blk-rq-qos: store a gendisk instead of request_queue in struct rq_qos
[linux-block.git] / block / blk-throttle.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
e43473b7
VG
2/*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
7
8#include <linux/module.h>
9#include <linux/slab.h>
10#include <linux/blkdev.h>
11#include <linux/bio.h>
12#include <linux/blktrace_api.h>
bc9fcbf9 13#include "blk.h"
1d156646 14#include "blk-cgroup-rwstat.h"
e4a19f72 15#include "blk-stat.h"
a7b36ee6 16#include "blk-throttle.h"
e43473b7
VG
17
18/* Max dispatch from a group in 1 round */
e675df2a 19#define THROTL_GRP_QUANTUM 8
e43473b7
VG
20
21/* Total max dispatch from all groups in one round */
e675df2a 22#define THROTL_QUANTUM 32
e43473b7 23
d61fcfa4
SL
24/* Throttling is performed over a slice and after that slice is renewed */
25#define DFL_THROTL_SLICE_HD (HZ / 10)
26#define DFL_THROTL_SLICE_SSD (HZ / 50)
297e3d85 27#define MAX_THROTL_SLICE (HZ)
9e234eea 28#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
9bb67aeb
SL
29#define MIN_THROTL_BPS (320 * 1024)
30#define MIN_THROTL_IOPS (10)
b4f428ef
SL
31#define DFL_LATENCY_TARGET (-1L)
32#define DFL_IDLE_THRESHOLD (0)
6679a90c
SL
33#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34#define LATENCY_FILTERED_SSD (0)
35/*
36 * For HD, very small latency comes from sequential IO. Such IO is helpless to
37 * help determine if its IO is impacted by others, hence we ignore the IO
38 */
39#define LATENCY_FILTERED_HD (1000L) /* 1ms */
e43473b7 40
450adcbe
VG
41/* A workqueue to queue throttle related work */
42static struct workqueue_struct *kthrotld_workqueue;
450adcbe 43
e43473b7
VG
44#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
45
b9147dd1
SL
46/* We measure latency for request size from <= 4k to >= 1M */
47#define LATENCY_BUCKET_SIZE 9
48
49struct latency_bucket {
50 unsigned long total_latency; /* ns / 1024 */
51 int samples;
52};
53
54struct avg_latency_bucket {
55 unsigned long latency; /* ns / 1024 */
56 bool valid;
57};
58
e43473b7
VG
59struct throtl_data
60{
e43473b7 61 /* service tree for active throtl groups */
c9e0332e 62 struct throtl_service_queue service_queue;
e43473b7 63
e43473b7
VG
64 struct request_queue *queue;
65
66 /* Total Number of queued bios on READ and WRITE lists */
67 unsigned int nr_queued[2];
68
297e3d85
SL
69 unsigned int throtl_slice;
70
e43473b7 71 /* Work for dispatching throttled bios */
69df0ab0 72 struct work_struct dispatch_work;
9f626e37
SL
73 unsigned int limit_index;
74 bool limit_valid[LIMIT_CNT];
3f0abd80
SL
75
76 unsigned long low_upgrade_time;
77 unsigned long low_downgrade_time;
7394e31f
SL
78
79 unsigned int scale;
b9147dd1 80
b889bf66
JQ
81 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
82 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
83 struct latency_bucket __percpu *latency_buckets[2];
b9147dd1 84 unsigned long last_calculate_time;
6679a90c 85 unsigned long filtered_latency;
b9147dd1
SL
86
87 bool track_bio_latency;
e43473b7
VG
88};
89
e99e88a9 90static void throtl_pending_timer_fn(struct timer_list *t);
69df0ab0 91
3c798398 92static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 93{
f95a04af 94 return pd_to_blkg(&tg->pd);
0381411e
TH
95}
96
fda6f272
TH
97/**
98 * sq_to_tg - return the throl_grp the specified service queue belongs to
99 * @sq: the throtl_service_queue of interest
100 *
101 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
102 * embedded in throtl_data, %NULL is returned.
103 */
104static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
105{
106 if (sq && sq->parent_sq)
107 return container_of(sq, struct throtl_grp, service_queue);
108 else
109 return NULL;
110}
111
112/**
113 * sq_to_td - return throtl_data the specified service queue belongs to
114 * @sq: the throtl_service_queue of interest
115 *
b43daedc 116 * A service_queue can be embedded in either a throtl_grp or throtl_data.
fda6f272
TH
117 * Determine the associated throtl_data accordingly and return it.
118 */
119static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
120{
121 struct throtl_grp *tg = sq_to_tg(sq);
122
123 if (tg)
124 return tg->td;
125 else
126 return container_of(sq, struct throtl_data, service_queue);
127}
128
7394e31f
SL
129/*
130 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
131 * make the IO dispatch more smooth.
009df341 132 * Scale up: linearly scale up according to elapsed time since upgrade. For
7394e31f
SL
133 * every throtl_slice, the limit scales up 1/2 .low limit till the
134 * limit hits .max limit
135 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
136 */
137static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
138{
139 /* arbitrary value to avoid too big scale */
140 if (td->scale < 4096 && time_after_eq(jiffies,
141 td->low_upgrade_time + td->scale * td->throtl_slice))
142 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
143
144 return low + (low >> 1) * td->scale;
145}
146
9f626e37
SL
147static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
148{
b22c417c 149 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 150 struct throtl_data *td;
b22c417c
SL
151 uint64_t ret;
152
153 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
154 return U64_MAX;
7394e31f
SL
155
156 td = tg->td;
157 ret = tg->bps[rw][td->limit_index];
9bb67aeb
SL
158 if (ret == 0 && td->limit_index == LIMIT_LOW) {
159 /* intermediate node or iops isn't 0 */
160 if (!list_empty(&blkg->blkcg->css.children) ||
161 tg->iops[rw][td->limit_index])
162 return U64_MAX;
163 else
164 return MIN_THROTL_BPS;
165 }
7394e31f
SL
166
167 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
168 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
169 uint64_t adjusted;
170
171 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
172 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
173 }
b22c417c 174 return ret;
9f626e37
SL
175}
176
177static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
178{
b22c417c 179 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 180 struct throtl_data *td;
b22c417c
SL
181 unsigned int ret;
182
183 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
184 return UINT_MAX;
9bb67aeb 185
7394e31f
SL
186 td = tg->td;
187 ret = tg->iops[rw][td->limit_index];
9bb67aeb
SL
188 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
189 /* intermediate node or bps isn't 0 */
190 if (!list_empty(&blkg->blkcg->css.children) ||
191 tg->bps[rw][td->limit_index])
192 return UINT_MAX;
193 else
194 return MIN_THROTL_IOPS;
195 }
7394e31f
SL
196
197 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
198 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
199 uint64_t adjusted;
200
201 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
202 if (adjusted > UINT_MAX)
203 adjusted = UINT_MAX;
204 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
205 }
b22c417c 206 return ret;
9f626e37
SL
207}
208
b9147dd1
SL
209#define request_bucket_index(sectors) \
210 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
211
fda6f272
TH
212/**
213 * throtl_log - log debug message via blktrace
214 * @sq: the service_queue being reported
215 * @fmt: printf format string
216 * @args: printf args
217 *
218 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
219 * throtl_grp; otherwise, just "throtl".
fda6f272
TH
220 */
221#define throtl_log(sq, fmt, args...) do { \
222 struct throtl_grp *__tg = sq_to_tg((sq)); \
223 struct throtl_data *__td = sq_to_td((sq)); \
224 \
225 (void)__td; \
59fa0224
SL
226 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
227 break; \
fda6f272 228 if ((__tg)) { \
35fe6d76 229 blk_add_cgroup_trace_msg(__td->queue, \
f4a6a61c 230 &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
fda6f272
TH
231 } else { \
232 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
233 } \
54e7ed12 234} while (0)
e43473b7 235
ea0ea2bc
SL
236static inline unsigned int throtl_bio_data_size(struct bio *bio)
237{
238 /* assume it's one sector */
239 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
240 return 512;
241 return bio->bi_iter.bi_size;
242}
243
c5cc2070
TH
244static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
245{
246 INIT_LIST_HEAD(&qn->node);
247 bio_list_init(&qn->bios);
248 qn->tg = tg;
249}
250
251/**
252 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
253 * @bio: bio being added
254 * @qn: qnode to add bio to
255 * @queued: the service_queue->queued[] list @qn belongs to
256 *
257 * Add @bio to @qn and put @qn on @queued if it's not already on.
258 * @qn->tg's reference count is bumped when @qn is activated. See the
259 * comment on top of throtl_qnode definition for details.
260 */
261static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
262 struct list_head *queued)
263{
264 bio_list_add(&qn->bios, bio);
265 if (list_empty(&qn->node)) {
266 list_add_tail(&qn->node, queued);
267 blkg_get(tg_to_blkg(qn->tg));
268 }
269}
270
271/**
272 * throtl_peek_queued - peek the first bio on a qnode list
273 * @queued: the qnode list to peek
274 */
275static struct bio *throtl_peek_queued(struct list_head *queued)
276{
b7b609de 277 struct throtl_qnode *qn;
c5cc2070
TH
278 struct bio *bio;
279
280 if (list_empty(queued))
281 return NULL;
282
b7b609de 283 qn = list_first_entry(queued, struct throtl_qnode, node);
c5cc2070
TH
284 bio = bio_list_peek(&qn->bios);
285 WARN_ON_ONCE(!bio);
286 return bio;
287}
288
289/**
290 * throtl_pop_queued - pop the first bio form a qnode list
291 * @queued: the qnode list to pop a bio from
292 * @tg_to_put: optional out argument for throtl_grp to put
293 *
294 * Pop the first bio from the qnode list @queued. After popping, the first
295 * qnode is removed from @queued if empty or moved to the end of @queued so
296 * that the popping order is round-robin.
297 *
298 * When the first qnode is removed, its associated throtl_grp should be put
299 * too. If @tg_to_put is NULL, this function automatically puts it;
300 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
301 * responsible for putting it.
