block: fix inflight statistics of part0
[linux-2.6-block.git] / block / blk-throttle.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
e43473b7
VG
2/*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
7
8#include <linux/module.h>
9#include <linux/slab.h>
10#include <linux/blkdev.h>
11#include <linux/bio.h>
12#include <linux/blktrace_api.h>
eea8f41c 13#include <linux/blk-cgroup.h>
bc9fcbf9 14#include "blk.h"
1d156646 15#include "blk-cgroup-rwstat.h"
e43473b7
VG
16
17/* Max dispatch from a group in 1 round */
e675df2a 18#define THROTL_GRP_QUANTUM 8
e43473b7
VG
19
20/* Total max dispatch from all groups in one round */
e675df2a 21#define THROTL_QUANTUM 32
e43473b7 22
d61fcfa4
SL
23/* Throttling is performed over a slice and after that slice is renewed */
24#define DFL_THROTL_SLICE_HD (HZ / 10)
25#define DFL_THROTL_SLICE_SSD (HZ / 50)
297e3d85 26#define MAX_THROTL_SLICE (HZ)
9e234eea 27#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
9bb67aeb
SL
28#define MIN_THROTL_BPS (320 * 1024)
29#define MIN_THROTL_IOPS (10)
b4f428ef
SL
30#define DFL_LATENCY_TARGET (-1L)
31#define DFL_IDLE_THRESHOLD (0)
6679a90c
SL
32#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
33#define LATENCY_FILTERED_SSD (0)
34/*
35 * For HD, very small latency comes from sequential IO. Such IO is helpless to
36 * help determine if its IO is impacted by others, hence we ignore the IO
37 */
38#define LATENCY_FILTERED_HD (1000L) /* 1ms */
e43473b7 39
3c798398 40static struct blkcg_policy blkcg_policy_throtl;
0381411e 41
450adcbe
VG
42/* A workqueue to queue throttle related work */
43static struct workqueue_struct *kthrotld_workqueue;
450adcbe 44
c5cc2070
TH
45/*
46 * To implement hierarchical throttling, throtl_grps form a tree and bios
47 * are dispatched upwards level by level until they reach the top and get
48 * issued. When dispatching bios from the children and local group at each
49 * level, if the bios are dispatched into a single bio_list, there's a risk
50 * of a local or child group which can queue many bios at once filling up
51 * the list starving others.
52 *
53 * To avoid such starvation, dispatched bios are queued separately
54 * according to where they came from. When they are again dispatched to
55 * the parent, they're popped in round-robin order so that no single source
56 * hogs the dispatch window.
57 *
58 * throtl_qnode is used to keep the queued bios separated by their sources.
59 * Bios are queued to throtl_qnode which in turn is queued to
60 * throtl_service_queue and then dispatched in round-robin order.
61 *
62 * It's also used to track the reference counts on blkg's. A qnode always
63 * belongs to a throtl_grp and gets queued on itself or the parent, so
64 * incrementing the reference of the associated throtl_grp when a qnode is
65 * queued and decrementing when dequeued is enough to keep the whole blkg
66 * tree pinned while bios are in flight.
67 */
68struct throtl_qnode {
69 struct list_head node; /* service_queue->queued[] */
70 struct bio_list bios; /* queued bios */
71 struct throtl_grp *tg; /* tg this qnode belongs to */
72};
73
c9e0332e 74struct throtl_service_queue {
77216b04
TH
75 struct throtl_service_queue *parent_sq; /* the parent service_queue */
76
73f0d49a
TH
77 /*
78 * Bios queued directly to this service_queue or dispatched from
79 * children throtl_grp's.
80 */
c5cc2070 81 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
73f0d49a
TH
82 unsigned int nr_queued[2]; /* number of queued bios */
83
84 /*
85 * RB tree of active children throtl_grp's, which are sorted by
86 * their ->disptime.
87 */
9ff01255 88 struct rb_root_cached pending_tree; /* RB tree of active tgs */
c9e0332e
TH
89 unsigned int nr_pending; /* # queued in the tree */
90 unsigned long first_pending_disptime; /* disptime of the first tg */
69df0ab0 91 struct timer_list pending_timer; /* fires on first_pending_disptime */
e43473b7
VG
92};
93
5b2c16aa
TH
94enum tg_state_flags {
95 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
0e9f4164 96 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
5b2c16aa
TH
97};
98
e43473b7
VG
99#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
100
9f626e37 101enum {
cd5ab1b0 102 LIMIT_LOW,
9f626e37
SL
103 LIMIT_MAX,
104 LIMIT_CNT,
105};
106
e43473b7 107struct throtl_grp {
f95a04af
TH
108 /* must be the first member */
109 struct blkg_policy_data pd;
110
c9e0332e 111 /* active throtl group service_queue member */
e43473b7
VG
112 struct rb_node rb_node;
113
0f3457f6
TH
114 /* throtl_data this group belongs to */
115 struct throtl_data *td;
116
49a2f1e3
TH
117 /* this group's service queue */
118 struct throtl_service_queue service_queue;
119
c5cc2070
TH
120 /*
121 * qnode_on_self is used when bios are directly queued to this
122 * throtl_grp so that local bios compete fairly with bios
123 * dispatched from children. qnode_on_parent is used when bios are
124 * dispatched from this throtl_grp into its parent and will compete
125 * with the sibling qnode_on_parents and the parent's
126 * qnode_on_self.
127 */
128 struct throtl_qnode qnode_on_self[2];
129 struct throtl_qnode qnode_on_parent[2];
130
e43473b7
VG
131 /*
132 * Dispatch time in jiffies. This is the estimated time when group
133 * will unthrottle and is ready to dispatch more bio. It is used as
134 * key to sort active groups in service tree.
135 */
136 unsigned long disptime;
137
e43473b7
VG
138 unsigned int flags;
139
693e751e
TH
140 /* are there any throtl rules between this group and td? */
141 bool has_rules[2];
142
cd5ab1b0 143 /* internally used bytes per second rate limits */
9f626e37 144 uint64_t bps[2][LIMIT_CNT];
cd5ab1b0
SL
145 /* user configured bps limits */
146 uint64_t bps_conf[2][LIMIT_CNT];
e43473b7 147
cd5ab1b0 148 /* internally used IOPS limits */
9f626e37 149 unsigned int iops[2][LIMIT_CNT];
cd5ab1b0
SL
150 /* user configured IOPS limits */
151 unsigned int iops_conf[2][LIMIT_CNT];
8e89d13f 152
b53b072c 153 /* Number of bytes dispatched in current slice */
e43473b7 154 uint64_t bytes_disp[2];
8e89d13f
VG
155 /* Number of bio's dispatched in current slice */
156 unsigned int io_disp[2];
e43473b7 157
3f0abd80
SL
158 unsigned long last_low_overflow_time[2];
159
160 uint64_t last_bytes_disp[2];
161 unsigned int last_io_disp[2];
162
163 unsigned long last_check_time;
164
ec80991d 165 unsigned long latency_target; /* us */
5b81fc3c 166 unsigned long latency_target_conf; /* us */
e43473b7
VG
167 /* When did we start a new slice */
168 unsigned long slice_start[2];
169 unsigned long slice_end[2];
9e234eea
SL
170
171 unsigned long last_finish_time; /* ns / 1024 */
172 unsigned long checked_last_finish_time; /* ns / 1024 */
173 unsigned long avg_idletime; /* ns / 1024 */
174 unsigned long idletime_threshold; /* us */
5b81fc3c 175 unsigned long idletime_threshold_conf; /* us */
53696b8d
SL
176
177 unsigned int bio_cnt; /* total bios */
178 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
179 unsigned long bio_cnt_reset_time;
7ca46438
TH
180
181 struct blkg_rwstat stat_bytes;
182 struct blkg_rwstat stat_ios;
e43473b7
VG
183};
184
b9147dd1
SL
185/* We measure latency for request size from <= 4k to >= 1M */
186#define LATENCY_BUCKET_SIZE 9
187
188struct latency_bucket {
189 unsigned long total_latency; /* ns / 1024 */
190 int samples;
191};
192
193struct avg_latency_bucket {
194 unsigned long latency; /* ns / 1024 */
195 bool valid;
196};
197
e43473b7
VG
198struct throtl_data
199{
e43473b7 200 /* service tree for active throtl groups */
c9e0332e 201 struct throtl_service_queue service_queue;
e43473b7 202
e43473b7
VG
203 struct request_queue *queue;
204
205 /* Total Number of queued bios on READ and WRITE lists */
206 unsigned int nr_queued[2];
207
297e3d85
SL
208 unsigned int throtl_slice;
209
e43473b7 210 /* Work for dispatching throttled bios */
69df0ab0 211 struct work_struct dispatch_work;
9f626e37
SL
212 unsigned int limit_index;
213 bool limit_valid[LIMIT_CNT];
3f0abd80
SL
214
215 unsigned long low_upgrade_time;
216 unsigned long low_downgrade_time;
7394e31f
SL
217
218 unsigned int scale;
b9147dd1 219
b889bf66
JQ
220 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
221 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
222 struct latency_bucket __percpu *latency_buckets[2];
b9147dd1 223 unsigned long last_calculate_time;
6679a90c 224 unsigned long filtered_latency;
b9147dd1
SL
225
226 bool track_bio_latency;
e43473b7
VG
227};
228
e99e88a9 229static void throtl_pending_timer_fn(struct timer_list *t);
69df0ab0 230
f95a04af
TH
231static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
232{
233 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
234}
235
3c798398 236static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
0381411e 237{
f95a04af 238 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
0381411e
TH
239}
240
3c798398 241static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 242{
f95a04af 243 return pd_to_blkg(&tg->pd);
0381411e
TH
244}
245
fda6f272
TH
246/**
247 * sq_to_tg - return the throl_grp the specified service queue belongs to
248 * @sq: the throtl_service_queue of interest
249 *
250 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
251 * embedded in throtl_data, %NULL is returned.
252 */
253static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
254{
255 if (sq && sq->parent_sq)
256 return container_of(sq, struct throtl_grp, service_queue);
257 else
258 return NULL;
259}
260
261/**
262 * sq_to_td - return throtl_data the specified service queue belongs to
263 * @sq: the throtl_service_queue of interest
264 *
b43daedc 265 * A service_queue can be embedded in either a throtl_grp or throtl_data.
fda6f272
TH
266 * Determine the associated throtl_data accordingly and return it.
267 */
268static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
269{
270 struct throtl_grp *tg = sq_to_tg(sq);
271
272 if (tg)
273 return tg->td;
274 else
275 return container_of(sq, struct throtl_data, service_queue);
276}
277
7394e31f
SL
278/*
279 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
280 * make the IO dispatch more smooth.
