block: avoid use-after-free on throttle data
[linux-block.git] / block / blk-throttle.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
e43473b7
VG
2/*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
7
8#include <linux/module.h>
9#include <linux/slab.h>
10#include <linux/blkdev.h>
11#include <linux/bio.h>
12#include <linux/blktrace_api.h>
bc9fcbf9 13#include "blk.h"
1d156646 14#include "blk-cgroup-rwstat.h"
e4a19f72 15#include "blk-stat.h"
a7b36ee6 16#include "blk-throttle.h"
e43473b7
VG
17
18/* Max dispatch from a group in 1 round */
e675df2a 19#define THROTL_GRP_QUANTUM 8
e43473b7
VG
20
21/* Total max dispatch from all groups in one round */
e675df2a 22#define THROTL_QUANTUM 32
e43473b7 23
d61fcfa4
SL
24/* Throttling is performed over a slice and after that slice is renewed */
25#define DFL_THROTL_SLICE_HD (HZ / 10)
26#define DFL_THROTL_SLICE_SSD (HZ / 50)
297e3d85 27#define MAX_THROTL_SLICE (HZ)
9e234eea 28#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
9bb67aeb
SL
29#define MIN_THROTL_BPS (320 * 1024)
30#define MIN_THROTL_IOPS (10)
b4f428ef
SL
31#define DFL_LATENCY_TARGET (-1L)
32#define DFL_IDLE_THRESHOLD (0)
6679a90c
SL
33#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34#define LATENCY_FILTERED_SSD (0)
35/*
36 * For HD, very small latency comes from sequential IO. Such IO is helpless to
37 * help determine if its IO is impacted by others, hence we ignore the IO
38 */
39#define LATENCY_FILTERED_HD (1000L) /* 1ms */
e43473b7 40
450adcbe
VG
41/* A workqueue to queue throttle related work */
42static struct workqueue_struct *kthrotld_workqueue;
450adcbe 43
e43473b7
VG
44#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
45
b9147dd1
SL
46/* We measure latency for request size from <= 4k to >= 1M */
47#define LATENCY_BUCKET_SIZE 9
48
49struct latency_bucket {
50 unsigned long total_latency; /* ns / 1024 */
51 int samples;
52};
53
54struct avg_latency_bucket {
55 unsigned long latency; /* ns / 1024 */
56 bool valid;
57};
58
e43473b7
VG
59struct throtl_data
60{
e43473b7 61 /* service tree for active throtl groups */
c9e0332e 62 struct throtl_service_queue service_queue;
e43473b7 63
e43473b7
VG
64 struct request_queue *queue;
65
66 /* Total Number of queued bios on READ and WRITE lists */
67 unsigned int nr_queued[2];
68
297e3d85
SL
69 unsigned int throtl_slice;
70
e43473b7 71 /* Work for dispatching throttled bios */
69df0ab0 72 struct work_struct dispatch_work;
9f626e37
SL
73 unsigned int limit_index;
74 bool limit_valid[LIMIT_CNT];
3f0abd80
SL
75
76 unsigned long low_upgrade_time;
77 unsigned long low_downgrade_time;
7394e31f
SL
78
79 unsigned int scale;
b9147dd1 80
b889bf66
JQ
81 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
82 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
83 struct latency_bucket __percpu *latency_buckets[2];
b9147dd1 84 unsigned long last_calculate_time;
6679a90c 85 unsigned long filtered_latency;
b9147dd1
SL
86
87 bool track_bio_latency;
e43473b7
VG
88};
89
e99e88a9 90static void throtl_pending_timer_fn(struct timer_list *t);
69df0ab0 91
3c798398 92static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 93{
f95a04af 94 return pd_to_blkg(&tg->pd);
0381411e
TH
95}
96
fda6f272
TH
97/**
98 * sq_to_tg - return the throl_grp the specified service queue belongs to
99 * @sq: the throtl_service_queue of interest
100 *
101 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
102 * embedded in throtl_data, %NULL is returned.
103 */
104static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
105{
106 if (sq && sq->parent_sq)
107 return container_of(sq, struct throtl_grp, service_queue);
108 else
109 return NULL;
110}
111
112/**
113 * sq_to_td - return throtl_data the specified service queue belongs to
114 * @sq: the throtl_service_queue of interest
115 *
b43daedc 116 * A service_queue can be embedded in either a throtl_grp or throtl_data.
fda6f272
TH
117 * Determine the associated throtl_data accordingly and return it.
118 */
119static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
120{
121 struct throtl_grp *tg = sq_to_tg(sq);
122
123 if (tg)
124 return tg->td;
125 else
126 return container_of(sq, struct throtl_data, service_queue);
127}
128
7394e31f
SL
129/*
130 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
131 * make the IO dispatch more smooth.
132 * Scale up: linearly scale up according to lapsed time since upgrade. For
133 * every throtl_slice, the limit scales up 1/2 .low limit till the
134 * limit hits .max limit
135 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
136 */
137static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
138{
139 /* arbitrary value to avoid too big scale */
140 if (td->scale < 4096 && time_after_eq(jiffies,
141 td->low_upgrade_time + td->scale * td->throtl_slice))
142 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
143
144 return low + (low >> 1) * td->scale;
145}
146
9f626e37
SL
147static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
148{
b22c417c 149 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 150 struct throtl_data *td;
b22c417c
SL
151 uint64_t ret;
152
153 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
154 return U64_MAX;
7394e31f
SL
155
156 td = tg->td;
157 ret = tg->bps[rw][td->limit_index];
9bb67aeb
SL
158 if (ret == 0 && td->limit_index == LIMIT_LOW) {
159 /* intermediate node or iops isn't 0 */
160 if (!list_empty(&blkg->blkcg->css.children) ||
161 tg->iops[rw][td->limit_index])
162 return U64_MAX;
163 else
164 return MIN_THROTL_BPS;
165 }
7394e31f
SL
166
167 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
168 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
169 uint64_t adjusted;
170
171 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
172 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
173 }
b22c417c 174 return ret;
9f626e37
SL
175}
176
177static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
178{
b22c417c 179 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 180 struct throtl_data *td;
b22c417c
SL
181 unsigned int ret;
182
183 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
184 return UINT_MAX;
9bb67aeb 185
7394e31f
SL
186 td = tg->td;
187 ret = tg->iops[rw][td->limit_index];
9bb67aeb
SL
188 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
189 /* intermediate node or bps isn't 0 */
190 if (!list_empty(&blkg->blkcg->css.children) ||
191 tg->bps[rw][td->limit_index])
192 return UINT_MAX;
193 else
194 return MIN_THROTL_IOPS;
195 }
7394e31f
SL
196
197 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
198 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
199 uint64_t adjusted;
200
201 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
202 if (adjusted > UINT_MAX)
203 adjusted = UINT_MAX;
204 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
205 }
b22c417c 206 return ret;
9f626e37
SL
207}
208
b9147dd1
SL
209#define request_bucket_index(sectors) \
210 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
211
fda6f272
TH
212/**
213 * throtl_log - log debug message via blktrace
214 * @sq: the service_queue being reported
215 * @fmt: printf format string
216 * @args: printf args
217 *
218 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
219 * throtl_grp; otherwise, just "throtl".
fda6f272
TH
220 */
221#define throtl_log(sq, fmt, args...) do { \
222 struct throtl_grp *__tg = sq_to_tg((sq)); \
223 struct throtl_data *__td = sq_to_td((sq)); \
224 \
225 (void)__td; \
59fa0224
SL
226 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
227 break; \
fda6f272 228 if ((__tg)) { \
35fe6d76
SL
229 blk_add_cgroup_trace_msg(__td->queue, \
230 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
fda6f272
TH
231 } else { \
232 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
233 } \
54e7ed12 234} while (0)
e43473b7 235
ea0ea2bc
SL
236static inline unsigned int throtl_bio_data_size(struct bio *bio)
237{
238 /* assume it's one sector */
239 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
240 return 512;
241 return bio->bi_iter.bi_size;
242}
243
c5cc2070
TH
244static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
245{
246 INIT_LIST_HEAD(&qn->node);
247 bio_list_init(&qn->bios);
248 qn->tg = tg;
249}
250
251/**
252 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
253 * @bio: bio being added
254 * @qn: qnode to add bio to
255 * @queued: the service_queue->queued[] list @qn belongs to
256 *
257 * Add @bio to @qn and put @qn on @queued if it's not already on.
258 * @qn->tg's reference count is bumped when @qn is activated. See the
259 * comment on top of throtl_qnode definition for details.
260 */
261static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
262 struct list_head *queued)
263{
264 bio_list_add(&qn->bios, bio);
265 if (list_empty(&qn->node)) {
266 list_add_tail(&qn->node, queued);
267 blkg_get(tg_to_blkg(qn->tg));
268 }
269}
270
271/**
272 * throtl_peek_queued - peek the first bio on a qnode list
273 * @queued: the qnode list to peek
274 */
275static struct bio *throtl_peek_queued(struct list_head *queued)
276{
b7b609de 277 struct throtl_qnode *qn;
c5cc2070
TH
278 struct bio *bio;
279
280 if (list_empty(queued))
281 return NULL;
282
b7b609de 283 qn = list_first_entry(queued, struct throtl_qnode, node);
c5cc2070
TH
284 bio = bio_list_peek(&qn->bios);
285 WARN_ON_ONCE(!bio);
286 return bio;
287}
288
289/**
290 * throtl_pop_queued - pop the first bio form a qnode list
291 * @queued: the qnode list to pop a bio from
292 * @tg_to_put: optional out argument for throtl_grp to put
293 *
294 * Pop the first bio from the qnode list @queued. After popping, the first
295 * qnode is removed from @queued if empty or moved to the end of @queued so
296 * that the popping order is round-robin.
297 *
298 * When the first qnode is removed, its associated throtl_grp should be put
299 * too. If @tg_to_put is NULL, this function automatically puts it;
300 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
301 * responsible for putting it.
