*
172 * tunables, see top of file
173 */
174 unsigned int cfq_quantum;
22e2c507 175 unsigned int cfq_fifo_expire[2];
1da177e4
LT
176 unsigned int cfq_back_penalty;
177 unsigned int cfq_back_max;
22e2c507
JA
178 unsigned int cfq_slice[2];
179 unsigned int cfq_slice_async_rq;
180 unsigned int cfq_slice_idle;
963b72fc 181 unsigned int cfq_latency;
d9ff4187
AV
182
183 struct list_head cic_list;
1da177e4 184
6118b70b
JA
185 /*
186 * Fallback dummy cfqq for extreme OOM conditions
187 */
188 struct cfq_queue oom_cfqq;
365722bb
VG
189
190 unsigned long last_end_sync_rq;
1da177e4
LT
191};
192
3b18152c 193enum cfqq_state_flags {
b0b8d749
JA
194 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
195 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 196 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 197 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
198 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
199 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
200 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 201 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 202 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
a36e71f9 203 CFQ_CFQQ_FLAG_coop, /* has done a coop jump of the queue */
3b18152c
JA
204};
205
206#define CFQ_CFQQ_FNS(name) \
207static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
208{ \
fe094d98 209 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
210} \
211static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
212{ \
fe094d98 213 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
214} \
215static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
216{ \
fe094d98 217 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
218}
219
220CFQ_CFQQ_FNS(on_rr);
221CFQ_CFQQ_FNS(wait_request);
b029195d 222CFQ_CFQQ_FNS(must_dispatch);
3b18152c 223CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
224CFQ_CFQQ_FNS(fifo_expire);
225CFQ_CFQQ_FNS(idle_window);
226CFQ_CFQQ_FNS(prio_changed);
44f7c160 227CFQ_CFQQ_FNS(slice_new);
91fac317 228CFQ_CFQQ_FNS(sync);
a36e71f9 229CFQ_CFQQ_FNS(coop);
3b18152c
JA
230#undef CFQ_CFQQ_FNS
231
7b679138
JA
232#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
233 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
234#define cfq_log(cfqd, fmt, args...) \
235 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
236
165125e1 237static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 238static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 239 struct io_context *, gfp_t);
4ac845a2 240static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
241 struct io_context *);
242
5ad531db
JA
243static inline int rq_in_driver(struct cfq_data *cfqd)
244{
245 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
246}
247
91fac317 248static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 249 bool is_sync)
91fac317 250{
a6151c3a 251 return cic->cfqq[is_sync];
91fac317
VT
252}
253
254static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 255 struct cfq_queue *cfqq, bool is_sync)
91fac317 256{
a6151c3a 257 cic->cfqq[is_sync] = cfqq;
91fac317
VT
258}
259
260/*
261 * We regard a request as SYNC, if it's either a read or has the SYNC bit
262 * set (in which case it could also be direct WRITE).
263 */
a6151c3a 264static inline bool cfq_bio_sync(struct bio *bio)
91fac317 265{
a6151c3a 266 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 267}
1da177e4 268
99f95e52
AM
269/*
270 * scheduler run of queue, if there are requests pending and no one in the
271 * driver that will restart queueing
272 */
23e018a1 273static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 274{
7b679138
JA
275 if (cfqd->busy_queues) {
276 cfq_log(cfqd, "schedule dispatch");
23e018a1 277 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 278 }
99f95e52
AM
279}
280
165125e1 281static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
282{
283 struct cfq_data *cfqd = q->elevator->elevator_data;
284
b4878f24 285 return !cfqd->busy_queues;
99f95e52
AM
286}
287
44f7c160
JA
288/*
289 * Scale schedule slice based on io priority. Use the sync time slice only
290 * if a queue is marked sync and has sync io queued. A sync queue with async
291 * io only, should not get full sync slice length.
292 */
a6151c3a 293static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 294 unsigned short prio)
44f7c160 295{
d9e7620e 296 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 297
d9e7620e
JA
298 WARN_ON(prio >= IOPRIO_BE_NR);
299
300 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
301}
44f7c160 302
d9e7620e
JA
303static inline int
304cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
305{
306 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
307}
308
309static inline void
310cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
311{
312 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
7b679138 313 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
314}
315
316/*
317 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
318 * isn't valid until the first request from the dispatch is activated
319 * and the slice time set.
320 */
a6151c3a 321static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
322{
323 if (cfq_cfqq_slice_new(cfqq))
324 return 0;
325 if (time_before(jiffies, cfqq->slice_end))
326 return 0;
327
328 return 1;
329}
330
1da177e4 331/*
5e705374 332 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 333 * We choose the request that is closest to the head right now. Distance
e8a99053 334 * behind the head is penalized and only allowed to a certain extent.
1da177e4 335 */
5e705374
JA
336static struct request *
337cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
1da177e4
LT
338{
339 sector_t last, s1, s2, d1 = 0, d2 = 0;
1da177e4 340 unsigned long back_max;
e8a99053
AM
341#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
342#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
343 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 344
5e705374
JA
345 if (rq1 == NULL || rq1 == rq2)
346 return rq2;
347 if (rq2 == NULL)
348 return rq1;
9c2c38a1 349
5e705374
JA
350 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
351 return rq1;
352 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
353 return rq2;
374f84ac
JA
354 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
355 return rq1;
356 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
357 return rq2;
1da177e4 358
83096ebf
TH
359 s1 = blk_rq_pos(rq1);
360 s2 = blk_rq_pos(rq2);
1da177e4 361
6d048f53 362 last = cfqd->last_position;
1da177e4 363
1da177e4
LT
364 /*
365 * by definition, 1KiB is 2 sectors
366 */
367 back_max = cfqd->cfq_back_max * 2;
368
369 /*
370 * Strict one way elevator _except_ in the case where we allow
371 * short backward seeks which are biased as twice the cost of a
372 * similar forward seek.
373 */
374 if (s1 >= last)
375 d1 = s1 - last;
376 else if (s1 + back_max >= last)
377 d1 = (last - s1) * cfqd->cfq_back_penalty;
378 else
e8a99053 379 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
380
381 if (s2 >= last)
382 d2 = s2 - last;
383 else if (s2 + back_max >= last)
384 d2 = (last - s2) * cfqd->cfq_back_penalty;
385 else
e8a99053 386 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
387
388 /* Found required data */
e8a99053
AM
389
390 /*
391 * By doing switch() on the bit mask "wrap" we avoid having to
392 * check two variables for all permutations: --> faster!
393 */
394 switch (wrap) {
5e705374 395 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 396 if (d1 < d2)
5e705374 397 return rq1;
e8a99053 398 else if (d2 < d1)
5e705374 399 return rq2;
e8a99053
AM
400 else {
401 if (s1 >= s2)
5e705374 402 return rq1;
e8a99053 403 else
5e705374 404 return rq2;
e8a99053 405 }
1da177e4 406
e8a99053 407 case CFQ_RQ2_WRAP:
5e705374 408 return rq1;
e8a99053 409 case CFQ_RQ1_WRAP:
5e705374
JA
410 return rq2;
411 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
412 default:
413 /*
414 * Since both rqs are wrapped,
415 * start with the one that's further behind head
416 * (--> only *one* back seek required),
417 * since back seek takes more time than forward.
418 */
419 if (s1 <= s2)
5e705374 420 return rq1;
1da177e4 421 else
5e705374 422 return rq2;
1da177e4
LT
423 }
424}
425
498d3aa2
JA
426/*
427 * The below is leftmost cache rbtree addon
428 */
0871714e 429static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299
JA
430{
431 if (!root->left)
432 root->left = rb_first(&root->rb);
433
0871714e
JA
434 if (root->left)
435 return rb_entry(root->left, struct cfq_queue, rb_node);
436
437 return NULL;
cc09e299
JA
438}
439
a36e71f9
JA
440static void rb_erase_init(struct rb_node *n, struct rb_root *root)
441{
442 rb_erase(n, root);
443 RB_CLEAR_NODE(n);
444}
445
cc09e299
JA
446static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
447{
448 if (root->left == n)
449 root->left = NULL;
a36e71f9 450 rb_erase_init(n, &root->rb);
cc09e299
JA
451}
452
1da177e4
LT
453/*
454 * would be nice to take fifo expire time into account as well
455 */
5e705374
JA
456static struct request *
457cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
458 struct request *last)
1da177e4 459{
21183b07
JA
460 struct rb_node *rbnext = rb_next(&last->rb_node);
461 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 462 struct request *next = NULL, *prev = NULL;
1da177e4 463
21183b07 464 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
465
466 if (rbprev)
5e705374 467 prev = rb_entry_rq(rbprev);
1da177e4 468
21183b07 469 if (rbnext)
5e705374 470 next = rb_entry_rq(rbnext);
21183b07
JA
471 else {
472 rbnext = rb_first(&cfqq->sort_list);
473 if (rbnext && rbnext != &last->rb_node)
5e705374 474 next = rb_entry_rq(rbnext);
21183b07 475 }
1da177e4 476
21183b07 477 return cfq_choose_req(cfqd, next, prev);
1da177e4
LT
478}
479
d9e7620e
JA
480static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
481 struct cfq_queue *cfqq)
1da177e4 482{
d9e7620e
JA
483 /*
484 * just an approximation, should be ok.
485 */
67e6b49e
JA
486 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
487 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
488}
489
498d3aa2
JA
490/*
491 * The cfqd->service_tree holds all pending cfq_queue's that have
492 * requests waiting to be processed. It is sorted in the order that
493 * we will service the queues.