281 * Scale up: linearly scale up according to lapsed time since upgrade. For
282 * every throtl_slice, the limit scales up 1/2 .low limit till the
283 * limit hits .max limit
284 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
285 */
286static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
287{
288 /* arbitrary value to avoid too big scale */
289 if (td->scale < 4096 && time_after_eq(jiffies,
290 td->low_upgrade_time + td->scale * td->throtl_slice))
291 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
292
293 return low + (low >> 1) * td->scale;
294}
295
9f626e37
SL
296static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
297{
b22c417c 298 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 299 struct throtl_data *td;
b22c417c
SL
300 uint64_t ret;
301
302 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
303 return U64_MAX;
7394e31f
SL
304
305 td = tg->td;
306 ret = tg->bps[rw][td->limit_index];
9bb67aeb
SL
307 if (ret == 0 && td->limit_index == LIMIT_LOW) {
308 /* intermediate node or iops isn't 0 */
309 if (!list_empty(&blkg->blkcg->css.children) ||
310 tg->iops[rw][td->limit_index])
311 return U64_MAX;
312 else
313 return MIN_THROTL_BPS;
314 }
7394e31f
SL
315
316 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
317 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
318 uint64_t adjusted;
319
320 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
321 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
322 }
b22c417c 323 return ret;
9f626e37
SL
324}
325
326static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
327{
b22c417c 328 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 329 struct throtl_data *td;
b22c417c
SL
330 unsigned int ret;
331
332 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
333 return UINT_MAX;
9bb67aeb 334
7394e31f
SL
335 td = tg->td;
336 ret = tg->iops[rw][td->limit_index];
9bb67aeb
SL
337 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
338 /* intermediate node or bps isn't 0 */
339 if (!list_empty(&blkg->blkcg->css.children) ||
340 tg->bps[rw][td->limit_index])
341 return UINT_MAX;
342 else
343 return MIN_THROTL_IOPS;
344 }
7394e31f
SL
345
346 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
347 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
348 uint64_t adjusted;
349
350 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
351 if (adjusted > UINT_MAX)
352 adjusted = UINT_MAX;
353 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
354 }
b22c417c 355 return ret;
9f626e37
SL
356}
357
b9147dd1
SL
358#define request_bucket_index(sectors) \
359 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
360
fda6f272
TH
361/**
362 * throtl_log - log debug message via blktrace
363 * @sq: the service_queue being reported
364 * @fmt: printf format string
365 * @args: printf args
366 *
367 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
368 * throtl_grp; otherwise, just "throtl".
fda6f272
TH
369 */
370#define throtl_log(sq, fmt, args...) do { \
371 struct throtl_grp *__tg = sq_to_tg((sq)); \
372 struct throtl_data *__td = sq_to_td((sq)); \
373 \
374 (void)__td; \
59fa0224
SL
375 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
376 break; \
fda6f272 377 if ((__tg)) { \
35fe6d76
SL
378 blk_add_cgroup_trace_msg(__td->queue, \
379 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
fda6f272
TH
380 } else { \
381 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
382 } \
54e7ed12 383} while (0)
e43473b7 384
ea0ea2bc
SL
385static inline unsigned int throtl_bio_data_size(struct bio *bio)
386{
387 /* assume it's one sector */
388 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
389 return 512;
390 return bio->bi_iter.bi_size;
391}
392
c5cc2070
TH
393static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
394{
395 INIT_LIST_HEAD(&qn->node);
396 bio_list_init(&qn->bios);
397 qn->tg = tg;
398}
399
400/**
401 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
402 * @bio: bio being added
403 * @qn: qnode to add bio to
404 * @queued: the service_queue->queued[] list @qn belongs to
405 *
406 * Add @bio to @qn and put @qn on @queued if it's not already on.
407 * @qn->tg's reference count is bumped when @qn is activated. See the
408 * comment on top of throtl_qnode definition for details.
409 */
410static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
411 struct list_head *queued)
412{
413 bio_list_add(&qn->bios, bio);
414 if (list_empty(&qn->node)) {
415 list_add_tail(&qn->node, queued);
416 blkg_get(tg_to_blkg(qn->tg));
417 }
418}
419
420/**
421 * throtl_peek_queued - peek the first bio on a qnode list
422 * @queued: the qnode list to peek
423 */
424static struct bio *throtl_peek_queued(struct list_head *queued)
425{
b7b609de 426 struct throtl_qnode *qn;
c5cc2070
TH
427 struct bio *bio;
428
429 if (list_empty(queued))
430 return NULL;
431
b7b609de 432 qn = list_first_entry(queued, struct throtl_qnode, node);
c5cc2070
TH
433 bio = bio_list_peek(&qn->bios);
434 WARN_ON_ONCE(!bio);
435 return bio;
436}
437
438/**
439 * throtl_pop_queued - pop the first bio form a qnode list
440 * @queued: the qnode list to pop a bio from
441 * @tg_to_put: optional out argument for throtl_grp to put
442 *
443 * Pop the first bio from the qnode list @queued. After popping, the first
444 * qnode is removed from @queued if empty or moved to the end of @queued so
445 * that the popping order is round-robin.
446 *
447 * When the first qnode is removed, its associated throtl_grp should be put
448 * too. If @tg_to_put is NULL, this function automatically puts it;
449 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
450 * responsible for putting it.
451 */
452static struct bio *throtl_pop_queued(struct list_head *queued,
453 struct throtl_grp **tg_to_put)
454{
b7b609de 455 struct throtl_qnode *qn;
c5cc2070
TH
456 struct bio *bio;
457
458 if (list_empty(queued))
459 return NULL;
460
b7b609de 461 qn = list_first_entry(queued, struct throtl_qnode, node);
c5cc2070
TH
462 bio = bio_list_pop(&qn->bios);
463 WARN_ON_ONCE(!bio);
464
465 if (bio_list_empty(&qn->bios)) {
466 list_del_init(&qn->node);
467 if (tg_to_put)
468 *tg_to_put = qn->tg;
469 else
470 blkg_put(tg_to_blkg(qn->tg));
471 } else {
472 list_move_tail(&qn->node, queued);
473 }
474
475 return bio;
476}
477
49a2f1e3 478/* init a service_queue, assumes the caller zeroed it */
b2ce2643 479static void throtl_service_queue_init(struct throtl_service_queue *sq)
49a2f1e3 480{
c5cc2070
TH
481 INIT_LIST_HEAD(&sq->queued[0]);
482 INIT_LIST_HEAD(&sq->queued[1]);
9ff01255 483 sq->pending_tree = RB_ROOT_CACHED;
e99e88a9 484 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
69df0ab0
TH
485}
486
cf09a8ee
TH
487static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
488 struct request_queue *q,
489 struct blkcg *blkcg)
001bea73 490{
4fb72036 491 struct throtl_grp *tg;
24bdb8ef 492 int rw;
4fb72036 493
cf09a8ee 494 tg = kzalloc_node(sizeof(*tg), gfp, q->node);
4fb72036 495 if (!tg)
77ea7338 496 return NULL;
4fb72036 497
7ca46438
TH
498 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
499 goto err_free_tg;
500
501 if (blkg_rwstat_init(&tg->stat_ios, gfp))
502 goto err_exit_stat_bytes;
503
b2ce2643
TH
504 throtl_service_queue_init(&tg->service_queue);
505
506 for (rw = READ; rw <= WRITE; rw++) {
507 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
508 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
509 }
510
511 RB_CLEAR_NODE(&tg->rb_node);
9f626e37
SL
512 tg->bps[READ][LIMIT_MAX] = U64_MAX;
513 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
514 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
515 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
cd5ab1b0
SL
516 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
517 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
518 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
519 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
520 /* LIMIT_LOW will have default value 0 */
b2ce2643 521
ec80991d 522 tg->latency_target = DFL_LATENCY_TARGET;
5b81fc3c 523 tg->latency_target_conf = DFL_LATENCY_TARGET;
b4f428ef
SL
524 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
525 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
ec80991d 526
4fb72036 527 return &tg->pd;
7ca46438
TH
528
529err_exit_stat_bytes:
530 blkg_rwstat_exit(&tg->stat_bytes);
531err_free_tg:
532 kfree(tg);
533 return NULL;
001bea73
TH
534}
535
a9520cd6 536static void throtl_pd_init(struct blkg_policy_data *pd)
a29a171e 537{
a9520cd6
TH
538 struct throtl_grp *tg = pd_to_tg(pd);
539 struct blkcg_gq *blkg = tg_to_blkg(tg);
77216b04 540 struct throtl_data *td = blkg->q->td;
b2ce2643 541 struct throtl_service_queue *sq = &tg->service_queue;
cd1604fa 542
9138125b 543 /*
aa6ec29b 544 * If on the default hierarchy, we switch to properly hierarchical
9138125b
TH
545 * behavior where limits on a given throtl_grp are applied to the
546 * whole subtree rather than just the group itself. e.g. If 16M
547 * read_bps limit is set on the root group, the whole system can't
548 * exceed 16M for the device.
549 *
aa6ec29b 550 * If not on the default hierarchy, the broken flat hierarchy
9138125b
TH
551 * behavior is retained where all throtl_grps are treated as if
552 * they're all separate root groups right below throtl_data.
553 * Limits of a group don't interact with limits of other groups
554 * regardless of the position of the group in the hierarchy.
555 */
b2ce2643 556 sq->parent_sq = &td->service_queue;
9e10a130 557 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
b2ce2643 558 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
77216b04 559 tg->td = td;
8a3d2615
TH
560}
561
693e751e
TH
562/*
563 * Set has_rules[] if @tg or any of its parents have limits configured.
564 * This doesn't require walking up to the top of the hierarchy as the
565 * parent's has_rules[] is guaranteed to be correct.
566 */
567static void tg_update_has_rules(struct throtl_grp *tg)
568{
569 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
9f626e37 570 struct throtl_data *td = tg->td;
693e751e
TH
571 int rw;
572
573 for (rw = READ; rw <= WRITE; rw++)
574 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
9f626e37
SL
575 (td->limit_valid[td->limit_index] &&
576 (tg_bps_limit(tg, rw) != U64_MAX ||
577 tg_iops_limit(tg, rw) != UINT_MAX));
693e751e
TH
578}
579
a9520cd6 580static void throtl_pd_online(struct blkg_policy_data *pd)
693e751e 581{
aec24246 582 struct throtl_grp *tg = pd_to_tg(pd);
693e751e
TH
583 /*
584 * We don't want new groups to escape the limits of its ancestors.
585 * Update has_rules[] after a new group is brought online.