302 */
303static struct bio *throtl_pop_queued(struct list_head *queued,
304 struct throtl_grp **tg_to_put)
305{
b7b609de 306 struct throtl_qnode *qn;
c5cc2070
TH
307 struct bio *bio;
308
309 if (list_empty(queued))
310 return NULL;
311
b7b609de 312 qn = list_first_entry(queued, struct throtl_qnode, node);
c5cc2070
TH
313 bio = bio_list_pop(&qn->bios);
314 WARN_ON_ONCE(!bio);
315
316 if (bio_list_empty(&qn->bios)) {
317 list_del_init(&qn->node);
318 if (tg_to_put)
319 *tg_to_put = qn->tg;
320 else
321 blkg_put(tg_to_blkg(qn->tg));
322 } else {
323 list_move_tail(&qn->node, queued);
324 }
325
326 return bio;
327}
328
49a2f1e3 329/* init a service_queue, assumes the caller zeroed it */
b2ce2643 330static void throtl_service_queue_init(struct throtl_service_queue *sq)
49a2f1e3 331{
7e9c5c54
YK
332 INIT_LIST_HEAD(&sq->queued[READ]);
333 INIT_LIST_HEAD(&sq->queued[WRITE]);
9ff01255 334 sq->pending_tree = RB_ROOT_CACHED;
e99e88a9 335 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
69df0ab0
TH
336}
337
cf09a8ee
TH
338static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
339 struct request_queue *q,
340 struct blkcg *blkcg)
001bea73 341{
4fb72036 342 struct throtl_grp *tg;
24bdb8ef 343 int rw;
4fb72036 344
cf09a8ee 345 tg = kzalloc_node(sizeof(*tg), gfp, q->node);
4fb72036 346 if (!tg)
77ea7338 347 return NULL;
4fb72036 348
7ca46438
TH
349 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
350 goto err_free_tg;
351
352 if (blkg_rwstat_init(&tg->stat_ios, gfp))
353 goto err_exit_stat_bytes;
354
b2ce2643
TH
355 throtl_service_queue_init(&tg->service_queue);
356
357 for (rw = READ; rw <= WRITE; rw++) {
358 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
359 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
360 }
361
362 RB_CLEAR_NODE(&tg->rb_node);
9f626e37
SL
363 tg->bps[READ][LIMIT_MAX] = U64_MAX;
364 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
365 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
366 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
cd5ab1b0
SL
367 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
368 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
369 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
370 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
371 /* LIMIT_LOW will have default value 0 */
b2ce2643 372
ec80991d 373 tg->latency_target = DFL_LATENCY_TARGET;
5b81fc3c 374 tg->latency_target_conf = DFL_LATENCY_TARGET;
b4f428ef
SL
375 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
376 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
ec80991d 377
4fb72036 378 return &tg->pd;
7ca46438
TH
379
380err_exit_stat_bytes:
381 blkg_rwstat_exit(&tg->stat_bytes);
382err_free_tg:
383 kfree(tg);
384 return NULL;
001bea73
TH
385}
386
a9520cd6 387static void throtl_pd_init(struct blkg_policy_data *pd)
a29a171e 388{
a9520cd6
TH
389 struct throtl_grp *tg = pd_to_tg(pd);
390 struct blkcg_gq *blkg = tg_to_blkg(tg);
84d7d462 391 struct throtl_data *td = blkg->disk->queue->td;
b2ce2643 392 struct throtl_service_queue *sq = &tg->service_queue;
cd1604fa 393
9138125b 394 /*
aa6ec29b 395 * If on the default hierarchy, we switch to properly hierarchical
9138125b
TH
396 * behavior where limits on a given throtl_grp are applied to the
397 * whole subtree rather than just the group itself. e.g. If 16M
f56019ae
KS
398 * read_bps limit is set on a parent group, summary bps of
399 * parent group and its subtree groups can't exceed 16M for the
400 * device.
9138125b 401 *
aa6ec29b 402 * If not on the default hierarchy, the broken flat hierarchy
9138125b
TH
403 * behavior is retained where all throtl_grps are treated as if
404 * they're all separate root groups right below throtl_data.
405 * Limits of a group don't interact with limits of other groups
406 * regardless of the position of the group in the hierarchy.
407 */
b2ce2643 408 sq->parent_sq = &td->service_queue;
9e10a130 409 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
b2ce2643 410 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
77216b04 411 tg->td = td;
8a3d2615
TH
412}
413
693e751e
TH
414/*
415 * Set has_rules[] if @tg or any of its parents have limits configured.
416 * This doesn't require walking up to the top of the hierarchy as the
417 * parent's has_rules[] is guaranteed to be correct.
418 */
419static void tg_update_has_rules(struct throtl_grp *tg)
420{
421 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
9f626e37 422 struct throtl_data *td = tg->td;
693e751e
TH
423 int rw;
424
81c7a63a
YK
425 for (rw = READ; rw <= WRITE; rw++) {
426 tg->has_rules_iops[rw] =
427 (parent_tg && parent_tg->has_rules_iops[rw]) ||
428 (td->limit_valid[td->limit_index] &&
429 tg_iops_limit(tg, rw) != UINT_MAX);
430 tg->has_rules_bps[rw] =
431 (parent_tg && parent_tg->has_rules_bps[rw]) ||
9f626e37 432 (td->limit_valid[td->limit_index] &&
81c7a63a
YK
433 (tg_bps_limit(tg, rw) != U64_MAX));
434 }
693e751e
TH
435}
436
a9520cd6 437static void throtl_pd_online(struct blkg_policy_data *pd)
693e751e 438{
aec24246 439 struct throtl_grp *tg = pd_to_tg(pd);
693e751e
TH
440 /*
441 * We don't want new groups to escape the limits of its ancestors.
442 * Update has_rules[] after a new group is brought online.
443 */
aec24246 444 tg_update_has_rules(tg);
693e751e
TH
445}
446
acaf523a 447#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
cd5ab1b0
SL
448static void blk_throtl_update_limit_valid(struct throtl_data *td)
449{
450 struct cgroup_subsys_state *pos_css;
451 struct blkcg_gq *blkg;
452 bool low_valid = false;
453
454 rcu_read_lock();
455 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
456 struct throtl_grp *tg = blkg_to_tg(blkg);
457
458 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
43ada787 459 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
cd5ab1b0 460 low_valid = true;
43ada787
LB
461 break;
462 }
cd5ab1b0
SL
463 }
464 rcu_read_unlock();
465
466 td->limit_valid[LIMIT_LOW] = low_valid;
467}
acaf523a
YK
468#else
469static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
470{
471}
472#endif
cd5ab1b0 473
c79892c5 474static void throtl_upgrade_state(struct throtl_data *td);
cd5ab1b0
SL
475static void throtl_pd_offline(struct blkg_policy_data *pd)
476{
477 struct throtl_grp *tg = pd_to_tg(pd);
478
479 tg->bps[READ][LIMIT_LOW] = 0;
480 tg->bps[WRITE][LIMIT_LOW] = 0;
481 tg->iops[READ][LIMIT_LOW] = 0;
482 tg->iops[WRITE][LIMIT_LOW] = 0;
483
484 blk_throtl_update_limit_valid(tg->td);
485
c79892c5
SL
486 if (!tg->td->limit_valid[tg->td->limit_index])
487 throtl_upgrade_state(tg->td);
cd5ab1b0
SL
488}
489
001bea73
TH
490static void throtl_pd_free(struct blkg_policy_data *pd)
491{
4fb72036
TH
492 struct throtl_grp *tg = pd_to_tg(pd);
493
b2ce2643 494 del_timer_sync(&tg->service_queue.pending_timer);
7ca46438
TH
495 blkg_rwstat_exit(&tg->stat_bytes);
496 blkg_rwstat_exit(&tg->stat_ios);
4fb72036 497 kfree(tg);
001bea73
TH
498}
499
0049af73
TH
500static struct throtl_grp *
501throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7 502{
9ff01255 503 struct rb_node *n;
e43473b7 504
9ff01255
LB
505 n = rb_first_cached(&parent_sq->pending_tree);
506 WARN_ON_ONCE(!n);
507 if (!n)
508 return NULL;
509 return rb_entry_tg(n);
e43473b7
VG
510}
511
0049af73
TH
512static void throtl_rb_erase(struct rb_node *n,
513 struct throtl_service_queue *parent_sq)
e43473b7 514{
9ff01255
LB
515 rb_erase_cached(n, &parent_sq->pending_tree);
516 RB_CLEAR_NODE(n);
e43473b7
VG
517}
518
0049af73 519static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
520{
521 struct throtl_grp *tg;
522
0049af73 523 tg = throtl_rb_first(parent_sq);
e43473b7
VG
524 if (!tg)
525 return;
526
0049af73 527 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
528}
529
77216b04 530static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 531{
77216b04 532 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
9ff01255 533 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
e43473b7
VG
534 struct rb_node *parent = NULL;
535 struct throtl_grp *__tg;
536 unsigned long key = tg->disptime;
9ff01255 537 bool leftmost = true;
e43473b7
VG
538
539 while (*node != NULL) {
540 parent = *node;
541 __tg = rb_entry_tg(parent);
542
543 if (time_before(key, __tg->disptime))
544 node = &parent->rb_left;
545 else {
546 node = &parent->rb_right;
9ff01255 547 leftmost = false;
e43473b7
VG
548 }
549 }
550
e43473b7 551 rb_link_node(&tg->rb_node, parent, node);
9ff01255
LB
552 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
553 leftmost);
e43473b7
VG
554}
555
77216b04 556static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 557{
29379674
BW
558 if (!(tg->flags & THROTL_TG_PENDING)) {
559 tg_service_queue_add(tg);
560 tg->flags |= THROTL_TG_PENDING;
561 tg->service_queue.parent_sq->nr_pending++;
562 }
e43473b7
VG
563}
564
77216b04 565static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 566{
29379674 567 if (tg->flags & THROTL_TG_PENDING) {
c013710e
YK
568 struct throtl_service_queue *parent_sq =
569 tg->service_queue.parent_sq;
570
571 throtl_rb_erase(&tg->rb_node, parent_sq);
572 --parent_sq->nr_pending;
29379674
BW
573 tg->flags &= ~THROTL_TG_PENDING;
574 }
e43473b7
VG
575}
576
a9131a27 577/* Call with queue lock held */
69df0ab0
TH
578static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
579 unsigned long expires)
a9131a27 580{
a41b816c 581 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
06cceedc
SL
582
583 /*
584 * Since we are adjusting the throttle limit dynamically, the sleep
585 * time calculated according to previous limit might be invalid. It's
586 * possible the cgroup sleep time is very long and no other cgroups
587 * have IO running so notify the limit changes. Make sure the cgroup
588 * doesn't sleep too long to avoid the missed notification.
589 */
590 if (time_after(expires, max_expire))
591 expires = max_expire;
69df0ab0
TH
592 mod_timer(&sq->pending_timer, expires);
593 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
594 expires - jiffies, jiffies);
a9131a27
TH
595}
596
7f52f98c
TH
597/**
598 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
599 * @sq: the service_queue to schedule dispatch for
600 * @force: force scheduling
601 *
602 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
603 * dispatch time of the first pending child. Returns %true if either timer
604 * is armed or there's no pending child left. %false if the current
605 * dispatch window is still open and the caller should continue
606 * dispatching.
607 *
608 * If @force is %true, the dispatch timer is always scheduled and this
609 * function is guaranteed to return %true. This is to be used when the
610 * caller can't dispatch itself and needs to invoke pending_timer
611 * unconditionally. Note that forced scheduling is likely to induce short
612 * delay before dispatch starts even if @sq->first_pending_disptime is not
613 * in the future and thus shouldn't be used in hot paths.
614 */
615static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
616 bool force)
e43473b7 617{
6a525600 618 /* any pending children left? */
c9e0332e 619 if (!sq->nr_pending)
7f52f98c 620 return true;
e43473b7 621
c9e0332e 622 update_min_dispatch_time(sq);
e43473b7 623
69df0ab0 624 /* is the next dispatch time in the future? */
7f52f98c 625 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 626 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 627 return true;
69df0ab0
TH
628 }
629
7f52f98c
TH
630 /* tell the caller to continue dispatching */
631 return false;
e43473b7
VG
632}
633
32ee5bc4
VG
634static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
635 bool rw, unsigned long start)
636{
637 tg->bytes_disp[rw] = 0;
638 tg->io_disp[rw] = 0;
a880ae93
YK
639 tg->carryover_bytes[rw] = 0;
640 tg->carryover_ios[rw] = 0;
32ee5bc4
VG
641
642 /*
643 * Previous slice has expired. We must have trimmed it after last
644 * bio dispatch. That means since start of last slice, we never used
645 * that bandwidth. Do try to make use of that bandwidth while giving
646 * credit.