494 */
a36e71f9 495static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 496 bool add_front)
d9e7620e 497{
0871714e
JA
498 struct rb_node **p, *parent;
499 struct cfq_queue *__cfqq;
d9e7620e 500 unsigned long rb_key;
498d3aa2 501 int left;
d9e7620e 502
0871714e
JA
503 if (cfq_class_idle(cfqq)) {
504 rb_key = CFQ_IDLE_DELAY;
505 parent = rb_last(&cfqd->service_tree.rb);
506 if (parent && parent != &cfqq->rb_node) {
507 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
508 rb_key += __cfqq->rb_key;
509 } else
510 rb_key += jiffies;
511 } else if (!add_front) {
b9c8946b
JA
512 /*
513 * Get our rb key offset. Subtract any residual slice
514 * value carried from last service. A negative resid
515 * count indicates slice overrun, and this should position
516 * the next service time further away in the tree.
517 */
edd75ffd 518 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 519 rb_key -= cfqq->slice_resid;
edd75ffd 520 cfqq->slice_resid = 0;
48e025e6
CZ
521 } else {
522 rb_key = -HZ;
523 __cfqq = cfq_rb_first(&cfqd->service_tree);
524 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
525 }
1da177e4 526
d9e7620e 527 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 528 /*
d9e7620e 529 * same position, nothing more to do
99f9628a 530 */
d9e7620e
JA
531 if (rb_key == cfqq->rb_key)
532 return;
1da177e4 533
cc09e299 534 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
1da177e4 535 }
d9e7620e 536
498d3aa2 537 left = 1;
0871714e
JA
538 parent = NULL;
539 p = &cfqd->service_tree.rb.rb_node;
d9e7620e 540 while (*p) {
67060e37 541 struct rb_node **n;
cc09e299 542
d9e7620e
JA
543 parent = *p;
544 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
545
0c534e0a
JA
546 /*
547 * sort RT queues first, we always want to give
67060e37
JA
548 * preference to them. IDLE queues goes to the back.
549 * after that, sort on the next service time.
0c534e0a
JA
550 */
551 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
67060e37 552 n = &(*p)->rb_left;
0c534e0a 553 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
67060e37
JA
554 n = &(*p)->rb_right;
555 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
556 n = &(*p)->rb_left;
557 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
558 n = &(*p)->rb_right;
48e025e6 559 else if (time_before(rb_key, __cfqq->rb_key))
67060e37
JA
560 n = &(*p)->rb_left;
561 else
562 n = &(*p)->rb_right;
563
564 if (n == &(*p)->rb_right)
cc09e299 565 left = 0;
67060e37
JA
566
567 p = n;
d9e7620e
JA
568 }
569
cc09e299
JA
570 if (left)
571 cfqd->service_tree.left = &cfqq->rb_node;
572
d9e7620e
JA
573 cfqq->rb_key = rb_key;
574 rb_link_node(&cfqq->rb_node, parent, p);
cc09e299 575 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
1da177e4
LT
576}
577
a36e71f9 578static struct cfq_queue *
f2d1f0ae
JA
579cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
580 sector_t sector, struct rb_node **ret_parent,
581 struct rb_node ***rb_link)
a36e71f9 582{
a36e71f9
JA
583 struct rb_node **p, *parent;
584 struct cfq_queue *cfqq = NULL;
585
586 parent = NULL;
587 p = &root->rb_node;
588 while (*p) {
589 struct rb_node **n;
590
591 parent = *p;
592 cfqq = rb_entry(parent, struct cfq_queue, p_node);
593
594 /*
595 * Sort strictly based on sector. Smallest to the left,
596 * largest to the right.
597 */
2e46e8b2 598 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 599 n = &(*p)->rb_right;
2e46e8b2 600 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
601 n = &(*p)->rb_left;
602 else
603 break;
604 p = n;
3ac6c9f8 605 cfqq = NULL;
a36e71f9
JA
606 }
607
608 *ret_parent = parent;
609 if (rb_link)
610 *rb_link = p;
3ac6c9f8 611 return cfqq;
a36e71f9
JA
612}
613
614static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
615{
a36e71f9
JA
616 struct rb_node **p, *parent;
617 struct cfq_queue *__cfqq;
618
f2d1f0ae
JA
619 if (cfqq->p_root) {
620 rb_erase(&cfqq->p_node, cfqq->p_root);
621 cfqq->p_root = NULL;
622 }
a36e71f9
JA
623
624 if (cfq_class_idle(cfqq))
625 return;
626 if (!cfqq->next_rq)
627 return;
628
f2d1f0ae 629 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
630 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
631 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
632 if (!__cfqq) {
633 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
634 rb_insert_color(&cfqq->p_node, cfqq->p_root);
635 } else
636 cfqq->p_root = NULL;
a36e71f9
JA
637}
638
498d3aa2
JA
639/*
640 * Update cfqq's position in the service tree.
641 */
edd75ffd 642static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 643{
6d048f53
JA
644 /*
645 * Resorting requires the cfqq to be on the RR list already.
646 */
a36e71f9 647 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 648 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
649 cfq_prio_tree_add(cfqd, cfqq);
650 }
6d048f53
JA
651}
652
1da177e4
LT
653/*
654 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 655 * the pending list according to last request service
1da177e4 656 */
febffd61 657static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 658{
7b679138 659 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
660 BUG_ON(cfq_cfqq_on_rr(cfqq));
661 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
662 cfqd->busy_queues++;
663
edd75ffd 664 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
665}
666
498d3aa2
JA
667/*
668 * Called when the cfqq no longer has requests pending, remove it from
669 * the service tree.
670 */
febffd61 671static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 672{
7b679138 673 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
674 BUG_ON(!cfq_cfqq_on_rr(cfqq));
675 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 676
cc09e299
JA
677 if (!RB_EMPTY_NODE(&cfqq->rb_node))
678 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
f2d1f0ae
JA
679 if (cfqq->p_root) {
680 rb_erase(&cfqq->p_node, cfqq->p_root);
681 cfqq->p_root = NULL;
682 }
d9e7620e 683
1da177e4
LT
684 BUG_ON(!cfqd->busy_queues);
685 cfqd->busy_queues--;
686}
687
688/*
689 * rb tree support functions
690 */
febffd61 691static void cfq_del_rq_rb(struct request *rq)
1da177e4 692{
5e705374 693 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 694 struct cfq_data *cfqd = cfqq->cfqd;
5e705374 695 const int sync = rq_is_sync(rq);
1da177e4 696
b4878f24
JA
697 BUG_ON(!cfqq->queued[sync]);
698 cfqq->queued[sync]--;
1da177e4 699
5e705374 700 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 701
dd67d051 702 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
b4878f24 703 cfq_del_cfqq_rr(cfqd, cfqq);
1da177e4
LT
704}
705
5e705374 706static void cfq_add_rq_rb(struct request *rq)
1da177e4 707{
5e705374 708 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 709 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 710 struct request *__alias, *prev;
1da177e4 711
5380a101 712 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
713
714 /*
715 * looks a little odd, but the first insert might return an alias.
716 * if that happens, put the alias on the dispatch list
717 */
21183b07 718 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 719 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
720
721 if (!cfq_cfqq_on_rr(cfqq))
722 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
723
724 /*
725 * check if this request is a better next-serve candidate
726 */
a36e71f9 727 prev = cfqq->next_rq;
5044eed4 728 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
a36e71f9
JA
729
730 /*
731 * adjust priority tree position, if ->next_rq changes
732 */
733 if (prev != cfqq->next_rq)
734 cfq_prio_tree_add(cfqd, cfqq);
735
5044eed4 736 BUG_ON(!cfqq->next_rq);
1da177e4
LT
737}
738
febffd61 739static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 740{
5380a101
JA
741 elv_rb_del(&cfqq->sort_list, rq);
742 cfqq->queued[rq_is_sync(rq)]--;
5e705374 743 cfq_add_rq_rb(rq);
1da177e4
LT
744}
745
206dc69b
JA
746static struct request *
747cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 748{
206dc69b 749 struct task_struct *tsk = current;
91fac317 750 struct cfq_io_context *cic;
206dc69b 751 struct cfq_queue *cfqq;
1da177e4 752
4ac845a2 753 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
754 if (!cic)
755 return NULL;
756
757 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
758 if (cfqq) {
759 sector_t sector = bio->bi_sector + bio_sectors(bio);
760
21183b07 761 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 762 }
1da177e4 763
1da177e4
LT
764 return NULL;
765}
766
165125e1 767static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 768{
22e2c507 769 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 770
5ad531db 771 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 772 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 773 rq_in_driver(cfqd));
25776e35 774
5b93629b 775 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
776}
777
165125e1 778static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 779{
b4878f24 780 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 781 const int sync = rq_is_sync(rq);
b4878f24 782
5ad531db
JA
783 WARN_ON(!cfqd->rq_in_driver[sync]);
784 cfqd->rq_in_driver[sync]--;
7b679138 785 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 786 rq_in_driver(cfqd));
1da177e4
LT
787}
788
b4878f24 789static void cfq_remove_request(struct request *rq)
1da177e4 790{
5e705374 791 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 792
5e705374
JA
793 if (cfqq->next_rq == rq)
794 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 795
b4878f24 796 list_del_init(&rq->queuelist);
5e705374 797 cfq_del_rq_rb(rq);
374f84ac 798
45333d5a 799 cfqq->cfqd->rq_queued--;
374f84ac
JA
800 if (rq_is_meta(rq)) {
801 WARN_ON(!cfqq->meta_pending);
802 cfqq->meta_pending--;
803 }
1da177e4
LT
804}
805
165125e1
JA
806static int cfq_merge(struct request_queue *q, struct request **req,
807 struct bio *bio)
1da177e4
LT
808{
809 struct cfq_data *cfqd = q->elevator->elevator_data;
810 struct request *__rq;
1da177e4 811
206dc69b 812 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 813 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
814 *req = __rq;
815 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
816 }
817
818 return ELEVATOR_NO_MERGE;
1da177e4
LT
819}
820
165125e1 821static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 822 int type)
1da177e4 823{
21183b07 824 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 825 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 826
5e705374 827 cfq_reposition_rq_rb(cfqq, req);
1da177e4 828 }
1da177e4
LT
829}
830
831static void
165125e1 832cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
833 struct request *next)
834{
22e2c507
JA
835 /*
836 * reposition in fifo if next is older than rq
837 */
838 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 839 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 840 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
841 rq_set_fifo_time(rq, rq_fifo_time(next));
842 }
22e2c507 843
b4878f24 844 cfq_remove_request(next);
22e2c507
JA
845}
846
165125e1 847static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
848 struct bio *bio)
849{
850 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 851 struct cfq_io_context *cic;
da775265 852 struct cfq_queue *cfqq;
da775265
JA
853
854 /*
ec8acb69 855 * Disallow merge of a sync bio into an async request.