302 */
303static struct bio *throtl_pop_queued(struct list_head *queued,
304 struct throtl_grp **tg_to_put)
305{
b7b609de 306 struct throtl_qnode *qn;
c5cc2070
TH
307 struct bio *bio;
308
309 if (list_empty(queued))
310 return NULL;
311
b7b609de 312 qn = list_first_entry(queued, struct throtl_qnode, node);
c5cc2070
TH
313 bio = bio_list_pop(&qn->bios);
314 WARN_ON_ONCE(!bio);
315
316 if (bio_list_empty(&qn->bios)) {
317 list_del_init(&qn->node);
318 if (tg_to_put)
319 *tg_to_put = qn->tg;
320 else
321 blkg_put(tg_to_blkg(qn->tg));
322 } else {
323 list_move_tail(&qn->node, queued);
324 }
325
326 return bio;
327}
328
49a2f1e3 329/* init a service_queue, assumes the caller zeroed it */
b2ce2643 330static void throtl_service_queue_init(struct throtl_service_queue *sq)
49a2f1e3 331{
c5cc2070
TH
332 INIT_LIST_HEAD(&sq->queued[0]);
333 INIT_LIST_HEAD(&sq->queued[1]);
9ff01255 334 sq->pending_tree = RB_ROOT_CACHED;
e99e88a9 335 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
69df0ab0
TH
336}
337
cf09a8ee
TH
338static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
339 struct request_queue *q,
340 struct blkcg *blkcg)
001bea73 341{
4fb72036 342 struct throtl_grp *tg;
24bdb8ef 343 int rw;
4fb72036 344
cf09a8ee 345 tg = kzalloc_node(sizeof(*tg), gfp, q->node);
4fb72036 346 if (!tg)
77ea7338 347 return NULL;
4fb72036 348
7ca46438
TH
349 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
350 goto err_free_tg;
351
352 if (blkg_rwstat_init(&tg->stat_ios, gfp))
353 goto err_exit_stat_bytes;
354
b2ce2643
TH
355 throtl_service_queue_init(&tg->service_queue);
356
357 for (rw = READ; rw <= WRITE; rw++) {
358 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
359 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
360 }
361
362 RB_CLEAR_NODE(&tg->rb_node);
9f626e37
SL
363 tg->bps[READ][LIMIT_MAX] = U64_MAX;
364 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
365 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
366 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
cd5ab1b0
SL
367 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
368 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
369 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
370 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
371 /* LIMIT_LOW will have default value 0 */
b2ce2643 372
ec80991d 373 tg->latency_target = DFL_LATENCY_TARGET;
5b81fc3c 374 tg->latency_target_conf = DFL_LATENCY_TARGET;
b4f428ef
SL
375 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
376 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
ec80991d 377
4fb72036 378 return &tg->pd;
7ca46438
TH
379
380err_exit_stat_bytes:
381 blkg_rwstat_exit(&tg->stat_bytes);
382err_free_tg:
383 kfree(tg);
384 return NULL;
001bea73
TH
385}
386
a9520cd6 387static void throtl_pd_init(struct blkg_policy_data *pd)
a29a171e 388{
a9520cd6
TH
389 struct throtl_grp *tg = pd_to_tg(pd);
390 struct blkcg_gq *blkg = tg_to_blkg(tg);
77216b04 391 struct throtl_data *td = blkg->q->td;
b2ce2643 392 struct throtl_service_queue *sq = &tg->service_queue;
cd1604fa 393
9138125b 394 /*
aa6ec29b 395 * If on the default hierarchy, we switch to properly hierarchical
9138125b
TH
396 * behavior where limits on a given throtl_grp are applied to the
397 * whole subtree rather than just the group itself. e.g. If 16M
398 * read_bps limit is set on the root group, the whole system can't
399 * exceed 16M for the device.
400 *
aa6ec29b 401 * If not on the default hierarchy, the broken flat hierarchy
9138125b
TH
402 * behavior is retained where all throtl_grps are treated as if
403 * they're all separate root groups right below throtl_data.
404 * Limits of a group don't interact with limits of other groups
405 * regardless of the position of the group in the hierarchy.
406 */
b2ce2643 407 sq->parent_sq = &td->service_queue;
9e10a130 408 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
b2ce2643 409 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
77216b04 410 tg->td = td;
8a3d2615
TH
411}
412
693e751e
TH
413/*
414 * Set has_rules[] if @tg or any of its parents have limits configured.
415 * This doesn't require walking up to the top of the hierarchy as the
416 * parent's has_rules[] is guaranteed to be correct.
417 */
418static void tg_update_has_rules(struct throtl_grp *tg)
419{
420 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
9f626e37 421 struct throtl_data *td = tg->td;
693e751e 422 int rw;
5a93b602
ML
423 int has_iops_limit = 0;
424
425 for (rw = READ; rw <= WRITE; rw++) {
426 unsigned int iops_limit = tg_iops_limit(tg, rw);
693e751e 427
693e751e 428 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
9f626e37
SL
429 (td->limit_valid[td->limit_index] &&
430 (tg_bps_limit(tg, rw) != U64_MAX ||
5a93b602
ML
431 iops_limit != UINT_MAX));
432
433 if (iops_limit != UINT_MAX)
434 has_iops_limit = 1;
435 }
436
437 if (has_iops_limit)
438 tg->flags |= THROTL_TG_HAS_IOPS_LIMIT;
439 else
440 tg->flags &= ~THROTL_TG_HAS_IOPS_LIMIT;
693e751e
TH
441}
442
a9520cd6 443static void throtl_pd_online(struct blkg_policy_data *pd)
693e751e 444{
aec24246 445 struct throtl_grp *tg = pd_to_tg(pd);
693e751e
TH
446 /*
447 * We don't want new groups to escape the limits of its ancestors.
448 * Update has_rules[] after a new group is brought online.
449 */
aec24246 450 tg_update_has_rules(tg);
693e751e
TH
451}
452
acaf523a 453#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
cd5ab1b0
SL
454static void blk_throtl_update_limit_valid(struct throtl_data *td)
455{
456 struct cgroup_subsys_state *pos_css;
457 struct blkcg_gq *blkg;
458 bool low_valid = false;
459
460 rcu_read_lock();
461 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
462 struct throtl_grp *tg = blkg_to_tg(blkg);
463
464 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
43ada787 465 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
cd5ab1b0 466 low_valid = true;
43ada787
LB
467 break;
468 }
cd5ab1b0
SL
469 }
470 rcu_read_unlock();
471
472 td->limit_valid[LIMIT_LOW] = low_valid;
473}
acaf523a
YK
474#else
475static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
476{
477}
478#endif
cd5ab1b0 479
c79892c5 480static void throtl_upgrade_state(struct throtl_data *td);
cd5ab1b0
SL
481static void throtl_pd_offline(struct blkg_policy_data *pd)
482{
483 struct throtl_grp *tg = pd_to_tg(pd);
484
485 tg->bps[READ][LIMIT_LOW] = 0;
486 tg->bps[WRITE][LIMIT_LOW] = 0;
487 tg->iops[READ][LIMIT_LOW] = 0;
488 tg->iops[WRITE][LIMIT_LOW] = 0;
489
490 blk_throtl_update_limit_valid(tg->td);
491
c79892c5
SL
492 if (!tg->td->limit_valid[tg->td->limit_index])
493 throtl_upgrade_state(tg->td);
cd5ab1b0
SL
494}
495
001bea73
TH
496static void throtl_pd_free(struct blkg_policy_data *pd)
497{
4fb72036
TH
498 struct throtl_grp *tg = pd_to_tg(pd);
499
b2ce2643 500 del_timer_sync(&tg->service_queue.pending_timer);
7ca46438
TH
501 blkg_rwstat_exit(&tg->stat_bytes);
502 blkg_rwstat_exit(&tg->stat_ios);
4fb72036 503 kfree(tg);
001bea73
TH
504}
505
0049af73
TH
506static struct throtl_grp *
507throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7 508{
9ff01255 509 struct rb_node *n;
e43473b7 510
9ff01255
LB
511 n = rb_first_cached(&parent_sq->pending_tree);
512 WARN_ON_ONCE(!n);
513 if (!n)
514 return NULL;
515 return rb_entry_tg(n);
e43473b7
VG
516}
517
0049af73
TH
518static void throtl_rb_erase(struct rb_node *n,
519 struct throtl_service_queue *parent_sq)
e43473b7 520{
9ff01255
LB
521 rb_erase_cached(n, &parent_sq->pending_tree);
522 RB_CLEAR_NODE(n);
0049af73 523 --parent_sq->nr_pending;
e43473b7
VG
524}
525
0049af73 526static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
527{
528 struct throtl_grp *tg;
529
0049af73 530 tg = throtl_rb_first(parent_sq);
e43473b7
VG
531 if (!tg)
532 return;
533
0049af73 534 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
535}
536
77216b04 537static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 538{
77216b04 539 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
9ff01255 540 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
e43473b7
VG
541 struct rb_node *parent = NULL;
542 struct throtl_grp *__tg;
543 unsigned long key = tg->disptime;
9ff01255 544 bool leftmost = true;
e43473b7
VG
545
546 while (*node != NULL) {
547 parent = *node;
548 __tg = rb_entry_tg(parent);
549
550 if (time_before(key, __tg->disptime))
551 node = &parent->rb_left;
552 else {
553 node = &parent->rb_right;
9ff01255 554 leftmost = false;
e43473b7
VG
555 }
556 }
557
e43473b7 558 rb_link_node(&tg->rb_node, parent, node);
9ff01255
LB
559 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
560 leftmost);
e43473b7
VG
561}
562
77216b04 563static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 564{
29379674
BW
565 if (!(tg->flags & THROTL_TG_PENDING)) {
566 tg_service_queue_add(tg);
567 tg->flags |= THROTL_TG_PENDING;
568 tg->service_queue.parent_sq->nr_pending++;
569 }
e43473b7
VG
570}
571
77216b04 572static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 573{
29379674
BW
574 if (tg->flags & THROTL_TG_PENDING) {
575 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
576 tg->flags &= ~THROTL_TG_PENDING;
577 }
e43473b7
VG
578}
579
a9131a27 580/* Call with queue lock held */
69df0ab0
TH
581static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
582 unsigned long expires)
a9131a27 583{
a41b816c 584 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
06cceedc
SL
585
586 /*
587 * Since we are adjusting the throttle limit dynamically, the sleep
588 * time calculated according to previous limit might be invalid. It's
589 * possible the cgroup sleep time is very long and no other cgroups
590 * have IO running so notify the limit changes. Make sure the cgroup
591 * doesn't sleep too long to avoid the missed notification.
592 */
593 if (time_after(expires, max_expire))
594 expires = max_expire;
69df0ab0
TH
595 mod_timer(&sq->pending_timer, expires);
596 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
597 expires - jiffies, jiffies);
a9131a27
TH
598}
599
7f52f98c
TH
600/**
601 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
602 * @sq: the service_queue to schedule dispatch for
603 * @force: force scheduling
604 *
605 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
606 * dispatch time of the first pending child. Returns %true if either timer
607 * is armed or there's no pending child left. %false if the current
608 * dispatch window is still open and the caller should continue
609 * dispatching.
610 *
611 * If @force is %true, the dispatch timer is always scheduled and this
612 * function is guaranteed to return %true. This is to be used when the
613 * caller can't dispatch itself and needs to invoke pending_timer
614 * unconditionally. Note that forced scheduling is likely to induce short
615 * delay before dispatch starts even if @sq->first_pending_disptime is not
616 * in the future and thus shouldn't be used in hot paths.
