blk-throttle: use calculate_io/bytes_allowed() for throtl_trim_slice()
[linux-2.6-block.git] / block / blk-throttle.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
e43473b7
VG
2/*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
7
8#include <linux/module.h>
9#include <linux/slab.h>
10#include <linux/blkdev.h>
11#include <linux/bio.h>
12#include <linux/blktrace_api.h>
bc9fcbf9 13#include "blk.h"
1d156646 14#include "blk-cgroup-rwstat.h"
e4a19f72 15#include "blk-stat.h"
a7b36ee6 16#include "blk-throttle.h"
e43473b7
VG
17
18/* Max dispatch from a group in 1 round */
e675df2a 19#define THROTL_GRP_QUANTUM 8
e43473b7
VG
20
21/* Total max dispatch from all groups in one round */
e675df2a 22#define THROTL_QUANTUM 32
e43473b7 23
d61fcfa4
SL
24/* Throttling is performed over a slice and after that slice is renewed */
25#define DFL_THROTL_SLICE_HD (HZ / 10)
26#define DFL_THROTL_SLICE_SSD (HZ / 50)
297e3d85 27#define MAX_THROTL_SLICE (HZ)
9e234eea 28#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
9bb67aeb
SL
29#define MIN_THROTL_BPS (320 * 1024)
30#define MIN_THROTL_IOPS (10)
b4f428ef
SL
31#define DFL_LATENCY_TARGET (-1L)
32#define DFL_IDLE_THRESHOLD (0)
6679a90c
SL
33#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34#define LATENCY_FILTERED_SSD (0)
35/*
36 * For HD, very small latency comes from sequential IO. Such IO is helpless to
37 * help determine if its IO is impacted by others, hence we ignore the IO
38 */
39#define LATENCY_FILTERED_HD (1000L) /* 1ms */
e43473b7 40
450adcbe
VG
41/* A workqueue to queue throttle related work */
42static struct workqueue_struct *kthrotld_workqueue;
450adcbe 43
e43473b7
VG
44#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
45
b9147dd1
SL
46/* We measure latency for request size from <= 4k to >= 1M */
47#define LATENCY_BUCKET_SIZE 9
48
49struct latency_bucket {
50 unsigned long total_latency; /* ns / 1024 */
51 int samples;
52};
53
54struct avg_latency_bucket {
55 unsigned long latency; /* ns / 1024 */
56 bool valid;
57};
58
e43473b7
VG
59struct throtl_data
60{
e43473b7 61 /* service tree for active throtl groups */
c9e0332e 62 struct throtl_service_queue service_queue;
e43473b7 63
e43473b7
VG
64 struct request_queue *queue;
65
66 /* Total Number of queued bios on READ and WRITE lists */
67 unsigned int nr_queued[2];
68
297e3d85
SL
69 unsigned int throtl_slice;
70
e43473b7 71 /* Work for dispatching throttled bios */
69df0ab0 72 struct work_struct dispatch_work;
9f626e37
SL
73 unsigned int limit_index;
74 bool limit_valid[LIMIT_CNT];
3f0abd80
SL
75
76 unsigned long low_upgrade_time;
77 unsigned long low_downgrade_time;
7394e31f
SL
78
79 unsigned int scale;
b9147dd1 80
b889bf66
JQ
81 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
82 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
83 struct latency_bucket __percpu *latency_buckets[2];
b9147dd1 84 unsigned long last_calculate_time;
6679a90c 85 unsigned long filtered_latency;
b9147dd1
SL
86
87 bool track_bio_latency;
e43473b7
VG
88};
89
e99e88a9 90static void throtl_pending_timer_fn(struct timer_list *t);
69df0ab0 91
3c798398 92static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 93{
f95a04af 94 return pd_to_blkg(&tg->pd);
0381411e
TH
95}
96
fda6f272
TH
97/**
98 * sq_to_tg - return the throl_grp the specified service queue belongs to
99 * @sq: the throtl_service_queue of interest
100 *
101 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
102 * embedded in throtl_data, %NULL is returned.
103 */
104static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
105{
106 if (sq && sq->parent_sq)
107 return container_of(sq, struct throtl_grp, service_queue);
108 else
109 return NULL;
110}
111
112/**
113 * sq_to_td - return throtl_data the specified service queue belongs to
114 * @sq: the throtl_service_queue of interest
115 *
b43daedc 116 * A service_queue can be embedded in either a throtl_grp or throtl_data.
fda6f272
TH
117 * Determine the associated throtl_data accordingly and return it.
118 */
119static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
120{
121 struct throtl_grp *tg = sq_to_tg(sq);
122
123 if (tg)
124 return tg->td;
125 else
126 return container_of(sq, struct throtl_data, service_queue);
127}
128
7394e31f
SL
129/*
130 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
131 * make the IO dispatch more smooth.
009df341 132 * Scale up: linearly scale up according to elapsed time since upgrade. For
7394e31f
SL
133 * every throtl_slice, the limit scales up 1/2 .low limit till the
134 * limit hits .max limit
135 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
136 */
137static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
138{
139 /* arbitrary value to avoid too big scale */
140 if (td->scale < 4096 && time_after_eq(jiffies,
141 td->low_upgrade_time + td->scale * td->throtl_slice))
142 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
143
144 return low + (low >> 1) * td->scale;
145}
146
9f626e37
SL
147static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
148{
b22c417c 149 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 150 struct throtl_data *td;
b22c417c
SL
151 uint64_t ret;
152
153 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
154 return U64_MAX;
7394e31f
SL
155
156 td = tg->td;
157 ret = tg->bps[rw][td->limit_index];
9bb67aeb
SL
158 if (ret == 0 && td->limit_index == LIMIT_LOW) {
159 /* intermediate node or iops isn't 0 */
160 if (!list_empty(&blkg->blkcg->css.children) ||
161 tg->iops[rw][td->limit_index])
162 return U64_MAX;
163 else
164 return MIN_THROTL_BPS;
165 }
7394e31f
SL
166
167 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
168 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
169 uint64_t adjusted;
170
171 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
172 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
173 }
b22c417c 174 return ret;
9f626e37
SL
175}
176
177static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
178{
b22c417c 179 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 180 struct throtl_data *td;
b22c417c
SL
181 unsigned int ret;
182
183 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
184 return UINT_MAX;
9bb67aeb 185
7394e31f
SL
186 td = tg->td;
187 ret = tg->iops[rw][td->limit_index];
9bb67aeb
SL
188 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
189 /* intermediate node or bps isn't 0 */
190 if (!list_empty(&blkg->blkcg->css.children) ||
191 tg->bps[rw][td->limit_index])
192 return UINT_MAX;
193 else
194 return MIN_THROTL_IOPS;
195 }
7394e31f
SL
196
197 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
198 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
199 uint64_t adjusted;
200
201 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
202 if (adjusted > UINT_MAX)
203 adjusted = UINT_MAX;
204 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
205 }
b22c417c 206 return ret;
9f626e37
SL
207}
208
b9147dd1
SL
209#define request_bucket_index(sectors) \
210 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
211
fda6f272
TH
212/**
213 * throtl_log - log debug message via blktrace
214 * @sq: the service_queue being reported
215 * @fmt: printf format string
216 * @args: printf args
217 *
218 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
219 * throtl_grp; otherwise, just "throtl".
fda6f272
TH
220 */
221#define throtl_log(sq, fmt, args...) do { \
222 struct throtl_grp *__tg = sq_to_tg((sq)); \
223 struct throtl_data *__td = sq_to_td((sq)); \
224 \
225 (void)__td; \
59fa0224
SL
226 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
227 break; \
fda6f272 228 if ((__tg)) { \
35fe6d76 229 blk_add_cgroup_trace_msg(__td->queue, \
f4a6a61c 230 &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
fda6f272
TH
231 } else { \
232 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
233 } \
54e7ed12 234} while (0)
e43473b7 235
ea0ea2bc
SL
236static inline unsigned int throtl_bio_data_size(struct bio *bio)
237{
238 /* assume it's one sector */
239 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
240 return 512;
241 return bio->bi_iter.bi_size;
242}
243
c5cc2070
TH
244static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
245{
246 INIT_LIST_HEAD(&qn->node);
247 bio_list_init(&qn->bios);
248 qn->tg = tg;
249}
250
251/**
252 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
253 * @bio: bio being added
254 * @qn: qnode to add bio to
255 * @queued: the service_queue->queued[] list @qn belongs to
256 *
257 * Add @bio to @qn and put @qn on @queued if it's not already on.
258 * @qn->tg's reference count is bumped when @qn is activated. See the
259 * comment on top of throtl_qnode definition for details.
260 */
261static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
262 struct list_head *queued)
263{
264 bio_list_add(&qn->bios, bio);
265 if (list_empty(&qn->node)) {
266 list_add_tail(&qn->node, queued);
267 blkg_get(tg_to_blkg(qn->tg));
268 }
269}
270
271/**
272 * throtl_peek_queued - peek the first bio on a qnode list
273 * @queued: the qnode list to peek
274 */
275static struct bio *throtl_peek_queued(struct list_head *queued)
276{
b7b609de 277 struct throtl_qnode *qn;
c5cc2070
TH
278 struct bio *bio;
279
280 if (list_empty(queued))
281 return NULL;
282
b7b609de 283 qn = list_first_entry(queued, struct throtl_qnode, node);
c5cc2070
TH
284 bio = bio_list_peek(&qn->bios);
285 WARN_ON_ONCE(!bio);
286 return bio;
287}
288
289/**
290 * throtl_pop_queued - pop the first bio form a qnode list
291 * @queued: the qnode list to pop a bio from
292 * @tg_to_put: optional out argument for throtl_grp to put
293 *
294 * Pop the first bio from the qnode list @queued. After popping, the first
295 * qnode is removed from @queued if empty or moved to the end of @queued so
296 * that the popping order is round-robin.
297 *
298 * When the first qnode is removed, its associated throtl_grp should be put
299 * too. If @tg_to_put is NULL, this function automatically puts it;
300 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
301 * responsible for putting it.