586 */
aec24246 587 tg_update_has_rules(tg);
693e751e
TH
588}
589
cd5ab1b0
SL
590static void blk_throtl_update_limit_valid(struct throtl_data *td)
591{
592 struct cgroup_subsys_state *pos_css;
593 struct blkcg_gq *blkg;
594 bool low_valid = false;
595
596 rcu_read_lock();
597 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
598 struct throtl_grp *tg = blkg_to_tg(blkg);
599
600 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
43ada787 601 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
cd5ab1b0 602 low_valid = true;
43ada787
LB
603 break;
604 }
cd5ab1b0
SL
605 }
606 rcu_read_unlock();
607
608 td->limit_valid[LIMIT_LOW] = low_valid;
609}
610
c79892c5 611static void throtl_upgrade_state(struct throtl_data *td);
cd5ab1b0
SL
612static void throtl_pd_offline(struct blkg_policy_data *pd)
613{
614 struct throtl_grp *tg = pd_to_tg(pd);
615
616 tg->bps[READ][LIMIT_LOW] = 0;
617 tg->bps[WRITE][LIMIT_LOW] = 0;
618 tg->iops[READ][LIMIT_LOW] = 0;
619 tg->iops[WRITE][LIMIT_LOW] = 0;
620
621 blk_throtl_update_limit_valid(tg->td);
622
c79892c5
SL
623 if (!tg->td->limit_valid[tg->td->limit_index])
624 throtl_upgrade_state(tg->td);
cd5ab1b0
SL
625}
626
001bea73
TH
627static void throtl_pd_free(struct blkg_policy_data *pd)
628{
4fb72036
TH
629 struct throtl_grp *tg = pd_to_tg(pd);
630
b2ce2643 631 del_timer_sync(&tg->service_queue.pending_timer);
7ca46438
TH
632 blkg_rwstat_exit(&tg->stat_bytes);
633 blkg_rwstat_exit(&tg->stat_ios);
4fb72036 634 kfree(tg);
001bea73
TH
635}
636
0049af73
TH
637static struct throtl_grp *
638throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7 639{
9ff01255 640 struct rb_node *n;
e43473b7 641
9ff01255
LB
642 n = rb_first_cached(&parent_sq->pending_tree);
643 WARN_ON_ONCE(!n);
644 if (!n)
645 return NULL;
646 return rb_entry_tg(n);
e43473b7
VG
647}
648
0049af73
TH
649static void throtl_rb_erase(struct rb_node *n,
650 struct throtl_service_queue *parent_sq)
e43473b7 651{
9ff01255
LB
652 rb_erase_cached(n, &parent_sq->pending_tree);
653 RB_CLEAR_NODE(n);
0049af73 654 --parent_sq->nr_pending;
e43473b7
VG
655}
656
0049af73 657static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
658{
659 struct throtl_grp *tg;
660
0049af73 661 tg = throtl_rb_first(parent_sq);
e43473b7
VG
662 if (!tg)
663 return;
664
0049af73 665 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
666}
667
77216b04 668static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 669{
77216b04 670 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
9ff01255 671 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
e43473b7
VG
672 struct rb_node *parent = NULL;
673 struct throtl_grp *__tg;
674 unsigned long key = tg->disptime;
9ff01255 675 bool leftmost = true;
e43473b7
VG
676
677 while (*node != NULL) {
678 parent = *node;
679 __tg = rb_entry_tg(parent);
680
681 if (time_before(key, __tg->disptime))
682 node = &parent->rb_left;
683 else {
684 node = &parent->rb_right;
9ff01255 685 leftmost = false;
e43473b7
VG
686 }
687 }
688
e43473b7 689 rb_link_node(&tg->rb_node, parent, node);
9ff01255
LB
690 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
691 leftmost);
e43473b7
VG
692}
693
77216b04 694static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 695{
29379674
BW
696 if (!(tg->flags & THROTL_TG_PENDING)) {
697 tg_service_queue_add(tg);
698 tg->flags |= THROTL_TG_PENDING;
699 tg->service_queue.parent_sq->nr_pending++;
700 }
e43473b7
VG
701}
702
77216b04 703static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 704{
29379674
BW
705 if (tg->flags & THROTL_TG_PENDING) {
706 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
707 tg->flags &= ~THROTL_TG_PENDING;
708 }
e43473b7
VG
709}
710
a9131a27 711/* Call with queue lock held */
69df0ab0
TH
712static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
713 unsigned long expires)
a9131a27 714{
a41b816c 715 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
06cceedc
SL
716
717 /*
718 * Since we are adjusting the throttle limit dynamically, the sleep
719 * time calculated according to previous limit might be invalid. It's
720 * possible the cgroup sleep time is very long and no other cgroups
721 * have IO running so notify the limit changes. Make sure the cgroup
722 * doesn't sleep too long to avoid the missed notification.
723 */
724 if (time_after(expires, max_expire))
725 expires = max_expire;
69df0ab0
TH
726 mod_timer(&sq->pending_timer, expires);
727 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
728 expires - jiffies, jiffies);
a9131a27
TH
729}
730
7f52f98c
TH
731/**
732 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
733 * @sq: the service_queue to schedule dispatch for
734 * @force: force scheduling
735 *
736 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
737 * dispatch time of the first pending child. Returns %true if either timer
738 * is armed or there's no pending child left. %false if the current
739 * dispatch window is still open and the caller should continue
740 * dispatching.
741 *
742 * If @force is %true, the dispatch timer is always scheduled and this
743 * function is guaranteed to return %true. This is to be used when the
744 * caller can't dispatch itself and needs to invoke pending_timer
745 * unconditionally. Note that forced scheduling is likely to induce short
746 * delay before dispatch starts even if @sq->first_pending_disptime is not
747 * in the future and thus shouldn't be used in hot paths.
748 */
749static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
750 bool force)
e43473b7 751{
6a525600 752 /* any pending children left? */
c9e0332e 753 if (!sq->nr_pending)
7f52f98c 754 return true;
e43473b7 755
c9e0332e 756 update_min_dispatch_time(sq);
e43473b7 757
69df0ab0 758 /* is the next dispatch time in the future? */
7f52f98c 759 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 760 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 761 return true;
69df0ab0
TH
762 }
763
7f52f98c
TH
764 /* tell the caller to continue dispatching */
765 return false;
e43473b7
VG
766}
767
32ee5bc4
VG
768static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
769 bool rw, unsigned long start)
770{
771 tg->bytes_disp[rw] = 0;
772 tg->io_disp[rw] = 0;
773
774 /*
775 * Previous slice has expired. We must have trimmed it after last
776 * bio dispatch. That means since start of last slice, we never used
777 * that bandwidth. Do try to make use of that bandwidth while giving
778 * credit.
779 */
780 if (time_after_eq(start, tg->slice_start[rw]))
781 tg->slice_start[rw] = start;
782
297e3d85 783 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
32ee5bc4
VG
784 throtl_log(&tg->service_queue,
785 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
786 rw == READ ? 'R' : 'W', tg->slice_start[rw],
787 tg->slice_end[rw], jiffies);
788}
789
0f3457f6 790static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
e43473b7
VG
791{
792 tg->bytes_disp[rw] = 0;
8e89d13f 793 tg->io_disp[rw] = 0;
e43473b7 794 tg->slice_start[rw] = jiffies;
297e3d85 795 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
fda6f272
TH
796 throtl_log(&tg->service_queue,
797 "[%c] new slice start=%lu end=%lu jiffies=%lu",
798 rw == READ ? 'R' : 'W', tg->slice_start[rw],
799 tg->slice_end[rw], jiffies);
e43473b7
VG
800}
801
0f3457f6
TH
802static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
803 unsigned long jiffy_end)
d1ae8ffd 804{
297e3d85 805 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
d1ae8ffd
VG
806}
807
0f3457f6
TH
808static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
809 unsigned long jiffy_end)
e43473b7 810{
1da30f95 811 throtl_set_slice_end(tg, rw, jiffy_end);
fda6f272
TH
812 throtl_log(&tg->service_queue,
813 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
814 rw == READ ? 'R' : 'W', tg->slice_start[rw],
815 tg->slice_end[rw], jiffies);
e43473b7
VG
816}
817
818/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 819static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
820{
821 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
5cf8c227 822 return false;
e43473b7 823
0b6bad7d 824 return true;
e43473b7
VG
825}
826
827/* Trim the used slices and adjust slice start accordingly */
0f3457f6 828static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 829{
3aad5d3e
VG
830 unsigned long nr_slices, time_elapsed, io_trim;
831 u64 bytes_trim, tmp;
e43473b7
VG
832
833 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
834
835 /*
836 * If bps are unlimited (-1), then time slice don't get
837 * renewed. Don't try to trim the slice if slice is used. A new
838 * slice will start when appropriate.
839 */
0f3457f6 840 if (throtl_slice_used(tg, rw))
e43473b7
VG
841 return;
842
d1ae8ffd
VG
843 /*
844 * A bio has been dispatched. Also adjust slice_end. It might happen
845 * that initially cgroup limit was very low resulting in high
b53b072c 846 * slice_end, but later limit was bumped up and bio was dispatched
d1ae8ffd
VG
847 * sooner, then we need to reduce slice_end. A high bogus slice_end
848 * is bad because it does not allow new slice to start.
849 */
850
297e3d85 851 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
d1ae8ffd 852
e43473b7
VG
853 time_elapsed = jiffies - tg->slice_start[rw];
854
297e3d85 855 nr_slices = time_elapsed / tg->td->throtl_slice;
e43473b7
VG
856
857 if (!nr_slices)
858 return;
297e3d85 859 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
3aad5d3e
VG
860 do_div(tmp, HZ);
861 bytes_trim = tmp;
e43473b7 862
297e3d85
SL
863 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
864 HZ;
e43473b7 865
8e89d13f 866 if (!bytes_trim && !io_trim)
e43473b7
VG
867 return;
868
869 if (tg->bytes_disp[rw] >= bytes_trim)
870 tg->bytes_disp[rw] -= bytes_trim;
871 else
872 tg->bytes_disp[rw] = 0;
873
8e89d13f
VG
874 if (tg->io_disp[rw] >= io_trim)
875 tg->io_disp[rw] -= io_trim;
876 else
877 tg->io_disp[rw] = 0;
878
297e3d85 879 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
e43473b7 880
fda6f272
TH
881 throtl_log(&tg->service_queue,
882 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
883 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
884 tg->slice_start[rw], tg->slice_end[rw], jiffies);
e43473b7
VG
885}
886
0f3457f6 887static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
4599ea49 888 u32 iops_limit, unsigned long *wait)
e43473b7
VG
889{
890 bool rw = bio_data_dir(bio);
8e89d13f 891 unsigned int io_allowed;
e43473b7 892 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
c49c06e4 893 u64 tmp;
e43473b7 894
87fbeb88
BW
895 if (iops_limit == UINT_MAX) {
896 if (wait)
897 *wait = 0;
898 return true;
899 }
900
3a10f999 901 jiffy_elapsed = jiffies - tg->slice_start[rw];
e43473b7 902
3a10f999
KK
903 /* Round up to the next throttle slice, wait time must be nonzero */
904 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
8e89d13f 905
c49c06e4
VG
906 /*
907 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
908 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
909 * will allow dispatch after 1 second and after that slice should
910 * have been trimmed.
911 */
912
4599ea49 913 tmp = (u64)iops_limit * jiffy_elapsed_rnd;
c49c06e4
VG
914 do_div(tmp, HZ);
915
916 if (tmp > UINT_MAX)
917 io_allowed = UINT_MAX;
918 else
919 io_allowed = tmp;
8e89d13f
VG
920
921 if (tg->io_disp[rw] + 1 <= io_allowed) {
e43473b7
VG
922 if (wait)
923 *wait = 0;
5cf8c227 924 return true;
e43473b7
VG
925 }
926
8e89d13f 927 /* Calc approx time to dispatch */
991f61fe 928 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
8e89d13f
VG
929
930 if (wait)
931 *wait = jiffy_wait;
0b6bad7d 932 return false;
8e89d13f
VG
933}
934
0f3457f6 935static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
4599ea49 936 u64 bps_limit, unsigned long *wait)
8e89d13f
VG
937{
938 bool rw = bio_data_dir(bio);
3aad5d3e 939 u64 bytes_allowed, extra_bytes, tmp;
8e89d13f 940 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
ea0ea2bc 941 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7 942
87fbeb88
BW
943 if (bps_limit == U64_MAX) {
944 if (wait)
945 *wait = 0;
946 return true;
947 }
948
e43473b7
VG
949 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
950
951 /* Slice has just started. Consider one slice interval */
952 if (!jiffy_elapsed)
297e3d85 953 jiffy_elapsed_rnd = tg->td->throtl_slice;
e43473b7 954
297e3d85 955 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
e43473b7 956
4599ea49 957 tmp = bps_limit * jiffy_elapsed_rnd;
5e901a2b 958 do_div(tmp, HZ);
3aad5d3e 959 bytes_allowed = tmp;
e43473b7 960
ea0ea2bc 961 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
e43473b7
VG
962 if (wait)
963 *wait = 0;
5cf8c227 964 return true;
e43473b7
VG
965 }
966
967 /* Calc approx time to dispatch */
ea0ea2bc 968 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
4599ea49 969 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
e43473b7
VG
970
971 if (!jiffy_wait)
972 jiffy_wait = 1;
973
974 /*
975 * This wait time is without taking into consideration the rounding
976 * up we did. Add that time also.