617 */
618static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
619 bool force)
e43473b7 620{
6a525600 621 /* any pending children left? */
c9e0332e 622 if (!sq->nr_pending)
7f52f98c 623 return true;
e43473b7 624
c9e0332e 625 update_min_dispatch_time(sq);
e43473b7 626
69df0ab0 627 /* is the next dispatch time in the future? */
7f52f98c 628 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 629 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 630 return true;
69df0ab0
TH
631 }
632
7f52f98c
TH
633 /* tell the caller to continue dispatching */
634 return false;
e43473b7
VG
635}
636
32ee5bc4
VG
637static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
638 bool rw, unsigned long start)
639{
640 tg->bytes_disp[rw] = 0;
641 tg->io_disp[rw] = 0;
642
643 /*
644 * Previous slice has expired. We must have trimmed it after last
645 * bio dispatch. That means since start of last slice, we never used
646 * that bandwidth. Do try to make use of that bandwidth while giving
647 * credit.
648 */
649 if (time_after_eq(start, tg->slice_start[rw]))
650 tg->slice_start[rw] = start;
651
297e3d85 652 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
32ee5bc4
VG
653 throtl_log(&tg->service_queue,
654 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
655 rw == READ ? 'R' : 'W', tg->slice_start[rw],
656 tg->slice_end[rw], jiffies);
657}
658
0f3457f6 659static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
e43473b7
VG
660{
661 tg->bytes_disp[rw] = 0;
8e89d13f 662 tg->io_disp[rw] = 0;
e43473b7 663 tg->slice_start[rw] = jiffies;
297e3d85 664 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
4f1e9630 665
fda6f272
TH
666 throtl_log(&tg->service_queue,
667 "[%c] new slice start=%lu end=%lu jiffies=%lu",
668 rw == READ ? 'R' : 'W', tg->slice_start[rw],
669 tg->slice_end[rw], jiffies);
e43473b7
VG
670}
671
0f3457f6
TH
672static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
673 unsigned long jiffy_end)
d1ae8ffd 674{
297e3d85 675 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
d1ae8ffd
VG
676}
677
0f3457f6
TH
678static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
679 unsigned long jiffy_end)
e43473b7 680{
1da30f95 681 throtl_set_slice_end(tg, rw, jiffy_end);
fda6f272
TH
682 throtl_log(&tg->service_queue,
683 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
684 rw == READ ? 'R' : 'W', tg->slice_start[rw],
685 tg->slice_end[rw], jiffies);
e43473b7
VG
686}
687
688/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 689static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
690{
691 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
5cf8c227 692 return false;
e43473b7 693
0b6bad7d 694 return true;
e43473b7
VG
695}
696
697/* Trim the used slices and adjust slice start accordingly */
0f3457f6 698static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 699{
3aad5d3e
VG
700 unsigned long nr_slices, time_elapsed, io_trim;
701 u64 bytes_trim, tmp;
e43473b7
VG
702
703 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
704
705 /*
706 * If bps are unlimited (-1), then time slice don't get
707 * renewed. Don't try to trim the slice if slice is used. A new
708 * slice will start when appropriate.
709 */
0f3457f6 710 if (throtl_slice_used(tg, rw))
e43473b7
VG
711 return;
712
d1ae8ffd
VG
713 /*
714 * A bio has been dispatched. Also adjust slice_end. It might happen
715 * that initially cgroup limit was very low resulting in high
b53b072c 716 * slice_end, but later limit was bumped up and bio was dispatched
d1ae8ffd
VG
717 * sooner, then we need to reduce slice_end. A high bogus slice_end
718 * is bad because it does not allow new slice to start.
719 */
720
297e3d85 721 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
d1ae8ffd 722
e43473b7
VG
723 time_elapsed = jiffies - tg->slice_start[rw];
724
297e3d85 725 nr_slices = time_elapsed / tg->td->throtl_slice;
e43473b7
VG
726
727 if (!nr_slices)
728 return;
297e3d85 729 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
3aad5d3e
VG
730 do_div(tmp, HZ);
731 bytes_trim = tmp;
e43473b7 732
297e3d85
SL
733 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
734 HZ;
e43473b7 735
8e89d13f 736 if (!bytes_trim && !io_trim)
e43473b7
VG
737 return;
738
739 if (tg->bytes_disp[rw] >= bytes_trim)
740 tg->bytes_disp[rw] -= bytes_trim;
741 else
742 tg->bytes_disp[rw] = 0;
743
8e89d13f
VG
744 if (tg->io_disp[rw] >= io_trim)
745 tg->io_disp[rw] -= io_trim;
746 else
747 tg->io_disp[rw] = 0;
748
297e3d85 749 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
e43473b7 750
fda6f272
TH
751 throtl_log(&tg->service_queue,
752 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
753 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
754 tg->slice_start[rw], tg->slice_end[rw], jiffies);
e43473b7
VG
755}
756
0f3457f6 757static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
4599ea49 758 u32 iops_limit, unsigned long *wait)
e43473b7
VG
759{
760 bool rw = bio_data_dir(bio);
8e89d13f 761 unsigned int io_allowed;
e43473b7 762 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
c49c06e4 763 u64 tmp;
e43473b7 764
87fbeb88
BW
765 if (iops_limit == UINT_MAX) {
766 if (wait)
767 *wait = 0;
768 return true;
769 }
770
3a10f999 771 jiffy_elapsed = jiffies - tg->slice_start[rw];
e43473b7 772
3a10f999
KK
773 /* Round up to the next throttle slice, wait time must be nonzero */
774 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
8e89d13f 775
c49c06e4
VG
776 /*
777 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
778 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
779 * will allow dispatch after 1 second and after that slice should
780 * have been trimmed.
781 */
782
4599ea49 783 tmp = (u64)iops_limit * jiffy_elapsed_rnd;
c49c06e4
VG
784 do_div(tmp, HZ);
785
786 if (tmp > UINT_MAX)
787 io_allowed = UINT_MAX;
788 else
789 io_allowed = tmp;
8e89d13f
VG
790
791 if (tg->io_disp[rw] + 1 <= io_allowed) {
e43473b7
VG
792 if (wait)
793 *wait = 0;
5cf8c227 794 return true;
e43473b7
VG
795 }
796
8e89d13f 797 /* Calc approx time to dispatch */
991f61fe 798 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
8e89d13f
VG
799
800 if (wait)
801 *wait = jiffy_wait;
0b6bad7d 802 return false;
8e89d13f
VG
803}
804
0f3457f6 805static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
4599ea49 806 u64 bps_limit, unsigned long *wait)
8e89d13f
VG
807{
808 bool rw = bio_data_dir(bio);
3aad5d3e 809 u64 bytes_allowed, extra_bytes, tmp;
8e89d13f 810 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
ea0ea2bc 811 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7 812
9f5ede3c
ML
813 /* no need to throttle if this bio's bytes have been accounted */
814 if (bps_limit == U64_MAX || bio_flagged(bio, BIO_THROTTLED)) {
87fbeb88
BW
815 if (wait)
816 *wait = 0;
817 return true;
818 }
819
e43473b7
VG
820 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
821
822 /* Slice has just started. Consider one slice interval */
823 if (!jiffy_elapsed)
297e3d85 824 jiffy_elapsed_rnd = tg->td->throtl_slice;
e43473b7 825
297e3d85 826 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
e43473b7 827
4599ea49 828 tmp = bps_limit * jiffy_elapsed_rnd;
5e901a2b 829 do_div(tmp, HZ);
3aad5d3e 830 bytes_allowed = tmp;
e43473b7 831
ea0ea2bc 832 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
e43473b7
VG
833 if (wait)
834 *wait = 0;
5cf8c227 835 return true;
e43473b7
VG
836 }
837
838 /* Calc approx time to dispatch */
ea0ea2bc 839 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
4599ea49 840 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
e43473b7
VG
841
842 if (!jiffy_wait)
843 jiffy_wait = 1;
844
845 /*
846 * This wait time is without taking into consideration the rounding
847 * up we did. Add that time also.
848 */
849 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
e43473b7
VG
850 if (wait)
851 *wait = jiffy_wait;
0b6bad7d 852 return false;
8e89d13f
VG
853}
854
855/*
856 * Returns whether one can dispatch a bio or not. Also returns approx number
857 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
858 */
0f3457f6
TH
859static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
860 unsigned long *wait)
8e89d13f
VG
861{
862 bool rw = bio_data_dir(bio);
863 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
4599ea49
BW
864 u64 bps_limit = tg_bps_limit(tg, rw);
865 u32 iops_limit = tg_iops_limit(tg, rw);
8e89d13f
VG
866
867 /*
868 * Currently whole state machine of group depends on first bio
869 * queued in the group bio list. So one should not be calling
870 * this function with a different bio if there are other bios
871 * queued.
872 */
73f0d49a 873 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 874 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 875
8e89d13f 876 /* If tg->bps = -1, then BW is unlimited */
4599ea49 877 if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
8e89d13f
VG
878 if (wait)
879 *wait = 0;
5cf8c227 880 return true;
8e89d13f
VG
881 }
882
883 /*
884 * If previous slice expired, start a new one otherwise renew/extend
885 * existing slice to make sure it is at least throtl_slice interval
164c80ed
VG
886 * long since now. New slice is started only for empty throttle group.
887 * If there is queued bio, that means there should be an active
888 * slice and it should be extended instead.
8e89d13f 889 */
164c80ed 890 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
0f3457f6 891 throtl_start_new_slice(tg, rw);
8e89d13f 892 else {
297e3d85
SL
893 if (time_before(tg->slice_end[rw],
894 jiffies + tg->td->throtl_slice))
895 throtl_extend_slice(tg, rw,
896 jiffies + tg->td->throtl_slice);
8e89d13f
VG
897 }
898
4599ea49
BW
899 if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
900 tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
8e89d13f
VG
901 if (wait)
902 *wait = 0;
0b6bad7d 903 return true;
8e89d13f
VG
904 }
905
906 max_wait = max(bps_wait, iops_wait);
907
908 if (wait)
909 *wait = max_wait;
910
911 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 912 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7 913
0b6bad7d 914 return false;
e43473b7
VG
915}
916
917static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
918{
919 bool rw = bio_data_dir(bio);
ea0ea2bc 920 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7
VG
921
922 /* Charge the bio to the group */
9f5ede3c
ML
923 if (!bio_flagged(bio, BIO_THROTTLED)) {
924 tg->bytes_disp[rw] += bio_size;
925 tg->last_bytes_disp[rw] += bio_size;
926 }
927
8e89d13f 928 tg->io_disp[rw]++;
3f0abd80 929 tg->last_io_disp[rw]++;
e43473b7 930
2a0f61e6 931 /*
8d2bbd4c 932 * BIO_THROTTLED is used to prevent the same bio to be throttled
2a0f61e6
TH
933 * more than once as a throttled bio will go through blk-throtl the
934 * second time when it eventually gets issued. Set it when a bio
935 * is being charged to a tg.
