blk-throttle: pass a gendisk to blk_throtl_init and blk_throtl_exit
[linux-block.git] / block / blk-throttle.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
e43473b7
VG
2/*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
7
8#include <linux/module.h>
9#include <linux/slab.h>
10#include <linux/blkdev.h>
11#include <linux/bio.h>
12#include <linux/blktrace_api.h>
bc9fcbf9 13#include "blk.h"
1d156646 14#include "blk-cgroup-rwstat.h"
e4a19f72 15#include "blk-stat.h"
a7b36ee6 16#include "blk-throttle.h"
e43473b7
VG
17
18/* Max dispatch from a group in 1 round */
e675df2a 19#define THROTL_GRP_QUANTUM 8
e43473b7
VG
20
21/* Total max dispatch from all groups in one round */
e675df2a 22#define THROTL_QUANTUM 32
e43473b7 23
d61fcfa4
SL
24/* Throttling is performed over a slice and after that slice is renewed */
25#define DFL_THROTL_SLICE_HD (HZ / 10)
26#define DFL_THROTL_SLICE_SSD (HZ / 50)
297e3d85 27#define MAX_THROTL_SLICE (HZ)
9e234eea 28#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
9bb67aeb
SL
29#define MIN_THROTL_BPS (320 * 1024)
30#define MIN_THROTL_IOPS (10)
b4f428ef
SL
31#define DFL_LATENCY_TARGET (-1L)
32#define DFL_IDLE_THRESHOLD (0)
6679a90c
SL
33#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34#define LATENCY_FILTERED_SSD (0)
35/*
36 * For HD, very small latency comes from sequential IO. Such IO is helpless to
37 * help determine if its IO is impacted by others, hence we ignore the IO
38 */
39#define LATENCY_FILTERED_HD (1000L) /* 1ms */
e43473b7 40
450adcbe
VG
41/* A workqueue to queue throttle related work */
42static struct workqueue_struct *kthrotld_workqueue;
450adcbe 43
e43473b7
VG
44#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
45
b9147dd1
SL
46/* We measure latency for request size from <= 4k to >= 1M */
47#define LATENCY_BUCKET_SIZE 9
48
49struct latency_bucket {
50 unsigned long total_latency; /* ns / 1024 */
51 int samples;
52};
53
54struct avg_latency_bucket {
55 unsigned long latency; /* ns / 1024 */
56 bool valid;
57};
58
e43473b7
VG
59struct throtl_data
60{
e43473b7 61 /* service tree for active throtl groups */
c9e0332e 62 struct throtl_service_queue service_queue;
e43473b7 63
e43473b7
VG
64 struct request_queue *queue;
65
66 /* Total Number of queued bios on READ and WRITE lists */
67 unsigned int nr_queued[2];
68
297e3d85
SL
69 unsigned int throtl_slice;
70
e43473b7 71 /* Work for dispatching throttled bios */
69df0ab0 72 struct work_struct dispatch_work;
9f626e37
SL
73 unsigned int limit_index;
74 bool limit_valid[LIMIT_CNT];
3f0abd80
SL
75
76 unsigned long low_upgrade_time;
77 unsigned long low_downgrade_time;
7394e31f
SL
78
79 unsigned int scale;
b9147dd1 80
b889bf66
JQ
81 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
82 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
83 struct latency_bucket __percpu *latency_buckets[2];
b9147dd1 84 unsigned long last_calculate_time;
6679a90c 85 unsigned long filtered_latency;
b9147dd1
SL
86
87 bool track_bio_latency;
e43473b7
VG
88};
89
e99e88a9 90static void throtl_pending_timer_fn(struct timer_list *t);
69df0ab0 91
3c798398 92static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 93{
f95a04af 94 return pd_to_blkg(&tg->pd);
0381411e
TH
95}
96
fda6f272
TH
97/**
98 * sq_to_tg - return the throl_grp the specified service queue belongs to
99 * @sq: the throtl_service_queue of interest
100 *
101 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
102 * embedded in throtl_data, %NULL is returned.
103 */
104static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
105{
106 if (sq && sq->parent_sq)
107 return container_of(sq, struct throtl_grp, service_queue);
108 else
109 return NULL;
110}
111
112/**
113 * sq_to_td - return throtl_data the specified service queue belongs to
114 * @sq: the throtl_service_queue of interest
115 *
b43daedc 116 * A service_queue can be embedded in either a throtl_grp or throtl_data.
fda6f272
TH
117 * Determine the associated throtl_data accordingly and return it.
118 */
119static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
120{
121 struct throtl_grp *tg = sq_to_tg(sq);
122
123 if (tg)
124 return tg->td;
125 else
126 return container_of(sq, struct throtl_data, service_queue);
127}
128
7394e31f
SL
129/*
130 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
131 * make the IO dispatch more smooth.
132 * Scale up: linearly scale up according to lapsed time since upgrade. For
133 * every throtl_slice, the limit scales up 1/2 .low limit till the
134 * limit hits .max limit
135 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
136 */
137static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
138{
139 /* arbitrary value to avoid too big scale */
140 if (td->scale < 4096 && time_after_eq(jiffies,
141 td->low_upgrade_time + td->scale * td->throtl_slice))
142 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
143
144 return low + (low >> 1) * td->scale;
145}
146
9f626e37
SL
147static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
148{
b22c417c 149 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 150 struct throtl_data *td;
b22c417c
SL
151 uint64_t ret;
152
153 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
154 return U64_MAX;
7394e31f
SL
155
156 td = tg->td;
157 ret = tg->bps[rw][td->limit_index];
9bb67aeb
SL
158 if (ret == 0 && td->limit_index == LIMIT_LOW) {
159 /* intermediate node or iops isn't 0 */
160 if (!list_empty(&blkg->blkcg->css.children) ||
161 tg->iops[rw][td->limit_index])
162 return U64_MAX;
163 else
164 return MIN_THROTL_BPS;
165 }
7394e31f
SL
166
167 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
168 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
169 uint64_t adjusted;
170
171 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
172 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
173 }
b22c417c 174 return ret;
9f626e37
SL
175}
176
177static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
178{
b22c417c 179 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 180 struct throtl_data *td;
b22c417c
SL
181 unsigned int ret;
182
183 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
184 return UINT_MAX;
9bb67aeb 185
7394e31f
SL
186 td = tg->td;
187 ret = tg->iops[rw][td->limit_index];
9bb67aeb
SL
188 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
189 /* intermediate node or bps isn't 0 */
190 if (!list_empty(&blkg->blkcg->css.children) ||
191 tg->bps[rw][td->limit_index])
192 return UINT_MAX;
193 else
194 return MIN_THROTL_IOPS;
195 }
7394e31f
SL
196
197 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
198 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
199 uint64_t adjusted;
200
201 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
202 if (adjusted > UINT_MAX)
203 adjusted = UINT_MAX;
204 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
205 }
b22c417c 206 return ret;
9f626e37
SL
207}
208
b9147dd1
SL
209#define request_bucket_index(sectors) \
210 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
211
fda6f272
TH
212/**
213 * throtl_log - log debug message via blktrace
214 * @sq: the service_queue being reported
215 * @fmt: printf format string
216 * @args: printf args
217 *
218 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
219 * throtl_grp; otherwise, just "throtl".
fda6f272
TH
220 */
221#define throtl_log(sq, fmt, args...) do { \
222 struct throtl_grp *__tg = sq_to_tg((sq)); \
223 struct throtl_data *__td = sq_to_td((sq)); \
224 \
225 (void)__td; \
59fa0224
SL
226 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
227 break; \
fda6f272 228 if ((__tg)) { \
35fe6d76 229 blk_add_cgroup_trace_msg(__td->queue, \
f4a6a61c 230 &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
fda6f272
TH
231 } else { \
232 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
233 } \
54e7ed12 234} while (0)
e43473b7 235
ea0ea2bc
SL
236static inline unsigned int throtl_bio_data_size(struct bio *bio)
237{
238 /* assume it's one sector */
239 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
240 return 512;
241 return bio->bi_iter.bi_size;
242}
243
c5cc2070
TH
244static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
245{
246 INIT_LIST_HEAD(&qn->node);
247 bio_list_init(&qn->bios);
248 qn->tg = tg;
249}
250
251/**
252 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
253 * @bio: bio being added
254 * @qn: qnode to add bio to
255 * @queued: the service_queue->queued[] list @qn belongs to
256 *
257 * Add @bio to @qn and put @qn on @queued if it's not already on.
258 * @qn->tg's reference count is bumped when @qn is activated. See the
259 * comment on top of throtl_qnode definition for details.
260 */
261static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
262 struct list_head *queued)
263{
264 bio_list_add(&qn->bios, bio);
265 if (list_empty(&qn->node)) {
266 list_add_tail(&qn->node, queued);
267 blkg_get(tg_to_blkg(qn->tg));
268 }
269}
270
271/**
272 * throtl_peek_queued - peek the first bio on a qnode list
273 * @queued: the qnode list to peek
274 */
275static struct bio *throtl_peek_queued(struct list_head *queued)
276{
b7b609de 277 struct throtl_qnode *qn;
c5cc2070
TH
278 struct bio *bio;
279
280 if (list_empty(queued))
281 return NULL;
282
b7b609de 283 qn = list_first_entry(queued, struct throtl_qnode, node);
c5cc2070
TH
284 bio = bio_list_peek(&qn->bios);
285 WARN_ON_ONCE(!bio);
286 return bio;
287}
288
289/**
290 * throtl_pop_queued - pop the first bio form a qnode list
291 * @queued: the qnode list to pop a bio from
292 * @tg_to_put: optional out argument for throtl_grp to put
293 *
294 * Pop the first bio from the qnode list @queued. After popping, the first
295 * qnode is removed from @queued if empty or moved to the end of @queued so
296 * that the popping order is round-robin.
297 *
298 * When the first qnode is removed, its associated throtl_grp should be put
299 * too. If @tg_to_put is NULL, this function automatically puts it;
300 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
301 * responsible for putting it.
