blk-throttle: make sure expire time isn't too big
[linux-2.6-block.git] / block / blk-throttle.c
CommitLineData
e43473b7
VG
1/*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/blkdev.h>
10#include <linux/bio.h>
11#include <linux/blktrace_api.h>
eea8f41c 12#include <linux/blk-cgroup.h>
bc9fcbf9 13#include "blk.h"
e43473b7
VG
14
15/* Max dispatch from a group in 1 round */
16static int throtl_grp_quantum = 8;
17
18/* Total max dispatch from all groups in one round */
19static int throtl_quantum = 32;
20
21/* Throttling is performed over 100ms slice and after that slice is renewed */
22static unsigned long throtl_slice = HZ/10; /* 100 ms */
23
3c798398 24static struct blkcg_policy blkcg_policy_throtl;
0381411e 25
450adcbe
VG
26/* A workqueue to queue throttle related work */
27static struct workqueue_struct *kthrotld_workqueue;
450adcbe 28
c5cc2070
TH
29/*
30 * To implement hierarchical throttling, throtl_grps form a tree and bios
31 * are dispatched upwards level by level until they reach the top and get
32 * issued. When dispatching bios from the children and local group at each
33 * level, if the bios are dispatched into a single bio_list, there's a risk
34 * of a local or child group which can queue many bios at once filling up
35 * the list starving others.
36 *
37 * To avoid such starvation, dispatched bios are queued separately
38 * according to where they came from. When they are again dispatched to
39 * the parent, they're popped in round-robin order so that no single source
40 * hogs the dispatch window.
41 *
42 * throtl_qnode is used to keep the queued bios separated by their sources.
43 * Bios are queued to throtl_qnode which in turn is queued to
44 * throtl_service_queue and then dispatched in round-robin order.
45 *
46 * It's also used to track the reference counts on blkg's. A qnode always
47 * belongs to a throtl_grp and gets queued on itself or the parent, so
48 * incrementing the reference of the associated throtl_grp when a qnode is
49 * queued and decrementing when dequeued is enough to keep the whole blkg
50 * tree pinned while bios are in flight.
51 */
52struct throtl_qnode {
53 struct list_head node; /* service_queue->queued[] */
54 struct bio_list bios; /* queued bios */
55 struct throtl_grp *tg; /* tg this qnode belongs to */
56};
57
c9e0332e 58struct throtl_service_queue {
77216b04
TH
59 struct throtl_service_queue *parent_sq; /* the parent service_queue */
60
73f0d49a
TH
61 /*
62 * Bios queued directly to this service_queue or dispatched from
63 * children throtl_grp's.
64 */
c5cc2070 65 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
73f0d49a
TH
66 unsigned int nr_queued[2]; /* number of queued bios */
67
68 /*
69 * RB tree of active children throtl_grp's, which are sorted by
70 * their ->disptime.
71 */
c9e0332e
TH
72 struct rb_root pending_tree; /* RB tree of active tgs */
73 struct rb_node *first_pending; /* first node in the tree */
74 unsigned int nr_pending; /* # queued in the tree */
75 unsigned long first_pending_disptime; /* disptime of the first tg */
69df0ab0 76 struct timer_list pending_timer; /* fires on first_pending_disptime */
e43473b7
VG
77};
78
5b2c16aa
TH
79enum tg_state_flags {
80 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
0e9f4164 81 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
5b2c16aa
TH
82};
83
e43473b7
VG
84#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
85
9f626e37 86enum {
cd5ab1b0 87 LIMIT_LOW,
9f626e37
SL
88 LIMIT_MAX,
89 LIMIT_CNT,
90};
91
e43473b7 92struct throtl_grp {
f95a04af
TH
93 /* must be the first member */
94 struct blkg_policy_data pd;
95
c9e0332e 96 /* active throtl group service_queue member */
e43473b7
VG
97 struct rb_node rb_node;
98
0f3457f6
TH
99 /* throtl_data this group belongs to */
100 struct throtl_data *td;
101
49a2f1e3
TH
102 /* this group's service queue */
103 struct throtl_service_queue service_queue;
104
c5cc2070
TH
105 /*
106 * qnode_on_self is used when bios are directly queued to this
107 * throtl_grp so that local bios compete fairly with bios
108 * dispatched from children. qnode_on_parent is used when bios are
109 * dispatched from this throtl_grp into its parent and will compete
110 * with the sibling qnode_on_parents and the parent's
111 * qnode_on_self.