977 */
978 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
e43473b7
VG
979 if (wait)
980 *wait = jiffy_wait;
0b6bad7d 981 return false;
8e89d13f
VG
982}
983
984/*
985 * Returns whether one can dispatch a bio or not. Also returns approx number
986 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
987 */
0f3457f6
TH
988static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
989 unsigned long *wait)
8e89d13f
VG
990{
991 bool rw = bio_data_dir(bio);
992 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
4599ea49
BW
993 u64 bps_limit = tg_bps_limit(tg, rw);
994 u32 iops_limit = tg_iops_limit(tg, rw);
8e89d13f
VG
995
996 /*
997 * Currently whole state machine of group depends on first bio
998 * queued in the group bio list. So one should not be calling
999 * this function with a different bio if there are other bios
1000 * queued.
1001 */
73f0d49a 1002 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 1003 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 1004
8e89d13f 1005 /* If tg->bps = -1, then BW is unlimited */
4599ea49 1006 if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
8e89d13f
VG
1007 if (wait)
1008 *wait = 0;
5cf8c227 1009 return true;
8e89d13f
VG
1010 }
1011
1012 /*
1013 * If previous slice expired, start a new one otherwise renew/extend
1014 * existing slice to make sure it is at least throtl_slice interval
164c80ed
VG
1015 * long since now. New slice is started only for empty throttle group.
1016 * If there is queued bio, that means there should be an active
1017 * slice and it should be extended instead.
8e89d13f 1018 */
164c80ed 1019 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
0f3457f6 1020 throtl_start_new_slice(tg, rw);
8e89d13f 1021 else {
297e3d85
SL
1022 if (time_before(tg->slice_end[rw],
1023 jiffies + tg->td->throtl_slice))
1024 throtl_extend_slice(tg, rw,
1025 jiffies + tg->td->throtl_slice);
8e89d13f
VG
1026 }
1027
4599ea49
BW
1028 if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
1029 tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
8e89d13f
VG
1030 if (wait)
1031 *wait = 0;
0b6bad7d 1032 return true;
8e89d13f
VG
1033 }
1034
1035 max_wait = max(bps_wait, iops_wait);
1036
1037 if (wait)
1038 *wait = max_wait;
1039
1040 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 1041 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7 1042
0b6bad7d 1043 return false;
e43473b7
VG
1044}
1045
1046static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1047{
1048 bool rw = bio_data_dir(bio);
ea0ea2bc 1049 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7
VG
1050
1051 /* Charge the bio to the group */
ea0ea2bc 1052 tg->bytes_disp[rw] += bio_size;
8e89d13f 1053 tg->io_disp[rw]++;
ea0ea2bc 1054 tg->last_bytes_disp[rw] += bio_size;
3f0abd80 1055 tg->last_io_disp[rw]++;
e43473b7 1056
2a0f61e6 1057 /*
8d2bbd4c 1058 * BIO_THROTTLED is used to prevent the same bio to be throttled
2a0f61e6
TH
1059 * more than once as a throttled bio will go through blk-throtl the
1060 * second time when it eventually gets issued. Set it when a bio
1061 * is being charged to a tg.
2a0f61e6 1062 */
8d2bbd4c
CH
1063 if (!bio_flagged(bio, BIO_THROTTLED))
1064 bio_set_flag(bio, BIO_THROTTLED);
e43473b7
VG
1065}
1066
c5cc2070
TH
1067/**
1068 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1069 * @bio: bio to add
1070 * @qn: qnode to use
1071 * @tg: the target throtl_grp
1072 *
1073 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1074 * tg->qnode_on_self[] is used.
1075 */
1076static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1077 struct throtl_grp *tg)
e43473b7 1078{
73f0d49a 1079 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1080 bool rw = bio_data_dir(bio);
1081
c5cc2070
TH
1082 if (!qn)
1083 qn = &tg->qnode_on_self[rw];
1084
0e9f4164
TH
1085 /*
1086 * If @tg doesn't currently have any bios queued in the same
1087 * direction, queueing @bio can change when @tg should be
1088 * dispatched. Mark that @tg was empty. This is automatically
b53b072c 1089 * cleared on the next tg_update_disptime().
0e9f4164
TH
1090 */
1091 if (!sq->nr_queued[rw])
1092 tg->flags |= THROTL_TG_WAS_EMPTY;
1093
c5cc2070
TH
1094 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1095
73f0d49a 1096 sq->nr_queued[rw]++;
77216b04 1097 throtl_enqueue_tg(tg);
e43473b7
VG
1098}
1099
77216b04 1100static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 1101{
73f0d49a 1102 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1103 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1104 struct bio *bio;
1105
d609af3a
ME
1106 bio = throtl_peek_queued(&sq->queued[READ]);
1107 if (bio)
0f3457f6 1108 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 1109
d609af3a
ME
1110 bio = throtl_peek_queued(&sq->queued[WRITE]);
1111 if (bio)
0f3457f6 1112 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
1113
1114 min_wait = min(read_wait, write_wait);
1115 disptime = jiffies + min_wait;
1116
e43473b7 1117 /* Update dispatch time */
77216b04 1118 throtl_dequeue_tg(tg);
e43473b7 1119 tg->disptime = disptime;
77216b04 1120 throtl_enqueue_tg(tg);
0e9f4164
TH
1121
1122 /* see throtl_add_bio_tg() */
1123 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
1124}
1125
32ee5bc4
VG
1126static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1127 struct throtl_grp *parent_tg, bool rw)
1128{
1129 if (throtl_slice_used(parent_tg, rw)) {
1130 throtl_start_new_slice_with_credit(parent_tg, rw,
1131 child_tg->slice_start[rw]);
1132 }
1133
1134}
1135
77216b04 1136static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 1137{
73f0d49a 1138 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
1139 struct throtl_service_queue *parent_sq = sq->parent_sq;
1140 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 1141 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
1142 struct bio *bio;
1143
c5cc2070
TH
1144 /*
1145 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1146 * from @tg may put its reference and @parent_sq might end up
1147 * getting released prematurely. Remember the tg to put and put it
1148 * after @bio is transferred to @parent_sq.
1149 */
1150 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 1151 sq->nr_queued[rw]--;
e43473b7
VG
1152
1153 throtl_charge_bio(tg, bio);
6bc9c2b4
TH
1154
1155 /*
1156 * If our parent is another tg, we just need to transfer @bio to
1157 * the parent using throtl_add_bio_tg(). If our parent is
1158 * @td->service_queue, @bio is ready to be issued. Put it on its
1159 * bio_lists[] and decrease total number queued. The caller is
1160 * responsible for issuing these bios.
1161 */
1162 if (parent_tg) {
c5cc2070 1163 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
32ee5bc4 1164 start_parent_slice_with_credit(tg, parent_tg, rw);
6bc9c2b4 1165 } else {
c5cc2070
TH
1166 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1167 &parent_sq->queued[rw]);
6bc9c2b4
TH
1168 BUG_ON(tg->td->nr_queued[rw] <= 0);
1169 tg->td->nr_queued[rw]--;
1170 }
e43473b7 1171
0f3457f6 1172 throtl_trim_slice(tg, rw);
6bc9c2b4 1173
c5cc2070
TH
1174 if (tg_to_put)
1175 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
1176}
1177
77216b04 1178static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 1179{
73f0d49a 1180 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7 1181 unsigned int nr_reads = 0, nr_writes = 0;
e675df2a
BW
1182 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1183 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
e43473b7
VG
1184 struct bio *bio;
1185
1186 /* Try to dispatch 75% READS and 25% WRITES */
1187
c5cc2070 1188 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 1189 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1190
77216b04 1191 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1192 nr_reads++;
1193
1194 if (nr_reads >= max_nr_reads)
1195 break;
1196 }
1197
c5cc2070 1198 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 1199 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1200
77216b04 1201 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1202 nr_writes++;
1203
1204 if (nr_writes >= max_nr_writes)
1205 break;
1206 }
1207
1208 return nr_reads + nr_writes;
1209}
1210
651930bc 1211static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
1212{
1213 unsigned int nr_disp = 0;
e43473b7
VG
1214
1215 while (1) {
2397611a 1216 struct throtl_grp *tg;
2ab74cd2 1217 struct throtl_service_queue *sq;
e43473b7 1218
2397611a
BW
1219 if (!parent_sq->nr_pending)
1220 break;
1221
1222 tg = throtl_rb_first(parent_sq);
e43473b7
VG
1223 if (!tg)
1224 break;
1225
1226 if (time_before(jiffies, tg->disptime))
1227 break;
1228
77216b04 1229 throtl_dequeue_tg(tg);
e43473b7 1230
77216b04 1231 nr_disp += throtl_dispatch_tg(tg);
e43473b7 1232
2ab74cd2 1233 sq = &tg->service_queue;
73f0d49a 1234 if (sq->nr_queued[0] || sq->nr_queued[1])
77216b04 1235 tg_update_disptime(tg);
e43473b7 1236
e675df2a 1237 if (nr_disp >= THROTL_QUANTUM)
e43473b7
VG
1238 break;
1239 }
1240
1241 return nr_disp;
1242}
1243
c79892c5
SL
1244static bool throtl_can_upgrade(struct throtl_data *td,
1245 struct throtl_grp *this_tg);
6e1a5704
TH
1246/**
1247 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
216382dc 1248 * @t: the pending_timer member of the throtl_service_queue being serviced
6e1a5704
TH
1249 *
1250 * This timer is armed when a child throtl_grp with active bio's become
1251 * pending and queued on the service_queue's pending_tree and expires when
1252 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1253 * dispatches bio's from the children throtl_grps to the parent
1254 * service_queue.
1255 *
1256 * If the parent's parent is another throtl_grp, dispatching is propagated
1257 * by either arming its pending_timer or repeating dispatch directly. If
1258 * the top-level service_tree is reached, throtl_data->dispatch_work is
1259 * kicked so that the ready bio's are issued.