302 */
303static struct bio *throtl_pop_queued(struct list_head *queued,
304 struct throtl_grp **tg_to_put)
305{
b7b609de 306 struct throtl_qnode *qn;
c5cc2070
TH
307 struct bio *bio;
308
309 if (list_empty(queued))
310 return NULL;
311
b7b609de 312 qn = list_first_entry(queued, struct throtl_qnode, node);
c5cc2070
TH
313 bio = bio_list_pop(&qn->bios);
314 WARN_ON_ONCE(!bio);
315
316 if (bio_list_empty(&qn->bios)) {
317 list_del_init(&qn->node);
318 if (tg_to_put)
319 *tg_to_put = qn->tg;
320 else
321 blkg_put(tg_to_blkg(qn->tg));
322 } else {
323 list_move_tail(&qn->node, queued);
324 }
325
326 return bio;
327}
328
49a2f1e3 329/* init a service_queue, assumes the caller zeroed it */
b2ce2643 330static void throtl_service_queue_init(struct throtl_service_queue *sq)
49a2f1e3 331{
7e9c5c54
YK
332 INIT_LIST_HEAD(&sq->queued[READ]);
333 INIT_LIST_HEAD(&sq->queued[WRITE]);
9ff01255 334 sq->pending_tree = RB_ROOT_CACHED;
e99e88a9 335 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
69df0ab0
TH
336}
337
cf09a8ee
TH
338static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
339 struct request_queue *q,
340 struct blkcg *blkcg)
001bea73 341{
4fb72036 342 struct throtl_grp *tg;
24bdb8ef 343 int rw;
4fb72036 344
cf09a8ee 345 tg = kzalloc_node(sizeof(*tg), gfp, q->node);
4fb72036 346 if (!tg)
77ea7338 347 return NULL;
4fb72036 348
7ca46438
TH
349 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
350 goto err_free_tg;
351
352 if (blkg_rwstat_init(&tg->stat_ios, gfp))
353 goto err_exit_stat_bytes;
354
b2ce2643
TH
355 throtl_service_queue_init(&tg->service_queue);
356
357 for (rw = READ; rw <= WRITE; rw++) {
358 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
359 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
360 }
361
362 RB_CLEAR_NODE(&tg->rb_node);
9f626e37
SL
363 tg->bps[READ][LIMIT_MAX] = U64_MAX;
364 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
365 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
366 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
cd5ab1b0
SL
367 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
368 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
369 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
370 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
371 /* LIMIT_LOW will have default value 0 */
b2ce2643 372
ec80991d 373 tg->latency_target = DFL_LATENCY_TARGET;
5b81fc3c 374 tg->latency_target_conf = DFL_LATENCY_TARGET;
b4f428ef
SL
375 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
376 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
ec80991d 377
4fb72036 378 return &tg->pd;
7ca46438
TH
379
380err_exit_stat_bytes:
381 blkg_rwstat_exit(&tg->stat_bytes);
382err_free_tg:
383 kfree(tg);
384 return NULL;
001bea73
TH
385}
386
a9520cd6 387static void throtl_pd_init(struct blkg_policy_data *pd)
a29a171e 388{
a9520cd6
TH
389 struct throtl_grp *tg = pd_to_tg(pd);
390 struct blkcg_gq *blkg = tg_to_blkg(tg);
77216b04 391 struct throtl_data *td = blkg->q->td;
b2ce2643 392 struct throtl_service_queue *sq = &tg->service_queue;
cd1604fa 393
9138125b 394 /*
aa6ec29b 395 * If on the default hierarchy, we switch to properly hierarchical
9138125b
TH
396 * behavior where limits on a given throtl_grp are applied to the
397 * whole subtree rather than just the group itself. e.g. If 16M
398 * read_bps limit is set on the root group, the whole system can't
399 * exceed 16M for the device.
400 *
aa6ec29b 401 * If not on the default hierarchy, the broken flat hierarchy
9138125b
TH
402 * behavior is retained where all throtl_grps are treated as if
403 * they're all separate root groups right below throtl_data.
404 * Limits of a group don't interact with limits of other groups
405 * regardless of the position of the group in the hierarchy.
406 */
b2ce2643 407 sq->parent_sq = &td->service_queue;
9e10a130 408 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
b2ce2643 409 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
77216b04 410 tg->td = td;
8a3d2615
TH
411}
412
693e751e
TH
413/*
414 * Set has_rules[] if @tg or any of its parents have limits configured.
415 * This doesn't require walking up to the top of the hierarchy as the
416 * parent's has_rules[] is guaranteed to be correct.
417 */
418static void tg_update_has_rules(struct throtl_grp *tg)
419{
420 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
9f626e37 421 struct throtl_data *td = tg->td;
693e751e
TH
422 int rw;
423
81c7a63a
YK
424 for (rw = READ; rw <= WRITE; rw++) {
425 tg->has_rules_iops[rw] =
426 (parent_tg && parent_tg->has_rules_iops[rw]) ||
427 (td->limit_valid[td->limit_index] &&
428 tg_iops_limit(tg, rw) != UINT_MAX);
429 tg->has_rules_bps[rw] =
430 (parent_tg && parent_tg->has_rules_bps[rw]) ||
9f626e37 431 (td->limit_valid[td->limit_index] &&
81c7a63a
YK
432 (tg_bps_limit(tg, rw) != U64_MAX));
433 }
693e751e
TH
434}
435
a9520cd6 436static void throtl_pd_online(struct blkg_policy_data *pd)
693e751e 437{
aec24246 438 struct throtl_grp *tg = pd_to_tg(pd);
693e751e
TH
439 /*
440 * We don't want new groups to escape the limits of its ancestors.
441 * Update has_rules[] after a new group is brought online.
442 */
aec24246 443 tg_update_has_rules(tg);
693e751e
TH
444}
445
acaf523a 446#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
cd5ab1b0
SL
447static void blk_throtl_update_limit_valid(struct throtl_data *td)
448{
449 struct cgroup_subsys_state *pos_css;
450 struct blkcg_gq *blkg;
451 bool low_valid = false;
452
453 rcu_read_lock();
454 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
455 struct throtl_grp *tg = blkg_to_tg(blkg);
456
457 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
43ada787 458 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
cd5ab1b0 459 low_valid = true;
43ada787
LB
460 break;
461 }
cd5ab1b0
SL
462 }
463 rcu_read_unlock();
464
465 td->limit_valid[LIMIT_LOW] = low_valid;
466}
acaf523a
YK
467#else
468static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
469{
470}
471#endif
cd5ab1b0 472
c79892c5 473static void throtl_upgrade_state(struct throtl_data *td);
cd5ab1b0
SL
474static void throtl_pd_offline(struct blkg_policy_data *pd)
475{
476 struct throtl_grp *tg = pd_to_tg(pd);
477
478 tg->bps[READ][LIMIT_LOW] = 0;
479 tg->bps[WRITE][LIMIT_LOW] = 0;
480 tg->iops[READ][LIMIT_LOW] = 0;
481 tg->iops[WRITE][LIMIT_LOW] = 0;
482
483 blk_throtl_update_limit_valid(tg->td);
484
c79892c5
SL
485 if (!tg->td->limit_valid[tg->td->limit_index])
486 throtl_upgrade_state(tg->td);
cd5ab1b0
SL
487}
488
001bea73
TH
489static void throtl_pd_free(struct blkg_policy_data *pd)
490{
4fb72036
TH
491 struct throtl_grp *tg = pd_to_tg(pd);
492
b2ce2643 493 del_timer_sync(&tg->service_queue.pending_timer);
7ca46438
TH
494 blkg_rwstat_exit(&tg->stat_bytes);
495 blkg_rwstat_exit(&tg->stat_ios);
4fb72036 496 kfree(tg);
001bea73
TH
497}
498
0049af73
TH
499static struct throtl_grp *
500throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7 501{
9ff01255 502 struct rb_node *n;
e43473b7 503
9ff01255
LB
504 n = rb_first_cached(&parent_sq->pending_tree);
505 WARN_ON_ONCE(!n);
506 if (!n)
507 return NULL;
508 return rb_entry_tg(n);
e43473b7
VG
509}
510
0049af73
TH
511static void throtl_rb_erase(struct rb_node *n,
512 struct throtl_service_queue *parent_sq)
e43473b7 513{
9ff01255
LB
514 rb_erase_cached(n, &parent_sq->pending_tree);
515 RB_CLEAR_NODE(n);
e43473b7
VG
516}
517
0049af73 518static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
519{
520 struct throtl_grp *tg;
521
0049af73 522 tg = throtl_rb_first(parent_sq);
e43473b7
VG
523 if (!tg)
524 return;
525
0049af73 526 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
527}
528
77216b04 529static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 530{
77216b04 531 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
9ff01255 532 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
e43473b7
VG
533 struct rb_node *parent = NULL;
534 struct throtl_grp *__tg;
535 unsigned long key = tg->disptime;
9ff01255 536 bool leftmost = true;
e43473b7
VG
537
538 while (*node != NULL) {
539 parent = *node;
540 __tg = rb_entry_tg(parent);
541
542 if (time_before(key, __tg->disptime))
543 node = &parent->rb_left;
544 else {
545 node = &parent->rb_right;
9ff01255 546 leftmost = false;
e43473b7
VG
547 }
548 }
549
e43473b7 550 rb_link_node(&tg->rb_node, parent, node);
9ff01255
LB
551 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
552 leftmost);
e43473b7
VG
553}
554
77216b04 555static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 556{
29379674
BW
557 if (!(tg->flags & THROTL_TG_PENDING)) {
558 tg_service_queue_add(tg);
559 tg->flags |= THROTL_TG_PENDING;
560 tg->service_queue.parent_sq->nr_pending++;
561 }
e43473b7
VG
562}
563
77216b04 564static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 565{
29379674 566 if (tg->flags & THROTL_TG_PENDING) {
c013710e
YK
567 struct throtl_service_queue *parent_sq =
568 tg->service_queue.parent_sq;
569
570 throtl_rb_erase(&tg->rb_node, parent_sq);
571 --parent_sq->nr_pending;
29379674
BW
572 tg->flags &= ~THROTL_TG_PENDING;
573 }
e43473b7
VG
574}
575
a9131a27 576/* Call with queue lock held */
69df0ab0
TH
577static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
578 unsigned long expires)
a9131a27 579{
a41b816c 580 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
06cceedc
SL
581
582 /*
583 * Since we are adjusting the throttle limit dynamically, the sleep
584 * time calculated according to previous limit might be invalid. It's
585 * possible the cgroup sleep time is very long and no other cgroups
586 * have IO running so notify the limit changes. Make sure the cgroup
587 * doesn't sleep too long to avoid the missed notification.
588 */
589 if (time_after(expires, max_expire))
590 expires = max_expire;
69df0ab0
TH
591 mod_timer(&sq->pending_timer, expires);
592 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
593 expires - jiffies, jiffies);
a9131a27
TH
594}
595
7f52f98c
TH
596/**
597 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
598 * @sq: the service_queue to schedule dispatch for
599 * @force: force scheduling
600 *
601 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
602 * dispatch time of the first pending child. Returns %true if either timer
603 * is armed or there's no pending child left. %false if the current
604 * dispatch window is still open and the caller should continue
605 * dispatching.
606 *
607 * If @force is %true, the dispatch timer is always scheduled and this
608 * function is guaranteed to return %true. This is to be used when the
609 * caller can't dispatch itself and needs to invoke pending_timer
610 * unconditionally. Note that forced scheduling is likely to induce short
611 * delay before dispatch starts even if @sq->first_pending_disptime is not
612 * in the future and thus shouldn't be used in hot paths.
613 */
614static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
615 bool force)
e43473b7 616{
6a525600 617 /* any pending children left? */
c9e0332e 618 if (!sq->nr_pending)
7f52f98c 619 return true;
e43473b7 620
c9e0332e 621 update_min_dispatch_time(sq);
e43473b7 622
69df0ab0 623 /* is the next dispatch time in the future? */
7f52f98c 624 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 625 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 626 return true;
69df0ab0
TH
627 }
628
7f52f98c
TH
629 /* tell the caller to continue dispatching */
630 return false;
e43473b7
VG
631}
632
32ee5bc4
VG
633static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
634 bool rw, unsigned long start)
635{
636 tg->bytes_disp[rw] = 0;
637 tg->io_disp[rw] = 0;
a880ae93
YK
638 tg->carryover_bytes[rw] = 0;
639 tg->carryover_ios[rw] = 0;
32ee5bc4
VG
640
641 /*
642 * Previous slice has expired. We must have trimmed it after last
643 * bio dispatch. That means since start of last slice, we never used
644 * that bandwidth. Do try to make use of that bandwidth while giving
645 * credit.