da775265 856 */
91fac317 857 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 858 return false;
da775265
JA
859
860 /*
719d3402
JA
861 * Lookup the cfqq that this bio will be queued with. Allow
862 * merge only if rq is queued there.
da775265 863 */
4ac845a2 864 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 865 if (!cic)
a6151c3a 866 return false;
719d3402 867
91fac317 868 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 869 return cfqq == RQ_CFQQ(rq);
da775265
JA
870}
871
febffd61
JA
872static void __cfq_set_active_queue(struct cfq_data *cfqd,
873 struct cfq_queue *cfqq)
22e2c507
JA
874{
875 if (cfqq) {
7b679138 876 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 877 cfqq->slice_end = 0;
2f5cb738
JA
878 cfqq->slice_dispatch = 0;
879
2f5cb738 880 cfq_clear_cfqq_wait_request(cfqq);
b029195d 881 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
882 cfq_clear_cfqq_must_alloc_slice(cfqq);
883 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 884 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
885
886 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
887 }
888
889 cfqd->active_queue = cfqq;
890}
891
7b14e3b5
JA
892/*
893 * current cfqq expired its slice (or was too idle), select new one
894 */
895static void
896__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 897 bool timed_out)
7b14e3b5 898{
7b679138
JA
899 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
900
7b14e3b5
JA
901 if (cfq_cfqq_wait_request(cfqq))
902 del_timer(&cfqd->idle_slice_timer);
903
7b14e3b5
JA
904 cfq_clear_cfqq_wait_request(cfqq);
905
906 /*
6084cdda 907 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 908 */
7b679138 909 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 910 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
911 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
912 }
7b14e3b5 913
edd75ffd 914 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
915
916 if (cfqq == cfqd->active_queue)
917 cfqd->active_queue = NULL;
918
919 if (cfqd->active_cic) {
920 put_io_context(cfqd->active_cic->ioc);
921 cfqd->active_cic = NULL;
922 }
7b14e3b5
JA
923}
924
a6151c3a 925static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
926{
927 struct cfq_queue *cfqq = cfqd->active_queue;
928
929 if (cfqq)
6084cdda 930 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
931}
932
498d3aa2
JA
933/*
934 * Get next queue for service. Unless we have a queue preemption,
935 * we'll simply select the first cfqq in the service tree.
936 */
6d048f53 937static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 938{
edd75ffd
JA
939 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
940 return NULL;
d9e7620e 941
0871714e 942 return cfq_rb_first(&cfqd->service_tree);
6d048f53
JA
943}
944
498d3aa2
JA
945/*
946 * Get and set a new active queue for service.
947 */
a36e71f9
JA
948static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
949 struct cfq_queue *cfqq)
6d048f53 950{
a36e71f9
JA
951 if (!cfqq) {
952 cfqq = cfq_get_next_queue(cfqd);
953 if (cfqq)
954 cfq_clear_cfqq_coop(cfqq);
955 }
6d048f53 956
22e2c507 957 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 958 return cfqq;
22e2c507
JA
959}
960
d9e7620e
JA
961static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
962 struct request *rq)
963{
83096ebf
TH
964 if (blk_rq_pos(rq) >= cfqd->last_position)
965 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 966 else
83096ebf 967 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
968}
969
b2c18e1e
JM
970#define CFQQ_SEEK_THR 8 * 1024
971#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 972
b2c18e1e
JM
973static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
974 struct request *rq)
6d048f53 975{
b2c18e1e 976 sector_t sdist = cfqq->seek_mean;
6d048f53 977
b2c18e1e
JM
978 if (!sample_valid(cfqq->seek_samples))
979 sdist = CFQQ_SEEK_THR;
6d048f53 980
04dc6e71 981 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
982}
983
a36e71f9
JA
984static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
985 struct cfq_queue *cur_cfqq)
986{
f2d1f0ae 987 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
988 struct rb_node *parent, *node;
989 struct cfq_queue *__cfqq;
990 sector_t sector = cfqd->last_position;
991
992 if (RB_EMPTY_ROOT(root))
993 return NULL;
994
995 /*
996 * First, if we find a request starting at the end of the last
997 * request, choose it.
998 */
f2d1f0ae 999 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1000 if (__cfqq)
1001 return __cfqq;
1002
1003 /*
1004 * If the exact sector wasn't found, the parent of the NULL leaf
1005 * will contain the closest sector.
1006 */
1007 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
b2c18e1e 1008 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1009 return __cfqq;
1010
2e46e8b2 1011 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1012 node = rb_next(&__cfqq->p_node);
1013 else
1014 node = rb_prev(&__cfqq->p_node);
1015 if (!node)
1016 return NULL;
1017
1018 __cfqq = rb_entry(node, struct cfq_queue, p_node);
b2c18e1e 1019 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1020 return __cfqq;
1021
1022 return NULL;
1023}
1024
1025/*
1026 * cfqd - obvious
1027 * cur_cfqq - passed in so that we don't decide that the current queue is
1028 * closely cooperating with itself.
1029 *
1030 * So, basically we're assuming that that cur_cfqq has dispatched at least
1031 * one request, and that cfqd->last_position reflects a position on the disk
1032 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1033 * assumption.
1034 */
1035static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1036 struct cfq_queue *cur_cfqq,
a6151c3a 1037 bool probe)
6d048f53 1038{
a36e71f9
JA
1039 struct cfq_queue *cfqq;
1040
6d048f53 1041 /*
d9e7620e
JA
1042 * We should notice if some of the queues are cooperating, eg
1043 * working closely on the same area of the disk. In that case,
1044 * we can group them together and don't waste time idling.
6d048f53 1045 */
a36e71f9
JA
1046 cfqq = cfqq_close(cfqd, cur_cfqq);
1047 if (!cfqq)
1048 return NULL;
1049
1050 if (cfq_cfqq_coop(cfqq))
1051 return NULL;
1052
1053 if (!probe)
1054 cfq_mark_cfqq_coop(cfqq);
1055 return cfqq;
6d048f53
JA
1056}
1057
6d048f53 1058static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1059{
1792669c 1060 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1061 struct cfq_io_context *cic;
7b14e3b5
JA
1062 unsigned long sl;
1063
a68bbddb 1064 /*
f7d7b7a7
JA
1065 * SSD device without seek penalty, disable idling. But only do so
1066 * for devices that support queuing, otherwise we still have a problem
1067 * with sync vs async workloads.
a68bbddb 1068 */
f7d7b7a7 1069 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1070 return;
1071
dd67d051 1072 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1073 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1074
1075 /*
1076 * idle is disabled, either manually or by past process history
1077 */
6d048f53
JA
1078 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1079 return;
1080
7b679138
JA
1081 /*
1082 * still requests with the driver, don't idle
1083 */
5ad531db 1084 if (rq_in_driver(cfqd))
7b679138
JA
1085 return;
1086
22e2c507
JA
1087 /*
1088 * task has exited, don't wait
1089 */
206dc69b 1090 cic = cfqd->active_cic;
66dac98e 1091 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1092 return;
1093
355b659c
CZ
1094 /*
1095 * If our average think time is larger than the remaining time
1096 * slice, then don't idle. This avoids overrunning the allotted
1097 * time slice.
1098 */
1099 if (sample_valid(cic->ttime_samples) &&
1100 (cfqq->slice_end - jiffies < cic->ttime_mean))
1101 return;
1102
3b18152c 1103 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1104
206dc69b
JA
1105 /*
1106 * we don't want to idle for seeks, but we do want to allow
1107 * fair distribution of slice time for a process doing back-to-back
1108 * seeks. so allow a little bit of time for him to submit a new rq
1109 */
6d048f53 1110 sl = cfqd->cfq_slice_idle;
b2c18e1e 1111 if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
d9e7620e 1112 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
206dc69b 1113
7b14e3b5 1114 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1115 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1116}
1117
498d3aa2
JA
1118/*
1119 * Move request from internal lists to the request queue dispatch list.
1120 */
165125e1 1121static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1122{
3ed9a296 1123 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1124 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1125
7b679138
JA
1126 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1127
06d21886 1128 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1129 cfq_remove_request(rq);
6d048f53 1130 cfqq->dispatched++;
5380a101 1131 elv_dispatch_sort(q, rq);
3ed9a296
JA
1132
1133 if (cfq_cfqq_sync(cfqq))
1134 cfqd->sync_flight++;
1da177e4
LT
1135}
1136
1137/*
1138 * return expired entry, or NULL to just start from scratch in rbtree
1139 */
febffd61 1140static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1141{
30996f40 1142 struct request *rq = NULL;
1da177e4 1143
3b18152c 1144 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1145 return NULL;
cb887411
JA
1146
1147 cfq_mark_cfqq_fifo_expire(cfqq);
1148
89850f7e
JA
1149 if (list_empty(&cfqq->fifo))
1150 return NULL;
1da177e4 1151
89850f7e 1152 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1153 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1154 rq = NULL;
1da177e4 1155
30996f40 1156 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1157 return rq;
1da177e4
LT
1158}
1159
22e2c507
JA
1160static inline int
1161cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1162{
1163 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1164
22e2c507 1165 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1166
22e2c507 1167 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1168}
1169
22e2c507 1170/*
498d3aa2
JA
1171 * Select a queue for service. If we have a current active queue,
1172 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1173 */
1b5ed5e1 1174static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1175{
a36e71f9 1176 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1177
22e2c507
JA
1178 cfqq = cfqd->active_queue;
1179 if (!cfqq)
1180 goto new_queue;
1da177e4 1181
22e2c507 1182 /*
6d048f53 1183 * The active queue has run out of time, expire it and select new.