2a0f61e6 936 */
8d2bbd4c
CH
937 if (!bio_flagged(bio, BIO_THROTTLED))
938 bio_set_flag(bio, BIO_THROTTLED);
e43473b7
VG
939}
940
c5cc2070
TH
941/**
942 * throtl_add_bio_tg - add a bio to the specified throtl_grp
943 * @bio: bio to add
944 * @qn: qnode to use
945 * @tg: the target throtl_grp
946 *
947 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
948 * tg->qnode_on_self[] is used.
949 */
950static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
951 struct throtl_grp *tg)
e43473b7 952{
73f0d49a 953 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
954 bool rw = bio_data_dir(bio);
955
c5cc2070
TH
956 if (!qn)
957 qn = &tg->qnode_on_self[rw];
958
0e9f4164
TH
959 /*
960 * If @tg doesn't currently have any bios queued in the same
961 * direction, queueing @bio can change when @tg should be
962 * dispatched. Mark that @tg was empty. This is automatically
b53b072c 963 * cleared on the next tg_update_disptime().
0e9f4164
TH
964 */
965 if (!sq->nr_queued[rw])
966 tg->flags |= THROTL_TG_WAS_EMPTY;
967
c5cc2070
TH
968 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
969
73f0d49a 970 sq->nr_queued[rw]++;
77216b04 971 throtl_enqueue_tg(tg);
e43473b7
VG
972}
973
77216b04 974static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 975{
73f0d49a 976 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
977 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
978 struct bio *bio;
979
d609af3a
ME
980 bio = throtl_peek_queued(&sq->queued[READ]);
981 if (bio)
0f3457f6 982 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 983
d609af3a
ME
984 bio = throtl_peek_queued(&sq->queued[WRITE]);
985 if (bio)
0f3457f6 986 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
987
988 min_wait = min(read_wait, write_wait);
989 disptime = jiffies + min_wait;
990
e43473b7 991 /* Update dispatch time */
77216b04 992 throtl_dequeue_tg(tg);
e43473b7 993 tg->disptime = disptime;
77216b04 994 throtl_enqueue_tg(tg);
0e9f4164
TH
995
996 /* see throtl_add_bio_tg() */
997 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
998}
999
32ee5bc4
VG
1000static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1001 struct throtl_grp *parent_tg, bool rw)
1002{
1003 if (throtl_slice_used(parent_tg, rw)) {
1004 throtl_start_new_slice_with_credit(parent_tg, rw,
1005 child_tg->slice_start[rw]);
1006 }
1007
1008}
1009
77216b04 1010static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 1011{
73f0d49a 1012 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
1013 struct throtl_service_queue *parent_sq = sq->parent_sq;
1014 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 1015 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
1016 struct bio *bio;
1017
c5cc2070
TH
1018 /*
1019 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1020 * from @tg may put its reference and @parent_sq might end up
1021 * getting released prematurely. Remember the tg to put and put it
1022 * after @bio is transferred to @parent_sq.
1023 */
1024 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 1025 sq->nr_queued[rw]--;
e43473b7
VG
1026
1027 throtl_charge_bio(tg, bio);
6bc9c2b4
TH
1028
1029 /*
1030 * If our parent is another tg, we just need to transfer @bio to
1031 * the parent using throtl_add_bio_tg(). If our parent is
1032 * @td->service_queue, @bio is ready to be issued. Put it on its
1033 * bio_lists[] and decrease total number queued. The caller is
1034 * responsible for issuing these bios.
1035 */
1036 if (parent_tg) {
c5cc2070 1037 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
32ee5bc4 1038 start_parent_slice_with_credit(tg, parent_tg, rw);
6bc9c2b4 1039 } else {
c5cc2070
TH
1040 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1041 &parent_sq->queued[rw]);
6bc9c2b4
TH
1042 BUG_ON(tg->td->nr_queued[rw] <= 0);
1043 tg->td->nr_queued[rw]--;
1044 }
e43473b7 1045
0f3457f6 1046 throtl_trim_slice(tg, rw);
6bc9c2b4 1047
c5cc2070
TH
1048 if (tg_to_put)
1049 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
1050}
1051
77216b04 1052static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 1053{
73f0d49a 1054 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7 1055 unsigned int nr_reads = 0, nr_writes = 0;
e675df2a
BW
1056 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1057 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
e43473b7
VG
1058 struct bio *bio;
1059
1060 /* Try to dispatch 75% READS and 25% WRITES */
1061
c5cc2070 1062 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 1063 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1064
77216b04 1065 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1066 nr_reads++;
1067
1068 if (nr_reads >= max_nr_reads)
1069 break;
1070 }
1071
c5cc2070 1072 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 1073 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1074
77216b04 1075 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1076 nr_writes++;
1077
1078 if (nr_writes >= max_nr_writes)
1079 break;
1080 }
1081
1082 return nr_reads + nr_writes;
1083}
1084
651930bc 1085static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
1086{
1087 unsigned int nr_disp = 0;
e43473b7
VG
1088
1089 while (1) {
2397611a 1090 struct throtl_grp *tg;
2ab74cd2 1091 struct throtl_service_queue *sq;
e43473b7 1092
2397611a
BW
1093 if (!parent_sq->nr_pending)
1094 break;
1095
1096 tg = throtl_rb_first(parent_sq);
e43473b7
VG
1097 if (!tg)
1098 break;
1099
1100 if (time_before(jiffies, tg->disptime))
1101 break;
1102
77216b04 1103 throtl_dequeue_tg(tg);
e43473b7 1104
77216b04 1105 nr_disp += throtl_dispatch_tg(tg);
e43473b7 1106
2ab74cd2 1107 sq = &tg->service_queue;
73f0d49a 1108 if (sq->nr_queued[0] || sq->nr_queued[1])
77216b04 1109 tg_update_disptime(tg);
e43473b7 1110
e675df2a 1111 if (nr_disp >= THROTL_QUANTUM)
e43473b7
VG
1112 break;
1113 }
1114
1115 return nr_disp;
1116}
1117
c79892c5
SL
1118static bool throtl_can_upgrade(struct throtl_data *td,
1119 struct throtl_grp *this_tg);
6e1a5704
TH
1120/**
1121 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
216382dc 1122 * @t: the pending_timer member of the throtl_service_queue being serviced
6e1a5704
TH
1123 *
1124 * This timer is armed when a child throtl_grp with active bio's become
1125 * pending and queued on the service_queue's pending_tree and expires when
1126 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1127 * dispatches bio's from the children throtl_grps to the parent
1128 * service_queue.
1129 *
1130 * If the parent's parent is another throtl_grp, dispatching is propagated
1131 * by either arming its pending_timer or repeating dispatch directly. If
1132 * the top-level service_tree is reached, throtl_data->dispatch_work is
1133 * kicked so that the ready bio's are issued.
6e1a5704 1134 */
e99e88a9 1135static void throtl_pending_timer_fn(struct timer_list *t)
69df0ab0 1136{
e99e88a9 1137 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
2e48a530 1138 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1139 struct throtl_data *td = sq_to_td(sq);
2e48a530 1140 struct throtl_service_queue *parent_sq;
ee37eddb 1141 struct request_queue *q;
2e48a530 1142 bool dispatched;
6e1a5704 1143 int ret;
e43473b7 1144
ee37eddb
ML
1145 /* throtl_data may be gone, so figure out request queue by blkg */
1146 if (tg)
1147 q = tg->pd.blkg->q;
1148 else
1149 q = td->queue;
1150
0d945c1f 1151 spin_lock_irq(&q->queue_lock);
ee37eddb
ML
1152
1153 if (!q->root_blkg)
1154 goto out_unlock;
1155
c79892c5
SL
1156 if (throtl_can_upgrade(td, NULL))
1157 throtl_upgrade_state(td);
1158
2e48a530
TH
1159again:
1160 parent_sq = sq->parent_sq;
1161 dispatched = false;
e43473b7 1162
7f52f98c
TH
1163 while (true) {
1164 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1165 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1166 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1167
1168 ret = throtl_select_dispatch(sq);
1169 if (ret) {
7f52f98c
TH
1170 throtl_log(sq, "bios disp=%u", ret);
1171 dispatched = true;
1172 }
e43473b7 1173
7f52f98c
TH
1174 if (throtl_schedule_next_dispatch(sq, false))
1175 break;
e43473b7 1176
7f52f98c 1177 /* this dispatch windows is still open, relax and repeat */
0d945c1f 1178 spin_unlock_irq(&q->queue_lock);
7f52f98c 1179 cpu_relax();
0d945c1f 1180 spin_lock_irq(&q->queue_lock);
651930bc 1181 }
e43473b7 1182
2e48a530
TH
1183 if (!dispatched)
1184 goto out_unlock;
6e1a5704 1185
2e48a530
TH
1186 if (parent_sq) {
1187 /* @parent_sq is another throl_grp, propagate dispatch */
1188 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1189 tg_update_disptime(tg);
1190 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1191 /* window is already open, repeat dispatching */
1192 sq = parent_sq;
1193 tg = sq_to_tg(sq);
1194 goto again;
1195 }
1196 }
1197 } else {
b53b072c 1198 /* reached the top-level, queue issuing */
2e48a530
TH
1199 queue_work(kthrotld_workqueue, &td->dispatch_work);
1200 }
1201out_unlock:
0d945c1f 1202 spin_unlock_irq(&q->queue_lock);
6e1a5704 1203}
e43473b7 1204
6e1a5704
TH
1205/**
1206 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1207 * @work: work item being executed
1208 *
b53b072c
BW
1209 * This function is queued for execution when bios reach the bio_lists[]
1210 * of throtl_data->service_queue. Those bios are ready and issued by this
6e1a5704
TH
1211 * function.