646 */
647 if (time_after_eq(start, tg->slice_start[rw]))
648 tg->slice_start[rw] = start;
649
297e3d85 650 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
32ee5bc4
VG
651 throtl_log(&tg->service_queue,
652 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
653 rw == READ ? 'R' : 'W', tg->slice_start[rw],
654 tg->slice_end[rw], jiffies);
655}
656
a880ae93
YK
657static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw,
658 bool clear_carryover)
e43473b7
VG
659{
660 tg->bytes_disp[rw] = 0;
8e89d13f 661 tg->io_disp[rw] = 0;
e43473b7 662 tg->slice_start[rw] = jiffies;
297e3d85 663 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
a880ae93
YK
664 if (clear_carryover) {
665 tg->carryover_bytes[rw] = 0;
666 tg->carryover_ios[rw] = 0;
667 }
4f1e9630 668
fda6f272
TH
669 throtl_log(&tg->service_queue,
670 "[%c] new slice start=%lu end=%lu jiffies=%lu",
671 rw == READ ? 'R' : 'W', tg->slice_start[rw],
672 tg->slice_end[rw], jiffies);
e43473b7
VG
673}
674
0f3457f6
TH
675static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
676 unsigned long jiffy_end)
d1ae8ffd 677{
297e3d85 678 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
d1ae8ffd
VG
679}
680
0f3457f6
TH
681static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
682 unsigned long jiffy_end)
e43473b7 683{
1da30f95 684 throtl_set_slice_end(tg, rw, jiffy_end);
fda6f272
TH
685 throtl_log(&tg->service_queue,
686 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
687 rw == READ ? 'R' : 'W', tg->slice_start[rw],
688 tg->slice_end[rw], jiffies);
e43473b7
VG
689}
690
691/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 692static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
693{
694 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
5cf8c227 695 return false;
e43473b7 696
0b6bad7d 697 return true;
e43473b7
VG
698}
699
700/* Trim the used slices and adjust slice start accordingly */
0f3457f6 701static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 702{
3aad5d3e
VG
703 unsigned long nr_slices, time_elapsed, io_trim;
704 u64 bytes_trim, tmp;
e43473b7
VG
705
706 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
707
708 /*
709 * If bps are unlimited (-1), then time slice don't get
710 * renewed. Don't try to trim the slice if slice is used. A new
711 * slice will start when appropriate.
712 */
0f3457f6 713 if (throtl_slice_used(tg, rw))
e43473b7
VG
714 return;
715
d1ae8ffd
VG
716 /*
717 * A bio has been dispatched. Also adjust slice_end. It might happen
718 * that initially cgroup limit was very low resulting in high
b53b072c 719 * slice_end, but later limit was bumped up and bio was dispatched
d1ae8ffd
VG
720 * sooner, then we need to reduce slice_end. A high bogus slice_end
721 * is bad because it does not allow new slice to start.
722 */
723
297e3d85 724 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
d1ae8ffd 725
e43473b7
VG
726 time_elapsed = jiffies - tg->slice_start[rw];
727
297e3d85 728 nr_slices = time_elapsed / tg->td->throtl_slice;
e43473b7
VG
729
730 if (!nr_slices)
731 return;
297e3d85 732 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
3aad5d3e
VG
733 do_div(tmp, HZ);
734 bytes_trim = tmp;
e43473b7 735
297e3d85
SL
736 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
737 HZ;
e43473b7 738
8e89d13f 739 if (!bytes_trim && !io_trim)
e43473b7
VG
740 return;
741
742 if (tg->bytes_disp[rw] >= bytes_trim)
743 tg->bytes_disp[rw] -= bytes_trim;
744 else
745 tg->bytes_disp[rw] = 0;
746
8e89d13f
VG
747 if (tg->io_disp[rw] >= io_trim)
748 tg->io_disp[rw] -= io_trim;
749 else
750 tg->io_disp[rw] = 0;
751
297e3d85 752 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
e43473b7 753
fda6f272
TH
754 throtl_log(&tg->service_queue,
755 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
756 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
757 tg->slice_start[rw], tg->slice_end[rw], jiffies);
e43473b7
VG
758}
759
681cd46f
YK
760static unsigned int calculate_io_allowed(u32 iops_limit,
761 unsigned long jiffy_elapsed)
e43473b7 762{
8e89d13f 763 unsigned int io_allowed;
c49c06e4 764 u64 tmp;
e43473b7 765
c49c06e4 766 /*
681cd46f 767 * jiffy_elapsed should not be a big value as minimum iops can be
c49c06e4
VG
768 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
769 * will allow dispatch after 1 second and after that slice should
770 * have been trimmed.
771 */
772
681cd46f 773 tmp = (u64)iops_limit * jiffy_elapsed;
c49c06e4
VG
774 do_div(tmp, HZ);
775
776 if (tmp > UINT_MAX)
777 io_allowed = UINT_MAX;
778 else
779 io_allowed = tmp;
8e89d13f 780
681cd46f
YK
781 return io_allowed;
782}
783
784static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed)
785{
786 return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ);
787}
788
a880ae93
YK
789static void __tg_update_carryover(struct throtl_grp *tg, bool rw)
790{
791 unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw];
792 u64 bps_limit = tg_bps_limit(tg, rw);
793 u32 iops_limit = tg_iops_limit(tg, rw);
794
795 /*
796 * If config is updated while bios are still throttled, calculate and
797 * accumulate how many bytes/ios are waited across changes. And
798 * carryover_bytes/ios will be used to calculate new wait time under new
799 * configuration.
800 */
801 if (bps_limit != U64_MAX)
802 tg->carryover_bytes[rw] +=
803 calculate_bytes_allowed(bps_limit, jiffy_elapsed) -
804 tg->bytes_disp[rw];
805 if (iops_limit != UINT_MAX)
806 tg->carryover_ios[rw] +=
807 calculate_io_allowed(iops_limit, jiffy_elapsed) -
808 tg->io_disp[rw];
809}
810
811static void tg_update_carryover(struct throtl_grp *tg)
812{
813 if (tg->service_queue.nr_queued[READ])
814 __tg_update_carryover(tg, READ);
815 if (tg->service_queue.nr_queued[WRITE])
816 __tg_update_carryover(tg, WRITE);
817
818 /* see comments in struct throtl_grp for meaning of these fields. */
819 throtl_log(&tg->service_queue, "%s: %llu %llu %u %u\n", __func__,
820 tg->carryover_bytes[READ], tg->carryover_bytes[WRITE],
821 tg->carryover_ios[READ], tg->carryover_ios[WRITE]);
822}
823
681cd46f
YK
824static bool tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio,
825 u32 iops_limit, unsigned long *wait)
826{
827 bool rw = bio_data_dir(bio);
828 unsigned int io_allowed;
829 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
830
831 if (iops_limit == UINT_MAX) {
832 if (wait)
833 *wait = 0;
834 return true;
835 }
836
837 jiffy_elapsed = jiffies - tg->slice_start[rw];
838
839 /* Round up to the next throttle slice, wait time must be nonzero */
840 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
a880ae93
YK
841 io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd) +
842 tg->carryover_ios[rw];
8e89d13f 843 if (tg->io_disp[rw] + 1 <= io_allowed) {
e43473b7
VG
844 if (wait)
845 *wait = 0;
5cf8c227 846 return true;
e43473b7
VG
847 }
848
8e89d13f 849 /* Calc approx time to dispatch */
991f61fe 850 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
8e89d13f
VG
851
852 if (wait)
853 *wait = jiffy_wait;
0b6bad7d 854 return false;
8e89d13f
VG
855}
856
681cd46f
YK
857static bool tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio,
858 u64 bps_limit, unsigned long *wait)
8e89d13f
VG
859{
860 bool rw = bio_data_dir(bio);
8d6bbaad 861 u64 bytes_allowed, extra_bytes;
8e89d13f 862 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
ea0ea2bc 863 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7 864
9f5ede3c 865 /* no need to throttle if this bio's bytes have been accounted */
320fb0f9 866 if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) {
87fbeb88
BW
867 if (wait)
868 *wait = 0;
869 return true;
870 }
871
e43473b7
VG
872 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
873
874 /* Slice has just started. Consider one slice interval */
875 if (!jiffy_elapsed)
297e3d85 876 jiffy_elapsed_rnd = tg->td->throtl_slice;
e43473b7 877
297e3d85 878 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
a880ae93
YK
879 bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd) +
880 tg->carryover_bytes[rw];
ea0ea2bc 881 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
e43473b7
VG
882 if (wait)
883 *wait = 0;
5cf8c227 884 return true;
e43473b7
VG
885 }
886
887 /* Calc approx time to dispatch */
ea0ea2bc 888 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
4599ea49 889 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
e43473b7
VG
890
891 if (!jiffy_wait)
892 jiffy_wait = 1;
893
894 /*
895 * This wait time is without taking into consideration the rounding
896 * up we did. Add that time also.
897 */
898 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
e43473b7
VG
899 if (wait)
900 *wait = jiffy_wait;
0b6bad7d 901 return false;
8e89d13f
VG
902}
903
904/*
905 * Returns whether one can dispatch a bio or not. Also returns approx number
906 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
907 */
0f3457f6
TH
908static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
909 unsigned long *wait)
8e89d13f
VG
910{
911 bool rw = bio_data_dir(bio);
912 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
4599ea49
BW
913 u64 bps_limit = tg_bps_limit(tg, rw);
914 u32 iops_limit = tg_iops_limit(tg, rw);
8e89d13f
VG
915
916 /*
917 * Currently whole state machine of group depends on first bio
918 * queued in the group bio list. So one should not be calling
919 * this function with a different bio if there are other bios
920 * queued.
921 */
73f0d49a 922 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 923 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 924
8e89d13f 925 /* If tg->bps = -1, then BW is unlimited */
8f9e7b65
YK
926 if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
927 tg->flags & THROTL_TG_CANCELING) {
8e89d13f
VG
928 if (wait)
929 *wait = 0;
5cf8c227 930 return true;
8e89d13f
VG
931 }
932
933 /*
934 * If previous slice expired, start a new one otherwise renew/extend
935 * existing slice to make sure it is at least throtl_slice interval
164c80ed
VG
936 * long since now. New slice is started only for empty throttle group.
937 * If there is queued bio, that means there should be an active
938 * slice and it should be extended instead.
