blk-throttle: add a simple idle detection
[linux-2.6-block.git] / block / blk-throttle.c
CommitLineData
e43473b7
VG
1/*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/blkdev.h>
10#include <linux/bio.h>
11#include <linux/blktrace_api.h>
eea8f41c 12#include <linux/blk-cgroup.h>
bc9fcbf9 13#include "blk.h"
e43473b7
VG
14
15/* Max dispatch from a group in 1 round */
16static int throtl_grp_quantum = 8;
17
18/* Total max dispatch from all groups in one round */
19static int throtl_quantum = 32;
20
d61fcfa4
SL
21/* Throttling is performed over a slice and after that slice is renewed */
22#define DFL_THROTL_SLICE_HD (HZ / 10)
23#define DFL_THROTL_SLICE_SSD (HZ / 50)
297e3d85 24#define MAX_THROTL_SLICE (HZ)
9e234eea
SL
25#define DFL_IDLE_THRESHOLD_SSD (1000L) /* 1 ms */
26#define DFL_IDLE_THRESHOLD_HD (100L * 1000) /* 100 ms */
27#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
e43473b7 28
3c798398 29static struct blkcg_policy blkcg_policy_throtl;
0381411e 30
450adcbe
VG
31/* A workqueue to queue throttle related work */
32static struct workqueue_struct *kthrotld_workqueue;
450adcbe 33
c5cc2070
TH
34/*
35 * To implement hierarchical throttling, throtl_grps form a tree and bios
36 * are dispatched upwards level by level until they reach the top and get
37 * issued. When dispatching bios from the children and local group at each
38 * level, if the bios are dispatched into a single bio_list, there's a risk
39 * of a local or child group which can queue many bios at once filling up
40 * the list starving others.
41 *
42 * To avoid such starvation, dispatched bios are queued separately
43 * according to where they came from. When they are again dispatched to
44 * the parent, they're popped in round-robin order so that no single source
45 * hogs the dispatch window.
46 *
47 * throtl_qnode is used to keep the queued bios separated by their sources.
48 * Bios are queued to throtl_qnode which in turn is queued to
49 * throtl_service_queue and then dispatched in round-robin order.
50 *
51 * It's also used to track the reference counts on blkg's. A qnode always
52 * belongs to a throtl_grp and gets queued on itself or the parent, so
53 * incrementing the reference of the associated throtl_grp when a qnode is
54 * queued and decrementing when dequeued is enough to keep the whole blkg
55 * tree pinned while bios are in flight.
56 */
57struct throtl_qnode {
58 struct list_head node; /* service_queue->queued[] */
59 struct bio_list bios; /* queued bios */
60 struct throtl_grp *tg; /* tg this qnode belongs to */
61};
62
c9e0332e 63struct throtl_service_queue {
77216b04
TH
64 struct throtl_service_queue *parent_sq; /* the parent service_queue */
65
73f0d49a
TH
66 /*
67 * Bios queued directly to this service_queue or dispatched from
68 * children throtl_grp's.
69 */
c5cc2070 70 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
73f0d49a
TH
71 unsigned int nr_queued[2]; /* number of queued bios */
72
73 /*
74 * RB tree of active children throtl_grp's, which are sorted by
75 * their ->disptime.
76 */
c9e0332e
TH
77 struct rb_root pending_tree; /* RB tree of active tgs */
78 struct rb_node *first_pending; /* first node in the tree */
79 unsigned int nr_pending; /* # queued in the tree */
80 unsigned long first_pending_disptime; /* disptime of the first tg */
69df0ab0 81 struct timer_list pending_timer; /* fires on first_pending_disptime */
e43473b7
VG
82};
83
5b2c16aa
TH
84enum tg_state_flags {
85 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
0e9f4164 86 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
5b2c16aa
TH
87};
88
e43473b7
VG
89#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
90
9f626e37 91enum {
cd5ab1b0 92 LIMIT_LOW,
9f626e37
SL
93 LIMIT_MAX,
94 LIMIT_CNT,
95};
96
e43473b7 97struct throtl_grp {
f95a04af
TH
98 /* must be the first member */
99 struct blkg_policy_data pd;
100
c9e0332e 101 /* active throtl group service_queue member */
e43473b7
VG
102 struct rb_node rb_node;
103
0f3457f6
TH
104 /* throtl_data this group belongs to */
105 struct throtl_data *td;
106
49a2f1e3
TH
107 /* this group's service queue */
108 struct throtl_service_queue service_queue;
109
c5cc2070
TH
110 /*
111 * qnode_on_self is used when bios are directly queued to this
112 * throtl_grp so that local bios compete fairly with bios
113 * dispatched from children. qnode_on_parent is used when bios are
114 * dispatched from this throtl_grp into its parent and will compete
115 * with the sibling qnode_on_parents and the parent's
116 * qnode_on_self.
117 */
118 struct throtl_qnode qnode_on_self[2];
119 struct throtl_qnode qnode_on_parent[2];
120
e43473b7
VG
121 /*
122 * Dispatch time in jiffies. This is the estimated time when group
123 * will unthrottle and is ready to dispatch more bio. It is used as
124 * key to sort active groups in service tree.
125 */
126 unsigned long disptime;
127
e43473b7
VG
128 unsigned int flags;
129
693e751e
TH
130 /* are there any throtl rules between this group and td? */
131 bool has_rules[2];
132
cd5ab1b0 133 /* internally used bytes per second rate limits */
9f626e37 134 uint64_t bps[2][LIMIT_CNT];
cd5ab1b0
SL
135 /* user configured bps limits */
136 uint64_t bps_conf[2][LIMIT_CNT];
e43473b7 137
cd5ab1b0 138 /* internally used IOPS limits */
9f626e37 139 unsigned int iops[2][LIMIT_CNT];
cd5ab1b0
SL
140 /* user configured IOPS limits */
141 unsigned int iops_conf[2][LIMIT_CNT];
8e89d13f 142
e43473b7
VG
143 /* Number of bytes disptached in current slice */
144 uint64_t bytes_disp[2];
8e89d13f
VG
145 /* Number of bio's dispatched in current slice */
146 unsigned int io_disp[2];
e43473b7 147
3f0abd80
SL
148 unsigned long last_low_overflow_time[2];
149
150 uint64_t last_bytes_disp[2];
151 unsigned int last_io_disp[2];
152
153 unsigned long last_check_time;
154
aec24246
SL
155 unsigned long last_dispatch_time[2];
156
e43473b7
VG
157 /* When did we start a new slice */
158 unsigned long slice_start[2];
159 unsigned long slice_end[2];
9e234eea
SL
160
161 unsigned long last_finish_time; /* ns / 1024 */
162 unsigned long checked_last_finish_time; /* ns / 1024 */
163 unsigned long avg_idletime; /* ns / 1024 */
164 unsigned long idletime_threshold; /* us */
e43473b7
VG
165};
166
167struct throtl_data
168{
e43473b7 169 /* service tree for active throtl groups */
c9e0332e 170 struct throtl_service_queue service_queue;
e43473b7 171
e43473b7
VG
172 struct request_queue *queue;
173
174 /* Total Number of queued bios on READ and WRITE lists */
175 unsigned int nr_queued[2];
176
297e3d85
SL
177 unsigned int throtl_slice;
178
e43473b7 179 /* Work for dispatching throttled bios */
69df0ab0 180 struct work_struct dispatch_work;
9f626e37
SL
181 unsigned int limit_index;
182 bool limit_valid[LIMIT_CNT];
3f0abd80
SL
183
184 unsigned long low_upgrade_time;
185 unsigned long low_downgrade_time;
7394e31f
SL
186
187 unsigned int scale;
e43473b7
VG
188};
189
69df0ab0
TH
190static void throtl_pending_timer_fn(unsigned long arg);
191
f95a04af
TH
192static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
193{
194 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
195}
196
3c798398 197static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
0381411e 198{
f95a04af 199 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
0381411e
TH
200}
201
3c798398 202static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 203{
f95a04af 204 return pd_to_blkg(&tg->pd);
0381411e
TH
205}
206
fda6f272
TH
207/**
208 * sq_to_tg - return the throl_grp the specified service queue belongs to
209 * @sq: the throtl_service_queue of interest
210 *
211 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
212 * embedded in throtl_data, %NULL is returned.
213 */
214static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
215{
216 if (sq && sq->parent_sq)
217 return container_of(sq, struct throtl_grp, service_queue);
218 else
219 return NULL;
220}
221
222/**
223 * sq_to_td - return throtl_data the specified service queue belongs to
224 * @sq: the throtl_service_queue of interest
225 *
b43daedc 226 * A service_queue can be embedded in either a throtl_grp or throtl_data.
fda6f272
TH
227 * Determine the associated throtl_data accordingly and return it.
228 */
229static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
230{
231 struct throtl_grp *tg = sq_to_tg(sq);
232
233 if (tg)
234 return tg->td;
235 else
236 return container_of(sq, struct throtl_data, service_queue);
237}
238
7394e31f
SL
239/*
240 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
241 * make the IO dispatch more smooth.