112 */
113 struct throtl_qnode qnode_on_self[2];
114 struct throtl_qnode qnode_on_parent[2];
115
e43473b7
VG
116 /*
117 * Dispatch time in jiffies. This is the estimated time when group
118 * will unthrottle and is ready to dispatch more bio. It is used as
119 * key to sort active groups in service tree.
120 */
121 unsigned long disptime;
122
e43473b7
VG
123 unsigned int flags;
124
693e751e
TH
125 /* are there any throtl rules between this group and td? */
126 bool has_rules[2];
127
cd5ab1b0 128 /* internally used bytes per second rate limits */
9f626e37 129 uint64_t bps[2][LIMIT_CNT];
cd5ab1b0
SL
130 /* user configured bps limits */
131 uint64_t bps_conf[2][LIMIT_CNT];
e43473b7 132
cd5ab1b0 133 /* internally used IOPS limits */
9f626e37 134 unsigned int iops[2][LIMIT_CNT];
cd5ab1b0
SL
135 /* user configured IOPS limits */
136 unsigned int iops_conf[2][LIMIT_CNT];
8e89d13f 137
e43473b7
VG
138 /* Number of bytes disptached in current slice */
139 uint64_t bytes_disp[2];
8e89d13f
VG
140 /* Number of bio's dispatched in current slice */
141 unsigned int io_disp[2];
e43473b7 142
3f0abd80
SL
143 unsigned long last_low_overflow_time[2];
144
145 uint64_t last_bytes_disp[2];
146 unsigned int last_io_disp[2];
147
148 unsigned long last_check_time;
149
e43473b7
VG
150 /* When did we start a new slice */
151 unsigned long slice_start[2];
152 unsigned long slice_end[2];
153};
154
155struct throtl_data
156{
e43473b7 157 /* service tree for active throtl groups */
c9e0332e 158 struct throtl_service_queue service_queue;
e43473b7 159
e43473b7
VG
160 struct request_queue *queue;
161
162 /* Total Number of queued bios on READ and WRITE lists */
163 unsigned int nr_queued[2];
164
e43473b7 165 /* Work for dispatching throttled bios */
69df0ab0 166 struct work_struct dispatch_work;
9f626e37
SL
167 unsigned int limit_index;
168 bool limit_valid[LIMIT_CNT];
3f0abd80
SL
169
170 unsigned long low_upgrade_time;
171 unsigned long low_downgrade_time;
e43473b7
VG
172};
173
69df0ab0
TH
174static void throtl_pending_timer_fn(unsigned long arg);
175
f95a04af
TH
176static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
177{
178 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
179}
180
3c798398 181static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
0381411e 182{
f95a04af 183 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
0381411e
TH
184}
185
3c798398 186static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 187{
f95a04af 188 return pd_to_blkg(&tg->pd);
0381411e
TH
189}
190
fda6f272
TH
191/**
192 * sq_to_tg - return the throl_grp the specified service queue belongs to
193 * @sq: the throtl_service_queue of interest
194 *
195 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
196 * embedded in throtl_data, %NULL is returned.
197 */
198static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
199{
200 if (sq && sq->parent_sq)
201 return container_of(sq, struct throtl_grp, service_queue);
202 else
203 return NULL;
204}
205
206/**
207 * sq_to_td - return throtl_data the specified service queue belongs to
208 * @sq: the throtl_service_queue of interest
209 *
b43daedc 210 * A service_queue can be embedded in either a throtl_grp or throtl_data.
fda6f272
TH
211 * Determine the associated throtl_data accordingly and return it.