647 */
eea3e8b7 648 if (time_after(start, tg->slice_start[rw]))
32ee5bc4
VG
649 tg->slice_start[rw] = start;
650
297e3d85 651 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
32ee5bc4
VG
652 throtl_log(&tg->service_queue,
653 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
654 rw == READ ? 'R' : 'W', tg->slice_start[rw],
655 tg->slice_end[rw], jiffies);
656}
657
a880ae93
YK
658static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw,
659 bool clear_carryover)
e43473b7
VG
660{
661 tg->bytes_disp[rw] = 0;
8e89d13f 662 tg->io_disp[rw] = 0;
e43473b7 663 tg->slice_start[rw] = jiffies;
297e3d85 664 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
a880ae93
YK
665 if (clear_carryover) {
666 tg->carryover_bytes[rw] = 0;
667 tg->carryover_ios[rw] = 0;
668 }
4f1e9630 669
fda6f272
TH
670 throtl_log(&tg->service_queue,
671 "[%c] new slice start=%lu end=%lu jiffies=%lu",
672 rw == READ ? 'R' : 'W', tg->slice_start[rw],
673 tg->slice_end[rw], jiffies);
e43473b7
VG
674}
675
0f3457f6
TH
676static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
677 unsigned long jiffy_end)
d1ae8ffd 678{
297e3d85 679 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
d1ae8ffd
VG
680}
681
0f3457f6
TH
682static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
683 unsigned long jiffy_end)
e43473b7 684{
1da30f95 685 throtl_set_slice_end(tg, rw, jiffy_end);
fda6f272
TH
686 throtl_log(&tg->service_queue,
687 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
688 rw == READ ? 'R' : 'W', tg->slice_start[rw],
689 tg->slice_end[rw], jiffies);
e43473b7
VG
690}
691
692/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 693static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
694{
695 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
5cf8c227 696 return false;
e43473b7 697
0b6bad7d 698 return true;
e43473b7
VG
699}
700
701/* Trim the used slices and adjust slice start accordingly */
0f3457f6 702static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 703{
3aad5d3e
VG
704 unsigned long nr_slices, time_elapsed, io_trim;
705 u64 bytes_trim, tmp;
e43473b7
VG
706
707 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
708
709 /*
710 * If bps are unlimited (-1), then time slice don't get
711 * renewed. Don't try to trim the slice if slice is used. A new
712 * slice will start when appropriate.
713 */
0f3457f6 714 if (throtl_slice_used(tg, rw))
e43473b7
VG
715 return;
716
d1ae8ffd
VG
717 /*
718 * A bio has been dispatched. Also adjust slice_end. It might happen
719 * that initially cgroup limit was very low resulting in high
b53b072c 720 * slice_end, but later limit was bumped up and bio was dispatched
d1ae8ffd
VG
721 * sooner, then we need to reduce slice_end. A high bogus slice_end
722 * is bad because it does not allow new slice to start.
723 */
724
297e3d85 725 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
d1ae8ffd 726
e43473b7
VG
727 time_elapsed = jiffies - tg->slice_start[rw];
728
297e3d85 729 nr_slices = time_elapsed / tg->td->throtl_slice;
e43473b7
VG
730
731 if (!nr_slices)
732 return;
297e3d85 733 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
3aad5d3e
VG
734 do_div(tmp, HZ);
735 bytes_trim = tmp;
e43473b7 736
297e3d85
SL
737 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
738 HZ;
e43473b7 739
8e89d13f 740 if (!bytes_trim && !io_trim)
e43473b7
VG
741 return;
742
743 if (tg->bytes_disp[rw] >= bytes_trim)
744 tg->bytes_disp[rw] -= bytes_trim;
745 else
746 tg->bytes_disp[rw] = 0;
747
8e89d13f
VG
748 if (tg->io_disp[rw] >= io_trim)
749 tg->io_disp[rw] -= io_trim;
750 else
751 tg->io_disp[rw] = 0;
752
297e3d85 753 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
e43473b7 754
fda6f272
TH
755 throtl_log(&tg->service_queue,
756 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
757 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
758 tg->slice_start[rw], tg->slice_end[rw], jiffies);
e43473b7
VG
759}
760
681cd46f
YK
761static unsigned int calculate_io_allowed(u32 iops_limit,
762 unsigned long jiffy_elapsed)
e43473b7 763{
8e89d13f 764 unsigned int io_allowed;
c49c06e4 765 u64 tmp;
e43473b7 766
c49c06e4 767 /*
681cd46f 768 * jiffy_elapsed should not be a big value as minimum iops can be
c49c06e4
VG
769 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
770 * will allow dispatch after 1 second and after that slice should
771 * have been trimmed.
772 */
773
681cd46f 774 tmp = (u64)iops_limit * jiffy_elapsed;
c49c06e4
VG
775 do_div(tmp, HZ);
776
777 if (tmp > UINT_MAX)
778 io_allowed = UINT_MAX;
779 else
780 io_allowed = tmp;
8e89d13f 781
681cd46f
YK
782 return io_allowed;
783}
784
785static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed)
786{
787 return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ);
788}
789
a880ae93
YK
790static void __tg_update_carryover(struct throtl_grp *tg, bool rw)
791{
792 unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw];
793 u64 bps_limit = tg_bps_limit(tg, rw);
794 u32 iops_limit = tg_iops_limit(tg, rw);
795
796 /*
797 * If config is updated while bios are still throttled, calculate and
798 * accumulate how many bytes/ios are waited across changes. And
799 * carryover_bytes/ios will be used to calculate new wait time under new
800 * configuration.
801 */
802 if (bps_limit != U64_MAX)
803 tg->carryover_bytes[rw] +=
804 calculate_bytes_allowed(bps_limit, jiffy_elapsed) -
805 tg->bytes_disp[rw];
806 if (iops_limit != UINT_MAX)
807 tg->carryover_ios[rw] +=
808 calculate_io_allowed(iops_limit, jiffy_elapsed) -
809 tg->io_disp[rw];
810}
811
812static void tg_update_carryover(struct throtl_grp *tg)
813{
814 if (tg->service_queue.nr_queued[READ])
815 __tg_update_carryover(tg, READ);
816 if (tg->service_queue.nr_queued[WRITE])
817 __tg_update_carryover(tg, WRITE);
818
819 /* see comments in struct throtl_grp for meaning of these fields. */
820 throtl_log(&tg->service_queue, "%s: %llu %llu %u %u\n", __func__,
821 tg->carryover_bytes[READ], tg->carryover_bytes[WRITE],
822 tg->carryover_ios[READ], tg->carryover_ios[WRITE]);
823}
824
183daeb1
KS
825static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio,
826 u32 iops_limit)
681cd46f
YK
827{
828 bool rw = bio_data_dir(bio);
829 unsigned int io_allowed;
830 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
831
832 if (iops_limit == UINT_MAX) {
183daeb1 833 return 0;
681cd46f
YK
834 }
835
836 jiffy_elapsed = jiffies - tg->slice_start[rw];
837
838 /* Round up to the next throttle slice, wait time must be nonzero */
839 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
a880ae93
YK
840 io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd) +
841 tg->carryover_ios[rw];
8e89d13f 842 if (tg->io_disp[rw] + 1 <= io_allowed) {
183daeb1 843 return 0;
e43473b7
VG
844 }
845
8e89d13f 846 /* Calc approx time to dispatch */
991f61fe 847 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
183daeb1 848 return jiffy_wait;
8e89d13f
VG
849}
850
183daeb1
KS
851static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio,
852 u64 bps_limit)
8e89d13f
VG
853{
854 bool rw = bio_data_dir(bio);
8d6bbaad 855 u64 bytes_allowed, extra_bytes;
8e89d13f 856 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
ea0ea2bc 857 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7 858
9f5ede3c 859 /* no need to throttle if this bio's bytes have been accounted */
320fb0f9 860 if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) {
183daeb1 861 return 0;
87fbeb88
BW
862 }
863
e43473b7
VG
864 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
865
866 /* Slice has just started. Consider one slice interval */
867 if (!jiffy_elapsed)
297e3d85 868 jiffy_elapsed_rnd = tg->td->throtl_slice;
e43473b7 869
297e3d85 870 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
a880ae93
YK
871 bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd) +
872 tg->carryover_bytes[rw];
ea0ea2bc 873 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
183daeb1 874 return 0;
e43473b7
VG
875 }
876
877 /* Calc approx time to dispatch */
ea0ea2bc 878 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
4599ea49 879 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
e43473b7
VG
880
881 if (!jiffy_wait)
882 jiffy_wait = 1;
883
884 /*
885 * This wait time is without taking into consideration the rounding
886 * up we did. Add that time also.
887 */
888 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
183daeb1 889 return jiffy_wait;
8e89d13f
VG
890}
891
892/*
893 * Returns whether one can dispatch a bio or not. Also returns approx number
894 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
895 */
0f3457f6
TH
896static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
897 unsigned long *wait)
8e89d13f
VG
898{
899 bool rw = bio_data_dir(bio);
900 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
4599ea49
BW
901 u64 bps_limit = tg_bps_limit(tg, rw);
902 u32 iops_limit = tg_iops_limit(tg, rw);
8e89d13f
VG
903
904 /*
905 * Currently whole state machine of group depends on first bio
906 * queued in the group bio list. So one should not be calling
907 * this function with a different bio if there are other bios
908 * queued.
909 */
73f0d49a 910 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 911 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 912
8e89d13f 913 /* If tg->bps = -1, then BW is unlimited */
8f9e7b65
YK
914 if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
915 tg->flags & THROTL_TG_CANCELING) {
8e89d13f
VG
916 if (wait)
917 *wait = 0;
5cf8c227 918 return true;
8e89d13f
VG
919 }
920
921 /*
922 * If previous slice expired, start a new one otherwise renew/extend
923 * existing slice to make sure it is at least throtl_slice interval
164c80ed
VG
924 * long since now. New slice is started only for empty throttle group.
925 * If there is queued bio, that means there should be an active
926 * slice and it should be extended instead.
8e89d13f 927 */
164c80ed 928 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
a880ae93 929 throtl_start_new_slice(tg, rw, true);
8e89d13f 930 else {
297e3d85
SL
931 if (time_before(tg->slice_end[rw],
932 jiffies + tg->td->throtl_slice))
933 throtl_extend_slice(tg, rw,
934 jiffies + tg->td->throtl_slice);
8e89d13f
VG
935 }
936
183daeb1
KS
937 bps_wait = tg_within_bps_limit(tg, bio, bps_limit);
938 iops_wait = tg_within_iops_limit(tg, bio, iops_limit);
939 if (bps_wait + iops_wait == 0) {
8e89d13f
VG
940 if (wait)
941 *wait = 0;
0b6bad7d 942 return true;
8e89d13f
VG
943 }
944
945 max_wait = max(bps_wait, iops_wait);
946
947 if (wait)
948 *wait = max_wait;
949
950 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 951 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7 952
0b6bad7d 953 return false;
e43473b7
VG
954}
955
956static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
957{
958 bool rw = bio_data_dir(bio);
ea0ea2bc 959 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7
VG
960
961 /* Charge the bio to the group */
320fb0f9 962 if (!bio_flagged(bio, BIO_BPS_THROTTLED)) {
9f5ede3c
ML
963 tg->bytes_disp[rw] += bio_size;
964 tg->last_bytes_disp[rw] += bio_size;
965 }
966
8e89d13f 967 tg->io_disp[rw]++;
3f0abd80 968 tg->last_io_disp[rw]++;
e43473b7
VG
969}
970
c5cc2070
TH
971/**
972 * throtl_add_bio_tg - add a bio to the specified throtl_grp
973 * @bio: bio to add
974 * @qn: qnode to use
975 * @tg: the target throtl_grp
976 *
977 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
978 * tg->qnode_on_self[] is used.