242 * Scale up: linearly scale up according to lapsed time since upgrade. For
243 * every throtl_slice, the limit scales up 1/2 .low limit till the
244 * limit hits .max limit
245 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
246 */
247static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
248{
249 /* arbitrary value to avoid too big scale */
250 if (td->scale < 4096 && time_after_eq(jiffies,
251 td->low_upgrade_time + td->scale * td->throtl_slice))
252 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
253
254 return low + (low >> 1) * td->scale;
255}
256
9f626e37
SL
257static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
258{
b22c417c 259 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 260 struct throtl_data *td;
b22c417c
SL
261 uint64_t ret;
262
263 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
264 return U64_MAX;
7394e31f
SL
265
266 td = tg->td;
267 ret = tg->bps[rw][td->limit_index];
268 if (ret == 0 && td->limit_index == LIMIT_LOW)
b22c417c 269 return tg->bps[rw][LIMIT_MAX];
7394e31f
SL
270
271 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
272 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
273 uint64_t adjusted;
274
275 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
276 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
277 }
b22c417c 278 return ret;
9f626e37
SL
279}
280
281static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
282{
b22c417c 283 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 284 struct throtl_data *td;
b22c417c
SL
285 unsigned int ret;
286
287 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
288 return UINT_MAX;
7394e31f
SL
289 td = tg->td;
290 ret = tg->iops[rw][td->limit_index];
b22c417c
SL
291 if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
292 return tg->iops[rw][LIMIT_MAX];
7394e31f
SL
293
294 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
295 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
296 uint64_t adjusted;
297
298 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
299 if (adjusted > UINT_MAX)
300 adjusted = UINT_MAX;
301 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
302 }
b22c417c 303 return ret;
9f626e37
SL
304}
305
fda6f272
TH
306/**
307 * throtl_log - log debug message via blktrace
308 * @sq: the service_queue being reported
309 * @fmt: printf format string
310 * @args: printf args
311 *
312 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
313 * throtl_grp; otherwise, just "throtl".
fda6f272
TH
314 */
315#define throtl_log(sq, fmt, args...) do { \
316 struct throtl_grp *__tg = sq_to_tg((sq)); \
317 struct throtl_data *__td = sq_to_td((sq)); \
318 \
319 (void)__td; \
59fa0224
SL
320 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
321 break; \
fda6f272
TH
322 if ((__tg)) { \
323 char __pbuf[128]; \
54e7ed12 324 \
fda6f272
TH
325 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
326 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
327 } else { \
328 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
329 } \
54e7ed12 330} while (0)
e43473b7 331
c5cc2070
TH
332static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
333{
334 INIT_LIST_HEAD(&qn->node);
335 bio_list_init(&qn->bios);
336 qn->tg = tg;
337}
338
339/**
340 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
341 * @bio: bio being added
342 * @qn: qnode to add bio to
343 * @queued: the service_queue->queued[] list @qn belongs to
344 *
345 * Add @bio to @qn and put @qn on @queued if it's not already on.
346 * @qn->tg's reference count is bumped when @qn is activated. See the
347 * comment on top of throtl_qnode definition for details.
348 */
349static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
350 struct list_head *queued)
351{
352 bio_list_add(&qn->bios, bio);
353 if (list_empty(&qn->node)) {
354 list_add_tail(&qn->node, queued);
355 blkg_get(tg_to_blkg(qn->tg));
356 }
357}
358
359/**
360 * throtl_peek_queued - peek the first bio on a qnode list
361 * @queued: the qnode list to peek
362 */
363static struct bio *throtl_peek_queued(struct list_head *queued)
364{
365 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
366 struct bio *bio;
367
368 if (list_empty(queued))
369 return NULL;
370
371 bio = bio_list_peek(&qn->bios);
372 WARN_ON_ONCE(!bio);
373 return bio;
374}
375
376/**
377 * throtl_pop_queued - pop the first bio form a qnode list
378 * @queued: the qnode list to pop a bio from
379 * @tg_to_put: optional out argument for throtl_grp to put
380 *
381 * Pop the first bio from the qnode list @queued. After popping, the first
382 * qnode is removed from @queued if empty or moved to the end of @queued so
383 * that the popping order is round-robin.
384 *
385 * When the first qnode is removed, its associated throtl_grp should be put
386 * too. If @tg_to_put is NULL, this function automatically puts it;
387 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
388 * responsible for putting it.
389 */
390static struct bio *throtl_pop_queued(struct list_head *queued,
391 struct throtl_grp **tg_to_put)
392{
393 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
394 struct bio *bio;
395
396 if (list_empty(queued))
397 return NULL;
398
399 bio = bio_list_pop(&qn->bios);
400 WARN_ON_ONCE(!bio);
401
402 if (bio_list_empty(&qn->bios)) {
403 list_del_init(&qn->node);
404 if (tg_to_put)
405 *tg_to_put = qn->tg;
406 else
407 blkg_put(tg_to_blkg(qn->tg));
408 } else {
409 list_move_tail(&qn->node, queued);
410 }
411
412 return bio;
413}
414
49a2f1e3 415/* init a service_queue, assumes the caller zeroed it */
b2ce2643 416static void throtl_service_queue_init(struct throtl_service_queue *sq)
49a2f1e3 417{
c5cc2070
TH
418 INIT_LIST_HEAD(&sq->queued[0]);
419 INIT_LIST_HEAD(&sq->queued[1]);
49a2f1e3 420 sq->pending_tree = RB_ROOT;
69df0ab0
TH
421 setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
422 (unsigned long)sq);
423}
424
001bea73
TH
425static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
426{
4fb72036 427 struct throtl_grp *tg;
24bdb8ef 428 int rw;
4fb72036
TH
429
430 tg = kzalloc_node(sizeof(*tg), gfp, node);
431 if (!tg)
77ea7338 432 return NULL;
4fb72036 433
b2ce2643
TH
434 throtl_service_queue_init(&tg->service_queue);
435
436 for (rw = READ; rw <= WRITE; rw++) {
437 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
438 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
439 }
440
441 RB_CLEAR_NODE(&tg->rb_node);
9f626e37
SL
442 tg->bps[READ][LIMIT_MAX] = U64_MAX;
443 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
444 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
445 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
cd5ab1b0
SL
446 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
447 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
448 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
449 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
450 /* LIMIT_LOW will have default value 0 */
b2ce2643 451
4fb72036 452 return &tg->pd;
001bea73
TH
453}
454
a9520cd6 455static void throtl_pd_init(struct blkg_policy_data *pd)
a29a171e 456{
a9520cd6
TH
457 struct throtl_grp *tg = pd_to_tg(pd);
458 struct blkcg_gq *blkg = tg_to_blkg(tg);
77216b04 459 struct throtl_data *td = blkg->q->td;
b2ce2643 460 struct throtl_service_queue *sq = &tg->service_queue;
cd1604fa 461
9138125b 462 /*
aa6ec29b 463 * If on the default hierarchy, we switch to properly hierarchical
9138125b
TH
464 * behavior where limits on a given throtl_grp are applied to the
465 * whole subtree rather than just the group itself. e.g. If 16M
466 * read_bps limit is set on the root group, the whole system can't
467 * exceed 16M for the device.
468 *
aa6ec29b 469 * If not on the default hierarchy, the broken flat hierarchy
9138125b
TH
470 * behavior is retained where all throtl_grps are treated as if
471 * they're all separate root groups right below throtl_data.
472 * Limits of a group don't interact with limits of other groups
473 * regardless of the position of the group in the hierarchy.
474 */
b2ce2643 475 sq->parent_sq = &td->service_queue;
9e10a130 476 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
b2ce2643 477 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
77216b04 478 tg->td = td;
9e234eea
SL
479
480 if (blk_queue_nonrot(td->queue))
481 tg->idletime_threshold = DFL_IDLE_THRESHOLD_SSD;
482 else
483 tg->idletime_threshold = DFL_IDLE_THRESHOLD_HD;
8a3d2615
TH
484}
485
693e751e
TH
486/*
487 * Set has_rules[] if @tg or any of its parents have limits configured.
488 * This doesn't require walking up to the top of the hierarchy as the
489 * parent's has_rules[] is guaranteed to be correct.
490 */
491static void tg_update_has_rules(struct throtl_grp *tg)
492{
493 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
9f626e37 494 struct throtl_data *td = tg->td;
693e751e
TH
495 int rw;
496
497 for (rw = READ; rw <= WRITE; rw++)
498 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
9f626e37
SL
499 (td->limit_valid[td->limit_index] &&
500 (tg_bps_limit(tg, rw) != U64_MAX ||
501 tg_iops_limit(tg, rw) != UINT_MAX));
693e751e
TH
502}
503
a9520cd6 504static void throtl_pd_online(struct blkg_policy_data *pd)
693e751e 505{
aec24246 506 struct throtl_grp *tg = pd_to_tg(pd);
693e751e
TH
507 /*
508 * We don't want new groups to escape the limits of its ancestors.
509 * Update has_rules[] after a new group is brought online.