22e2c507 1184 */
b029195d 1185 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1186 goto expire;
1da177e4 1187
22e2c507 1188 /*
6d048f53
JA
1189 * The active queue has requests and isn't expired, allow it to
1190 * dispatch.
22e2c507 1191 */
dd67d051 1192 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1193 goto keep_queue;
6d048f53 1194
a36e71f9
JA
1195 /*
1196 * If another queue has a request waiting within our mean seek
1197 * distance, let it run. The expire code will check for close
1198 * cooperators and put the close queue at the front of the service
1199 * tree.
1200 */
1201 new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1202 if (new_cfqq)
1203 goto expire;
1204
6d048f53
JA
1205 /*
1206 * No requests pending. If the active queue still has requests in
1207 * flight or is idling for a new request, allow either of these
1208 * conditions to happen (or time out) before selecting a new queue.
1209 */
cc197479
JA
1210 if (timer_pending(&cfqd->idle_slice_timer) ||
1211 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
caaa5f9f
JA
1212 cfqq = NULL;
1213 goto keep_queue;
22e2c507
JA
1214 }
1215
3b18152c 1216expire:
6084cdda 1217 cfq_slice_expired(cfqd, 0);
3b18152c 1218new_queue:
a36e71f9 1219 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1220keep_queue:
3b18152c 1221 return cfqq;
22e2c507
JA
1222}
1223
febffd61 1224static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1225{
1226 int dispatched = 0;
1227
1228 while (cfqq->next_rq) {
1229 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1230 dispatched++;
1231 }
1232
1233 BUG_ON(!list_empty(&cfqq->fifo));
1234 return dispatched;
1235}
1236
498d3aa2
JA
1237/*
1238 * Drain our current requests. Used for barriers and when switching
1239 * io schedulers on-the-fly.
1240 */
d9e7620e 1241static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1242{
0871714e 1243 struct cfq_queue *cfqq;
d9e7620e 1244 int dispatched = 0;
1b5ed5e1 1245
0871714e 1246 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
d9e7620e 1247 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1248
6084cdda 1249 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1250
1251 BUG_ON(cfqd->busy_queues);
1252
6923715a 1253 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
1254 return dispatched;
1255}
1256
0b182d61 1257static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 1258{
2f5cb738 1259 unsigned int max_dispatch;
22e2c507 1260
5ad531db
JA
1261 /*
1262 * Drain async requests before we start sync IO
1263 */
1264 if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 1265 return false;
5ad531db 1266
2f5cb738
JA
1267 /*
1268 * If this is an async queue and we have sync IO in flight, let it wait
1269 */
1270 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 1271 return false;
2f5cb738
JA
1272
1273 max_dispatch = cfqd->cfq_quantum;
1274 if (cfq_class_idle(cfqq))
1275 max_dispatch = 1;
b4878f24 1276
2f5cb738
JA
1277 /*
1278 * Does this cfqq already have too much IO in flight?
1279 */
1280 if (cfqq->dispatched >= max_dispatch) {
1281 /*
1282 * idle queue must always only have a single IO in flight
1283 */
3ed9a296 1284 if (cfq_class_idle(cfqq))
0b182d61 1285 return false;
3ed9a296 1286
2f5cb738
JA
1287 /*
1288 * We have other queues, don't allow more IO from this one
1289 */
1290 if (cfqd->busy_queues > 1)
0b182d61 1291 return false;
9ede209e 1292
365722bb 1293 /*
8e296755 1294 * Sole queue user, allow bigger slice
365722bb 1295 */
8e296755
JA
1296 max_dispatch *= 4;
1297 }
1298
1299 /*
1300 * Async queues must wait a bit before being allowed dispatch.
1301 * We also ramp up the dispatch depth gradually for async IO,
1302 * based on the last sync IO we serviced
1303 */
963b72fc 1304 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
1305 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1306 unsigned int depth;
365722bb 1307
61f0c1dc 1308 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
1309 if (!depth && !cfqq->dispatched)
1310 depth = 1;
8e296755
JA
1311 if (depth < max_dispatch)
1312 max_dispatch = depth;
2f5cb738 1313 }
3ed9a296 1314
0b182d61
JA
1315 /*
1316 * If we're below the current max, allow a dispatch
1317 */
1318 return cfqq->dispatched < max_dispatch;
1319}
1320
1321/*
1322 * Dispatch a request from cfqq, moving them to the request queue
1323 * dispatch list.
1324 */
1325static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1326{
1327 struct request *rq;
1328
1329 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1330
1331 if (!cfq_may_dispatch(cfqd, cfqq))
1332 return false;
1333
1334 /*
1335 * follow expired path, else get first next available
1336 */
1337 rq = cfq_check_fifo(cfqq);
1338 if (!rq)
1339 rq = cfqq->next_rq;
1340
1341 /*
1342 * insert request into driver dispatch list
1343 */
1344 cfq_dispatch_insert(cfqd->queue, rq);
1345
1346 if (!cfqd->active_cic) {
1347 struct cfq_io_context *cic = RQ_CIC(rq);
1348
1349 atomic_long_inc(&cic->ioc->refcount);
1350 cfqd->active_cic = cic;
1351 }
1352
1353 return true;
1354}
1355
1356/*
1357 * Find the cfqq that we need to service and move a request from that to the
1358 * dispatch list
1359 */
1360static int cfq_dispatch_requests(struct request_queue *q, int force)
1361{
1362 struct cfq_data *cfqd = q->elevator->elevator_data;
1363 struct cfq_queue *cfqq;
1364
1365 if (!cfqd->busy_queues)
1366 return 0;
1367
1368 if (unlikely(force))
1369 return cfq_forced_dispatch(cfqd);
1370
1371 cfqq = cfq_select_queue(cfqd);
1372 if (!cfqq)
8e296755
JA
1373 return 0;
1374
2f5cb738 1375 /*
0b182d61 1376 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 1377 */
0b182d61
JA
1378 if (!cfq_dispatch_request(cfqd, cfqq))
1379 return 0;
1380
2f5cb738 1381 cfqq->slice_dispatch++;
b029195d 1382 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1383
2f5cb738
JA
1384 /*
1385 * expire an async queue immediately if it has used up its slice. idle
1386 * queue always expire after 1 dispatch round.
1387 */
1388 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1389 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1390 cfq_class_idle(cfqq))) {
1391 cfqq->slice_end = jiffies + 1;
1392 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1393 }
1394
b217a903 1395 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 1396 return 1;
1da177e4
LT
1397}
1398
1da177e4 1399/*
5e705374
JA
1400 * task holds one reference to the queue, dropped when task exits. each rq
1401 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1402 *
1403 * queue lock must be held here.
1404 */
1405static void cfq_put_queue(struct cfq_queue *cfqq)
1406{
22e2c507
JA
1407 struct cfq_data *cfqd = cfqq->cfqd;
1408
1409 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1410
1411 if (!atomic_dec_and_test(&cfqq->ref))
1412 return;
1413
7b679138 1414 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 1415 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1416 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3b18152c 1417 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 1418
28f95cbc 1419 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1420 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1421 cfq_schedule_dispatch(cfqd);
28f95cbc 1422 }
22e2c507 1423
1da177e4
LT
1424 kmem_cache_free(cfq_pool, cfqq);
1425}
1426
d6de8be7
JA
1427/*
1428 * Must always be called with the rcu_read_lock() held
1429 */
07416d29
JA
1430static void
1431__call_for_each_cic(struct io_context *ioc,
1432 void (*func)(struct io_context *, struct cfq_io_context *))
1433{
1434 struct cfq_io_context *cic;
1435 struct hlist_node *n;
1436
1437 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1438 func(ioc, cic);
1439}
1440
4ac845a2 1441/*
34e6bbf2 1442 * Call func for each cic attached to this ioc.
4ac845a2 1443 */
34e6bbf2 1444static void
4ac845a2
JA
1445call_for_each_cic(struct io_context *ioc,
1446 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1447{
4ac845a2 1448 rcu_read_lock();
07416d29 1449 __call_for_each_cic(ioc, func);
4ac845a2 1450 rcu_read_unlock();
34e6bbf2
FC
1451}
1452
1453static void cfq_cic_free_rcu(struct rcu_head *head)
1454{
1455 struct cfq_io_context *cic;
1456
1457 cic = container_of(head, struct cfq_io_context, rcu_head);
1458
1459 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 1460 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 1461
9a11b4ed
JA
1462 if (ioc_gone) {
1463 /*
1464 * CFQ scheduler is exiting, grab exit lock and check
1465 * the pending io context count. If it hits zero,
1466 * complete ioc_gone and set it back to NULL
1467 */
1468 spin_lock(&ioc_gone_lock);
245b2e70 1469 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
1470 complete(ioc_gone);
1471 ioc_gone = NULL;
1472 }
1473 spin_unlock(&ioc_gone_lock);
1474 }
34e6bbf2 1475}
4ac845a2 1476
34e6bbf2
FC
1477static void cfq_cic_free(struct cfq_io_context *cic)
1478{
1479 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
1480}
1481
1482static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1483{
1484 unsigned long flags;
1485
1486 BUG_ON(!cic->dead_key);
1487
1488 spin_lock_irqsave(&ioc->lock, flags);
1489 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 1490 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1491 spin_unlock_irqrestore(&ioc->lock, flags);
1492
34e6bbf2 1493 cfq_cic_free(cic);
4ac845a2
JA
1494}
1495
d6de8be7
JA
1496/*
1497 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1498 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1499 * and ->trim() which is called with the task lock held
1500 */
4ac845a2
JA
1501static void cfq_free_io_context(struct io_context *ioc)
1502{
4ac845a2 1503 /*
34e6bbf2
FC
1504 * ioc->refcount is zero here, or we are called from elv_unregister(),
1505 * so no more cic's are allowed to be linked into this ioc. So it
1506 * should be ok to iterate over the known list, we will see all cic's
1507 * since no new ones are added.
