cfq-iosched: don't idle if a deep seek queue is slow
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
5a0e3ad6 10#include <linux/slab.h>
1cc9be68
AV
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
ad5ebd2f 13#include <linux/jiffies.h>
1da177e4 14#include <linux/rbtree.h>
22e2c507 15#include <linux/ioprio.h>
7b679138 16#include <linux/blktrace_api.h>
e98ef89b 17#include "cfq.h"
1da177e4
LT
18
19/*
20 * tunables
21 */
fe094d98 22/* max queue in one round of service */
abc3c744 23static const int cfq_quantum = 8;
64100099 24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
64100099 29static const int cfq_slice_sync = HZ / 10;
3b18152c 30static int cfq_slice_async = HZ / 25;
64100099 31static const int cfq_slice_async_rq = 2;
caaa5f9f 32static int cfq_slice_idle = HZ / 125;
80bdf0c7 33static int cfq_group_idle = HZ / 125;
5db5d642
CZ
34static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35static const int cfq_hist_divisor = 4;
22e2c507 36
d9e7620e 37/*
0871714e 38 * offset from end of service tree
d9e7620e 39 */
0871714e 40#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
41
42/*
43 * below this threshold, we consider thinktime immediate
44 */
45#define CFQ_MIN_TT (2)
46
22e2c507 47#define CFQ_SLICE_SCALE (5)
45333d5a 48#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 49#define CFQ_SERVICE_SHIFT 12
22e2c507 50
3dde36dd 51#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 52#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 53#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 54#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 55
fe094d98
JA
56#define RQ_CIC(rq) \
57 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
7f1dc8a2 59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
1da177e4 60
e18b890b
CL
61static struct kmem_cache *cfq_pool;
62static struct kmem_cache *cfq_ioc_pool;
1da177e4 63
245b2e70 64static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 65static struct completion *ioc_gone;
9a11b4ed 66static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 67
80b15c73
KK
68static DEFINE_SPINLOCK(cic_index_lock);
69static DEFINE_IDA(cic_index_ida);
70
22e2c507
JA
71#define CFQ_PRIO_LISTS IOPRIO_BE_NR
72#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
73#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
206dc69b 75#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 76#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 77
cc09e299
JA
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
aa6f6a3d 87 unsigned count;
73e9ffdd 88 unsigned total_weight;
1fa8f6d6 89 u64 min_vdisktime;
25bc6b07 90 struct rb_node *active;
cc09e299 91};
73e9ffdd
RK
92#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
93 .count = 0, .min_vdisktime = 0, }
cc09e299 94
6118b70b
JA
95/*
96 * Per process-grouping structure
97 */
98struct cfq_queue {
99 /* reference count */
100 atomic_t ref;
101 /* various state flags, see below */
102 unsigned int flags;
103 /* parent cfq_data */
104 struct cfq_data *cfqd;
105 /* service_tree member */
106 struct rb_node rb_node;
107 /* service_tree key */
108 unsigned long rb_key;
109 /* prio tree member */
110 struct rb_node p_node;
111 /* prio tree root we belong to, if any */
112 struct rb_root *p_root;
113 /* sorted list of pending requests */
114 struct rb_root sort_list;
115 /* if fifo isn't expired, next request to serve */
116 struct request *next_rq;
117 /* requests queued in sort_list */
118 int queued[2];
119 /* currently allocated requests */
120 int allocated[2];
121 /* fifo list of requests in sort_list */
122 struct list_head fifo;
123
dae739eb
VG
124 /* time when queue got scheduled in to dispatch first request. */
125 unsigned long dispatch_start;
f75edf2d 126 unsigned int allocated_slice;
c4081ba5 127 unsigned int slice_dispatch;
dae739eb
VG
128 /* time when first request from queue completed and slice started. */
129 unsigned long slice_start;
6118b70b
JA
130 unsigned long slice_end;
131 long slice_resid;
6118b70b
JA
132
133 /* pending metadata requests */
134 int meta_pending;
135 /* number of requests that are on the dispatch list or inside driver */
136 int dispatched;
137
138 /* io prio of this group */
139 unsigned short ioprio, org_ioprio;
140 unsigned short ioprio_class, org_ioprio_class;
141
c4081ba5
RK
142 pid_t pid;
143
3dde36dd 144 u32 seek_history;
b2c18e1e
JM
145 sector_t last_request_pos;
146
aa6f6a3d 147 struct cfq_rb_root *service_tree;
df5fe3e8 148 struct cfq_queue *new_cfqq;
cdb16e8f 149 struct cfq_group *cfqg;
ae30c286 150 struct cfq_group *orig_cfqg;
c4e7893e
VG
151 /* Number of sectors dispatched from queue in single dispatch round */
152 unsigned long nr_sectors;
6118b70b
JA
153};
154
c0324a02 155/*
718eee05 156 * First index in the service_trees.
c0324a02
CZ
157 * IDLE is handled separately, so it has negative index
158 */
159enum wl_prio_t {
c0324a02 160 BE_WORKLOAD = 0,
615f0259
VG
161 RT_WORKLOAD = 1,
162 IDLE_WORKLOAD = 2,
c0324a02
CZ
163};
164
718eee05
CZ
165/*
166 * Second index in the service_trees.
167 */
168enum wl_type_t {
169 ASYNC_WORKLOAD = 0,
170 SYNC_NOIDLE_WORKLOAD = 1,
171 SYNC_WORKLOAD = 2
172};
173
cdb16e8f
VG
174/* This is per cgroup per device grouping structure */
175struct cfq_group {
1fa8f6d6
VG
176 /* group service_tree member */
177 struct rb_node rb_node;
178
179 /* group service_tree key */
180 u64 vdisktime;
25bc6b07 181 unsigned int weight;
1fa8f6d6
VG
182 bool on_st;
183
184 /* number of cfqq currently on this group */
185 int nr_cfqq;
186
58ff82f3
VG
187 /* Per group busy queus average. Useful for workload slice calc. */
188 unsigned int busy_queues_avg[2];
cdb16e8f
VG
189 /*
190 * rr lists of queues with requests, onle rr for each priority class.
191 * Counts are embedded in the cfq_rb_root
192 */
193 struct cfq_rb_root service_trees[2][3];
194 struct cfq_rb_root service_tree_idle;
dae739eb
VG
195
196 unsigned long saved_workload_slice;
197 enum wl_type_t saved_workload;
198 enum wl_prio_t saved_serving_prio;
25fb5169
VG
199 struct blkio_group blkg;
200#ifdef CONFIG_CFQ_GROUP_IOSCHED
201 struct hlist_node cfqd_node;
b1c35769 202 atomic_t ref;
25fb5169 203#endif
80bdf0c7
VG
204 /* number of requests that are on the dispatch list or inside driver */
205 int dispatched;
cdb16e8f 206};
718eee05 207
22e2c507
JA
208/*
209 * Per block device queue structure
210 */
1da177e4 211struct cfq_data {
165125e1 212 struct request_queue *queue;
1fa8f6d6
VG
213 /* Root service tree for cfq_groups */
214 struct cfq_rb_root grp_service_tree;
cdb16e8f 215 struct cfq_group root_group;
22e2c507 216
c0324a02
CZ
217 /*
218 * The priority currently being served
22e2c507 219 */
c0324a02 220 enum wl_prio_t serving_prio;
718eee05
CZ
221 enum wl_type_t serving_type;
222 unsigned long workload_expires;
cdb16e8f 223 struct cfq_group *serving_group;
8e550632 224 bool noidle_tree_requires_idle;
a36e71f9
JA
225
226 /*
227 * Each priority tree is sorted by next_request position. These
228 * trees are used when determining if two or more queues are
229 * interleaving requests (see cfq_close_cooperator).
230 */
231 struct rb_root prio_trees[CFQ_PRIO_LISTS];
232
22e2c507
JA
233 unsigned int busy_queues;
234
53c583d2
CZ
235 int rq_in_driver;
236 int rq_in_flight[2];
45333d5a
AC
237
238 /*
239 * queue-depth detection
240 */
241 int rq_queued;
25776e35 242 int hw_tag;
e459dd08
CZ
243 /*
244 * hw_tag can be
245 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
246 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
247 * 0 => no NCQ
248 */
249 int hw_tag_est_depth;
250 unsigned int hw_tag_samples;
1da177e4 251
22e2c507
JA
252 /*
253 * idle window management
254 */
255 struct timer_list idle_slice_timer;
23e018a1 256 struct work_struct unplug_work;
1da177e4 257
22e2c507
JA
258 struct cfq_queue *active_queue;
259 struct cfq_io_context *active_cic;
22e2c507 260
c2dea2d1
VT
261 /*
262 * async queue for each priority case
263 */
264 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
265 struct cfq_queue *async_idle_cfqq;
15c31be4 266
6d048f53 267 sector_t last_position;
1da177e4 268
1da177e4
LT
269 /*
270 * tunables, see top of file
271 */
272 unsigned int cfq_quantum;
22e2c507 273 unsigned int cfq_fifo_expire[2];
1da177e4
LT
274 unsigned int cfq_back_penalty;
275 unsigned int cfq_back_max;
22e2c507
JA
276 unsigned int cfq_slice[2];
277 unsigned int cfq_slice_async_rq;
278 unsigned int cfq_slice_idle;
80bdf0c7 279 unsigned int cfq_group_idle;
963b72fc 280 unsigned int cfq_latency;
ae30c286 281 unsigned int cfq_group_isolation;
d9ff4187 282
80b15c73 283 unsigned int cic_index;
d9ff4187 284 struct list_head cic_list;
1da177e4 285
6118b70b
JA
286 /*
287 * Fallback dummy cfqq for extreme OOM conditions
288 */
289 struct cfq_queue oom_cfqq;
365722bb 290
573412b2 291 unsigned long last_delayed_sync;
25fb5169
VG
292
293 /* List of cfq groups being managed on this device*/
294 struct hlist_head cfqg_list;
bb729bc9 295 struct rcu_head rcu;
1da177e4
LT
296};
297
25fb5169
VG
298static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
299
cdb16e8f
VG
300static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
301 enum wl_prio_t prio,
65b32a57 302 enum wl_type_t type)
c0324a02 303{
1fa8f6d6
VG
304 if (!cfqg)
305 return NULL;
306
c0324a02 307 if (prio == IDLE_WORKLOAD)
cdb16e8f 308 return &cfqg->service_tree_idle;
c0324a02 309
cdb16e8f 310 return &cfqg->service_trees[prio][type];
c0324a02
CZ
311}
312
3b18152c 313enum cfqq_state_flags {
b0b8d749
JA
314 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
315 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 316 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 317 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
318 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
319 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
320 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 321 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 322 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 323 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 324 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 325 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 326 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
327};
328
329#define CFQ_CFQQ_FNS(name) \
330static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
331{ \
fe094d98 332 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
333} \
334static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
335{ \
fe094d98 336 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
337} \
338static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
339{ \
fe094d98 340 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
341}
342
343CFQ_CFQQ_FNS(on_rr);
344CFQ_CFQQ_FNS(wait_request);
b029195d 345CFQ_CFQQ_FNS(must_dispatch);
3b18152c 346CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
347CFQ_CFQQ_FNS(fifo_expire);
348CFQ_CFQQ_FNS(idle_window);
349CFQ_CFQQ_FNS(prio_changed);
44f7c160 350CFQ_CFQQ_FNS(slice_new);
91fac317 351CFQ_CFQQ_FNS(sync);
a36e71f9 352CFQ_CFQQ_FNS(coop);
ae54abed 353CFQ_CFQQ_FNS(split_coop);
76280aff 354CFQ_CFQQ_FNS(deep);
f75edf2d 355CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
356#undef CFQ_CFQQ_FNS
357
afc24d49 358#ifdef CONFIG_CFQ_GROUP_IOSCHED
2868ef7b
VG
359#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
360 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
361 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
362 blkg_path(&(cfqq)->cfqg->blkg), ##args);
363
364#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
365 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
366 blkg_path(&(cfqg)->blkg), ##args); \
367
368#else
7b679138
JA
369#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
370 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
371#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
372#endif
7b679138
JA
373#define cfq_log(cfqd, fmt, args...) \
374 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
375
615f0259
VG
376/* Traverses through cfq group service trees */
377#define for_each_cfqg_st(cfqg, i, j, st) \
378 for (i = 0; i <= IDLE_WORKLOAD; i++) \
379 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
380 : &cfqg->service_tree_idle; \
381 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
382 (i == IDLE_WORKLOAD && j == 0); \
383 j++, st = i < IDLE_WORKLOAD ? \
384 &cfqg->service_trees[i][j]: NULL) \
385
386
02b35081
VG
387static inline bool iops_mode(struct cfq_data *cfqd)
388{
389 /*
390 * If we are not idling on queues and it is a NCQ drive, parallel
391 * execution of requests is on and measuring time is not possible
392 * in most of the cases until and unless we drive shallower queue
393 * depths and that becomes a performance bottleneck. In such cases
394 * switch to start providing fairness in terms of number of IOs.
395 */
396 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
397 return true;
398 else
399 return false;
400}
401
c0324a02
CZ
402static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
403{
404 if (cfq_class_idle(cfqq))
405 return IDLE_WORKLOAD;
406 if (cfq_class_rt(cfqq))
407 return RT_WORKLOAD;
408 return BE_WORKLOAD;
409}
410
718eee05
CZ
411
412static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
413{
414 if (!cfq_cfqq_sync(cfqq))
415 return ASYNC_WORKLOAD;
416 if (!cfq_cfqq_idle_window(cfqq))
417 return SYNC_NOIDLE_WORKLOAD;
418 return SYNC_WORKLOAD;
419}
420
58ff82f3
VG
421static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
422 struct cfq_data *cfqd,
423 struct cfq_group *cfqg)
c0324a02
CZ
424{
425 if (wl == IDLE_WORKLOAD)
cdb16e8f 426 return cfqg->service_tree_idle.count;
c0324a02 427
cdb16e8f
VG
428 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
429 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
430 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
431}
432
f26bd1f0
VG
433static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
434 struct cfq_group *cfqg)
435{
436 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
437 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
438}
439
165125e1 440static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 441static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 442 struct io_context *, gfp_t);
4ac845a2 443static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
444 struct io_context *);
445
446static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 447 bool is_sync)
91fac317 448{
a6151c3a 449 return cic->cfqq[is_sync];
91fac317
VT
450}
451
452static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 453 struct cfq_queue *cfqq, bool is_sync)
91fac317 454{
a6151c3a 455 cic->cfqq[is_sync] = cfqq;
91fac317
VT
456}
457
bca4b914 458#define CIC_DEAD_KEY 1ul
80b15c73 459#define CIC_DEAD_INDEX_SHIFT 1
bca4b914
KK
460
461static inline void *cfqd_dead_key(struct cfq_data *cfqd)
462{
80b15c73 463 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
bca4b914
KK
464}
465
466static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
467{
468 struct cfq_data *cfqd = cic->key;
469
470 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
471 return NULL;
472
473 return cfqd;
474}
475
91fac317
VT
476/*
477 * We regard a request as SYNC, if it's either a read or has the SYNC bit
478 * set (in which case it could also be direct WRITE).
479 */
a6151c3a 480static inline bool cfq_bio_sync(struct bio *bio)
91fac317 481{
7b6d91da 482 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
91fac317 483}
1da177e4 484
99f95e52
AM
485/*
486 * scheduler run of queue, if there are requests pending and no one in the
487 * driver that will restart queueing
488 */
23e018a1 489static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 490{
7b679138
JA
491 if (cfqd->busy_queues) {
492 cfq_log(cfqd, "schedule dispatch");
23e018a1 493 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 494 }
99f95e52
AM
495}
496
165125e1 497static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
498{
499 struct cfq_data *cfqd = q->elevator->elevator_data;
500
f04a6424 501 return !cfqd->rq_queued;
99f95e52
AM
502}
503
44f7c160
JA
504/*
505 * Scale schedule slice based on io priority. Use the sync time slice only
506 * if a queue is marked sync and has sync io queued. A sync queue with async
507 * io only, should not get full sync slice length.