510 */
aec24246
SL
511 tg_update_has_rules(tg);
512 tg->last_dispatch_time[READ] = jiffies;
513 tg->last_dispatch_time[WRITE] = jiffies;
693e751e
TH
514}
515
cd5ab1b0
SL
516static void blk_throtl_update_limit_valid(struct throtl_data *td)
517{
518 struct cgroup_subsys_state *pos_css;
519 struct blkcg_gq *blkg;
520 bool low_valid = false;
521
522 rcu_read_lock();
523 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
524 struct throtl_grp *tg = blkg_to_tg(blkg);
525
526 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
527 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
528 low_valid = true;
529 }
530 rcu_read_unlock();
531
532 td->limit_valid[LIMIT_LOW] = low_valid;
533}
534
c79892c5 535static void throtl_upgrade_state(struct throtl_data *td);
cd5ab1b0
SL
536static void throtl_pd_offline(struct blkg_policy_data *pd)
537{
538 struct throtl_grp *tg = pd_to_tg(pd);
539
540 tg->bps[READ][LIMIT_LOW] = 0;
541 tg->bps[WRITE][LIMIT_LOW] = 0;
542 tg->iops[READ][LIMIT_LOW] = 0;
543 tg->iops[WRITE][LIMIT_LOW] = 0;
544
545 blk_throtl_update_limit_valid(tg->td);
546
c79892c5
SL
547 if (!tg->td->limit_valid[tg->td->limit_index])
548 throtl_upgrade_state(tg->td);
cd5ab1b0
SL
549}
550
001bea73
TH
551static void throtl_pd_free(struct blkg_policy_data *pd)
552{
4fb72036
TH
553 struct throtl_grp *tg = pd_to_tg(pd);
554
b2ce2643 555 del_timer_sync(&tg->service_queue.pending_timer);
4fb72036 556 kfree(tg);
001bea73
TH
557}
558
0049af73
TH
559static struct throtl_grp *
560throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7
VG
561{
562 /* Service tree is empty */
0049af73 563 if (!parent_sq->nr_pending)
e43473b7
VG
564 return NULL;
565
0049af73
TH
566 if (!parent_sq->first_pending)
567 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
e43473b7 568
0049af73
TH
569 if (parent_sq->first_pending)
570 return rb_entry_tg(parent_sq->first_pending);
e43473b7
VG
571
572 return NULL;
573}
574
575static void rb_erase_init(struct rb_node *n, struct rb_root *root)
576{
577 rb_erase(n, root);
578 RB_CLEAR_NODE(n);
579}
580
0049af73
TH
581static void throtl_rb_erase(struct rb_node *n,
582 struct throtl_service_queue *parent_sq)
e43473b7 583{
0049af73
TH
584 if (parent_sq->first_pending == n)
585 parent_sq->first_pending = NULL;
586 rb_erase_init(n, &parent_sq->pending_tree);
587 --parent_sq->nr_pending;
e43473b7
VG
588}
589
0049af73 590static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
591{
592 struct throtl_grp *tg;
593
0049af73 594 tg = throtl_rb_first(parent_sq);
e43473b7
VG
595 if (!tg)
596 return;
597
0049af73 598 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
599}
600
77216b04 601static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 602{
77216b04 603 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
0049af73 604 struct rb_node **node = &parent_sq->pending_tree.rb_node;
e43473b7
VG
605 struct rb_node *parent = NULL;
606 struct throtl_grp *__tg;
607 unsigned long key = tg->disptime;
608 int left = 1;
609
610 while (*node != NULL) {
611 parent = *node;
612 __tg = rb_entry_tg(parent);
613
614 if (time_before(key, __tg->disptime))
615 node = &parent->rb_left;
616 else {
617 node = &parent->rb_right;
618 left = 0;
619 }
620 }
621
622 if (left)
0049af73 623 parent_sq->first_pending = &tg->rb_node;
e43473b7
VG
624
625 rb_link_node(&tg->rb_node, parent, node);
0049af73 626 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
e43473b7
VG
627}
628
77216b04 629static void __throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 630{
77216b04 631 tg_service_queue_add(tg);
5b2c16aa 632 tg->flags |= THROTL_TG_PENDING;
77216b04 633 tg->service_queue.parent_sq->nr_pending++;
e43473b7
VG
634}
635
77216b04 636static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 637{
5b2c16aa 638 if (!(tg->flags & THROTL_TG_PENDING))
77216b04 639 __throtl_enqueue_tg(tg);
e43473b7
VG
640}
641
77216b04 642static void __throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 643{
77216b04 644 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
5b2c16aa 645 tg->flags &= ~THROTL_TG_PENDING;
e43473b7
VG
646}
647
77216b04 648static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 649{
5b2c16aa 650 if (tg->flags & THROTL_TG_PENDING)
77216b04 651 __throtl_dequeue_tg(tg);
e43473b7
VG
652}
653
a9131a27 654/* Call with queue lock held */
69df0ab0
TH
655static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
656 unsigned long expires)
a9131a27 657{
297e3d85 658 unsigned long max_expire = jiffies + 8 * sq_to_tg(sq)->td->throtl_slice;
06cceedc
SL
659
660 /*
661 * Since we are adjusting the throttle limit dynamically, the sleep
662 * time calculated according to previous limit might be invalid. It's
663 * possible the cgroup sleep time is very long and no other cgroups
664 * have IO running so notify the limit changes. Make sure the cgroup
665 * doesn't sleep too long to avoid the missed notification.
666 */
667 if (time_after(expires, max_expire))
668 expires = max_expire;
69df0ab0
TH
669 mod_timer(&sq->pending_timer, expires);
670 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
671 expires - jiffies, jiffies);
a9131a27
TH
672}
673
7f52f98c
TH
674/**
675 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
676 * @sq: the service_queue to schedule dispatch for
677 * @force: force scheduling
678 *
679 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
680 * dispatch time of the first pending child. Returns %true if either timer
681 * is armed or there's no pending child left. %false if the current
682 * dispatch window is still open and the caller should continue
683 * dispatching.
684 *
685 * If @force is %true, the dispatch timer is always scheduled and this
686 * function is guaranteed to return %true. This is to be used when the
687 * caller can't dispatch itself and needs to invoke pending_timer
688 * unconditionally. Note that forced scheduling is likely to induce short
689 * delay before dispatch starts even if @sq->first_pending_disptime is not
690 * in the future and thus shouldn't be used in hot paths.
691 */
692static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
693 bool force)
e43473b7 694{
6a525600 695 /* any pending children left? */
c9e0332e 696 if (!sq->nr_pending)
7f52f98c 697 return true;
e43473b7 698
c9e0332e 699 update_min_dispatch_time(sq);
e43473b7 700
69df0ab0 701 /* is the next dispatch time in the future? */
7f52f98c 702 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 703 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 704 return true;
69df0ab0
TH
705 }
706
7f52f98c
TH
707 /* tell the caller to continue dispatching */
708 return false;
e43473b7
VG
709}
710
32ee5bc4
VG
711static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
712 bool rw, unsigned long start)
713{
714 tg->bytes_disp[rw] = 0;
715 tg->io_disp[rw] = 0;
716
717 /*
718 * Previous slice has expired. We must have trimmed it after last
719 * bio dispatch. That means since start of last slice, we never used
720 * that bandwidth. Do try to make use of that bandwidth while giving
721 * credit.
722 */
723 if (time_after_eq(start, tg->slice_start[rw]))
724 tg->slice_start[rw] = start;
725
297e3d85 726 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
32ee5bc4
VG
727 throtl_log(&tg->service_queue,
728 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
729 rw == READ ? 'R' : 'W', tg->slice_start[rw],
730 tg->slice_end[rw], jiffies);
731}
732
0f3457f6 733static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
e43473b7
VG
734{
735 tg->bytes_disp[rw] = 0;
8e89d13f 736 tg->io_disp[rw] = 0;
e43473b7 737 tg->slice_start[rw] = jiffies;
297e3d85 738 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
fda6f272
TH
739 throtl_log(&tg->service_queue,
740 "[%c] new slice start=%lu end=%lu jiffies=%lu",
741 rw == READ ? 'R' : 'W', tg->slice_start[rw],
742 tg->slice_end[rw], jiffies);
e43473b7
VG
743}
744
0f3457f6
TH
745static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
746 unsigned long jiffy_end)
d1ae8ffd 747{
297e3d85 748 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
d1ae8ffd
VG
749}
750
0f3457f6
TH
751static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
752 unsigned long jiffy_end)
e43473b7 753{
297e3d85 754 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
fda6f272
TH
755 throtl_log(&tg->service_queue,
756 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
757 rw == READ ? 'R' : 'W', tg->slice_start[rw],
758 tg->slice_end[rw], jiffies);
e43473b7
VG
759}
760
761/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 762static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
763{
764 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
5cf8c227 765 return false;
e43473b7
VG
766
767 return 1;
768}
769
770/* Trim the used slices and adjust slice start accordingly */
0f3457f6 771static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 772{
3aad5d3e
VG
773 unsigned long nr_slices, time_elapsed, io_trim;
774 u64 bytes_trim, tmp;
e43473b7
VG
775
776 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
777
778 /*
779 * If bps are unlimited (-1), then time slice don't get
780 * renewed. Don't try to trim the slice if slice is used. A new
781 * slice will start when appropriate.
782 */
0f3457f6 783 if (throtl_slice_used(tg, rw))
e43473b7
VG
784 return;
785
d1ae8ffd
VG
786 /*
787 * A bio has been dispatched. Also adjust slice_end. It might happen
788 * that initially cgroup limit was very low resulting in high
789 * slice_end, but later limit was bumped up and bio was dispached
790 * sooner, then we need to reduce slice_end. A high bogus slice_end
791 * is bad because it does not allow new slice to start.
792 */
793
297e3d85 794 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
d1ae8ffd 795
e43473b7
VG
796 time_elapsed = jiffies - tg->slice_start[rw];
797
297e3d85 798 nr_slices = time_elapsed / tg->td->throtl_slice;
e43473b7
VG
799
800 if (!nr_slices)
801 return;
297e3d85 802 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
3aad5d3e
VG
803 do_div(tmp, HZ);
804 bytes_trim = tmp;
e43473b7 805
297e3d85
SL
806 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
807 HZ;
e43473b7 808
8e89d13f 809 if (!bytes_trim && !io_trim)
e43473b7
VG
810 return;
811
812 if (tg->bytes_disp[rw] >= bytes_trim)
813 tg->bytes_disp[rw] -= bytes_trim;
814 else
815 tg->bytes_disp[rw] = 0;
816
8e89d13f
VG
817 if (tg->io_disp[rw] >= io_trim)
818 tg->io_disp[rw] -= io_trim;
819 else
820 tg->io_disp[rw] = 0;
821
297e3d85 822 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
e43473b7 823
fda6f272
TH
824 throtl_log(&tg->service_queue,
825 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
826 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
827 tg->slice_start[rw], tg->slice_end[rw], jiffies);
e43473b7
VG
828}
829
0f3457f6
TH
830static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
831 unsigned long *wait)
e43473b7
VG
832{
833 bool rw = bio_data_dir(bio);
8e89d13f 834 unsigned int io_allowed;
e43473b7 835 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
c49c06e4 836 u64 tmp;
e43473b7 837
8e89d13f 838 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
e43473b7 839
8e89d13f
VG
840 /* Slice has just started. Consider one slice interval */
841 if (!jiffy_elapsed)
297e3d85 842 jiffy_elapsed_rnd = tg->td->throtl_slice;
8e89d13f 843
297e3d85 844 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
8e89d13f 845
c49c06e4
VG
846 /*
847 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
848 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
849 * will allow dispatch after 1 second and after that slice should
850 * have been trimmed.