4ac845a2 1508 */
07416d29 1509 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
1510}
1511
89850f7e 1512static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1513{
28f95cbc 1514 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 1515 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1516 cfq_schedule_dispatch(cfqd);
28f95cbc 1517 }
22e2c507 1518
89850f7e
JA
1519 cfq_put_queue(cfqq);
1520}
22e2c507 1521
89850f7e
JA
1522static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1523 struct cfq_io_context *cic)
1524{
4faa3c81
FC
1525 struct io_context *ioc = cic->ioc;
1526
fc46379d 1527 list_del_init(&cic->queue_list);
4ac845a2
JA
1528
1529 /*
1530 * Make sure key == NULL is seen for dead queues
1531 */
fc46379d 1532 smp_wmb();
4ac845a2 1533 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
1534 cic->key = NULL;
1535
4faa3c81
FC
1536 if (ioc->ioc_data == cic)
1537 rcu_assign_pointer(ioc->ioc_data, NULL);
1538
ff6657c6
JA
1539 if (cic->cfqq[BLK_RW_ASYNC]) {
1540 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1541 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
1542 }
1543
ff6657c6
JA
1544 if (cic->cfqq[BLK_RW_SYNC]) {
1545 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1546 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 1547 }
89850f7e
JA
1548}
1549
4ac845a2
JA
1550static void cfq_exit_single_io_context(struct io_context *ioc,
1551 struct cfq_io_context *cic)
89850f7e
JA
1552{
1553 struct cfq_data *cfqd = cic->key;
1554
89850f7e 1555 if (cfqd) {
165125e1 1556 struct request_queue *q = cfqd->queue;
4ac845a2 1557 unsigned long flags;
89850f7e 1558
4ac845a2 1559 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
1560
1561 /*
1562 * Ensure we get a fresh copy of the ->key to prevent
1563 * race between exiting task and queue
1564 */
1565 smp_read_barrier_depends();
1566 if (cic->key)
1567 __cfq_exit_single_io_context(cfqd, cic);
1568
4ac845a2 1569 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 1570 }
1da177e4
LT
1571}
1572
498d3aa2
JA
1573/*
1574 * The process that ioc belongs to has exited, we need to clean up
1575 * and put the internal structures we have that belongs to that process.
1576 */
e2d74ac0 1577static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 1578{
4ac845a2 1579 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
1580}
1581
22e2c507 1582static struct cfq_io_context *
8267e268 1583cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1584{
b5deef90 1585 struct cfq_io_context *cic;
1da177e4 1586
94f6030c
CL
1587 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1588 cfqd->queue->node);
1da177e4 1589 if (cic) {
22e2c507 1590 cic->last_end_request = jiffies;
553698f9 1591 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 1592 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
1593 cic->dtor = cfq_free_io_context;
1594 cic->exit = cfq_exit_io_context;
245b2e70 1595 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
1596 }
1597
1598 return cic;
1599}
1600
fd0928df 1601static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
1602{
1603 struct task_struct *tsk = current;
1604 int ioprio_class;
1605
3b18152c 1606 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
1607 return;
1608
fd0928df 1609 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 1610 switch (ioprio_class) {
fe094d98
JA
1611 default:
1612 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1613 case IOPRIO_CLASS_NONE:
1614 /*
6d63c275 1615 * no prio set, inherit CPU scheduling settings
fe094d98
JA
1616 */
1617 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 1618 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
1619 break;
1620 case IOPRIO_CLASS_RT:
1621 cfqq->ioprio = task_ioprio(ioc);
1622 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1623 break;
1624 case IOPRIO_CLASS_BE:
1625 cfqq->ioprio = task_ioprio(ioc);
1626 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1627 break;
1628 case IOPRIO_CLASS_IDLE:
1629 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1630 cfqq->ioprio = 7;
1631 cfq_clear_cfqq_idle_window(cfqq);
1632 break;
22e2c507
JA
1633 }
1634
1635 /*
1636 * keep track of original prio settings in case we have to temporarily
1637 * elevate the priority of this queue
1638 */
1639 cfqq->org_ioprio = cfqq->ioprio;
1640 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 1641 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
1642}
1643
febffd61 1644static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 1645{
478a82b0
AV
1646 struct cfq_data *cfqd = cic->key;
1647 struct cfq_queue *cfqq;
c1b707d2 1648 unsigned long flags;
35e6077c 1649
caaa5f9f
JA
1650 if (unlikely(!cfqd))
1651 return;
1652
c1b707d2 1653 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 1654
ff6657c6 1655 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
1656 if (cfqq) {
1657 struct cfq_queue *new_cfqq;
ff6657c6
JA
1658 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1659 GFP_ATOMIC);
caaa5f9f 1660 if (new_cfqq) {
ff6657c6 1661 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
1662 cfq_put_queue(cfqq);
1663 }
22e2c507 1664 }
caaa5f9f 1665
ff6657c6 1666 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
1667 if (cfqq)
1668 cfq_mark_cfqq_prio_changed(cfqq);
1669
c1b707d2 1670 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
1671}
1672
fc46379d 1673static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 1674{
4ac845a2 1675 call_for_each_cic(ioc, changed_ioprio);
fc46379d 1676 ioc->ioprio_changed = 0;
22e2c507
JA
1677}
1678
d5036d77 1679static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1680 pid_t pid, bool is_sync)
d5036d77
JA
1681{
1682 RB_CLEAR_NODE(&cfqq->rb_node);
1683 RB_CLEAR_NODE(&cfqq->p_node);
1684 INIT_LIST_HEAD(&cfqq->fifo);
1685
1686 atomic_set(&cfqq->ref, 0);
1687 cfqq->cfqd = cfqd;
1688
1689 cfq_mark_cfqq_prio_changed(cfqq);
1690
1691 if (is_sync) {
1692 if (!cfq_class_idle(cfqq))
1693 cfq_mark_cfqq_idle_window(cfqq);
1694 cfq_mark_cfqq_sync(cfqq);
1695 }
1696 cfqq->pid = pid;
1697}
1698
22e2c507 1699static struct cfq_queue *
a6151c3a 1700cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 1701 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 1702{
22e2c507 1703 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 1704 struct cfq_io_context *cic;
22e2c507
JA
1705
1706retry:
4ac845a2 1707 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
1708 /* cic always exists here */
1709 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 1710
6118b70b
JA
1711 /*
1712 * Always try a new alloc if we fell back to the OOM cfqq
1713 * originally, since it should just be a temporary situation.
1714 */
1715 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1716 cfqq = NULL;
22e2c507
JA
1717 if (new_cfqq) {
1718 cfqq = new_cfqq;
1719 new_cfqq = NULL;
1720 } else if (gfp_mask & __GFP_WAIT) {
1721 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 1722 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 1723 gfp_mask | __GFP_ZERO,
94f6030c 1724 cfqd->queue->node);
22e2c507 1725 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
1726 if (new_cfqq)
1727 goto retry;
22e2c507 1728 } else {
94f6030c
CL
1729 cfqq = kmem_cache_alloc_node(cfq_pool,
1730 gfp_mask | __GFP_ZERO,
1731 cfqd->queue->node);
22e2c507
JA
1732 }
1733
6118b70b
JA
1734 if (cfqq) {
1735 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1736 cfq_init_prio_data(cfqq, ioc);
1737 cfq_log_cfqq(cfqd, cfqq, "alloced");
1738 } else
1739 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
1740 }
1741
1742 if (new_cfqq)
1743 kmem_cache_free(cfq_pool, new_cfqq);
1744
22e2c507
JA
1745 return cfqq;
1746}
1747
c2dea2d1
VT
1748static struct cfq_queue **
1749cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1750{
fe094d98 1751 switch (ioprio_class) {
c2dea2d1
VT
1752 case IOPRIO_CLASS_RT:
1753 return &cfqd->async_cfqq[0][ioprio];
1754 case IOPRIO_CLASS_BE:
1755 return &cfqd->async_cfqq[1][ioprio];
1756 case IOPRIO_CLASS_IDLE:
1757 return &cfqd->async_idle_cfqq;
1758 default:
1759 BUG();
1760 }
1761}
1762
15c31be4 1763static struct cfq_queue *
a6151c3a 1764cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
1765 gfp_t gfp_mask)
1766{
fd0928df
JA
1767 const int ioprio = task_ioprio(ioc);
1768 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 1769 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
1770 struct cfq_queue *cfqq = NULL;
1771
c2dea2d1
VT
1772 if (!is_sync) {
1773 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1774 cfqq = *async_cfqq;
1775 }
1776
6118b70b 1777 if (!cfqq)
fd0928df 1778 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
1779
1780 /*
1781 * pin the queue now that it's allocated, scheduler exit will prune it
1782 */
c2dea2d1 1783 if (!is_sync && !(*async_cfqq)) {
15c31be4 1784 atomic_inc(&cfqq->ref);
c2dea2d1 1785 *async_cfqq = cfqq;
15c31be4
JA
1786 }
1787
1788 atomic_inc(&cfqq->ref);
1789 return cfqq;
1790}
1791
498d3aa2
JA
1792/*
1793 * We drop cfq io contexts lazily, so we may find a dead one.