6e1a5704 1260 */
e99e88a9 1261static void throtl_pending_timer_fn(struct timer_list *t)
69df0ab0 1262{
e99e88a9 1263 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
2e48a530 1264 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1265 struct throtl_data *td = sq_to_td(sq);
cb76199c 1266 struct request_queue *q = td->queue;
2e48a530
TH
1267 struct throtl_service_queue *parent_sq;
1268 bool dispatched;
6e1a5704 1269 int ret;
e43473b7 1270
0d945c1f 1271 spin_lock_irq(&q->queue_lock);
c79892c5
SL
1272 if (throtl_can_upgrade(td, NULL))
1273 throtl_upgrade_state(td);
1274
2e48a530
TH
1275again:
1276 parent_sq = sq->parent_sq;
1277 dispatched = false;
e43473b7 1278
7f52f98c
TH
1279 while (true) {
1280 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1281 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1282 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1283
1284 ret = throtl_select_dispatch(sq);
1285 if (ret) {
7f52f98c
TH
1286 throtl_log(sq, "bios disp=%u", ret);
1287 dispatched = true;
1288 }
e43473b7 1289
7f52f98c
TH
1290 if (throtl_schedule_next_dispatch(sq, false))
1291 break;
e43473b7 1292
7f52f98c 1293 /* this dispatch windows is still open, relax and repeat */
0d945c1f 1294 spin_unlock_irq(&q->queue_lock);
7f52f98c 1295 cpu_relax();
0d945c1f 1296 spin_lock_irq(&q->queue_lock);
651930bc 1297 }
e43473b7 1298
2e48a530
TH
1299 if (!dispatched)
1300 goto out_unlock;
6e1a5704 1301
2e48a530
TH
1302 if (parent_sq) {
1303 /* @parent_sq is another throl_grp, propagate dispatch */
1304 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1305 tg_update_disptime(tg);
1306 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1307 /* window is already open, repeat dispatching */
1308 sq = parent_sq;
1309 tg = sq_to_tg(sq);
1310 goto again;
1311 }
1312 }
1313 } else {
b53b072c 1314 /* reached the top-level, queue issuing */
2e48a530
TH
1315 queue_work(kthrotld_workqueue, &td->dispatch_work);
1316 }
1317out_unlock:
0d945c1f 1318 spin_unlock_irq(&q->queue_lock);
6e1a5704 1319}
e43473b7 1320
6e1a5704
TH
1321/**
1322 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1323 * @work: work item being executed
1324 *
b53b072c
BW
1325 * This function is queued for execution when bios reach the bio_lists[]
1326 * of throtl_data->service_queue. Those bios are ready and issued by this
6e1a5704
TH
1327 * function.
1328 */
8876e140 1329static void blk_throtl_dispatch_work_fn(struct work_struct *work)
6e1a5704
TH
1330{
1331 struct throtl_data *td = container_of(work, struct throtl_data,
1332 dispatch_work);
1333 struct throtl_service_queue *td_sq = &td->service_queue;
1334 struct request_queue *q = td->queue;
1335 struct bio_list bio_list_on_stack;
1336 struct bio *bio;
1337 struct blk_plug plug;
1338 int rw;
1339
1340 bio_list_init(&bio_list_on_stack);
1341
0d945c1f 1342 spin_lock_irq(&q->queue_lock);
c5cc2070
TH
1343 for (rw = READ; rw <= WRITE; rw++)
1344 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1345 bio_list_add(&bio_list_on_stack, bio);
0d945c1f 1346 spin_unlock_irq(&q->queue_lock);
6e1a5704
TH
1347
1348 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1349 blk_start_plug(&plug);
ed00aabd
CH
1350 while ((bio = bio_list_pop(&bio_list_on_stack)))
1351 submit_bio_noacct(bio);
69d60eb9 1352 blk_finish_plug(&plug);
e43473b7 1353 }
e43473b7
VG
1354}
1355
f95a04af
TH
1356static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1357 int off)
60c2bc2d 1358{
f95a04af
TH
1359 struct throtl_grp *tg = pd_to_tg(pd);
1360 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1361
2ab5492d 1362 if (v == U64_MAX)
60c2bc2d 1363 return 0;
f95a04af 1364 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1365}
1366
f95a04af
TH
1367static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1368 int off)
e43473b7 1369{
f95a04af
TH
1370 struct throtl_grp *tg = pd_to_tg(pd);
1371 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1372
2ab5492d 1373 if (v == UINT_MAX)
af133ceb 1374 return 0;
f95a04af 1375 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1376}
1377
2da8ca82 1378static int tg_print_conf_u64(struct seq_file *sf, void *v)
8e89d13f 1379{
2da8ca82
TH
1380 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1381 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1382 return 0;
8e89d13f
VG
1383}
1384
2da8ca82 1385static int tg_print_conf_uint(struct seq_file *sf, void *v)
8e89d13f 1386{
2da8ca82
TH
1387 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1388 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1389 return 0;
60c2bc2d
TH
1390}
1391
9bb67aeb 1392static void tg_conf_updated(struct throtl_grp *tg, bool global)
60c2bc2d 1393{
69948b07 1394 struct throtl_service_queue *sq = &tg->service_queue;
492eb21b 1395 struct cgroup_subsys_state *pos_css;
69948b07 1396 struct blkcg_gq *blkg;
af133ceb 1397
fda6f272
TH
1398 throtl_log(&tg->service_queue,
1399 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
9f626e37
SL
1400 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1401 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
632b4493 1402
693e751e
TH
1403 /*
1404 * Update has_rules[] flags for the updated tg's subtree. A tg is
1405 * considered to have rules if either the tg itself or any of its
1406 * ancestors has rules. This identifies groups without any
1407 * restrictions in the whole hierarchy and allows them to bypass
1408 * blk-throttle.
1409 */
9bb67aeb
SL
1410 blkg_for_each_descendant_pre(blkg, pos_css,
1411 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
5b81fc3c
SL
1412 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1413 struct throtl_grp *parent_tg;
1414
1415 tg_update_has_rules(this_tg);
1416 /* ignore root/second level */
1417 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1418 !blkg->parent->parent)
1419 continue;
1420 parent_tg = blkg_to_tg(blkg->parent);
1421 /*
1422 * make sure all children has lower idle time threshold and
1423 * higher latency target
1424 */
1425 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1426 parent_tg->idletime_threshold);
1427 this_tg->latency_target = max(this_tg->latency_target,
1428 parent_tg->latency_target);
1429 }
693e751e 1430
632b4493
TH
1431 /*
1432 * We're already holding queue_lock and know @tg is valid. Let's
1433 * apply the new config directly.
1434 *
1435 * Restart the slices for both READ and WRITES. It might happen
1436 * that a group's limit are dropped suddenly and we don't want to
1437 * account recently dispatched IO with new low rate.
1438 */
ff8b22c0
BW
1439 throtl_start_new_slice(tg, READ);
1440 throtl_start_new_slice(tg, WRITE);
632b4493 1441
5b2c16aa 1442 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1443 tg_update_disptime(tg);
7f52f98c 1444 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1445 }
69948b07
TH
1446}
1447
1448static ssize_t tg_set_conf(struct kernfs_open_file *of,
1449 char *buf, size_t nbytes, loff_t off, bool is_u64)
1450{
1451 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1452 struct blkg_conf_ctx ctx;
1453 struct throtl_grp *tg;
1454 int ret;
1455 u64 v;
1456
1457 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1458 if (ret)
1459 return ret;
1460
1461 ret = -EINVAL;
1462 if (sscanf(ctx.body, "%llu", &v) != 1)
1463 goto out_finish;
1464 if (!v)
2ab5492d 1465 v = U64_MAX;
69948b07
TH
1466
1467 tg = blkg_to_tg(ctx.blkg);
1468
1469 if (is_u64)
1470 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1471 else
1472 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
60c2bc2d 1473
9bb67aeb 1474 tg_conf_updated(tg, false);
36aa9e5f
TH
1475 ret = 0;
1476out_finish:
60c2bc2d 1477 blkg_conf_finish(&ctx);
36aa9e5f 1478 return ret ?: nbytes;
8e89d13f
VG
1479}
1480
451af504
TH
1481static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1482 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1483{
451af504 1484 return tg_set_conf(of, buf, nbytes, off, true);
60c2bc2d
TH
1485}
1486
451af504
TH
1487static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1488 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1489{
451af504 1490 return tg_set_conf(of, buf, nbytes, off, false);
60c2bc2d
TH
1491}
1492
7ca46438
TH
1493static int tg_print_rwstat(struct seq_file *sf, void *v)
1494{
1495 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1496 blkg_prfill_rwstat, &blkcg_policy_throtl,
1497 seq_cft(sf)->private, true);
1498 return 0;
1499}
1500
1501static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1502 struct blkg_policy_data *pd, int off)
1503{
1504 struct blkg_rwstat_sample sum;
1505
1506 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1507 &sum);
1508 return __blkg_prfill_rwstat(sf, pd, &sum);
1509}
1510
1511static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1512{
1513 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1514 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1515 seq_cft(sf)->private, true);
1516 return 0;
1517}
1518
880f50e2 1519static struct cftype throtl_legacy_files[] = {
60c2bc2d
TH
1520 {
1521 .name = "throttle.read_bps_device",
9f626e37 1522 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
2da8ca82 1523 .seq_show = tg_print_conf_u64,
451af504 1524 .write = tg_set_conf_u64,
60c2bc2d
TH
1525 },
1526 {
1527 .name = "throttle.write_bps_device",
9f626e37 1528 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
2da8ca82 1529 .seq_show = tg_print_conf_u64,
451af504 1530 .write = tg_set_conf_u64,
60c2bc2d
TH
1531 },
1532 {
1533 .name = "throttle.read_iops_device",
9f626e37 1534 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
2da8ca82 1535 .seq_show = tg_print_conf_uint,
451af504 1536 .write = tg_set_conf_uint,
60c2bc2d
TH
1537 },
1538 {
1539 .name = "throttle.write_iops_device",
9f626e37 1540 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
2da8ca82 1541 .seq_show = tg_print_conf_uint,
451af504 1542 .write = tg_set_conf_uint,
60c2bc2d
TH
1543 },
1544 {
1545 .name = "throttle.io_service_bytes",
7ca46438
TH
1546 .private = offsetof(struct throtl_grp, stat_bytes),
1547 .seq_show = tg_print_rwstat,
60c2bc2d 1548 },
17534c6f 1549 {
1550 .name = "throttle.io_service_bytes_recursive",
7ca46438
TH
1551 .private = offsetof(struct throtl_grp, stat_bytes),
1552 .seq_show = tg_print_rwstat_recursive,
17534c6f 1553 },
60c2bc2d
TH
1554 {
1555 .name = "throttle.io_serviced",
7ca46438
TH
1556 .private = offsetof(struct throtl_grp, stat_ios),
1557 .seq_show = tg_print_rwstat,
60c2bc2d 1558 },
17534c6f 1559 {
1560 .name = "throttle.io_serviced_recursive",
7ca46438
TH
1561 .private = offsetof(struct throtl_grp, stat_ios),
1562 .seq_show = tg_print_rwstat_recursive,
17534c6f 1563 },
60c2bc2d
TH
1564 { } /* terminate */
1565};
1566
cd5ab1b0 1567static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
2ee867dc
TH
1568 int off)
1569{
1570 struct throtl_grp *tg = pd_to_tg(pd);
1571 const char *dname = blkg_dev_name(pd->blkg);
1572 char bufs[4][21] = { "max", "max", "max", "max" };
cd5ab1b0
SL
1573 u64 bps_dft;
1574 unsigned int iops_dft;