1212 */
8876e140 1213static void blk_throtl_dispatch_work_fn(struct work_struct *work)
6e1a5704
TH
1214{
1215 struct throtl_data *td = container_of(work, struct throtl_data,
1216 dispatch_work);
1217 struct throtl_service_queue *td_sq = &td->service_queue;
1218 struct request_queue *q = td->queue;
1219 struct bio_list bio_list_on_stack;
1220 struct bio *bio;
1221 struct blk_plug plug;
1222 int rw;
1223
1224 bio_list_init(&bio_list_on_stack);
1225
0d945c1f 1226 spin_lock_irq(&q->queue_lock);
c5cc2070
TH
1227 for (rw = READ; rw <= WRITE; rw++)
1228 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1229 bio_list_add(&bio_list_on_stack, bio);
0d945c1f 1230 spin_unlock_irq(&q->queue_lock);
6e1a5704
TH
1231
1232 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1233 blk_start_plug(&plug);
ed00aabd 1234 while ((bio = bio_list_pop(&bio_list_on_stack)))
3f98c753 1235 submit_bio_noacct_nocheck(bio);
69d60eb9 1236 blk_finish_plug(&plug);
e43473b7 1237 }
e43473b7
VG
1238}
1239
f95a04af
TH
1240static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1241 int off)
60c2bc2d 1242{
f95a04af
TH
1243 struct throtl_grp *tg = pd_to_tg(pd);
1244 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1245
2ab5492d 1246 if (v == U64_MAX)
60c2bc2d 1247 return 0;
f95a04af 1248 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1249}
1250
f95a04af
TH
1251static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1252 int off)
e43473b7 1253{
f95a04af
TH
1254 struct throtl_grp *tg = pd_to_tg(pd);
1255 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1256
2ab5492d 1257 if (v == UINT_MAX)
af133ceb 1258 return 0;
f95a04af 1259 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1260}
1261
2da8ca82 1262static int tg_print_conf_u64(struct seq_file *sf, void *v)
8e89d13f 1263{
2da8ca82
TH
1264 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1265 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1266 return 0;
8e89d13f
VG
1267}
1268
2da8ca82 1269static int tg_print_conf_uint(struct seq_file *sf, void *v)
8e89d13f 1270{
2da8ca82
TH
1271 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1272 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1273 return 0;
60c2bc2d
TH
1274}
1275
9bb67aeb 1276static void tg_conf_updated(struct throtl_grp *tg, bool global)
60c2bc2d 1277{
69948b07 1278 struct throtl_service_queue *sq = &tg->service_queue;
492eb21b 1279 struct cgroup_subsys_state *pos_css;
69948b07 1280 struct blkcg_gq *blkg;
af133ceb 1281
fda6f272
TH
1282 throtl_log(&tg->service_queue,
1283 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
9f626e37
SL
1284 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1285 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
632b4493 1286
693e751e
TH
1287 /*
1288 * Update has_rules[] flags for the updated tg's subtree. A tg is
1289 * considered to have rules if either the tg itself or any of its
1290 * ancestors has rules. This identifies groups without any
1291 * restrictions in the whole hierarchy and allows them to bypass
1292 * blk-throttle.
1293 */
9bb67aeb
SL
1294 blkg_for_each_descendant_pre(blkg, pos_css,
1295 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
5b81fc3c
SL
1296 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1297 struct throtl_grp *parent_tg;
1298
1299 tg_update_has_rules(this_tg);
1300 /* ignore root/second level */
1301 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1302 !blkg->parent->parent)
1303 continue;
1304 parent_tg = blkg_to_tg(blkg->parent);
1305 /*
1306 * make sure all children has lower idle time threshold and
1307 * higher latency target
1308 */
1309 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1310 parent_tg->idletime_threshold);
1311 this_tg->latency_target = max(this_tg->latency_target,
1312 parent_tg->latency_target);
1313 }
693e751e 1314
632b4493
TH
1315 /*
1316 * We're already holding queue_lock and know @tg is valid. Let's
1317 * apply the new config directly.
1318 *
1319 * Restart the slices for both READ and WRITES. It might happen
1320 * that a group's limit are dropped suddenly and we don't want to
1321 * account recently dispatched IO with new low rate.
1322 */
ff8b22c0
BW
1323 throtl_start_new_slice(tg, READ);
1324 throtl_start_new_slice(tg, WRITE);
632b4493 1325
5b2c16aa 1326 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1327 tg_update_disptime(tg);
7f52f98c 1328 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1329 }
69948b07
TH
1330}
1331
1332static ssize_t tg_set_conf(struct kernfs_open_file *of,
1333 char *buf, size_t nbytes, loff_t off, bool is_u64)
1334{
1335 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1336 struct blkg_conf_ctx ctx;
1337 struct throtl_grp *tg;
1338 int ret;
1339 u64 v;
1340
1341 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1342 if (ret)
1343 return ret;
1344
1345 ret = -EINVAL;
1346 if (sscanf(ctx.body, "%llu", &v) != 1)
1347 goto out_finish;
1348 if (!v)
2ab5492d 1349 v = U64_MAX;
69948b07
TH
1350
1351 tg = blkg_to_tg(ctx.blkg);
1352
1353 if (is_u64)
1354 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1355 else
1356 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
60c2bc2d 1357
9bb67aeb 1358 tg_conf_updated(tg, false);
36aa9e5f
TH
1359 ret = 0;
1360out_finish:
60c2bc2d 1361 blkg_conf_finish(&ctx);
36aa9e5f 1362 return ret ?: nbytes;
8e89d13f
VG
1363}
1364
451af504
TH
1365static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1366 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1367{
451af504 1368 return tg_set_conf(of, buf, nbytes, off, true);
60c2bc2d
TH
1369}
1370
451af504
TH
1371static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1372 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1373{
451af504 1374 return tg_set_conf(of, buf, nbytes, off, false);
60c2bc2d
TH
1375}
1376
7ca46438
TH
1377static int tg_print_rwstat(struct seq_file *sf, void *v)
1378{
1379 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1380 blkg_prfill_rwstat, &blkcg_policy_throtl,
1381 seq_cft(sf)->private, true);
1382 return 0;
1383}
1384
1385static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1386 struct blkg_policy_data *pd, int off)
1387{
1388 struct blkg_rwstat_sample sum;
1389
1390 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1391 &sum);
1392 return __blkg_prfill_rwstat(sf, pd, &sum);
1393}
1394
1395static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1396{
1397 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1398 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1399 seq_cft(sf)->private, true);
1400 return 0;
1401}
1402
880f50e2 1403static struct cftype throtl_legacy_files[] = {
60c2bc2d
TH
1404 {
1405 .name = "throttle.read_bps_device",
9f626e37 1406 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
2da8ca82 1407 .seq_show = tg_print_conf_u64,
451af504 1408 .write = tg_set_conf_u64,
60c2bc2d
TH
1409 },
1410 {
1411 .name = "throttle.write_bps_device",
9f626e37 1412 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
2da8ca82 1413 .seq_show = tg_print_conf_u64,
451af504 1414 .write = tg_set_conf_u64,
60c2bc2d
TH
1415 },
1416 {
1417 .name = "throttle.read_iops_device",
9f626e37 1418 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
2da8ca82 1419 .seq_show = tg_print_conf_uint,
451af504 1420 .write = tg_set_conf_uint,
60c2bc2d
TH
1421 },
1422 {
1423 .name = "throttle.write_iops_device",
9f626e37 1424 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
2da8ca82 1425 .seq_show = tg_print_conf_uint,
451af504 1426 .write = tg_set_conf_uint,
60c2bc2d
TH
1427 },
1428 {
1429 .name = "throttle.io_service_bytes",
7ca46438
TH
1430 .private = offsetof(struct throtl_grp, stat_bytes),
1431 .seq_show = tg_print_rwstat,
60c2bc2d 1432 },
17534c6f 1433 {
1434 .name = "throttle.io_service_bytes_recursive",
7ca46438
TH
1435 .private = offsetof(struct throtl_grp, stat_bytes),
1436 .seq_show = tg_print_rwstat_recursive,
17534c6f 1437 },
60c2bc2d
TH
1438 {
1439 .name = "throttle.io_serviced",
7ca46438
TH
1440 .private = offsetof(struct throtl_grp, stat_ios),
1441 .seq_show = tg_print_rwstat,
60c2bc2d 1442 },
17534c6f 1443 {
1444 .name = "throttle.io_serviced_recursive",
7ca46438
TH
1445 .private = offsetof(struct throtl_grp, stat_ios),
1446 .seq_show = tg_print_rwstat_recursive,
17534c6f 1447 },
60c2bc2d
TH
1448 { } /* terminate */
1449};
1450
cd5ab1b0 1451static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
2ee867dc
TH
1452 int off)
1453{
1454 struct throtl_grp *tg = pd_to_tg(pd);
1455 const char *dname = blkg_dev_name(pd->blkg);
1456 char bufs[4][21] = { "max", "max", "max", "max" };
cd5ab1b0
SL
1457 u64 bps_dft;
1458 unsigned int iops_dft;
ada75b6e 1459 char idle_time[26] = "";
ec80991d 1460 char latency_time[26] = "";
2ee867dc
TH
1461
1462 if (!dname)
1463 return 0;
9f626e37 1464
cd5ab1b0
SL
1465 if (off == LIMIT_LOW) {
1466 bps_dft = 0;
1467 iops_dft = 0;
1468 } else {
1469 bps_dft = U64_MAX;
1470 iops_dft = UINT_MAX;
1471 }
1472
1473 if (tg->bps_conf[READ][off] == bps_dft &&
1474 tg->bps_conf[WRITE][off] == bps_dft &&
1475 tg->iops_conf[READ][off] == iops_dft &&
ada75b6e 1476 tg->iops_conf[WRITE][off] == iops_dft &&
ec80991d 1477 (off != LIMIT_LOW ||
b4f428ef 1478 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
5b81fc3c 1479 tg->latency_target_conf == DFL_LATENCY_TARGET)))
2ee867dc
TH
1480 return 0;
1481
9bb67aeb 1482 if (tg->bps_conf[READ][off] != U64_MAX)
9f626e37 1483 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
cd5ab1b0 1484 tg->bps_conf[READ][off]);
9bb67aeb 1485 if (tg->bps_conf[WRITE][off] != U64_MAX)
9f626e37 1486 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
cd5ab1b0 1487 tg->bps_conf[WRITE][off]);
9bb67aeb 1488 if (tg->iops_conf[READ][off] != UINT_MAX)
9f626e37 1489 snprintf(bufs[2], sizeof(bufs[2]), "%u",
cd5ab1b0 1490 tg->iops_conf[READ][off]);
9bb67aeb 1491 if (tg->iops_conf[WRITE][off] != UINT_MAX)
9f626e37 1492 snprintf(bufs[3], sizeof(bufs[3]), "%u",
cd5ab1b0 1493 tg->iops_conf[WRITE][off]);
ada75b6e 1494 if (off == LIMIT_LOW) {
5b81fc3c 1495 if (tg->idletime_threshold_conf == ULONG_MAX)
ada75b6e
SL
1496 strcpy(idle_time, " idle=max");
1497 else