851 */
852
9f626e37 853 tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
c49c06e4
VG
854 do_div(tmp, HZ);
855
856 if (tmp > UINT_MAX)
857 io_allowed = UINT_MAX;
858 else
859 io_allowed = tmp;
8e89d13f
VG
860
861 if (tg->io_disp[rw] + 1 <= io_allowed) {
e43473b7
VG
862 if (wait)
863 *wait = 0;
5cf8c227 864 return true;
e43473b7
VG
865 }
866
8e89d13f 867 /* Calc approx time to dispatch */
9f626e37 868 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
8e89d13f
VG
869
870 if (jiffy_wait > jiffy_elapsed)
871 jiffy_wait = jiffy_wait - jiffy_elapsed;
872 else
873 jiffy_wait = 1;
874
875 if (wait)
876 *wait = jiffy_wait;
877 return 0;
878}
879
0f3457f6
TH
880static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
881 unsigned long *wait)
8e89d13f
VG
882{
883 bool rw = bio_data_dir(bio);
3aad5d3e 884 u64 bytes_allowed, extra_bytes, tmp;
8e89d13f 885 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
e43473b7
VG
886
887 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
888
889 /* Slice has just started. Consider one slice interval */
890 if (!jiffy_elapsed)
297e3d85 891 jiffy_elapsed_rnd = tg->td->throtl_slice;
e43473b7 892
297e3d85 893 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
e43473b7 894
9f626e37 895 tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
5e901a2b 896 do_div(tmp, HZ);
3aad5d3e 897 bytes_allowed = tmp;
e43473b7 898
4f024f37 899 if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
e43473b7
VG
900 if (wait)
901 *wait = 0;
5cf8c227 902 return true;
e43473b7
VG
903 }
904
905 /* Calc approx time to dispatch */
4f024f37 906 extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
9f626e37 907 jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
e43473b7
VG
908
909 if (!jiffy_wait)
910 jiffy_wait = 1;
911
912 /*
913 * This wait time is without taking into consideration the rounding
914 * up we did. Add that time also.
915 */
916 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
e43473b7
VG
917 if (wait)
918 *wait = jiffy_wait;
8e89d13f
VG
919 return 0;
920}
921
922/*
923 * Returns whether one can dispatch a bio or not. Also returns approx number
924 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
925 */
0f3457f6
TH
926static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
927 unsigned long *wait)
8e89d13f
VG
928{
929 bool rw = bio_data_dir(bio);
930 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
931
932 /*
933 * Currently whole state machine of group depends on first bio
934 * queued in the group bio list. So one should not be calling
935 * this function with a different bio if there are other bios
936 * queued.
937 */
73f0d49a 938 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 939 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 940
8e89d13f 941 /* If tg->bps = -1, then BW is unlimited */
9f626e37
SL
942 if (tg_bps_limit(tg, rw) == U64_MAX &&
943 tg_iops_limit(tg, rw) == UINT_MAX) {
8e89d13f
VG
944 if (wait)
945 *wait = 0;
5cf8c227 946 return true;
8e89d13f
VG
947 }
948
949 /*
950 * If previous slice expired, start a new one otherwise renew/extend
951 * existing slice to make sure it is at least throtl_slice interval
164c80ed
VG
952 * long since now. New slice is started only for empty throttle group.
953 * If there is queued bio, that means there should be an active
954 * slice and it should be extended instead.
8e89d13f 955 */
164c80ed 956 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
0f3457f6 957 throtl_start_new_slice(tg, rw);
8e89d13f 958 else {
297e3d85
SL
959 if (time_before(tg->slice_end[rw],
960 jiffies + tg->td->throtl_slice))
961 throtl_extend_slice(tg, rw,
962 jiffies + tg->td->throtl_slice);
8e89d13f
VG
963 }
964
0f3457f6
TH
965 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
966 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
8e89d13f
VG
967 if (wait)
968 *wait = 0;
969 return 1;
970 }
971
972 max_wait = max(bps_wait, iops_wait);
973
974 if (wait)
975 *wait = max_wait;
976
977 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 978 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7
VG
979
980 return 0;
981}
982
983static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
984{
985 bool rw = bio_data_dir(bio);
e43473b7
VG
986
987 /* Charge the bio to the group */
4f024f37 988 tg->bytes_disp[rw] += bio->bi_iter.bi_size;
8e89d13f 989 tg->io_disp[rw]++;
3f0abd80
SL
990 tg->last_bytes_disp[rw] += bio->bi_iter.bi_size;
991 tg->last_io_disp[rw]++;
e43473b7 992
2a0f61e6 993 /*
8d2bbd4c 994 * BIO_THROTTLED is used to prevent the same bio to be throttled
2a0f61e6
TH
995 * more than once as a throttled bio will go through blk-throtl the
996 * second time when it eventually gets issued. Set it when a bio
997 * is being charged to a tg.
2a0f61e6 998 */
8d2bbd4c
CH
999 if (!bio_flagged(bio, BIO_THROTTLED))
1000 bio_set_flag(bio, BIO_THROTTLED);
e43473b7
VG
1001}
1002
c5cc2070
TH
1003/**
1004 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1005 * @bio: bio to add
1006 * @qn: qnode to use
1007 * @tg: the target throtl_grp
1008 *
1009 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1010 * tg->qnode_on_self[] is used.
1011 */
1012static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1013 struct throtl_grp *tg)
e43473b7 1014{
73f0d49a 1015 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1016 bool rw = bio_data_dir(bio);
1017
c5cc2070
TH
1018 if (!qn)
1019 qn = &tg->qnode_on_self[rw];
1020
0e9f4164
TH
1021 /*
1022 * If @tg doesn't currently have any bios queued in the same
1023 * direction, queueing @bio can change when @tg should be
1024 * dispatched. Mark that @tg was empty. This is automatically
1025 * cleaered on the next tg_update_disptime().
1026 */
1027 if (!sq->nr_queued[rw])
1028 tg->flags |= THROTL_TG_WAS_EMPTY;
1029
c5cc2070
TH
1030 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1031
73f0d49a 1032 sq->nr_queued[rw]++;
77216b04 1033 throtl_enqueue_tg(tg);
e43473b7
VG
1034}
1035
77216b04 1036static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 1037{
73f0d49a 1038 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1039 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1040 struct bio *bio;
1041
d609af3a
ME
1042 bio = throtl_peek_queued(&sq->queued[READ]);
1043 if (bio)
0f3457f6 1044 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 1045
d609af3a
ME
1046 bio = throtl_peek_queued(&sq->queued[WRITE]);
1047 if (bio)
0f3457f6 1048 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
1049
1050 min_wait = min(read_wait, write_wait);
1051 disptime = jiffies + min_wait;
1052
e43473b7 1053 /* Update dispatch time */
77216b04 1054 throtl_dequeue_tg(tg);
e43473b7 1055 tg->disptime = disptime;
77216b04 1056 throtl_enqueue_tg(tg);
0e9f4164
TH
1057
1058 /* see throtl_add_bio_tg() */
1059 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
1060}
1061
32ee5bc4
VG
1062static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1063 struct throtl_grp *parent_tg, bool rw)
1064{
1065 if (throtl_slice_used(parent_tg, rw)) {
1066 throtl_start_new_slice_with_credit(parent_tg, rw,
1067 child_tg->slice_start[rw]);
1068 }
1069
1070}
1071
77216b04 1072static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 1073{
73f0d49a 1074 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
1075 struct throtl_service_queue *parent_sq = sq->parent_sq;
1076 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 1077 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
1078 struct bio *bio;
1079
c5cc2070
TH
1080 /*
1081 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1082 * from @tg may put its reference and @parent_sq might end up
1083 * getting released prematurely. Remember the tg to put and put it
1084 * after @bio is transferred to @parent_sq.
1085 */
1086 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 1087 sq->nr_queued[rw]--;
e43473b7
VG
1088
1089 throtl_charge_bio(tg, bio);
6bc9c2b4
TH
1090
1091 /*
1092 * If our parent is another tg, we just need to transfer @bio to
1093 * the parent using throtl_add_bio_tg(). If our parent is
1094 * @td->service_queue, @bio is ready to be issued. Put it on its
1095 * bio_lists[] and decrease total number queued. The caller is
1096 * responsible for issuing these bios.