979 */
980static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
981 struct throtl_grp *tg)
e43473b7 982{
73f0d49a 983 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
984 bool rw = bio_data_dir(bio);
985
c5cc2070
TH
986 if (!qn)
987 qn = &tg->qnode_on_self[rw];
988
0e9f4164
TH
989 /*
990 * If @tg doesn't currently have any bios queued in the same
991 * direction, queueing @bio can change when @tg should be
992 * dispatched. Mark that @tg was empty. This is automatically
b53b072c 993 * cleared on the next tg_update_disptime().
0e9f4164
TH
994 */
995 if (!sq->nr_queued[rw])
996 tg->flags |= THROTL_TG_WAS_EMPTY;
997
c5cc2070
TH
998 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
999
73f0d49a 1000 sq->nr_queued[rw]++;
77216b04 1001 throtl_enqueue_tg(tg);
e43473b7
VG
1002}
1003
77216b04 1004static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 1005{
73f0d49a 1006 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1007 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1008 struct bio *bio;
1009
d609af3a
ME
1010 bio = throtl_peek_queued(&sq->queued[READ]);
1011 if (bio)
0f3457f6 1012 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 1013
d609af3a
ME
1014 bio = throtl_peek_queued(&sq->queued[WRITE]);
1015 if (bio)
0f3457f6 1016 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
1017
1018 min_wait = min(read_wait, write_wait);
1019 disptime = jiffies + min_wait;
1020
e43473b7 1021 /* Update dispatch time */
c013710e 1022 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
e43473b7 1023 tg->disptime = disptime;
c013710e 1024 tg_service_queue_add(tg);
0e9f4164
TH
1025
1026 /* see throtl_add_bio_tg() */
1027 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
1028}
1029
32ee5bc4
VG
1030static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1031 struct throtl_grp *parent_tg, bool rw)
1032{
1033 if (throtl_slice_used(parent_tg, rw)) {
1034 throtl_start_new_slice_with_credit(parent_tg, rw,
1035 child_tg->slice_start[rw]);
1036 }
1037
1038}
1039
77216b04 1040static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 1041{
73f0d49a 1042 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
1043 struct throtl_service_queue *parent_sq = sq->parent_sq;
1044 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 1045 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
1046 struct bio *bio;
1047
c5cc2070
TH
1048 /*
1049 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1050 * from @tg may put its reference and @parent_sq might end up
1051 * getting released prematurely. Remember the tg to put and put it
1052 * after @bio is transferred to @parent_sq.
1053 */
1054 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 1055 sq->nr_queued[rw]--;
e43473b7
VG
1056
1057 throtl_charge_bio(tg, bio);
6bc9c2b4
TH
1058
1059 /*
1060 * If our parent is another tg, we just need to transfer @bio to
1061 * the parent using throtl_add_bio_tg(). If our parent is
1062 * @td->service_queue, @bio is ready to be issued. Put it on its
1063 * bio_lists[] and decrease total number queued. The caller is
1064 * responsible for issuing these bios.
1065 */
1066 if (parent_tg) {
c5cc2070 1067 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
32ee5bc4 1068 start_parent_slice_with_credit(tg, parent_tg, rw);
6bc9c2b4 1069 } else {
84aca0a7 1070 bio_set_flag(bio, BIO_BPS_THROTTLED);
c5cc2070
TH
1071 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1072 &parent_sq->queued[rw]);
6bc9c2b4
TH
1073 BUG_ON(tg->td->nr_queued[rw] <= 0);
1074 tg->td->nr_queued[rw]--;
1075 }
e43473b7 1076
0f3457f6 1077 throtl_trim_slice(tg, rw);
6bc9c2b4 1078
c5cc2070
TH
1079 if (tg_to_put)
1080 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
1081}
1082
77216b04 1083static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 1084{
73f0d49a 1085 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7 1086 unsigned int nr_reads = 0, nr_writes = 0;
e675df2a
BW
1087 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1088 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
e43473b7
VG
1089 struct bio *bio;
1090
1091 /* Try to dispatch 75% READS and 25% WRITES */
1092
c5cc2070 1093 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 1094 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1095
77216b04 1096 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1097 nr_reads++;
1098
1099 if (nr_reads >= max_nr_reads)
1100 break;
1101 }
1102
c5cc2070 1103 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 1104 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1105
77216b04 1106 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1107 nr_writes++;
1108
1109 if (nr_writes >= max_nr_writes)
1110 break;
1111 }
1112
1113 return nr_reads + nr_writes;
1114}
1115
651930bc 1116static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
1117{
1118 unsigned int nr_disp = 0;
e43473b7
VG
1119
1120 while (1) {
2397611a 1121 struct throtl_grp *tg;
2ab74cd2 1122 struct throtl_service_queue *sq;
e43473b7 1123
2397611a
BW
1124 if (!parent_sq->nr_pending)
1125 break;
1126
1127 tg = throtl_rb_first(parent_sq);
e43473b7
VG
1128 if (!tg)
1129 break;
1130
1131 if (time_before(jiffies, tg->disptime))
1132 break;
1133
77216b04 1134 nr_disp += throtl_dispatch_tg(tg);
e43473b7 1135
2ab74cd2 1136 sq = &tg->service_queue;
7e9c5c54 1137 if (sq->nr_queued[READ] || sq->nr_queued[WRITE])
77216b04 1138 tg_update_disptime(tg);
8c25ed0c
YK
1139 else
1140 throtl_dequeue_tg(tg);
e43473b7 1141
e675df2a 1142 if (nr_disp >= THROTL_QUANTUM)
e43473b7
VG
1143 break;
1144 }
1145
1146 return nr_disp;
1147}
1148
c79892c5
SL
1149static bool throtl_can_upgrade(struct throtl_data *td,
1150 struct throtl_grp *this_tg);
6e1a5704
TH
1151/**
1152 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
216382dc 1153 * @t: the pending_timer member of the throtl_service_queue being serviced
6e1a5704
TH
1154 *
1155 * This timer is armed when a child throtl_grp with active bio's become
1156 * pending and queued on the service_queue's pending_tree and expires when
1157 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1158 * dispatches bio's from the children throtl_grps to the parent
1159 * service_queue.
1160 *
1161 * If the parent's parent is another throtl_grp, dispatching is propagated
1162 * by either arming its pending_timer or repeating dispatch directly. If
1163 * the top-level service_tree is reached, throtl_data->dispatch_work is
1164 * kicked so that the ready bio's are issued.
6e1a5704 1165 */
e99e88a9 1166static void throtl_pending_timer_fn(struct timer_list *t)
69df0ab0 1167{
e99e88a9 1168 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
2e48a530 1169 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1170 struct throtl_data *td = sq_to_td(sq);
2e48a530 1171 struct throtl_service_queue *parent_sq;
ee37eddb 1172 struct request_queue *q;
2e48a530 1173 bool dispatched;
6e1a5704 1174 int ret;
e43473b7 1175
ee37eddb
ML
1176 /* throtl_data may be gone, so figure out request queue by blkg */
1177 if (tg)
84d7d462 1178 q = tg->pd.blkg->disk->queue;
ee37eddb
ML
1179 else
1180 q = td->queue;
1181
0d945c1f 1182 spin_lock_irq(&q->queue_lock);
ee37eddb
ML
1183
1184 if (!q->root_blkg)
1185 goto out_unlock;
1186
c79892c5
SL
1187 if (throtl_can_upgrade(td, NULL))
1188 throtl_upgrade_state(td);
1189
2e48a530
TH
1190again:
1191 parent_sq = sq->parent_sq;
1192 dispatched = false;
e43473b7 1193
7f52f98c
TH
1194 while (true) {
1195 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1196 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1197 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1198
1199 ret = throtl_select_dispatch(sq);
1200 if (ret) {
7f52f98c
TH
1201 throtl_log(sq, "bios disp=%u", ret);
1202 dispatched = true;
1203 }
e43473b7 1204
7f52f98c
TH
1205 if (throtl_schedule_next_dispatch(sq, false))
1206 break;
e43473b7 1207
7f52f98c 1208 /* this dispatch windows is still open, relax and repeat */
0d945c1f 1209 spin_unlock_irq(&q->queue_lock);
7f52f98c 1210 cpu_relax();
0d945c1f 1211 spin_lock_irq(&q->queue_lock);
651930bc 1212 }
e43473b7 1213
2e48a530
TH
1214 if (!dispatched)
1215 goto out_unlock;
6e1a5704 1216
2e48a530
TH
1217 if (parent_sq) {
1218 /* @parent_sq is another throl_grp, propagate dispatch */
1219 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1220 tg_update_disptime(tg);
1221 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1222 /* window is already open, repeat dispatching */
1223 sq = parent_sq;
1224 tg = sq_to_tg(sq);
1225 goto again;
1226 }
1227 }
1228 } else {
b53b072c 1229 /* reached the top-level, queue issuing */
2e48a530
TH
1230 queue_work(kthrotld_workqueue, &td->dispatch_work);
1231 }
1232out_unlock:
0d945c1f 1233 spin_unlock_irq(&q->queue_lock);
6e1a5704 1234}
e43473b7 1235
6e1a5704
TH
1236/**
1237 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1238 * @work: work item being executed
1239 *
b53b072c
BW
1240 * This function is queued for execution when bios reach the bio_lists[]
1241 * of throtl_data->service_queue. Those bios are ready and issued by this
6e1a5704
TH
1242 * function.
1243 */
8876e140 1244static void blk_throtl_dispatch_work_fn(struct work_struct *work)
6e1a5704
TH
1245{
1246 struct throtl_data *td = container_of(work, struct throtl_data,
1247 dispatch_work);
1248 struct throtl_service_queue *td_sq = &td->service_queue;
1249 struct request_queue *q = td->queue;
1250 struct bio_list bio_list_on_stack;
1251 struct bio *bio;
1252 struct blk_plug plug;
1253 int rw;
1254
1255 bio_list_init(&bio_list_on_stack);
1256
0d945c1f 1257 spin_lock_irq(&q->queue_lock);
c5cc2070
TH
1258 for (rw = READ; rw <= WRITE; rw++)
1259 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1260 bio_list_add(&bio_list_on_stack, bio);
0d945c1f 1261 spin_unlock_irq(&q->queue_lock);
6e1a5704
TH
1262
1263 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1264 blk_start_plug(&plug);
ed00aabd 1265 while ((bio = bio_list_pop(&bio_list_on_stack)))
3f98c753 1266 submit_bio_noacct_nocheck(bio);
69d60eb9 1267 blk_finish_plug(&plug);
e43473b7 1268 }
e43473b7
VG
1269}
1270
f95a04af
TH
1271static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1272 int off)
60c2bc2d 1273{
f95a04af
TH
1274 struct throtl_grp *tg = pd_to_tg(pd);
1275 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1276
2ab5492d 1277 if (v == U64_MAX)
60c2bc2d 1278 return 0;
f95a04af 1279 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1280}
1281
f95a04af
TH
1282static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1283 int off)
e43473b7 1284{
f95a04af
TH
1285 struct throtl_grp *tg = pd_to_tg(pd);
1286 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1287
2ab5492d 1288 if (v == UINT_MAX)
af133ceb 1289 return 0;
f95a04af 1290 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1291}
1292
2da8ca82 1293static int tg_print_conf_u64(struct seq_file *sf, void *v)
8e89d13f 1294{
2da8ca82
TH
1295 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1296 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1297 return 0;
8e89d13f
VG
1298}
1299
2da8ca82 1300static int tg_print_conf_uint(struct seq_file *sf, void *v)
8e89d13f 1301{
2da8ca82
TH
1302 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1303 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1304 return 0;
60c2bc2d
TH
1305}
1306
9bb67aeb 1307static void tg_conf_updated(struct throtl_grp *tg, bool global)
60c2bc2d 1308{
69948b07 1309 struct throtl_service_queue *sq = &tg->service_queue;
492eb21b 1310 struct cgroup_subsys_state *pos_css;
69948b07 1311 struct blkcg_gq *blkg;
af133ceb 1312
fda6f272
TH
1313 throtl_log(&tg->service_queue,
1314 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
9f626e37
SL
1315 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1316 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
632b4493 1317
693e751e
TH
1318 /*
1319 * Update has_rules[] flags for the updated tg's subtree. A tg is
1320 * considered to have rules if either the tg itself or any of its
1321 * ancestors has rules. This identifies groups without any
1322 * restrictions in the whole hierarchy and allows them to bypass
1323 * blk-throttle.