1498 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
5b81fc3c 1499 tg->idletime_threshold_conf);
ec80991d 1500
5b81fc3c 1501 if (tg->latency_target_conf == ULONG_MAX)
ec80991d
SL
1502 strcpy(latency_time, " latency=max");
1503 else
1504 snprintf(latency_time, sizeof(latency_time),
5b81fc3c 1505 " latency=%lu", tg->latency_target_conf);
ada75b6e 1506 }
2ee867dc 1507
ec80991d
SL
1508 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1509 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1510 latency_time);
2ee867dc
TH
1511 return 0;
1512}
1513
cd5ab1b0 1514static int tg_print_limit(struct seq_file *sf, void *v)
2ee867dc 1515{
cd5ab1b0 1516 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
2ee867dc
TH
1517 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1518 return 0;
1519}
1520
cd5ab1b0 1521static ssize_t tg_set_limit(struct kernfs_open_file *of,
2ee867dc
TH
1522 char *buf, size_t nbytes, loff_t off)
1523{
1524 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1525 struct blkg_conf_ctx ctx;
1526 struct throtl_grp *tg;
1527 u64 v[4];
ada75b6e 1528 unsigned long idle_time;
ec80991d 1529 unsigned long latency_time;
2ee867dc 1530 int ret;
cd5ab1b0 1531 int index = of_cft(of)->private;
2ee867dc
TH
1532
1533 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1534 if (ret)
1535 return ret;
1536
1537 tg = blkg_to_tg(ctx.blkg);
1538
cd5ab1b0
SL
1539 v[0] = tg->bps_conf[READ][index];
1540 v[1] = tg->bps_conf[WRITE][index];
1541 v[2] = tg->iops_conf[READ][index];
1542 v[3] = tg->iops_conf[WRITE][index];
2ee867dc 1543
5b81fc3c
SL
1544 idle_time = tg->idletime_threshold_conf;
1545 latency_time = tg->latency_target_conf;
2ee867dc
TH
1546 while (true) {
1547 char tok[27]; /* wiops=18446744073709551616 */
1548 char *p;
2ab5492d 1549 u64 val = U64_MAX;
2ee867dc
TH
1550 int len;
1551
1552 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1553 break;
1554 if (tok[0] == '\0')
1555 break;
1556 ctx.body += len;
1557
1558 ret = -EINVAL;
1559 p = tok;
1560 strsep(&p, "=");
1561 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1562 goto out_finish;
1563
1564 ret = -ERANGE;
1565 if (!val)
1566 goto out_finish;
1567
1568 ret = -EINVAL;
5b7048b8 1569 if (!strcmp(tok, "rbps") && val > 1)
2ee867dc 1570 v[0] = val;
5b7048b8 1571 else if (!strcmp(tok, "wbps") && val > 1)
2ee867dc 1572 v[1] = val;
5b7048b8 1573 else if (!strcmp(tok, "riops") && val > 1)
2ee867dc 1574 v[2] = min_t(u64, val, UINT_MAX);
5b7048b8 1575 else if (!strcmp(tok, "wiops") && val > 1)
2ee867dc 1576 v[3] = min_t(u64, val, UINT_MAX);
ada75b6e
SL
1577 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1578 idle_time = val;
ec80991d
SL
1579 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1580 latency_time = val;
2ee867dc
TH
1581 else
1582 goto out_finish;
1583 }
1584
cd5ab1b0
SL
1585 tg->bps_conf[READ][index] = v[0];
1586 tg->bps_conf[WRITE][index] = v[1];
1587 tg->iops_conf[READ][index] = v[2];
1588 tg->iops_conf[WRITE][index] = v[3];
2ee867dc 1589
cd5ab1b0
SL
1590 if (index == LIMIT_MAX) {
1591 tg->bps[READ][index] = v[0];
1592 tg->bps[WRITE][index] = v[1];
1593 tg->iops[READ][index] = v[2];
1594 tg->iops[WRITE][index] = v[3];
1595 }
1596 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1597 tg->bps_conf[READ][LIMIT_MAX]);
1598 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1599 tg->bps_conf[WRITE][LIMIT_MAX]);
1600 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1601 tg->iops_conf[READ][LIMIT_MAX]);
1602 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1603 tg->iops_conf[WRITE][LIMIT_MAX]);
b4f428ef
SL
1604 tg->idletime_threshold_conf = idle_time;
1605 tg->latency_target_conf = latency_time;
1606
1607 /* force user to configure all settings for low limit */
1608 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1609 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1610 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1611 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1612 tg->bps[READ][LIMIT_LOW] = 0;
1613 tg->bps[WRITE][LIMIT_LOW] = 0;
1614 tg->iops[READ][LIMIT_LOW] = 0;
1615 tg->iops[WRITE][LIMIT_LOW] = 0;
1616 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1617 tg->latency_target = DFL_LATENCY_TARGET;
1618 } else if (index == LIMIT_LOW) {
5b81fc3c 1619 tg->idletime_threshold = tg->idletime_threshold_conf;
5b81fc3c 1620 tg->latency_target = tg->latency_target_conf;
cd5ab1b0 1621 }
b4f428ef
SL
1622
1623 blk_throtl_update_limit_valid(tg->td);
1624 if (tg->td->limit_valid[LIMIT_LOW]) {
1625 if (index == LIMIT_LOW)
1626 tg->td->limit_index = LIMIT_LOW;
1627 } else
1628 tg->td->limit_index = LIMIT_MAX;
9bb67aeb
SL
1629 tg_conf_updated(tg, index == LIMIT_LOW &&
1630 tg->td->limit_valid[LIMIT_LOW]);
2ee867dc
TH
1631 ret = 0;
1632out_finish:
1633 blkg_conf_finish(&ctx);
1634 return ret ?: nbytes;
1635}
1636
1637static struct cftype throtl_files[] = {
cd5ab1b0
SL
1638#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1639 {
1640 .name = "low",
1641 .flags = CFTYPE_NOT_ON_ROOT,
1642 .seq_show = tg_print_limit,
1643 .write = tg_set_limit,
1644 .private = LIMIT_LOW,
1645 },
1646#endif
2ee867dc
TH
1647 {
1648 .name = "max",
1649 .flags = CFTYPE_NOT_ON_ROOT,
cd5ab1b0
SL
1650 .seq_show = tg_print_limit,
1651 .write = tg_set_limit,
1652 .private = LIMIT_MAX,
2ee867dc
TH
1653 },
1654 { } /* terminate */
1655};
1656
da527770 1657static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1658{
1659 struct throtl_data *td = q->td;
1660
69df0ab0 1661 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1662}
1663
a7b36ee6 1664struct blkcg_policy blkcg_policy_throtl = {
2ee867dc 1665 .dfl_cftypes = throtl_files,
880f50e2 1666 .legacy_cftypes = throtl_legacy_files,
f9fcc2d3 1667
001bea73 1668 .pd_alloc_fn = throtl_pd_alloc,
f9fcc2d3 1669 .pd_init_fn = throtl_pd_init,
693e751e 1670 .pd_online_fn = throtl_pd_online,
cd5ab1b0 1671 .pd_offline_fn = throtl_pd_offline,
001bea73 1672 .pd_free_fn = throtl_pd_free,
e43473b7
VG
1673};
1674
3f0abd80
SL
1675static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1676{
1677 unsigned long rtime = jiffies, wtime = jiffies;
1678
1679 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1680 rtime = tg->last_low_overflow_time[READ];
1681 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1682 wtime = tg->last_low_overflow_time[WRITE];
1683 return min(rtime, wtime);
1684}
1685
1686/* tg should not be an intermediate node */
1687static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1688{
1689 struct throtl_service_queue *parent_sq;
1690 struct throtl_grp *parent = tg;
1691 unsigned long ret = __tg_last_low_overflow_time(tg);
1692
1693 while (true) {
1694 parent_sq = parent->service_queue.parent_sq;
1695 parent = sq_to_tg(parent_sq);
1696 if (!parent)
1697 break;
1698
1699 /*
1700 * The parent doesn't have low limit, it always reaches low
1701 * limit. Its overflow time is useless for children
1702 */
1703 if (!parent->bps[READ][LIMIT_LOW] &&
1704 !parent->iops[READ][LIMIT_LOW] &&
1705 !parent->bps[WRITE][LIMIT_LOW] &&
1706 !parent->iops[WRITE][LIMIT_LOW])
1707 continue;
1708 if (time_after(__tg_last_low_overflow_time(parent), ret))
1709 ret = __tg_last_low_overflow_time(parent);
1710 }
1711 return ret;
1712}
1713
9e234eea
SL
1714static bool throtl_tg_is_idle(struct throtl_grp *tg)
1715{
1716 /*
1717 * cgroup is idle if:
1718 * - single idle is too long, longer than a fixed value (in case user
b4f428ef 1719 * configure a too big threshold) or 4 times of idletime threshold
9e234eea 1720 * - average think time is more than threshold
53696b8d 1721 * - IO latency is largely below threshold
9e234eea 1722 */
b4f428ef 1723 unsigned long time;
4cff729f 1724 bool ret;
9e234eea 1725
b4f428ef
SL
1726 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1727 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1728 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1729 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1730 tg->avg_idletime > tg->idletime_threshold ||
1731 (tg->latency_target && tg->bio_cnt &&
53696b8d 1732 tg->bad_bio_cnt * 5 < tg->bio_cnt);
4cff729f
SL
1733 throtl_log(&tg->service_queue,
1734 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1735 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1736 tg->bio_cnt, ret, tg->td->scale);
1737 return ret;
9e234eea
SL
1738}
1739
c79892c5
SL
1740static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1741{
1742 struct throtl_service_queue *sq = &tg->service_queue;
1743 bool read_limit, write_limit;
1744
1745 /*
1746 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1747 * reaches), it's ok to upgrade to next limit
1748 */
1749 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1750 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1751 if (!read_limit && !write_limit)
1752 return true;
1753 if (read_limit && sq->nr_queued[READ] &&
1754 (!write_limit || sq->nr_queued[WRITE]))
1755 return true;
1756 if (write_limit && sq->nr_queued[WRITE] &&
1757 (!read_limit || sq->nr_queued[READ]))
1758 return true;
aec24246
SL
1759
1760 if (time_after_eq(jiffies,
fa6fb5aa
SL
1761 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1762 throtl_tg_is_idle(tg))
aec24246 1763 return true;
c79892c5
SL
1764 return false;
1765}
1766
1767static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1768{
1769 while (true) {
1770 if (throtl_tg_can_upgrade(tg))
1771 return true;
1772 tg = sq_to_tg(tg->service_queue.parent_sq);
1773 if (!tg || !tg_to_blkg(tg)->parent)
1774 return false;
1775 }
1776 return false;
1777}
1778
1779static bool throtl_can_upgrade(struct throtl_data *td,
1780 struct throtl_grp *this_tg)
1781{
1782 struct cgroup_subsys_state *pos_css;
1783 struct blkcg_gq *blkg;
1784
1785 if (td->limit_index != LIMIT_LOW)
1786 return false;
1787
297e3d85 1788 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
3f0abd80
SL
1789 return false;
1790
c79892c5
SL
1791 rcu_read_lock();
1792 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1793 struct throtl_grp *tg = blkg_to_tg(blkg);
1794
1795 if (tg == this_tg)
1796 continue;
1797 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1798 continue;
1799 if (!throtl_hierarchy_can_upgrade(tg)) {