8e89d13f 939 */
164c80ed 940 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
a880ae93 941 throtl_start_new_slice(tg, rw, true);
8e89d13f 942 else {
297e3d85
SL
943 if (time_before(tg->slice_end[rw],
944 jiffies + tg->td->throtl_slice))
945 throtl_extend_slice(tg, rw,
946 jiffies + tg->td->throtl_slice);
8e89d13f
VG
947 }
948
681cd46f
YK
949 if (tg_within_bps_limit(tg, bio, bps_limit, &bps_wait) &&
950 tg_within_iops_limit(tg, bio, iops_limit, &iops_wait)) {
8e89d13f
VG
951 if (wait)
952 *wait = 0;
0b6bad7d 953 return true;
8e89d13f
VG
954 }
955
956 max_wait = max(bps_wait, iops_wait);
957
958 if (wait)
959 *wait = max_wait;
960
961 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 962 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7 963
0b6bad7d 964 return false;
e43473b7
VG
965}
966
967static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
968{
969 bool rw = bio_data_dir(bio);
ea0ea2bc 970 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7
VG
971
972 /* Charge the bio to the group */
320fb0f9 973 if (!bio_flagged(bio, BIO_BPS_THROTTLED)) {
9f5ede3c
ML
974 tg->bytes_disp[rw] += bio_size;
975 tg->last_bytes_disp[rw] += bio_size;
976 }
977
8e89d13f 978 tg->io_disp[rw]++;
3f0abd80 979 tg->last_io_disp[rw]++;
e43473b7
VG
980}
981
c5cc2070
TH
982/**
983 * throtl_add_bio_tg - add a bio to the specified throtl_grp
984 * @bio: bio to add
985 * @qn: qnode to use
986 * @tg: the target throtl_grp
987 *
988 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
989 * tg->qnode_on_self[] is used.
990 */
991static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
992 struct throtl_grp *tg)
e43473b7 993{
73f0d49a 994 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
995 bool rw = bio_data_dir(bio);
996
c5cc2070
TH
997 if (!qn)
998 qn = &tg->qnode_on_self[rw];
999
0e9f4164
TH
1000 /*
1001 * If @tg doesn't currently have any bios queued in the same
1002 * direction, queueing @bio can change when @tg should be
1003 * dispatched. Mark that @tg was empty. This is automatically
b53b072c 1004 * cleared on the next tg_update_disptime().
0e9f4164
TH
1005 */
1006 if (!sq->nr_queued[rw])
1007 tg->flags |= THROTL_TG_WAS_EMPTY;
1008
c5cc2070
TH
1009 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1010
73f0d49a 1011 sq->nr_queued[rw]++;
77216b04 1012 throtl_enqueue_tg(tg);
e43473b7
VG
1013}
1014
77216b04 1015static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 1016{
73f0d49a 1017 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1018 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1019 struct bio *bio;
1020
d609af3a
ME
1021 bio = throtl_peek_queued(&sq->queued[READ]);
1022 if (bio)
0f3457f6 1023 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 1024
d609af3a
ME
1025 bio = throtl_peek_queued(&sq->queued[WRITE]);
1026 if (bio)
0f3457f6 1027 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
1028
1029 min_wait = min(read_wait, write_wait);
1030 disptime = jiffies + min_wait;
1031
e43473b7 1032 /* Update dispatch time */
c013710e 1033 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
e43473b7 1034 tg->disptime = disptime;
c013710e 1035 tg_service_queue_add(tg);
0e9f4164
TH
1036
1037 /* see throtl_add_bio_tg() */
1038 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
1039}
1040
32ee5bc4
VG
1041static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1042 struct throtl_grp *parent_tg, bool rw)
1043{
1044 if (throtl_slice_used(parent_tg, rw)) {
1045 throtl_start_new_slice_with_credit(parent_tg, rw,
1046 child_tg->slice_start[rw]);
1047 }
1048
1049}
1050
77216b04 1051static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 1052{
73f0d49a 1053 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
1054 struct throtl_service_queue *parent_sq = sq->parent_sq;
1055 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 1056 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
1057 struct bio *bio;
1058
c5cc2070
TH
1059 /*
1060 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1061 * from @tg may put its reference and @parent_sq might end up
1062 * getting released prematurely. Remember the tg to put and put it
1063 * after @bio is transferred to @parent_sq.
1064 */
1065 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 1066 sq->nr_queued[rw]--;
e43473b7
VG
1067
1068 throtl_charge_bio(tg, bio);
320fb0f9 1069 bio_set_flag(bio, BIO_BPS_THROTTLED);
6bc9c2b4
TH
1070
1071 /*
1072 * If our parent is another tg, we just need to transfer @bio to
1073 * the parent using throtl_add_bio_tg(). If our parent is
1074 * @td->service_queue, @bio is ready to be issued. Put it on its
1075 * bio_lists[] and decrease total number queued. The caller is
1076 * responsible for issuing these bios.
1077 */
1078 if (parent_tg) {
c5cc2070 1079 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
32ee5bc4 1080 start_parent_slice_with_credit(tg, parent_tg, rw);
6bc9c2b4 1081 } else {
c5cc2070
TH
1082 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1083 &parent_sq->queued[rw]);
6bc9c2b4
TH
1084 BUG_ON(tg->td->nr_queued[rw] <= 0);
1085 tg->td->nr_queued[rw]--;
1086 }
e43473b7 1087
0f3457f6 1088 throtl_trim_slice(tg, rw);
6bc9c2b4 1089
c5cc2070
TH
1090 if (tg_to_put)
1091 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
1092}
1093
77216b04 1094static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 1095{
73f0d49a 1096 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7 1097 unsigned int nr_reads = 0, nr_writes = 0;
e675df2a
BW
1098 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1099 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
e43473b7
VG
1100 struct bio *bio;
1101
1102 /* Try to dispatch 75% READS and 25% WRITES */
1103
c5cc2070 1104 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 1105 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1106
77216b04 1107 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1108 nr_reads++;
1109
1110 if (nr_reads >= max_nr_reads)
1111 break;
1112 }
1113
c5cc2070 1114 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 1115 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1116
77216b04 1117 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1118 nr_writes++;
1119
1120 if (nr_writes >= max_nr_writes)
1121 break;
1122 }
1123
1124 return nr_reads + nr_writes;
1125}
1126
651930bc 1127static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
1128{
1129 unsigned int nr_disp = 0;
e43473b7
VG
1130
1131 while (1) {
2397611a 1132 struct throtl_grp *tg;
2ab74cd2 1133 struct throtl_service_queue *sq;
e43473b7 1134
2397611a
BW
1135 if (!parent_sq->nr_pending)
1136 break;
1137
1138 tg = throtl_rb_first(parent_sq);
e43473b7
VG
1139 if (!tg)
1140 break;
1141
1142 if (time_before(jiffies, tg->disptime))
1143 break;
1144
77216b04 1145 nr_disp += throtl_dispatch_tg(tg);
e43473b7 1146
2ab74cd2 1147 sq = &tg->service_queue;
7e9c5c54 1148 if (sq->nr_queued[READ] || sq->nr_queued[WRITE])
77216b04 1149 tg_update_disptime(tg);
8c25ed0c
YK
1150 else
1151 throtl_dequeue_tg(tg);
e43473b7 1152
e675df2a 1153 if (nr_disp >= THROTL_QUANTUM)
e43473b7
VG
1154 break;
1155 }
1156
1157 return nr_disp;
1158}
1159
c79892c5
SL
1160static bool throtl_can_upgrade(struct throtl_data *td,
1161 struct throtl_grp *this_tg);
6e1a5704
TH
1162/**
1163 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
216382dc 1164 * @t: the pending_timer member of the throtl_service_queue being serviced
6e1a5704
TH
1165 *
1166 * This timer is armed when a child throtl_grp with active bio's become
1167 * pending and queued on the service_queue's pending_tree and expires when
1168 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1169 * dispatches bio's from the children throtl_grps to the parent
1170 * service_queue.
1171 *
1172 * If the parent's parent is another throtl_grp, dispatching is propagated
1173 * by either arming its pending_timer or repeating dispatch directly. If
1174 * the top-level service_tree is reached, throtl_data->dispatch_work is
1175 * kicked so that the ready bio's are issued.
6e1a5704 1176 */
e99e88a9 1177static void throtl_pending_timer_fn(struct timer_list *t)
69df0ab0 1178{
e99e88a9 1179 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
2e48a530 1180 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1181 struct throtl_data *td = sq_to_td(sq);
2e48a530 1182 struct throtl_service_queue *parent_sq;
ee37eddb 1183 struct request_queue *q;
2e48a530 1184 bool dispatched;
6e1a5704 1185 int ret;
e43473b7 1186
ee37eddb
ML
1187 /* throtl_data may be gone, so figure out request queue by blkg */
1188 if (tg)
1189 q = tg->pd.blkg->q;
1190 else
1191 q = td->queue;
1192
0d945c1f 1193 spin_lock_irq(&q->queue_lock);
ee37eddb
ML
1194
1195 if (!q->root_blkg)
1196 goto out_unlock;
1197
c79892c5
SL
1198 if (throtl_can_upgrade(td, NULL))
1199 throtl_upgrade_state(td);
1200
2e48a530
TH
1201again:
1202 parent_sq = sq->parent_sq;
1203 dispatched = false;
e43473b7 1204
7f52f98c
TH
1205 while (true) {
1206 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1207 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1208 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1209
1210 ret = throtl_select_dispatch(sq);
1211 if (ret) {
7f52f98c
TH
1212 throtl_log(sq, "bios disp=%u", ret);
1213 dispatched = true;
1214 }
e43473b7 1215
7f52f98c
TH
1216 if (throtl_schedule_next_dispatch(sq, false))
1217 break;
e43473b7 1218
7f52f98c 1219 /* this dispatch windows is still open, relax and repeat */
0d945c1f 1220 spin_unlock_irq(&q->queue_lock);
7f52f98c 1221 cpu_relax();
0d945c1f 1222 spin_lock_irq(&q->queue_lock);
651930bc 1223 }
e43473b7 1224
2e48a530
TH
1225 if (!dispatched)
1226 goto out_unlock;
6e1a5704 1227
2e48a530
TH
1228 if (parent_sq) {
1229 /* @parent_sq is another throl_grp, propagate dispatch */
1230 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1231 tg_update_disptime(tg);
1232 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1233 /* window is already open, repeat dispatching */
1234 sq = parent_sq;
1235 tg = sq_to_tg(sq);
1236 goto again;
1237 }
1238 }
1239 } else {
b53b072c 1240 /* reached the top-level, queue issuing */
2e48a530
TH
1241 queue_work(kthrotld_workqueue, &td->dispatch_work);
1242 }
1243out_unlock:
0d945c1f 1244 spin_unlock_irq(&q->queue_lock);
6e1a5704 1245}
e43473b7 1246
6e1a5704
TH
1247/**
1248 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1249 * @work: work item being executed
1250 *
b53b072c
BW
1251 * This function is queued for execution when bios reach the bio_lists[]
1252 * of throtl_data->service_queue. Those bios are ready and issued by this
6e1a5704
TH
1253 * function.