508 */
a6151c3a 509static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 510 unsigned short prio)
44f7c160 511{
d9e7620e 512 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 513
d9e7620e
JA
514 WARN_ON(prio >= IOPRIO_BE_NR);
515
516 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
517}
44f7c160 518
d9e7620e
JA
519static inline int
520cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
521{
522 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
523}
524
25bc6b07
VG
525static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
526{
527 u64 d = delta << CFQ_SERVICE_SHIFT;
528
529 d = d * BLKIO_WEIGHT_DEFAULT;
530 do_div(d, cfqg->weight);
531 return d;
532}
533
534static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
535{
536 s64 delta = (s64)(vdisktime - min_vdisktime);
537 if (delta > 0)
538 min_vdisktime = vdisktime;
539
540 return min_vdisktime;
541}
542
543static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
544{
545 s64 delta = (s64)(vdisktime - min_vdisktime);
546 if (delta < 0)
547 min_vdisktime = vdisktime;
548
549 return min_vdisktime;
550}
551
552static void update_min_vdisktime(struct cfq_rb_root *st)
553{
554 u64 vdisktime = st->min_vdisktime;
555 struct cfq_group *cfqg;
556
557 if (st->active) {
558 cfqg = rb_entry_cfqg(st->active);
559 vdisktime = cfqg->vdisktime;
560 }
561
562 if (st->left) {
563 cfqg = rb_entry_cfqg(st->left);
564 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
565 }
566
567 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
568}
569
5db5d642
CZ
570/*
571 * get averaged number of queues of RT/BE priority.
572 * average is updated, with a formula that gives more weight to higher numbers,
573 * to quickly follows sudden increases and decrease slowly
574 */
575
58ff82f3
VG
576static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
577 struct cfq_group *cfqg, bool rt)
5869619c 578{
5db5d642
CZ
579 unsigned min_q, max_q;
580 unsigned mult = cfq_hist_divisor - 1;
581 unsigned round = cfq_hist_divisor / 2;
58ff82f3 582 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 583
58ff82f3
VG
584 min_q = min(cfqg->busy_queues_avg[rt], busy);
585 max_q = max(cfqg->busy_queues_avg[rt], busy);
586 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 587 cfq_hist_divisor;
58ff82f3
VG
588 return cfqg->busy_queues_avg[rt];
589}
590
591static inline unsigned
592cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
593{
594 struct cfq_rb_root *st = &cfqd->grp_service_tree;
595
596 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
597}
598
44f7c160
JA
599static inline void
600cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
601{
5db5d642
CZ
602 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
603 if (cfqd->cfq_latency) {
58ff82f3
VG
604 /*
605 * interested queues (we consider only the ones with the same
606 * priority class in the cfq group)
607 */
608 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
609 cfq_class_rt(cfqq));
5db5d642
CZ
610 unsigned sync_slice = cfqd->cfq_slice[1];
611 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
612 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
613
614 if (expect_latency > group_slice) {
5db5d642
CZ
615 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
616 /* scale low_slice according to IO priority
617 * and sync vs async */
618 unsigned low_slice =
619 min(slice, base_low_slice * slice / sync_slice);
620 /* the adapted slice value is scaled to fit all iqs
621 * into the target latency */
58ff82f3 622 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
623 low_slice);
624 }
625 }
dae739eb 626 cfqq->slice_start = jiffies;
5db5d642 627 cfqq->slice_end = jiffies + slice;
f75edf2d 628 cfqq->allocated_slice = slice;
7b679138 629 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
630}
631
632/*
633 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
634 * isn't valid until the first request from the dispatch is activated
635 * and the slice time set.
636 */
a6151c3a 637static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
638{
639 if (cfq_cfqq_slice_new(cfqq))
c1e44756 640 return false;
44f7c160 641 if (time_before(jiffies, cfqq->slice_end))
c1e44756 642 return false;
44f7c160 643
c1e44756 644 return true;
44f7c160
JA
645}
646
1da177e4 647/*
5e705374 648 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 649 * We choose the request that is closest to the head right now. Distance
e8a99053 650 * behind the head is penalized and only allowed to a certain extent.
1da177e4 651 */
5e705374 652static struct request *
cf7c25cf 653cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 654{
cf7c25cf 655 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 656 unsigned long back_max;
e8a99053
AM
657#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
658#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
659 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 660
5e705374
JA
661 if (rq1 == NULL || rq1 == rq2)
662 return rq2;
663 if (rq2 == NULL)
664 return rq1;
9c2c38a1 665
5e705374
JA
666 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
667 return rq1;
668 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
669 return rq2;
7b6d91da 670 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
374f84ac 671 return rq1;
7b6d91da
CH
672 else if ((rq2->cmd_flags & REQ_META) &&
673 !(rq1->cmd_flags & REQ_META))
374f84ac 674 return rq2;
1da177e4 675
83096ebf
TH
676 s1 = blk_rq_pos(rq1);
677 s2 = blk_rq_pos(rq2);
1da177e4 678
1da177e4
LT
679 /*
680 * by definition, 1KiB is 2 sectors
681 */
682 back_max = cfqd->cfq_back_max * 2;
683
684 /*
685 * Strict one way elevator _except_ in the case where we allow
686 * short backward seeks which are biased as twice the cost of a
687 * similar forward seek.
688 */
689 if (s1 >= last)
690 d1 = s1 - last;
691 else if (s1 + back_max >= last)
692 d1 = (last - s1) * cfqd->cfq_back_penalty;
693 else
e8a99053 694 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
695
696 if (s2 >= last)
697 d2 = s2 - last;
698 else if (s2 + back_max >= last)
699 d2 = (last - s2) * cfqd->cfq_back_penalty;
700 else
e8a99053 701 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
702
703 /* Found required data */
e8a99053
AM
704
705 /*
706 * By doing switch() on the bit mask "wrap" we avoid having to
707 * check two variables for all permutations: --> faster!
708 */
709 switch (wrap) {
5e705374 710 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 711 if (d1 < d2)
5e705374 712 return rq1;
e8a99053 713 else if (d2 < d1)
5e705374 714 return rq2;
e8a99053
AM
715 else {
716 if (s1 >= s2)
5e705374 717 return rq1;
e8a99053 718 else
5e705374 719 return rq2;
e8a99053 720 }
1da177e4 721
e8a99053 722 case CFQ_RQ2_WRAP:
5e705374 723 return rq1;
e8a99053 724 case CFQ_RQ1_WRAP:
5e705374
JA
725 return rq2;
726 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
727 default:
728 /*
729 * Since both rqs are wrapped,
730 * start with the one that's further behind head
731 * (--> only *one* back seek required),
732 * since back seek takes more time than forward.
733 */
734 if (s1 <= s2)
5e705374 735 return rq1;
1da177e4 736 else
5e705374 737 return rq2;
1da177e4
LT
738 }
739}
740
498d3aa2
JA
741/*
742 * The below is leftmost cache rbtree addon
743 */
0871714e 744static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 745{
615f0259
VG
746 /* Service tree is empty */
747 if (!root->count)
748 return NULL;
749
cc09e299
JA
750 if (!root->left)
751 root->left = rb_first(&root->rb);
752
0871714e
JA
753 if (root->left)
754 return rb_entry(root->left, struct cfq_queue, rb_node);
755
756 return NULL;
cc09e299
JA
757}
758
1fa8f6d6
VG
759static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
760{
761 if (!root->left)
762 root->left = rb_first(&root->rb);
763
764 if (root->left)
765 return rb_entry_cfqg(root->left);
766
767 return NULL;
768}
769
a36e71f9
JA
770static void rb_erase_init(struct rb_node *n, struct rb_root *root)
771{
772 rb_erase(n, root);
773 RB_CLEAR_NODE(n);
774}
775
cc09e299
JA
776static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
777{
778 if (root->left == n)
779 root->left = NULL;
a36e71f9 780 rb_erase_init(n, &root->rb);
aa6f6a3d 781 --root->count;
cc09e299
JA
782}
783
1da177e4
LT
784/*
785 * would be nice to take fifo expire time into account as well
786 */
5e705374
JA
787static struct request *
788cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
789 struct request *last)
1da177e4 790{
21183b07
JA
791 struct rb_node *rbnext = rb_next(&last->rb_node);
792 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 793 struct request *next = NULL, *prev = NULL;
1da177e4 794
21183b07 795 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
796
797 if (rbprev)
5e705374 798 prev = rb_entry_rq(rbprev);
1da177e4 799
21183b07 800 if (rbnext)
5e705374 801 next = rb_entry_rq(rbnext);
21183b07
JA
802 else {
803 rbnext = rb_first(&cfqq->sort_list);
804 if (rbnext && rbnext != &last->rb_node)
5e705374 805 next = rb_entry_rq(rbnext);
21183b07 806 }
1da177e4 807
cf7c25cf 808 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
809}
810
d9e7620e
JA
811static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
812 struct cfq_queue *cfqq)
1da177e4 813{
d9e7620e
JA
814 /*
815 * just an approximation, should be ok.
816 */
cdb16e8f 817 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 818 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
819}
820
1fa8f6d6
VG
821static inline s64
822cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
823{
824 return cfqg->vdisktime - st->min_vdisktime;
825}
826
827static void
828__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
829{
830 struct rb_node **node = &st->rb.rb_node;
831 struct rb_node *parent = NULL;
832 struct cfq_group *__cfqg;
833 s64 key = cfqg_key(st, cfqg);
834 int left = 1;
835
836 while (*node != NULL) {
837 parent = *node;
838 __cfqg = rb_entry_cfqg(parent);
839
840 if (key < cfqg_key(st, __cfqg))
841 node = &parent->rb_left;
842 else {
843 node = &parent->rb_right;
844 left = 0;
845 }
846 }
847
848 if (left)
849 st->left = &cfqg->rb_node;
850
851 rb_link_node(&cfqg->rb_node, parent, node);
852 rb_insert_color(&cfqg->rb_node, &st->rb);
853}
854
855static void
856cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
857{
858 struct cfq_rb_root *st = &cfqd->grp_service_tree;
859 struct cfq_group *__cfqg;
860 struct rb_node *n;
861
862 cfqg->nr_cfqq++;
863 if (cfqg->on_st)
864 return;
865
866 /*
867 * Currently put the group at the end. Later implement something
868 * so that groups get lesser vtime based on their weights, so that
869 * if group does not loose all if it was not continously backlogged.
870 */
871 n = rb_last(&st->rb);
872 if (n) {
873 __cfqg = rb_entry_cfqg(n);
874 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
875 } else
876 cfqg->vdisktime = st->min_vdisktime;
877
878 __cfq_group_service_tree_add(st, cfqg);
879 cfqg->on_st = true;
58ff82f3 880 st->total_weight += cfqg->weight;
1fa8f6d6
VG
881}
882
883static void
884cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
885{
886 struct cfq_rb_root *st = &cfqd->grp_service_tree;
887
25bc6b07
VG
888 if (st->active == &cfqg->rb_node)
889 st->active = NULL;
890
1fa8f6d6
VG
891 BUG_ON(cfqg->nr_cfqq < 1);
892 cfqg->nr_cfqq--;
25bc6b07 893
1fa8f6d6
VG
894 /* If there are other cfq queues under this group, don't delete it */
895 if (cfqg->nr_cfqq)
896 return;
897
2868ef7b 898 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1fa8f6d6 899 cfqg->on_st = false;
58ff82f3 900 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
901 if (!RB_EMPTY_NODE(&cfqg->rb_node))
902 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 903 cfqg->saved_workload_slice = 0;
e98ef89b 904 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
905}
906
907static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
908{
f75edf2d 909 unsigned int slice_used;
dae739eb
VG
910
911 /*
912 * Queue got expired before even a single request completed or
913 * got expired immediately after first request completion.
914 */
915 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
916 /*
917 * Also charge the seek time incurred to the group, otherwise
918 * if there are mutiple queues in the group, each can dispatch
919 * a single request on seeky media and cause lots of seek time
920 * and group will never know it.
921 */
922 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
923 1);
924 } else {
925 slice_used = jiffies - cfqq->slice_start;
f75edf2d
VG
926 if (slice_used > cfqq->allocated_slice)
927 slice_used = cfqq->allocated_slice;
dae739eb
VG
928 }
929
dae739eb
VG
930 return slice_used;
931}
932
933static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
e5ff082e 934 struct cfq_queue *cfqq)
dae739eb
VG
935{
936 struct cfq_rb_root *st = &cfqd->grp_service_tree;
02b35081 937 unsigned int used_sl, charge;
f26bd1f0
VG
938 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
939 - cfqg->service_tree_idle.count;
940
941 BUG_ON(nr_sync < 0);
02b35081 942 used_sl = charge = cfq_cfqq_slice_usage(cfqq);
dae739eb 943
02b35081
VG
944 if (iops_mode(cfqd))
945 charge = cfqq->slice_dispatch;
946 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
947 charge = cfqq->allocated_slice;
dae739eb
VG
948
949 /* Can't update vdisktime while group is on service tree */
950 cfq_rb_erase(&cfqg->rb_node, st);
02b35081 951 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
dae739eb
VG
952 __cfq_group_service_tree_add(st, cfqg);
953
954 /* This group is being expired. Save the context */
955 if (time_after(cfqd->workload_expires, jiffies)) {
956 cfqg->saved_workload_slice = cfqd->workload_expires
957 - jiffies;
958 cfqg->saved_workload = cfqd->serving_type;
959 cfqg->saved_serving_prio = cfqd->serving_prio;
960 } else
961 cfqg->saved_workload_slice = 0;
2868ef7b
VG
962
963 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
964 st->min_vdisktime);
c4e7893e
VG
965 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
966 " sect=%u", used_sl, cfqq->slice_dispatch, charge,
967 iops_mode(cfqd), cfqq->nr_sectors);
e98ef89b
VG
968 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
969 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1fa8f6d6
VG
970}
971
25fb5169
VG
972#ifdef CONFIG_CFQ_GROUP_IOSCHED
973static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
974{
975 if (blkg)
976 return container_of(blkg, struct cfq_group, blkg);
977 return NULL;
978}
979
f8d461d6
VG
980void
981cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
982{
983 cfqg_of_blkg(blkg)->weight = weight;
984}
985
25fb5169
VG
986static struct cfq_group *
987cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
988{
989 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
990 struct cfq_group *cfqg = NULL;
991 void *key = cfqd;
992 int i, j;
993 struct cfq_rb_root *st;
22084190
VG
994 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
995 unsigned int major, minor;
25fb5169 996
25fb5169 997 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
a74b2ada
RB
998 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
999 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1000 cfqg->blkg.dev = MKDEV(major, minor);
1001 goto done;
1002 }
25fb5169
VG
1003 if (cfqg || !create)
1004 goto done;
1005
1006 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1007 if (!cfqg)
1008 goto done;
1009
25fb5169
VG
1010 for_each_cfqg_st(cfqg, i, j, st)
1011 *st = CFQ_RB_ROOT;
1012 RB_CLEAR_NODE(&cfqg->rb_node);
1013
b1c35769
VG
1014 /*
1015 * Take the initial reference that will be released on destroy
1016 * This can be thought of a joint reference by cgroup and
1017 * elevator which will be dropped by either elevator exit
1018 * or cgroup deletion path depending on who is exiting first.
1019 */
1020 atomic_set(&cfqg->ref, 1);
1021
180be2a0
VG
1022 /*
1023 * Add group onto cgroup list. It might happen that bdi->dev is
1024 * not initiliazed yet. Initialize this new group without major
1025 * and minor info and this info will be filled in once a new thread
1026 * comes for IO. See code above.
1027 */
1028 if (bdi->dev) {
1029 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1030 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
22084190 1031 MKDEV(major, minor));
180be2a0
VG
1032 } else
1033 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1034 0);
1035
34d0f179 1036 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
25fb5169
VG
1037
1038 /* Add group on cfqd list */
1039 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1040
1041done:
25fb5169
VG
1042 return cfqg;
1043}
1044
1045/*
1046 * Search for the cfq group current task belongs to. If create = 1, then also
1047 * create the cfq group if it does not exist. request_queue lock must be held.
1048 */
1049static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1050{
1051 struct cgroup *cgroup;
1052 struct cfq_group *cfqg = NULL;
1053
1054 rcu_read_lock();
1055 cgroup = task_cgroup(current, blkio_subsys_id);
1056 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1057 if (!cfqg && create)
1058 cfqg = &cfqd->root_group;
1059 rcu_read_unlock();
1060 return cfqg;
1061}
1062
7f1dc8a2
VG
1063static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1064{
1065 atomic_inc(&cfqg->ref);
1066 return cfqg;
1067}
1068
25fb5169
VG
1069static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1070{
1071 /* Currently, all async queues are mapped to root group */
1072 if (!cfq_cfqq_sync(cfqq))
1073 cfqg = &cfqq->cfqd->root_group;
1074
1075 cfqq->cfqg = cfqg;
b1c35769
VG
1076 /* cfqq reference on cfqg */
1077 atomic_inc(&cfqq->cfqg->ref);
1078}
1079
1080static void cfq_put_cfqg(struct cfq_group *cfqg)
1081{
1082 struct cfq_rb_root *st;
1083 int i, j;
1084
1085 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1086 if (!atomic_dec_and_test(&cfqg->ref))
1087 return;
1088 for_each_cfqg_st(cfqg, i, j, st)
1089 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1090 kfree(cfqg);
1091}
1092
1093static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1094{
1095 /* Something wrong if we are trying to remove same group twice */
1096 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1097
1098 hlist_del_init(&cfqg->cfqd_node);
1099
1100 /*
1101 * Put the reference taken at the time of creation so that when all
1102 * queues are gone, group can be destroyed.