1800 rcu_read_unlock();
1801 return false;
1802 }
1803 }
1804 rcu_read_unlock();
1805 return true;
1806}
1807
fa6fb5aa
SL
1808static void throtl_upgrade_check(struct throtl_grp *tg)
1809{
1810 unsigned long now = jiffies;
1811
1812 if (tg->td->limit_index != LIMIT_LOW)
1813 return;
1814
1815 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1816 return;
1817
1818 tg->last_check_time = now;
1819
1820 if (!time_after_eq(now,
1821 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1822 return;
1823
1824 if (throtl_can_upgrade(tg->td, NULL))
1825 throtl_upgrade_state(tg->td);
1826}
1827
c79892c5
SL
1828static void throtl_upgrade_state(struct throtl_data *td)
1829{
1830 struct cgroup_subsys_state *pos_css;
1831 struct blkcg_gq *blkg;
1832
4cff729f 1833 throtl_log(&td->service_queue, "upgrade to max");
c79892c5 1834 td->limit_index = LIMIT_MAX;
3f0abd80 1835 td->low_upgrade_time = jiffies;
7394e31f 1836 td->scale = 0;
c79892c5
SL
1837 rcu_read_lock();
1838 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1839 struct throtl_grp *tg = blkg_to_tg(blkg);
1840 struct throtl_service_queue *sq = &tg->service_queue;
1841
1842 tg->disptime = jiffies - 1;
1843 throtl_select_dispatch(sq);
4f02fb76 1844 throtl_schedule_next_dispatch(sq, true);
c79892c5
SL
1845 }
1846 rcu_read_unlock();
1847 throtl_select_dispatch(&td->service_queue);
4f02fb76 1848 throtl_schedule_next_dispatch(&td->service_queue, true);
c79892c5
SL
1849 queue_work(kthrotld_workqueue, &td->dispatch_work);
1850}
1851
4247d9c8 1852static void throtl_downgrade_state(struct throtl_data *td)
3f0abd80 1853{
7394e31f
SL
1854 td->scale /= 2;
1855
4cff729f 1856 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
7394e31f
SL
1857 if (td->scale) {
1858 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1859 return;
1860 }
1861
4247d9c8 1862 td->limit_index = LIMIT_LOW;
3f0abd80
SL
1863 td->low_downgrade_time = jiffies;
1864}
1865
1866static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1867{
1868 struct throtl_data *td = tg->td;
1869 unsigned long now = jiffies;
1870
1871 /*
1872 * If cgroup is below low limit, consider downgrade and throttle other
1873 * cgroups
1874 */
297e3d85
SL
1875 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1876 time_after_eq(now, tg_last_low_overflow_time(tg) +
fa6fb5aa
SL
1877 td->throtl_slice) &&
1878 (!throtl_tg_is_idle(tg) ||
1879 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
3f0abd80
SL
1880 return true;
1881 return false;
1882}
1883
1884static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1885{
1886 while (true) {
1887 if (!throtl_tg_can_downgrade(tg))
1888 return false;
1889 tg = sq_to_tg(tg->service_queue.parent_sq);
1890 if (!tg || !tg_to_blkg(tg)->parent)
1891 break;
1892 }
1893 return true;
1894}
1895
1896static void throtl_downgrade_check(struct throtl_grp *tg)
1897{
1898 uint64_t bps;
1899 unsigned int iops;
1900 unsigned long elapsed_time;
1901 unsigned long now = jiffies;
1902
1903 if (tg->td->limit_index != LIMIT_MAX ||
1904 !tg->td->limit_valid[LIMIT_LOW])
1905 return;
1906 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1907 return;
297e3d85 1908 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
3f0abd80
SL
1909 return;
1910
1911 elapsed_time = now - tg->last_check_time;
1912 tg->last_check_time = now;
1913
297e3d85
SL
1914 if (time_before(now, tg_last_low_overflow_time(tg) +
1915 tg->td->throtl_slice))
3f0abd80
SL
1916 return;
1917
1918 if (tg->bps[READ][LIMIT_LOW]) {
1919 bps = tg->last_bytes_disp[READ] * HZ;
1920 do_div(bps, elapsed_time);
1921 if (bps >= tg->bps[READ][LIMIT_LOW])
1922 tg->last_low_overflow_time[READ] = now;
1923 }
1924
1925 if (tg->bps[WRITE][LIMIT_LOW]) {
1926 bps = tg->last_bytes_disp[WRITE] * HZ;
1927 do_div(bps, elapsed_time);
1928 if (bps >= tg->bps[WRITE][LIMIT_LOW])
1929 tg->last_low_overflow_time[WRITE] = now;
1930 }
1931
1932 if (tg->iops[READ][LIMIT_LOW]) {
1933 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1934 if (iops >= tg->iops[READ][LIMIT_LOW])
1935 tg->last_low_overflow_time[READ] = now;
1936 }
1937
1938 if (tg->iops[WRITE][LIMIT_LOW]) {
1939 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
1940 if (iops >= tg->iops[WRITE][LIMIT_LOW])
1941 tg->last_low_overflow_time[WRITE] = now;
1942 }
1943
1944 /*
1945 * If cgroup is below low limit, consider downgrade and throttle other
1946 * cgroups
1947 */
1948 if (throtl_hierarchy_can_downgrade(tg))
4247d9c8 1949 throtl_downgrade_state(tg->td);
3f0abd80
SL
1950
1951 tg->last_bytes_disp[READ] = 0;
1952 tg->last_bytes_disp[WRITE] = 0;
1953 tg->last_io_disp[READ] = 0;
1954 tg->last_io_disp[WRITE] = 0;
1955}
1956
9e234eea
SL
1957static void blk_throtl_update_idletime(struct throtl_grp *tg)
1958{
7901601a 1959 unsigned long now;
9e234eea
SL
1960 unsigned long last_finish_time = tg->last_finish_time;
1961
7901601a
BW
1962 if (last_finish_time == 0)
1963 return;
1964
1965 now = ktime_get_ns() >> 10;
1966 if (now <= last_finish_time ||
9e234eea
SL
1967 last_finish_time == tg->checked_last_finish_time)
1968 return;
1969
1970 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
1971 tg->checked_last_finish_time = last_finish_time;
1972}
1973
b9147dd1
SL
1974#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1975static void throtl_update_latency_buckets(struct throtl_data *td)
1976{
b889bf66
JQ
1977 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
1978 int i, cpu, rw;
1979 unsigned long last_latency[2] = { 0 };
1980 unsigned long latency[2];
b9147dd1 1981
b185efa7 1982 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
b9147dd1
SL
1983 return;
1984 if (time_before(jiffies, td->last_calculate_time + HZ))
1985 return;
1986 td->last_calculate_time = jiffies;
1987
1988 memset(avg_latency, 0, sizeof(avg_latency));
b889bf66
JQ
1989 for (rw = READ; rw <= WRITE; rw++) {
1990 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
1991 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
1992
1993 for_each_possible_cpu(cpu) {
1994 struct latency_bucket *bucket;
1995
1996 /* this isn't race free, but ok in practice */
1997 bucket = per_cpu_ptr(td->latency_buckets[rw],
1998 cpu);
1999 tmp->total_latency += bucket[i].total_latency;
2000 tmp->samples += bucket[i].samples;
2001 bucket[i].total_latency = 0;
2002 bucket[i].samples = 0;
2003 }
b9147dd1 2004
b889bf66
JQ
2005 if (tmp->samples >= 32) {
2006 int samples = tmp->samples;
b9147dd1 2007
b889bf66 2008 latency[rw] = tmp->total_latency;
b9147dd1 2009
b889bf66
JQ
2010 tmp->total_latency = 0;
2011 tmp->samples = 0;
2012 latency[rw] /= samples;
2013 if (latency[rw] == 0)
2014 continue;
2015 avg_latency[rw][i].latency = latency[rw];
2016 }
b9147dd1
SL
2017 }
2018 }
2019
b889bf66
JQ
2020 for (rw = READ; rw <= WRITE; rw++) {
2021 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2022 if (!avg_latency[rw][i].latency) {
2023 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2024 td->avg_buckets[rw][i].latency =
2025 last_latency[rw];
2026 continue;
2027 }
b9147dd1 2028
b889bf66
JQ
2029 if (!td->avg_buckets[rw][i].valid)
2030 latency[rw] = avg_latency[rw][i].latency;
2031 else
2032 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2033 avg_latency[rw][i].latency) >> 3;
b9147dd1 2034
b889bf66
JQ
2035 td->avg_buckets[rw][i].latency = max(latency[rw],
2036 last_latency[rw]);
2037 td->avg_buckets[rw][i].valid = true;
2038 last_latency[rw] = td->avg_buckets[rw][i].latency;
2039 }
b9147dd1 2040 }
4cff729f
SL
2041
2042 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2043 throtl_log(&td->service_queue,
b889bf66
JQ
2044 "Latency bucket %d: read latency=%ld, read valid=%d, "
2045 "write latency=%ld, write valid=%d", i,
2046 td->avg_buckets[READ][i].latency,
2047 td->avg_buckets[READ][i].valid,
2048 td->avg_buckets[WRITE][i].latency,
2049 td->avg_buckets[WRITE][i].valid);
b9147dd1
SL
2050}
2051#else
2052static inline void throtl_update_latency_buckets(struct throtl_data *td)
2053{
2054}
2055#endif
2056
a7b36ee6 2057bool __blk_throtl_bio(struct bio *bio)
e43473b7 2058{
ed6cddef 2059 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
db18a53e 2060 struct blkcg_gq *blkg = bio->bi_blkg;
c5cc2070 2061 struct throtl_qnode *qn = NULL;
a2e83ef9 2062 struct throtl_grp *tg = blkg_to_tg(blkg);
73f0d49a 2063 struct throtl_service_queue *sq;
0e9f4164 2064 bool rw = bio_data_dir(bio);
bc16a4f9 2065 bool throttled = false;
b9147dd1 2066 struct throtl_data *td = tg->td;
e43473b7 2067
93b80638 2068 rcu_read_lock();
ae118896 2069
7ca46438
TH
2070 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2071 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2072 bio->bi_iter.bi_size);
2073 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2074 }
2075
0d945c1f 2076 spin_lock_irq(&q->queue_lock);
c9589f03 2077
b9147dd1
SL
2078 throtl_update_latency_buckets(td);
2079
9e234eea
SL
2080 blk_throtl_update_idletime(tg);
2081
73f0d49a
TH
2082 sq = &tg->service_queue;
2083
c79892c5 2084again:
9e660acf 2085 while (true) {
3f0abd80
SL
2086 if (tg->last_low_overflow_time[rw] == 0)
2087 tg->last_low_overflow_time[rw] = jiffies;
2088 throtl_downgrade_check(tg);
fa6fb5aa 2089 throtl_upgrade_check(tg);
9e660acf
TH
2090 /* throtl is FIFO - if bios are already queued, should queue */
2091 if (sq->nr_queued[rw])
2092 break;
de701c74 2093
9e660acf 2094 /* if above limits, break to queue */
c79892c5 2095 if (!tg_may_dispatch(tg, bio, NULL)) {
3f0abd80 2096 tg->last_low_overflow_time[rw] = jiffies;
b9147dd1
SL
2097 if (throtl_can_upgrade(td, tg)) {
2098 throtl_upgrade_state(td);
c79892c5
SL
2099 goto again;
2100 }
9e660acf 2101 break;
c79892c5 2102 }
9e660acf
TH
2103
2104 /* within limits, let's charge and dispatch directly */
e43473b7 2105 throtl_charge_bio(tg, bio);
04521db0
VG
2106
2107 /*
2108 * We need to trim slice even when bios are not being queued
2109 * otherwise it might happen that a bio is not queued for
2110 * a long time and slice keeps on extending and trim is not
2111 * called for a long time. Now if limits are reduced suddenly
2112 * we take into account all the IO dispatched so far at new
2113 * low rate and * newly queued IO gets a really long dispatch
2114 * time.