1794 */
dbecf3ab 1795static void
4ac845a2
JA
1796cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1797 struct cfq_io_context *cic)
dbecf3ab 1798{
4ac845a2
JA
1799 unsigned long flags;
1800
fc46379d 1801 WARN_ON(!list_empty(&cic->queue_list));
597bc485 1802
4ac845a2
JA
1803 spin_lock_irqsave(&ioc->lock, flags);
1804
4faa3c81 1805 BUG_ON(ioc->ioc_data == cic);
597bc485 1806
4ac845a2 1807 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 1808 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1809 spin_unlock_irqrestore(&ioc->lock, flags);
1810
1811 cfq_cic_free(cic);
dbecf3ab
OH
1812}
1813
e2d74ac0 1814static struct cfq_io_context *
4ac845a2 1815cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 1816{
e2d74ac0 1817 struct cfq_io_context *cic;
d6de8be7 1818 unsigned long flags;
4ac845a2 1819 void *k;
e2d74ac0 1820
91fac317
VT
1821 if (unlikely(!ioc))
1822 return NULL;
1823
d6de8be7
JA
1824 rcu_read_lock();
1825
597bc485
JA
1826 /*
1827 * we maintain a last-hit cache, to avoid browsing over the tree
1828 */
4ac845a2 1829 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
1830 if (cic && cic->key == cfqd) {
1831 rcu_read_unlock();
597bc485 1832 return cic;
d6de8be7 1833 }
597bc485 1834
4ac845a2 1835 do {
4ac845a2
JA
1836 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1837 rcu_read_unlock();
1838 if (!cic)
1839 break;
be3b0753
OH
1840 /* ->key must be copied to avoid race with cfq_exit_queue() */
1841 k = cic->key;
1842 if (unlikely(!k)) {
4ac845a2 1843 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 1844 rcu_read_lock();
4ac845a2 1845 continue;
dbecf3ab 1846 }
e2d74ac0 1847
d6de8be7 1848 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 1849 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 1850 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
1851 break;
1852 } while (1);
e2d74ac0 1853
4ac845a2 1854 return cic;
e2d74ac0
JA
1855}
1856
4ac845a2
JA
1857/*
1858 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1859 * the process specific cfq io context when entered from the block layer.
1860 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1861 */
febffd61
JA
1862static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1863 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 1864{
0261d688 1865 unsigned long flags;
4ac845a2 1866 int ret;
e2d74ac0 1867
4ac845a2
JA
1868 ret = radix_tree_preload(gfp_mask);
1869 if (!ret) {
1870 cic->ioc = ioc;
1871 cic->key = cfqd;
e2d74ac0 1872
4ac845a2
JA
1873 spin_lock_irqsave(&ioc->lock, flags);
1874 ret = radix_tree_insert(&ioc->radix_root,
1875 (unsigned long) cfqd, cic);
ffc4e759
JA
1876 if (!ret)
1877 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 1878 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 1879
4ac845a2
JA
1880 radix_tree_preload_end();
1881
1882 if (!ret) {
1883 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1884 list_add(&cic->queue_list, &cfqd->cic_list);
1885 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1886 }
e2d74ac0
JA
1887 }
1888
4ac845a2
JA
1889 if (ret)
1890 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 1891
4ac845a2 1892 return ret;
e2d74ac0
JA
1893}
1894
1da177e4
LT
1895/*
1896 * Setup general io context and cfq io context. There can be several cfq
1897 * io contexts per general io context, if this process is doing io to more
e2d74ac0 1898 * than one device managed by cfq.
1da177e4
LT
1899 */
1900static struct cfq_io_context *
e2d74ac0 1901cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1902{
22e2c507 1903 struct io_context *ioc = NULL;
1da177e4 1904 struct cfq_io_context *cic;
1da177e4 1905
22e2c507 1906 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 1907
b5deef90 1908 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
1909 if (!ioc)
1910 return NULL;
1911
4ac845a2 1912 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
1913 if (cic)
1914 goto out;
1da177e4 1915
e2d74ac0
JA
1916 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1917 if (cic == NULL)
1918 goto err;
1da177e4 1919
4ac845a2
JA
1920 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1921 goto err_free;
1922
1da177e4 1923out:
fc46379d
JA
1924 smp_read_barrier_depends();
1925 if (unlikely(ioc->ioprio_changed))
1926 cfq_ioc_set_ioprio(ioc);
1927
1da177e4 1928 return cic;
4ac845a2
JA
1929err_free:
1930 cfq_cic_free(cic);
1da177e4
LT
1931err:
1932 put_io_context(ioc);
1933 return NULL;
1934}
1935
22e2c507
JA
1936static void
1937cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 1938{
aaf1228d
JA
1939 unsigned long elapsed = jiffies - cic->last_end_request;
1940 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 1941
22e2c507
JA
1942 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1943 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1944 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1945}
1da177e4 1946
206dc69b 1947static void
b2c18e1e 1948cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 1949 struct request *rq)
206dc69b
JA
1950{
1951 sector_t sdist;
1952 u64 total;
1953
b2c18e1e 1954 if (!cfqq->last_request_pos)
4d00aa47 1955 sdist = 0;
b2c18e1e
JM
1956 else if (cfqq->last_request_pos < blk_rq_pos(rq))
1957 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 1958 else
b2c18e1e 1959 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
1960
1961 /*
1962 * Don't allow the seek distance to get too large from the
1963 * odd fragment, pagein, etc
1964 */
b2c18e1e
JM
1965 if (cfqq->seek_samples <= 60) /* second&third seek */
1966 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 1967 else
b2c18e1e 1968 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 1969
b2c18e1e
JM
1970 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
1971 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
1972 total = cfqq->seek_total + (cfqq->seek_samples/2);
1973 do_div(total, cfqq->seek_samples);
1974 cfqq->seek_mean = (sector_t)total;
206dc69b 1975}
1da177e4 1976
22e2c507
JA
1977/*
1978 * Disable idle window if the process thinks too long or seeks so much that
1979 * it doesn't matter
1980 */
1981static void
1982cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1983 struct cfq_io_context *cic)
1984{
7b679138 1985 int old_idle, enable_idle;
1be92f2f 1986
0871714e
JA
1987 /*
1988 * Don't idle for async or idle io prio class
1989 */
1990 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
1991 return;
1992
c265a7f4 1993 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 1994
66dac98e 1995 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
b2c18e1e 1996 (!cfqd->cfq_latency && cfqd->hw_tag && CFQQ_SEEKY(cfqq)))
22e2c507
JA
1997 enable_idle = 0;
1998 else if (sample_valid(cic->ttime_samples)) {
ec60e4f6 1999 unsigned int slice_idle = cfqd->cfq_slice_idle;
b2c18e1e 2000 if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
ec60e4f6
CZ
2001 slice_idle = msecs_to_jiffies(CFQ_MIN_TT);
2002 if (cic->ttime_mean > slice_idle)
22e2c507
JA
2003 enable_idle = 0;
2004 else
2005 enable_idle = 1;
1da177e4
LT
2006 }
2007
7b679138
JA
2008 if (old_idle != enable_idle) {
2009 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2010 if (enable_idle)
2011 cfq_mark_cfqq_idle_window(cfqq);
2012 else
2013 cfq_clear_cfqq_idle_window(cfqq);
2014 }
22e2c507 2015}
1da177e4 2016
22e2c507
JA
2017/*
2018 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2019 * no or if we aren't sure, a 1 will cause a preempt.
2020 */
a6151c3a 2021static bool
22e2c507 2022cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 2023 struct request *rq)
22e2c507 2024{
6d048f53 2025 struct cfq_queue *cfqq;
22e2c507 2026
6d048f53
JA
2027 cfqq = cfqd->active_queue;
2028 if (!cfqq)
a6151c3a 2029 return false;
22e2c507 2030
6d048f53 2031 if (cfq_slice_used(cfqq))
a6151c3a 2032 return true;
6d048f53
JA
2033
2034 if (cfq_class_idle(new_cfqq))
a6151c3a 2035 return false;
22e2c507
JA
2036
2037 if (cfq_class_idle(cfqq))
a6151c3a 2038 return true;
1e3335de 2039
374f84ac
JA
2040 /*
2041 * if the new request is sync, but the currently running queue is
2042 * not, let the sync request have priority.
2043 */
5e705374 2044 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 2045 return true;
1e3335de 2046
374f84ac
JA
2047 /*
2048 * So both queues are sync. Let the new request get disk time if
2049 * it's a metadata request and the current queue is doing regular IO.
2050 */
2051 if (rq_is_meta(rq) && !cfqq->meta_pending)
a6151c3a 2052 return false;
22e2c507 2053
3a9a3f6c
DS
2054 /*
2055 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2056 */
2057 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 2058 return true;
3a9a3f6c 2059
1e3335de 2060 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 2061 return false;
1e3335de
JA
2062
2063 /*
2064 * if this request is as-good as one we would expect from the
2065 * current cfqq, let it preempt
2066 */
b2c18e1e 2067 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 2068 return true;
1e3335de 2069
a6151c3a 2070 return false;
22e2c507
JA
2071}
2072
2073/*
2074 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2075 * let it have half of its nominal slice.
2076 */
2077static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2078{
7b679138 2079 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2080 cfq_slice_expired(cfqd, 1);
22e2c507 2081
bf572256
JA
2082 /*
2083 * Put the new queue at the front of the of the current list,
2084 * so we know that it will be selected next.
2085 */
2086 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2087
2088 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2089
44f7c160
JA
2090 cfqq->slice_end = 0;
2091 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2092}
2093
22e2c507 2094/*
5e705374 2095 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2096 * something we should do about it
2097 */
2098static void
5e705374
JA
2099cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2100 struct request *rq)
22e2c507 2101{
5e705374 2102 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2103
45333d5a 2104 cfqd->rq_queued++;
374f84ac
JA
2105 if (rq_is_meta(rq))
2106 cfqq->meta_pending++;
2107
9c2c38a1 2108 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 2109 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
2110 cfq_update_idle_window(cfqd, cfqq, cic);
2111
b2c18e1e 2112 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2113
2114 if (cfqq == cfqd->active_queue) {
2115 /*
b029195d
JA
2116 * Remember that we saw a request from this process, but
2117 * don't start queuing just yet. Otherwise we risk seeing lots
2118 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2119 * and merging. If the request is already larger than a single
2120 * page, let it rip immediately. For that case we assume that
2d870722
JA
2121 * merging is already done. Ditto for a busy system that
2122 * has other work pending, don't risk delaying until the
2123 * idle timer unplug to continue working.