1103 */
1104 cfq_put_cfqg(cfqg);
1105}
1106
1107static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1108{
1109 struct hlist_node *pos, *n;
1110 struct cfq_group *cfqg;
1111
1112 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1113 /*
1114 * If cgroup removal path got to blk_group first and removed
1115 * it from cgroup list, then it will take care of destroying
1116 * cfqg also.
1117 */
e98ef89b 1118 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
b1c35769
VG
1119 cfq_destroy_cfqg(cfqd, cfqg);
1120 }
25fb5169 1121}
b1c35769
VG
1122
1123/*
1124 * Blk cgroup controller notification saying that blkio_group object is being
1125 * delinked as associated cgroup object is going away. That also means that
1126 * no new IO will come in this group. So get rid of this group as soon as
1127 * any pending IO in the group is finished.
1128 *
1129 * This function is called under rcu_read_lock(). key is the rcu protected
1130 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1131 * read lock.
1132 *
1133 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1134 * it should not be NULL as even if elevator was exiting, cgroup deltion
1135 * path got to it first.
1136 */
1137void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1138{
1139 unsigned long flags;
1140 struct cfq_data *cfqd = key;
1141
1142 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1143 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1144 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1145}
1146
25fb5169
VG
1147#else /* GROUP_IOSCHED */
1148static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1149{
1150 return &cfqd->root_group;
1151}
7f1dc8a2
VG
1152
1153static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1154{
50eaeb32 1155 return cfqg;
7f1dc8a2
VG
1156}
1157
25fb5169
VG
1158static inline void
1159cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1160 cfqq->cfqg = cfqg;
1161}
1162
b1c35769
VG
1163static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1164static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1165
25fb5169
VG
1166#endif /* GROUP_IOSCHED */
1167
498d3aa2 1168/*
c0324a02 1169 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1170 * requests waiting to be processed. It is sorted in the order that
1171 * we will service the queues.
1172 */
a36e71f9 1173static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1174 bool add_front)
d9e7620e 1175{
0871714e
JA
1176 struct rb_node **p, *parent;
1177 struct cfq_queue *__cfqq;
d9e7620e 1178 unsigned long rb_key;
c0324a02 1179 struct cfq_rb_root *service_tree;
498d3aa2 1180 int left;
dae739eb 1181 int new_cfqq = 1;
ae30c286
VG
1182 int group_changed = 0;
1183
1184#ifdef CONFIG_CFQ_GROUP_IOSCHED
1185 if (!cfqd->cfq_group_isolation
1186 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1187 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1188 /* Move this cfq to root group */
1189 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1190 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1191 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1192 cfqq->orig_cfqg = cfqq->cfqg;
1193 cfqq->cfqg = &cfqd->root_group;
1194 atomic_inc(&cfqd->root_group.ref);
1195 group_changed = 1;
1196 } else if (!cfqd->cfq_group_isolation
1197 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1198 /* cfqq is sequential now needs to go to its original group */
1199 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1200 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1201 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1202 cfq_put_cfqg(cfqq->cfqg);
1203 cfqq->cfqg = cfqq->orig_cfqg;
1204 cfqq->orig_cfqg = NULL;
1205 group_changed = 1;
1206 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1207 }
1208#endif
d9e7620e 1209
cdb16e8f 1210 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1211 cfqq_type(cfqq));
0871714e
JA
1212 if (cfq_class_idle(cfqq)) {
1213 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1214 parent = rb_last(&service_tree->rb);
0871714e
JA
1215 if (parent && parent != &cfqq->rb_node) {
1216 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1217 rb_key += __cfqq->rb_key;
1218 } else
1219 rb_key += jiffies;
1220 } else if (!add_front) {
b9c8946b
JA
1221 /*
1222 * Get our rb key offset. Subtract any residual slice
1223 * value carried from last service. A negative resid
1224 * count indicates slice overrun, and this should position
1225 * the next service time further away in the tree.
1226 */
edd75ffd 1227 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1228 rb_key -= cfqq->slice_resid;
edd75ffd 1229 cfqq->slice_resid = 0;
48e025e6
CZ
1230 } else {
1231 rb_key = -HZ;
aa6f6a3d 1232 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1233 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1234 }
1da177e4 1235
d9e7620e 1236 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1237 new_cfqq = 0;
99f9628a 1238 /*
d9e7620e 1239 * same position, nothing more to do
99f9628a 1240 */
c0324a02
CZ
1241 if (rb_key == cfqq->rb_key &&
1242 cfqq->service_tree == service_tree)
d9e7620e 1243 return;
1da177e4 1244
aa6f6a3d
CZ
1245 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1246 cfqq->service_tree = NULL;
1da177e4 1247 }
d9e7620e 1248
498d3aa2 1249 left = 1;
0871714e 1250 parent = NULL;
aa6f6a3d
CZ
1251 cfqq->service_tree = service_tree;
1252 p = &service_tree->rb.rb_node;
d9e7620e 1253 while (*p) {
67060e37 1254 struct rb_node **n;
cc09e299 1255
d9e7620e
JA
1256 parent = *p;
1257 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1258
0c534e0a 1259 /*
c0324a02 1260 * sort by key, that represents service time.
0c534e0a 1261 */
c0324a02 1262 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1263 n = &(*p)->rb_left;
c0324a02 1264 else {
67060e37 1265 n = &(*p)->rb_right;
cc09e299 1266 left = 0;
c0324a02 1267 }
67060e37
JA
1268
1269 p = n;
d9e7620e
JA
1270 }
1271
cc09e299 1272 if (left)
aa6f6a3d 1273 service_tree->left = &cfqq->rb_node;
cc09e299 1274
d9e7620e
JA
1275 cfqq->rb_key = rb_key;
1276 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1277 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1278 service_tree->count++;
ae30c286 1279 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1280 return;
1fa8f6d6 1281 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1282}
1283
a36e71f9 1284static struct cfq_queue *
f2d1f0ae
JA
1285cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1286 sector_t sector, struct rb_node **ret_parent,
1287 struct rb_node ***rb_link)
a36e71f9 1288{
a36e71f9
JA
1289 struct rb_node **p, *parent;
1290 struct cfq_queue *cfqq = NULL;
1291
1292 parent = NULL;
1293 p = &root->rb_node;
1294 while (*p) {
1295 struct rb_node **n;
1296
1297 parent = *p;
1298 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1299
1300 /*
1301 * Sort strictly based on sector. Smallest to the left,
1302 * largest to the right.
1303 */
2e46e8b2 1304 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1305 n = &(*p)->rb_right;
2e46e8b2 1306 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1307 n = &(*p)->rb_left;
1308 else
1309 break;
1310 p = n;
3ac6c9f8 1311 cfqq = NULL;
a36e71f9
JA
1312 }
1313
1314 *ret_parent = parent;
1315 if (rb_link)
1316 *rb_link = p;
3ac6c9f8 1317 return cfqq;
a36e71f9
JA
1318}
1319
1320static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1321{
a36e71f9
JA
1322 struct rb_node **p, *parent;
1323 struct cfq_queue *__cfqq;
1324
f2d1f0ae
JA
1325 if (cfqq->p_root) {
1326 rb_erase(&cfqq->p_node, cfqq->p_root);
1327 cfqq->p_root = NULL;
1328 }
a36e71f9
JA
1329
1330 if (cfq_class_idle(cfqq))
1331 return;
1332 if (!cfqq->next_rq)
1333 return;
1334
f2d1f0ae 1335 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1336 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1337 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1338 if (!__cfqq) {
1339 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1340 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1341 } else
1342 cfqq->p_root = NULL;
a36e71f9
JA
1343}
1344
498d3aa2
JA
1345/*
1346 * Update cfqq's position in the service tree.
1347 */
edd75ffd 1348static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1349{
6d048f53
JA
1350 /*
1351 * Resorting requires the cfqq to be on the RR list already.
1352 */
a36e71f9 1353 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1354 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1355 cfq_prio_tree_add(cfqd, cfqq);
1356 }
6d048f53
JA
1357}
1358
1da177e4
LT
1359/*
1360 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1361 * the pending list according to last request service
1da177e4 1362 */
febffd61 1363static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1364{
7b679138 1365 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1366 BUG_ON(cfq_cfqq_on_rr(cfqq));
1367 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1368 cfqd->busy_queues++;
1369
edd75ffd 1370 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1371}
1372
498d3aa2
JA
1373/*
1374 * Called when the cfqq no longer has requests pending, remove it from
1375 * the service tree.
1376 */
febffd61 1377static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1378{
7b679138 1379 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1380 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1381 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1382
aa6f6a3d
CZ
1383 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1384 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1385 cfqq->service_tree = NULL;
1386 }
f2d1f0ae
JA
1387 if (cfqq->p_root) {
1388 rb_erase(&cfqq->p_node, cfqq->p_root);
1389 cfqq->p_root = NULL;
1390 }
d9e7620e 1391
1fa8f6d6 1392 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1393 BUG_ON(!cfqd->busy_queues);
1394 cfqd->busy_queues--;
1395}
1396
1397/*
1398 * rb tree support functions
1399 */
febffd61 1400static void cfq_del_rq_rb(struct request *rq)
1da177e4 1401{
5e705374 1402 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1403 const int sync = rq_is_sync(rq);
1da177e4 1404
b4878f24
JA
1405 BUG_ON(!cfqq->queued[sync]);
1406 cfqq->queued[sync]--;
1da177e4 1407
5e705374 1408 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1409
f04a6424
VG
1410 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1411 /*
1412 * Queue will be deleted from service tree when we actually
1413 * expire it later. Right now just remove it from prio tree
1414 * as it is empty.
1415 */
1416 if (cfqq->p_root) {
1417 rb_erase(&cfqq->p_node, cfqq->p_root);
1418 cfqq->p_root = NULL;
1419 }
1420 }
1da177e4
LT
1421}
1422
5e705374 1423static void cfq_add_rq_rb(struct request *rq)
1da177e4 1424{
5e705374 1425 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1426 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1427 struct request *__alias, *prev;
1da177e4 1428
5380a101 1429 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1430
1431 /*
1432 * looks a little odd, but the first insert might return an alias.
1433 * if that happens, put the alias on the dispatch list
1434 */
21183b07 1435 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1436 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1437
1438 if (!cfq_cfqq_on_rr(cfqq))
1439 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1440
1441 /*
1442 * check if this request is a better next-serve candidate
1443 */
a36e71f9 1444 prev = cfqq->next_rq;
cf7c25cf 1445 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1446
1447 /*
1448 * adjust priority tree position, if ->next_rq changes
1449 */
1450 if (prev != cfqq->next_rq)
1451 cfq_prio_tree_add(cfqd, cfqq);
1452
5044eed4 1453 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1454}
1455
febffd61 1456static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1457{
5380a101
JA
1458 elv_rb_del(&cfqq->sort_list, rq);
1459 cfqq->queued[rq_is_sync(rq)]--;
e98ef89b
VG
1460 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1461 rq_data_dir(rq), rq_is_sync(rq));
5e705374 1462 cfq_add_rq_rb(rq);
e98ef89b 1463 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
7f1dc8a2
VG
1464 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1465 rq_is_sync(rq));
1da177e4
LT
1466}
1467
206dc69b
JA
1468static struct request *
1469cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1470{
206dc69b 1471 struct task_struct *tsk = current;
91fac317 1472 struct cfq_io_context *cic;
206dc69b 1473 struct cfq_queue *cfqq;
1da177e4 1474
4ac845a2 1475 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1476 if (!cic)
1477 return NULL;
1478
1479 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1480 if (cfqq) {
1481 sector_t sector = bio->bi_sector + bio_sectors(bio);
1482
21183b07 1483 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1484 }
1da177e4 1485
1da177e4
LT
1486 return NULL;
1487}
1488
165125e1 1489static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1490{
22e2c507 1491 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1492
53c583d2 1493 cfqd->rq_in_driver++;
7b679138 1494 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1495 cfqd->rq_in_driver);
25776e35 1496
5b93629b 1497 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1498}
1499
165125e1 1500static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1501{
b4878f24
JA
1502 struct cfq_data *cfqd = q->elevator->elevator_data;
1503
53c583d2
CZ
1504 WARN_ON(!cfqd->rq_in_driver);
1505 cfqd->rq_in_driver--;
7b679138 1506 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1507 cfqd->rq_in_driver);
1da177e4
LT
1508}
1509
b4878f24 1510static void cfq_remove_request(struct request *rq)
1da177e4 1511{
5e705374 1512 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1513
5e705374
JA
1514 if (cfqq->next_rq == rq)
1515 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1516
b4878f24 1517 list_del_init(&rq->queuelist);
5e705374 1518 cfq_del_rq_rb(rq);
374f84ac 1519
45333d5a 1520 cfqq->cfqd->rq_queued--;
e98ef89b
VG
1521 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1522 rq_data_dir(rq), rq_is_sync(rq));
7b6d91da 1523 if (rq->cmd_flags & REQ_META) {
374f84ac
JA
1524 WARN_ON(!cfqq->meta_pending);
1525 cfqq->meta_pending--;
1526 }
1da177e4
LT
1527}
1528
165125e1
JA
1529static int cfq_merge(struct request_queue *q, struct request **req,
1530 struct bio *bio)
1da177e4
LT
1531{
1532 struct cfq_data *cfqd = q->elevator->elevator_data;
1533 struct request *__rq;
1da177e4 1534
206dc69b 1535 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1536 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1537 *req = __rq;
1538 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1539 }
1540
1541 return ELEVATOR_NO_MERGE;
1da177e4
LT
1542}
1543
165125e1 1544static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1545 int type)
1da177e4 1546{
21183b07 1547 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1548 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1549
5e705374 1550 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1551 }
1da177e4
LT
1552}
1553
812d4026
DS
1554static void cfq_bio_merged(struct request_queue *q, struct request *req,
1555 struct bio *bio)
1556{
e98ef89b
VG
1557 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1558 bio_data_dir(bio), cfq_bio_sync(bio));
812d4026
DS
1559}
1560
1da177e4 1561static void
165125e1 1562cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1563 struct request *next)
1564{
cf7c25cf 1565 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1566 /*
1567 * reposition in fifo if next is older than rq
1568 */
1569 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1570 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1571 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1572 rq_set_fifo_time(rq, rq_fifo_time(next));
1573 }
22e2c507 1574
cf7c25cf
CZ
1575 if (cfqq->next_rq == next)
1576 cfqq->next_rq = rq;
b4878f24 1577 cfq_remove_request(next);
e98ef89b
VG
1578 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1579 rq_data_dir(next), rq_is_sync(next));
22e2c507
JA
1580}
1581
165125e1 1582static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1583 struct bio *bio)
1584{
1585 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1586 struct cfq_io_context *cic;
da775265 1587 struct cfq_queue *cfqq;
da775265
JA
1588
1589 /*
ec8acb69 1590 * Disallow merge of a sync bio into an async request.
da775265 1591 */
91fac317 1592 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1593 return false;
da775265
JA
1594
1595 /*
719d3402
JA
1596 * Lookup the cfqq that this bio will be queued with. Allow
1597 * merge only if rq is queued there.
da775265 1598 */
4ac845a2 1599 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1600 if (!cic)
a6151c3a 1601 return false;
719d3402 1602
91fac317 1603 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1604 return cfqq == RQ_CFQQ(rq);
da775265
JA
1605}
1606
812df48d
DS
1607static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1608{
1609 del_timer(&cfqd->idle_slice_timer);
e98ef89b 1610 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
812df48d
DS
1611}
1612
febffd61
JA
1613static void __cfq_set_active_queue(struct cfq_data *cfqd,
1614 struct cfq_queue *cfqq)
22e2c507
JA
1615{
1616 if (cfqq) {
b1ffe737
DS
1617 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1618 cfqd->serving_prio, cfqd->serving_type);
e98ef89b 1619 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
dae739eb
VG
1620 cfqq->slice_start = 0;
1621 cfqq->dispatch_start = jiffies;
f75edf2d 1622 cfqq->allocated_slice = 0;
22e2c507 1623 cfqq->slice_end = 0;
2f5cb738 1624 cfqq->slice_dispatch = 0;
c4e7893e 1625 cfqq->nr_sectors = 0;
2f5cb738 1626
2f5cb738 1627 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1628 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1629 cfq_clear_cfqq_must_alloc_slice(cfqq);
1630 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1631 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738 1632
812df48d 1633 cfq_del_timer(cfqd, cfqq);
22e2c507
JA
1634 }
1635
1636 cfqd->active_queue = cfqq;
1637}
1638
7b14e3b5
JA
1639/*
1640 * current cfqq expired its slice (or was too idle), select new one
1641 */
1642static void
1643__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e5ff082e 1644 bool timed_out)
7b14e3b5 1645{
7b679138
JA
1646 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1647
7b14e3b5 1648 if (cfq_cfqq_wait_request(cfqq))
812df48d 1649 cfq_del_timer(cfqd, cfqq);
7b14e3b5 1650
7b14e3b5 1651 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1652 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1653
ae54abed
SL
1654 /*
1655 * If this cfqq is shared between multiple processes, check to
1656 * make sure that those processes are still issuing I/Os within
1657 * the mean seek distance. If not, it may be time to break the
1658 * queues apart again.