302 */
303static struct bio *throtl_pop_queued(struct list_head *queued,
304 struct throtl_grp **tg_to_put)
305{
b7b609de 306 struct throtl_qnode *qn;
c5cc2070
TH
307 struct bio *bio;
308
309 if (list_empty(queued))
310 return NULL;
311
b7b609de 312 qn = list_first_entry(queued, struct throtl_qnode, node);
c5cc2070
TH
313 bio = bio_list_pop(&qn->bios);
314 WARN_ON_ONCE(!bio);
315
316 if (bio_list_empty(&qn->bios)) {
317 list_del_init(&qn->node);
318 if (tg_to_put)
319 *tg_to_put = qn->tg;
320 else
321 blkg_put(tg_to_blkg(qn->tg));
322 } else {
323 list_move_tail(&qn->node, queued);
324 }
325
326 return bio;
327}
328
49a2f1e3 329/* init a service_queue, assumes the caller zeroed it */
b2ce2643 330static void throtl_service_queue_init(struct throtl_service_queue *sq)
49a2f1e3 331{
7e9c5c54
YK
332 INIT_LIST_HEAD(&sq->queued[READ]);
333 INIT_LIST_HEAD(&sq->queued[WRITE]);
9ff01255 334 sq->pending_tree = RB_ROOT_CACHED;
e99e88a9 335 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
69df0ab0
TH
336}
337
0a0b4f79
CH
338static struct blkg_policy_data *throtl_pd_alloc(struct gendisk *disk,
339 struct blkcg *blkcg, gfp_t gfp)
001bea73 340{
4fb72036 341 struct throtl_grp *tg;
24bdb8ef 342 int rw;
4fb72036 343
0a0b4f79 344 tg = kzalloc_node(sizeof(*tg), gfp, disk->node_id);
4fb72036 345 if (!tg)
77ea7338 346 return NULL;
4fb72036 347
7ca46438
TH
348 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
349 goto err_free_tg;
350
351 if (blkg_rwstat_init(&tg->stat_ios, gfp))
352 goto err_exit_stat_bytes;
353
b2ce2643
TH
354 throtl_service_queue_init(&tg->service_queue);
355
356 for (rw = READ; rw <= WRITE; rw++) {
357 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
358 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
359 }
360
361 RB_CLEAR_NODE(&tg->rb_node);
9f626e37
SL
362 tg->bps[READ][LIMIT_MAX] = U64_MAX;
363 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
364 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
365 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
cd5ab1b0
SL
366 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
367 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
368 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
369 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
370 /* LIMIT_LOW will have default value 0 */
b2ce2643 371
ec80991d 372 tg->latency_target = DFL_LATENCY_TARGET;
5b81fc3c 373 tg->latency_target_conf = DFL_LATENCY_TARGET;
b4f428ef
SL
374 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
375 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
ec80991d 376
4fb72036 377 return &tg->pd;
7ca46438
TH
378
379err_exit_stat_bytes:
380 blkg_rwstat_exit(&tg->stat_bytes);
381err_free_tg:
382 kfree(tg);
383 return NULL;
001bea73
TH
384}
385
a9520cd6 386static void throtl_pd_init(struct blkg_policy_data *pd)
a29a171e 387{
a9520cd6
TH
388 struct throtl_grp *tg = pd_to_tg(pd);
389 struct blkcg_gq *blkg = tg_to_blkg(tg);
a06377c5 390 struct throtl_data *td = blkg->q->td;
b2ce2643 391 struct throtl_service_queue *sq = &tg->service_queue;
cd1604fa 392
9138125b 393 /*
aa6ec29b 394 * If on the default hierarchy, we switch to properly hierarchical
9138125b
TH
395 * behavior where limits on a given throtl_grp are applied to the
396 * whole subtree rather than just the group itself. e.g. If 16M
f56019ae
KS
397 * read_bps limit is set on a parent group, summary bps of
398 * parent group and its subtree groups can't exceed 16M for the
399 * device.
9138125b 400 *
aa6ec29b 401 * If not on the default hierarchy, the broken flat hierarchy
9138125b
TH
402 * behavior is retained where all throtl_grps are treated as if
403 * they're all separate root groups right below throtl_data.
404 * Limits of a group don't interact with limits of other groups
405 * regardless of the position of the group in the hierarchy.
406 */
b2ce2643 407 sq->parent_sq = &td->service_queue;
9e10a130 408 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
b2ce2643 409 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
77216b04 410 tg->td = td;
8a3d2615
TH
411}
412
693e751e
TH
413/*
414 * Set has_rules[] if @tg or any of its parents have limits configured.
415 * This doesn't require walking up to the top of the hierarchy as the
416 * parent's has_rules[] is guaranteed to be correct.
417 */
418static void tg_update_has_rules(struct throtl_grp *tg)
419{
420 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
9f626e37 421 struct throtl_data *td = tg->td;
693e751e
TH
422 int rw;
423
81c7a63a
YK
424 for (rw = READ; rw <= WRITE; rw++) {
425 tg->has_rules_iops[rw] =
426 (parent_tg && parent_tg->has_rules_iops[rw]) ||
427 (td->limit_valid[td->limit_index] &&
428 tg_iops_limit(tg, rw) != UINT_MAX);
429 tg->has_rules_bps[rw] =
430 (parent_tg && parent_tg->has_rules_bps[rw]) ||
9f626e37 431 (td->limit_valid[td->limit_index] &&
81c7a63a
YK
432 (tg_bps_limit(tg, rw) != U64_MAX));
433 }
693e751e
TH
434}
435
a9520cd6 436static void throtl_pd_online(struct blkg_policy_data *pd)
693e751e 437{
aec24246 438 struct throtl_grp *tg = pd_to_tg(pd);
693e751e
TH
439 /*
440 * We don't want new groups to escape the limits of its ancestors.
441 * Update has_rules[] after a new group is brought online.
442 */
aec24246 443 tg_update_has_rules(tg);
693e751e
TH
444}
445
acaf523a 446#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
cd5ab1b0
SL
447static void blk_throtl_update_limit_valid(struct throtl_data *td)
448{
449 struct cgroup_subsys_state *pos_css;
450 struct blkcg_gq *blkg;
451 bool low_valid = false;
452
453 rcu_read_lock();
1231039d 454 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
cd5ab1b0
SL
455 struct throtl_grp *tg = blkg_to_tg(blkg);
456
457 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
43ada787 458 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
cd5ab1b0 459 low_valid = true;
43ada787
LB
460 break;
461 }
cd5ab1b0
SL
462 }
463 rcu_read_unlock();
464
465 td->limit_valid[LIMIT_LOW] = low_valid;
466}
acaf523a
YK
467#else
468static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
469{
470}
471#endif
cd5ab1b0 472
c79892c5 473static void throtl_upgrade_state(struct throtl_data *td);
cd5ab1b0
SL
474static void throtl_pd_offline(struct blkg_policy_data *pd)
475{
476 struct throtl_grp *tg = pd_to_tg(pd);
477
478 tg->bps[READ][LIMIT_LOW] = 0;
479 tg->bps[WRITE][LIMIT_LOW] = 0;
480 tg->iops[READ][LIMIT_LOW] = 0;
481 tg->iops[WRITE][LIMIT_LOW] = 0;
482
483 blk_throtl_update_limit_valid(tg->td);
484
c79892c5
SL
485 if (!tg->td->limit_valid[tg->td->limit_index])
486 throtl_upgrade_state(tg->td);
cd5ab1b0
SL
487}
488
001bea73
TH
489static void throtl_pd_free(struct blkg_policy_data *pd)
490{
4fb72036
TH
491 struct throtl_grp *tg = pd_to_tg(pd);
492
b2ce2643 493 del_timer_sync(&tg->service_queue.pending_timer);
7ca46438
TH
494 blkg_rwstat_exit(&tg->stat_bytes);
495 blkg_rwstat_exit(&tg->stat_ios);
4fb72036 496 kfree(tg);
001bea73
TH
497}
498
0049af73
TH
499static struct throtl_grp *
500throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7 501{
9ff01255 502 struct rb_node *n;
e43473b7 503
9ff01255
LB
504 n = rb_first_cached(&parent_sq->pending_tree);
505 WARN_ON_ONCE(!n);
506 if (!n)
507 return NULL;
508 return rb_entry_tg(n);
e43473b7
VG
509}
510
0049af73
TH
511static void throtl_rb_erase(struct rb_node *n,
512 struct throtl_service_queue *parent_sq)
e43473b7 513{
9ff01255
LB
514 rb_erase_cached(n, &parent_sq->pending_tree);
515 RB_CLEAR_NODE(n);
e43473b7
VG
516}
517
0049af73 518static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
519{
520 struct throtl_grp *tg;
521
0049af73 522 tg = throtl_rb_first(parent_sq);
e43473b7
VG
523 if (!tg)
524 return;
525
0049af73 526 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
527}
528
77216b04 529static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 530{
77216b04 531 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
9ff01255 532 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
e43473b7
VG
533 struct rb_node *parent = NULL;
534 struct throtl_grp *__tg;
535 unsigned long key = tg->disptime;
9ff01255 536 bool leftmost = true;
e43473b7
VG
537
538 while (*node != NULL) {
539 parent = *node;
540 __tg = rb_entry_tg(parent);
541
542 if (time_before(key, __tg->disptime))
543 node = &parent->rb_left;
544 else {
545 node = &parent->rb_right;
9ff01255 546 leftmost = false;
e43473b7
VG
547 }
548 }
549
e43473b7 550 rb_link_node(&tg->rb_node, parent, node);
9ff01255
LB
551 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
552 leftmost);
e43473b7
VG
553}
554
77216b04 555static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 556{
29379674
BW
557 if (!(tg->flags & THROTL_TG_PENDING)) {
558 tg_service_queue_add(tg);
559 tg->flags |= THROTL_TG_PENDING;
560 tg->service_queue.parent_sq->nr_pending++;
561 }
e43473b7
VG
562}
563
77216b04 564static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 565{
29379674 566 if (tg->flags & THROTL_TG_PENDING) {
c013710e
YK
567 struct throtl_service_queue *parent_sq =
568 tg->service_queue.parent_sq;
569
570 throtl_rb_erase(&tg->rb_node, parent_sq);
571 --parent_sq->nr_pending;
29379674
BW
572 tg->flags &= ~THROTL_TG_PENDING;
573 }
e43473b7
VG
574}
575
a9131a27 576/* Call with queue lock held */
69df0ab0
TH
577static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
578 unsigned long expires)
a9131a27 579{
a41b816c 580 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
06cceedc
SL
581
582 /*
583 * Since we are adjusting the throttle limit dynamically, the sleep
584 * time calculated according to previous limit might be invalid. It's
585 * possible the cgroup sleep time is very long and no other cgroups
586 * have IO running so notify the limit changes. Make sure the cgroup
587 * doesn't sleep too long to avoid the missed notification.
588 */
589 if (time_after(expires, max_expire))
590 expires = max_expire;
69df0ab0
TH
591 mod_timer(&sq->pending_timer, expires);
592 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
593 expires - jiffies, jiffies);
a9131a27
TH
594}
595
7f52f98c
TH
596/**
597 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
598 * @sq: the service_queue to schedule dispatch for
599 * @force: force scheduling
600 *
601 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
602 * dispatch time of the first pending child. Returns %true if either timer
603 * is armed or there's no pending child left. %false if the current
604 * dispatch window is still open and the caller should continue
605 * dispatching.
606 *
607 * If @force is %true, the dispatch timer is always scheduled and this
608 * function is guaranteed to return %true. This is to be used when the
609 * caller can't dispatch itself and needs to invoke pending_timer
610 * unconditionally. Note that forced scheduling is likely to induce short
611 * delay before dispatch starts even if @sq->first_pending_disptime is not
612 * in the future and thus shouldn't be used in hot paths.
613 */
614static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
615 bool force)
e43473b7 616{
6a525600 617 /* any pending children left? */
c9e0332e 618 if (!sq->nr_pending)
7f52f98c 619 return true;
e43473b7 620
c9e0332e 621 update_min_dispatch_time(sq);
e43473b7 622
69df0ab0 623 /* is the next dispatch time in the future? */
7f52f98c 624 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 625 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 626 return true;
69df0ab0
TH
627 }
628
7f52f98c
TH
629 /* tell the caller to continue dispatching */
630 return false;
e43473b7
VG
631}
632
32ee5bc4
VG
633static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
634 bool rw, unsigned long start)
635{
636 tg->bytes_disp[rw] = 0;
637 tg->io_disp[rw] = 0;
a880ae93
YK
638 tg->carryover_bytes[rw] = 0;
639 tg->carryover_ios[rw] = 0;
32ee5bc4
VG
640
641 /*
642 * Previous slice has expired. We must have trimmed it after last
643 * bio dispatch. That means since start of last slice, we never used
644 * that bandwidth. Do try to make use of that bandwidth while giving
645 * credit.