1254 */
8876e140 1255static void blk_throtl_dispatch_work_fn(struct work_struct *work)
6e1a5704
TH
1256{
1257 struct throtl_data *td = container_of(work, struct throtl_data,
1258 dispatch_work);
1259 struct throtl_service_queue *td_sq = &td->service_queue;
1260 struct request_queue *q = td->queue;
1261 struct bio_list bio_list_on_stack;
1262 struct bio *bio;
1263 struct blk_plug plug;
1264 int rw;
1265
1266 bio_list_init(&bio_list_on_stack);
1267
0d945c1f 1268 spin_lock_irq(&q->queue_lock);
c5cc2070
TH
1269 for (rw = READ; rw <= WRITE; rw++)
1270 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1271 bio_list_add(&bio_list_on_stack, bio);
0d945c1f 1272 spin_unlock_irq(&q->queue_lock);
6e1a5704
TH
1273
1274 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1275 blk_start_plug(&plug);
ed00aabd 1276 while ((bio = bio_list_pop(&bio_list_on_stack)))
3f98c753 1277 submit_bio_noacct_nocheck(bio);
69d60eb9 1278 blk_finish_plug(&plug);
e43473b7 1279 }
e43473b7
VG
1280}
1281
f95a04af
TH
1282static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1283 int off)
60c2bc2d 1284{
f95a04af
TH
1285 struct throtl_grp *tg = pd_to_tg(pd);
1286 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1287
2ab5492d 1288 if (v == U64_MAX)
60c2bc2d 1289 return 0;
f95a04af 1290 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1291}
1292
f95a04af
TH
1293static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1294 int off)
e43473b7 1295{
f95a04af
TH
1296 struct throtl_grp *tg = pd_to_tg(pd);
1297 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1298
2ab5492d 1299 if (v == UINT_MAX)
af133ceb 1300 return 0;
f95a04af 1301 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1302}
1303
2da8ca82 1304static int tg_print_conf_u64(struct seq_file *sf, void *v)
8e89d13f 1305{
2da8ca82
TH
1306 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1307 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1308 return 0;
8e89d13f
VG
1309}
1310
2da8ca82 1311static int tg_print_conf_uint(struct seq_file *sf, void *v)
8e89d13f 1312{
2da8ca82
TH
1313 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1314 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1315 return 0;
60c2bc2d
TH
1316}
1317
9bb67aeb 1318static void tg_conf_updated(struct throtl_grp *tg, bool global)
60c2bc2d 1319{
69948b07 1320 struct throtl_service_queue *sq = &tg->service_queue;
492eb21b 1321 struct cgroup_subsys_state *pos_css;
69948b07 1322 struct blkcg_gq *blkg;
af133ceb 1323
fda6f272
TH
1324 throtl_log(&tg->service_queue,
1325 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
9f626e37
SL
1326 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1327 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
632b4493 1328
693e751e
TH
1329 /*
1330 * Update has_rules[] flags for the updated tg's subtree. A tg is
1331 * considered to have rules if either the tg itself or any of its
1332 * ancestors has rules. This identifies groups without any
1333 * restrictions in the whole hierarchy and allows them to bypass
1334 * blk-throttle.
1335 */
9bb67aeb
SL
1336 blkg_for_each_descendant_pre(blkg, pos_css,
1337 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
5b81fc3c
SL
1338 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1339 struct throtl_grp *parent_tg;
1340
1341 tg_update_has_rules(this_tg);
1342 /* ignore root/second level */
1343 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1344 !blkg->parent->parent)
1345 continue;
1346 parent_tg = blkg_to_tg(blkg->parent);
1347 /*
1348 * make sure all children has lower idle time threshold and
1349 * higher latency target
1350 */
1351 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1352 parent_tg->idletime_threshold);
1353 this_tg->latency_target = max(this_tg->latency_target,
1354 parent_tg->latency_target);
1355 }
693e751e 1356
632b4493
TH
1357 /*
1358 * We're already holding queue_lock and know @tg is valid. Let's
1359 * apply the new config directly.
1360 *
1361 * Restart the slices for both READ and WRITES. It might happen
1362 * that a group's limit are dropped suddenly and we don't want to
1363 * account recently dispatched IO with new low rate.
1364 */
a880ae93
YK
1365 throtl_start_new_slice(tg, READ, false);
1366 throtl_start_new_slice(tg, WRITE, false);
632b4493 1367
5b2c16aa 1368 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1369 tg_update_disptime(tg);
7f52f98c 1370 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1371 }
69948b07
TH
1372}
1373
1374static ssize_t tg_set_conf(struct kernfs_open_file *of,
1375 char *buf, size_t nbytes, loff_t off, bool is_u64)
1376{
1377 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1378 struct blkg_conf_ctx ctx;
1379 struct throtl_grp *tg;
1380 int ret;
1381 u64 v;
1382
1383 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1384 if (ret)
1385 return ret;
1386
1387 ret = -EINVAL;
1388 if (sscanf(ctx.body, "%llu", &v) != 1)
1389 goto out_finish;
1390 if (!v)
2ab5492d 1391 v = U64_MAX;
69948b07
TH
1392
1393 tg = blkg_to_tg(ctx.blkg);
a880ae93 1394 tg_update_carryover(tg);
69948b07
TH
1395
1396 if (is_u64)
1397 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1398 else
1399 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
60c2bc2d 1400
9bb67aeb 1401 tg_conf_updated(tg, false);
36aa9e5f
TH
1402 ret = 0;
1403out_finish:
60c2bc2d 1404 blkg_conf_finish(&ctx);
36aa9e5f 1405 return ret ?: nbytes;
8e89d13f
VG
1406}
1407
451af504
TH
1408static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1409 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1410{
451af504 1411 return tg_set_conf(of, buf, nbytes, off, true);
60c2bc2d
TH
1412}
1413
451af504
TH
1414static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1415 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1416{
451af504 1417 return tg_set_conf(of, buf, nbytes, off, false);
60c2bc2d
TH
1418}
1419
7ca46438
TH
1420static int tg_print_rwstat(struct seq_file *sf, void *v)
1421{
1422 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1423 blkg_prfill_rwstat, &blkcg_policy_throtl,
1424 seq_cft(sf)->private, true);
1425 return 0;
1426}
1427
1428static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1429 struct blkg_policy_data *pd, int off)
1430{
1431 struct blkg_rwstat_sample sum;
1432
1433 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1434 &sum);
1435 return __blkg_prfill_rwstat(sf, pd, &sum);
1436}
1437
1438static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1439{
1440 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1441 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1442 seq_cft(sf)->private, true);
1443 return 0;
1444}
1445
880f50e2 1446static struct cftype throtl_legacy_files[] = {
60c2bc2d
TH
1447 {
1448 .name = "throttle.read_bps_device",
9f626e37 1449 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
2da8ca82 1450 .seq_show = tg_print_conf_u64,
451af504 1451 .write = tg_set_conf_u64,
60c2bc2d
TH
1452 },
1453 {
1454 .name = "throttle.write_bps_device",
9f626e37 1455 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
2da8ca82 1456 .seq_show = tg_print_conf_u64,
451af504 1457 .write = tg_set_conf_u64,
60c2bc2d
TH
1458 },
1459 {
1460 .name = "throttle.read_iops_device",
9f626e37 1461 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
2da8ca82 1462 .seq_show = tg_print_conf_uint,
451af504 1463 .write = tg_set_conf_uint,
60c2bc2d
TH
1464 },
1465 {
1466 .name = "throttle.write_iops_device",
9f626e37 1467 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
2da8ca82 1468 .seq_show = tg_print_conf_uint,
451af504 1469 .write = tg_set_conf_uint,
60c2bc2d
TH
1470 },
1471 {
1472 .name = "throttle.io_service_bytes",
7ca46438
TH
1473 .private = offsetof(struct throtl_grp, stat_bytes),
1474 .seq_show = tg_print_rwstat,
60c2bc2d 1475 },
17534c6f 1476 {
1477 .name = "throttle.io_service_bytes_recursive",
7ca46438
TH
1478 .private = offsetof(struct throtl_grp, stat_bytes),
1479 .seq_show = tg_print_rwstat_recursive,
17534c6f 1480 },
60c2bc2d
TH
1481 {
1482 .name = "throttle.io_serviced",
7ca46438
TH
1483 .private = offsetof(struct throtl_grp, stat_ios),
1484 .seq_show = tg_print_rwstat,
60c2bc2d 1485 },
17534c6f 1486 {
1487 .name = "throttle.io_serviced_recursive",
7ca46438
TH
1488 .private = offsetof(struct throtl_grp, stat_ios),
1489 .seq_show = tg_print_rwstat_recursive,
17534c6f 1490 },
60c2bc2d
TH
1491 { } /* terminate */
1492};
1493
cd5ab1b0 1494static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
2ee867dc
TH
1495 int off)
1496{
1497 struct throtl_grp *tg = pd_to_tg(pd);
1498 const char *dname = blkg_dev_name(pd->blkg);
1499 char bufs[4][21] = { "max", "max", "max", "max" };
cd5ab1b0
SL
1500 u64 bps_dft;
1501 unsigned int iops_dft;
ada75b6e 1502 char idle_time[26] = "";
ec80991d 1503 char latency_time[26] = "";
2ee867dc
TH
1504
1505 if (!dname)
1506 return 0;
9f626e37 1507
cd5ab1b0
SL
1508 if (off == LIMIT_LOW) {
1509 bps_dft = 0;
1510 iops_dft = 0;
1511 } else {
1512 bps_dft = U64_MAX;
1513 iops_dft = UINT_MAX;
1514 }
1515
1516 if (tg->bps_conf[READ][off] == bps_dft &&
1517 tg->bps_conf[WRITE][off] == bps_dft &&
1518 tg->iops_conf[READ][off] == iops_dft &&
ada75b6e 1519 tg->iops_conf[WRITE][off] == iops_dft &&
ec80991d 1520 (off != LIMIT_LOW ||
b4f428ef 1521 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
5b81fc3c 1522 tg->latency_target_conf == DFL_LATENCY_TARGET)))
2ee867dc
TH
1523 return 0;
1524
9bb67aeb 1525 if (tg->bps_conf[READ][off] != U64_MAX)
9f626e37 1526 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
cd5ab1b0 1527 tg->bps_conf[READ][off]);
9bb67aeb 1528 if (tg->bps_conf[WRITE][off] != U64_MAX)
9f626e37 1529 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
cd5ab1b0 1530 tg->bps_conf[WRITE][off]);
9bb67aeb 1531 if (tg->iops_conf[READ][off] != UINT_MAX)
9f626e37 1532 snprintf(bufs[2], sizeof(bufs[2]), "%u",
cd5ab1b0 1533 tg->iops_conf[READ][off]);
9bb67aeb 1534 if (tg->iops_conf[WRITE][off] != UINT_MAX)
9f626e37 1535 snprintf(bufs[3], sizeof(bufs[3]), "%u",
cd5ab1b0 1536 tg->iops_conf[WRITE][off]);
ada75b6e 1537 if (off == LIMIT_LOW) {
5b81fc3c 1538 if (tg->idletime_threshold_conf == ULONG_MAX)
ada75b6e
SL
1539 strcpy(idle_time, " idle=max");
1540 else
1541 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
5b81fc3c 1542 tg->idletime_threshold_conf);
ec80991d 1543
5b81fc3c 1544 if (tg->latency_target_conf == ULONG_MAX)
ec80991d
SL
1545 strcpy(latency_time, " latency=max");
1546 else
1547 snprintf(latency_time, sizeof(latency_time),
5b81fc3c 1548 " latency=%lu", tg->latency_target_conf);
ada75b6e 1549 }
2ee867dc 1550
ec80991d
SL
1551 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1552 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1553 latency_time);
2ee867dc