1659 */
1660 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1661 cfq_mark_cfqq_split_coop(cfqq);
1662
7b14e3b5 1663 /*
6084cdda 1664 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1665 */
7b679138 1666 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1667 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1668 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1669 }
7b14e3b5 1670
e5ff082e 1671 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
dae739eb 1672
f04a6424
VG
1673 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1674 cfq_del_cfqq_rr(cfqd, cfqq);
1675
edd75ffd 1676 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1677
1678 if (cfqq == cfqd->active_queue)
1679 cfqd->active_queue = NULL;
1680
dae739eb
VG
1681 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1682 cfqd->grp_service_tree.active = NULL;
1683
7b14e3b5
JA
1684 if (cfqd->active_cic) {
1685 put_io_context(cfqd->active_cic->ioc);
1686 cfqd->active_cic = NULL;
1687 }
7b14e3b5
JA
1688}
1689
e5ff082e 1690static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1691{
1692 struct cfq_queue *cfqq = cfqd->active_queue;
1693
1694 if (cfqq)
e5ff082e 1695 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1696}
1697
498d3aa2
JA
1698/*
1699 * Get next queue for service. Unless we have a queue preemption,
1700 * we'll simply select the first cfqq in the service tree.
1701 */
6d048f53 1702static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1703{
c0324a02 1704 struct cfq_rb_root *service_tree =
cdb16e8f 1705 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1706 cfqd->serving_type);
d9e7620e 1707
f04a6424
VG
1708 if (!cfqd->rq_queued)
1709 return NULL;
1710
1fa8f6d6
VG
1711 /* There is nothing to dispatch */
1712 if (!service_tree)
1713 return NULL;
c0324a02
CZ
1714 if (RB_EMPTY_ROOT(&service_tree->rb))
1715 return NULL;
1716 return cfq_rb_first(service_tree);
6d048f53
JA
1717}
1718
f04a6424
VG
1719static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1720{
25fb5169 1721 struct cfq_group *cfqg;
f04a6424
VG
1722 struct cfq_queue *cfqq;
1723 int i, j;
1724 struct cfq_rb_root *st;
1725
1726 if (!cfqd->rq_queued)
1727 return NULL;
1728
25fb5169
VG
1729 cfqg = cfq_get_next_cfqg(cfqd);
1730 if (!cfqg)
1731 return NULL;
1732
f04a6424
VG
1733 for_each_cfqg_st(cfqg, i, j, st)
1734 if ((cfqq = cfq_rb_first(st)) != NULL)
1735 return cfqq;
1736 return NULL;
1737}
1738
498d3aa2
JA
1739/*
1740 * Get and set a new active queue for service.
1741 */
a36e71f9
JA
1742static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1743 struct cfq_queue *cfqq)
6d048f53 1744{
e00ef799 1745 if (!cfqq)
a36e71f9 1746 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1747
22e2c507 1748 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1749 return cfqq;
22e2c507
JA
1750}
1751
d9e7620e
JA
1752static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1753 struct request *rq)
1754{
83096ebf
TH
1755 if (blk_rq_pos(rq) >= cfqd->last_position)
1756 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1757 else
83096ebf 1758 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1759}
1760
b2c18e1e 1761static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1762 struct request *rq)
6d048f53 1763{
e9ce335d 1764 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1765}
1766
a36e71f9
JA
1767static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1768 struct cfq_queue *cur_cfqq)
1769{
f2d1f0ae 1770 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1771 struct rb_node *parent, *node;
1772 struct cfq_queue *__cfqq;
1773 sector_t sector = cfqd->last_position;
1774
1775 if (RB_EMPTY_ROOT(root))
1776 return NULL;
1777
1778 /*
1779 * First, if we find a request starting at the end of the last
1780 * request, choose it.
1781 */
f2d1f0ae 1782 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1783 if (__cfqq)
1784 return __cfqq;
1785
1786 /*
1787 * If the exact sector wasn't found, the parent of the NULL leaf
1788 * will contain the closest sector.
1789 */
1790 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1791 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1792 return __cfqq;
1793
2e46e8b2 1794 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1795 node = rb_next(&__cfqq->p_node);
1796 else
1797 node = rb_prev(&__cfqq->p_node);
1798 if (!node)
1799 return NULL;
1800
1801 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1802 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1803 return __cfqq;
1804
1805 return NULL;
1806}
1807
1808/*
1809 * cfqd - obvious
1810 * cur_cfqq - passed in so that we don't decide that the current queue is
1811 * closely cooperating with itself.
1812 *
1813 * So, basically we're assuming that that cur_cfqq has dispatched at least
1814 * one request, and that cfqd->last_position reflects a position on the disk
1815 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1816 * assumption.
1817 */
1818static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1819 struct cfq_queue *cur_cfqq)
6d048f53 1820{
a36e71f9
JA
1821 struct cfq_queue *cfqq;
1822
39c01b21
DS
1823 if (cfq_class_idle(cur_cfqq))
1824 return NULL;
e6c5bc73
JM
1825 if (!cfq_cfqq_sync(cur_cfqq))
1826 return NULL;
1827 if (CFQQ_SEEKY(cur_cfqq))
1828 return NULL;
1829
b9d8f4c7
GJ
1830 /*
1831 * Don't search priority tree if it's the only queue in the group.
1832 */
1833 if (cur_cfqq->cfqg->nr_cfqq == 1)
1834 return NULL;
1835
6d048f53 1836 /*
d9e7620e
JA
1837 * We should notice if some of the queues are cooperating, eg
1838 * working closely on the same area of the disk. In that case,
1839 * we can group them together and don't waste time idling.
6d048f53 1840 */
a36e71f9
JA
1841 cfqq = cfqq_close(cfqd, cur_cfqq);
1842 if (!cfqq)
1843 return NULL;
1844
8682e1f1
VG
1845 /* If new queue belongs to different cfq_group, don't choose it */
1846 if (cur_cfqq->cfqg != cfqq->cfqg)
1847 return NULL;
1848
df5fe3e8
JM
1849 /*
1850 * It only makes sense to merge sync queues.
1851 */
1852 if (!cfq_cfqq_sync(cfqq))
1853 return NULL;
e6c5bc73
JM
1854 if (CFQQ_SEEKY(cfqq))
1855 return NULL;
df5fe3e8 1856
c0324a02
CZ
1857 /*
1858 * Do not merge queues of different priority classes
1859 */
1860 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1861 return NULL;
1862
a36e71f9 1863 return cfqq;
6d048f53
JA
1864}
1865
a6d44e98
CZ
1866/*
1867 * Determine whether we should enforce idle window for this queue.
1868 */
1869
1870static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1871{
1872 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1873 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1874
f04a6424
VG
1875 BUG_ON(!service_tree);
1876 BUG_ON(!service_tree->count);
1877
b6508c16
VG
1878 if (!cfqd->cfq_slice_idle)
1879 return false;
1880
a6d44e98
CZ
1881 /* We never do for idle class queues. */
1882 if (prio == IDLE_WORKLOAD)
1883 return false;
1884
1885 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1886 if (cfq_cfqq_idle_window(cfqq) &&
1887 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1888 return true;
1889
1890 /*
1891 * Otherwise, we do only if they are the last ones
1892 * in their service tree.
1893 */
b1ffe737 1894 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
c1e44756 1895 return true;
b1ffe737
DS
1896 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1897 service_tree->count);
c1e44756 1898 return false;
a6d44e98
CZ
1899}
1900
6d048f53 1901static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1902{
1792669c 1903 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1904 struct cfq_io_context *cic;
80bdf0c7 1905 unsigned long sl, group_idle = 0;
7b14e3b5 1906
a68bbddb 1907 /*
f7d7b7a7
JA
1908 * SSD device without seek penalty, disable idling. But only do so
1909 * for devices that support queuing, otherwise we still have a problem
1910 * with sync vs async workloads.
a68bbddb 1911 */
f7d7b7a7 1912 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1913 return;
1914
dd67d051 1915 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1916 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1917
1918 /*
1919 * idle is disabled, either manually or by past process history
1920 */
80bdf0c7
VG
1921 if (!cfq_should_idle(cfqd, cfqq)) {
1922 /* no queue idling. Check for group idling */
1923 if (cfqd->cfq_group_idle)
1924 group_idle = cfqd->cfq_group_idle;
1925 else
1926 return;
1927 }
6d048f53 1928
7b679138 1929 /*
8e550632 1930 * still active requests from this queue, don't idle
7b679138 1931 */
8e550632 1932 if (cfqq->dispatched)
7b679138
JA
1933 return;
1934
22e2c507
JA
1935 /*
1936 * task has exited, don't wait
1937 */
206dc69b 1938 cic = cfqd->active_cic;
66dac98e 1939 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1940 return;
1941
355b659c
CZ
1942 /*
1943 * If our average think time is larger than the remaining time
1944 * slice, then don't idle. This avoids overrunning the allotted
1945 * time slice.
1946 */
1947 if (sample_valid(cic->ttime_samples) &&
b1ffe737
DS
1948 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1949 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1950 cic->ttime_mean);
355b659c 1951 return;
b1ffe737 1952 }
355b659c 1953
80bdf0c7
VG
1954 /* There are other queues in the group, don't do group idle */
1955 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
1956 return;
1957
3b18152c 1958 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1959
80bdf0c7
VG
1960 if (group_idle)
1961 sl = cfqd->cfq_group_idle;
1962 else
1963 sl = cfqd->cfq_slice_idle;
206dc69b 1964
7b14e3b5 1965 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
e98ef89b 1966 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
80bdf0c7
VG
1967 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
1968 group_idle ? 1 : 0);
1da177e4
LT
1969}
1970
498d3aa2
JA
1971/*
1972 * Move request from internal lists to the request queue dispatch list.
1973 */
165125e1 1974static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1975{
3ed9a296 1976 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1977 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1978
7b679138
JA
1979 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1980
06d21886 1981 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1982 cfq_remove_request(rq);
6d048f53 1983 cfqq->dispatched++;
80bdf0c7 1984 (RQ_CFQG(rq))->dispatched++;
5380a101 1985 elv_dispatch_sort(q, rq);
3ed9a296 1986
53c583d2 1987 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
c4e7893e 1988 cfqq->nr_sectors += blk_rq_sectors(rq);
e98ef89b 1989 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
84c124da 1990 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
1991}
1992
1993/*
1994 * return expired entry, or NULL to just start from scratch in rbtree
1995 */
febffd61 1996static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1997{
30996f40 1998 struct request *rq = NULL;
1da177e4 1999
3b18152c 2000 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 2001 return NULL;
cb887411
JA
2002
2003 cfq_mark_cfqq_fifo_expire(cfqq);
2004
89850f7e
JA
2005 if (list_empty(&cfqq->fifo))
2006 return NULL;
1da177e4 2007
89850f7e 2008 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 2009 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 2010 rq = NULL;
1da177e4 2011
30996f40 2012 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 2013 return rq;
1da177e4
LT
2014}
2015
22e2c507
JA
2016static inline int
2017cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2018{
2019 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 2020
22e2c507 2021 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 2022
22e2c507 2023 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
2024}
2025
df5fe3e8
JM
2026/*
2027 * Must be called with the queue_lock held.
2028 */
2029static int cfqq_process_refs(struct cfq_queue *cfqq)
2030{
2031 int process_refs, io_refs;
2032
2033 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2034 process_refs = atomic_read(&cfqq->ref) - io_refs;
2035 BUG_ON(process_refs < 0);
2036 return process_refs;
2037}
2038
2039static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2040{
e6c5bc73 2041 int process_refs, new_process_refs;
df5fe3e8
JM
2042 struct cfq_queue *__cfqq;
2043
c10b61f0
JM
2044 /*
2045 * If there are no process references on the new_cfqq, then it is
2046 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2047 * chain may have dropped their last reference (not just their
2048 * last process reference).
2049 */
2050 if (!cfqq_process_refs(new_cfqq))
2051 return;
2052
df5fe3e8
JM
2053 /* Avoid a circular list and skip interim queue merges */
2054 while ((__cfqq = new_cfqq->new_cfqq)) {
2055 if (__cfqq == cfqq)
2056 return;
2057 new_cfqq = __cfqq;
2058 }
2059
2060 process_refs = cfqq_process_refs(cfqq);
c10b61f0 2061 new_process_refs = cfqq_process_refs(new_cfqq);
df5fe3e8
JM
2062 /*
2063 * If the process for the cfqq has gone away, there is no
2064 * sense in merging the queues.
2065 */
c10b61f0 2066 if (process_refs == 0 || new_process_refs == 0)
df5fe3e8
JM
2067 return;
2068
e6c5bc73
JM
2069 /*
2070 * Merge in the direction of the lesser amount of work.
2071 */
e6c5bc73
JM
2072 if (new_process_refs >= process_refs) {
2073 cfqq->new_cfqq = new_cfqq;
2074 atomic_add(process_refs, &new_cfqq->ref);
2075 } else {
2076 new_cfqq->new_cfqq = cfqq;
2077 atomic_add(new_process_refs, &cfqq->ref);
2078 }
df5fe3e8
JM
2079}
2080
cdb16e8f 2081static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 2082 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
2083{
2084 struct cfq_queue *queue;
2085 int i;
2086 bool key_valid = false;
2087 unsigned long lowest_key = 0;
2088 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2089
65b32a57
VG
2090 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2091 /* select the one with lowest rb_key */
2092 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
2093 if (queue &&
2094 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2095 lowest_key = queue->rb_key;
2096 cur_best = i;
2097 key_valid = true;
2098 }
2099 }
2100
2101 return cur_best;
2102}
2103
cdb16e8f 2104static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 2105{
718eee05
CZ
2106 unsigned slice;
2107 unsigned count;
cdb16e8f 2108 struct cfq_rb_root *st;
58ff82f3 2109 unsigned group_slice;
718eee05 2110
1fa8f6d6
VG
2111 if (!cfqg) {
2112 cfqd->serving_prio = IDLE_WORKLOAD;
2113 cfqd->workload_expires = jiffies + 1;
2114 return;
2115 }
2116
718eee05 2117 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2118 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2119 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2120 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2121 cfqd->serving_prio = BE_WORKLOAD;
2122 else {
2123 cfqd->serving_prio = IDLE_WORKLOAD;
2124 cfqd->workload_expires = jiffies + 1;
2125 return;
2126 }
2127
2128 /*
2129 * For RT and BE, we have to choose also the type
2130 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2131 * expiration time
2132 */
65b32a57 2133 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2134 count = st->count;
718eee05
CZ
2135
2136 /*
65b32a57 2137 * check workload expiration, and that we still have other queues ready
718eee05 2138 */
65b32a57 2139 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2140 return;
2141
2142 /* otherwise select new workload type */
2143 cfqd->serving_type =
65b32a57
VG
2144 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2145 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2146 count = st->count;
718eee05
CZ
2147
2148 /*
2149 * the workload slice is computed as a fraction of target latency
2150 * proportional to the number of queues in that workload, over
2151 * all the queues in the same priority class
2152 */
58ff82f3
VG
2153 group_slice = cfq_group_slice(cfqd, cfqg);
2154
2155 slice = group_slice * count /
2156 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2157 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2158
f26bd1f0
VG
2159 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2160 unsigned int tmp;
2161
2162 /*
2163 * Async queues are currently system wide. Just taking
2164 * proportion of queues with-in same group will lead to higher
2165 * async ratio system wide as generally root group is going
2166 * to have higher weight. A more accurate thing would be to
2167 * calculate system wide asnc/sync ratio.