ada75b6e 1575 char idle_time[26] = "";
ec80991d 1576 char latency_time[26] = "";
2ee867dc
TH
1577
1578 if (!dname)
1579 return 0;
9f626e37 1580
cd5ab1b0
SL
1581 if (off == LIMIT_LOW) {
1582 bps_dft = 0;
1583 iops_dft = 0;
1584 } else {
1585 bps_dft = U64_MAX;
1586 iops_dft = UINT_MAX;
1587 }
1588
1589 if (tg->bps_conf[READ][off] == bps_dft &&
1590 tg->bps_conf[WRITE][off] == bps_dft &&
1591 tg->iops_conf[READ][off] == iops_dft &&
ada75b6e 1592 tg->iops_conf[WRITE][off] == iops_dft &&
ec80991d 1593 (off != LIMIT_LOW ||
b4f428ef 1594 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
5b81fc3c 1595 tg->latency_target_conf == DFL_LATENCY_TARGET)))
2ee867dc
TH
1596 return 0;
1597
9bb67aeb 1598 if (tg->bps_conf[READ][off] != U64_MAX)
9f626e37 1599 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
cd5ab1b0 1600 tg->bps_conf[READ][off]);
9bb67aeb 1601 if (tg->bps_conf[WRITE][off] != U64_MAX)
9f626e37 1602 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
cd5ab1b0 1603 tg->bps_conf[WRITE][off]);
9bb67aeb 1604 if (tg->iops_conf[READ][off] != UINT_MAX)
9f626e37 1605 snprintf(bufs[2], sizeof(bufs[2]), "%u",
cd5ab1b0 1606 tg->iops_conf[READ][off]);
9bb67aeb 1607 if (tg->iops_conf[WRITE][off] != UINT_MAX)
9f626e37 1608 snprintf(bufs[3], sizeof(bufs[3]), "%u",
cd5ab1b0 1609 tg->iops_conf[WRITE][off]);
ada75b6e 1610 if (off == LIMIT_LOW) {
5b81fc3c 1611 if (tg->idletime_threshold_conf == ULONG_MAX)
ada75b6e
SL
1612 strcpy(idle_time, " idle=max");
1613 else
1614 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
5b81fc3c 1615 tg->idletime_threshold_conf);
ec80991d 1616
5b81fc3c 1617 if (tg->latency_target_conf == ULONG_MAX)
ec80991d
SL
1618 strcpy(latency_time, " latency=max");
1619 else
1620 snprintf(latency_time, sizeof(latency_time),
5b81fc3c 1621 " latency=%lu", tg->latency_target_conf);
ada75b6e 1622 }
2ee867dc 1623
ec80991d
SL
1624 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1625 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1626 latency_time);
2ee867dc
TH
1627 return 0;
1628}
1629
cd5ab1b0 1630static int tg_print_limit(struct seq_file *sf, void *v)
2ee867dc 1631{
cd5ab1b0 1632 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
2ee867dc
TH
1633 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1634 return 0;
1635}
1636
cd5ab1b0 1637static ssize_t tg_set_limit(struct kernfs_open_file *of,
2ee867dc
TH
1638 char *buf, size_t nbytes, loff_t off)
1639{
1640 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1641 struct blkg_conf_ctx ctx;
1642 struct throtl_grp *tg;
1643 u64 v[4];
ada75b6e 1644 unsigned long idle_time;
ec80991d 1645 unsigned long latency_time;
2ee867dc 1646 int ret;
cd5ab1b0 1647 int index = of_cft(of)->private;
2ee867dc
TH
1648
1649 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1650 if (ret)
1651 return ret;
1652
1653 tg = blkg_to_tg(ctx.blkg);
1654
cd5ab1b0
SL
1655 v[0] = tg->bps_conf[READ][index];
1656 v[1] = tg->bps_conf[WRITE][index];
1657 v[2] = tg->iops_conf[READ][index];
1658 v[3] = tg->iops_conf[WRITE][index];
2ee867dc 1659
5b81fc3c
SL
1660 idle_time = tg->idletime_threshold_conf;
1661 latency_time = tg->latency_target_conf;
2ee867dc
TH
1662 while (true) {
1663 char tok[27]; /* wiops=18446744073709551616 */
1664 char *p;
2ab5492d 1665 u64 val = U64_MAX;
2ee867dc
TH
1666 int len;
1667
1668 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1669 break;
1670 if (tok[0] == '\0')
1671 break;
1672 ctx.body += len;
1673
1674 ret = -EINVAL;
1675 p = tok;
1676 strsep(&p, "=");
1677 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1678 goto out_finish;
1679
1680 ret = -ERANGE;
1681 if (!val)
1682 goto out_finish;
1683
1684 ret = -EINVAL;
5b7048b8 1685 if (!strcmp(tok, "rbps") && val > 1)
2ee867dc 1686 v[0] = val;
5b7048b8 1687 else if (!strcmp(tok, "wbps") && val > 1)
2ee867dc 1688 v[1] = val;
5b7048b8 1689 else if (!strcmp(tok, "riops") && val > 1)
2ee867dc 1690 v[2] = min_t(u64, val, UINT_MAX);
5b7048b8 1691 else if (!strcmp(tok, "wiops") && val > 1)
2ee867dc 1692 v[3] = min_t(u64, val, UINT_MAX);
ada75b6e
SL
1693 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1694 idle_time = val;
ec80991d
SL
1695 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1696 latency_time = val;
2ee867dc
TH
1697 else
1698 goto out_finish;
1699 }
1700
cd5ab1b0
SL
1701 tg->bps_conf[READ][index] = v[0];
1702 tg->bps_conf[WRITE][index] = v[1];
1703 tg->iops_conf[READ][index] = v[2];
1704 tg->iops_conf[WRITE][index] = v[3];
2ee867dc 1705
cd5ab1b0
SL
1706 if (index == LIMIT_MAX) {
1707 tg->bps[READ][index] = v[0];
1708 tg->bps[WRITE][index] = v[1];
1709 tg->iops[READ][index] = v[2];
1710 tg->iops[WRITE][index] = v[3];
1711 }
1712 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1713 tg->bps_conf[READ][LIMIT_MAX]);
1714 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1715 tg->bps_conf[WRITE][LIMIT_MAX]);
1716 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1717 tg->iops_conf[READ][LIMIT_MAX]);
1718 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1719 tg->iops_conf[WRITE][LIMIT_MAX]);
b4f428ef
SL
1720 tg->idletime_threshold_conf = idle_time;
1721 tg->latency_target_conf = latency_time;
1722
1723 /* force user to configure all settings for low limit */
1724 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1725 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1726 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1727 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1728 tg->bps[READ][LIMIT_LOW] = 0;
1729 tg->bps[WRITE][LIMIT_LOW] = 0;
1730 tg->iops[READ][LIMIT_LOW] = 0;
1731 tg->iops[WRITE][LIMIT_LOW] = 0;
1732 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1733 tg->latency_target = DFL_LATENCY_TARGET;
1734 } else if (index == LIMIT_LOW) {
5b81fc3c 1735 tg->idletime_threshold = tg->idletime_threshold_conf;
5b81fc3c 1736 tg->latency_target = tg->latency_target_conf;
cd5ab1b0 1737 }
b4f428ef
SL
1738
1739 blk_throtl_update_limit_valid(tg->td);
1740 if (tg->td->limit_valid[LIMIT_LOW]) {
1741 if (index == LIMIT_LOW)
1742 tg->td->limit_index = LIMIT_LOW;
1743 } else
1744 tg->td->limit_index = LIMIT_MAX;
9bb67aeb
SL
1745 tg_conf_updated(tg, index == LIMIT_LOW &&
1746 tg->td->limit_valid[LIMIT_LOW]);
2ee867dc
TH
1747 ret = 0;
1748out_finish:
1749 blkg_conf_finish(&ctx);
1750 return ret ?: nbytes;
1751}
1752
1753static struct cftype throtl_files[] = {
cd5ab1b0
SL
1754#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1755 {
1756 .name = "low",
1757 .flags = CFTYPE_NOT_ON_ROOT,
1758 .seq_show = tg_print_limit,
1759 .write = tg_set_limit,
1760 .private = LIMIT_LOW,
1761 },
1762#endif
2ee867dc
TH
1763 {
1764 .name = "max",
1765 .flags = CFTYPE_NOT_ON_ROOT,
cd5ab1b0
SL
1766 .seq_show = tg_print_limit,
1767 .write = tg_set_limit,
1768 .private = LIMIT_MAX,
2ee867dc
TH
1769 },
1770 { } /* terminate */
1771};
1772
da527770 1773static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1774{
1775 struct throtl_data *td = q->td;
1776
69df0ab0 1777 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1778}
1779
3c798398 1780static struct blkcg_policy blkcg_policy_throtl = {
2ee867dc 1781 .dfl_cftypes = throtl_files,
880f50e2 1782 .legacy_cftypes = throtl_legacy_files,
f9fcc2d3 1783
001bea73 1784 .pd_alloc_fn = throtl_pd_alloc,
f9fcc2d3 1785 .pd_init_fn = throtl_pd_init,
693e751e 1786 .pd_online_fn = throtl_pd_online,
cd5ab1b0 1787 .pd_offline_fn = throtl_pd_offline,
001bea73 1788 .pd_free_fn = throtl_pd_free,
e43473b7
VG
1789};
1790
3f0abd80
SL
1791static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1792{
1793 unsigned long rtime = jiffies, wtime = jiffies;
1794
1795 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1796 rtime = tg->last_low_overflow_time[READ];
1797 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1798 wtime = tg->last_low_overflow_time[WRITE];
1799 return min(rtime, wtime);
1800}
1801
1802/* tg should not be an intermediate node */
1803static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1804{
1805 struct throtl_service_queue *parent_sq;
1806 struct throtl_grp *parent = tg;
1807 unsigned long ret = __tg_last_low_overflow_time(tg);
1808
1809 while (true) {
1810 parent_sq = parent->service_queue.parent_sq;
1811 parent = sq_to_tg(parent_sq);
1812 if (!parent)
1813 break;
1814
1815 /*
1816 * The parent doesn't have low limit, it always reaches low
1817 * limit. Its overflow time is useless for children
1818 */
1819 if (!parent->bps[READ][LIMIT_LOW] &&
1820 !parent->iops[READ][LIMIT_LOW] &&
1821 !parent->bps[WRITE][LIMIT_LOW] &&
1822 !parent->iops[WRITE][LIMIT_LOW])
1823 continue;
1824 if (time_after(__tg_last_low_overflow_time(parent), ret))
1825 ret = __tg_last_low_overflow_time(parent);
1826 }
1827 return ret;
1828}
1829
9e234eea
SL
1830static bool throtl_tg_is_idle(struct throtl_grp *tg)
1831{
1832 /*
1833 * cgroup is idle if:
1834 * - single idle is too long, longer than a fixed value (in case user
b4f428ef 1835 * configure a too big threshold) or 4 times of idletime threshold
9e234eea 1836 * - average think time is more than threshold
53696b8d 1837 * - IO latency is largely below threshold
9e234eea 1838 */
b4f428ef 1839 unsigned long time;
4cff729f 1840 bool ret;
9e234eea 1841
b4f428ef
SL
1842 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1843 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1844 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1845 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1846 tg->avg_idletime > tg->idletime_threshold ||
1847 (tg->latency_target && tg->bio_cnt &&
53696b8d 1848 tg->bad_bio_cnt * 5 < tg->bio_cnt);
4cff729f
SL
1849 throtl_log(&tg->service_queue,
1850 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1851 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1852 tg->bio_cnt, ret, tg->td->scale);
1853 return ret;
9e234eea
SL
1854}
1855
c79892c5
SL
1856static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1857{
1858 struct throtl_service_queue *sq = &tg->service_queue;
1859 bool read_limit, write_limit;
1860
1861 /*
1862 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1863 * reaches), it's ok to upgrade to next limit
1864 */
1865 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1866 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1867 if (!read_limit && !write_limit)
1868 return true;
1869 if (read_limit && sq->nr_queued[READ] &&
1870 (!write_limit || sq->nr_queued[WRITE]))
1871 return true;
1872 if (write_limit && sq->nr_queued[WRITE] &&
1873 (!read_limit || sq->nr_queued[READ]))
1874 return true;
aec24246
SL
1875
1876 if (time_after_eq(jiffies,
fa6fb5aa
SL
1877 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1878 throtl_tg_is_idle(tg))
aec24246 1879 return true;
c79892c5
SL
1880 return false;
1881}
1882
1883static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1884{
1885 while (true) {
1886 if (throtl_tg_can_upgrade(tg))
1887 return true;
1888 tg = sq_to_tg(tg->service_queue.parent_sq);
1889 if (!tg || !tg_to_blkg(tg)->parent)
1890 return false;
1891 }