TH
1554 return 0;
1555}
1556
cd5ab1b0 1557static int tg_print_limit(struct seq_file *sf, void *v)
2ee867dc 1558{
cd5ab1b0 1559 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
2ee867dc
TH
1560 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1561 return 0;
1562}
1563
cd5ab1b0 1564static ssize_t tg_set_limit(struct kernfs_open_file *of,
2ee867dc
TH
1565 char *buf, size_t nbytes, loff_t off)
1566{
1567 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1568 struct blkg_conf_ctx ctx;
1569 struct throtl_grp *tg;
1570 u64 v[4];
ada75b6e 1571 unsigned long idle_time;
ec80991d 1572 unsigned long latency_time;
2ee867dc 1573 int ret;
cd5ab1b0 1574 int index = of_cft(of)->private;
2ee867dc
TH
1575
1576 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1577 if (ret)
1578 return ret;
1579
1580 tg = blkg_to_tg(ctx.blkg);
a880ae93 1581 tg_update_carryover(tg);
2ee867dc 1582
cd5ab1b0
SL
1583 v[0] = tg->bps_conf[READ][index];
1584 v[1] = tg->bps_conf[WRITE][index];
1585 v[2] = tg->iops_conf[READ][index];
1586 v[3] = tg->iops_conf[WRITE][index];
2ee867dc 1587
5b81fc3c
SL
1588 idle_time = tg->idletime_threshold_conf;
1589 latency_time = tg->latency_target_conf;
2ee867dc
TH
1590 while (true) {
1591 char tok[27]; /* wiops=18446744073709551616 */
1592 char *p;
2ab5492d 1593 u64 val = U64_MAX;
2ee867dc
TH
1594 int len;
1595
1596 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1597 break;
1598 if (tok[0] == '\0')
1599 break;
1600 ctx.body += len;
1601
1602 ret = -EINVAL;
1603 p = tok;
1604 strsep(&p, "=");
1605 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1606 goto out_finish;
1607
1608 ret = -ERANGE;
1609 if (!val)
1610 goto out_finish;
1611
1612 ret = -EINVAL;
5b7048b8 1613 if (!strcmp(tok, "rbps") && val > 1)
2ee867dc 1614 v[0] = val;
5b7048b8 1615 else if (!strcmp(tok, "wbps") && val > 1)
2ee867dc 1616 v[1] = val;
5b7048b8 1617 else if (!strcmp(tok, "riops") && val > 1)
2ee867dc 1618 v[2] = min_t(u64, val, UINT_MAX);
5b7048b8 1619 else if (!strcmp(tok, "wiops") && val > 1)
2ee867dc 1620 v[3] = min_t(u64, val, UINT_MAX);
ada75b6e
SL
1621 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1622 idle_time = val;
ec80991d
SL
1623 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1624 latency_time = val;
2ee867dc
TH
1625 else
1626 goto out_finish;
1627 }
1628
cd5ab1b0
SL
1629 tg->bps_conf[READ][index] = v[0];
1630 tg->bps_conf[WRITE][index] = v[1];
1631 tg->iops_conf[READ][index] = v[2];
1632 tg->iops_conf[WRITE][index] = v[3];
2ee867dc 1633
cd5ab1b0
SL
1634 if (index == LIMIT_MAX) {
1635 tg->bps[READ][index] = v[0];
1636 tg->bps[WRITE][index] = v[1];
1637 tg->iops[READ][index] = v[2];
1638 tg->iops[WRITE][index] = v[3];
1639 }
1640 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1641 tg->bps_conf[READ][LIMIT_MAX]);
1642 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1643 tg->bps_conf[WRITE][LIMIT_MAX]);
1644 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1645 tg->iops_conf[READ][LIMIT_MAX]);
1646 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1647 tg->iops_conf[WRITE][LIMIT_MAX]);
b4f428ef
SL
1648 tg->idletime_threshold_conf = idle_time;
1649 tg->latency_target_conf = latency_time;
1650
1651 /* force user to configure all settings for low limit */
1652 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1653 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1654 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1655 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1656 tg->bps[READ][LIMIT_LOW] = 0;
1657 tg->bps[WRITE][LIMIT_LOW] = 0;
1658 tg->iops[READ][LIMIT_LOW] = 0;
1659 tg->iops[WRITE][LIMIT_LOW] = 0;
1660 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1661 tg->latency_target = DFL_LATENCY_TARGET;
1662 } else if (index == LIMIT_LOW) {
5b81fc3c 1663 tg->idletime_threshold = tg->idletime_threshold_conf;
5b81fc3c 1664 tg->latency_target = tg->latency_target_conf;
cd5ab1b0 1665 }
b4f428ef
SL
1666
1667 blk_throtl_update_limit_valid(tg->td);
1668 if (tg->td->limit_valid[LIMIT_LOW]) {
1669 if (index == LIMIT_LOW)
1670 tg->td->limit_index = LIMIT_LOW;
1671 } else
1672 tg->td->limit_index = LIMIT_MAX;
9bb67aeb
SL
1673 tg_conf_updated(tg, index == LIMIT_LOW &&
1674 tg->td->limit_valid[LIMIT_LOW]);
2ee867dc
TH
1675 ret = 0;
1676out_finish:
1677 blkg_conf_finish(&ctx);
1678 return ret ?: nbytes;
1679}
1680
1681static struct cftype throtl_files[] = {
cd5ab1b0
SL
1682#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1683 {
1684 .name = "low",
1685 .flags = CFTYPE_NOT_ON_ROOT,
1686 .seq_show = tg_print_limit,
1687 .write = tg_set_limit,
1688 .private = LIMIT_LOW,
1689 },
1690#endif
2ee867dc
TH
1691 {
1692 .name = "max",
1693 .flags = CFTYPE_NOT_ON_ROOT,
cd5ab1b0
SL
1694 .seq_show = tg_print_limit,
1695 .write = tg_set_limit,
1696 .private = LIMIT_MAX,
2ee867dc
TH
1697 },
1698 { } /* terminate */
1699};
1700
da527770 1701static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1702{
1703 struct throtl_data *td = q->td;
1704
69df0ab0 1705 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1706}
1707
a7b36ee6 1708struct blkcg_policy blkcg_policy_throtl = {
2ee867dc 1709 .dfl_cftypes = throtl_files,
880f50e2 1710 .legacy_cftypes = throtl_legacy_files,
f9fcc2d3 1711
001bea73 1712 .pd_alloc_fn = throtl_pd_alloc,
f9fcc2d3 1713 .pd_init_fn = throtl_pd_init,
693e751e 1714 .pd_online_fn = throtl_pd_online,
cd5ab1b0 1715 .pd_offline_fn = throtl_pd_offline,
001bea73 1716 .pd_free_fn = throtl_pd_free,
e43473b7
VG
1717};
1718
2d8f7a3b
YK
1719void blk_throtl_cancel_bios(struct request_queue *q)
1720{
1721 struct cgroup_subsys_state *pos_css;
1722 struct blkcg_gq *blkg;
1723
1724 spin_lock_irq(&q->queue_lock);
1725 /*
1726 * queue_lock is held, rcu lock is not needed here technically.
1727 * However, rcu lock is still held to emphasize that following
1728 * path need RCU protection and to prevent warning from lockdep.
1729 */
1730 rcu_read_lock();
1731 blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
1732 struct throtl_grp *tg = blkg_to_tg(blkg);
1733 struct throtl_service_queue *sq = &tg->service_queue;
1734
1735 /*
1736 * Set the flag to make sure throtl_pending_timer_fn() won't
1737 * stop until all throttled bios are dispatched.
1738 */
1739 blkg_to_tg(blkg)->flags |= THROTL_TG_CANCELING;
1740 /*
1741 * Update disptime after setting the above flag to make sure
1742 * throtl_select_dispatch() won't exit without dispatching.
1743 */
1744 tg_update_disptime(tg);
1745
1746 throtl_schedule_pending_timer(sq, jiffies + 1);
1747 }
1748 rcu_read_unlock();
1749 spin_unlock_irq(&q->queue_lock);
1750}
1751
1752#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
3f0abd80
SL
1753static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1754{
1755 unsigned long rtime = jiffies, wtime = jiffies;
1756
1757 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1758 rtime = tg->last_low_overflow_time[READ];
1759 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1760 wtime = tg->last_low_overflow_time[WRITE];
1761 return min(rtime, wtime);
1762}
1763
1764/* tg should not be an intermediate node */
1765static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1766{
1767 struct throtl_service_queue *parent_sq;
1768 struct throtl_grp *parent = tg;
1769 unsigned long ret = __tg_last_low_overflow_time(tg);
1770
1771 while (true) {
1772 parent_sq = parent->service_queue.parent_sq;
1773 parent = sq_to_tg(parent_sq);
1774 if (!parent)
1775 break;
1776
1777 /*
1778 * The parent doesn't have low limit, it always reaches low
1779 * limit. Its overflow time is useless for children
1780 */
1781 if (!parent->bps[READ][LIMIT_LOW] &&
1782 !parent->iops[READ][LIMIT_LOW] &&
1783 !parent->bps[WRITE][LIMIT_LOW] &&
1784 !parent->iops[WRITE][LIMIT_LOW])
1785 continue;
1786 if (time_after(__tg_last_low_overflow_time(parent), ret))
1787 ret = __tg_last_low_overflow_time(parent);
1788 }
1789 return ret;
1790}
1791
9e234eea
SL
1792static bool throtl_tg_is_idle(struct throtl_grp *tg)
1793{
1794 /*
1795 * cgroup is idle if:
1796 * - single idle is too long, longer than a fixed value (in case user
b4f428ef 1797 * configure a too big threshold) or 4 times of idletime threshold
9e234eea 1798 * - average think time is more than threshold
53696b8d 1799 * - IO latency is largely below threshold
9e234eea 1800 */
b4f428ef 1801 unsigned long time;
4cff729f 1802 bool ret;
9e234eea 1803
b4f428ef
SL
1804 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1805 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1806 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1807 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1808 tg->avg_idletime > tg->idletime_threshold ||
1809 (tg->latency_target && tg->bio_cnt &&
53696b8d 1810 tg->bad_bio_cnt * 5 < tg->bio_cnt);
4cff729f
SL
1811 throtl_log(&tg->service_queue,
1812 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1813 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1814 tg->bio_cnt, ret, tg->td->scale);
1815 return ret;
9e234eea
SL
1816}
1817
c79892c5
SL
1818static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1819{
1820 struct throtl_service_queue *sq = &tg->service_queue;
1821 bool read_limit, write_limit;
1822
1823 /*
1824 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1825 * reaches), it's ok to upgrade to next limit
1826 */
1827 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1828 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1829 if (!read_limit && !write_limit)
1830 return true;
1831 if (read_limit && sq->nr_queued[READ] &&
1832 (!write_limit || sq->nr_queued[WRITE]))
1833 return true;
1834 if (write_limit && sq->nr_queued[WRITE] &&
1835 (!read_limit || sq->nr_queued[READ]))
1836 return true;
aec24246
SL
1837
1838 if (time_after_eq(jiffies,
fa6fb5aa
SL
1839 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1840 throtl_tg_is_idle(tg))
aec24246 1841 return true;
c79892c5
SL
1842 return false;
1843}
1844
1845static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1846{
1847 while (true) {
1848 if (throtl_tg_can_upgrade(tg))
1849 return true;
1850 tg = sq_to_tg(tg->service_queue.parent_sq);
1851 if (!tg || !tg_to_blkg(tg)->parent)
1852 return false;
1853 }
1854 return false;
1855}
1856
1857static bool throtl_can_upgrade(struct throtl_data *td,
1858 struct throtl_grp *this_tg)
1859{
1860 struct cgroup_subsys_state *pos_css;
1861 struct blkcg_gq *blkg;
1862
1863 if (td->limit_index != LIMIT_LOW)
1864 return false;
1865
297e3d85 1866 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
3f0abd80
SL
1867 return false;
1868
c79892c5
SL
1869 rcu_read_lock();
1870 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1871 struct throtl_grp *tg = blkg_to_tg(blkg);
1872
1873 if (tg == this_tg)