646 */
eea3e8b7 647 if (time_after(start, tg->slice_start[rw]))
32ee5bc4
VG
648 tg->slice_start[rw] = start;
649
297e3d85 650 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
32ee5bc4
VG
651 throtl_log(&tg->service_queue,
652 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
653 rw == READ ? 'R' : 'W', tg->slice_start[rw],
654 tg->slice_end[rw], jiffies);
655}
656
a880ae93
YK
657static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw,
658 bool clear_carryover)
e43473b7
VG
659{
660 tg->bytes_disp[rw] = 0;
8e89d13f 661 tg->io_disp[rw] = 0;
e43473b7 662 tg->slice_start[rw] = jiffies;
297e3d85 663 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
a880ae93
YK
664 if (clear_carryover) {
665 tg->carryover_bytes[rw] = 0;
666 tg->carryover_ios[rw] = 0;
667 }
4f1e9630 668
fda6f272
TH
669 throtl_log(&tg->service_queue,
670 "[%c] new slice start=%lu end=%lu jiffies=%lu",
671 rw == READ ? 'R' : 'W', tg->slice_start[rw],
672 tg->slice_end[rw], jiffies);
e43473b7
VG
673}
674
0f3457f6
TH
675static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
676 unsigned long jiffy_end)
d1ae8ffd 677{
297e3d85 678 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
d1ae8ffd
VG
679}
680
0f3457f6
TH
681static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
682 unsigned long jiffy_end)
e43473b7 683{
1da30f95 684 throtl_set_slice_end(tg, rw, jiffy_end);
fda6f272
TH
685 throtl_log(&tg->service_queue,
686 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
687 rw == READ ? 'R' : 'W', tg->slice_start[rw],
688 tg->slice_end[rw], jiffies);
e43473b7
VG
689}
690
691/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 692static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
693{
694 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
5cf8c227 695 return false;
e43473b7 696
0b6bad7d 697 return true;
e43473b7
VG
698}
699
e8368b57
YK
700static unsigned int calculate_io_allowed(u32 iops_limit,
701 unsigned long jiffy_elapsed)
702{
703 unsigned int io_allowed;
704 u64 tmp;
705
706 /*
707 * jiffy_elapsed should not be a big value as minimum iops can be
708 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
709 * will allow dispatch after 1 second and after that slice should
710 * have been trimmed.
711 */
712
713 tmp = (u64)iops_limit * jiffy_elapsed;
714 do_div(tmp, HZ);
715
716 if (tmp > UINT_MAX)
717 io_allowed = UINT_MAX;
718 else
719 io_allowed = tmp;
720
721 return io_allowed;
722}
723
724static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed)
725{
726 return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ);
727}
728
e43473b7 729/* Trim the used slices and adjust slice start accordingly */
0f3457f6 730static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 731{
e8368b57
YK
732 unsigned long time_elapsed, io_trim;
733 u64 bytes_trim;
e43473b7
VG
734
735 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
736
737 /*
738 * If bps are unlimited (-1), then time slice don't get
739 * renewed. Don't try to trim the slice if slice is used. A new
740 * slice will start when appropriate.
741 */
0f3457f6 742 if (throtl_slice_used(tg, rw))
e43473b7
VG
743 return;
744
d1ae8ffd
VG
745 /*
746 * A bio has been dispatched. Also adjust slice_end. It might happen
747 * that initially cgroup limit was very low resulting in high
b53b072c 748 * slice_end, but later limit was bumped up and bio was dispatched
d1ae8ffd
VG
749 * sooner, then we need to reduce slice_end. A high bogus slice_end
750 * is bad because it does not allow new slice to start.
751 */
752
297e3d85 753 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
d1ae8ffd 754
e8368b57
YK
755 time_elapsed = rounddown(jiffies - tg->slice_start[rw],
756 tg->td->throtl_slice);
757 if (!time_elapsed)
e43473b7 758 return;
e43473b7 759
e8368b57
YK
760 bytes_trim = calculate_bytes_allowed(tg_bps_limit(tg, rw),
761 time_elapsed);
762 io_trim = calculate_io_allowed(tg_iops_limit(tg, rw), time_elapsed);
8e89d13f 763 if (!bytes_trim && !io_trim)
e43473b7
VG
764 return;
765
766 if (tg->bytes_disp[rw] >= bytes_trim)
767 tg->bytes_disp[rw] -= bytes_trim;
768 else
769 tg->bytes_disp[rw] = 0;
770
8e89d13f
VG
771 if (tg->io_disp[rw] >= io_trim)
772 tg->io_disp[rw] -= io_trim;
773 else
774 tg->io_disp[rw] = 0;
775
e8368b57 776 tg->slice_start[rw] += time_elapsed;
e43473b7 777
fda6f272
TH
778 throtl_log(&tg->service_queue,
779 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
e8368b57
YK
780 rw == READ ? 'R' : 'W', time_elapsed / tg->td->throtl_slice,
781 bytes_trim, io_trim, tg->slice_start[rw], tg->slice_end[rw],
782 jiffies);
681cd46f
YK
783}
784
a880ae93
YK
785static void __tg_update_carryover(struct throtl_grp *tg, bool rw)
786{
787 unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw];
788 u64 bps_limit = tg_bps_limit(tg, rw);
789 u32 iops_limit = tg_iops_limit(tg, rw);
790
791 /*
792 * If config is updated while bios are still throttled, calculate and
793 * accumulate how many bytes/ios are waited across changes. And
794 * carryover_bytes/ios will be used to calculate new wait time under new
795 * configuration.
796 */
797 if (bps_limit != U64_MAX)
798 tg->carryover_bytes[rw] +=
799 calculate_bytes_allowed(bps_limit, jiffy_elapsed) -
800 tg->bytes_disp[rw];
801 if (iops_limit != UINT_MAX)
802 tg->carryover_ios[rw] +=
803 calculate_io_allowed(iops_limit, jiffy_elapsed) -
804 tg->io_disp[rw];
805}
806
807static void tg_update_carryover(struct throtl_grp *tg)
808{
809 if (tg->service_queue.nr_queued[READ])
810 __tg_update_carryover(tg, READ);
811 if (tg->service_queue.nr_queued[WRITE])
812 __tg_update_carryover(tg, WRITE);
813
814 /* see comments in struct throtl_grp for meaning of these fields. */
ef100397 815 throtl_log(&tg->service_queue, "%s: %lld %lld %d %d\n", __func__,
a880ae93
YK
816 tg->carryover_bytes[READ], tg->carryover_bytes[WRITE],
817 tg->carryover_ios[READ], tg->carryover_ios[WRITE]);
818}
819
183daeb1
KS
820static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio,
821 u32 iops_limit)
681cd46f
YK
822{
823 bool rw = bio_data_dir(bio);
bb8d5587 824 int io_allowed;
681cd46f
YK
825 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
826
827 if (iops_limit == UINT_MAX) {
183daeb1 828 return 0;
681cd46f
YK
829 }
830
831 jiffy_elapsed = jiffies - tg->slice_start[rw];
832
833 /* Round up to the next throttle slice, wait time must be nonzero */
834 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
a880ae93
YK
835 io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd) +
836 tg->carryover_ios[rw];
bb8d5587 837 if (io_allowed > 0 && tg->io_disp[rw] + 1 <= io_allowed)
183daeb1 838 return 0;
e43473b7 839
8e89d13f 840 /* Calc approx time to dispatch */
991f61fe 841 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
183daeb1 842 return jiffy_wait;
8e89d13f
VG
843}
844
183daeb1
KS
845static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio,
846 u64 bps_limit)
8e89d13f
VG
847{
848 bool rw = bio_data_dir(bio);
bb8d5587
YK
849 long long bytes_allowed;
850 u64 extra_bytes;
8e89d13f 851 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
ea0ea2bc 852 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7 853
9f5ede3c 854 /* no need to throttle if this bio's bytes have been accounted */
320fb0f9 855 if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) {
183daeb1 856 return 0;
87fbeb88
BW
857 }
858
e43473b7
VG
859 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
860
861 /* Slice has just started. Consider one slice interval */
862 if (!jiffy_elapsed)
297e3d85 863 jiffy_elapsed_rnd = tg->td->throtl_slice;
e43473b7 864
297e3d85 865 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
a880ae93
YK
866 bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd) +
867 tg->carryover_bytes[rw];
bb8d5587 868 if (bytes_allowed > 0 && tg->bytes_disp[rw] + bio_size <= bytes_allowed)
183daeb1 869 return 0;
e43473b7
VG
870
871 /* Calc approx time to dispatch */
ea0ea2bc 872 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
4599ea49 873 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
e43473b7
VG
874
875 if (!jiffy_wait)
876 jiffy_wait = 1;
877
878 /*
879 * This wait time is without taking into consideration the rounding
880 * up we did. Add that time also.
881 */
882 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
183daeb1 883 return jiffy_wait;
8e89d13f
VG
884}
885
886/*
887 * Returns whether one can dispatch a bio or not. Also returns approx number
888 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
889 */
0f3457f6
TH
890static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
891 unsigned long *wait)
8e89d13f
VG
892{
893 bool rw = bio_data_dir(bio);
894 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
4599ea49
BW
895 u64 bps_limit = tg_bps_limit(tg, rw);
896 u32 iops_limit = tg_iops_limit(tg, rw);
8e89d13f
VG
897
898 /*
899 * Currently whole state machine of group depends on first bio
900 * queued in the group bio list. So one should not be calling
901 * this function with a different bio if there are other bios
902 * queued.
903 */
73f0d49a 904 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 905 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 906
8e89d13f 907 /* If tg->bps = -1, then BW is unlimited */
8f9e7b65
YK
908 if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
909 tg->flags & THROTL_TG_CANCELING) {
8e89d13f
VG
910 if (wait)
911 *wait = 0;
5cf8c227 912 return true;
8e89d13f
VG
913 }
914
915 /*
916 * If previous slice expired, start a new one otherwise renew/extend
917 * existing slice to make sure it is at least throtl_slice interval
164c80ed
VG
918 * long since now. New slice is started only for empty throttle group.
919 * If there is queued bio, that means there should be an active
920 * slice and it should be extended instead.
8e89d13f 921 */
164c80ed 922 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
a880ae93 923 throtl_start_new_slice(tg, rw, true);
8e89d13f 924 else {
297e3d85
SL
925 if (time_before(tg->slice_end[rw],
926 jiffies + tg->td->throtl_slice))
927 throtl_extend_slice(tg, rw,
928 jiffies + tg->td->throtl_slice);
8e89d13f
VG
929 }
930
183daeb1
KS
931 bps_wait = tg_within_bps_limit(tg, bio, bps_limit);
932 iops_wait = tg_within_iops_limit(tg, bio, iops_limit);
933 if (bps_wait + iops_wait == 0) {
8e89d13f
VG
934 if (wait)
935 *wait = 0;
0b6bad7d 936 return true;
8e89d13f
VG
937 }
938
939 max_wait = max(bps_wait, iops_wait);
940
941 if (wait)
942 *wait = max_wait;
943
944 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 945 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7 946
0b6bad7d 947 return false;
e43473b7
VG
948}
949
950static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
951{
952 bool rw = bio_data_dir(bio);
ea0ea2bc 953 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7
VG
954
955 /* Charge the bio to the group */
320fb0f9 956 if (!bio_flagged(bio, BIO_BPS_THROTTLED)) {
9f5ede3c
ML
957 tg->bytes_disp[rw] += bio_size;
958 tg->last_bytes_disp[rw] += bio_size;
959 }
960
8e89d13f 961 tg->io_disp[rw]++;
3f0abd80 962 tg->last_io_disp[rw]++;
e43473b7
VG
963}
964
c5cc2070
TH
965/**
966 * throtl_add_bio_tg - add a bio to the specified throtl_grp
967 * @bio: bio to add
968 * @qn: qnode to use
969 * @tg: the target throtl_grp
970 *
971 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
972 * tg->qnode_on_self[] is used.