1097 */
1098 if (parent_tg) {
c5cc2070 1099 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
32ee5bc4 1100 start_parent_slice_with_credit(tg, parent_tg, rw);
6bc9c2b4 1101 } else {
c5cc2070
TH
1102 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1103 &parent_sq->queued[rw]);
6bc9c2b4
TH
1104 BUG_ON(tg->td->nr_queued[rw] <= 0);
1105 tg->td->nr_queued[rw]--;
1106 }
e43473b7 1107
0f3457f6 1108 throtl_trim_slice(tg, rw);
6bc9c2b4 1109
c5cc2070
TH
1110 if (tg_to_put)
1111 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
1112}
1113
77216b04 1114static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 1115{
73f0d49a 1116 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1117 unsigned int nr_reads = 0, nr_writes = 0;
1118 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
c2f6805d 1119 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
e43473b7
VG
1120 struct bio *bio;
1121
1122 /* Try to dispatch 75% READS and 25% WRITES */
1123
c5cc2070 1124 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 1125 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1126
77216b04 1127 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1128 nr_reads++;
1129
1130 if (nr_reads >= max_nr_reads)
1131 break;
1132 }
1133
c5cc2070 1134 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 1135 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1136
77216b04 1137 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1138 nr_writes++;
1139
1140 if (nr_writes >= max_nr_writes)
1141 break;
1142 }
1143
1144 return nr_reads + nr_writes;
1145}
1146
651930bc 1147static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
1148{
1149 unsigned int nr_disp = 0;
e43473b7
VG
1150
1151 while (1) {
73f0d49a
TH
1152 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1153 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1154
1155 if (!tg)
1156 break;
1157
1158 if (time_before(jiffies, tg->disptime))
1159 break;
1160
77216b04 1161 throtl_dequeue_tg(tg);
e43473b7 1162
77216b04 1163 nr_disp += throtl_dispatch_tg(tg);
e43473b7 1164
73f0d49a 1165 if (sq->nr_queued[0] || sq->nr_queued[1])
77216b04 1166 tg_update_disptime(tg);
e43473b7
VG
1167
1168 if (nr_disp >= throtl_quantum)
1169 break;
1170 }
1171
1172 return nr_disp;
1173}
1174
c79892c5
SL
1175static bool throtl_can_upgrade(struct throtl_data *td,
1176 struct throtl_grp *this_tg);
6e1a5704
TH
1177/**
1178 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1179 * @arg: the throtl_service_queue being serviced
1180 *
1181 * This timer is armed when a child throtl_grp with active bio's become
1182 * pending and queued on the service_queue's pending_tree and expires when
1183 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1184 * dispatches bio's from the children throtl_grps to the parent
1185 * service_queue.
1186 *
1187 * If the parent's parent is another throtl_grp, dispatching is propagated
1188 * by either arming its pending_timer or repeating dispatch directly. If
1189 * the top-level service_tree is reached, throtl_data->dispatch_work is
1190 * kicked so that the ready bio's are issued.
6e1a5704 1191 */
69df0ab0
TH
1192static void throtl_pending_timer_fn(unsigned long arg)
1193{
1194 struct throtl_service_queue *sq = (void *)arg;
2e48a530 1195 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1196 struct throtl_data *td = sq_to_td(sq);
cb76199c 1197 struct request_queue *q = td->queue;
2e48a530
TH
1198 struct throtl_service_queue *parent_sq;
1199 bool dispatched;
6e1a5704 1200 int ret;
e43473b7
VG
1201
1202 spin_lock_irq(q->queue_lock);
c79892c5
SL
1203 if (throtl_can_upgrade(td, NULL))
1204 throtl_upgrade_state(td);
1205
2e48a530
TH
1206again:
1207 parent_sq = sq->parent_sq;
1208 dispatched = false;
e43473b7 1209
7f52f98c
TH
1210 while (true) {
1211 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1212 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1213 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1214
1215 ret = throtl_select_dispatch(sq);
1216 if (ret) {
7f52f98c
TH
1217 throtl_log(sq, "bios disp=%u", ret);
1218 dispatched = true;
1219 }
e43473b7 1220
7f52f98c
TH
1221 if (throtl_schedule_next_dispatch(sq, false))
1222 break;
e43473b7 1223
7f52f98c
TH
1224 /* this dispatch windows is still open, relax and repeat */
1225 spin_unlock_irq(q->queue_lock);
1226 cpu_relax();
1227 spin_lock_irq(q->queue_lock);
651930bc 1228 }
e43473b7 1229
2e48a530
TH
1230 if (!dispatched)
1231 goto out_unlock;
6e1a5704 1232
2e48a530
TH
1233 if (parent_sq) {
1234 /* @parent_sq is another throl_grp, propagate dispatch */
1235 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1236 tg_update_disptime(tg);
1237 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1238 /* window is already open, repeat dispatching */
1239 sq = parent_sq;
1240 tg = sq_to_tg(sq);
1241 goto again;
1242 }
1243 }
1244 } else {
1245 /* reached the top-level, queue issueing */
1246 queue_work(kthrotld_workqueue, &td->dispatch_work);
1247 }
1248out_unlock:
e43473b7 1249 spin_unlock_irq(q->queue_lock);
6e1a5704 1250}
e43473b7 1251
6e1a5704
TH
1252/**
1253 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1254 * @work: work item being executed
1255 *
1256 * This function is queued for execution when bio's reach the bio_lists[]
1257 * of throtl_data->service_queue. Those bio's are ready and issued by this
1258 * function.
1259 */
8876e140 1260static void blk_throtl_dispatch_work_fn(struct work_struct *work)
6e1a5704
TH
1261{
1262 struct throtl_data *td = container_of(work, struct throtl_data,
1263 dispatch_work);
1264 struct throtl_service_queue *td_sq = &td->service_queue;
1265 struct request_queue *q = td->queue;
1266 struct bio_list bio_list_on_stack;
1267 struct bio *bio;
1268 struct blk_plug plug;
1269 int rw;
1270
1271 bio_list_init(&bio_list_on_stack);
1272
1273 spin_lock_irq(q->queue_lock);
c5cc2070
TH
1274 for (rw = READ; rw <= WRITE; rw++)
1275 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1276 bio_list_add(&bio_list_on_stack, bio);
6e1a5704
TH
1277 spin_unlock_irq(q->queue_lock);
1278
1279 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1280 blk_start_plug(&plug);
e43473b7
VG
1281 while((bio = bio_list_pop(&bio_list_on_stack)))
1282 generic_make_request(bio);
69d60eb9 1283 blk_finish_plug(&plug);
e43473b7 1284 }
e43473b7
VG
1285}
1286
f95a04af
TH
1287static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1288 int off)
60c2bc2d 1289{
f95a04af
TH
1290 struct throtl_grp *tg = pd_to_tg(pd);
1291 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1292
2ab5492d 1293 if (v == U64_MAX)
60c2bc2d 1294 return 0;
f95a04af 1295 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1296}
1297
f95a04af
TH
1298static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1299 int off)
e43473b7 1300{
f95a04af
TH
1301 struct throtl_grp *tg = pd_to_tg(pd);
1302 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1303
2ab5492d 1304 if (v == UINT_MAX)
af133ceb 1305 return 0;
f95a04af 1306 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1307}
1308
2da8ca82 1309static int tg_print_conf_u64(struct seq_file *sf, void *v)
8e89d13f 1310{
2da8ca82
TH
1311 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1312 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1313 return 0;
8e89d13f
VG
1314}
1315
2da8ca82 1316static int tg_print_conf_uint(struct seq_file *sf, void *v)
8e89d13f 1317{
2da8ca82
TH
1318 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1319 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1320 return 0;
60c2bc2d
TH
1321}
1322
69948b07 1323static void tg_conf_updated(struct throtl_grp *tg)
60c2bc2d 1324{
69948b07 1325 struct throtl_service_queue *sq = &tg->service_queue;
492eb21b 1326 struct cgroup_subsys_state *pos_css;
69948b07 1327 struct blkcg_gq *blkg;
af133ceb 1328
fda6f272
TH
1329 throtl_log(&tg->service_queue,
1330 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
9f626e37
SL
1331 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1332 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
632b4493 1333
693e751e
TH
1334 /*
1335 * Update has_rules[] flags for the updated tg's subtree. A tg is
1336 * considered to have rules if either the tg itself or any of its
1337 * ancestors has rules. This identifies groups without any
1338 * restrictions in the whole hierarchy and allows them to bypass
1339 * blk-throttle.
1340 */
69948b07 1341 blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
693e751e
TH
1342 tg_update_has_rules(blkg_to_tg(blkg));
1343
632b4493
TH
1344 /*
1345 * We're already holding queue_lock and know @tg is valid. Let's
1346 * apply the new config directly.
1347 *
1348 * Restart the slices for both READ and WRITES. It might happen
1349 * that a group's limit are dropped suddenly and we don't want to
1350 * account recently dispatched IO with new low rate.