1874 continue;
1875 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1876 continue;
1877 if (!throtl_hierarchy_can_upgrade(tg)) {
1878 rcu_read_unlock();
1879 return false;
1880 }
1881 }
1882 rcu_read_unlock();
1883 return true;
1884}
1885
fa6fb5aa
SL
1886static void throtl_upgrade_check(struct throtl_grp *tg)
1887{
1888 unsigned long now = jiffies;
1889
1890 if (tg->td->limit_index != LIMIT_LOW)
1891 return;
1892
1893 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1894 return;
1895
1896 tg->last_check_time = now;
1897
1898 if (!time_after_eq(now,
1899 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1900 return;
1901
1902 if (throtl_can_upgrade(tg->td, NULL))
1903 throtl_upgrade_state(tg->td);
1904}
1905
c79892c5
SL
1906static void throtl_upgrade_state(struct throtl_data *td)
1907{
1908 struct cgroup_subsys_state *pos_css;
1909 struct blkcg_gq *blkg;
1910
4cff729f 1911 throtl_log(&td->service_queue, "upgrade to max");
c79892c5 1912 td->limit_index = LIMIT_MAX;
3f0abd80 1913 td->low_upgrade_time = jiffies;
7394e31f 1914 td->scale = 0;
c79892c5
SL
1915 rcu_read_lock();
1916 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1917 struct throtl_grp *tg = blkg_to_tg(blkg);
1918 struct throtl_service_queue *sq = &tg->service_queue;
1919
1920 tg->disptime = jiffies - 1;
1921 throtl_select_dispatch(sq);
4f02fb76 1922 throtl_schedule_next_dispatch(sq, true);
c79892c5
SL
1923 }
1924 rcu_read_unlock();
1925 throtl_select_dispatch(&td->service_queue);
4f02fb76 1926 throtl_schedule_next_dispatch(&td->service_queue, true);
c79892c5
SL
1927 queue_work(kthrotld_workqueue, &td->dispatch_work);
1928}
1929
4247d9c8 1930static void throtl_downgrade_state(struct throtl_data *td)
3f0abd80 1931{
7394e31f
SL
1932 td->scale /= 2;
1933
4cff729f 1934 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
7394e31f
SL
1935 if (td->scale) {
1936 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1937 return;
1938 }
1939
4247d9c8 1940 td->limit_index = LIMIT_LOW;
3f0abd80
SL
1941 td->low_downgrade_time = jiffies;
1942}
1943
1944static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1945{
1946 struct throtl_data *td = tg->td;
1947 unsigned long now = jiffies;
1948
1949 /*
1950 * If cgroup is below low limit, consider downgrade and throttle other
1951 * cgroups
1952 */
297e3d85
SL
1953 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1954 time_after_eq(now, tg_last_low_overflow_time(tg) +
fa6fb5aa
SL
1955 td->throtl_slice) &&
1956 (!throtl_tg_is_idle(tg) ||
1957 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
3f0abd80
SL
1958 return true;
1959 return false;
1960}
1961
1962static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1963{
1964 while (true) {
1965 if (!throtl_tg_can_downgrade(tg))
1966 return false;
1967 tg = sq_to_tg(tg->service_queue.parent_sq);
1968 if (!tg || !tg_to_blkg(tg)->parent)
1969 break;
1970 }
1971 return true;
1972}
1973
1974static void throtl_downgrade_check(struct throtl_grp *tg)
1975{
1976 uint64_t bps;
1977 unsigned int iops;
1978 unsigned long elapsed_time;
1979 unsigned long now = jiffies;
1980
1981 if (tg->td->limit_index != LIMIT_MAX ||
1982 !tg->td->limit_valid[LIMIT_LOW])
1983 return;
1984 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1985 return;
297e3d85 1986 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
3f0abd80
SL
1987 return;
1988
1989 elapsed_time = now - tg->last_check_time;
1990 tg->last_check_time = now;
1991
297e3d85
SL
1992 if (time_before(now, tg_last_low_overflow_time(tg) +
1993 tg->td->throtl_slice))
3f0abd80
SL
1994 return;
1995
1996 if (tg->bps[READ][LIMIT_LOW]) {
1997 bps = tg->last_bytes_disp[READ] * HZ;
1998 do_div(bps, elapsed_time);
1999 if (bps >= tg->bps[READ][LIMIT_LOW])
2000 tg->last_low_overflow_time[READ] = now;
2001 }
2002
2003 if (tg->bps[WRITE][LIMIT_LOW]) {
2004 bps = tg->last_bytes_disp[WRITE] * HZ;
2005 do_div(bps, elapsed_time);
2006 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2007 tg->last_low_overflow_time[WRITE] = now;
2008 }
2009
2010 if (tg->iops[READ][LIMIT_LOW]) {
2011 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2012 if (iops >= tg->iops[READ][LIMIT_LOW])
2013 tg->last_low_overflow_time[READ] = now;
2014 }
2015
2016 if (tg->iops[WRITE][LIMIT_LOW]) {
2017 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2018 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2019 tg->last_low_overflow_time[WRITE] = now;
2020 }
2021
2022 /*
2023 * If cgroup is below low limit, consider downgrade and throttle other
2024 * cgroups
2025 */
2026 if (throtl_hierarchy_can_downgrade(tg))
4247d9c8 2027 throtl_downgrade_state(tg->td);
3f0abd80
SL
2028
2029 tg->last_bytes_disp[READ] = 0;
2030 tg->last_bytes_disp[WRITE] = 0;
2031 tg->last_io_disp[READ] = 0;
2032 tg->last_io_disp[WRITE] = 0;
2033}
2034
9e234eea
SL
2035static void blk_throtl_update_idletime(struct throtl_grp *tg)
2036{
7901601a 2037 unsigned long now;
9e234eea
SL
2038 unsigned long last_finish_time = tg->last_finish_time;
2039
7901601a
BW
2040 if (last_finish_time == 0)
2041 return;
2042
2043 now = ktime_get_ns() >> 10;
2044 if (now <= last_finish_time ||
9e234eea
SL
2045 last_finish_time == tg->checked_last_finish_time)
2046 return;
2047
2048 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2049 tg->checked_last_finish_time = last_finish_time;
2050}
2051
b9147dd1
SL
2052static void throtl_update_latency_buckets(struct throtl_data *td)
2053{
b889bf66
JQ
2054 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2055 int i, cpu, rw;
2056 unsigned long last_latency[2] = { 0 };
2057 unsigned long latency[2];
b9147dd1 2058
b185efa7 2059 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
b9147dd1
SL
2060 return;
2061 if (time_before(jiffies, td->last_calculate_time + HZ))
2062 return;
2063 td->last_calculate_time = jiffies;
2064
2065 memset(avg_latency, 0, sizeof(avg_latency));
b889bf66
JQ
2066 for (rw = READ; rw <= WRITE; rw++) {
2067 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2068 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2069
2070 for_each_possible_cpu(cpu) {
2071 struct latency_bucket *bucket;
2072
2073 /* this isn't race free, but ok in practice */
2074 bucket = per_cpu_ptr(td->latency_buckets[rw],
2075 cpu);
2076 tmp->total_latency += bucket[i].total_latency;
2077 tmp->samples += bucket[i].samples;
2078 bucket[i].total_latency = 0;
2079 bucket[i].samples = 0;
2080 }
b9147dd1 2081
b889bf66
JQ
2082 if (tmp->samples >= 32) {
2083 int samples = tmp->samples;
b9147dd1 2084
b889bf66 2085 latency[rw] = tmp->total_latency;
b9147dd1 2086
b889bf66
JQ
2087 tmp->total_latency = 0;
2088 tmp->samples = 0;
2089 latency[rw] /= samples;
2090 if (latency[rw] == 0)
2091 continue;
2092 avg_latency[rw][i].latency = latency[rw];
2093 }
b9147dd1
SL
2094 }
2095 }
2096
b889bf66
JQ
2097 for (rw = READ; rw <= WRITE; rw++) {
2098 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2099 if (!avg_latency[rw][i].latency) {
2100 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2101 td->avg_buckets[rw][i].latency =
2102 last_latency[rw];
2103 continue;
2104 }
b9147dd1 2105
b889bf66
JQ
2106 if (!td->avg_buckets[rw][i].valid)
2107 latency[rw] = avg_latency[rw][i].latency;
2108 else
2109 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2110 avg_latency[rw][i].latency) >> 3;
b9147dd1 2111
b889bf66
JQ
2112 td->avg_buckets[rw][i].latency = max(latency[rw],
2113 last_latency[rw]);
2114 td->avg_buckets[rw][i].valid = true;
2115 last_latency[rw] = td->avg_buckets[rw][i].latency;
2116 }
b9147dd1 2117 }
4cff729f
SL
2118
2119 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2120 throtl_log(&td->service_queue,
b889bf66
JQ
2121 "Latency bucket %d: read latency=%ld, read valid=%d, "
2122 "write latency=%ld, write valid=%d", i,
2123 td->avg_buckets[READ][i].latency,
2124 td->avg_buckets[READ][i].valid,
2125 td->avg_buckets[WRITE][i].latency,
2126 td->avg_buckets[WRITE][i].valid);
b9147dd1
SL
2127}
2128#else
2129static inline void throtl_update_latency_buckets(struct throtl_data *td)
2130{
2131}
2d8f7a3b
YK
2132
2133static void blk_throtl_update_idletime(struct throtl_grp *tg)
2134{
2135}
2136
2137static void throtl_downgrade_check(struct throtl_grp *tg)
2138{
2139}
2140
2141static void throtl_upgrade_check(struct throtl_grp *tg)
2142{
2143}
2144
2145static bool throtl_can_upgrade(struct throtl_data *td,
2146 struct throtl_grp *this_tg)
2147{
2148 return false;
2149}
2150
2151static void throtl_upgrade_state(struct throtl_data *td)
2152{
2153}
b9147dd1
SL
2154#endif
2155
a7b36ee6 2156bool __blk_throtl_bio(struct bio *bio)
e43473b7 2157{
ed6cddef 2158 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
db18a53e 2159 struct blkcg_gq *blkg = bio->bi_blkg;
c5cc2070 2160 struct throtl_qnode *qn = NULL;
a2e83ef9 2161 struct throtl_grp *tg = blkg_to_tg(blkg);
73f0d49a 2162 struct throtl_service_queue *sq;
0e9f4164 2163 bool rw = bio_data_dir(bio);
bc16a4f9 2164 bool throttled = false;
b9147dd1 2165 struct throtl_data *td = tg->td;
e43473b7 2166
93b80638 2167 rcu_read_lock();
ae118896 2168
7ca46438
TH
2169 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2170 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2171 bio->bi_iter.bi_size);
2172 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2173 }
2174
0d945c1f 2175 spin_lock_irq(&q->queue_lock);
c9589f03 2176
b9147dd1
SL
2177 throtl_update_latency_buckets(td);
2178
9e234eea
SL
2179 blk_throtl_update_idletime(tg);
2180
73f0d49a
TH
2181 sq = &tg->service_queue;
2182
c79892c5 2183again:
9e660acf 2184 while (true) {
3f0abd80
SL
2185 if (tg->last_low_overflow_time[rw] == 0)
2186 tg->last_low_overflow_time[rw] = jiffies;
2187 throtl_downgrade_check(tg);
fa6fb5aa 2188 throtl_upgrade_check(tg);
9e660acf
TH
2189 /* throtl is FIFO - if bios are already queued, should queue */
2190 if (sq->nr_queued[rw])
2191 break;
de701c74 2192
9e660acf 2193 /* if above limits, break to queue */
c79892c5 2194 if (!tg_may_dispatch(tg, bio, NULL)) {
3f0abd80 2195 tg->last_low_overflow_time[rw] = jiffies;
b9147dd1
SL
2196 if (throtl_can_upgrade(td, tg)) {
2197 throtl_upgrade_state(td);
c79892c5
SL
2198 goto again;
2199 }
9e660acf 2200 break;
c79892c5 2201 }
9e660acf
TH
2202
2203 /* within limits, let's charge and dispatch directly */
e43473b7 2204 throtl_charge_bio(tg, bio);
04521db0
VG
2205
2206 /*
2207 * We need to trim slice even when bios are not being queued
2208 * otherwise it might happen that a bio is not queued for
2209 * a long time and slice keeps on extending and trim is not
2210 * called for a long time. Now if limits are reduced suddenly
2211 * we take into account all the IO dispatched so far at new
2212 * low rate and * newly queued IO gets a really long dispatch
2213 * time.