1892 return false;
1893}
1894
1895static bool throtl_can_upgrade(struct throtl_data *td,
1896 struct throtl_grp *this_tg)
1897{
1898 struct cgroup_subsys_state *pos_css;
1899 struct blkcg_gq *blkg;
1900
1901 if (td->limit_index != LIMIT_LOW)
1902 return false;
1903
297e3d85 1904 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
3f0abd80
SL
1905 return false;
1906
c79892c5
SL
1907 rcu_read_lock();
1908 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1909 struct throtl_grp *tg = blkg_to_tg(blkg);
1910
1911 if (tg == this_tg)
1912 continue;
1913 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1914 continue;
1915 if (!throtl_hierarchy_can_upgrade(tg)) {
1916 rcu_read_unlock();
1917 return false;
1918 }
1919 }
1920 rcu_read_unlock();
1921 return true;
1922}
1923
fa6fb5aa
SL
1924static void throtl_upgrade_check(struct throtl_grp *tg)
1925{
1926 unsigned long now = jiffies;
1927
1928 if (tg->td->limit_index != LIMIT_LOW)
1929 return;
1930
1931 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1932 return;
1933
1934 tg->last_check_time = now;
1935
1936 if (!time_after_eq(now,
1937 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1938 return;
1939
1940 if (throtl_can_upgrade(tg->td, NULL))
1941 throtl_upgrade_state(tg->td);
1942}
1943
c79892c5
SL
1944static void throtl_upgrade_state(struct throtl_data *td)
1945{
1946 struct cgroup_subsys_state *pos_css;
1947 struct blkcg_gq *blkg;
1948
4cff729f 1949 throtl_log(&td->service_queue, "upgrade to max");
c79892c5 1950 td->limit_index = LIMIT_MAX;
3f0abd80 1951 td->low_upgrade_time = jiffies;
7394e31f 1952 td->scale = 0;
c79892c5
SL
1953 rcu_read_lock();
1954 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1955 struct throtl_grp *tg = blkg_to_tg(blkg);
1956 struct throtl_service_queue *sq = &tg->service_queue;
1957
1958 tg->disptime = jiffies - 1;
1959 throtl_select_dispatch(sq);
4f02fb76 1960 throtl_schedule_next_dispatch(sq, true);
c79892c5
SL
1961 }
1962 rcu_read_unlock();
1963 throtl_select_dispatch(&td->service_queue);
4f02fb76 1964 throtl_schedule_next_dispatch(&td->service_queue, true);
c79892c5
SL
1965 queue_work(kthrotld_workqueue, &td->dispatch_work);
1966}
1967
4247d9c8 1968static void throtl_downgrade_state(struct throtl_data *td)
3f0abd80 1969{
7394e31f
SL
1970 td->scale /= 2;
1971
4cff729f 1972 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
7394e31f
SL
1973 if (td->scale) {
1974 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1975 return;
1976 }
1977
4247d9c8 1978 td->limit_index = LIMIT_LOW;
3f0abd80
SL
1979 td->low_downgrade_time = jiffies;
1980}
1981
1982static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1983{
1984 struct throtl_data *td = tg->td;
1985 unsigned long now = jiffies;
1986
1987 /*
1988 * If cgroup is below low limit, consider downgrade and throttle other
1989 * cgroups
1990 */
297e3d85
SL
1991 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1992 time_after_eq(now, tg_last_low_overflow_time(tg) +
fa6fb5aa
SL
1993 td->throtl_slice) &&
1994 (!throtl_tg_is_idle(tg) ||
1995 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
3f0abd80
SL
1996 return true;
1997 return false;
1998}
1999
2000static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
2001{
2002 while (true) {
2003 if (!throtl_tg_can_downgrade(tg))
2004 return false;
2005 tg = sq_to_tg(tg->service_queue.parent_sq);
2006 if (!tg || !tg_to_blkg(tg)->parent)
2007 break;
2008 }
2009 return true;
2010}
2011
2012static void throtl_downgrade_check(struct throtl_grp *tg)
2013{
2014 uint64_t bps;
2015 unsigned int iops;
2016 unsigned long elapsed_time;
2017 unsigned long now = jiffies;
2018
2019 if (tg->td->limit_index != LIMIT_MAX ||
2020 !tg->td->limit_valid[LIMIT_LOW])
2021 return;
2022 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2023 return;
297e3d85 2024 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
3f0abd80
SL
2025 return;
2026
2027 elapsed_time = now - tg->last_check_time;
2028 tg->last_check_time = now;
2029
297e3d85
SL
2030 if (time_before(now, tg_last_low_overflow_time(tg) +
2031 tg->td->throtl_slice))
3f0abd80
SL
2032 return;
2033
2034 if (tg->bps[READ][LIMIT_LOW]) {
2035 bps = tg->last_bytes_disp[READ] * HZ;
2036 do_div(bps, elapsed_time);
2037 if (bps >= tg->bps[READ][LIMIT_LOW])
2038 tg->last_low_overflow_time[READ] = now;
2039 }
2040
2041 if (tg->bps[WRITE][LIMIT_LOW]) {
2042 bps = tg->last_bytes_disp[WRITE] * HZ;
2043 do_div(bps, elapsed_time);
2044 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2045 tg->last_low_overflow_time[WRITE] = now;
2046 }
2047
2048 if (tg->iops[READ][LIMIT_LOW]) {
2049 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2050 if (iops >= tg->iops[READ][LIMIT_LOW])
2051 tg->last_low_overflow_time[READ] = now;
2052 }
2053
2054 if (tg->iops[WRITE][LIMIT_LOW]) {
2055 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2056 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2057 tg->last_low_overflow_time[WRITE] = now;
2058 }
2059
2060 /*
2061 * If cgroup is below low limit, consider downgrade and throttle other
2062 * cgroups
2063 */
2064 if (throtl_hierarchy_can_downgrade(tg))
4247d9c8 2065 throtl_downgrade_state(tg->td);
3f0abd80
SL
2066
2067 tg->last_bytes_disp[READ] = 0;
2068 tg->last_bytes_disp[WRITE] = 0;
2069 tg->last_io_disp[READ] = 0;
2070 tg->last_io_disp[WRITE] = 0;
2071}
2072
9e234eea
SL
2073static void blk_throtl_update_idletime(struct throtl_grp *tg)
2074{
7901601a 2075 unsigned long now;
9e234eea
SL
2076 unsigned long last_finish_time = tg->last_finish_time;
2077
7901601a
BW
2078 if (last_finish_time == 0)
2079 return;
2080
2081 now = ktime_get_ns() >> 10;
2082 if (now <= last_finish_time ||
9e234eea
SL
2083 last_finish_time == tg->checked_last_finish_time)
2084 return;
2085
2086 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2087 tg->checked_last_finish_time = last_finish_time;
2088}
2089
b9147dd1
SL
2090#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2091static void throtl_update_latency_buckets(struct throtl_data *td)
2092{
b889bf66
JQ
2093 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2094 int i, cpu, rw;
2095 unsigned long last_latency[2] = { 0 };
2096 unsigned long latency[2];
b9147dd1 2097
b185efa7 2098 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
b9147dd1
SL
2099 return;
2100 if (time_before(jiffies, td->last_calculate_time + HZ))
2101 return;
2102 td->last_calculate_time = jiffies;
2103
2104 memset(avg_latency, 0, sizeof(avg_latency));
b889bf66
JQ
2105 for (rw = READ; rw <= WRITE; rw++) {
2106 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2107 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2108
2109 for_each_possible_cpu(cpu) {
2110 struct latency_bucket *bucket;
2111
2112 /* this isn't race free, but ok in practice */
2113 bucket = per_cpu_ptr(td->latency_buckets[rw],
2114 cpu);
2115 tmp->total_latency += bucket[i].total_latency;
2116 tmp->samples += bucket[i].samples;
2117 bucket[i].total_latency = 0;
2118 bucket[i].samples = 0;
2119 }
b9147dd1 2120
b889bf66
JQ
2121 if (tmp->samples >= 32) {
2122 int samples = tmp->samples;
b9147dd1 2123
b889bf66 2124 latency[rw] = tmp->total_latency;
b9147dd1 2125
b889bf66
JQ
2126 tmp->total_latency = 0;
2127 tmp->samples = 0;
2128 latency[rw] /= samples;
2129 if (latency[rw] == 0)
2130 continue;
2131 avg_latency[rw][i].latency = latency[rw];
2132 }
b9147dd1
SL
2133 }
2134 }
2135
b889bf66
JQ
2136 for (rw = READ; rw <= WRITE; rw++) {
2137 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2138 if (!avg_latency[rw][i].latency) {
2139 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2140 td->avg_buckets[rw][i].latency =
2141 last_latency[rw];
2142 continue;
2143 }
b9147dd1 2144
b889bf66
JQ
2145 if (!td->avg_buckets[rw][i].valid)
2146 latency[rw] = avg_latency[rw][i].latency;
2147 else
2148 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2149 avg_latency[rw][i].latency) >> 3;
b9147dd1 2150
b889bf66
JQ
2151 td->avg_buckets[rw][i].latency = max(latency[rw],
2152 last_latency[rw]);
2153 td->avg_buckets[rw][i].valid = true;
2154 last_latency[rw] = td->avg_buckets[rw][i].latency;
2155 }
b9147dd1 2156 }
4cff729f
SL
2157
2158 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2159 throtl_log(&td->service_queue,
b889bf66
JQ
2160 "Latency bucket %d: read latency=%ld, read valid=%d, "
2161 "write latency=%ld, write valid=%d", i,
2162 td->avg_buckets[READ][i].latency,
2163 td->avg_buckets[READ][i].valid,
2164 td->avg_buckets[WRITE][i].latency,
2165 td->avg_buckets[WRITE][i].valid);
b9147dd1
SL
2166}
2167#else
2168static inline void throtl_update_latency_buckets(struct throtl_data *td)
2169{
2170}
2171#endif
2172
db18a53e 2173bool blk_throtl_bio(struct bio *bio)
e43473b7 2174{
db18a53e
CH
2175 struct request_queue *q = bio->bi_disk->queue;
2176 struct blkcg_gq *blkg = bio->bi_blkg;
c5cc2070 2177 struct throtl_qnode *qn = NULL;
a2e83ef9 2178 struct throtl_grp *tg = blkg_to_tg(blkg);
73f0d49a 2179 struct throtl_service_queue *sq;
0e9f4164 2180 bool rw = bio_data_dir(bio);
bc16a4f9 2181 bool throttled = false;
b9147dd1 2182 struct throtl_data *td = tg->td;
e43473b7 2183
93b80638 2184 rcu_read_lock();
ae118896 2185
2a0f61e6 2186 /* see throtl_charge_bio() */
7ca46438
TH
2187 if (bio_flagged(bio, BIO_THROTTLED))
2188 goto out;
2189
2190 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2191 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2192 bio->bi_iter.bi_size);
2193 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2194 }
2195
2196 if (!tg->has_rules[rw])
bc16a4f9 2197 goto out;
e43473b7 2198
0d945c1f 2199 spin_lock_irq(&q->queue_lock);
c9589f03 2200
b9147dd1
SL
2201 throtl_update_latency_buckets(td);
2202
9e234eea
SL
2203 blk_throtl_update_idletime(tg);
2204
73f0d49a
TH
2205 sq = &tg->service_queue;
2206
c79892c5 2207again:
9e660acf 2208 while (true) {
3f0abd80
SL
2209 if (tg->last_low_overflow_time[rw] == 0)
2210 tg->last_low_overflow_time[rw] = jiffies;
2211 throtl_downgrade_check(tg);
fa6fb5aa 2212 throtl_upgrade_check(tg);
9e660acf
TH
2213 /* throtl is FIFO - if bios are already queued, should queue */
2214 if (sq->nr_queued[rw])
2215 break;
de701c74 2216
9e660acf 2217 /* if above limits, break to queue */
c79892c5 2218 if (!tg_may_dispatch(tg, bio, NULL)) {
3f0abd80 2219 tg->last_low_overflow_time[rw] = jiffies;
b9147dd1
SL
2220 if (throtl_can_upgrade(td, tg)) {
2221 throtl_upgrade_state(td);
c79892c5
SL
2222 goto again;
2223 }
9e660acf 2224 break;
c79892c5 2225 }
9e660acf
TH
2226
2227 /* within limits, let's charge and dispatch directly */
e43473b7 2228 throtl_charge_bio(tg, bio);
04521db0
VG
2229
2230 /*
2231 * We need to trim slice even when bios are not being queued
2232 * otherwise it might happen that a bio is not queued for
2233 * a long time and slice keeps on extending and trim is not
2234 * called for a long time. Now if limits are reduced suddenly
2235 * we take into account all the IO dispatched so far at new
2236 * low rate and * newly queued IO gets a really long dispatch
2237 * time.