1351 */
0f3457f6
TH
1352 throtl_start_new_slice(tg, 0);
1353 throtl_start_new_slice(tg, 1);
632b4493 1354
5b2c16aa 1355 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1356 tg_update_disptime(tg);
7f52f98c 1357 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1358 }
69948b07
TH
1359}
1360
1361static ssize_t tg_set_conf(struct kernfs_open_file *of,
1362 char *buf, size_t nbytes, loff_t off, bool is_u64)
1363{
1364 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1365 struct blkg_conf_ctx ctx;
1366 struct throtl_grp *tg;
1367 int ret;
1368 u64 v;
1369
1370 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1371 if (ret)
1372 return ret;
1373
1374 ret = -EINVAL;
1375 if (sscanf(ctx.body, "%llu", &v) != 1)
1376 goto out_finish;
1377 if (!v)
2ab5492d 1378 v = U64_MAX;
69948b07
TH
1379
1380 tg = blkg_to_tg(ctx.blkg);
1381
1382 if (is_u64)
1383 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1384 else
1385 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
60c2bc2d 1386
69948b07 1387 tg_conf_updated(tg);
36aa9e5f
TH
1388 ret = 0;
1389out_finish:
60c2bc2d 1390 blkg_conf_finish(&ctx);
36aa9e5f 1391 return ret ?: nbytes;
8e89d13f
VG
1392}
1393
451af504
TH
1394static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1395 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1396{
451af504 1397 return tg_set_conf(of, buf, nbytes, off, true);
60c2bc2d
TH
1398}
1399
451af504
TH
1400static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1401 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1402{
451af504 1403 return tg_set_conf(of, buf, nbytes, off, false);
60c2bc2d
TH
1404}
1405
880f50e2 1406static struct cftype throtl_legacy_files[] = {
60c2bc2d
TH
1407 {
1408 .name = "throttle.read_bps_device",
9f626e37 1409 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
2da8ca82 1410 .seq_show = tg_print_conf_u64,
451af504 1411 .write = tg_set_conf_u64,
60c2bc2d
TH
1412 },
1413 {
1414 .name = "throttle.write_bps_device",
9f626e37 1415 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
2da8ca82 1416 .seq_show = tg_print_conf_u64,
451af504 1417 .write = tg_set_conf_u64,
60c2bc2d
TH
1418 },
1419 {
1420 .name = "throttle.read_iops_device",
9f626e37 1421 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
2da8ca82 1422 .seq_show = tg_print_conf_uint,
451af504 1423 .write = tg_set_conf_uint,
60c2bc2d
TH
1424 },
1425 {
1426 .name = "throttle.write_iops_device",
9f626e37 1427 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
2da8ca82 1428 .seq_show = tg_print_conf_uint,
451af504 1429 .write = tg_set_conf_uint,
60c2bc2d
TH
1430 },
1431 {
1432 .name = "throttle.io_service_bytes",
77ea7338
TH
1433 .private = (unsigned long)&blkcg_policy_throtl,
1434 .seq_show = blkg_print_stat_bytes,
60c2bc2d
TH
1435 },
1436 {
1437 .name = "throttle.io_serviced",
77ea7338
TH
1438 .private = (unsigned long)&blkcg_policy_throtl,
1439 .seq_show = blkg_print_stat_ios,
60c2bc2d
TH
1440 },
1441 { } /* terminate */
1442};
1443
cd5ab1b0 1444static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
2ee867dc
TH
1445 int off)
1446{
1447 struct throtl_grp *tg = pd_to_tg(pd);
1448 const char *dname = blkg_dev_name(pd->blkg);
1449 char bufs[4][21] = { "max", "max", "max", "max" };
cd5ab1b0
SL
1450 u64 bps_dft;
1451 unsigned int iops_dft;
2ee867dc
TH
1452
1453 if (!dname)
1454 return 0;
9f626e37 1455
cd5ab1b0
SL
1456 if (off == LIMIT_LOW) {
1457 bps_dft = 0;
1458 iops_dft = 0;
1459 } else {
1460 bps_dft = U64_MAX;
1461 iops_dft = UINT_MAX;
1462 }
1463
1464 if (tg->bps_conf[READ][off] == bps_dft &&
1465 tg->bps_conf[WRITE][off] == bps_dft &&
1466 tg->iops_conf[READ][off] == iops_dft &&
1467 tg->iops_conf[WRITE][off] == iops_dft)
2ee867dc
TH
1468 return 0;
1469
cd5ab1b0 1470 if (tg->bps_conf[READ][off] != bps_dft)
9f626e37 1471 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
cd5ab1b0
SL
1472 tg->bps_conf[READ][off]);
1473 if (tg->bps_conf[WRITE][off] != bps_dft)
9f626e37 1474 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
cd5ab1b0
SL
1475 tg->bps_conf[WRITE][off]);
1476 if (tg->iops_conf[READ][off] != iops_dft)
9f626e37 1477 snprintf(bufs[2], sizeof(bufs[2]), "%u",
cd5ab1b0
SL
1478 tg->iops_conf[READ][off]);
1479 if (tg->iops_conf[WRITE][off] != iops_dft)
9f626e37 1480 snprintf(bufs[3], sizeof(bufs[3]), "%u",
cd5ab1b0 1481 tg->iops_conf[WRITE][off]);
2ee867dc
TH
1482
1483 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s\n",
1484 dname, bufs[0], bufs[1], bufs[2], bufs[3]);
1485 return 0;
1486}
1487
cd5ab1b0 1488static int tg_print_limit(struct seq_file *sf, void *v)
2ee867dc 1489{
cd5ab1b0 1490 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
2ee867dc
TH
1491 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1492 return 0;
1493}
1494
cd5ab1b0 1495static ssize_t tg_set_limit(struct kernfs_open_file *of,
2ee867dc
TH
1496 char *buf, size_t nbytes, loff_t off)
1497{
1498 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1499 struct blkg_conf_ctx ctx;
1500 struct throtl_grp *tg;
1501 u64 v[4];
1502 int ret;
cd5ab1b0 1503 int index = of_cft(of)->private;
2ee867dc
TH
1504
1505 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1506 if (ret)
1507 return ret;
1508
1509 tg = blkg_to_tg(ctx.blkg);
1510
cd5ab1b0
SL
1511 v[0] = tg->bps_conf[READ][index];
1512 v[1] = tg->bps_conf[WRITE][index];
1513 v[2] = tg->iops_conf[READ][index];
1514 v[3] = tg->iops_conf[WRITE][index];
2ee867dc
TH
1515
1516 while (true) {
1517 char tok[27]; /* wiops=18446744073709551616 */
1518 char *p;
2ab5492d 1519 u64 val = U64_MAX;
2ee867dc
TH
1520 int len;
1521
1522 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1523 break;
1524 if (tok[0] == '\0')
1525 break;
1526 ctx.body += len;
1527
1528 ret = -EINVAL;
1529 p = tok;
1530 strsep(&p, "=");
1531 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1532 goto out_finish;
1533
1534 ret = -ERANGE;
1535 if (!val)
1536 goto out_finish;
1537
1538 ret = -EINVAL;
1539 if (!strcmp(tok, "rbps"))
1540 v[0] = val;
1541 else if (!strcmp(tok, "wbps"))
1542 v[1] = val;
1543 else if (!strcmp(tok, "riops"))
1544 v[2] = min_t(u64, val, UINT_MAX);
1545 else if (!strcmp(tok, "wiops"))
1546 v[3] = min_t(u64, val, UINT_MAX);
1547 else
1548 goto out_finish;
1549 }
1550
cd5ab1b0
SL
1551 tg->bps_conf[READ][index] = v[0];
1552 tg->bps_conf[WRITE][index] = v[1];
1553 tg->iops_conf[READ][index] = v[2];
1554 tg->iops_conf[WRITE][index] = v[3];
2ee867dc 1555
cd5ab1b0
SL
1556 if (index == LIMIT_MAX) {
1557 tg->bps[READ][index] = v[0];
1558 tg->bps[WRITE][index] = v[1];
1559 tg->iops[READ][index] = v[2];
1560 tg->iops[WRITE][index] = v[3];
1561 }
1562 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1563 tg->bps_conf[READ][LIMIT_MAX]);
1564 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1565 tg->bps_conf[WRITE][LIMIT_MAX]);
1566 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1567 tg->iops_conf[READ][LIMIT_MAX]);
1568 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1569 tg->iops_conf[WRITE][LIMIT_MAX]);
1570
1571 if (index == LIMIT_LOW) {
1572 blk_throtl_update_limit_valid(tg->td);
1573 if (tg->td->limit_valid[LIMIT_LOW])
1574 tg->td->limit_index = LIMIT_LOW;
1575 }
2ee867dc
TH
1576 tg_conf_updated(tg);
1577 ret = 0;
1578out_finish:
1579 blkg_conf_finish(&ctx);
1580 return ret ?: nbytes;
1581}
1582
1583static struct cftype throtl_files[] = {
cd5ab1b0
SL
1584#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1585 {
1586 .name = "low",
1587 .flags = CFTYPE_NOT_ON_ROOT,
1588 .seq_show = tg_print_limit,
1589 .write = tg_set_limit,
1590 .private = LIMIT_LOW,
1591 },
1592#endif
2ee867dc
TH
1593 {
1594 .name = "max",
1595 .flags = CFTYPE_NOT_ON_ROOT,
cd5ab1b0
SL
1596 .seq_show = tg_print_limit,
1597 .write = tg_set_limit,
1598 .private = LIMIT_MAX,
2ee867dc
TH
1599 },
1600 { } /* terminate */
1601};
1602
da527770 1603static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1604{
1605 struct throtl_data *td = q->td;
1606
69df0ab0 1607 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1608}
1609
3c798398 1610static struct blkcg_policy blkcg_policy_throtl = {
2ee867dc 1611 .dfl_cftypes = throtl_files,
880f50e2 1612 .legacy_cftypes = throtl_legacy_files,
f9fcc2d3 1613
001bea73 1614 .pd_alloc_fn = throtl_pd_alloc,
f9fcc2d3 1615 .pd_init_fn = throtl_pd_init,
693e751e 1616 .pd_online_fn = throtl_pd_online,
cd5ab1b0 1617 .pd_offline_fn = throtl_pd_offline,
001bea73 1618 .pd_free_fn = throtl_pd_free,
e43473b7
VG
1619};
1620
3f0abd80
SL
1621static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1622{
1623 unsigned long rtime = jiffies, wtime = jiffies;
1624
1625 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1626 rtime = tg->last_low_overflow_time[READ];
1627 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1628 wtime = tg->last_low_overflow_time[WRITE];
1629 return min(rtime, wtime);
1630}
1631
1632/* tg should not be an intermediate node */
1633static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1634{
1635 struct throtl_service_queue *parent_sq;
1636 struct throtl_grp *parent = tg;
1637 unsigned long ret = __tg_last_low_overflow_time(tg);
1638
1639 while (true) {
1640 parent_sq = parent->service_queue.parent_sq;
1641 parent = sq_to_tg(parent_sq);
1642 if (!parent)
1643 break;
1644
1645 /*
1646 * The parent doesn't have low limit, it always reaches low
1647 * limit. Its overflow time is useless for children
1648 */
1649 if (!parent->bps[READ][LIMIT_LOW] &&
1650 !parent->iops[READ][LIMIT_LOW] &&