1324 */
9bb67aeb
SL
1325 blkg_for_each_descendant_pre(blkg, pos_css,
1326 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
5b81fc3c
SL
1327 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1328 struct throtl_grp *parent_tg;
1329
1330 tg_update_has_rules(this_tg);
1331 /* ignore root/second level */
1332 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1333 !blkg->parent->parent)
1334 continue;
1335 parent_tg = blkg_to_tg(blkg->parent);
1336 /*
1337 * make sure all children has lower idle time threshold and
1338 * higher latency target
1339 */
1340 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1341 parent_tg->idletime_threshold);
1342 this_tg->latency_target = max(this_tg->latency_target,
1343 parent_tg->latency_target);
1344 }
693e751e 1345
632b4493
TH
1346 /*
1347 * We're already holding queue_lock and know @tg is valid. Let's
1348 * apply the new config directly.
1349 *
1350 * Restart the slices for both READ and WRITES. It might happen
1351 * that a group's limit are dropped suddenly and we don't want to
1352 * account recently dispatched IO with new low rate.
1353 */
a880ae93
YK
1354 throtl_start_new_slice(tg, READ, false);
1355 throtl_start_new_slice(tg, WRITE, false);
632b4493 1356
5b2c16aa 1357 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1358 tg_update_disptime(tg);
7f52f98c 1359 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1360 }
69948b07
TH
1361}
1362
1363static ssize_t tg_set_conf(struct kernfs_open_file *of,
1364 char *buf, size_t nbytes, loff_t off, bool is_u64)
1365{
1366 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1367 struct blkg_conf_ctx ctx;
1368 struct throtl_grp *tg;
1369 int ret;
1370 u64 v;
1371
1372 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1373 if (ret)
1374 return ret;
1375
1376 ret = -EINVAL;
1377 if (sscanf(ctx.body, "%llu", &v) != 1)
1378 goto out_finish;
1379 if (!v)
2ab5492d 1380 v = U64_MAX;
69948b07
TH
1381
1382 tg = blkg_to_tg(ctx.blkg);
a880ae93 1383 tg_update_carryover(tg);
69948b07
TH
1384
1385 if (is_u64)
1386 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1387 else
1388 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
60c2bc2d 1389
9bb67aeb 1390 tg_conf_updated(tg, false);
36aa9e5f
TH
1391 ret = 0;
1392out_finish:
60c2bc2d 1393 blkg_conf_finish(&ctx);
36aa9e5f 1394 return ret ?: nbytes;
8e89d13f
VG
1395}
1396
451af504
TH
1397static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1398 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1399{
451af504 1400 return tg_set_conf(of, buf, nbytes, off, true);
60c2bc2d
TH
1401}
1402
451af504
TH
1403static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1404 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1405{
451af504 1406 return tg_set_conf(of, buf, nbytes, off, false);
60c2bc2d
TH
1407}
1408
7ca46438
TH
1409static int tg_print_rwstat(struct seq_file *sf, void *v)
1410{
1411 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1412 blkg_prfill_rwstat, &blkcg_policy_throtl,
1413 seq_cft(sf)->private, true);
1414 return 0;
1415}
1416
1417static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1418 struct blkg_policy_data *pd, int off)
1419{
1420 struct blkg_rwstat_sample sum;
1421
1422 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1423 &sum);
1424 return __blkg_prfill_rwstat(sf, pd, &sum);
1425}
1426
1427static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1428{
1429 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1430 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1431 seq_cft(sf)->private, true);
1432 return 0;
1433}
1434
880f50e2 1435static struct cftype throtl_legacy_files[] = {
60c2bc2d
TH
1436 {
1437 .name = "throttle.read_bps_device",
9f626e37 1438 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
2da8ca82 1439 .seq_show = tg_print_conf_u64,
451af504 1440 .write = tg_set_conf_u64,
60c2bc2d
TH
1441 },
1442 {
1443 .name = "throttle.write_bps_device",
9f626e37 1444 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
2da8ca82 1445 .seq_show = tg_print_conf_u64,
451af504 1446 .write = tg_set_conf_u64,
60c2bc2d
TH
1447 },
1448 {
1449 .name = "throttle.read_iops_device",
9f626e37 1450 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
2da8ca82 1451 .seq_show = tg_print_conf_uint,
451af504 1452 .write = tg_set_conf_uint,
60c2bc2d
TH
1453 },
1454 {
1455 .name = "throttle.write_iops_device",
9f626e37 1456 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
2da8ca82 1457 .seq_show = tg_print_conf_uint,
451af504 1458 .write = tg_set_conf_uint,
60c2bc2d
TH
1459 },
1460 {
1461 .name = "throttle.io_service_bytes",
7ca46438
TH
1462 .private = offsetof(struct throtl_grp, stat_bytes),
1463 .seq_show = tg_print_rwstat,
60c2bc2d 1464 },
17534c6f 1465 {
1466 .name = "throttle.io_service_bytes_recursive",
7ca46438
TH
1467 .private = offsetof(struct throtl_grp, stat_bytes),
1468 .seq_show = tg_print_rwstat_recursive,
17534c6f 1469 },
60c2bc2d
TH
1470 {
1471 .name = "throttle.io_serviced",
7ca46438
TH
1472 .private = offsetof(struct throtl_grp, stat_ios),
1473 .seq_show = tg_print_rwstat,
60c2bc2d 1474 },
17534c6f 1475 {
1476 .name = "throttle.io_serviced_recursive",
7ca46438
TH
1477 .private = offsetof(struct throtl_grp, stat_ios),
1478 .seq_show = tg_print_rwstat_recursive,
17534c6f 1479 },
60c2bc2d
TH
1480 { } /* terminate */
1481};
1482
cd5ab1b0 1483static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
2ee867dc
TH
1484 int off)
1485{
1486 struct throtl_grp *tg = pd_to_tg(pd);
1487 const char *dname = blkg_dev_name(pd->blkg);
1488 char bufs[4][21] = { "max", "max", "max", "max" };
cd5ab1b0
SL
1489 u64 bps_dft;
1490 unsigned int iops_dft;
ada75b6e 1491 char idle_time[26] = "";
ec80991d 1492 char latency_time[26] = "";
2ee867dc
TH
1493
1494 if (!dname)
1495 return 0;
9f626e37 1496
cd5ab1b0
SL
1497 if (off == LIMIT_LOW) {
1498 bps_dft = 0;
1499 iops_dft = 0;
1500 } else {
1501 bps_dft = U64_MAX;
1502 iops_dft = UINT_MAX;
1503 }
1504
1505 if (tg->bps_conf[READ][off] == bps_dft &&
1506 tg->bps_conf[WRITE][off] == bps_dft &&
1507 tg->iops_conf[READ][off] == iops_dft &&
ada75b6e 1508 tg->iops_conf[WRITE][off] == iops_dft &&
ec80991d 1509 (off != LIMIT_LOW ||
b4f428ef 1510 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
5b81fc3c 1511 tg->latency_target_conf == DFL_LATENCY_TARGET)))
2ee867dc
TH
1512 return 0;
1513
9bb67aeb 1514 if (tg->bps_conf[READ][off] != U64_MAX)
9f626e37 1515 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
cd5ab1b0 1516 tg->bps_conf[READ][off]);
9bb67aeb 1517 if (tg->bps_conf[WRITE][off] != U64_MAX)
9f626e37 1518 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
cd5ab1b0 1519 tg->bps_conf[WRITE][off]);
9bb67aeb 1520 if (tg->iops_conf[READ][off] != UINT_MAX)
9f626e37 1521 snprintf(bufs[2], sizeof(bufs[2]), "%u",
cd5ab1b0 1522 tg->iops_conf[READ][off]);
9bb67aeb 1523 if (tg->iops_conf[WRITE][off] != UINT_MAX)
9f626e37 1524 snprintf(bufs[3], sizeof(bufs[3]), "%u",
cd5ab1b0 1525 tg->iops_conf[WRITE][off]);
ada75b6e 1526 if (off == LIMIT_LOW) {
5b81fc3c 1527 if (tg->idletime_threshold_conf == ULONG_MAX)
ada75b6e
SL
1528 strcpy(idle_time, " idle=max");
1529 else
1530 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
5b81fc3c 1531 tg->idletime_threshold_conf);
ec80991d 1532
5b81fc3c 1533 if (tg->latency_target_conf == ULONG_MAX)
ec80991d
SL
1534 strcpy(latency_time, " latency=max");
1535 else
1536 snprintf(latency_time, sizeof(latency_time),
5b81fc3c 1537 " latency=%lu", tg->latency_target_conf);
ada75b6e 1538 }
2ee867dc 1539
ec80991d
SL
1540 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1541 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1542 latency_time);
2ee867dc
TH
1543 return 0;
1544}
1545
cd5ab1b0 1546static int tg_print_limit(struct seq_file *sf, void *v)
2ee867dc 1547{
cd5ab1b0 1548 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
2ee867dc
TH
1549 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1550 return 0;
1551}
1552
cd5ab1b0 1553static ssize_t tg_set_limit(struct kernfs_open_file *of,
2ee867dc
TH
1554 char *buf, size_t nbytes, loff_t off)
1555{
1556 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1557 struct blkg_conf_ctx ctx;
1558 struct throtl_grp *tg;
1559 u64 v[4];
ada75b6e 1560 unsigned long idle_time;
ec80991d 1561 unsigned long latency_time;
2ee867dc 1562 int ret;
cd5ab1b0 1563 int index = of_cft(of)->private;
2ee867dc
TH
1564
1565 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1566 if (ret)
1567 return ret;
1568
1569 tg = blkg_to_tg(ctx.blkg);
a880ae93 1570 tg_update_carryover(tg);
2ee867dc 1571
cd5ab1b0
SL
1572 v[0] = tg->bps_conf[READ][index];
1573 v[1] = tg->bps_conf[WRITE][index];
1574 v[2] = tg->iops_conf[READ][index];