973 */
974static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
975 struct throtl_grp *tg)
e43473b7 976{
73f0d49a 977 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
978 bool rw = bio_data_dir(bio);
979
c5cc2070
TH
980 if (!qn)
981 qn = &tg->qnode_on_self[rw];
982
0e9f4164
TH
983 /*
984 * If @tg doesn't currently have any bios queued in the same
985 * direction, queueing @bio can change when @tg should be
986 * dispatched. Mark that @tg was empty. This is automatically
b53b072c 987 * cleared on the next tg_update_disptime().
0e9f4164
TH
988 */
989 if (!sq->nr_queued[rw])
990 tg->flags |= THROTL_TG_WAS_EMPTY;
991
c5cc2070
TH
992 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
993
73f0d49a 994 sq->nr_queued[rw]++;
77216b04 995 throtl_enqueue_tg(tg);
e43473b7
VG
996}
997
77216b04 998static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 999{
73f0d49a 1000 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1001 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1002 struct bio *bio;
1003
d609af3a
ME
1004 bio = throtl_peek_queued(&sq->queued[READ]);
1005 if (bio)
0f3457f6 1006 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 1007
d609af3a
ME
1008 bio = throtl_peek_queued(&sq->queued[WRITE]);
1009 if (bio)
0f3457f6 1010 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
1011
1012 min_wait = min(read_wait, write_wait);
1013 disptime = jiffies + min_wait;
1014
e43473b7 1015 /* Update dispatch time */
c013710e 1016 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
e43473b7 1017 tg->disptime = disptime;
c013710e 1018 tg_service_queue_add(tg);
0e9f4164
TH
1019
1020 /* see throtl_add_bio_tg() */
1021 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
1022}
1023
32ee5bc4
VG
1024static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1025 struct throtl_grp *parent_tg, bool rw)
1026{
1027 if (throtl_slice_used(parent_tg, rw)) {
1028 throtl_start_new_slice_with_credit(parent_tg, rw,
1029 child_tg->slice_start[rw]);
1030 }
1031
1032}
1033
77216b04 1034static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 1035{
73f0d49a 1036 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
1037 struct throtl_service_queue *parent_sq = sq->parent_sq;
1038 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 1039 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
1040 struct bio *bio;
1041
c5cc2070
TH
1042 /*
1043 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1044 * from @tg may put its reference and @parent_sq might end up
1045 * getting released prematurely. Remember the tg to put and put it
1046 * after @bio is transferred to @parent_sq.
1047 */
1048 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 1049 sq->nr_queued[rw]--;
e43473b7
VG
1050
1051 throtl_charge_bio(tg, bio);
6bc9c2b4
TH
1052
1053 /*
1054 * If our parent is another tg, we just need to transfer @bio to
1055 * the parent using throtl_add_bio_tg(). If our parent is
1056 * @td->service_queue, @bio is ready to be issued. Put it on its
1057 * bio_lists[] and decrease total number queued. The caller is
1058 * responsible for issuing these bios.
1059 */
1060 if (parent_tg) {
c5cc2070 1061 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
32ee5bc4 1062 start_parent_slice_with_credit(tg, parent_tg, rw);
6bc9c2b4 1063 } else {
84aca0a7 1064 bio_set_flag(bio, BIO_BPS_THROTTLED);
c5cc2070
TH
1065 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1066 &parent_sq->queued[rw]);
6bc9c2b4
TH
1067 BUG_ON(tg->td->nr_queued[rw] <= 0);
1068 tg->td->nr_queued[rw]--;
1069 }
e43473b7 1070
0f3457f6 1071 throtl_trim_slice(tg, rw);
6bc9c2b4 1072
c5cc2070
TH
1073 if (tg_to_put)
1074 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
1075}
1076
77216b04 1077static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 1078{
73f0d49a 1079 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7 1080 unsigned int nr_reads = 0, nr_writes = 0;
e675df2a
BW
1081 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1082 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
e43473b7
VG
1083 struct bio *bio;
1084
1085 /* Try to dispatch 75% READS and 25% WRITES */
1086
c5cc2070 1087 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 1088 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1089
77216b04 1090 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1091 nr_reads++;
1092
1093 if (nr_reads >= max_nr_reads)
1094 break;
1095 }
1096
c5cc2070 1097 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 1098 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1099
77216b04 1100 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1101 nr_writes++;
1102
1103 if (nr_writes >= max_nr_writes)
1104 break;
1105 }
1106
1107 return nr_reads + nr_writes;
1108}
1109
651930bc 1110static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
1111{
1112 unsigned int nr_disp = 0;
e43473b7
VG
1113
1114 while (1) {
2397611a 1115 struct throtl_grp *tg;
2ab74cd2 1116 struct throtl_service_queue *sq;
e43473b7 1117
2397611a
BW
1118 if (!parent_sq->nr_pending)
1119 break;
1120
1121 tg = throtl_rb_first(parent_sq);
e43473b7
VG
1122 if (!tg)
1123 break;
1124
1125 if (time_before(jiffies, tg->disptime))
1126 break;
1127
77216b04 1128 nr_disp += throtl_dispatch_tg(tg);
e43473b7 1129
2ab74cd2 1130 sq = &tg->service_queue;
7e9c5c54 1131 if (sq->nr_queued[READ] || sq->nr_queued[WRITE])
77216b04 1132 tg_update_disptime(tg);
8c25ed0c
YK
1133 else
1134 throtl_dequeue_tg(tg);
e43473b7 1135
e675df2a 1136 if (nr_disp >= THROTL_QUANTUM)
e43473b7
VG
1137 break;
1138 }
1139
1140 return nr_disp;
1141}
1142
c79892c5
SL
1143static bool throtl_can_upgrade(struct throtl_data *td,
1144 struct throtl_grp *this_tg);
6e1a5704
TH
1145/**
1146 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
216382dc 1147 * @t: the pending_timer member of the throtl_service_queue being serviced
6e1a5704
TH
1148 *
1149 * This timer is armed when a child throtl_grp with active bio's become
1150 * pending and queued on the service_queue's pending_tree and expires when
1151 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1152 * dispatches bio's from the children throtl_grps to the parent
1153 * service_queue.
1154 *
1155 * If the parent's parent is another throtl_grp, dispatching is propagated
1156 * by either arming its pending_timer or repeating dispatch directly. If
1157 * the top-level service_tree is reached, throtl_data->dispatch_work is
1158 * kicked so that the ready bio's are issued.
6e1a5704 1159 */
e99e88a9 1160static void throtl_pending_timer_fn(struct timer_list *t)
69df0ab0 1161{
e99e88a9 1162 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
2e48a530 1163 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1164 struct throtl_data *td = sq_to_td(sq);
2e48a530 1165 struct throtl_service_queue *parent_sq;
ee37eddb 1166 struct request_queue *q;
2e48a530 1167 bool dispatched;
6e1a5704 1168 int ret;
e43473b7 1169
ee37eddb
ML
1170 /* throtl_data may be gone, so figure out request queue by blkg */
1171 if (tg)
a06377c5 1172 q = tg->pd.blkg->q;
ee37eddb
ML
1173 else
1174 q = td->queue;
1175
0d945c1f 1176 spin_lock_irq(&q->queue_lock);
ee37eddb 1177
1231039d 1178 if (!q->root_blkg)
ee37eddb
ML
1179 goto out_unlock;
1180
c79892c5
SL
1181 if (throtl_can_upgrade(td, NULL))
1182 throtl_upgrade_state(td);
1183
2e48a530
TH
1184again:
1185 parent_sq = sq->parent_sq;
1186 dispatched = false;
e43473b7 1187
7f52f98c
TH
1188 while (true) {
1189 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1190 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1191 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1192
1193 ret = throtl_select_dispatch(sq);
1194 if (ret) {
7f52f98c
TH
1195 throtl_log(sq, "bios disp=%u", ret);
1196 dispatched = true;
1197 }
e43473b7 1198
7f52f98c
TH
1199 if (throtl_schedule_next_dispatch(sq, false))
1200 break;
e43473b7 1201
7f52f98c 1202 /* this dispatch windows is still open, relax and repeat */
0d945c1f 1203 spin_unlock_irq(&q->queue_lock);
7f52f98c 1204 cpu_relax();
0d945c1f 1205 spin_lock_irq(&q->queue_lock);
651930bc 1206 }
e43473b7 1207
2e48a530
TH
1208 if (!dispatched)
1209 goto out_unlock;
6e1a5704 1210
2e48a530
TH
1211 if (parent_sq) {
1212 /* @parent_sq is another throl_grp, propagate dispatch */
1213 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1214 tg_update_disptime(tg);
1215 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1216 /* window is already open, repeat dispatching */
1217 sq = parent_sq;
1218 tg = sq_to_tg(sq);
1219 goto again;
1220 }
1221 }
1222 } else {
b53b072c 1223 /* reached the top-level, queue issuing */
2e48a530
TH
1224 queue_work(kthrotld_workqueue, &td->dispatch_work);
1225 }
1226out_unlock:
0d945c1f 1227 spin_unlock_irq(&q->queue_lock);
6e1a5704 1228}
e43473b7 1229
6e1a5704
TH
1230/**
1231 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1232 * @work: work item being executed
1233 *
b53b072c
BW
1234 * This function is queued for execution when bios reach the bio_lists[]
1235 * of throtl_data->service_queue. Those bios are ready and issued by this
6e1a5704
TH
1236 * function.
1237 */
8876e140 1238static void blk_throtl_dispatch_work_fn(struct work_struct *work)
6e1a5704
TH
1239{
1240 struct throtl_data *td = container_of(work, struct throtl_data,
1241 dispatch_work);
1242 struct throtl_service_queue *td_sq = &td->service_queue;
1243 struct request_queue *q = td->queue;
1244 struct bio_list bio_list_on_stack;
1245 struct bio *bio;
1246 struct blk_plug plug;
1247 int rw;
1248
1249 bio_list_init(&bio_list_on_stack);
1250
0d945c1f 1251 spin_lock_irq(&q->queue_lock);
c5cc2070
TH
1252 for (rw = READ; rw <= WRITE; rw++)
1253 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1254 bio_list_add(&bio_list_on_stack, bio);
0d945c1f 1255 spin_unlock_irq(&q->queue_lock);
6e1a5704
TH
1256
1257 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1258 blk_start_plug(&plug);
ed00aabd 1259 while ((bio = bio_list_pop(&bio_list_on_stack)))
3f98c753 1260 submit_bio_noacct_nocheck(bio);
69d60eb9 1261 blk_finish_plug(&plug);
e43473b7 1262 }
e43473b7
VG
1263}
1264
f95a04af
TH
1265static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1266 int off)
60c2bc2d 1267{
f95a04af
TH
1268 struct throtl_grp *tg = pd_to_tg(pd);
1269 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1270
2ab5492d 1271 if (v == U64_MAX)
60c2bc2d 1272 return 0;
f95a04af 1273 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1274}
1275
f95a04af
TH
1276static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1277 int off)
e43473b7 1278{
f95a04af
TH
1279 struct throtl_grp *tg = pd_to_tg(pd);
1280 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1281
2ab5492d 1282 if (v == UINT_MAX)
af133ceb 1283 return 0;
f95a04af 1284 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1285}
1286
2da8ca82 1287static int tg_print_conf_u64(struct seq_file *sf, void *v)
8e89d13f 1288{
2da8ca82
TH
1289 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1290 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1291 return 0;
8e89d13f
VG
1292}
1293
2da8ca82 1294static int tg_print_conf_uint(struct seq_file *sf, void *v)
8e89d13f 1295{
2da8ca82
TH
1296 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1297 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1298 return 0;
60c2bc2d
TH
1299}
1300
9bb67aeb 1301static void tg_conf_updated(struct throtl_grp *tg, bool global)
60c2bc2d 1302{
69948b07 1303 struct throtl_service_queue *sq = &tg->service_queue;
492eb21b 1304 struct cgroup_subsys_state *pos_css;
69948b07 1305 struct blkcg_gq *blkg;
af133ceb 1306
fda6f272
TH
1307 throtl_log(&tg->service_queue,
1308 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
9f626e37
SL
1309 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1310 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
632b4493 1311
693e751e
TH
1312 /*
1313 * Update has_rules[] flags for the updated tg's subtree. A tg is
1314 * considered to have rules if either the tg itself or any of its
1315 * ancestors has rules. This identifies groups without any
1316 * restrictions in the whole hierarchy and allows them to bypass
1317 * blk-throttle.