2168 */
2169 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2170 tmp = tmp/cfqd->busy_queues;
2171 slice = min_t(unsigned, slice, tmp);
2172
718eee05
CZ
2173 /* async workload slice is scaled down according to
2174 * the sync/async slice ratio. */
2175 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2176 } else
718eee05
CZ
2177 /* sync workload slice is at least 2 * cfq_slice_idle */
2178 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2179
2180 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2181 cfq_log(cfqd, "workload slice:%d", slice);
718eee05 2182 cfqd->workload_expires = jiffies + slice;
8e550632 2183 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
2184}
2185
1fa8f6d6
VG
2186static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2187{
2188 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2189 struct cfq_group *cfqg;
1fa8f6d6
VG
2190
2191 if (RB_EMPTY_ROOT(&st->rb))
2192 return NULL;
25bc6b07
VG
2193 cfqg = cfq_rb_first_group(st);
2194 st->active = &cfqg->rb_node;
2195 update_min_vdisktime(st);
2196 return cfqg;
1fa8f6d6
VG
2197}
2198
cdb16e8f
VG
2199static void cfq_choose_cfqg(struct cfq_data *cfqd)
2200{
1fa8f6d6
VG
2201 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2202
2203 cfqd->serving_group = cfqg;
dae739eb
VG
2204
2205 /* Restore the workload type data */
2206 if (cfqg->saved_workload_slice) {
2207 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2208 cfqd->serving_type = cfqg->saved_workload;
2209 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2210 } else
2211 cfqd->workload_expires = jiffies - 1;
2212
1fa8f6d6 2213 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2214}
2215
22e2c507 2216/*
498d3aa2
JA
2217 * Select a queue for service. If we have a current active queue,
2218 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2219 */
1b5ed5e1 2220static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2221{
a36e71f9 2222 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2223
22e2c507
JA
2224 cfqq = cfqd->active_queue;
2225 if (!cfqq)
2226 goto new_queue;
1da177e4 2227
f04a6424
VG
2228 if (!cfqd->rq_queued)
2229 return NULL;
c244bb50
VG
2230
2231 /*
2232 * We were waiting for group to get backlogged. Expire the queue
2233 */
2234 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2235 goto expire;
2236
22e2c507 2237 /*
6d048f53 2238 * The active queue has run out of time, expire it and select new.
22e2c507 2239 */
7667aa06
VG
2240 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2241 /*
2242 * If slice had not expired at the completion of last request
2243 * we might not have turned on wait_busy flag. Don't expire
2244 * the queue yet. Allow the group to get backlogged.
2245 *
2246 * The very fact that we have used the slice, that means we
2247 * have been idling all along on this queue and it should be
2248 * ok to wait for this request to complete.
2249 */
82bbbf28
VG
2250 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2251 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2252 cfqq = NULL;
7667aa06 2253 goto keep_queue;
82bbbf28 2254 } else
80bdf0c7 2255 goto check_group_idle;
7667aa06 2256 }
1da177e4 2257
22e2c507 2258 /*
6d048f53
JA
2259 * The active queue has requests and isn't expired, allow it to
2260 * dispatch.
22e2c507 2261 */
dd67d051 2262 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2263 goto keep_queue;
6d048f53 2264
a36e71f9
JA
2265 /*
2266 * If another queue has a request waiting within our mean seek
2267 * distance, let it run. The expire code will check for close
2268 * cooperators and put the close queue at the front of the service
df5fe3e8 2269 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2270 */
b3b6d040 2271 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2272 if (new_cfqq) {
2273 if (!cfqq->new_cfqq)
2274 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2275 goto expire;
df5fe3e8 2276 }
a36e71f9 2277
6d048f53
JA
2278 /*
2279 * No requests pending. If the active queue still has requests in
2280 * flight or is idling for a new request, allow either of these
2281 * conditions to happen (or time out) before selecting a new queue.
2282 */
80bdf0c7
VG
2283 if (timer_pending(&cfqd->idle_slice_timer)) {
2284 cfqq = NULL;
2285 goto keep_queue;
2286 }
2287
8e1ac665
SL
2288 /*
2289 * This is a deep seek queue, but the device is much faster than
2290 * the queue can deliver, don't idle
2291 **/
2292 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2293 (cfq_cfqq_slice_new(cfqq) ||
2294 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2295 cfq_clear_cfqq_deep(cfqq);
2296 cfq_clear_cfqq_idle_window(cfqq);
2297 }
2298
80bdf0c7
VG
2299 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2300 cfqq = NULL;
2301 goto keep_queue;
2302 }
2303
2304 /*
2305 * If group idle is enabled and there are requests dispatched from
2306 * this group, wait for requests to complete.
2307 */
2308check_group_idle:
2309 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2310 && cfqq->cfqg->dispatched) {
caaa5f9f
JA
2311 cfqq = NULL;
2312 goto keep_queue;
22e2c507
JA
2313 }
2314
3b18152c 2315expire:
e5ff082e 2316 cfq_slice_expired(cfqd, 0);
3b18152c 2317new_queue:
718eee05
CZ
2318 /*
2319 * Current queue expired. Check if we have to switch to a new
2320 * service tree
2321 */
2322 if (!new_cfqq)
cdb16e8f 2323 cfq_choose_cfqg(cfqd);
718eee05 2324
a36e71f9 2325 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2326keep_queue:
3b18152c 2327 return cfqq;
22e2c507
JA
2328}
2329
febffd61 2330static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2331{
2332 int dispatched = 0;
2333
2334 while (cfqq->next_rq) {
2335 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2336 dispatched++;
2337 }
2338
2339 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2340
2341 /* By default cfqq is not expired if it is empty. Do it explicitly */
e5ff082e 2342 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2343 return dispatched;
2344}
2345
498d3aa2
JA
2346/*
2347 * Drain our current requests. Used for barriers and when switching
2348 * io schedulers on-the-fly.
2349 */
d9e7620e 2350static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2351{
0871714e 2352 struct cfq_queue *cfqq;
d9e7620e 2353 int dispatched = 0;
cdb16e8f 2354
3440c49f 2355 /* Expire the timeslice of the current active queue first */
e5ff082e 2356 cfq_slice_expired(cfqd, 0);
3440c49f
DS
2357 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2358 __cfq_set_active_queue(cfqd, cfqq);
f04a6424 2359 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3440c49f 2360 }
1b5ed5e1 2361
1b5ed5e1
TH
2362 BUG_ON(cfqd->busy_queues);
2363
6923715a 2364 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2365 return dispatched;
2366}
2367
abc3c744
SL
2368static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2369 struct cfq_queue *cfqq)
2370{
2371 /* the queue hasn't finished any request, can't estimate */
2372 if (cfq_cfqq_slice_new(cfqq))
c1e44756 2373 return true;
abc3c744
SL
2374 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2375 cfqq->slice_end))
c1e44756 2376 return true;
abc3c744 2377
c1e44756 2378 return false;
abc3c744
SL
2379}
2380
0b182d61 2381static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2382{
2f5cb738 2383 unsigned int max_dispatch;
22e2c507 2384
5ad531db
JA
2385 /*
2386 * Drain async requests before we start sync IO
2387 */
53c583d2 2388 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2389 return false;
5ad531db 2390
2f5cb738
JA
2391 /*
2392 * If this is an async queue and we have sync IO in flight, let it wait
2393 */
53c583d2 2394 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2395 return false;
2f5cb738 2396
abc3c744 2397 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2398 if (cfq_class_idle(cfqq))
2399 max_dispatch = 1;
b4878f24 2400
2f5cb738
JA
2401 /*
2402 * Does this cfqq already have too much IO in flight?
2403 */
2404 if (cfqq->dispatched >= max_dispatch) {
2405 /*
2406 * idle queue must always only have a single IO in flight
2407 */
3ed9a296 2408 if (cfq_class_idle(cfqq))
0b182d61 2409 return false;
3ed9a296 2410
2f5cb738
JA
2411 /*
2412 * We have other queues, don't allow more IO from this one
2413 */
abc3c744 2414 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
0b182d61 2415 return false;
9ede209e 2416
365722bb 2417 /*
474b18cc 2418 * Sole queue user, no limit
365722bb 2419 */
abc3c744
SL
2420 if (cfqd->busy_queues == 1)
2421 max_dispatch = -1;
2422 else
2423 /*
2424 * Normally we start throttling cfqq when cfq_quantum/2
2425 * requests have been dispatched. But we can drive
2426 * deeper queue depths at the beginning of slice
2427 * subjected to upper limit of cfq_quantum.
2428 * */
2429 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2430 }
2431
2432 /*
2433 * Async queues must wait a bit before being allowed dispatch.
2434 * We also ramp up the dispatch depth gradually for async IO,
2435 * based on the last sync IO we serviced
2436 */
963b72fc 2437 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2438 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2439 unsigned int depth;
365722bb 2440
61f0c1dc 2441 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2442 if (!depth && !cfqq->dispatched)
2443 depth = 1;
8e296755
JA
2444 if (depth < max_dispatch)
2445 max_dispatch = depth;
2f5cb738 2446 }
3ed9a296 2447
0b182d61
JA
2448 /*
2449 * If we're below the current max, allow a dispatch
2450 */
2451 return cfqq->dispatched < max_dispatch;
2452}
2453
2454/*
2455 * Dispatch a request from cfqq, moving them to the request queue
2456 * dispatch list.
2457 */
2458static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2459{
2460 struct request *rq;
2461
2462 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2463
2464 if (!cfq_may_dispatch(cfqd, cfqq))
2465 return false;
2466
2467 /*
2468 * follow expired path, else get first next available
2469 */
2470 rq = cfq_check_fifo(cfqq);
2471 if (!rq)
2472 rq = cfqq->next_rq;
2473
2474 /*
2475 * insert request into driver dispatch list
2476 */
2477 cfq_dispatch_insert(cfqd->queue, rq);
2478
2479 if (!cfqd->active_cic) {
2480 struct cfq_io_context *cic = RQ_CIC(rq);
2481
2482 atomic_long_inc(&cic->ioc->refcount);
2483 cfqd->active_cic = cic;
2484 }
2485
2486 return true;
2487}
2488
2489/*
2490 * Find the cfqq that we need to service and move a request from that to the
2491 * dispatch list
2492 */
2493static int cfq_dispatch_requests(struct request_queue *q, int force)
2494{
2495 struct cfq_data *cfqd = q->elevator->elevator_data;
2496 struct cfq_queue *cfqq;
2497
2498 if (!cfqd->busy_queues)
2499 return 0;
2500
2501 if (unlikely(force))
2502 return cfq_forced_dispatch(cfqd);
2503
2504 cfqq = cfq_select_queue(cfqd);
2505 if (!cfqq)
8e296755
JA
2506 return 0;
2507
2f5cb738 2508 /*
0b182d61 2509 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2510 */
0b182d61
JA
2511 if (!cfq_dispatch_request(cfqd, cfqq))
2512 return 0;
2513
2f5cb738 2514 cfqq->slice_dispatch++;
b029195d 2515 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2516
2f5cb738
JA
2517 /*
2518 * expire an async queue immediately if it has used up its slice. idle
2519 * queue always expire after 1 dispatch round.
2520 */
2521 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2522 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2523 cfq_class_idle(cfqq))) {
2524 cfqq->slice_end = jiffies + 1;
e5ff082e 2525 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2526 }
2527
b217a903 2528 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2529 return 1;
1da177e4
LT
2530}
2531
1da177e4 2532/*
5e705374
JA
2533 * task holds one reference to the queue, dropped when task exits. each rq
2534 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2535 *
b1c35769 2536 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2537 * queue lock must be held here.
2538 */
2539static void cfq_put_queue(struct cfq_queue *cfqq)
2540{
22e2c507 2541 struct cfq_data *cfqd = cfqq->cfqd;
878eaddd 2542 struct cfq_group *cfqg, *orig_cfqg;
22e2c507
JA
2543
2544 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2545
2546 if (!atomic_dec_and_test(&cfqq->ref))
2547 return;
2548
7b679138 2549 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2550 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2551 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2552 cfqg = cfqq->cfqg;
878eaddd 2553 orig_cfqg = cfqq->orig_cfqg;
1da177e4 2554
28f95cbc 2555 if (unlikely(cfqd->active_queue == cfqq)) {
e5ff082e 2556 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2557 cfq_schedule_dispatch(cfqd);
28f95cbc 2558 }
22e2c507 2559
f04a6424 2560 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2561 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2562 cfq_put_cfqg(cfqg);
878eaddd
VG
2563 if (orig_cfqg)
2564 cfq_put_cfqg(orig_cfqg);
1da177e4
LT
2565}
2566
d6de8be7
JA
2567/*
2568 * Must always be called with the rcu_read_lock() held
2569 */
07416d29
JA
2570static void
2571__call_for_each_cic(struct io_context *ioc,
2572 void (*func)(struct io_context *, struct cfq_io_context *))
2573{
2574 struct cfq_io_context *cic;
2575 struct hlist_node *n;
2576
2577 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2578 func(ioc, cic);
2579}
2580
4ac845a2 2581/*
34e6bbf2 2582 * Call func for each cic attached to this ioc.
4ac845a2 2583 */
34e6bbf2 2584static void
4ac845a2
JA
2585call_for_each_cic(struct io_context *ioc,
2586 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2587{
4ac845a2 2588 rcu_read_lock();
07416d29 2589 __call_for_each_cic(ioc, func);
4ac845a2 2590 rcu_read_unlock();
34e6bbf2
FC
2591}
2592
2593static void cfq_cic_free_rcu(struct rcu_head *head)
2594{
2595 struct cfq_io_context *cic;
2596
2597 cic = container_of(head, struct cfq_io_context, rcu_head);
2598
2599 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2600 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2601
9a11b4ed
JA
2602 if (ioc_gone) {
2603 /*
2604 * CFQ scheduler is exiting, grab exit lock and check
2605 * the pending io context count. If it hits zero,
2606 * complete ioc_gone and set it back to NULL
2607 */
2608 spin_lock(&ioc_gone_lock);
245b2e70 2609 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2610 complete(ioc_gone);
2611 ioc_gone = NULL;
2612 }
2613 spin_unlock(&ioc_gone_lock);
2614 }
34e6bbf2 2615}
4ac845a2 2616
34e6bbf2
FC
2617static void cfq_cic_free(struct cfq_io_context *cic)
2618{
2619 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2620}
2621
2622static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2623{
2624 unsigned long flags;
bca4b914 2625 unsigned long dead_key = (unsigned long) cic->key;
4ac845a2 2626
bca4b914 2627 BUG_ON(!(dead_key & CIC_DEAD_KEY));
4ac845a2
JA
2628
2629 spin_lock_irqsave(&ioc->lock, flags);
80b15c73 2630 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
ffc4e759 2631 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2632 spin_unlock_irqrestore(&ioc->lock, flags);
2633
34e6bbf2 2634 cfq_cic_free(cic);
4ac845a2
JA
2635}
2636
d6de8be7
JA
2637/*
2638 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2639 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2640 * and ->trim() which is called with the task lock held
2641 */
4ac845a2
JA
2642static void cfq_free_io_context(struct io_context *ioc)
2643{
4ac845a2 2644 /*
34e6bbf2
FC
2645 * ioc->refcount is zero here, or we are called from elv_unregister(),
2646 * so no more cic's are allowed to be linked into this ioc. So it
2647 * should be ok to iterate over the known list, we will see all cic's
2648 * since no new ones are added.