2214 *
2215 * So keep on trimming slice even if bio is not queued.
2216 */
0f3457f6 2217 throtl_trim_slice(tg, rw);
9e660acf
TH
2218
2219 /*
2220 * @bio passed through this layer without being throttled.
b53b072c 2221 * Climb up the ladder. If we're already at the top, it
9e660acf
TH
2222 * can be executed directly.
2223 */
c5cc2070 2224 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
2225 sq = sq->parent_sq;
2226 tg = sq_to_tg(sq);
320fb0f9
YK
2227 if (!tg) {
2228 bio_set_flag(bio, BIO_BPS_THROTTLED);
9e660acf 2229 goto out_unlock;
320fb0f9 2230 }
e43473b7
VG
2231 }
2232
9e660acf 2233 /* out-of-limit, queue to @tg */
fda6f272
TH
2234 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2235 rw == READ ? 'R' : 'W',
9f626e37
SL
2236 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2237 tg_bps_limit(tg, rw),
2238 tg->io_disp[rw], tg_iops_limit(tg, rw),
fda6f272 2239 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 2240
3f0abd80
SL
2241 tg->last_low_overflow_time[rw] = jiffies;
2242
b9147dd1 2243 td->nr_queued[rw]++;
c5cc2070 2244 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 2245 throttled = true;
e43473b7 2246
7f52f98c
TH
2247 /*
2248 * Update @tg's dispatch time and force schedule dispatch if @tg
2249 * was empty before @bio. The forced scheduling isn't likely to
2250 * cause undue delay as @bio is likely to be dispatched directly if
2251 * its @tg's disptime is not in the future.
2252 */
0e9f4164 2253 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 2254 tg_update_disptime(tg);
7f52f98c 2255 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
2256 }
2257
bc16a4f9 2258out_unlock:
b9147dd1
SL
2259#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2260 if (throttled || !td->track_bio_latency)
5238dcf4 2261 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
b9147dd1 2262#endif
5a011f88
LQ
2263 spin_unlock_irq(&q->queue_lock);
2264
93b80638 2265 rcu_read_unlock();
bc16a4f9 2266 return throttled;
e43473b7
VG
2267}
2268
9e234eea 2269#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
b9147dd1 2270static void throtl_track_latency(struct throtl_data *td, sector_t size,
77e7ffd7 2271 enum req_op op, unsigned long time)
b9147dd1 2272{
77e7ffd7 2273 const bool rw = op_is_write(op);
b9147dd1
SL
2274 struct latency_bucket *latency;
2275 int index;
2276
b889bf66
JQ
2277 if (!td || td->limit_index != LIMIT_LOW ||
2278 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
b9147dd1
SL
2279 !blk_queue_nonrot(td->queue))
2280 return;
2281
2282 index = request_bucket_index(size);
2283
77e7ffd7 2284 latency = get_cpu_ptr(td->latency_buckets[rw]);
b9147dd1
SL
2285 latency[index].total_latency += time;
2286 latency[index].samples++;
77e7ffd7 2287 put_cpu_ptr(td->latency_buckets[rw]);
b9147dd1
SL
2288}
2289
2290void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2291{
2292 struct request_queue *q = rq->q;
2293 struct throtl_data *td = q->td;
2294
3d244306
HT
2295 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2296 time_ns >> 10);
b9147dd1
SL
2297}
2298
9e234eea
SL
2299void blk_throtl_bio_endio(struct bio *bio)
2300{
08e18eab 2301 struct blkcg_gq *blkg;
9e234eea 2302 struct throtl_grp *tg;
b9147dd1
SL
2303 u64 finish_time_ns;
2304 unsigned long finish_time;
2305 unsigned long start_time;
2306 unsigned long lat;
b889bf66 2307 int rw = bio_data_dir(bio);
9e234eea 2308
08e18eab
JB
2309 blkg = bio->bi_blkg;
2310 if (!blkg)
9e234eea 2311 return;
08e18eab 2312 tg = blkg_to_tg(blkg);
b185efa7
BW
2313 if (!tg->td->limit_valid[LIMIT_LOW])
2314 return;
9e234eea 2315
b9147dd1
SL
2316 finish_time_ns = ktime_get_ns();
2317 tg->last_finish_time = finish_time_ns >> 10;
2318
5238dcf4
OS
2319 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2320 finish_time = __bio_issue_time(finish_time_ns) >> 10;
08e18eab 2321 if (!start_time || finish_time <= start_time)
53696b8d
SL
2322 return;
2323
2324 lat = finish_time - start_time;
b9147dd1 2325 /* this is only for bio based driver */
5238dcf4
OS
2326 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2327 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2328 bio_op(bio), lat);
53696b8d 2329
6679a90c 2330 if (tg->latency_target && lat >= tg->td->filtered_latency) {
53696b8d
SL
2331 int bucket;
2332 unsigned int threshold;
2333
5238dcf4 2334 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
b889bf66 2335 threshold = tg->td->avg_buckets[rw][bucket].latency +
53696b8d
SL
2336 tg->latency_target;
2337 if (lat > threshold)
2338 tg->bad_bio_cnt++;
2339 /*
2340 * Not race free, could get wrong count, which means cgroups
2341 * will be throttled
2342 */
2343 tg->bio_cnt++;
2344 }
2345
2346 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2347 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2348 tg->bio_cnt /= 2;
2349 tg->bad_bio_cnt /= 2;
b9147dd1 2350 }
9e234eea
SL
2351}
2352#endif
2353
e13793ba 2354int blk_throtl_init(struct gendisk *disk)
e43473b7 2355{
e13793ba 2356 struct request_queue *q = disk->queue;
e43473b7 2357 struct throtl_data *td;
a2b1693b 2358 int ret;
e43473b7
VG
2359
2360 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2361 if (!td)
2362 return -ENOMEM;
b889bf66 2363 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2364 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2365 if (!td->latency_buckets[READ]) {
2366 kfree(td);
2367 return -ENOMEM;
2368 }
2369 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2370 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2371 if (!td->latency_buckets[WRITE]) {
2372 free_percpu(td->latency_buckets[READ]);
b9147dd1
SL
2373 kfree(td);
2374 return -ENOMEM;
2375 }
e43473b7 2376
69df0ab0 2377 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
b2ce2643 2378 throtl_service_queue_init(&td->service_queue);
e43473b7 2379
cd1604fa 2380 q->td = td;
29b12589 2381 td->queue = q;
02977e4a 2382
9f626e37 2383 td->limit_valid[LIMIT_MAX] = true;
cd5ab1b0 2384 td->limit_index = LIMIT_MAX;
3f0abd80
SL
2385 td->low_upgrade_time = jiffies;
2386 td->low_downgrade_time = jiffies;
9e234eea 2387
a2b1693b 2388 /* activate policy */
3c798398 2389 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
b9147dd1 2390 if (ret) {
b889bf66
JQ
2391 free_percpu(td->latency_buckets[READ]);
2392 free_percpu(td->latency_buckets[WRITE]);
f51b802c 2393 kfree(td);
b9147dd1 2394 }
a2b1693b 2395 return ret;
e43473b7
VG
2396}
2397
e13793ba 2398void blk_throtl_exit(struct gendisk *disk)
e43473b7 2399{
e13793ba
CH
2400 struct request_queue *q = disk->queue;
2401
c875f4d0 2402 BUG_ON(!q->td);
884f0e84 2403 del_timer_sync(&q->td->service_queue.pending_timer);
da527770 2404 throtl_shutdown_wq(q);
3c798398 2405 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
b889bf66
JQ
2406 free_percpu(q->td->latency_buckets[READ]);
2407 free_percpu(q->td->latency_buckets[WRITE]);
c9a929dd 2408 kfree(q->td);
e43473b7
VG
2409}
2410
d61fcfa4
SL
2411void blk_throtl_register_queue(struct request_queue *q)
2412{
2413 struct throtl_data *td;
6679a90c 2414 int i;
d61fcfa4
SL
2415
2416 td = q->td;
2417 BUG_ON(!td);
2418
6679a90c 2419 if (blk_queue_nonrot(q)) {
d61fcfa4 2420 td->throtl_slice = DFL_THROTL_SLICE_SSD;
6679a90c
SL
2421 td->filtered_latency = LATENCY_FILTERED_SSD;
2422 } else {
d61fcfa4 2423 td->throtl_slice = DFL_THROTL_SLICE_HD;
6679a90c 2424 td->filtered_latency = LATENCY_FILTERED_HD;
b889bf66
JQ
2425 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2426 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2427 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2428 }
6679a90c 2429 }
d61fcfa4
SL
2430#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2431 /* if no low limit, use previous default */
2432 td->throtl_slice = DFL_THROTL_SLICE_HD;
2433#endif
9e234eea 2434
344e9ffc 2435 td->track_bio_latency = !queue_is_mq(q);
b9147dd1
SL
2436 if (!td->track_bio_latency)
2437 blk_stat_enable_accounting(q);
d61fcfa4
SL
2438}
2439
297e3d85
SL
2440#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2441ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2442{
2443 if (!q->td)
2444 return -EINVAL;
2445 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2446}
2447
2448ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2449 const char *page, size_t count)
2450{
2451 unsigned long v;
2452 unsigned long t;
2453
2454 if (!q->td)
2455 return -EINVAL;
2456 if (kstrtoul(page, 10, &v))
2457 return -EINVAL;
2458 t = msecs_to_jiffies(v);
2459 if (t == 0 || t > MAX_THROTL_SLICE)
2460 return -EINVAL;
2461 q->td->throtl_slice = t;
2462 return count;
2463}
2464#endif
2465
e43473b7
VG
2466static int __init throtl_init(void)
2467{
450adcbe
VG
2468 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2469 if (!kthrotld_workqueue)
2470 panic("Failed to create kthrotld\n");
2471
3c798398 2472 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
2473}
2474
2475module_init(throtl_init);