212 */
213static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
214{
215 struct throtl_grp *tg = sq_to_tg(sq);
216
217 if (tg)
218 return tg->td;
219 else
220 return container_of(sq, struct throtl_data, service_queue);
221}
222
9f626e37
SL
223static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
224{
b22c417c
SL
225 struct blkcg_gq *blkg = tg_to_blkg(tg);
226 uint64_t ret;
227
228 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
229 return U64_MAX;
230 ret = tg->bps[rw][tg->td->limit_index];
231 if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
232 return tg->bps[rw][LIMIT_MAX];
233 return ret;
9f626e37
SL
234}
235
236static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
237{
b22c417c
SL
238 struct blkcg_gq *blkg = tg_to_blkg(tg);
239 unsigned int ret;
240
241 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
242 return UINT_MAX;
243 ret = tg->iops[rw][tg->td->limit_index];
244 if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
245 return tg->iops[rw][LIMIT_MAX];
246 return ret;
9f626e37
SL
247}
248
fda6f272
TH
249/**
250 * throtl_log - log debug message via blktrace
251 * @sq: the service_queue being reported
252 * @fmt: printf format string
253 * @args: printf args
254 *
255 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
256 * throtl_grp; otherwise, just "throtl".
fda6f272
TH
257 */
258#define throtl_log(sq, fmt, args...) do { \
259 struct throtl_grp *__tg = sq_to_tg((sq)); \
260 struct throtl_data *__td = sq_to_td((sq)); \
261 \
262 (void)__td; \
59fa0224
SL
263 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
264 break; \
fda6f272
TH
265 if ((__tg)) { \
266 char __pbuf[128]; \
54e7ed12 267 \
fda6f272
TH
268 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
269 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
270 } else { \
271 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
272 } \
54e7ed12 273} while (0)
e43473b7 274
c5cc2070
TH
275static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
276{
277 INIT_LIST_HEAD(&qn->node);
278 bio_list_init(&qn->bios);
279 qn->tg = tg;
280}
281
282/**
283 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
284 * @bio: bio being added
285 * @qn: qnode to add bio to
286 * @queued: the service_queue->queued[] list @qn belongs to
287 *
288 * Add @bio to @qn and put @qn on @queued if it's not already on.
289 * @qn->tg's reference count is bumped when @qn is activated. See the
290 * comment on top of throtl_qnode definition for details.
291 */
292static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
293 struct list_head *queued)
294{
295 bio_list_add(&qn->bios, bio);
296 if (list_empty(&qn->node)) {
297 list_add_tail(&qn->node, queued);
298 blkg_get(tg_to_blkg(qn->tg));
299 }
300}
301
302/**
303 * throtl_peek_queued - peek the first bio on a qnode list
304 * @queued: the qnode list to peek
305 */
306static struct bio *throtl_peek_queued(struct list_head *queued)
307{
308 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
309 struct bio *bio;
310
311 if (list_empty(queued))
312 return NULL;
313
314 bio = bio_list_peek(&qn->bios);
315 WARN_ON_ONCE(!bio);
316 return bio;
317}
318
319/**
320 * throtl_pop_queued - pop the first bio form a qnode list
321 * @queued: the qnode list to pop a bio from
322 * @tg_to_put: optional out argument for throtl_grp to put
323 *
324 * Pop the first bio from the qnode list @queued. After popping, the first
325 * qnode is removed from @queued if empty or moved to the end of @queued so
326 * that the popping order is round-robin.
327 *
328 * When the first qnode is removed, its associated throtl_grp should be put
329 * too. If @tg_to_put is NULL, this function automatically puts it;
330 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
331 * responsible for putting it.