1318 */
9bb67aeb 1319 blkg_for_each_descendant_pre(blkg, pos_css,
1231039d 1320 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
5b81fc3c
SL
1321 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1322 struct throtl_grp *parent_tg;
1323
1324 tg_update_has_rules(this_tg);
1325 /* ignore root/second level */
1326 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1327 !blkg->parent->parent)
1328 continue;
1329 parent_tg = blkg_to_tg(blkg->parent);
1330 /*
1331 * make sure all children has lower idle time threshold and
1332 * higher latency target
1333 */
1334 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1335 parent_tg->idletime_threshold);
1336 this_tg->latency_target = max(this_tg->latency_target,
1337 parent_tg->latency_target);
1338 }
693e751e 1339
632b4493
TH
1340 /*
1341 * We're already holding queue_lock and know @tg is valid. Let's
1342 * apply the new config directly.
1343 *
1344 * Restart the slices for both READ and WRITES. It might happen
1345 * that a group's limit are dropped suddenly and we don't want to
1346 * account recently dispatched IO with new low rate.
1347 */
a880ae93
YK
1348 throtl_start_new_slice(tg, READ, false);
1349 throtl_start_new_slice(tg, WRITE, false);
632b4493 1350
5b2c16aa 1351 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1352 tg_update_disptime(tg);
7f52f98c 1353 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1354 }
69948b07
TH
1355}
1356
1357static ssize_t tg_set_conf(struct kernfs_open_file *of,
1358 char *buf, size_t nbytes, loff_t off, bool is_u64)
1359{
1360 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1361 struct blkg_conf_ctx ctx;
1362 struct throtl_grp *tg;
1363 int ret;
1364 u64 v;
1365
faffaab2
TH
1366 blkg_conf_init(&ctx, buf);
1367
1368 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
69948b07 1369 if (ret)
faffaab2 1370 goto out_finish;
69948b07
TH
1371
1372 ret = -EINVAL;
1373 if (sscanf(ctx.body, "%llu", &v) != 1)
1374 goto out_finish;
1375 if (!v)
2ab5492d 1376 v = U64_MAX;
69948b07
TH
1377
1378 tg = blkg_to_tg(ctx.blkg);
a880ae93 1379 tg_update_carryover(tg);
69948b07
TH
1380
1381 if (is_u64)
1382 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1383 else
1384 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
60c2bc2d 1385
9bb67aeb 1386 tg_conf_updated(tg, false);
36aa9e5f
TH
1387 ret = 0;
1388out_finish:
faffaab2 1389 blkg_conf_exit(&ctx);
36aa9e5f 1390 return ret ?: nbytes;
8e89d13f
VG
1391}
1392
451af504
TH
1393static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1394 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1395{
451af504 1396 return tg_set_conf(of, buf, nbytes, off, true);
60c2bc2d
TH
1397}
1398
451af504
TH
1399static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1400 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1401{
451af504 1402 return tg_set_conf(of, buf, nbytes, off, false);
60c2bc2d
TH
1403}
1404
7ca46438
TH
1405static int tg_print_rwstat(struct seq_file *sf, void *v)
1406{
1407 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1408 blkg_prfill_rwstat, &blkcg_policy_throtl,
1409 seq_cft(sf)->private, true);
1410 return 0;
1411}
1412
1413static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1414 struct blkg_policy_data *pd, int off)
1415{
1416 struct blkg_rwstat_sample sum;
1417
1418 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1419 &sum);
1420 return __blkg_prfill_rwstat(sf, pd, &sum);
1421}
1422
1423static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1424{
1425 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1426 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1427 seq_cft(sf)->private, true);
1428 return 0;
1429}
1430
880f50e2 1431static struct cftype throtl_legacy_files[] = {
60c2bc2d
TH
1432 {
1433 .name = "throttle.read_bps_device",
9f626e37 1434 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
2da8ca82 1435 .seq_show = tg_print_conf_u64,
451af504 1436 .write = tg_set_conf_u64,
60c2bc2d
TH
1437 },
1438 {
1439 .name = "throttle.write_bps_device",
9f626e37 1440 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
2da8ca82 1441 .seq_show = tg_print_conf_u64,
451af504 1442 .write = tg_set_conf_u64,
60c2bc2d
TH
1443 },
1444 {
1445 .name = "throttle.read_iops_device",
9f626e37 1446 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
2da8ca82 1447 .seq_show = tg_print_conf_uint,
451af504 1448 .write = tg_set_conf_uint,
60c2bc2d
TH
1449 },
1450 {
1451 .name = "throttle.write_iops_device",
9f626e37 1452 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
2da8ca82 1453 .seq_show = tg_print_conf_uint,
451af504 1454 .write = tg_set_conf_uint,
60c2bc2d
TH
1455 },
1456 {
1457 .name = "throttle.io_service_bytes",
7ca46438
TH
1458 .private = offsetof(struct throtl_grp, stat_bytes),
1459 .seq_show = tg_print_rwstat,
60c2bc2d 1460 },
17534c6f 1461 {
1462 .name = "throttle.io_service_bytes_recursive",
7ca46438
TH
1463 .private = offsetof(struct throtl_grp, stat_bytes),
1464 .seq_show = tg_print_rwstat_recursive,
17534c6f 1465 },
60c2bc2d
TH
1466 {
1467 .name = "throttle.io_serviced",
7ca46438
TH
1468 .private = offsetof(struct throtl_grp, stat_ios),
1469 .seq_show = tg_print_rwstat,
60c2bc2d 1470 },
17534c6f 1471 {
1472 .name = "throttle.io_serviced_recursive",
7ca46438
TH
1473 .private = offsetof(struct throtl_grp, stat_ios),
1474 .seq_show = tg_print_rwstat_recursive,
17534c6f 1475 },
60c2bc2d
TH
1476 { } /* terminate */
1477};
1478
cd5ab1b0 1479static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
2ee867dc
TH
1480 int off)
1481{
1482 struct throtl_grp *tg = pd_to_tg(pd);
1483 const char *dname = blkg_dev_name(pd->blkg);
1484 char bufs[4][21] = { "max", "max", "max", "max" };
cd5ab1b0
SL
1485 u64 bps_dft;
1486 unsigned int iops_dft;
ada75b6e 1487 char idle_time[26] = "";
ec80991d 1488 char latency_time[26] = "";
2ee867dc
TH
1489
1490 if (!dname)
1491 return 0;
9f626e37 1492
cd5ab1b0
SL
1493 if (off == LIMIT_LOW) {
1494 bps_dft = 0;
1495 iops_dft = 0;
1496 } else {
1497 bps_dft = U64_MAX;
1498 iops_dft = UINT_MAX;
1499 }
1500
1501 if (tg->bps_conf[READ][off] == bps_dft &&
1502 tg->bps_conf[WRITE][off] == bps_dft &&
1503 tg->iops_conf[READ][off] == iops_dft &&
ada75b6e 1504 tg->iops_conf[WRITE][off] == iops_dft &&
ec80991d 1505 (off != LIMIT_LOW ||
b4f428ef 1506 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
5b81fc3c 1507 tg->latency_target_conf == DFL_LATENCY_TARGET)))
2ee867dc
TH
1508 return 0;
1509
9bb67aeb 1510 if (tg->bps_conf[READ][off] != U64_MAX)
9f626e37 1511 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
cd5ab1b0 1512 tg->bps_conf[READ][off]);
9bb67aeb 1513 if (tg->bps_conf[WRITE][off] != U64_MAX)
9f626e37 1514 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
cd5ab1b0 1515 tg->bps_conf[WRITE][off]);
9bb67aeb 1516 if (tg->iops_conf[READ][off] != UINT_MAX)
9f626e37 1517 snprintf(bufs[2], sizeof(bufs[2]), "%u",
cd5ab1b0 1518 tg->iops_conf[READ][off]);
9bb67aeb 1519 if (tg->iops_conf[WRITE][off] != UINT_MAX)
9f626e37 1520 snprintf(bufs[3], sizeof(bufs[3]), "%u",
cd5ab1b0 1521 tg->iops_conf[WRITE][off]);
ada75b6e 1522 if (off == LIMIT_LOW) {
5b81fc3c 1523 if (tg->idletime_threshold_conf == ULONG_MAX)
ada75b6e
SL
1524 strcpy(idle_time, " idle=max");
1525 else
1526 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
5b81fc3c 1527 tg->idletime_threshold_conf);
ec80991d 1528
5b81fc3c 1529 if (tg->latency_target_conf == ULONG_MAX)
ec80991d
SL
1530 strcpy(latency_time, " latency=max");
1531 else
1532 snprintf(latency_time, sizeof(latency_time),
5b81fc3c 1533 " latency=%lu", tg->latency_target_conf);
ada75b6e 1534 }
2ee867dc 1535
ec80991d
SL
1536 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1537 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1538 latency_time);
2ee867dc
TH
1539 return 0;
1540}
1541
cd5ab1b0 1542static int tg_print_limit(struct seq_file *sf, void *v)
2ee867dc 1543{
cd5ab1b0 1544 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
2ee867dc
TH
1545 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1546 return 0;
1547}
1548
cd5ab1b0 1549static ssize_t tg_set_limit(struct kernfs_open_file *of,
2ee867dc
TH
1550 char *buf, size_t nbytes, loff_t off)
1551{
1552 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1553 struct blkg_conf_ctx ctx;
1554 struct throtl_grp *tg;
1555 u64 v[4];
ada75b6e 1556 unsigned long idle_time;
ec80991d 1557 unsigned long latency_time;
2ee867dc 1558 int ret;
cd5ab1b0 1559 int index = of_cft(of)->private;
2ee867dc 1560
faffaab2
TH
1561 blkg_conf_init(&ctx, buf);
1562
1563 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
2ee867dc 1564 if (ret)
faffaab2 1565 goto out_finish;
2ee867dc
TH
1566
1567 tg = blkg_to_tg(ctx.blkg);
a880ae93 1568 tg_update_carryover(tg);
2ee867dc 1569
cd5ab1b0
SL
1570 v[0] = tg->bps_conf[READ][index];
1571 v[1] = tg->bps_conf[WRITE][index];