4ac845a2 2649 */
07416d29 2650 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2651}
2652
d02a2c07 2653static void cfq_put_cooperator(struct cfq_queue *cfqq)
1da177e4 2654{
df5fe3e8
JM
2655 struct cfq_queue *__cfqq, *next;
2656
df5fe3e8
JM
2657 /*
2658 * If this queue was scheduled to merge with another queue, be
2659 * sure to drop the reference taken on that queue (and others in
2660 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2661 */
2662 __cfqq = cfqq->new_cfqq;
2663 while (__cfqq) {
2664 if (__cfqq == cfqq) {
2665 WARN(1, "cfqq->new_cfqq loop detected\n");
2666 break;
2667 }
2668 next = __cfqq->new_cfqq;
2669 cfq_put_queue(__cfqq);
2670 __cfqq = next;
2671 }
d02a2c07
SL
2672}
2673
2674static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2675{
2676 if (unlikely(cfqq == cfqd->active_queue)) {
2677 __cfq_slice_expired(cfqd, cfqq, 0);
2678 cfq_schedule_dispatch(cfqd);
2679 }
2680
2681 cfq_put_cooperator(cfqq);
df5fe3e8 2682
89850f7e
JA
2683 cfq_put_queue(cfqq);
2684}
22e2c507 2685
89850f7e
JA
2686static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2687 struct cfq_io_context *cic)
2688{
4faa3c81
FC
2689 struct io_context *ioc = cic->ioc;
2690
fc46379d 2691 list_del_init(&cic->queue_list);
4ac845a2
JA
2692
2693 /*
bca4b914 2694 * Make sure dead mark is seen for dead queues
4ac845a2 2695 */
fc46379d 2696 smp_wmb();
bca4b914 2697 cic->key = cfqd_dead_key(cfqd);
fc46379d 2698
4faa3c81
FC
2699 if (ioc->ioc_data == cic)
2700 rcu_assign_pointer(ioc->ioc_data, NULL);
2701
ff6657c6
JA
2702 if (cic->cfqq[BLK_RW_ASYNC]) {
2703 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2704 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2705 }
2706
ff6657c6
JA
2707 if (cic->cfqq[BLK_RW_SYNC]) {
2708 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2709 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2710 }
89850f7e
JA
2711}
2712
4ac845a2
JA
2713static void cfq_exit_single_io_context(struct io_context *ioc,
2714 struct cfq_io_context *cic)
89850f7e 2715{
bca4b914 2716 struct cfq_data *cfqd = cic_to_cfqd(cic);
89850f7e 2717
89850f7e 2718 if (cfqd) {
165125e1 2719 struct request_queue *q = cfqd->queue;
4ac845a2 2720 unsigned long flags;
89850f7e 2721
4ac845a2 2722 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2723
2724 /*
2725 * Ensure we get a fresh copy of the ->key to prevent
2726 * race between exiting task and queue
2727 */
2728 smp_read_barrier_depends();
bca4b914 2729 if (cic->key == cfqd)
62c1fe9d
JA
2730 __cfq_exit_single_io_context(cfqd, cic);
2731
4ac845a2 2732 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2733 }
1da177e4
LT
2734}
2735
498d3aa2
JA
2736/*
2737 * The process that ioc belongs to has exited, we need to clean up
2738 * and put the internal structures we have that belongs to that process.
2739 */
e2d74ac0 2740static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2741{
4ac845a2 2742 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2743}
2744
22e2c507 2745static struct cfq_io_context *
8267e268 2746cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2747{
b5deef90 2748 struct cfq_io_context *cic;
1da177e4 2749
94f6030c
CL
2750 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2751 cfqd->queue->node);
1da177e4 2752 if (cic) {
22e2c507 2753 cic->last_end_request = jiffies;
553698f9 2754 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2755 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2756 cic->dtor = cfq_free_io_context;
2757 cic->exit = cfq_exit_io_context;
245b2e70 2758 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2759 }
2760
2761 return cic;
2762}
2763
fd0928df 2764static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2765{
2766 struct task_struct *tsk = current;
2767 int ioprio_class;
2768
3b18152c 2769 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2770 return;
2771
fd0928df 2772 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2773 switch (ioprio_class) {
fe094d98
JA
2774 default:
2775 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2776 case IOPRIO_CLASS_NONE:
2777 /*
6d63c275 2778 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2779 */
2780 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2781 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2782 break;
2783 case IOPRIO_CLASS_RT:
2784 cfqq->ioprio = task_ioprio(ioc);
2785 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2786 break;
2787 case IOPRIO_CLASS_BE:
2788 cfqq->ioprio = task_ioprio(ioc);
2789 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2790 break;
2791 case IOPRIO_CLASS_IDLE:
2792 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2793 cfqq->ioprio = 7;
2794 cfq_clear_cfqq_idle_window(cfqq);
2795 break;
22e2c507
JA
2796 }
2797
2798 /*
2799 * keep track of original prio settings in case we have to temporarily
2800 * elevate the priority of this queue
2801 */
2802 cfqq->org_ioprio = cfqq->ioprio;
2803 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2804 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2805}
2806
febffd61 2807static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2808{
bca4b914 2809 struct cfq_data *cfqd = cic_to_cfqd(cic);
478a82b0 2810 struct cfq_queue *cfqq;
c1b707d2 2811 unsigned long flags;
35e6077c 2812
caaa5f9f
JA
2813 if (unlikely(!cfqd))
2814 return;
2815
c1b707d2 2816 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2817
ff6657c6 2818 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2819 if (cfqq) {
2820 struct cfq_queue *new_cfqq;
ff6657c6
JA
2821 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2822 GFP_ATOMIC);
caaa5f9f 2823 if (new_cfqq) {
ff6657c6 2824 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2825 cfq_put_queue(cfqq);
2826 }
22e2c507 2827 }
caaa5f9f 2828
ff6657c6 2829 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2830 if (cfqq)
2831 cfq_mark_cfqq_prio_changed(cfqq);
2832
c1b707d2 2833 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2834}
2835
fc46379d 2836static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2837{
4ac845a2 2838 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2839 ioc->ioprio_changed = 0;
22e2c507
JA
2840}
2841
d5036d77 2842static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2843 pid_t pid, bool is_sync)
d5036d77
JA
2844{
2845 RB_CLEAR_NODE(&cfqq->rb_node);
2846 RB_CLEAR_NODE(&cfqq->p_node);
2847 INIT_LIST_HEAD(&cfqq->fifo);
2848
2849 atomic_set(&cfqq->ref, 0);
2850 cfqq->cfqd = cfqd;
2851
2852 cfq_mark_cfqq_prio_changed(cfqq);
2853
2854 if (is_sync) {
2855 if (!cfq_class_idle(cfqq))
2856 cfq_mark_cfqq_idle_window(cfqq);
2857 cfq_mark_cfqq_sync(cfqq);
2858 }
2859 cfqq->pid = pid;
2860}
2861
24610333
VG
2862#ifdef CONFIG_CFQ_GROUP_IOSCHED
2863static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2864{
2865 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
bca4b914 2866 struct cfq_data *cfqd = cic_to_cfqd(cic);
24610333
VG
2867 unsigned long flags;
2868 struct request_queue *q;
2869
2870 if (unlikely(!cfqd))
2871 return;
2872
2873 q = cfqd->queue;
2874
2875 spin_lock_irqsave(q->queue_lock, flags);
2876
2877 if (sync_cfqq) {
2878 /*
2879 * Drop reference to sync queue. A new sync queue will be
2880 * assigned in new group upon arrival of a fresh request.
2881 */
2882 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2883 cic_set_cfqq(cic, NULL, 1);
2884 cfq_put_queue(sync_cfqq);
2885 }
2886
2887 spin_unlock_irqrestore(q->queue_lock, flags);
2888}
2889
2890static void cfq_ioc_set_cgroup(struct io_context *ioc)
2891{
2892 call_for_each_cic(ioc, changed_cgroup);
2893 ioc->cgroup_changed = 0;
2894}
2895#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2896
22e2c507 2897static struct cfq_queue *
a6151c3a 2898cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2899 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2900{
22e2c507 2901 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2902 struct cfq_io_context *cic;
cdb16e8f 2903 struct cfq_group *cfqg;
22e2c507
JA
2904
2905retry:
cdb16e8f 2906 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2907 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2908 /* cic always exists here */
2909 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2910
6118b70b
JA
2911 /*
2912 * Always try a new alloc if we fell back to the OOM cfqq
2913 * originally, since it should just be a temporary situation.
2914 */
2915 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2916 cfqq = NULL;
22e2c507
JA
2917 if (new_cfqq) {
2918 cfqq = new_cfqq;
2919 new_cfqq = NULL;
2920 } else if (gfp_mask & __GFP_WAIT) {
2921 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2922 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2923 gfp_mask | __GFP_ZERO,
94f6030c 2924 cfqd->queue->node);
22e2c507 2925 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2926 if (new_cfqq)
2927 goto retry;
22e2c507 2928 } else {
94f6030c
CL
2929 cfqq = kmem_cache_alloc_node(cfq_pool,
2930 gfp_mask | __GFP_ZERO,
2931 cfqd->queue->node);
22e2c507
JA
2932 }
2933
6118b70b
JA
2934 if (cfqq) {
2935 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2936 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2937 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2938 cfq_log_cfqq(cfqd, cfqq, "alloced");
2939 } else
2940 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2941 }
2942
2943 if (new_cfqq)
2944 kmem_cache_free(cfq_pool, new_cfqq);
2945
22e2c507
JA
2946 return cfqq;
2947}
2948
c2dea2d1
VT
2949static struct cfq_queue **
2950cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2951{
fe094d98 2952 switch (ioprio_class) {
c2dea2d1
VT
2953 case IOPRIO_CLASS_RT:
2954 return &cfqd->async_cfqq[0][ioprio];
2955 case IOPRIO_CLASS_BE:
2956 return &cfqd->async_cfqq[1][ioprio];
2957 case IOPRIO_CLASS_IDLE:
2958 return &cfqd->async_idle_cfqq;
2959 default:
2960 BUG();
2961 }
2962}
2963
15c31be4 2964static struct cfq_queue *
a6151c3a 2965cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2966 gfp_t gfp_mask)
2967{
fd0928df
JA
2968 const int ioprio = task_ioprio(ioc);
2969 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2970 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2971 struct cfq_queue *cfqq = NULL;
2972
c2dea2d1
VT
2973 if (!is_sync) {
2974 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2975 cfqq = *async_cfqq;
2976 }
2977
6118b70b 2978 if (!cfqq)
fd0928df 2979 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2980
2981 /*
2982 * pin the queue now that it's allocated, scheduler exit will prune it
2983 */
c2dea2d1 2984 if (!is_sync && !(*async_cfqq)) {
15c31be4 2985 atomic_inc(&cfqq->ref);
c2dea2d1 2986 *async_cfqq = cfqq;
15c31be4
JA
2987 }
2988
2989 atomic_inc(&cfqq->ref);
2990 return cfqq;
2991}
2992
498d3aa2
JA
2993/*
2994 * We drop cfq io contexts lazily, so we may find a dead one.
2995 */
dbecf3ab 2996static void
4ac845a2
JA
2997cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2998 struct cfq_io_context *cic)
dbecf3ab 2999{
4ac845a2
JA
3000 unsigned long flags;
3001
fc46379d 3002 WARN_ON(!list_empty(&cic->queue_list));
bca4b914 3003 BUG_ON(cic->key != cfqd_dead_key(cfqd));
597bc485 3004
4ac845a2
JA
3005 spin_lock_irqsave(&ioc->lock, flags);
3006
4faa3c81 3007 BUG_ON(ioc->ioc_data == cic);
597bc485 3008
80b15c73 3009 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
ffc4e759 3010 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
3011 spin_unlock_irqrestore(&ioc->lock, flags);
3012
3013 cfq_cic_free(cic);
dbecf3ab
OH
3014}
3015
e2d74ac0 3016static struct cfq_io_context *
4ac845a2 3017cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 3018{
e2d74ac0 3019 struct cfq_io_context *cic;
d6de8be7 3020 unsigned long flags;
e2d74ac0 3021
91fac317
VT
3022 if (unlikely(!ioc))
3023 return NULL;
3024
d6de8be7
JA
3025 rcu_read_lock();
3026
597bc485
JA
3027 /*
3028 * we maintain a last-hit cache, to avoid browsing over the tree
3029 */
4ac845a2 3030 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
3031 if (cic && cic->key == cfqd) {
3032 rcu_read_unlock();
597bc485 3033 return cic;
d6de8be7 3034 }
597bc485 3035
4ac845a2 3036 do {
80b15c73 3037 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
4ac845a2
JA
3038 rcu_read_unlock();
3039 if (!cic)
3040 break;
bca4b914 3041 if (unlikely(cic->key != cfqd)) {
4ac845a2 3042 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 3043 rcu_read_lock();
4ac845a2 3044 continue;
dbecf3ab 3045 }
e2d74ac0 3046
d6de8be7 3047 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 3048 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 3049 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
3050 break;
3051 } while (1);
e2d74ac0 3052
4ac845a2 3053 return cic;
e2d74ac0
JA
3054}
3055
4ac845a2
JA
3056/*
3057 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3058 * the process specific cfq io context when entered from the block layer.
3059 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3060 */
febffd61
JA
3061static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3062 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 3063{
0261d688 3064 unsigned long flags;
4ac845a2 3065 int ret;
e2d74ac0 3066
4ac845a2
JA
3067 ret = radix_tree_preload(gfp_mask);
3068 if (!ret) {
3069 cic->ioc = ioc;
3070 cic->key = cfqd;
e2d74ac0 3071
4ac845a2
JA
3072 spin_lock_irqsave(&ioc->lock, flags);
3073 ret = radix_tree_insert(&ioc->radix_root,
80b15c73 3074 cfqd->cic_index, cic);
ffc4e759
JA
3075 if (!ret)
3076 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 3077 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 3078
4ac845a2
JA
3079 radix_tree_preload_end();
3080
3081 if (!ret) {
3082 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3083 list_add(&cic->queue_list, &cfqd->cic_list);
3084 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3085 }
e2d74ac0
JA
3086 }
3087
4ac845a2
JA
3088 if (ret)
3089 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 3090
4ac845a2 3091 return ret;
e2d74ac0
JA
3092}
3093
1da177e4
LT
3094/*
3095 * Setup general io context and cfq io context. There can be several cfq
3096 * io contexts per general io context, if this process is doing io to more
e2d74ac0 3097 * than one device managed by cfq.
1da177e4
LT
3098 */
3099static struct cfq_io_context *
e2d74ac0 3100cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 3101{
22e2c507 3102 struct io_context *ioc = NULL;
1da177e4 3103 struct cfq_io_context *cic;
1da177e4 3104
22e2c507 3105 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 3106
b5deef90 3107 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
3108 if (!ioc)
3109 return NULL;
3110
4ac845a2 3111 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
3112 if (cic)
3113 goto out;
1da177e4 3114
e2d74ac0
JA
3115 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3116 if (cic == NULL)
3117 goto err;
1da177e4 3118
4ac845a2
JA
3119 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3120 goto err_free;
3121
1da177e4 3122out:
fc46379d
JA
3123 smp_read_barrier_depends();
3124 if (unlikely(ioc->ioprio_changed))
3125 cfq_ioc_set_ioprio(ioc);
3126
24610333
VG
3127#ifdef CONFIG_CFQ_GROUP_IOSCHED
3128 if (unlikely(ioc->cgroup_changed))
3129 cfq_ioc_set_cgroup(ioc);
3130#endif
1da177e4 3131 return cic;
4ac845a2
JA
3132err_free:
3133 cfq_cic_free(cic);
1da177e4
LT
3134err:
3135 put_io_context(ioc);
3136 return NULL;
3137}
3138
22e2c507
JA
3139static void
3140cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 3141{
aaf1228d
JA
3142 unsigned long elapsed = jiffies - cic->last_end_request;
3143 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 3144
22e2c507
JA
3145 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3146 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3147 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3148}
1da177e4 3149
206dc69b 3150static void
b2c18e1e 3151cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 3152 struct request *rq)
206dc69b 3153{
3dde36dd 3154 sector_t sdist = 0;
41647e7a 3155 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
3156 if (cfqq->last_request_pos) {
3157 if (cfqq->last_request_pos < blk_rq_pos(rq))
3158 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3159 else
3160 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3161 }
206dc69b 3162
3dde36dd 3163 cfqq->seek_history <<= 1;
41647e7a
CZ
3164 if (blk_queue_nonrot(cfqd->queue))
3165 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3166 else
3167 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3168}
1da177e4 3169
22e2c507
JA
3170/*
3171 * Disable idle window if the process thinks too long or seeks so much that
3172 * it doesn't matter
3173 */
3174static void
3175cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3176 struct cfq_io_context *cic)
3177{
7b679138 3178 int old_idle, enable_idle;
1be92f2f 3179
0871714e
JA
3180 /*
3181 * Don't idle for async or idle io prio class
3182 */
3183 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3184 return;
3185
c265a7f4 3186 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3187
76280aff
CZ
3188 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3189 cfq_mark_cfqq_deep(cfqq);
3190
66dac98e 3191 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3192 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3193 enable_idle = 0;
3194 else if (sample_valid(cic->ttime_samples)) {
718eee05 3195 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3196 enable_idle = 0;
3197 else
3198 enable_idle = 1;
1da177e4
LT
3199 }
3200
7b679138
JA
3201 if (old_idle != enable_idle) {
3202 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3203 if (enable_idle)
3204 cfq_mark_cfqq_idle_window(cfqq);
3205 else
3206 cfq_clear_cfqq_idle_window(cfqq);
3207 }
22e2c507 3208}
1da177e4 3209
22e2c507
JA
3210/*
3211 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3212 * no or if we aren't sure, a 1 will cause a preempt.