1575 v[3] = tg->iops_conf[WRITE][index];
2ee867dc 1576
5b81fc3c
SL
1577 idle_time = tg->idletime_threshold_conf;
1578 latency_time = tg->latency_target_conf;
2ee867dc
TH
1579 while (true) {
1580 char tok[27]; /* wiops=18446744073709551616 */
1581 char *p;
2ab5492d 1582 u64 val = U64_MAX;
2ee867dc
TH
1583 int len;
1584
1585 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1586 break;
1587 if (tok[0] == '\0')
1588 break;
1589 ctx.body += len;
1590
1591 ret = -EINVAL;
1592 p = tok;
1593 strsep(&p, "=");
1594 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1595 goto out_finish;
1596
1597 ret = -ERANGE;
1598 if (!val)
1599 goto out_finish;
1600
1601 ret = -EINVAL;
5b7048b8 1602 if (!strcmp(tok, "rbps") && val > 1)
2ee867dc 1603 v[0] = val;
5b7048b8 1604 else if (!strcmp(tok, "wbps") && val > 1)
2ee867dc 1605 v[1] = val;
5b7048b8 1606 else if (!strcmp(tok, "riops") && val > 1)
2ee867dc 1607 v[2] = min_t(u64, val, UINT_MAX);
5b7048b8 1608 else if (!strcmp(tok, "wiops") && val > 1)
2ee867dc 1609 v[3] = min_t(u64, val, UINT_MAX);
ada75b6e
SL
1610 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1611 idle_time = val;
ec80991d
SL
1612 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1613 latency_time = val;
2ee867dc
TH
1614 else
1615 goto out_finish;
1616 }
1617
cd5ab1b0
SL
1618 tg->bps_conf[READ][index] = v[0];
1619 tg->bps_conf[WRITE][index] = v[1];
1620 tg->iops_conf[READ][index] = v[2];
1621 tg->iops_conf[WRITE][index] = v[3];
2ee867dc 1622
cd5ab1b0
SL
1623 if (index == LIMIT_MAX) {
1624 tg->bps[READ][index] = v[0];
1625 tg->bps[WRITE][index] = v[1];
1626 tg->iops[READ][index] = v[2];
1627 tg->iops[WRITE][index] = v[3];
1628 }
1629 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1630 tg->bps_conf[READ][LIMIT_MAX]);
1631 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1632 tg->bps_conf[WRITE][LIMIT_MAX]);
1633 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1634 tg->iops_conf[READ][LIMIT_MAX]);
1635 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1636 tg->iops_conf[WRITE][LIMIT_MAX]);
b4f428ef
SL
1637 tg->idletime_threshold_conf = idle_time;
1638 tg->latency_target_conf = latency_time;
1639
1640 /* force user to configure all settings for low limit */
1641 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1642 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1643 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1644 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1645 tg->bps[READ][LIMIT_LOW] = 0;
1646 tg->bps[WRITE][LIMIT_LOW] = 0;
1647 tg->iops[READ][LIMIT_LOW] = 0;
1648 tg->iops[WRITE][LIMIT_LOW] = 0;
1649 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1650 tg->latency_target = DFL_LATENCY_TARGET;
1651 } else if (index == LIMIT_LOW) {
5b81fc3c 1652 tg->idletime_threshold = tg->idletime_threshold_conf;
5b81fc3c 1653 tg->latency_target = tg->latency_target_conf;
cd5ab1b0 1654 }
b4f428ef
SL
1655
1656 blk_throtl_update_limit_valid(tg->td);
1657 if (tg->td->limit_valid[LIMIT_LOW]) {
1658 if (index == LIMIT_LOW)
1659 tg->td->limit_index = LIMIT_LOW;
1660 } else
1661 tg->td->limit_index = LIMIT_MAX;
9bb67aeb
SL
1662 tg_conf_updated(tg, index == LIMIT_LOW &&
1663 tg->td->limit_valid[LIMIT_LOW]);
2ee867dc
TH
1664 ret = 0;
1665out_finish:
1666 blkg_conf_finish(&ctx);
1667 return ret ?: nbytes;
1668}
1669
1670static struct cftype throtl_files[] = {
cd5ab1b0
SL
1671#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1672 {
1673 .name = "low",
1674 .flags = CFTYPE_NOT_ON_ROOT,
1675 .seq_show = tg_print_limit,
1676 .write = tg_set_limit,
1677 .private = LIMIT_LOW,
1678 },
1679#endif
2ee867dc
TH
1680 {
1681 .name = "max",
1682 .flags = CFTYPE_NOT_ON_ROOT,
cd5ab1b0
SL
1683 .seq_show = tg_print_limit,
1684 .write = tg_set_limit,
1685 .private = LIMIT_MAX,
2ee867dc
TH
1686 },
1687 { } /* terminate */
1688};
1689
da527770 1690static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1691{
1692 struct throtl_data *td = q->td;
1693
69df0ab0 1694 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1695}
1696
a7b36ee6 1697struct blkcg_policy blkcg_policy_throtl = {
2ee867dc 1698 .dfl_cftypes = throtl_files,
880f50e2 1699 .legacy_cftypes = throtl_legacy_files,
f9fcc2d3 1700
001bea73 1701 .pd_alloc_fn = throtl_pd_alloc,
f9fcc2d3 1702 .pd_init_fn = throtl_pd_init,
693e751e 1703 .pd_online_fn = throtl_pd_online,
cd5ab1b0 1704 .pd_offline_fn = throtl_pd_offline,
001bea73 1705 .pd_free_fn = throtl_pd_free,
e43473b7
VG
1706};
1707
cad9266a 1708void blk_throtl_cancel_bios(struct gendisk *disk)
2d8f7a3b 1709{
cad9266a 1710 struct request_queue *q = disk->queue;
2d8f7a3b
YK
1711 struct cgroup_subsys_state *pos_css;
1712 struct blkcg_gq *blkg;
1713
1714 spin_lock_irq(&q->queue_lock);
1715 /*
1716 * queue_lock is held, rcu lock is not needed here technically.
1717 * However, rcu lock is still held to emphasize that following
1718 * path need RCU protection and to prevent warning from lockdep.
1719 */
1720 rcu_read_lock();
1721 blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
1722 struct throtl_grp *tg = blkg_to_tg(blkg);
1723 struct throtl_service_queue *sq = &tg->service_queue;
1724
1725 /*
1726 * Set the flag to make sure throtl_pending_timer_fn() won't
1727 * stop until all throttled bios are dispatched.
1728 */
eb184791
KS
1729 tg->flags |= THROTL_TG_CANCELING;
1730
1731 /*
1732 * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup
1733 * will be inserted to service queue without THROTL_TG_PENDING
1734 * set in tg_update_disptime below. Then IO dispatched from
1735 * child in tg_dispatch_one_bio will trigger double insertion
1736 * and corrupt the tree.
1737 */
1738 if (!(tg->flags & THROTL_TG_PENDING))
1739 continue;
1740
2d8f7a3b
YK
1741 /*
1742 * Update disptime after setting the above flag to make sure
1743 * throtl_select_dispatch() won't exit without dispatching.
1744 */
1745 tg_update_disptime(tg);
1746
1747 throtl_schedule_pending_timer(sq, jiffies + 1);
1748 }
1749 rcu_read_unlock();
1750 spin_unlock_irq(&q->queue_lock);
1751}
1752
1753#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
3f0abd80
SL
1754static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1755{
1756 unsigned long rtime = jiffies, wtime = jiffies;
1757
1758 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1759 rtime = tg->last_low_overflow_time[READ];
1760 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1761 wtime = tg->last_low_overflow_time[WRITE];
1762 return min(rtime, wtime);
1763}
1764
3f0abd80
SL
1765static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1766{
1767 struct throtl_service_queue *parent_sq;
1768 struct throtl_grp *parent = tg;
1769 unsigned long ret = __tg_last_low_overflow_time(tg);
1770
1771 while (true) {
1772 parent_sq = parent->service_queue.parent_sq;
1773 parent = sq_to_tg(parent_sq);
1774 if (!parent)
1775 break;
1776
1777 /*
1778 * The parent doesn't have low limit, it always reaches low
1779 * limit. Its overflow time is useless for children
1780 */
1781 if (!parent->bps[READ][LIMIT_LOW] &&
1782 !parent->iops[READ][LIMIT_LOW] &&
1783 !parent->bps[WRITE][LIMIT_LOW] &&
1784 !parent->iops[WRITE][LIMIT_LOW])
1785 continue;
1786 if (time_after(__tg_last_low_overflow_time(parent), ret))
1787 ret = __tg_last_low_overflow_time(parent);
1788 }
1789 return ret;
1790}
1791
9e234eea
SL
1792static bool throtl_tg_is_idle(struct throtl_grp *tg)
1793{
1794 /*
1795 * cgroup is idle if:
1796 * - single idle is too long, longer than a fixed value (in case user
b4f428ef 1797 * configure a too big threshold) or 4 times of idletime threshold
9e234eea 1798 * - average think time is more than threshold
53696b8d 1799 * - IO latency is largely below threshold
9e234eea 1800 */
b4f428ef 1801 unsigned long time;
4cff729f 1802 bool ret;
9e234eea 1803
b4f428ef
SL
1804 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1805 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1806 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1807 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1808 tg->avg_idletime > tg->idletime_threshold ||
1809 (tg->latency_target && tg->bio_cnt &&
53696b8d 1810 tg->bad_bio_cnt * 5 < tg->bio_cnt);
4cff729f
SL
1811 throtl_log(&tg->service_queue,
1812 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1813 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1814 tg->bio_cnt, ret, tg->td->scale);
1815 return ret;
9e234eea
SL
1816}
1817
a4d508e3 1818static bool throtl_low_limit_reached(struct throtl_grp *tg, int rw)
c79892c5
SL
1819{
1820 struct throtl_service_queue *sq = &tg->service_queue;
a4d508e3 1821 bool limit = tg->bps[rw][LIMIT_LOW] || tg->iops[rw][LIMIT_LOW];
c79892c5
SL
1822
1823 /*
a4d508e3
KS
1824 * if low limit is zero, low limit is always reached.