22e2c507 2124 */
d6ceb25e 2125 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2126 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2127 cfqd->busy_queues > 1) {
d6ceb25e 2128 del_timer(&cfqd->idle_slice_timer);
a7f55792 2129 __blk_run_queue(cfqd->queue);
d6ceb25e 2130 }
b029195d 2131 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2132 }
5e705374 2133 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2134 /*
2135 * not the active queue - expire current slice if it is
2136 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2137 * has some old slice time left and is of higher priority or
2138 * this new queue is RT and the current one is BE
22e2c507
JA
2139 */
2140 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2141 __blk_run_queue(cfqd->queue);
22e2c507 2142 }
1da177e4
LT
2143}
2144
165125e1 2145static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2146{
b4878f24 2147 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2148 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2149
7b679138 2150 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2151 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2152
5e705374 2153 cfq_add_rq_rb(rq);
1da177e4 2154
30996f40 2155 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507
JA
2156 list_add_tail(&rq->queuelist, &cfqq->fifo);
2157
5e705374 2158 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2159}
2160
45333d5a
AC
2161/*
2162 * Update hw_tag based on peak queue depth over 50 samples under
2163 * sufficient load.
2164 */
2165static void cfq_update_hw_tag(struct cfq_data *cfqd)
2166{
5ad531db
JA
2167 if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2168 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
45333d5a
AC
2169
2170 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 2171 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2172 return;
2173
2174 if (cfqd->hw_tag_samples++ < 50)
2175 return;
2176
2177 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2178 cfqd->hw_tag = 1;
2179 else
2180 cfqd->hw_tag = 0;
2181
2182 cfqd->hw_tag_samples = 0;
2183 cfqd->rq_in_driver_peak = 0;
2184}
2185
165125e1 2186static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2187{
5e705374 2188 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2189 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2190 const int sync = rq_is_sync(rq);
b4878f24 2191 unsigned long now;
1da177e4 2192
b4878f24 2193 now = jiffies;
7b679138 2194 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2195
45333d5a
AC
2196 cfq_update_hw_tag(cfqd);
2197
5ad531db 2198 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 2199 WARN_ON(!cfqq->dispatched);
5ad531db 2200 cfqd->rq_in_driver[sync]--;
6d048f53 2201 cfqq->dispatched--;
1da177e4 2202
3ed9a296
JA
2203 if (cfq_cfqq_sync(cfqq))
2204 cfqd->sync_flight--;
2205
365722bb 2206 if (sync) {
5e705374 2207 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
2208 cfqd->last_end_sync_rq = now;
2209 }
caaa5f9f
JA
2210
2211 /*
2212 * If this is the active queue, check if it needs to be expired,
2213 * or if we want to idle in case it has no pending requests.
2214 */
2215 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2216 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2217
44f7c160
JA
2218 if (cfq_cfqq_slice_new(cfqq)) {
2219 cfq_set_prio_slice(cfqd, cfqq);
2220 cfq_clear_cfqq_slice_new(cfqq);
2221 }
a36e71f9
JA
2222 /*
2223 * If there are no requests waiting in this queue, and
2224 * there are other queues ready to issue requests, AND
2225 * those other queues are issuing requests within our
2226 * mean seek distance, give them a chance to run instead
2227 * of idling.
2228 */
0871714e 2229 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2230 cfq_slice_expired(cfqd, 1);
a36e71f9
JA
2231 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2232 sync && !rq_noidle(rq))
6d048f53 2233 cfq_arm_slice_timer(cfqd);
caaa5f9f 2234 }
6d048f53 2235
5ad531db 2236 if (!rq_in_driver(cfqd))
23e018a1 2237 cfq_schedule_dispatch(cfqd);
1da177e4
LT
2238}
2239
22e2c507
JA
2240/*
2241 * we temporarily boost lower priority queues if they are holding fs exclusive
2242 * resources. they are boosted to normal prio (CLASS_BE/4)
2243 */
2244static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2245{
22e2c507
JA
2246 if (has_fs_excl()) {
2247 /*
2248 * boost idle prio on transactions that would lock out other
2249 * users of the filesystem
2250 */
2251 if (cfq_class_idle(cfqq))
2252 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2253 if (cfqq->ioprio > IOPRIO_NORM)
2254 cfqq->ioprio = IOPRIO_NORM;
2255 } else {
2256 /*
2257 * check if we need to unboost the queue
2258 */
2259 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2260 cfqq->ioprio_class = cfqq->org_ioprio_class;
2261 if (cfqq->ioprio != cfqq->org_ioprio)
2262 cfqq->ioprio = cfqq->org_ioprio;
2263 }
22e2c507 2264}
1da177e4 2265
89850f7e 2266static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2267{
1b379d8d 2268 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2269 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2270 return ELV_MQUEUE_MUST;
3b18152c 2271 }
1da177e4 2272
22e2c507 2273 return ELV_MQUEUE_MAY;
22e2c507
JA
2274}
2275
165125e1 2276static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2277{
2278 struct cfq_data *cfqd = q->elevator->elevator_data;
2279 struct task_struct *tsk = current;
91fac317 2280 struct cfq_io_context *cic;
22e2c507
JA
2281 struct cfq_queue *cfqq;
2282
2283 /*
2284 * don't force setup of a queue from here, as a call to may_queue
2285 * does not necessarily imply that a request actually will be queued.
2286 * so just lookup a possibly existing queue, or return 'may queue'
2287 * if that fails
2288 */
4ac845a2 2289 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2290 if (!cic)
2291 return ELV_MQUEUE_MAY;
2292
b0b78f81 2293 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2294 if (cfqq) {
fd0928df 2295 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2296 cfq_prio_boost(cfqq);
2297
89850f7e 2298 return __cfq_may_queue(cfqq);
22e2c507
JA
2299 }
2300
2301 return ELV_MQUEUE_MAY;
1da177e4
LT
2302}
2303
1da177e4
LT
2304/*
2305 * queue lock held here
2306 */
bb37b94c 2307static void cfq_put_request(struct request *rq)
1da177e4 2308{
5e705374 2309 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2310
5e705374 2311 if (cfqq) {
22e2c507 2312 const int rw = rq_data_dir(rq);
1da177e4 2313
22e2c507
JA
2314 BUG_ON(!cfqq->allocated[rw]);
2315 cfqq->allocated[rw]--;
1da177e4 2316
5e705374 2317 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2318
1da177e4 2319 rq->elevator_private = NULL;
5e705374 2320 rq->elevator_private2 = NULL;
1da177e4 2321
1da177e4
LT
2322 cfq_put_queue(cfqq);
2323 }
2324}
2325
2326/*
22e2c507 2327 * Allocate cfq data structures associated with this request.
1da177e4 2328 */
22e2c507 2329static int
165125e1 2330cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
2331{
2332 struct cfq_data *cfqd = q->elevator->elevator_data;
2333 struct cfq_io_context *cic;
2334 const int rw = rq_data_dir(rq);
a6151c3a 2335 const bool is_sync = rq_is_sync(rq);
22e2c507 2336 struct cfq_queue *cfqq;
1da177e4
LT
2337 unsigned long flags;
2338
2339 might_sleep_if(gfp_mask & __GFP_WAIT);
2340
e2d74ac0 2341 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 2342
1da177e4
LT
2343 spin_lock_irqsave(q->queue_lock, flags);
2344
22e2c507
JA
2345 if (!cic)
2346 goto queue_fail;
2347
91fac317 2348 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 2349 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 2350 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317
VT
2351 cic_set_cfqq(cic, cfqq, is_sync);
2352 }
1da177e4
LT
2353
2354 cfqq->allocated[rw]++;
22e2c507 2355 atomic_inc(&cfqq->ref);
1da177e4 2356
5e705374 2357 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 2358
5e705374
JA
2359 rq->elevator_private = cic;
2360 rq->elevator_private2 = cfqq;
2361 return 0;
1da177e4 2362
22e2c507
JA
2363queue_fail:
2364 if (cic)
2365 put_io_context(cic->ioc);
89850f7e 2366
23e018a1 2367 cfq_schedule_dispatch(cfqd);
1da177e4 2368 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 2369 cfq_log(cfqd, "set_request fail");
1da177e4
LT
2370 return 1;
2371}
2372
65f27f38 2373static void cfq_kick_queue(struct work_struct *work)
22e2c507 2374{
65f27f38 2375 struct cfq_data *cfqd =
23e018a1 2376 container_of(work, struct cfq_data, unplug_work);
165125e1 2377 struct request_queue *q = cfqd->queue;
22e2c507 2378
40bb54d1 2379 spin_lock_irq(q->queue_lock);
a7f55792 2380 __blk_run_queue(cfqd->queue);
40bb54d1 2381 spin_unlock_irq(q->queue_lock);
22e2c507
JA
2382}
2383
2384/*
2385 * Timer running if the active_queue is currently idling inside its time slice
2386 */
2387static void cfq_idle_slice_timer(unsigned long data)
2388{
2389 struct cfq_data *cfqd = (struct cfq_data *) data;
2390 struct cfq_queue *cfqq;
2391 unsigned long flags;
3c6bd2f8 2392 int timed_out = 1;
22e2c507 2393
7b679138
JA
2394 cfq_log(cfqd, "idle timer fired");
2395
22e2c507
JA
2396 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2397
fe094d98
JA
2398 cfqq = cfqd->active_queue;
2399 if (cfqq) {
3c6bd2f8
JA
2400 timed_out = 0;
2401
b029195d
JA
2402 /*
2403 * We saw a request before the queue expired, let it through
2404 */
2405 if (cfq_cfqq_must_dispatch(cfqq))
2406 goto out_kick;
2407
22e2c507
JA
2408 /*
2409 * expired
2410 */
44f7c160 2411 if (cfq_slice_used(cfqq))
22e2c507
JA
2412 goto expire;
2413
2414 /*
2415 * only expire and reinvoke request handler, if there are
2416 * other queues with pending requests
2417 */
caaa5f9f 2418 if (!cfqd->busy_queues)
22e2c507 2419 goto out_cont;
22e2c507
JA
2420
2421 /*
2422 * not expired and it has a request pending, let it dispatch
2423 */
75e50984 2424 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2425 goto out_kick;