2115 *
2116 * So keep on trimming slice even if bio is not queued.
2117 */
0f3457f6 2118 throtl_trim_slice(tg, rw);
9e660acf
TH
2119
2120 /*
2121 * @bio passed through this layer without being throttled.
b53b072c 2122 * Climb up the ladder. If we're already at the top, it
9e660acf
TH
2123 * can be executed directly.
2124 */
c5cc2070 2125 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
2126 sq = sq->parent_sq;
2127 tg = sq_to_tg(sq);
2128 if (!tg)
2129 goto out_unlock;
e43473b7
VG
2130 }
2131
9e660acf 2132 /* out-of-limit, queue to @tg */
fda6f272
TH
2133 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2134 rw == READ ? 'R' : 'W',
9f626e37
SL
2135 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2136 tg_bps_limit(tg, rw),
2137 tg->io_disp[rw], tg_iops_limit(tg, rw),
fda6f272 2138 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 2139
3f0abd80
SL
2140 tg->last_low_overflow_time[rw] = jiffies;
2141
b9147dd1 2142 td->nr_queued[rw]++;
c5cc2070 2143 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 2144 throttled = true;
e43473b7 2145
7f52f98c
TH
2146 /*
2147 * Update @tg's dispatch time and force schedule dispatch if @tg
2148 * was empty before @bio. The forced scheduling isn't likely to
2149 * cause undue delay as @bio is likely to be dispatched directly if
2150 * its @tg's disptime is not in the future.
2151 */
0e9f4164 2152 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 2153 tg_update_disptime(tg);
7f52f98c 2154 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
2155 }
2156
bc16a4f9 2157out_unlock:
0d945c1f 2158 spin_unlock_irq(&q->queue_lock);
111be883 2159 bio_set_flag(bio, BIO_THROTTLED);
b9147dd1
SL
2160
2161#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2162 if (throttled || !td->track_bio_latency)
5238dcf4 2163 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
b9147dd1 2164#endif
93b80638 2165 rcu_read_unlock();
bc16a4f9 2166 return throttled;
e43473b7
VG
2167}
2168
9e234eea 2169#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
b9147dd1
SL
2170static void throtl_track_latency(struct throtl_data *td, sector_t size,
2171 int op, unsigned long time)
2172{
2173 struct latency_bucket *latency;
2174 int index;
2175
b889bf66
JQ
2176 if (!td || td->limit_index != LIMIT_LOW ||
2177 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
b9147dd1
SL
2178 !blk_queue_nonrot(td->queue))
2179 return;
2180
2181 index = request_bucket_index(size);
2182
b889bf66 2183 latency = get_cpu_ptr(td->latency_buckets[op]);
b9147dd1
SL
2184 latency[index].total_latency += time;
2185 latency[index].samples++;
b889bf66 2186 put_cpu_ptr(td->latency_buckets[op]);
b9147dd1
SL
2187}
2188
2189void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2190{
2191 struct request_queue *q = rq->q;
2192 struct throtl_data *td = q->td;
2193
3d244306
HT
2194 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2195 time_ns >> 10);
b9147dd1
SL
2196}
2197
9e234eea
SL
2198void blk_throtl_bio_endio(struct bio *bio)
2199{
08e18eab 2200 struct blkcg_gq *blkg;
9e234eea 2201 struct throtl_grp *tg;
b9147dd1
SL
2202 u64 finish_time_ns;
2203 unsigned long finish_time;
2204 unsigned long start_time;
2205 unsigned long lat;
b889bf66 2206 int rw = bio_data_dir(bio);
9e234eea 2207
08e18eab
JB
2208 blkg = bio->bi_blkg;
2209 if (!blkg)
9e234eea 2210 return;
08e18eab 2211 tg = blkg_to_tg(blkg);
b185efa7
BW
2212 if (!tg->td->limit_valid[LIMIT_LOW])
2213 return;
9e234eea 2214
b9147dd1
SL
2215 finish_time_ns = ktime_get_ns();
2216 tg->last_finish_time = finish_time_ns >> 10;
2217
5238dcf4
OS
2218 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2219 finish_time = __bio_issue_time(finish_time_ns) >> 10;
08e18eab 2220 if (!start_time || finish_time <= start_time)
53696b8d
SL
2221 return;
2222
2223 lat = finish_time - start_time;
b9147dd1 2224 /* this is only for bio based driver */
5238dcf4
OS
2225 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2226 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2227 bio_op(bio), lat);
53696b8d 2228
6679a90c 2229 if (tg->latency_target && lat >= tg->td->filtered_latency) {
53696b8d
SL
2230 int bucket;
2231 unsigned int threshold;
2232
5238dcf4 2233 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
b889bf66 2234 threshold = tg->td->avg_buckets[rw][bucket].latency +
53696b8d
SL
2235 tg->latency_target;
2236 if (lat > threshold)
2237 tg->bad_bio_cnt++;
2238 /*
2239 * Not race free, could get wrong count, which means cgroups
2240 * will be throttled
2241 */
2242 tg->bio_cnt++;
2243 }
2244
2245 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2246 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2247 tg->bio_cnt /= 2;
2248 tg->bad_bio_cnt /= 2;
b9147dd1 2249 }
9e234eea
SL
2250}
2251#endif
2252
e43473b7
VG
2253int blk_throtl_init(struct request_queue *q)
2254{
2255 struct throtl_data *td;
a2b1693b 2256 int ret;
e43473b7
VG
2257
2258 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2259 if (!td)
2260 return -ENOMEM;
b889bf66 2261 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2262 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2263 if (!td->latency_buckets[READ]) {
2264 kfree(td);
2265 return -ENOMEM;
2266 }
2267 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2268 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2269 if (!td->latency_buckets[WRITE]) {
2270 free_percpu(td->latency_buckets[READ]);
b9147dd1
SL
2271 kfree(td);
2272 return -ENOMEM;
2273 }
e43473b7 2274
69df0ab0 2275 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
b2ce2643 2276 throtl_service_queue_init(&td->service_queue);
e43473b7 2277
cd1604fa 2278 q->td = td;
29b12589 2279 td->queue = q;
02977e4a 2280
9f626e37 2281 td->limit_valid[LIMIT_MAX] = true;
cd5ab1b0 2282 td->limit_index = LIMIT_MAX;
3f0abd80
SL
2283 td->low_upgrade_time = jiffies;
2284 td->low_downgrade_time = jiffies;
9e234eea 2285
a2b1693b 2286 /* activate policy */
3c798398 2287 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
b9147dd1 2288 if (ret) {
b889bf66
JQ
2289 free_percpu(td->latency_buckets[READ]);
2290 free_percpu(td->latency_buckets[WRITE]);
f51b802c 2291 kfree(td);
b9147dd1 2292 }
a2b1693b 2293 return ret;
e43473b7
VG
2294}
2295
2296void blk_throtl_exit(struct request_queue *q)
2297{
c875f4d0 2298 BUG_ON(!q->td);
884f0e84 2299 del_timer_sync(&q->td->service_queue.pending_timer);
da527770 2300 throtl_shutdown_wq(q);
3c798398 2301 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
b889bf66
JQ
2302 free_percpu(q->td->latency_buckets[READ]);
2303 free_percpu(q->td->latency_buckets[WRITE]);
c9a929dd 2304 kfree(q->td);
e43473b7
VG
2305}
2306
d61fcfa4
SL
2307void blk_throtl_register_queue(struct request_queue *q)
2308{
2309 struct throtl_data *td;
6679a90c 2310 int i;
d61fcfa4
SL
2311
2312 td = q->td;
2313 BUG_ON(!td);
2314
6679a90c 2315 if (blk_queue_nonrot(q)) {
d61fcfa4 2316 td->throtl_slice = DFL_THROTL_SLICE_SSD;
6679a90c
SL
2317 td->filtered_latency = LATENCY_FILTERED_SSD;
2318 } else {
d61fcfa4 2319 td->throtl_slice = DFL_THROTL_SLICE_HD;
6679a90c 2320 td->filtered_latency = LATENCY_FILTERED_HD;
b889bf66
JQ
2321 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2322 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2323 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2324 }
6679a90c 2325 }
d61fcfa4
SL
2326#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2327 /* if no low limit, use previous default */
2328 td->throtl_slice = DFL_THROTL_SLICE_HD;
2329#endif
9e234eea 2330
344e9ffc 2331 td->track_bio_latency = !queue_is_mq(q);
b9147dd1
SL
2332 if (!td->track_bio_latency)
2333 blk_stat_enable_accounting(q);
d61fcfa4
SL
2334}
2335
297e3d85
SL
2336#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2337ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2338{
2339 if (!q->td)
2340 return -EINVAL;
2341 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2342}
2343
2344ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2345 const char *page, size_t count)
2346{
2347 unsigned long v;
2348 unsigned long t;
2349
2350 if (!q->td)
2351 return -EINVAL;
2352 if (kstrtoul(page, 10, &v))
2353 return -EINVAL;
2354 t = msecs_to_jiffies(v);
2355 if (t == 0 || t > MAX_THROTL_SLICE)
2356 return -EINVAL;
2357 q->td->throtl_slice = t;
2358 return count;
2359}
2360#endif
2361
e43473b7
VG
2362static int __init throtl_init(void)
2363{
450adcbe
VG
2364 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2365 if (!kthrotld_workqueue)
2366 panic("Failed to create kthrotld\n");
2367
3c798398 2368 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
2369}
2370
2371module_init(throtl_init);