1651 !parent->bps[WRITE][LIMIT_LOW] &&
1652 !parent->iops[WRITE][LIMIT_LOW])
1653 continue;
1654 if (time_after(__tg_last_low_overflow_time(parent), ret))
1655 ret = __tg_last_low_overflow_time(parent);
1656 }
1657 return ret;
1658}
1659
9e234eea
SL
1660static bool throtl_tg_is_idle(struct throtl_grp *tg)
1661{
1662 /*
1663 * cgroup is idle if:
1664 * - single idle is too long, longer than a fixed value (in case user
1665 * configure a too big threshold) or 4 times of slice
1666 * - average think time is more than threshold
1667 */
1668 unsigned long time = jiffies_to_usecs(4 * tg->td->throtl_slice);
1669
1670 time = min_t(unsigned long, MAX_IDLE_TIME, time);
1671 return (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1672 tg->avg_idletime > tg->idletime_threshold;
1673}
1674
c79892c5
SL
1675static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1676{
1677 struct throtl_service_queue *sq = &tg->service_queue;
1678 bool read_limit, write_limit;
1679
1680 /*
1681 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1682 * reaches), it's ok to upgrade to next limit
1683 */
1684 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1685 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1686 if (!read_limit && !write_limit)
1687 return true;
1688 if (read_limit && sq->nr_queued[READ] &&
1689 (!write_limit || sq->nr_queued[WRITE]))
1690 return true;
1691 if (write_limit && sq->nr_queued[WRITE] &&
1692 (!read_limit || sq->nr_queued[READ]))
1693 return true;
aec24246
SL
1694
1695 if (time_after_eq(jiffies,
1696 tg->last_dispatch_time[READ] + tg->td->throtl_slice) &&
1697 time_after_eq(jiffies,
1698 tg->last_dispatch_time[WRITE] + tg->td->throtl_slice))
1699 return true;
c79892c5
SL
1700 return false;
1701}
1702
1703static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1704{
1705 while (true) {
1706 if (throtl_tg_can_upgrade(tg))
1707 return true;
1708 tg = sq_to_tg(tg->service_queue.parent_sq);
1709 if (!tg || !tg_to_blkg(tg)->parent)
1710 return false;
1711 }
1712 return false;
1713}
1714
1715static bool throtl_can_upgrade(struct throtl_data *td,
1716 struct throtl_grp *this_tg)
1717{
1718 struct cgroup_subsys_state *pos_css;
1719 struct blkcg_gq *blkg;
1720
1721 if (td->limit_index != LIMIT_LOW)
1722 return false;
1723
297e3d85 1724 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
3f0abd80
SL
1725 return false;
1726
c79892c5
SL
1727 rcu_read_lock();
1728 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1729 struct throtl_grp *tg = blkg_to_tg(blkg);
1730
1731 if (tg == this_tg)
1732 continue;
1733 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1734 continue;
1735 if (!throtl_hierarchy_can_upgrade(tg)) {
1736 rcu_read_unlock();
1737 return false;
1738 }
1739 }
1740 rcu_read_unlock();
1741 return true;
1742}
1743
1744static void throtl_upgrade_state(struct throtl_data *td)
1745{
1746 struct cgroup_subsys_state *pos_css;
1747 struct blkcg_gq *blkg;
1748
1749 td->limit_index = LIMIT_MAX;
3f0abd80 1750 td->low_upgrade_time = jiffies;
7394e31f 1751 td->scale = 0;
c79892c5
SL
1752 rcu_read_lock();
1753 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1754 struct throtl_grp *tg = blkg_to_tg(blkg);
1755 struct throtl_service_queue *sq = &tg->service_queue;
1756
1757 tg->disptime = jiffies - 1;
1758 throtl_select_dispatch(sq);
1759 throtl_schedule_next_dispatch(sq, false);
1760 }
1761 rcu_read_unlock();
1762 throtl_select_dispatch(&td->service_queue);
1763 throtl_schedule_next_dispatch(&td->service_queue, false);
1764 queue_work(kthrotld_workqueue, &td->dispatch_work);
1765}
1766
3f0abd80
SL
1767static void throtl_downgrade_state(struct throtl_data *td, int new)
1768{
7394e31f
SL
1769 td->scale /= 2;
1770
1771 if (td->scale) {
1772 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1773 return;
1774 }
1775
3f0abd80
SL
1776 td->limit_index = new;
1777 td->low_downgrade_time = jiffies;
1778}
1779
1780static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1781{
1782 struct throtl_data *td = tg->td;
1783 unsigned long now = jiffies;
1784
aec24246
SL
1785 if (time_after_eq(now, tg->last_dispatch_time[READ] +
1786 td->throtl_slice) &&
1787 time_after_eq(now, tg->last_dispatch_time[WRITE] +
1788 td->throtl_slice))
1789 return false;
3f0abd80
SL
1790 /*
1791 * If cgroup is below low limit, consider downgrade and throttle other
1792 * cgroups
1793 */
297e3d85
SL
1794 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1795 time_after_eq(now, tg_last_low_overflow_time(tg) +
1796 td->throtl_slice))
3f0abd80
SL
1797 return true;
1798 return false;
1799}
1800
1801static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1802{
1803 while (true) {
1804 if (!throtl_tg_can_downgrade(tg))
1805 return false;
1806 tg = sq_to_tg(tg->service_queue.parent_sq);
1807 if (!tg || !tg_to_blkg(tg)->parent)
1808 break;
1809 }
1810 return true;
1811}
1812
1813static void throtl_downgrade_check(struct throtl_grp *tg)
1814{
1815 uint64_t bps;
1816 unsigned int iops;
1817 unsigned long elapsed_time;
1818 unsigned long now = jiffies;
1819
1820 if (tg->td->limit_index != LIMIT_MAX ||
1821 !tg->td->limit_valid[LIMIT_LOW])
1822 return;
1823 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1824 return;
297e3d85 1825 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
3f0abd80
SL
1826 return;
1827
1828 elapsed_time = now - tg->last_check_time;
1829 tg->last_check_time = now;
1830
297e3d85
SL
1831 if (time_before(now, tg_last_low_overflow_time(tg) +
1832 tg->td->throtl_slice))
3f0abd80
SL
1833 return;
1834
1835 if (tg->bps[READ][LIMIT_LOW]) {
1836 bps = tg->last_bytes_disp[READ] * HZ;
1837 do_div(bps, elapsed_time);
1838 if (bps >= tg->bps[READ][LIMIT_LOW])
1839 tg->last_low_overflow_time[READ] = now;
1840 }
1841
1842 if (tg->bps[WRITE][LIMIT_LOW]) {
1843 bps = tg->last_bytes_disp[WRITE] * HZ;
1844 do_div(bps, elapsed_time);
1845 if (bps >= tg->bps[WRITE][LIMIT_LOW])
1846 tg->last_low_overflow_time[WRITE] = now;
1847 }
1848
1849 if (tg->iops[READ][LIMIT_LOW]) {
1850 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1851 if (iops >= tg->iops[READ][LIMIT_LOW])
1852 tg->last_low_overflow_time[READ] = now;
1853 }
1854
1855 if (tg->iops[WRITE][LIMIT_LOW]) {
1856 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
1857 if (iops >= tg->iops[WRITE][LIMIT_LOW])
1858 tg->last_low_overflow_time[WRITE] = now;
1859 }
1860
1861 /*
1862 * If cgroup is below low limit, consider downgrade and throttle other
1863 * cgroups
1864 */
1865 if (throtl_hierarchy_can_downgrade(tg))
1866 throtl_downgrade_state(tg->td, LIMIT_LOW);
1867
1868 tg->last_bytes_disp[READ] = 0;
1869 tg->last_bytes_disp[WRITE] = 0;
1870 tg->last_io_disp[READ] = 0;
1871 tg->last_io_disp[WRITE] = 0;
1872}
1873
9e234eea
SL
1874static void blk_throtl_update_idletime(struct throtl_grp *tg)
1875{
1876 unsigned long now = ktime_get_ns() >> 10;
1877 unsigned long last_finish_time = tg->last_finish_time;
1878
1879 if (now <= last_finish_time || last_finish_time == 0 ||
1880 last_finish_time == tg->checked_last_finish_time)
1881 return;
1882
1883 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
1884 tg->checked_last_finish_time = last_finish_time;
1885}
1886
ae118896
TH
1887bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
1888 struct bio *bio)
e43473b7 1889{
c5cc2070 1890 struct throtl_qnode *qn = NULL;
ae118896 1891 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
73f0d49a 1892 struct throtl_service_queue *sq;
0e9f4164 1893 bool rw = bio_data_dir(bio);
bc16a4f9 1894 bool throttled = false;
9e234eea 1895 int ret;
e43473b7 1896
ae118896
TH
1897 WARN_ON_ONCE(!rcu_read_lock_held());
1898
2a0f61e6 1899 /* see throtl_charge_bio() */
8d2bbd4c 1900 if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
bc16a4f9 1901 goto out;
e43473b7
VG
1902
1903 spin_lock_irq(q->queue_lock);
c9589f03
TH
1904
1905 if (unlikely(blk_queue_bypass(q)))
bc16a4f9 1906 goto out_unlock;
f469a7b4 1907
9e234eea
SL
1908 ret = bio_associate_current(bio);
1909#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1910 if (ret == 0 || ret == -EBUSY)
1911 bio->bi_cg_private = tg;
1912#endif
1913 blk_throtl_update_idletime(tg);
1914
73f0d49a
TH
1915 sq = &tg->service_queue;
1916
c79892c5 1917again:
9e660acf 1918 while (true) {
aec24246 1919 tg->last_dispatch_time[rw] = jiffies;
3f0abd80
SL
1920 if (tg->last_low_overflow_time[rw] == 0)
1921 tg->last_low_overflow_time[rw] = jiffies;
1922 throtl_downgrade_check(tg);
9e660acf
TH
1923 /* throtl is FIFO - if bios are already queued, should queue */
1924 if (sq->nr_queued[rw])
1925 break;
de701c74 1926
9e660acf 1927 /* if above limits, break to queue */
c79892c5 1928 if (!tg_may_dispatch(tg, bio, NULL)) {
3f0abd80 1929 tg->last_low_overflow_time[rw] = jiffies;
c79892c5
SL
1930 if (throtl_can_upgrade(tg->td, tg)) {
1931 throtl_upgrade_state(tg->td);
1932 goto again;
1933 }
9e660acf 1934 break;
c79892c5 1935 }
9e660acf
TH
1936
1937 /* within limits, let's charge and dispatch directly */
e43473b7 1938 throtl_charge_bio(tg, bio);
04521db0
VG
1939
1940 /*
1941 * We need to trim slice even when bios are not being queued
1942 * otherwise it might happen that a bio is not queued for
1943 * a long time and slice keeps on extending and trim is not
1944 * called for a long time. Now if limits are reduced suddenly
1945 * we take into account all the IO dispatched so far at new
1946 * low rate and * newly queued IO gets a really long dispatch
1947 * time.