1572 v[2] = tg->iops_conf[READ][index];
1573 v[3] = tg->iops_conf[WRITE][index];
2ee867dc 1574
5b81fc3c
SL
1575 idle_time = tg->idletime_threshold_conf;
1576 latency_time = tg->latency_target_conf;
2ee867dc
TH
1577 while (true) {
1578 char tok[27]; /* wiops=18446744073709551616 */
1579 char *p;
2ab5492d 1580 u64 val = U64_MAX;
2ee867dc
TH
1581 int len;
1582
1583 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1584 break;
1585 if (tok[0] == '\0')
1586 break;
1587 ctx.body += len;
1588
1589 ret = -EINVAL;
1590 p = tok;
1591 strsep(&p, "=");
1592 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1593 goto out_finish;
1594
1595 ret = -ERANGE;
1596 if (!val)
1597 goto out_finish;
1598
1599 ret = -EINVAL;
5b7048b8 1600 if (!strcmp(tok, "rbps") && val > 1)
2ee867dc 1601 v[0] = val;
5b7048b8 1602 else if (!strcmp(tok, "wbps") && val > 1)
2ee867dc 1603 v[1] = val;
5b7048b8 1604 else if (!strcmp(tok, "riops") && val > 1)
2ee867dc 1605 v[2] = min_t(u64, val, UINT_MAX);
5b7048b8 1606 else if (!strcmp(tok, "wiops") && val > 1)
2ee867dc 1607 v[3] = min_t(u64, val, UINT_MAX);
ada75b6e
SL
1608 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1609 idle_time = val;
ec80991d
SL
1610 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1611 latency_time = val;
2ee867dc
TH
1612 else
1613 goto out_finish;
1614 }
1615
cd5ab1b0
SL
1616 tg->bps_conf[READ][index] = v[0];
1617 tg->bps_conf[WRITE][index] = v[1];
1618 tg->iops_conf[READ][index] = v[2];
1619 tg->iops_conf[WRITE][index] = v[3];
2ee867dc 1620
cd5ab1b0
SL
1621 if (index == LIMIT_MAX) {
1622 tg->bps[READ][index] = v[0];
1623 tg->bps[WRITE][index] = v[1];
1624 tg->iops[READ][index] = v[2];
1625 tg->iops[WRITE][index] = v[3];
1626 }
1627 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1628 tg->bps_conf[READ][LIMIT_MAX]);
1629 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1630 tg->bps_conf[WRITE][LIMIT_MAX]);
1631 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1632 tg->iops_conf[READ][LIMIT_MAX]);
1633 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1634 tg->iops_conf[WRITE][LIMIT_MAX]);
b4f428ef
SL
1635 tg->idletime_threshold_conf = idle_time;
1636 tg->latency_target_conf = latency_time;
1637
1638 /* force user to configure all settings for low limit */
1639 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1640 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1641 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1642 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1643 tg->bps[READ][LIMIT_LOW] = 0;
1644 tg->bps[WRITE][LIMIT_LOW] = 0;
1645 tg->iops[READ][LIMIT_LOW] = 0;
1646 tg->iops[WRITE][LIMIT_LOW] = 0;
1647 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1648 tg->latency_target = DFL_LATENCY_TARGET;
1649 } else if (index == LIMIT_LOW) {
5b81fc3c 1650 tg->idletime_threshold = tg->idletime_threshold_conf;
5b81fc3c 1651 tg->latency_target = tg->latency_target_conf;
cd5ab1b0 1652 }
b4f428ef
SL
1653
1654 blk_throtl_update_limit_valid(tg->td);
1655 if (tg->td->limit_valid[LIMIT_LOW]) {
1656 if (index == LIMIT_LOW)
1657 tg->td->limit_index = LIMIT_LOW;
1658 } else
1659 tg->td->limit_index = LIMIT_MAX;
9bb67aeb
SL
1660 tg_conf_updated(tg, index == LIMIT_LOW &&
1661 tg->td->limit_valid[LIMIT_LOW]);
2ee867dc
TH
1662 ret = 0;
1663out_finish:
faffaab2 1664 blkg_conf_exit(&ctx);
2ee867dc
TH
1665 return ret ?: nbytes;
1666}
1667
1668static struct cftype throtl_files[] = {
cd5ab1b0
SL
1669#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1670 {
1671 .name = "low",
1672 .flags = CFTYPE_NOT_ON_ROOT,
1673 .seq_show = tg_print_limit,
1674 .write = tg_set_limit,
1675 .private = LIMIT_LOW,
1676 },
1677#endif
2ee867dc
TH
1678 {
1679 .name = "max",
1680 .flags = CFTYPE_NOT_ON_ROOT,
cd5ab1b0
SL
1681 .seq_show = tg_print_limit,
1682 .write = tg_set_limit,
1683 .private = LIMIT_MAX,
2ee867dc
TH
1684 },
1685 { } /* terminate */
1686};
1687
da527770 1688static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1689{
1690 struct throtl_data *td = q->td;
1691
69df0ab0 1692 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1693}
1694
a7b36ee6 1695struct blkcg_policy blkcg_policy_throtl = {
2ee867dc 1696 .dfl_cftypes = throtl_files,
880f50e2 1697 .legacy_cftypes = throtl_legacy_files,
f9fcc2d3 1698
001bea73 1699 .pd_alloc_fn = throtl_pd_alloc,
f9fcc2d3 1700 .pd_init_fn = throtl_pd_init,
693e751e 1701 .pd_online_fn = throtl_pd_online,
cd5ab1b0 1702 .pd_offline_fn = throtl_pd_offline,
001bea73 1703 .pd_free_fn = throtl_pd_free,
e43473b7
VG
1704};
1705
cad9266a 1706void blk_throtl_cancel_bios(struct gendisk *disk)
2d8f7a3b 1707{
cad9266a 1708 struct request_queue *q = disk->queue;
2d8f7a3b
YK
1709 struct cgroup_subsys_state *pos_css;
1710 struct blkcg_gq *blkg;
1711
1712 spin_lock_irq(&q->queue_lock);
1713 /*
1714 * queue_lock is held, rcu lock is not needed here technically.
1715 * However, rcu lock is still held to emphasize that following
1716 * path need RCU protection and to prevent warning from lockdep.
1717 */
1718 rcu_read_lock();
1231039d 1719 blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
2d8f7a3b
YK
1720 struct throtl_grp *tg = blkg_to_tg(blkg);
1721 struct throtl_service_queue *sq = &tg->service_queue;
1722
1723 /*
1724 * Set the flag to make sure throtl_pending_timer_fn() won't
1725 * stop until all throttled bios are dispatched.
1726 */
eb184791
KS
1727 tg->flags |= THROTL_TG_CANCELING;
1728
1729 /*
1730 * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup
1731 * will be inserted to service queue without THROTL_TG_PENDING
1732 * set in tg_update_disptime below. Then IO dispatched from
1733 * child in tg_dispatch_one_bio will trigger double insertion
1734 * and corrupt the tree.
1735 */
1736 if (!(tg->flags & THROTL_TG_PENDING))
1737 continue;
1738
2d8f7a3b
YK
1739 /*
1740 * Update disptime after setting the above flag to make sure
1741 * throtl_select_dispatch() won't exit without dispatching.
1742 */
1743 tg_update_disptime(tg);
1744
1745 throtl_schedule_pending_timer(sq, jiffies + 1);
1746 }
1747 rcu_read_unlock();
1748 spin_unlock_irq(&q->queue_lock);
1749}
1750
1751#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
3f0abd80
SL
1752static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1753{
1754 unsigned long rtime = jiffies, wtime = jiffies;
1755
1756 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1757 rtime = tg->last_low_overflow_time[READ];
1758 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1759 wtime = tg->last_low_overflow_time[WRITE];
1760 return min(rtime, wtime);
1761}
1762
3f0abd80
SL
1763static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1764{
1765 struct throtl_service_queue *parent_sq;
1766 struct throtl_grp *parent = tg;
1767 unsigned long ret = __tg_last_low_overflow_time(tg);
1768
1769 while (true) {
1770 parent_sq = parent->service_queue.parent_sq;
1771 parent = sq_to_tg(parent_sq);
1772 if (!parent)
1773 break;
1774
1775 /*
1776 * The parent doesn't have low limit, it always reaches low
1777 * limit. Its overflow time is useless for children
1778 */
1779 if (!parent->bps[READ][LIMIT_LOW] &&
1780 !parent->iops[READ][LIMIT_LOW] &&
1781 !parent->bps[WRITE][LIMIT_LOW] &&
1782 !parent->iops[WRITE][LIMIT_LOW])
1783 continue;
1784 if (time_after(__tg_last_low_overflow_time(parent), ret))
1785 ret = __tg_last_low_overflow_time(parent);
1786 }
1787 return ret;
1788}
1789
9e234eea
SL
1790static bool throtl_tg_is_idle(struct throtl_grp *tg)
1791{
1792 /*
1793 * cgroup is idle if:
1794 * - single idle is too long, longer than a fixed value (in case user
b4f428ef 1795 * configure a too big threshold) or 4 times of idletime threshold
9e234eea 1796 * - average think time is more than threshold
53696b8d 1797 * - IO latency is largely below threshold
9e234eea 1798 */
b4f428ef 1799 unsigned long time;
4cff729f 1800 bool ret;
9e234eea 1801
b4f428ef
SL
1802 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1803 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1804 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1805 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1806 tg->avg_idletime > tg->idletime_threshold ||
1807 (tg->latency_target && tg->bio_cnt &&
53696b8d 1808 tg->bad_bio_cnt * 5 < tg->bio_cnt);
4cff729f
SL
1809 throtl_log(&tg->service_queue,
1810 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1811 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1812 tg->bio_cnt, ret, tg->td->scale);
1813 return ret;
9e234eea
SL
1814}
1815
a4d508e3 1816static bool throtl_low_limit_reached(struct throtl_grp *tg, int rw)
c79892c5
SL
1817{
1818 struct throtl_service_queue *sq = &tg->service_queue;
a4d508e3 1819 bool limit = tg->bps[rw][LIMIT_LOW] || tg->iops[rw][LIMIT_LOW];
c79892c5
SL
1820
1821 /*
a4d508e3
KS
1822 * if low limit is zero, low limit is always reached.