22e2c507
JA
2426 }
2427expire:
6084cdda 2428 cfq_slice_expired(cfqd, timed_out);
22e2c507 2429out_kick:
23e018a1 2430 cfq_schedule_dispatch(cfqd);
22e2c507
JA
2431out_cont:
2432 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2433}
2434
3b18152c
JA
2435static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2436{
2437 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 2438 cancel_work_sync(&cfqd->unplug_work);
3b18152c 2439}
22e2c507 2440
c2dea2d1
VT
2441static void cfq_put_async_queues(struct cfq_data *cfqd)
2442{
2443 int i;
2444
2445 for (i = 0; i < IOPRIO_BE_NR; i++) {
2446 if (cfqd->async_cfqq[0][i])
2447 cfq_put_queue(cfqd->async_cfqq[0][i]);
2448 if (cfqd->async_cfqq[1][i])
2449 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 2450 }
2389d1ef
ON
2451
2452 if (cfqd->async_idle_cfqq)
2453 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
2454}
2455
b374d18a 2456static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 2457{
22e2c507 2458 struct cfq_data *cfqd = e->elevator_data;
165125e1 2459 struct request_queue *q = cfqd->queue;
22e2c507 2460
3b18152c 2461 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 2462
d9ff4187 2463 spin_lock_irq(q->queue_lock);
e2d74ac0 2464
d9ff4187 2465 if (cfqd->active_queue)
6084cdda 2466 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
2467
2468 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
2469 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2470 struct cfq_io_context,
2471 queue_list);
89850f7e
JA
2472
2473 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 2474 }
e2d74ac0 2475
c2dea2d1 2476 cfq_put_async_queues(cfqd);
15c31be4 2477
d9ff4187 2478 spin_unlock_irq(q->queue_lock);
a90d742e
AV
2479
2480 cfq_shutdown_timer_wq(cfqd);
2481
a90d742e 2482 kfree(cfqd);
1da177e4
LT
2483}
2484
165125e1 2485static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
2486{
2487 struct cfq_data *cfqd;
26a2ac00 2488 int i;
1da177e4 2489
94f6030c 2490 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 2491 if (!cfqd)
bc1c1169 2492 return NULL;
1da177e4 2493
cc09e299 2494 cfqd->service_tree = CFQ_RB_ROOT;
26a2ac00
JA
2495
2496 /*
2497 * Not strictly needed (since RB_ROOT just clears the node and we
2498 * zeroed cfqd on alloc), but better be safe in case someone decides
2499 * to add magic to the rb code
2500 */
2501 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2502 cfqd->prio_trees[i] = RB_ROOT;
2503
6118b70b
JA
2504 /*
2505 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2506 * Grab a permanent reference to it, so that the normal code flow
2507 * will not attempt to free it.
2508 */
2509 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2510 atomic_inc(&cfqd->oom_cfqq.ref);
2511
d9ff4187 2512 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 2513
1da177e4 2514 cfqd->queue = q;
1da177e4 2515
22e2c507
JA
2516 init_timer(&cfqd->idle_slice_timer);
2517 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2518 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2519
23e018a1 2520 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 2521
1da177e4 2522 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
2523 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2524 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
2525 cfqd->cfq_back_max = cfq_back_max;
2526 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
2527 cfqd->cfq_slice[0] = cfq_slice_async;
2528 cfqd->cfq_slice[1] = cfq_slice_sync;
2529 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2530 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 2531 cfqd->cfq_latency = 1;
45333d5a 2532 cfqd->hw_tag = 1;
365722bb 2533 cfqd->last_end_sync_rq = jiffies;
bc1c1169 2534 return cfqd;
1da177e4
LT
2535}
2536
2537static void cfq_slab_kill(void)
2538{
d6de8be7
JA
2539 /*
2540 * Caller already ensured that pending RCU callbacks are completed,
2541 * so we should have no busy allocations at this point.
2542 */
1da177e4
LT
2543 if (cfq_pool)
2544 kmem_cache_destroy(cfq_pool);
2545 if (cfq_ioc_pool)
2546 kmem_cache_destroy(cfq_ioc_pool);
2547}
2548
2549static int __init cfq_slab_setup(void)
2550{
0a31bd5f 2551 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
2552 if (!cfq_pool)
2553 goto fail;
2554
34e6bbf2 2555 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
2556 if (!cfq_ioc_pool)
2557 goto fail;
2558
2559 return 0;
2560fail:
2561 cfq_slab_kill();
2562 return -ENOMEM;
2563}
2564
1da177e4
LT
2565/*
2566 * sysfs parts below -->
2567 */
1da177e4
LT
2568static ssize_t
2569cfq_var_show(unsigned int var, char *page)
2570{
2571 return sprintf(page, "%d\n", var);
2572}
2573
2574static ssize_t
2575cfq_var_store(unsigned int *var, const char *page, size_t count)
2576{
2577 char *p = (char *) page;
2578
2579 *var = simple_strtoul(p, &p, 10);
2580 return count;
2581}
2582
1da177e4 2583#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 2584static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 2585{ \
3d1ab40f 2586 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2587 unsigned int __data = __VAR; \
2588 if (__CONV) \
2589 __data = jiffies_to_msecs(__data); \
2590 return cfq_var_show(__data, (page)); \
2591}
2592SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
2593SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2594SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
2595SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2596SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
2597SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2598SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2599SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2600SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 2601SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
2602#undef SHOW_FUNCTION
2603
2604#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 2605static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 2606{ \
3d1ab40f 2607 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2608 unsigned int __data; \
2609 int ret = cfq_var_store(&__data, (page), count); \
2610 if (__data < (MIN)) \
2611 __data = (MIN); \
2612 else if (__data > (MAX)) \
2613 __data = (MAX); \
2614 if (__CONV) \
2615 *(__PTR) = msecs_to_jiffies(__data); \
2616 else \
2617 *(__PTR) = __data; \
2618 return ret; \
2619}
2620STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
2621STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2622 UINT_MAX, 1);
2623STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2624 UINT_MAX, 1);
e572ec7e 2625STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
2626STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2627 UINT_MAX, 0);
22e2c507
JA
2628STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2629STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2630STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
2631STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2632 UINT_MAX, 0);
963b72fc 2633STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
2634#undef STORE_FUNCTION
2635
e572ec7e
AV
2636#define CFQ_ATTR(name) \
2637 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2638
2639static struct elv_fs_entry cfq_attrs[] = {
2640 CFQ_ATTR(quantum),
e572ec7e
AV
2641 CFQ_ATTR(fifo_expire_sync),
2642 CFQ_ATTR(fifo_expire_async),
2643 CFQ_ATTR(back_seek_max),
2644 CFQ_ATTR(back_seek_penalty),
2645 CFQ_ATTR(slice_sync),
2646 CFQ_ATTR(slice_async),
2647 CFQ_ATTR(slice_async_rq),
2648 CFQ_ATTR(slice_idle),
963b72fc 2649 CFQ_ATTR(low_latency),
e572ec7e 2650 __ATTR_NULL
1da177e4
LT
2651};
2652
1da177e4
LT
2653static struct elevator_type iosched_cfq = {
2654 .ops = {
2655 .elevator_merge_fn = cfq_merge,
2656 .elevator_merged_fn = cfq_merged_request,
2657 .elevator_merge_req_fn = cfq_merged_requests,
da775265 2658 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 2659 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 2660 .elevator_add_req_fn = cfq_insert_request,
b4878f24 2661 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
2662 .elevator_deactivate_req_fn = cfq_deactivate_request,
2663 .elevator_queue_empty_fn = cfq_queue_empty,
2664 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
2665 .elevator_former_req_fn = elv_rb_former_request,
2666 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
2667 .elevator_set_req_fn = cfq_set_request,
2668 .elevator_put_req_fn = cfq_put_request,
2669 .elevator_may_queue_fn = cfq_may_queue,
2670 .elevator_init_fn = cfq_init_queue,
2671 .elevator_exit_fn = cfq_exit_queue,
fc46379d 2672 .trim = cfq_free_io_context,
1da177e4 2673 },
3d1ab40f 2674 .elevator_attrs = cfq_attrs,
1da177e4
LT
2675 .elevator_name = "cfq",
2676 .elevator_owner = THIS_MODULE,
2677};
2678
2679static int __init cfq_init(void)
2680{
22e2c507
JA
2681 /*
2682 * could be 0 on HZ < 1000 setups
2683 */
2684 if (!cfq_slice_async)
2685 cfq_slice_async = 1;
2686 if (!cfq_slice_idle)
2687 cfq_slice_idle = 1;
2688
1da177e4
LT
2689 if (cfq_slab_setup())
2690 return -ENOMEM;
2691
2fdd82bd 2692 elv_register(&iosched_cfq);
1da177e4 2693
2fdd82bd 2694 return 0;
1da177e4
LT
2695}
2696
2697static void __exit cfq_exit(void)
2698{
6e9a4738 2699 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 2700 elv_unregister(&iosched_cfq);
334e94de 2701 ioc_gone = &all_gone;
fba82272
OH
2702 /* ioc_gone's update must be visible before reading ioc_count */
2703 smp_wmb();
d6de8be7
JA
2704
2705 /*
2706 * this also protects us from entering cfq_slab_kill() with
2707 * pending RCU callbacks
2708 */
245b2e70 2709 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 2710 wait_for_completion(&all_gone);
83521d3e 2711 cfq_slab_kill();
1da177e4
LT
2712}
2713
2714module_init(cfq_init);
2715module_exit(cfq_exit);
2716
2717MODULE_AUTHOR("Jens Axboe");
2718MODULE_LICENSE("GPL");
2719MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");