3213 */
a6151c3a 3214static bool
22e2c507 3215cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3216 struct request *rq)
22e2c507 3217{
6d048f53 3218 struct cfq_queue *cfqq;
22e2c507 3219
6d048f53
JA
3220 cfqq = cfqd->active_queue;
3221 if (!cfqq)
a6151c3a 3222 return false;
22e2c507 3223
6d048f53 3224 if (cfq_class_idle(new_cfqq))
a6151c3a 3225 return false;
22e2c507
JA
3226
3227 if (cfq_class_idle(cfqq))
a6151c3a 3228 return true;
1e3335de 3229
875feb63
DS
3230 /*
3231 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3232 */
3233 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3234 return false;
3235
374f84ac
JA
3236 /*
3237 * if the new request is sync, but the currently running queue is
3238 * not, let the sync request have priority.
3239 */
5e705374 3240 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3241 return true;
1e3335de 3242
8682e1f1
VG
3243 if (new_cfqq->cfqg != cfqq->cfqg)
3244 return false;
3245
3246 if (cfq_slice_used(cfqq))
3247 return true;
3248
3249 /* Allow preemption only if we are idling on sync-noidle tree */
3250 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3251 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3252 new_cfqq->service_tree->count == 2 &&
3253 RB_EMPTY_ROOT(&cfqq->sort_list))
3254 return true;
3255
374f84ac
JA
3256 /*
3257 * So both queues are sync. Let the new request get disk time if
3258 * it's a metadata request and the current queue is doing regular IO.
3259 */
7b6d91da 3260 if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
e6ec4fe2 3261 return true;
22e2c507 3262
3a9a3f6c
DS
3263 /*
3264 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3265 */
3266 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3267 return true;
3a9a3f6c 3268
d2d59e18
SL
3269 /* An idle queue should not be idle now for some reason */
3270 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3271 return true;
3272
1e3335de 3273 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3274 return false;
1e3335de
JA
3275
3276 /*
3277 * if this request is as-good as one we would expect from the
3278 * current cfqq, let it preempt
3279 */
e9ce335d 3280 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3281 return true;
1e3335de 3282
a6151c3a 3283 return false;
22e2c507
JA
3284}
3285
3286/*
3287 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3288 * let it have half of its nominal slice.
3289 */
3290static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3291{
7b679138 3292 cfq_log_cfqq(cfqd, cfqq, "preempt");
e5ff082e 3293 cfq_slice_expired(cfqd, 1);
22e2c507 3294
bf572256
JA
3295 /*
3296 * Put the new queue at the front of the of the current list,
3297 * so we know that it will be selected next.
3298 */
3299 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3300
3301 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3302
44f7c160
JA
3303 cfqq->slice_end = 0;
3304 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3305}
3306
22e2c507 3307/*
5e705374 3308 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3309 * something we should do about it
3310 */
3311static void
5e705374
JA
3312cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3313 struct request *rq)
22e2c507 3314{
5e705374 3315 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3316
45333d5a 3317 cfqd->rq_queued++;
7b6d91da 3318 if (rq->cmd_flags & REQ_META)
374f84ac
JA
3319 cfqq->meta_pending++;
3320
9c2c38a1 3321 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3322 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3323 cfq_update_idle_window(cfqd, cfqq, cic);
3324
b2c18e1e 3325 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3326
3327 if (cfqq == cfqd->active_queue) {
3328 /*
b029195d
JA
3329 * Remember that we saw a request from this process, but
3330 * don't start queuing just yet. Otherwise we risk seeing lots
3331 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3332 * and merging. If the request is already larger than a single
3333 * page, let it rip immediately. For that case we assume that
2d870722
JA
3334 * merging is already done. Ditto for a busy system that
3335 * has other work pending, don't risk delaying until the
3336 * idle timer unplug to continue working.
22e2c507 3337 */
d6ceb25e 3338 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3339 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3340 cfqd->busy_queues > 1) {
812df48d 3341 cfq_del_timer(cfqd, cfqq);
554554f6 3342 cfq_clear_cfqq_wait_request(cfqq);
bf791937 3343 __blk_run_queue(cfqd->queue);
a11cdaa7 3344 } else {
e98ef89b 3345 cfq_blkiocg_update_idle_time_stats(
a11cdaa7 3346 &cfqq->cfqg->blkg);
bf791937 3347 cfq_mark_cfqq_must_dispatch(cfqq);
a11cdaa7 3348 }
d6ceb25e 3349 }
5e705374 3350 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3351 /*
3352 * not the active queue - expire current slice if it is
3353 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3354 * has some old slice time left and is of higher priority or
3355 * this new queue is RT and the current one is BE
22e2c507
JA
3356 */
3357 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3358 __blk_run_queue(cfqd->queue);
22e2c507 3359 }
1da177e4
LT
3360}
3361
165125e1 3362static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3363{
b4878f24 3364 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3365 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3366
7b679138 3367 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3368 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3369
30996f40 3370 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3371 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3372 cfq_add_rq_rb(rq);
e98ef89b 3373 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
cdc1184c
DS
3374 &cfqd->serving_group->blkg, rq_data_dir(rq),
3375 rq_is_sync(rq));
5e705374 3376 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3377}
3378
45333d5a
AC
3379/*
3380 * Update hw_tag based on peak queue depth over 50 samples under
3381 * sufficient load.
3382 */
3383static void cfq_update_hw_tag(struct cfq_data *cfqd)
3384{
1a1238a7
SL
3385 struct cfq_queue *cfqq = cfqd->active_queue;
3386
53c583d2
CZ
3387 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3388 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3389
3390 if (cfqd->hw_tag == 1)
3391 return;
45333d5a
AC
3392
3393 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3394 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3395 return;
3396
1a1238a7
SL
3397 /*
3398 * If active queue hasn't enough requests and can idle, cfq might not
3399 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3400 * case
3401 */
3402 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3403 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3404 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3405 return;
3406
45333d5a
AC
3407 if (cfqd->hw_tag_samples++ < 50)
3408 return;
3409
e459dd08 3410 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3411 cfqd->hw_tag = 1;
3412 else
3413 cfqd->hw_tag = 0;
45333d5a
AC
3414}
3415
7667aa06
VG
3416static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3417{
3418 struct cfq_io_context *cic = cfqd->active_cic;
3419
3420 /* If there are other queues in the group, don't wait */
3421 if (cfqq->cfqg->nr_cfqq > 1)
3422 return false;
3423
3424 if (cfq_slice_used(cfqq))
3425 return true;
3426
3427 /* if slice left is less than think time, wait busy */
3428 if (cic && sample_valid(cic->ttime_samples)
3429 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3430 return true;
3431
3432 /*
3433 * If think times is less than a jiffy than ttime_mean=0 and above
3434 * will not be true. It might happen that slice has not expired yet
3435 * but will expire soon (4-5 ns) during select_queue(). To cover the
3436 * case where think time is less than a jiffy, mark the queue wait
3437 * busy if only 1 jiffy is left in the slice.
3438 */
3439 if (cfqq->slice_end - jiffies == 1)
3440 return true;
3441
3442 return false;
3443}
3444
165125e1 3445static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3446{
5e705374 3447 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3448 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3449 const int sync = rq_is_sync(rq);
b4878f24 3450 unsigned long now;
1da177e4 3451
b4878f24 3452 now = jiffies;
33659ebb
CH
3453 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3454 !!(rq->cmd_flags & REQ_NOIDLE));
1da177e4 3455
45333d5a
AC
3456 cfq_update_hw_tag(cfqd);
3457
53c583d2 3458 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3459 WARN_ON(!cfqq->dispatched);
53c583d2 3460 cfqd->rq_in_driver--;
6d048f53 3461 cfqq->dispatched--;
80bdf0c7 3462 (RQ_CFQG(rq))->dispatched--;
e98ef89b
VG
3463 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3464 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3465 rq_data_dir(rq), rq_is_sync(rq));
1da177e4 3466
53c583d2 3467 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3468
365722bb 3469 if (sync) {
5e705374 3470 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3471 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3472 cfqd->last_delayed_sync = now;
365722bb 3473 }
caaa5f9f
JA
3474
3475 /*
3476 * If this is the active queue, check if it needs to be expired,
3477 * or if we want to idle in case it has no pending requests.
3478 */
3479 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3480 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3481
44f7c160
JA
3482 if (cfq_cfqq_slice_new(cfqq)) {
3483 cfq_set_prio_slice(cfqd, cfqq);
3484 cfq_clear_cfqq_slice_new(cfqq);
3485 }
f75edf2d
VG
3486
3487 /*
7667aa06
VG
3488 * Should we wait for next request to come in before we expire
3489 * the queue.
f75edf2d 3490 */
7667aa06 3491 if (cfq_should_wait_busy(cfqd, cfqq)) {
80bdf0c7
VG
3492 unsigned long extend_sl = cfqd->cfq_slice_idle;
3493 if (!cfqd->cfq_slice_idle)
3494 extend_sl = cfqd->cfq_group_idle;
3495 cfqq->slice_end = jiffies + extend_sl;
f75edf2d 3496 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3497 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3498 }
3499
a36e71f9 3500 /*
8e550632
CZ
3501 * Idling is not enabled on:
3502 * - expired queues
3503 * - idle-priority queues
3504 * - async queues
3505 * - queues with still some requests queued
3506 * - when there is a close cooperator
a36e71f9 3507 */
0871714e 3508 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
e5ff082e 3509 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3510 else if (sync && cfqq_empty &&
3511 !cfq_close_cooperator(cfqd, cfqq)) {
33659ebb
CH
3512 cfqd->noidle_tree_requires_idle |=
3513 !(rq->cmd_flags & REQ_NOIDLE);
8e550632
CZ
3514 /*
3515 * Idling is enabled for SYNC_WORKLOAD.
3516 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
33659ebb 3517 * only if we processed at least one !REQ_NOIDLE request
8e550632
CZ
3518 */
3519 if (cfqd->serving_type == SYNC_WORKLOAD
c04645e5
VG
3520 || cfqd->noidle_tree_requires_idle
3521 || cfqq->cfqg->nr_cfqq == 1)
8e550632
CZ
3522 cfq_arm_slice_timer(cfqd);
3523 }
caaa5f9f 3524 }
6d048f53 3525
d2d59e18
SL
3526 if (!cfqd->rq_in_driver) {
3527 cfq_schedule_dispatch(cfqd);
3528 return;
3529 }
3530 /*
3531 * A queue is idle at cfq_dispatch_requests(), but it gets noidle
3532 * later. We schedule a dispatch if the queue has no requests,
3533 * otherwise the disk is actually in idle till all requests
3534 * are finished even cfq_arm_slice_timer doesn't make the queue idle
3535 * */
3536 cfqq = cfqd->active_queue;
3537 if (!cfqq)
3538 return;
3539
3540 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq) &&
3541 (!cfqd->cfq_group_idle || cfqq->cfqg->nr_cfqq > 1)) {
3542 cfq_del_timer(cfqd, cfqq);
23e018a1 3543 cfq_schedule_dispatch(cfqd);
d2d59e18 3544 }
1da177e4
LT
3545}
3546
22e2c507
JA
3547/*
3548 * we temporarily boost lower priority queues if they are holding fs exclusive
3549 * resources. they are boosted to normal prio (CLASS_BE/4)
3550 */
3551static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3552{
22e2c507
JA
3553 if (has_fs_excl()) {
3554 /*
3555 * boost idle prio on transactions that would lock out other
3556 * users of the filesystem
3557 */
3558 if (cfq_class_idle(cfqq))
3559 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3560 if (cfqq->ioprio > IOPRIO_NORM)
3561 cfqq->ioprio = IOPRIO_NORM;
3562 } else {
3563 /*
dddb7451 3564 * unboost the queue (if needed)
22e2c507 3565 */
dddb7451
CZ
3566 cfqq->ioprio_class = cfqq->org_ioprio_class;
3567 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3568 }
22e2c507 3569}
1da177e4 3570
89850f7e 3571static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3572{
1b379d8d 3573 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3574 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3575 return ELV_MQUEUE_MUST;
3b18152c 3576 }
1da177e4 3577
22e2c507 3578 return ELV_MQUEUE_MAY;
22e2c507
JA
3579}
3580
165125e1 3581static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3582{
3583 struct cfq_data *cfqd = q->elevator->elevator_data;
3584 struct task_struct *tsk = current;
91fac317 3585 struct cfq_io_context *cic;
22e2c507
JA
3586 struct cfq_queue *cfqq;
3587
3588 /*
3589 * don't force setup of a queue from here, as a call to may_queue
3590 * does not necessarily imply that a request actually will be queued.
3591 * so just lookup a possibly existing queue, or return 'may queue'
3592 * if that fails
3593 */
4ac845a2 3594 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3595 if (!cic)
3596 return ELV_MQUEUE_MAY;
3597
b0b78f81 3598 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3599 if (cfqq) {
fd0928df 3600 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3601 cfq_prio_boost(cfqq);
3602
89850f7e 3603 return __cfq_may_queue(cfqq);
22e2c507
JA
3604 }
3605
3606 return ELV_MQUEUE_MAY;
1da177e4
LT
3607}
3608
1da177e4
LT
3609/*
3610 * queue lock held here
3611 */
bb37b94c 3612static void cfq_put_request(struct request *rq)
1da177e4 3613{
5e705374 3614 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3615
5e705374 3616 if (cfqq) {
22e2c507 3617 const int rw = rq_data_dir(rq);
1da177e4 3618
22e2c507
JA
3619 BUG_ON(!cfqq->allocated[rw]);
3620 cfqq->allocated[rw]--;
1da177e4 3621
5e705374 3622 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3623
1da177e4 3624 rq->elevator_private = NULL;
5e705374 3625 rq->elevator_private2 = NULL;
1da177e4 3626
7f1dc8a2
VG
3627 /* Put down rq reference on cfqg */
3628 cfq_put_cfqg(RQ_CFQG(rq));
3629 rq->elevator_private3 = NULL;
3630
1da177e4
LT
3631 cfq_put_queue(cfqq);
3632 }
3633}
3634
df5fe3e8
JM
3635static struct cfq_queue *
3636cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3637 struct cfq_queue *cfqq)
3638{
3639 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3640 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3641 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3642 cfq_put_queue(cfqq);
3643 return cic_to_cfqq(cic, 1);
3644}
3645
e6c5bc73
JM
3646/*
3647 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3648 * was the last process referring to said cfqq.
3649 */
3650static struct cfq_queue *
3651split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3652{
3653 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3654 cfqq->pid = current->pid;
3655 cfq_clear_cfqq_coop(cfqq);
ae54abed 3656 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3657 return cfqq;
3658 }
3659
3660 cic_set_cfqq(cic, NULL, 1);
d02a2c07
SL
3661
3662 cfq_put_cooperator(cfqq);
3663
e6c5bc73
JM
3664 cfq_put_queue(cfqq);
3665 return NULL;
3666}
1da177e4 3667/*
22e2c507 3668 * Allocate cfq data structures associated with this request.
1da177e4 3669 */
22e2c507 3670static int
165125e1 3671cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3672{
3673 struct cfq_data *cfqd = q->elevator->elevator_data;
3674 struct cfq_io_context *cic;
3675 const int rw = rq_data_dir(rq);
a6151c3a 3676 const bool is_sync = rq_is_sync(rq);
22e2c507 3677 struct cfq_queue *cfqq;
1da177e4
LT
3678 unsigned long flags;
3679
3680 might_sleep_if(gfp_mask & __GFP_WAIT);
3681
e2d74ac0 3682 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3683
1da177e4
LT
3684 spin_lock_irqsave(q->queue_lock, flags);
3685
22e2c507
JA
3686 if (!cic)
3687 goto queue_fail;
3688
e6c5bc73 3689new_queue:
91fac317 3690 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3691 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3692 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3693 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3694 } else {
e6c5bc73
JM
3695 /*
3696 * If the queue was seeky for too long, break it apart.