1823 * if low limit is non-zero, we can check if there is any request
1824 * is queued to determine if low limit is reached as we throttle
1825 * request according to limit.
c79892c5 1826 */
a4d508e3
KS
1827 return !limit || sq->nr_queued[rw];
1828}
1829
1830static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1831{
1832 /*
1833 * cgroup reaches low limit when low limit of READ and WRITE are
1834 * both reached, it's ok to upgrade to next limit if cgroup reaches
1835 * low limit
1836 */
1837 if (throtl_low_limit_reached(tg, READ) &&
1838 throtl_low_limit_reached(tg, WRITE))
c79892c5 1839 return true;
aec24246
SL
1840
1841 if (time_after_eq(jiffies,
fa6fb5aa
SL
1842 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1843 throtl_tg_is_idle(tg))
aec24246 1844 return true;
c79892c5
SL
1845 return false;
1846}
1847
1848static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1849{
1850 while (true) {
1851 if (throtl_tg_can_upgrade(tg))
1852 return true;
1853 tg = sq_to_tg(tg->service_queue.parent_sq);
1854 if (!tg || !tg_to_blkg(tg)->parent)
1855 return false;
1856 }
1857 return false;
1858}
1859
1860static bool throtl_can_upgrade(struct throtl_data *td,
1861 struct throtl_grp *this_tg)
1862{
1863 struct cgroup_subsys_state *pos_css;
1864 struct blkcg_gq *blkg;
1865
1866 if (td->limit_index != LIMIT_LOW)
1867 return false;
1868
297e3d85 1869 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
3f0abd80
SL
1870 return false;
1871
c79892c5 1872 rcu_read_lock();
1231039d 1873 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
c79892c5
SL
1874 struct throtl_grp *tg = blkg_to_tg(blkg);
1875
1876 if (tg == this_tg)
1877 continue;
1878 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1879 continue;
1880 if (!throtl_hierarchy_can_upgrade(tg)) {
1881 rcu_read_unlock();
1882 return false;
1883 }
1884 }
1885 rcu_read_unlock();
1886 return true;
1887}
1888
fa6fb5aa
SL
1889static void throtl_upgrade_check(struct throtl_grp *tg)
1890{
1891 unsigned long now = jiffies;
1892
1893 if (tg->td->limit_index != LIMIT_LOW)
1894 return;
1895
1896 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1897 return;
1898
1899 tg->last_check_time = now;
1900
1901 if (!time_after_eq(now,
1902 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1903 return;
1904
1905 if (throtl_can_upgrade(tg->td, NULL))
1906 throtl_upgrade_state(tg->td);
1907}
1908
c79892c5
SL
1909static void throtl_upgrade_state(struct throtl_data *td)
1910{
1911 struct cgroup_subsys_state *pos_css;
1912 struct blkcg_gq *blkg;
1913
4cff729f 1914 throtl_log(&td->service_queue, "upgrade to max");
c79892c5 1915 td->limit_index = LIMIT_MAX;
3f0abd80 1916 td->low_upgrade_time = jiffies;
7394e31f 1917 td->scale = 0;
c79892c5 1918 rcu_read_lock();
1231039d 1919 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
c79892c5
SL
1920 struct throtl_grp *tg = blkg_to_tg(blkg);
1921 struct throtl_service_queue *sq = &tg->service_queue;
1922
1923 tg->disptime = jiffies - 1;
1924 throtl_select_dispatch(sq);
4f02fb76 1925 throtl_schedule_next_dispatch(sq, true);
c79892c5
SL
1926 }
1927 rcu_read_unlock();
1928 throtl_select_dispatch(&td->service_queue);
4f02fb76 1929 throtl_schedule_next_dispatch(&td->service_queue, true);
c79892c5
SL
1930 queue_work(kthrotld_workqueue, &td->dispatch_work);
1931}
1932
4247d9c8 1933static void throtl_downgrade_state(struct throtl_data *td)
3f0abd80 1934{
7394e31f
SL
1935 td->scale /= 2;
1936
4cff729f 1937 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
7394e31f
SL
1938 if (td->scale) {
1939 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1940 return;
1941 }
1942
4247d9c8 1943 td->limit_index = LIMIT_LOW;
3f0abd80
SL
1944 td->low_downgrade_time = jiffies;
1945}
1946
1947static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1948{
1949 struct throtl_data *td = tg->td;
1950 unsigned long now = jiffies;
1951
1952 /*
1953 * If cgroup is below low limit, consider downgrade and throttle other
1954 * cgroups
1955 */
9c9f209d 1956 if (time_after_eq(now, tg_last_low_overflow_time(tg) +
fa6fb5aa
SL
1957 td->throtl_slice) &&
1958 (!throtl_tg_is_idle(tg) ||
1959 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
3f0abd80
SL
1960 return true;
1961 return false;
1962}
1963
1964static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1965{
9c9f209d
KS
1966 struct throtl_data *td = tg->td;
1967
1968 if (time_before(jiffies, td->low_upgrade_time + td->throtl_slice))
1969 return false;
1970
3f0abd80
SL
1971 while (true) {
1972 if (!throtl_tg_can_downgrade(tg))
1973 return false;
1974 tg = sq_to_tg(tg->service_queue.parent_sq);
1975 if (!tg || !tg_to_blkg(tg)->parent)
1976 break;
1977 }
1978 return true;
1979}
1980
1981static void throtl_downgrade_check(struct throtl_grp *tg)
1982{
1983 uint64_t bps;
1984 unsigned int iops;
1985 unsigned long elapsed_time;
1986 unsigned long now = jiffies;
1987
1988 if (tg->td->limit_index != LIMIT_MAX ||
1989 !tg->td->limit_valid[LIMIT_LOW])
1990 return;
1991 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1992 return;
297e3d85 1993 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
3f0abd80
SL
1994 return;
1995
1996 elapsed_time = now - tg->last_check_time;
1997 tg->last_check_time = now;
1998
297e3d85
SL
1999 if (time_before(now, tg_last_low_overflow_time(tg) +
2000 tg->td->throtl_slice))
3f0abd80
SL
2001 return;
2002
2003 if (tg->bps[READ][LIMIT_LOW]) {
2004 bps = tg->last_bytes_disp[READ] * HZ;
2005 do_div(bps, elapsed_time);
2006 if (bps >= tg->bps[READ][LIMIT_LOW])
2007 tg->last_low_overflow_time[READ] = now;
2008 }
2009
2010 if (tg->bps[WRITE][LIMIT_LOW]) {
2011 bps = tg->last_bytes_disp[WRITE] * HZ;
2012 do_div(bps, elapsed_time);
2013 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2014 tg->last_low_overflow_time[WRITE] = now;
2015 }
2016
2017 if (tg->iops[READ][LIMIT_LOW]) {
2018 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2019 if (iops >= tg->iops[READ][LIMIT_LOW])
2020 tg->last_low_overflow_time[READ] = now;
2021 }
2022
2023 if (tg->iops[WRITE][LIMIT_LOW]) {
2024 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2025 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2026 tg->last_low_overflow_time[WRITE] = now;
2027 }
2028
2029 /*
2030 * If cgroup is below low limit, consider downgrade and throttle other
2031 * cgroups
2032 */
2033 if (throtl_hierarchy_can_downgrade(tg))
4247d9c8 2034 throtl_downgrade_state(tg->td);
3f0abd80
SL
2035
2036 tg->last_bytes_disp[READ] = 0;
2037 tg->last_bytes_disp[WRITE] = 0;
2038 tg->last_io_disp[READ] = 0;
2039 tg->last_io_disp[WRITE] = 0;
2040}
2041
9e234eea
SL
2042static void blk_throtl_update_idletime(struct throtl_grp *tg)
2043{
7901601a 2044 unsigned long now;
9e234eea
SL
2045 unsigned long last_finish_time = tg->last_finish_time;
2046
7901601a
BW
2047 if (last_finish_time == 0)
2048 return;
2049
2050 now = ktime_get_ns() >> 10;
2051 if (now <= last_finish_time ||
9e234eea
SL
2052 last_finish_time == tg->checked_last_finish_time)
2053 return;
2054
2055 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2056 tg->checked_last_finish_time = last_finish_time;
2057}
2058
b9147dd1
SL
2059static void throtl_update_latency_buckets(struct throtl_data *td)
2060{
b889bf66
JQ
2061 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2062 int i, cpu, rw;
2063 unsigned long last_latency[2] = { 0 };
2064 unsigned long latency[2];
b9147dd1 2065
b185efa7 2066 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
b9147dd1
SL
2067 return;
2068 if (time_before(jiffies, td->last_calculate_time + HZ))
2069 return;
2070 td->last_calculate_time = jiffies;
2071
2072 memset(avg_latency, 0, sizeof(avg_latency));
b889bf66
JQ
2073 for (rw = READ; rw <= WRITE; rw++) {
2074 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2075 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2076
2077 for_each_possible_cpu(cpu) {
2078 struct latency_bucket *bucket;
2079
2080 /* this isn't race free, but ok in practice */
2081 bucket = per_cpu_ptr(td->latency_buckets[rw],
2082 cpu);
2083 tmp->total_latency += bucket[i].total_latency;
2084 tmp->samples += bucket[i].samples;
2085 bucket[i].total_latency = 0;
2086 bucket[i].samples = 0;
2087 }
b9147dd1 2088
b889bf66
JQ
2089 if (tmp->samples >= 32) {
2090 int samples = tmp->samples;
b9147dd1 2091
b889bf66 2092 latency[rw] = tmp->total_latency;
b9147dd1 2093
b889bf66
JQ
2094 tmp->total_latency = 0;
2095 tmp->samples = 0;
2096 latency[rw] /= samples;
2097 if (latency[rw] == 0)
2098 continue;
2099 avg_latency[rw][i].latency = latency[rw];
2100 }
b9147dd1
SL
2101 }
2102 }
2103
b889bf66
JQ
2104 for (rw = READ; rw <= WRITE; rw++) {
2105 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2106 if (!avg_latency[rw][i].latency) {
2107 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2108 td->avg_buckets[rw][i].latency =
2109 last_latency[rw];
2110 continue;
2111 }
b9147dd1 2112
b889bf66
JQ
2113 if (!td->avg_buckets[rw][i].valid)
2114 latency[rw] = avg_latency[rw][i].latency;
2115 else
2116 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2117 avg_latency[rw][i].latency) >> 3;
b9147dd1 2118
b889bf66
JQ
2119 td->avg_buckets[rw][i].latency = max(latency[rw],
2120 last_latency[rw]);
2121 td->avg_buckets[rw][i].valid = true;
2122 last_latency[rw] = td->avg_buckets[rw][i].latency;
2123 }
b9147dd1 2124 }
4cff729f
SL
2125
2126 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2127 throtl_log(&td->service_queue,
b889bf66
JQ
2128 "Latency bucket %d: read latency=%ld, read valid=%d, "
2129 "write latency=%ld, write valid=%d", i,
2130 td->avg_buckets[READ][i].latency,
2131 td->avg_buckets[READ][i].valid,
2132 td->avg_buckets[WRITE][i].latency,
2133 td->avg_buckets[WRITE][i].valid);
b9147dd1
SL
2134}
2135#else
2136static inline void throtl_update_latency_buckets(struct throtl_data *td)
2137{
2138}
2d8f7a3b
YK
2139
2140static void blk_throtl_update_idletime(struct throtl_grp *tg)
2141{
2142}
2143
2144static void throtl_downgrade_check(struct throtl_grp *tg)
2145{
2146}
2147
2148static void throtl_upgrade_check(struct throtl_grp *tg)
2149{
2150}
2151
2152static bool throtl_can_upgrade(struct throtl_data *td,
2153 struct throtl_grp *this_tg)
2154{
2155 return false;
2156}
2157
2158static void throtl_upgrade_state(struct throtl_data *td)
2159{
2160}
b9147dd1
SL
2161#endif
2162
a7b36ee6 2163bool __blk_throtl_bio(struct bio *bio)
e43473b7 2164{
ed6cddef 2165 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
db18a53e 2166 struct blkcg_gq *blkg = bio->bi_blkg;
c5cc2070 2167 struct throtl_qnode *qn = NULL;
a2e83ef9 2168 struct throtl_grp *tg = blkg_to_tg(blkg);
73f0d49a 2169 struct throtl_service_queue *sq;
0e9f4164 2170 bool rw = bio_data_dir(bio);
bc16a4f9 2171 bool throttled = false;
b9147dd1 2172 struct throtl_data *td = tg->td;
e43473b7 2173
93b80638 2174 rcu_read_lock();
ae118896 2175
0d945c1f 2176 spin_lock_irq(&q->queue_lock);
c9589f03 2177
b9147dd1
SL
2178 throtl_update_latency_buckets(td);
2179
9e234eea
SL
2180 blk_throtl_update_idletime(tg);
2181
73f0d49a
TH
2182 sq = &tg->service_queue;
2183
c79892c5 2184again:
9e660acf 2185 while (true) {
3f0abd80
SL
2186 if (tg->last_low_overflow_time[rw] == 0)
2187 tg->last_low_overflow_time[rw] = jiffies;
2188 throtl_downgrade_check(tg);
fa6fb5aa 2189 throtl_upgrade_check(tg);
9e660acf
TH
2190 /* throtl is FIFO - if bios are already queued, should queue */
2191 if (sq->nr_queued[rw])
2192 break;
de701c74 2193
9e660acf 2194 /* if above limits, break to queue */
c79892c5 2195 if (!tg_may_dispatch(tg, bio, NULL)) {
3f0abd80 2196 tg->last_low_overflow_time[rw] = jiffies;
b9147dd1
SL
2197 if (throtl_can_upgrade(td, tg)) {
2198 throtl_upgrade_state(td);
c79892c5
SL
2199 goto again;
2200 }
9e660acf 2201 break;
c79892c5 2202 }
9e660acf
TH
2203
2204 /* within limits, let's charge and dispatch directly */
e43473b7 2205 throtl_charge_bio(tg, bio);
04521db0
VG
2206
2207 /*
2208 * We need to trim slice even when bios are not being queued
2209 * otherwise it might happen that a bio is not queued for
2210 * a long time and slice keeps on extending and trim is not
2211 * called for a long time. Now if limits are reduced suddenly
2212 * we take into account all the IO dispatched so far at new
2213 * low rate and * newly queued IO gets a really long dispatch
2214 * time.