1825 * if low limit is non-zero, we can check if there is any request
1826 * is queued to determine if low limit is reached as we throttle
1827 * request according to limit.
c79892c5 1828 */
a4d508e3
KS
1829 return !limit || sq->nr_queued[rw];
1830}
1831
1832static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1833{
1834 /*
1835 * cgroup reaches low limit when low limit of READ and WRITE are
1836 * both reached, it's ok to upgrade to next limit if cgroup reaches
1837 * low limit
1838 */
1839 if (throtl_low_limit_reached(tg, READ) &&
1840 throtl_low_limit_reached(tg, WRITE))
c79892c5 1841 return true;
aec24246
SL
1842
1843 if (time_after_eq(jiffies,
fa6fb5aa
SL
1844 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1845 throtl_tg_is_idle(tg))
aec24246 1846 return true;
c79892c5
SL
1847 return false;
1848}
1849
1850static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1851{
1852 while (true) {
1853 if (throtl_tg_can_upgrade(tg))
1854 return true;
1855 tg = sq_to_tg(tg->service_queue.parent_sq);
1856 if (!tg || !tg_to_blkg(tg)->parent)
1857 return false;
1858 }
1859 return false;
1860}
1861
1862static bool throtl_can_upgrade(struct throtl_data *td,
1863 struct throtl_grp *this_tg)
1864{
1865 struct cgroup_subsys_state *pos_css;
1866 struct blkcg_gq *blkg;
1867
1868 if (td->limit_index != LIMIT_LOW)
1869 return false;
1870
297e3d85 1871 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
3f0abd80
SL
1872 return false;
1873
c79892c5
SL
1874 rcu_read_lock();
1875 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1876 struct throtl_grp *tg = blkg_to_tg(blkg);
1877
1878 if (tg == this_tg)
1879 continue;
1880 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1881 continue;
1882 if (!throtl_hierarchy_can_upgrade(tg)) {
1883 rcu_read_unlock();
1884 return false;
1885 }
1886 }
1887 rcu_read_unlock();
1888 return true;
1889}
1890
fa6fb5aa
SL
1891static void throtl_upgrade_check(struct throtl_grp *tg)
1892{
1893 unsigned long now = jiffies;
1894
1895 if (tg->td->limit_index != LIMIT_LOW)
1896 return;
1897
1898 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1899 return;
1900
1901 tg->last_check_time = now;
1902
1903 if (!time_after_eq(now,
1904 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1905 return;
1906
1907 if (throtl_can_upgrade(tg->td, NULL))
1908 throtl_upgrade_state(tg->td);
1909}
1910
c79892c5
SL
1911static void throtl_upgrade_state(struct throtl_data *td)
1912{
1913 struct cgroup_subsys_state *pos_css;
1914 struct blkcg_gq *blkg;
1915
4cff729f 1916 throtl_log(&td->service_queue, "upgrade to max");
c79892c5 1917 td->limit_index = LIMIT_MAX;
3f0abd80 1918 td->low_upgrade_time = jiffies;
7394e31f 1919 td->scale = 0;
c79892c5
SL
1920 rcu_read_lock();
1921 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1922 struct throtl_grp *tg = blkg_to_tg(blkg);
1923 struct throtl_service_queue *sq = &tg->service_queue;
1924
1925 tg->disptime = jiffies - 1;
1926 throtl_select_dispatch(sq);
4f02fb76 1927 throtl_schedule_next_dispatch(sq, true);
c79892c5
SL
1928 }
1929 rcu_read_unlock();
1930 throtl_select_dispatch(&td->service_queue);
4f02fb76 1931 throtl_schedule_next_dispatch(&td->service_queue, true);
c79892c5
SL
1932 queue_work(kthrotld_workqueue, &td->dispatch_work);
1933}
1934
4247d9c8 1935static void throtl_downgrade_state(struct throtl_data *td)
3f0abd80 1936{
7394e31f
SL
1937 td->scale /= 2;
1938
4cff729f 1939 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
7394e31f
SL
1940 if (td->scale) {
1941 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1942 return;
1943 }
1944
4247d9c8 1945 td->limit_index = LIMIT_LOW;
3f0abd80
SL
1946 td->low_downgrade_time = jiffies;
1947}
1948
1949static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1950{
1951 struct throtl_data *td = tg->td;
1952 unsigned long now = jiffies;
1953
1954 /*
1955 * If cgroup is below low limit, consider downgrade and throttle other
1956 * cgroups
1957 */
9c9f209d 1958 if (time_after_eq(now, tg_last_low_overflow_time(tg) +
fa6fb5aa
SL
1959 td->throtl_slice) &&
1960 (!throtl_tg_is_idle(tg) ||
1961 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
3f0abd80
SL
1962 return true;
1963 return false;
1964}
1965
1966static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1967{
9c9f209d
KS
1968 struct throtl_data *td = tg->td;
1969
1970 if (time_before(jiffies, td->low_upgrade_time + td->throtl_slice))
1971 return false;
1972
3f0abd80
SL
1973 while (true) {
1974 if (!throtl_tg_can_downgrade(tg))
1975 return false;
1976 tg = sq_to_tg(tg->service_queue.parent_sq);
1977 if (!tg || !tg_to_blkg(tg)->parent)
1978 break;
1979 }
1980 return true;
1981}
1982
1983static void throtl_downgrade_check(struct throtl_grp *tg)
1984{
1985 uint64_t bps;
1986 unsigned int iops;
1987 unsigned long elapsed_time;
1988 unsigned long now = jiffies;
1989
1990 if (tg->td->limit_index != LIMIT_MAX ||
1991 !tg->td->limit_valid[LIMIT_LOW])
1992 return;
1993 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1994 return;
297e3d85 1995 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
3f0abd80
SL
1996 return;
1997
1998 elapsed_time = now - tg->last_check_time;
1999 tg->last_check_time = now;
2000
297e3d85
SL
2001 if (time_before(now, tg_last_low_overflow_time(tg) +
2002 tg->td->throtl_slice))
3f0abd80
SL
2003 return;
2004
2005 if (tg->bps[READ][LIMIT_LOW]) {
2006 bps = tg->last_bytes_disp[READ] * HZ;
2007 do_div(bps, elapsed_time);
2008 if (bps >= tg->bps[READ][LIMIT_LOW])
2009 tg->last_low_overflow_time[READ] = now;
2010 }
2011
2012 if (tg->bps[WRITE][LIMIT_LOW]) {
2013 bps = tg->last_bytes_disp[WRITE] * HZ;
2014 do_div(bps, elapsed_time);
2015 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2016 tg->last_low_overflow_time[WRITE] = now;
2017 }
2018
2019 if (tg->iops[READ][LIMIT_LOW]) {
2020 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2021 if (iops >= tg->iops[READ][LIMIT_LOW])
2022 tg->last_low_overflow_time[READ] = now;
2023 }
2024
2025 if (tg->iops[WRITE][LIMIT_LOW]) {
2026 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2027 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2028 tg->last_low_overflow_time[WRITE] = now;
2029 }
2030
2031 /*
2032 * If cgroup is below low limit, consider downgrade and throttle other
2033 * cgroups
2034 */
2035 if (throtl_hierarchy_can_downgrade(tg))
4247d9c8 2036 throtl_downgrade_state(tg->td);
3f0abd80
SL
2037
2038 tg->last_bytes_disp[READ] = 0;
2039 tg->last_bytes_disp[WRITE] = 0;
2040 tg->last_io_disp[READ] = 0;
2041 tg->last_io_disp[WRITE] = 0;
2042}
2043
9e234eea
SL
2044static void blk_throtl_update_idletime(struct throtl_grp *tg)
2045{
7901601a 2046 unsigned long now;
9e234eea
SL
2047 unsigned long last_finish_time = tg->last_finish_time;
2048
7901601a
BW
2049 if (last_finish_time == 0)
2050 return;
2051
2052 now = ktime_get_ns() >> 10;
2053 if (now <= last_finish_time ||
9e234eea
SL
2054 last_finish_time == tg->checked_last_finish_time)
2055 return;
2056
2057 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2058 tg->checked_last_finish_time = last_finish_time;
2059}
2060
b9147dd1
SL
2061static void throtl_update_latency_buckets(struct throtl_data *td)
2062{
b889bf66
JQ
2063 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2064 int i, cpu, rw;
2065 unsigned long last_latency[2] = { 0 };
2066 unsigned long latency[2];
b9147dd1 2067
b185efa7 2068 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
b9147dd1
SL
2069 return;
2070 if (time_before(jiffies, td->last_calculate_time + HZ))
2071 return;
2072 td->last_calculate_time = jiffies;
2073
2074 memset(avg_latency, 0, sizeof(avg_latency));
b889bf66
JQ
2075 for (rw = READ; rw <= WRITE; rw++) {
2076 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2077 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2078
2079 for_each_possible_cpu(cpu) {
2080 struct latency_bucket *bucket;
2081
2082 /* this isn't race free, but ok in practice */
2083 bucket = per_cpu_ptr(td->latency_buckets[rw],
2084 cpu);
2085 tmp->total_latency += bucket[i].total_latency;
2086 tmp->samples += bucket[i].samples;
2087 bucket[i].total_latency = 0;
2088 bucket[i].samples = 0;
2089 }
b9147dd1 2090
b889bf66
JQ
2091 if (tmp->samples >= 32) {
2092 int samples = tmp->samples;
b9147dd1 2093
b889bf66 2094 latency[rw] = tmp->total_latency;
b9147dd1 2095
b889bf66
JQ
2096 tmp->total_latency = 0;
2097 tmp->samples = 0;
2098 latency[rw] /= samples;
2099 if (latency[rw] == 0)
2100 continue;
2101 avg_latency[rw][i].latency = latency[rw];
2102 }
b9147dd1
SL
2103 }
2104 }
2105
b889bf66
JQ
2106 for (rw = READ; rw <= WRITE; rw++) {
2107 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2108 if (!avg_latency[rw][i].latency) {
2109 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2110 td->avg_buckets[rw][i].latency =
2111 last_latency[rw];
2112 continue;
2113 }
b9147dd1 2114
b889bf66
JQ
2115 if (!td->avg_buckets[rw][i].valid)
2116 latency[rw] = avg_latency[rw][i].latency;
2117 else
2118 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2119 avg_latency[rw][i].latency) >> 3;
b9147dd1 2120
b889bf66
JQ
2121 td->avg_buckets[rw][i].latency = max(latency[rw],
2122 last_latency[rw]);
2123 td->avg_buckets[rw][i].valid = true;
2124 last_latency[rw] = td->avg_buckets[rw][i].latency;
2125 }
b9147dd1 2126 }
4cff729f
SL
2127
2128 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2129 throtl_log(&td->service_queue,
b889bf66
JQ
2130 "Latency bucket %d: read latency=%ld, read valid=%d, "
2131 "write latency=%ld, write valid=%d", i,
2132 td->avg_buckets[READ][i].latency,
2133 td->avg_buckets[READ][i].valid,
2134 td->avg_buckets[WRITE][i].latency,
2135 td->avg_buckets[WRITE][i].valid);
b9147dd1
SL
2136}
2137#else
2138static inline void throtl_update_latency_buckets(struct throtl_data *td)
2139{
2140}
2d8f7a3b
YK
2141
2142static void blk_throtl_update_idletime(struct throtl_grp *tg)
2143{
2144}
2145
2146static void throtl_downgrade_check(struct throtl_grp *tg)
2147{
2148}
2149
2150static void throtl_upgrade_check(struct throtl_grp *tg)
2151{
2152}
2153
2154static bool throtl_can_upgrade(struct throtl_data *td,
2155 struct throtl_grp *this_tg)
2156{
2157 return false;
2158}
2159
2160static void throtl_upgrade_state(struct throtl_data *td)
2161{
2162}
b9147dd1
SL
2163#endif
2164
a7b36ee6 2165bool __blk_throtl_bio(struct bio *bio)
e43473b7 2166{
ed6cddef 2167 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
db18a53e 2168 struct blkcg_gq *blkg = bio->bi_blkg;
c5cc2070 2169 struct throtl_qnode *qn = NULL;
a2e83ef9 2170 struct throtl_grp *tg = blkg_to_tg(blkg);
73f0d49a 2171 struct throtl_service_queue *sq;
0e9f4164 2172 bool rw = bio_data_dir(bio);
bc16a4f9 2173 bool throttled = false;
b9147dd1 2174 struct throtl_data *td = tg->td;
e43473b7 2175
93b80638 2176 rcu_read_lock();
ae118896 2177
7ca46438
TH
2178 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2179 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2180 bio->bi_iter.bi_size);
2181 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2182 }
2183
0d945c1f 2184 spin_lock_irq(&q->queue_lock);
c9589f03 2185
b9147dd1
SL
2186 throtl_update_latency_buckets(td);
2187
9e234eea
SL
2188 blk_throtl_update_idletime(tg);
2189
73f0d49a
TH
2190 sq = &tg->service_queue;
2191
c79892c5 2192again:
9e660acf 2193 while (true) {
3f0abd80
SL
2194 if (tg->last_low_overflow_time[rw] == 0)
2195 tg->last_low_overflow_time[rw] = jiffies;
2196 throtl_downgrade_check(tg);
fa6fb5aa 2197 throtl_upgrade_check(tg);
9e660acf
TH
2198 /* throtl is FIFO - if bios are already queued, should queue */
2199 if (sq->nr_queued[rw])
2200 break;
de701c74 2201
9e660acf 2202 /* if above limits, break to queue */
c79892c5 2203 if (!tg_may_dispatch(tg, bio, NULL)) {
3f0abd80 2204 tg->last_low_overflow_time[rw] = jiffies;
b9147dd1
SL
2205 if (throtl_can_upgrade(td, tg)) {
2206 throtl_upgrade_state(td);
c79892c5
SL
2207 goto again;
2208 }
9e660acf 2209 break;
c79892c5 2210 }
9e660acf
TH
2211
2212 /* within limits, let's charge and dispatch directly */
e43473b7 2213 throtl_charge_bio(tg, bio);
04521db0
VG
2214
2215 /*
2216 * We need to trim slice even when bios are not being queued
2217 * otherwise it might happen that a bio is not queued for
2218 * a long time and slice keeps on extending and trim is not
2219 * called for a long time. Now if limits are reduced suddenly
2220 * we take into account all the IO dispatched so far at new
2221 * low rate and * newly queued IO gets a really long dispatch
2222 * time.