1948 *
1949 * So keep on trimming slice even if bio is not queued.
1950 */
0f3457f6 1951 throtl_trim_slice(tg, rw);
9e660acf
TH
1952
1953 /*
1954 * @bio passed through this layer without being throttled.
1955 * Climb up the ladder. If we''re already at the top, it
1956 * can be executed directly.
1957 */
c5cc2070 1958 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
1959 sq = sq->parent_sq;
1960 tg = sq_to_tg(sq);
1961 if (!tg)
1962 goto out_unlock;
e43473b7
VG
1963 }
1964
9e660acf 1965 /* out-of-limit, queue to @tg */
fda6f272
TH
1966 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1967 rw == READ ? 'R' : 'W',
9f626e37
SL
1968 tg->bytes_disp[rw], bio->bi_iter.bi_size,
1969 tg_bps_limit(tg, rw),
1970 tg->io_disp[rw], tg_iops_limit(tg, rw),
fda6f272 1971 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 1972
3f0abd80
SL
1973 tg->last_low_overflow_time[rw] = jiffies;
1974
6bc9c2b4 1975 tg->td->nr_queued[rw]++;
c5cc2070 1976 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 1977 throttled = true;
e43473b7 1978
7f52f98c
TH
1979 /*
1980 * Update @tg's dispatch time and force schedule dispatch if @tg
1981 * was empty before @bio. The forced scheduling isn't likely to
1982 * cause undue delay as @bio is likely to be dispatched directly if
1983 * its @tg's disptime is not in the future.
1984 */
0e9f4164 1985 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 1986 tg_update_disptime(tg);
7f52f98c 1987 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
1988 }
1989
bc16a4f9 1990out_unlock:
e43473b7 1991 spin_unlock_irq(q->queue_lock);
bc16a4f9 1992out:
2a0f61e6
TH
1993 /*
1994 * As multiple blk-throtls may stack in the same issue path, we
1995 * don't want bios to leave with the flag set. Clear the flag if
1996 * being issued.
1997 */
1998 if (!throttled)
8d2bbd4c 1999 bio_clear_flag(bio, BIO_THROTTLED);
bc16a4f9 2000 return throttled;
e43473b7
VG
2001}
2002
9e234eea
SL
2003#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2004void blk_throtl_bio_endio(struct bio *bio)
2005{
2006 struct throtl_grp *tg;
2007
2008 tg = bio->bi_cg_private;
2009 if (!tg)
2010 return;
2011 bio->bi_cg_private = NULL;
2012
2013 tg->last_finish_time = ktime_get_ns() >> 10;
2014}
2015#endif
2016
2a12f0dc
TH
2017/*
2018 * Dispatch all bios from all children tg's queued on @parent_sq. On
2019 * return, @parent_sq is guaranteed to not have any active children tg's
2020 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2021 */
2022static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2023{
2024 struct throtl_grp *tg;
2025
2026 while ((tg = throtl_rb_first(parent_sq))) {
2027 struct throtl_service_queue *sq = &tg->service_queue;
2028 struct bio *bio;
2029
2030 throtl_dequeue_tg(tg);
2031
c5cc2070 2032 while ((bio = throtl_peek_queued(&sq->queued[READ])))
2a12f0dc 2033 tg_dispatch_one_bio(tg, bio_data_dir(bio));
c5cc2070 2034 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2a12f0dc
TH
2035 tg_dispatch_one_bio(tg, bio_data_dir(bio));
2036 }
2037}
2038
c9a929dd
TH
2039/**
2040 * blk_throtl_drain - drain throttled bios
2041 * @q: request_queue to drain throttled bios for
2042 *
2043 * Dispatch all currently throttled bios on @q through ->make_request_fn().
2044 */
2045void blk_throtl_drain(struct request_queue *q)
2046 __releases(q->queue_lock) __acquires(q->queue_lock)
2047{
2048 struct throtl_data *td = q->td;
2a12f0dc 2049 struct blkcg_gq *blkg;
492eb21b 2050 struct cgroup_subsys_state *pos_css;
c9a929dd 2051 struct bio *bio;
651930bc 2052 int rw;
c9a929dd 2053
8bcb6c7d 2054 queue_lockdep_assert_held(q);
2a12f0dc 2055 rcu_read_lock();
c9a929dd 2056
2a12f0dc
TH
2057 /*
2058 * Drain each tg while doing post-order walk on the blkg tree, so
2059 * that all bios are propagated to td->service_queue. It'd be
2060 * better to walk service_queue tree directly but blkg walk is
2061 * easier.
2062 */
492eb21b 2063 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2a12f0dc 2064 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
73f0d49a 2065
2a12f0dc
TH
2066 /* finally, transfer bios from top-level tg's into the td */
2067 tg_drain_bios(&td->service_queue);
2068
2069 rcu_read_unlock();
c9a929dd
TH
2070 spin_unlock_irq(q->queue_lock);
2071
2a12f0dc 2072 /* all bios now should be in td->service_queue, issue them */
651930bc 2073 for (rw = READ; rw <= WRITE; rw++)
c5cc2070
TH
2074 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2075 NULL)))
651930bc 2076 generic_make_request(bio);
c9a929dd
TH
2077
2078 spin_lock_irq(q->queue_lock);
2079}
2080
e43473b7
VG
2081int blk_throtl_init(struct request_queue *q)
2082{
2083 struct throtl_data *td;
a2b1693b 2084 int ret;
e43473b7
VG
2085
2086 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2087 if (!td)
2088 return -ENOMEM;
2089
69df0ab0 2090 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
b2ce2643 2091 throtl_service_queue_init(&td->service_queue);
e43473b7 2092
cd1604fa 2093 q->td = td;
29b12589 2094 td->queue = q;
02977e4a 2095
9f626e37 2096 td->limit_valid[LIMIT_MAX] = true;
cd5ab1b0 2097 td->limit_index = LIMIT_MAX;
3f0abd80
SL
2098 td->low_upgrade_time = jiffies;
2099 td->low_downgrade_time = jiffies;
9e234eea 2100
a2b1693b 2101 /* activate policy */
3c798398 2102 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
a2b1693b 2103 if (ret)
f51b802c 2104 kfree(td);
a2b1693b 2105 return ret;
e43473b7
VG
2106}
2107
2108void blk_throtl_exit(struct request_queue *q)
2109{
c875f4d0 2110 BUG_ON(!q->td);
da527770 2111 throtl_shutdown_wq(q);
3c798398 2112 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
c9a929dd 2113 kfree(q->td);
e43473b7
VG
2114}
2115
d61fcfa4
SL
2116void blk_throtl_register_queue(struct request_queue *q)
2117{
2118 struct throtl_data *td;
9e234eea
SL
2119 struct cgroup_subsys_state *pos_css;
2120 struct blkcg_gq *blkg;
d61fcfa4
SL
2121
2122 td = q->td;
2123 BUG_ON(!td);
2124
2125 if (blk_queue_nonrot(q))
2126 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2127 else
2128 td->throtl_slice = DFL_THROTL_SLICE_HD;
2129#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2130 /* if no low limit, use previous default */
2131 td->throtl_slice = DFL_THROTL_SLICE_HD;
2132#endif
9e234eea
SL
2133
2134 /*
2135 * some tg are created before queue is fully initialized, eg, nonrot
2136 * isn't initialized yet
2137 */
2138 rcu_read_lock();
2139 blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
2140 struct throtl_grp *tg = blkg_to_tg(blkg);
2141
2142 if (blk_queue_nonrot(q))
2143 tg->idletime_threshold = DFL_IDLE_THRESHOLD_SSD;
2144 else
2145 tg->idletime_threshold = DFL_IDLE_THRESHOLD_HD;
2146 }
2147 rcu_read_unlock();
d61fcfa4
SL
2148}
2149
297e3d85
SL
2150#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2151ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2152{
2153 if (!q->td)
2154 return -EINVAL;
2155 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2156}
2157
2158ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2159 const char *page, size_t count)
2160{
2161 unsigned long v;
2162 unsigned long t;
2163
2164 if (!q->td)
2165 return -EINVAL;
2166 if (kstrtoul(page, 10, &v))
2167 return -EINVAL;
2168 t = msecs_to_jiffies(v);
2169 if (t == 0 || t > MAX_THROTL_SLICE)
2170 return -EINVAL;
2171 q->td->throtl_slice = t;
2172 return count;
2173}
2174#endif
2175
e43473b7
VG
2176static int __init throtl_init(void)
2177{
450adcbe
VG
2178 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2179 if (!kthrotld_workqueue)
2180 panic("Failed to create kthrotld\n");
2181
3c798398 2182 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
2183}
2184
2185module_init(throtl_init);