2238 *
2239 * So keep on trimming slice even if bio is not queued.
2240 */
0f3457f6 2241 throtl_trim_slice(tg, rw);
9e660acf
TH
2242
2243 /*
2244 * @bio passed through this layer without being throttled.
b53b072c 2245 * Climb up the ladder. If we're already at the top, it
9e660acf
TH
2246 * can be executed directly.
2247 */
c5cc2070 2248 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
2249 sq = sq->parent_sq;
2250 tg = sq_to_tg(sq);
2251 if (!tg)
2252 goto out_unlock;
e43473b7
VG
2253 }
2254
9e660acf 2255 /* out-of-limit, queue to @tg */
fda6f272
TH
2256 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2257 rw == READ ? 'R' : 'W',
9f626e37
SL
2258 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2259 tg_bps_limit(tg, rw),
2260 tg->io_disp[rw], tg_iops_limit(tg, rw),
fda6f272 2261 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 2262
3f0abd80
SL
2263 tg->last_low_overflow_time[rw] = jiffies;
2264
b9147dd1 2265 td->nr_queued[rw]++;
c5cc2070 2266 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 2267 throttled = true;
e43473b7 2268
7f52f98c
TH
2269 /*
2270 * Update @tg's dispatch time and force schedule dispatch if @tg
2271 * was empty before @bio. The forced scheduling isn't likely to
2272 * cause undue delay as @bio is likely to be dispatched directly if
2273 * its @tg's disptime is not in the future.
2274 */
0e9f4164 2275 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 2276 tg_update_disptime(tg);
7f52f98c 2277 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
2278 }
2279
bc16a4f9 2280out_unlock:
0d945c1f 2281 spin_unlock_irq(&q->queue_lock);
bc16a4f9 2282out:
111be883 2283 bio_set_flag(bio, BIO_THROTTLED);
b9147dd1
SL
2284
2285#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2286 if (throttled || !td->track_bio_latency)
5238dcf4 2287 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
b9147dd1 2288#endif
93b80638 2289 rcu_read_unlock();
bc16a4f9 2290 return throttled;
e43473b7
VG
2291}
2292
9e234eea 2293#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
b9147dd1
SL
2294static void throtl_track_latency(struct throtl_data *td, sector_t size,
2295 int op, unsigned long time)
2296{
2297 struct latency_bucket *latency;
2298 int index;
2299
b889bf66
JQ
2300 if (!td || td->limit_index != LIMIT_LOW ||
2301 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
b9147dd1
SL
2302 !blk_queue_nonrot(td->queue))
2303 return;
2304
2305 index = request_bucket_index(size);
2306
b889bf66 2307 latency = get_cpu_ptr(td->latency_buckets[op]);
b9147dd1
SL
2308 latency[index].total_latency += time;
2309 latency[index].samples++;
b889bf66 2310 put_cpu_ptr(td->latency_buckets[op]);
b9147dd1
SL
2311}
2312
2313void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2314{
2315 struct request_queue *q = rq->q;
2316 struct throtl_data *td = q->td;
2317
3d244306
HT
2318 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2319 time_ns >> 10);
b9147dd1
SL
2320}
2321
9e234eea
SL
2322void blk_throtl_bio_endio(struct bio *bio)
2323{
08e18eab 2324 struct blkcg_gq *blkg;
9e234eea 2325 struct throtl_grp *tg;
b9147dd1
SL
2326 u64 finish_time_ns;
2327 unsigned long finish_time;
2328 unsigned long start_time;
2329 unsigned long lat;
b889bf66 2330 int rw = bio_data_dir(bio);
9e234eea 2331
08e18eab
JB
2332 blkg = bio->bi_blkg;
2333 if (!blkg)
9e234eea 2334 return;
08e18eab 2335 tg = blkg_to_tg(blkg);
b185efa7
BW
2336 if (!tg->td->limit_valid[LIMIT_LOW])
2337 return;
9e234eea 2338
b9147dd1
SL
2339 finish_time_ns = ktime_get_ns();
2340 tg->last_finish_time = finish_time_ns >> 10;
2341
5238dcf4
OS
2342 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2343 finish_time = __bio_issue_time(finish_time_ns) >> 10;
08e18eab 2344 if (!start_time || finish_time <= start_time)
53696b8d
SL
2345 return;
2346
2347 lat = finish_time - start_time;
b9147dd1 2348 /* this is only for bio based driver */
5238dcf4
OS
2349 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2350 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2351 bio_op(bio), lat);
53696b8d 2352
6679a90c 2353 if (tg->latency_target && lat >= tg->td->filtered_latency) {
53696b8d
SL
2354 int bucket;
2355 unsigned int threshold;
2356
5238dcf4 2357 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
b889bf66 2358 threshold = tg->td->avg_buckets[rw][bucket].latency +
53696b8d
SL
2359 tg->latency_target;
2360 if (lat > threshold)
2361 tg->bad_bio_cnt++;
2362 /*
2363 * Not race free, could get wrong count, which means cgroups
2364 * will be throttled
2365 */
2366 tg->bio_cnt++;
2367 }
2368
2369 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2370 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2371 tg->bio_cnt /= 2;
2372 tg->bad_bio_cnt /= 2;
b9147dd1 2373 }
9e234eea
SL
2374}
2375#endif
2376
e43473b7
VG
2377int blk_throtl_init(struct request_queue *q)
2378{
2379 struct throtl_data *td;
a2b1693b 2380 int ret;
e43473b7
VG
2381
2382 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2383 if (!td)
2384 return -ENOMEM;
b889bf66 2385 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2386 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2387 if (!td->latency_buckets[READ]) {
2388 kfree(td);
2389 return -ENOMEM;
2390 }
2391 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2392 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2393 if (!td->latency_buckets[WRITE]) {
2394 free_percpu(td->latency_buckets[READ]);
b9147dd1
SL
2395 kfree(td);
2396 return -ENOMEM;
2397 }
e43473b7 2398
69df0ab0 2399 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
b2ce2643 2400 throtl_service_queue_init(&td->service_queue);
e43473b7 2401
cd1604fa 2402 q->td = td;
29b12589 2403 td->queue = q;
02977e4a 2404
9f626e37 2405 td->limit_valid[LIMIT_MAX] = true;
cd5ab1b0 2406 td->limit_index = LIMIT_MAX;
3f0abd80
SL
2407 td->low_upgrade_time = jiffies;
2408 td->low_downgrade_time = jiffies;
9e234eea 2409
a2b1693b 2410 /* activate policy */
3c798398 2411 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
b9147dd1 2412 if (ret) {
b889bf66
JQ
2413 free_percpu(td->latency_buckets[READ]);
2414 free_percpu(td->latency_buckets[WRITE]);
f51b802c 2415 kfree(td);
b9147dd1 2416 }
a2b1693b 2417 return ret;
e43473b7
VG
2418}
2419
2420void blk_throtl_exit(struct request_queue *q)
2421{
c875f4d0 2422 BUG_ON(!q->td);
da527770 2423 throtl_shutdown_wq(q);
3c798398 2424 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
b889bf66
JQ
2425 free_percpu(q->td->latency_buckets[READ]);
2426 free_percpu(q->td->latency_buckets[WRITE]);
c9a929dd 2427 kfree(q->td);
e43473b7
VG
2428}
2429
d61fcfa4
SL
2430void blk_throtl_register_queue(struct request_queue *q)
2431{
2432 struct throtl_data *td;
6679a90c 2433 int i;
d61fcfa4
SL
2434
2435 td = q->td;
2436 BUG_ON(!td);
2437
6679a90c 2438 if (blk_queue_nonrot(q)) {
d61fcfa4 2439 td->throtl_slice = DFL_THROTL_SLICE_SSD;
6679a90c
SL
2440 td->filtered_latency = LATENCY_FILTERED_SSD;
2441 } else {
d61fcfa4 2442 td->throtl_slice = DFL_THROTL_SLICE_HD;
6679a90c 2443 td->filtered_latency = LATENCY_FILTERED_HD;
b889bf66
JQ
2444 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2445 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2446 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2447 }
6679a90c 2448 }
d61fcfa4
SL
2449#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2450 /* if no low limit, use previous default */
2451 td->throtl_slice = DFL_THROTL_SLICE_HD;
2452#endif
9e234eea 2453
344e9ffc 2454 td->track_bio_latency = !queue_is_mq(q);
b9147dd1
SL
2455 if (!td->track_bio_latency)
2456 blk_stat_enable_accounting(q);
d61fcfa4
SL
2457}
2458
297e3d85
SL
2459#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2460ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2461{
2462 if (!q->td)
2463 return -EINVAL;
2464 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2465}
2466
2467ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2468 const char *page, size_t count)
2469{
2470 unsigned long v;
2471 unsigned long t;
2472
2473 if (!q->td)
2474 return -EINVAL;
2475 if (kstrtoul(page, 10, &v))
2476 return -EINVAL;
2477 t = msecs_to_jiffies(v);
2478 if (t == 0 || t > MAX_THROTL_SLICE)
2479 return -EINVAL;
2480 q->td->throtl_slice = t;
2481 return count;
2482}
2483#endif
2484
e43473b7
VG
2485static int __init throtl_init(void)
2486{
450adcbe
VG
2487 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2488 if (!kthrotld_workqueue)
2489 panic("Failed to create kthrotld\n");
2490
3c798398 2491 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
2492}
2493
2494module_init(throtl_init);