2223 *
2224 * So keep on trimming slice even if bio is not queued.
2225 */
0f3457f6 2226 throtl_trim_slice(tg, rw);
9e660acf
TH
2227
2228 /*
2229 * @bio passed through this layer without being throttled.
b53b072c 2230 * Climb up the ladder. If we're already at the top, it
9e660acf
TH
2231 * can be executed directly.
2232 */
c5cc2070 2233 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
2234 sq = sq->parent_sq;
2235 tg = sq_to_tg(sq);
320fb0f9
YK
2236 if (!tg) {
2237 bio_set_flag(bio, BIO_BPS_THROTTLED);
9e660acf 2238 goto out_unlock;
320fb0f9 2239 }
e43473b7
VG
2240 }
2241
9e660acf 2242 /* out-of-limit, queue to @tg */
fda6f272
TH
2243 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2244 rw == READ ? 'R' : 'W',
9f626e37
SL
2245 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2246 tg_bps_limit(tg, rw),
2247 tg->io_disp[rw], tg_iops_limit(tg, rw),
fda6f272 2248 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 2249
3f0abd80
SL
2250 tg->last_low_overflow_time[rw] = jiffies;
2251
b9147dd1 2252 td->nr_queued[rw]++;
c5cc2070 2253 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 2254 throttled = true;
e43473b7 2255
7f52f98c
TH
2256 /*
2257 * Update @tg's dispatch time and force schedule dispatch if @tg
2258 * was empty before @bio. The forced scheduling isn't likely to
2259 * cause undue delay as @bio is likely to be dispatched directly if
2260 * its @tg's disptime is not in the future.
2261 */
0e9f4164 2262 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 2263 tg_update_disptime(tg);
7f52f98c 2264 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
2265 }
2266
bc16a4f9 2267out_unlock:
b9147dd1
SL
2268#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2269 if (throttled || !td->track_bio_latency)
5238dcf4 2270 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
b9147dd1 2271#endif
5a011f88
LQ
2272 spin_unlock_irq(&q->queue_lock);
2273
93b80638 2274 rcu_read_unlock();
bc16a4f9 2275 return throttled;
e43473b7
VG
2276}
2277
9e234eea 2278#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
b9147dd1 2279static void throtl_track_latency(struct throtl_data *td, sector_t size,
77e7ffd7 2280 enum req_op op, unsigned long time)
b9147dd1 2281{
77e7ffd7 2282 const bool rw = op_is_write(op);
b9147dd1
SL
2283 struct latency_bucket *latency;
2284 int index;
2285
b889bf66
JQ
2286 if (!td || td->limit_index != LIMIT_LOW ||
2287 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
b9147dd1
SL
2288 !blk_queue_nonrot(td->queue))
2289 return;
2290
2291 index = request_bucket_index(size);
2292
77e7ffd7 2293 latency = get_cpu_ptr(td->latency_buckets[rw]);
b9147dd1
SL
2294 latency[index].total_latency += time;
2295 latency[index].samples++;
77e7ffd7 2296 put_cpu_ptr(td->latency_buckets[rw]);
b9147dd1
SL
2297}
2298
2299void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2300{
2301 struct request_queue *q = rq->q;
2302 struct throtl_data *td = q->td;
2303
3d244306
HT
2304 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2305 time_ns >> 10);
b9147dd1
SL
2306}
2307
9e234eea
SL
2308void blk_throtl_bio_endio(struct bio *bio)
2309{
08e18eab 2310 struct blkcg_gq *blkg;
9e234eea 2311 struct throtl_grp *tg;
b9147dd1
SL
2312 u64 finish_time_ns;
2313 unsigned long finish_time;
2314 unsigned long start_time;
2315 unsigned long lat;
b889bf66 2316 int rw = bio_data_dir(bio);
9e234eea 2317
08e18eab
JB
2318 blkg = bio->bi_blkg;
2319 if (!blkg)
9e234eea 2320 return;
08e18eab 2321 tg = blkg_to_tg(blkg);
b185efa7
BW
2322 if (!tg->td->limit_valid[LIMIT_LOW])
2323 return;
9e234eea 2324
b9147dd1
SL
2325 finish_time_ns = ktime_get_ns();
2326 tg->last_finish_time = finish_time_ns >> 10;
2327
5238dcf4
OS
2328 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2329 finish_time = __bio_issue_time(finish_time_ns) >> 10;
08e18eab 2330 if (!start_time || finish_time <= start_time)
53696b8d
SL
2331 return;
2332
2333 lat = finish_time - start_time;
b9147dd1 2334 /* this is only for bio based driver */
5238dcf4
OS
2335 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2336 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2337 bio_op(bio), lat);
53696b8d 2338
6679a90c 2339 if (tg->latency_target && lat >= tg->td->filtered_latency) {
53696b8d
SL
2340 int bucket;
2341 unsigned int threshold;
2342
5238dcf4 2343 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
b889bf66 2344 threshold = tg->td->avg_buckets[rw][bucket].latency +
53696b8d
SL
2345 tg->latency_target;
2346 if (lat > threshold)
2347 tg->bad_bio_cnt++;
2348 /*
2349 * Not race free, could get wrong count, which means cgroups
2350 * will be throttled
2351 */
2352 tg->bio_cnt++;
2353 }
2354
2355 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2356 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2357 tg->bio_cnt /= 2;
2358 tg->bad_bio_cnt /= 2;
b9147dd1 2359 }
9e234eea
SL
2360}
2361#endif
2362
e13793ba 2363int blk_throtl_init(struct gendisk *disk)
e43473b7 2364{
e13793ba 2365 struct request_queue *q = disk->queue;
e43473b7 2366 struct throtl_data *td;
a2b1693b 2367 int ret;
e43473b7
VG
2368
2369 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2370 if (!td)
2371 return -ENOMEM;
b889bf66 2372 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2373 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2374 if (!td->latency_buckets[READ]) {
2375 kfree(td);
2376 return -ENOMEM;
2377 }
2378 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2379 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2380 if (!td->latency_buckets[WRITE]) {
2381 free_percpu(td->latency_buckets[READ]);
b9147dd1
SL
2382 kfree(td);
2383 return -ENOMEM;
2384 }
e43473b7 2385
69df0ab0 2386 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
b2ce2643 2387 throtl_service_queue_init(&td->service_queue);
e43473b7 2388
cd1604fa 2389 q->td = td;
29b12589 2390 td->queue = q;
02977e4a 2391
9f626e37 2392 td->limit_valid[LIMIT_MAX] = true;
cd5ab1b0 2393 td->limit_index = LIMIT_MAX;
3f0abd80
SL
2394 td->low_upgrade_time = jiffies;
2395 td->low_downgrade_time = jiffies;
9e234eea 2396
a2b1693b 2397 /* activate policy */
3c798398 2398 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
b9147dd1 2399 if (ret) {
b889bf66
JQ
2400 free_percpu(td->latency_buckets[READ]);
2401 free_percpu(td->latency_buckets[WRITE]);
f51b802c 2402 kfree(td);
b9147dd1 2403 }
a2b1693b 2404 return ret;
e43473b7
VG
2405}
2406
e13793ba 2407void blk_throtl_exit(struct gendisk *disk)
e43473b7 2408{
e13793ba
CH
2409 struct request_queue *q = disk->queue;
2410
c875f4d0 2411 BUG_ON(!q->td);
884f0e84 2412 del_timer_sync(&q->td->service_queue.pending_timer);
da527770 2413 throtl_shutdown_wq(q);
3c798398 2414 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
b889bf66
JQ
2415 free_percpu(q->td->latency_buckets[READ]);
2416 free_percpu(q->td->latency_buckets[WRITE]);
c9a929dd 2417 kfree(q->td);
e43473b7
VG
2418}
2419
5f6dc752 2420void blk_throtl_register(struct gendisk *disk)
d61fcfa4 2421{
5f6dc752 2422 struct request_queue *q = disk->queue;
d61fcfa4 2423 struct throtl_data *td;
6679a90c 2424 int i;
d61fcfa4
SL
2425
2426 td = q->td;
2427 BUG_ON(!td);
2428
6679a90c 2429 if (blk_queue_nonrot(q)) {
d61fcfa4 2430 td->throtl_slice = DFL_THROTL_SLICE_SSD;
6679a90c
SL
2431 td->filtered_latency = LATENCY_FILTERED_SSD;
2432 } else {
d61fcfa4 2433 td->throtl_slice = DFL_THROTL_SLICE_HD;
6679a90c 2434 td->filtered_latency = LATENCY_FILTERED_HD;
b889bf66
JQ
2435 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2436 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2437 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2438 }
6679a90c 2439 }
d61fcfa4
SL
2440#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2441 /* if no low limit, use previous default */
2442 td->throtl_slice = DFL_THROTL_SLICE_HD;
2443#endif
9e234eea 2444
344e9ffc 2445 td->track_bio_latency = !queue_is_mq(q);
b9147dd1
SL
2446 if (!td->track_bio_latency)
2447 blk_stat_enable_accounting(q);
d61fcfa4
SL
2448}
2449
297e3d85
SL
2450#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2451ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2452{
2453 if (!q->td)
2454 return -EINVAL;
2455 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2456}
2457
2458ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2459 const char *page, size_t count)
2460{
2461 unsigned long v;
2462 unsigned long t;
2463
2464 if (!q->td)
2465 return -EINVAL;
2466 if (kstrtoul(page, 10, &v))
2467 return -EINVAL;
2468 t = msecs_to_jiffies(v);
2469 if (t == 0 || t > MAX_THROTL_SLICE)
2470 return -EINVAL;
2471 q->td->throtl_slice = t;
2472 return count;
2473}
2474#endif
2475
e43473b7
VG
2476static int __init throtl_init(void)
2477{
450adcbe
VG
2478 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2479 if (!kthrotld_workqueue)
2480 panic("Failed to create kthrotld\n");
2481
3c798398 2482 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
2483}
2484
2485module_init(throtl_init);