3697 */
ae54abed 3698 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3699 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3700 cfqq = split_cfqq(cic, cfqq);
3701 if (!cfqq)
3702 goto new_queue;
3703 }
3704
df5fe3e8
JM
3705 /*
3706 * Check to see if this queue is scheduled to merge with
3707 * another, closely cooperating queue. The merging of
3708 * queues happens here as it must be done in process context.
3709 * The reference on new_cfqq was taken in merge_cfqqs.
3710 */
3711 if (cfqq->new_cfqq)
3712 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3713 }
1da177e4
LT
3714
3715 cfqq->allocated[rw]++;
22e2c507 3716 atomic_inc(&cfqq->ref);
1da177e4 3717
5e705374 3718 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3719
5e705374
JA
3720 rq->elevator_private = cic;
3721 rq->elevator_private2 = cfqq;
7f1dc8a2 3722 rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
5e705374 3723 return 0;
1da177e4 3724
22e2c507
JA
3725queue_fail:
3726 if (cic)
3727 put_io_context(cic->ioc);
89850f7e 3728
23e018a1 3729 cfq_schedule_dispatch(cfqd);
1da177e4 3730 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3731 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3732 return 1;
3733}
3734
65f27f38 3735static void cfq_kick_queue(struct work_struct *work)
22e2c507 3736{
65f27f38 3737 struct cfq_data *cfqd =
23e018a1 3738 container_of(work, struct cfq_data, unplug_work);
165125e1 3739 struct request_queue *q = cfqd->queue;
22e2c507 3740
40bb54d1 3741 spin_lock_irq(q->queue_lock);
a7f55792 3742 __blk_run_queue(cfqd->queue);
40bb54d1 3743 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3744}
3745
3746/*
3747 * Timer running if the active_queue is currently idling inside its time slice
3748 */
3749static void cfq_idle_slice_timer(unsigned long data)
3750{
3751 struct cfq_data *cfqd = (struct cfq_data *) data;
3752 struct cfq_queue *cfqq;
3753 unsigned long flags;
3c6bd2f8 3754 int timed_out = 1;
22e2c507 3755
7b679138
JA
3756 cfq_log(cfqd, "idle timer fired");
3757
22e2c507
JA
3758 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3759
fe094d98
JA
3760 cfqq = cfqd->active_queue;
3761 if (cfqq) {
3c6bd2f8
JA
3762 timed_out = 0;
3763
b029195d
JA
3764 /*
3765 * We saw a request before the queue expired, let it through
3766 */
3767 if (cfq_cfqq_must_dispatch(cfqq))
3768 goto out_kick;
3769
22e2c507
JA
3770 /*
3771 * expired
3772 */
44f7c160 3773 if (cfq_slice_used(cfqq))
22e2c507
JA
3774 goto expire;
3775
3776 /*
3777 * only expire and reinvoke request handler, if there are
3778 * other queues with pending requests
3779 */
caaa5f9f 3780 if (!cfqd->busy_queues)
22e2c507 3781 goto out_cont;
22e2c507
JA
3782
3783 /*
3784 * not expired and it has a request pending, let it dispatch
3785 */
75e50984 3786 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3787 goto out_kick;
76280aff
CZ
3788
3789 /*
3790 * Queue depth flag is reset only when the idle didn't succeed
3791 */
3792 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3793 }
3794expire:
e5ff082e 3795 cfq_slice_expired(cfqd, timed_out);
22e2c507 3796out_kick:
23e018a1 3797 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3798out_cont:
3799 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3800}
3801
3b18152c
JA
3802static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3803{
3804 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3805 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3806}
22e2c507 3807
c2dea2d1
VT
3808static void cfq_put_async_queues(struct cfq_data *cfqd)
3809{
3810 int i;
3811
3812 for (i = 0; i < IOPRIO_BE_NR; i++) {
3813 if (cfqd->async_cfqq[0][i])
3814 cfq_put_queue(cfqd->async_cfqq[0][i]);
3815 if (cfqd->async_cfqq[1][i])
3816 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3817 }
2389d1ef
ON
3818
3819 if (cfqd->async_idle_cfqq)
3820 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3821}
3822
bb729bc9
JA
3823static void cfq_cfqd_free(struct rcu_head *head)
3824{
3825 kfree(container_of(head, struct cfq_data, rcu));
3826}
3827
b374d18a 3828static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3829{
22e2c507 3830 struct cfq_data *cfqd = e->elevator_data;
165125e1 3831 struct request_queue *q = cfqd->queue;
22e2c507 3832
3b18152c 3833 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3834
d9ff4187 3835 spin_lock_irq(q->queue_lock);
e2d74ac0 3836
d9ff4187 3837 if (cfqd->active_queue)
e5ff082e 3838 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3839
3840 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3841 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3842 struct cfq_io_context,
3843 queue_list);
89850f7e
JA
3844
3845 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3846 }
e2d74ac0 3847
c2dea2d1 3848 cfq_put_async_queues(cfqd);
b1c35769 3849 cfq_release_cfq_groups(cfqd);
e98ef89b 3850 cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3851
d9ff4187 3852 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3853
3854 cfq_shutdown_timer_wq(cfqd);
3855
80b15c73
KK
3856 spin_lock(&cic_index_lock);
3857 ida_remove(&cic_index_ida, cfqd->cic_index);
3858 spin_unlock(&cic_index_lock);
3859
b1c35769 3860 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
bb729bc9 3861 call_rcu(&cfqd->rcu, cfq_cfqd_free);
1da177e4
LT
3862}
3863
80b15c73
KK
3864static int cfq_alloc_cic_index(void)
3865{
3866 int index, error;
3867
3868 do {
3869 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3870 return -ENOMEM;
3871
3872 spin_lock(&cic_index_lock);
3873 error = ida_get_new(&cic_index_ida, &index);
3874 spin_unlock(&cic_index_lock);
3875 if (error && error != -EAGAIN)
3876 return error;
3877 } while (error);
3878
3879 return index;
3880}
3881
165125e1 3882static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3883{
3884 struct cfq_data *cfqd;
718eee05 3885 int i, j;
cdb16e8f 3886 struct cfq_group *cfqg;
615f0259 3887 struct cfq_rb_root *st;
1da177e4 3888
80b15c73
KK
3889 i = cfq_alloc_cic_index();
3890 if (i < 0)
3891 return NULL;
3892
94f6030c 3893 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3894 if (!cfqd)
bc1c1169 3895 return NULL;
1da177e4 3896
80b15c73
KK
3897 cfqd->cic_index = i;
3898
1fa8f6d6
VG
3899 /* Init root service tree */
3900 cfqd->grp_service_tree = CFQ_RB_ROOT;
3901
cdb16e8f
VG
3902 /* Init root group */
3903 cfqg = &cfqd->root_group;
615f0259
VG
3904 for_each_cfqg_st(cfqg, i, j, st)
3905 *st = CFQ_RB_ROOT;
1fa8f6d6 3906 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3907
25bc6b07
VG
3908 /* Give preference to root group over other groups */
3909 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3910
25fb5169 3911#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3912 /*
3913 * Take a reference to root group which we never drop. This is just
3914 * to make sure that cfq_put_cfqg() does not try to kfree root group
3915 */
3916 atomic_set(&cfqg->ref, 1);
dcf097b2 3917 rcu_read_lock();
e98ef89b
VG
3918 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3919 (void *)cfqd, 0);
dcf097b2 3920 rcu_read_unlock();
25fb5169 3921#endif
26a2ac00
JA
3922 /*
3923 * Not strictly needed (since RB_ROOT just clears the node and we
3924 * zeroed cfqd on alloc), but better be safe in case someone decides
3925 * to add magic to the rb code
3926 */
3927 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3928 cfqd->prio_trees[i] = RB_ROOT;
3929
6118b70b
JA
3930 /*
3931 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3932 * Grab a permanent reference to it, so that the normal code flow
3933 * will not attempt to free it.
3934 */
3935 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3936 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3937 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3938
d9ff4187 3939 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3940
1da177e4 3941 cfqd->queue = q;
1da177e4 3942
22e2c507
JA
3943 init_timer(&cfqd->idle_slice_timer);
3944 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3945 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3946
23e018a1 3947 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3948
1da177e4 3949 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3950 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3951 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3952 cfqd->cfq_back_max = cfq_back_max;
3953 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3954 cfqd->cfq_slice[0] = cfq_slice_async;
3955 cfqd->cfq_slice[1] = cfq_slice_sync;
3956 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3957 cfqd->cfq_slice_idle = cfq_slice_idle;
80bdf0c7 3958 cfqd->cfq_group_idle = cfq_group_idle;
963b72fc 3959 cfqd->cfq_latency = 1;
ae30c286 3960 cfqd->cfq_group_isolation = 0;
e459dd08 3961 cfqd->hw_tag = -1;
edc71131
CZ
3962 /*
3963 * we optimistically start assuming sync ops weren't delayed in last
3964 * second, in order to have larger depth for async operations.
3965 */
573412b2 3966 cfqd->last_delayed_sync = jiffies - HZ;
bc1c1169 3967 return cfqd;
1da177e4
LT
3968}
3969
3970static void cfq_slab_kill(void)
3971{
d6de8be7
JA
3972 /*
3973 * Caller already ensured that pending RCU callbacks are completed,
3974 * so we should have no busy allocations at this point.
3975 */
1da177e4
LT
3976 if (cfq_pool)
3977 kmem_cache_destroy(cfq_pool);
3978 if (cfq_ioc_pool)
3979 kmem_cache_destroy(cfq_ioc_pool);
3980}
3981
3982static int __init cfq_slab_setup(void)
3983{
0a31bd5f 3984 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3985 if (!cfq_pool)
3986 goto fail;
3987
34e6bbf2 3988 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3989 if (!cfq_ioc_pool)
3990 goto fail;
3991
3992 return 0;
3993fail:
3994 cfq_slab_kill();
3995 return -ENOMEM;
3996}
3997
1da177e4
LT
3998/*
3999 * sysfs parts below -->
4000 */
1da177e4
LT
4001static ssize_t
4002cfq_var_show(unsigned int var, char *page)
4003{
4004 return sprintf(page, "%d\n", var);
4005}
4006
4007static ssize_t
4008cfq_var_store(unsigned int *var, const char *page, size_t count)
4009{
4010 char *p = (char *) page;
4011
4012 *var = simple_strtoul(p, &p, 10);
4013 return count;
4014}
4015
1da177e4 4016#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 4017static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 4018{ \
3d1ab40f 4019 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4020 unsigned int __data = __VAR; \
4021 if (__CONV) \
4022 __data = jiffies_to_msecs(__data); \
4023 return cfq_var_show(__data, (page)); \
4024}
4025SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
4026SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4027SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
4028SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4029SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507 4030SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
80bdf0c7 4031SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
22e2c507
JA
4032SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4033SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4034SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 4035SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
ae30c286 4036SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
1da177e4
LT
4037#undef SHOW_FUNCTION
4038
4039#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 4040static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 4041{ \
3d1ab40f 4042 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4043 unsigned int __data; \
4044 int ret = cfq_var_store(&__data, (page), count); \
4045 if (__data < (MIN)) \
4046 __data = (MIN); \
4047 else if (__data > (MAX)) \
4048 __data = (MAX); \
4049 if (__CONV) \
4050 *(__PTR) = msecs_to_jiffies(__data); \
4051 else \
4052 *(__PTR) = __data; \
4053 return ret; \
4054}
4055STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
4056STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4057 UINT_MAX, 1);
4058STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4059 UINT_MAX, 1);
e572ec7e 4060STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
4061STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4062 UINT_MAX, 0);
22e2c507 4063STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
80bdf0c7 4064STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
22e2c507
JA
4065STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4066STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
4067STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4068 UINT_MAX, 0);
963b72fc 4069STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
ae30c286 4070STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
1da177e4
LT
4071#undef STORE_FUNCTION
4072
e572ec7e
AV
4073#define CFQ_ATTR(name) \
4074 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4075
4076static struct elv_fs_entry cfq_attrs[] = {
4077 CFQ_ATTR(quantum),
e572ec7e
AV
4078 CFQ_ATTR(fifo_expire_sync),
4079 CFQ_ATTR(fifo_expire_async),
4080 CFQ_ATTR(back_seek_max),
4081 CFQ_ATTR(back_seek_penalty),
4082 CFQ_ATTR(slice_sync),
4083 CFQ_ATTR(slice_async),
4084 CFQ_ATTR(slice_async_rq),
4085 CFQ_ATTR(slice_idle),
80bdf0c7 4086 CFQ_ATTR(group_idle),
963b72fc 4087 CFQ_ATTR(low_latency),
ae30c286 4088 CFQ_ATTR(group_isolation),
e572ec7e 4089 __ATTR_NULL
1da177e4
LT
4090};
4091
1da177e4
LT
4092static struct elevator_type iosched_cfq = {
4093 .ops = {
4094 .elevator_merge_fn = cfq_merge,
4095 .elevator_merged_fn = cfq_merged_request,
4096 .elevator_merge_req_fn = cfq_merged_requests,
da775265 4097 .elevator_allow_merge_fn = cfq_allow_merge,
812d4026 4098 .elevator_bio_merged_fn = cfq_bio_merged,
b4878f24 4099 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 4100 .elevator_add_req_fn = cfq_insert_request,
b4878f24 4101 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
4102 .elevator_deactivate_req_fn = cfq_deactivate_request,
4103 .elevator_queue_empty_fn = cfq_queue_empty,
4104 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
4105 .elevator_former_req_fn = elv_rb_former_request,
4106 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
4107 .elevator_set_req_fn = cfq_set_request,
4108 .elevator_put_req_fn = cfq_put_request,
4109 .elevator_may_queue_fn = cfq_may_queue,
4110 .elevator_init_fn = cfq_init_queue,
4111 .elevator_exit_fn = cfq_exit_queue,
fc46379d 4112 .trim = cfq_free_io_context,
1da177e4 4113 },
3d1ab40f 4114 .elevator_attrs = cfq_attrs,
1da177e4
LT
4115 .elevator_name = "cfq",
4116 .elevator_owner = THIS_MODULE,
4117};
4118
3e252066
VG
4119#ifdef CONFIG_CFQ_GROUP_IOSCHED
4120static struct blkio_policy_type blkio_policy_cfq = {
4121 .ops = {
4122 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4123 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4124 },
4125};
4126#else
4127static struct blkio_policy_type blkio_policy_cfq;
4128#endif
4129
1da177e4
LT
4130static int __init cfq_init(void)
4131{
22e2c507
JA
4132 /*
4133 * could be 0 on HZ < 1000 setups
4134 */
4135 if (!cfq_slice_async)
4136 cfq_slice_async = 1;
4137 if (!cfq_slice_idle)
4138 cfq_slice_idle = 1;
4139
80bdf0c7
VG
4140#ifdef CONFIG_CFQ_GROUP_IOSCHED
4141 if (!cfq_group_idle)
4142 cfq_group_idle = 1;
4143#else
4144 cfq_group_idle = 0;
4145#endif
1da177e4
LT
4146 if (cfq_slab_setup())
4147 return -ENOMEM;
4148
2fdd82bd 4149 elv_register(&iosched_cfq);
3e252066 4150 blkio_policy_register(&blkio_policy_cfq);
1da177e4 4151
2fdd82bd 4152 return 0;
1da177e4
LT
4153}
4154
4155static void __exit cfq_exit(void)
4156{
6e9a4738 4157 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 4158 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 4159 elv_unregister(&iosched_cfq);
334e94de 4160 ioc_gone = &all_gone;
fba82272
OH
4161 /* ioc_gone's update must be visible before reading ioc_count */
4162 smp_wmb();
d6de8be7
JA
4163
4164 /*
4165 * this also protects us from entering cfq_slab_kill() with
4166 * pending RCU callbacks
4167 */
245b2e70 4168 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 4169 wait_for_completion(&all_gone);
80b15c73 4170 ida_destroy(&cic_index_ida);
83521d3e 4171 cfq_slab_kill();
1da177e4
LT
4172}
4173
4174module_init(cfq_init);
4175module_exit(cfq_exit);
4176
4177MODULE_AUTHOR("Jens Axboe");
4178MODULE_LICENSE("GPL");
4179MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");