2215 *
2216 * So keep on trimming slice even if bio is not queued.
2217 */
0f3457f6 2218 throtl_trim_slice(tg, rw);
9e660acf
TH
2219
2220 /*
2221 * @bio passed through this layer without being throttled.
b53b072c 2222 * Climb up the ladder. If we're already at the top, it
9e660acf
TH
2223 * can be executed directly.
2224 */
c5cc2070 2225 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
2226 sq = sq->parent_sq;
2227 tg = sq_to_tg(sq);
320fb0f9
YK
2228 if (!tg) {
2229 bio_set_flag(bio, BIO_BPS_THROTTLED);
9e660acf 2230 goto out_unlock;
320fb0f9 2231 }
e43473b7
VG
2232 }
2233
9e660acf 2234 /* out-of-limit, queue to @tg */
fda6f272
TH
2235 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2236 rw == READ ? 'R' : 'W',
9f626e37
SL
2237 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2238 tg_bps_limit(tg, rw),
2239 tg->io_disp[rw], tg_iops_limit(tg, rw),
fda6f272 2240 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 2241
3f0abd80
SL
2242 tg->last_low_overflow_time[rw] = jiffies;
2243
b9147dd1 2244 td->nr_queued[rw]++;
c5cc2070 2245 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 2246 throttled = true;
e43473b7 2247
7f52f98c
TH
2248 /*
2249 * Update @tg's dispatch time and force schedule dispatch if @tg
2250 * was empty before @bio. The forced scheduling isn't likely to
2251 * cause undue delay as @bio is likely to be dispatched directly if
2252 * its @tg's disptime is not in the future.
2253 */
0e9f4164 2254 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 2255 tg_update_disptime(tg);
7f52f98c 2256 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
2257 }
2258
bc16a4f9 2259out_unlock:
b9147dd1
SL
2260#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2261 if (throttled || !td->track_bio_latency)
5238dcf4 2262 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
b9147dd1 2263#endif
5a011f88
LQ
2264 spin_unlock_irq(&q->queue_lock);
2265
93b80638 2266 rcu_read_unlock();
bc16a4f9 2267 return throttled;
e43473b7
VG
2268}
2269
9e234eea 2270#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
b9147dd1 2271static void throtl_track_latency(struct throtl_data *td, sector_t size,
77e7ffd7 2272 enum req_op op, unsigned long time)
b9147dd1 2273{
77e7ffd7 2274 const bool rw = op_is_write(op);
b9147dd1
SL
2275 struct latency_bucket *latency;
2276 int index;
2277
b889bf66
JQ
2278 if (!td || td->limit_index != LIMIT_LOW ||
2279 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
b9147dd1
SL
2280 !blk_queue_nonrot(td->queue))
2281 return;
2282
2283 index = request_bucket_index(size);
2284
77e7ffd7 2285 latency = get_cpu_ptr(td->latency_buckets[rw]);
b9147dd1
SL
2286 latency[index].total_latency += time;
2287 latency[index].samples++;
77e7ffd7 2288 put_cpu_ptr(td->latency_buckets[rw]);
b9147dd1
SL
2289}
2290
2291void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2292{
2293 struct request_queue *q = rq->q;
2294 struct throtl_data *td = q->td;
2295
3d244306
HT
2296 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2297 time_ns >> 10);
b9147dd1
SL
2298}
2299
9e234eea
SL
2300void blk_throtl_bio_endio(struct bio *bio)
2301{
08e18eab 2302 struct blkcg_gq *blkg;
9e234eea 2303 struct throtl_grp *tg;
b9147dd1
SL
2304 u64 finish_time_ns;
2305 unsigned long finish_time;
2306 unsigned long start_time;
2307 unsigned long lat;
b889bf66 2308 int rw = bio_data_dir(bio);
9e234eea 2309
08e18eab
JB
2310 blkg = bio->bi_blkg;
2311 if (!blkg)
9e234eea 2312 return;
08e18eab 2313 tg = blkg_to_tg(blkg);
b185efa7
BW
2314 if (!tg->td->limit_valid[LIMIT_LOW])
2315 return;
9e234eea 2316
b9147dd1
SL
2317 finish_time_ns = ktime_get_ns();
2318 tg->last_finish_time = finish_time_ns >> 10;
2319
5238dcf4
OS
2320 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2321 finish_time = __bio_issue_time(finish_time_ns) >> 10;
08e18eab 2322 if (!start_time || finish_time <= start_time)
53696b8d
SL
2323 return;
2324
2325 lat = finish_time - start_time;
b9147dd1 2326 /* this is only for bio based driver */
5238dcf4
OS
2327 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2328 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2329 bio_op(bio), lat);
53696b8d 2330
6679a90c 2331 if (tg->latency_target && lat >= tg->td->filtered_latency) {
53696b8d
SL
2332 int bucket;
2333 unsigned int threshold;
2334
5238dcf4 2335 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
b889bf66 2336 threshold = tg->td->avg_buckets[rw][bucket].latency +
53696b8d
SL
2337 tg->latency_target;
2338 if (lat > threshold)
2339 tg->bad_bio_cnt++;
2340 /*
2341 * Not race free, could get wrong count, which means cgroups
2342 * will be throttled
2343 */
2344 tg->bio_cnt++;
2345 }
2346
2347 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2348 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2349 tg->bio_cnt /= 2;
2350 tg->bad_bio_cnt /= 2;
b9147dd1 2351 }
9e234eea
SL
2352}
2353#endif
2354
e13793ba 2355int blk_throtl_init(struct gendisk *disk)
e43473b7 2356{
e13793ba 2357 struct request_queue *q = disk->queue;
e43473b7 2358 struct throtl_data *td;
a2b1693b 2359 int ret;
e43473b7
VG
2360
2361 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2362 if (!td)
2363 return -ENOMEM;
b889bf66 2364 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2365 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2366 if (!td->latency_buckets[READ]) {
2367 kfree(td);
2368 return -ENOMEM;
2369 }
2370 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2371 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2372 if (!td->latency_buckets[WRITE]) {
2373 free_percpu(td->latency_buckets[READ]);
b9147dd1
SL
2374 kfree(td);
2375 return -ENOMEM;
2376 }
e43473b7 2377
69df0ab0 2378 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
b2ce2643 2379 throtl_service_queue_init(&td->service_queue);
e43473b7 2380
cd1604fa 2381 q->td = td;
29b12589 2382 td->queue = q;
02977e4a 2383
9f626e37 2384 td->limit_valid[LIMIT_MAX] = true;
cd5ab1b0 2385 td->limit_index = LIMIT_MAX;
3f0abd80
SL
2386 td->low_upgrade_time = jiffies;
2387 td->low_downgrade_time = jiffies;
9e234eea 2388
a2b1693b 2389 /* activate policy */
40e4996e 2390 ret = blkcg_activate_policy(disk, &blkcg_policy_throtl);
b9147dd1 2391 if (ret) {
b889bf66
JQ
2392 free_percpu(td->latency_buckets[READ]);
2393 free_percpu(td->latency_buckets[WRITE]);
f51b802c 2394 kfree(td);
b9147dd1 2395 }
a2b1693b 2396 return ret;
e43473b7
VG
2397}
2398
e13793ba 2399void blk_throtl_exit(struct gendisk *disk)
e43473b7 2400{
e13793ba
CH
2401 struct request_queue *q = disk->queue;
2402
b4e94f9c 2403 BUG_ON(!q->td);
884f0e84 2404 del_timer_sync(&q->td->service_queue.pending_timer);
da527770 2405 throtl_shutdown_wq(q);
40e4996e 2406 blkcg_deactivate_policy(disk, &blkcg_policy_throtl);
b889bf66
JQ
2407 free_percpu(q->td->latency_buckets[READ]);
2408 free_percpu(q->td->latency_buckets[WRITE]);
c9a929dd 2409 kfree(q->td);
e43473b7
VG
2410}
2411
5f6dc752 2412void blk_throtl_register(struct gendisk *disk)
d61fcfa4 2413{
5f6dc752 2414 struct request_queue *q = disk->queue;
d61fcfa4 2415 struct throtl_data *td;
6679a90c 2416 int i;
d61fcfa4
SL
2417
2418 td = q->td;
2419 BUG_ON(!td);
2420
6679a90c 2421 if (blk_queue_nonrot(q)) {
d61fcfa4 2422 td->throtl_slice = DFL_THROTL_SLICE_SSD;
6679a90c
SL
2423 td->filtered_latency = LATENCY_FILTERED_SSD;
2424 } else {
d61fcfa4 2425 td->throtl_slice = DFL_THROTL_SLICE_HD;
6679a90c 2426 td->filtered_latency = LATENCY_FILTERED_HD;
b889bf66
JQ
2427 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2428 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2429 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2430 }
6679a90c 2431 }
d61fcfa4
SL
2432#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2433 /* if no low limit, use previous default */
2434 td->throtl_slice = DFL_THROTL_SLICE_HD;
9e234eea 2435
8e15dfbd 2436#else
344e9ffc 2437 td->track_bio_latency = !queue_is_mq(q);
b9147dd1
SL
2438 if (!td->track_bio_latency)
2439 blk_stat_enable_accounting(q);
8e15dfbd 2440#endif
d61fcfa4
SL
2441}
2442
297e3d85
SL
2443#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2444ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2445{
2446 if (!q->td)
2447 return -EINVAL;
2448 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2449}
2450
2451ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2452 const char *page, size_t count)
2453{
2454 unsigned long v;
2455 unsigned long t;
2456
2457 if (!q->td)
2458 return -EINVAL;
2459 if (kstrtoul(page, 10, &v))
2460 return -EINVAL;
2461 t = msecs_to_jiffies(v);
2462 if (t == 0 || t > MAX_THROTL_SLICE)
2463 return -EINVAL;
2464 q->td->throtl_slice = t;
2465 return count;
2466}
2467#endif
2468
e43473b7
VG
2469static int __init throtl_init(void)
2470{
450adcbe
VG
2471 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2472 if (!kthrotld_workqueue)
2473 panic("Failed to create kthrotld\n");
2474
3c798398 2475 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
2476}
2477
2478module_init(throtl_init);