332 */
333static struct bio *throtl_pop_queued(struct list_head *queued,
334 struct throtl_grp **tg_to_put)
335{
336 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
337 struct bio *bio;
338
339 if (list_empty(queued))
340 return NULL;
341
342 bio = bio_list_pop(&qn->bios);
343 WARN_ON_ONCE(!bio);
344
345 if (bio_list_empty(&qn->bios)) {
346 list_del_init(&qn->node);
347 if (tg_to_put)
348 *tg_to_put = qn->tg;
349 else
350 blkg_put(tg_to_blkg(qn->tg));
351 } else {
352 list_move_tail(&qn->node, queued);
353 }
354
355 return bio;
356}
357
49a2f1e3 358/* init a service_queue, assumes the caller zeroed it */
b2ce2643 359static void throtl_service_queue_init(struct throtl_service_queue *sq)
49a2f1e3 360{
c5cc2070
TH
361 INIT_LIST_HEAD(&sq->queued[0]);
362 INIT_LIST_HEAD(&sq->queued[1]);
49a2f1e3 363 sq->pending_tree = RB_ROOT;
69df0ab0
TH
364 setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
365 (unsigned long)sq);
366}
367
001bea73
TH
368static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
369{
4fb72036 370 struct throtl_grp *tg;
24bdb8ef 371 int rw;
4fb72036
TH
372
373 tg = kzalloc_node(sizeof(*tg), gfp, node);
374 if (!tg)
77ea7338 375 return NULL;
4fb72036 376
b2ce2643
TH
377 throtl_service_queue_init(&tg->service_queue);
378
379 for (rw = READ; rw <= WRITE; rw++) {
380 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
381 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
382 }
383
384 RB_CLEAR_NODE(&tg->rb_node);
9f626e37
SL
385 tg->bps[READ][LIMIT_MAX] = U64_MAX;
386 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
387 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
388 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
cd5ab1b0
SL
389 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
390 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
391 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
392 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
393 /* LIMIT_LOW will have default value 0 */
b2ce2643 394
4fb72036 395 return &tg->pd;
001bea73
TH
396}
397
a9520cd6 398static void throtl_pd_init(struct blkg_policy_data *pd)
a29a171e 399{
a9520cd6
TH
400 struct throtl_grp *tg = pd_to_tg(pd);
401 struct blkcg_gq *blkg = tg_to_blkg(tg);
77216b04 402 struct throtl_data *td = blkg->q->td;
b2ce2643 403 struct throtl_service_queue *sq = &tg->service_queue;
cd1604fa 404
9138125b 405 /*
aa6ec29b 406 * If on the default hierarchy, we switch to properly hierarchical
9138125b
TH
407 * behavior where limits on a given throtl_grp are applied to the
408 * whole subtree rather than just the group itself. e.g. If 16M
409 * read_bps limit is set on the root group, the whole system can't
410 * exceed 16M for the device.
411 *
aa6ec29b 412 * If not on the default hierarchy, the broken flat hierarchy
9138125b
TH
413 * behavior is retained where all throtl_grps are treated as if
414 * they're all separate root groups right below throtl_data.
415 * Limits of a group don't interact with limits of other groups
416 * regardless of the position of the group in the hierarchy.
417 */
b2ce2643 418 sq->parent_sq = &td->service_queue;
9e10a130 419 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
b2ce2643 420 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
77216b04 421 tg->td = td;
8a3d2615
TH
422}
423
693e751e
TH
424/*
425 * Set has_rules[] if @tg or any of its parents have limits configured.
426 * This doesn't require walking up to the top of the hierarchy as the
427 * parent's has_rules[] is guaranteed to be correct.
428 */
429static void tg_update_has_rules(struct throtl_grp *tg)
430{
431 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
9f626e37 432 struct throtl_data *td = tg->td;
693e751e
TH
433 int rw;
434
435 for (rw = READ; rw <= WRITE; rw++)
436 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
9f626e37
SL
437 (td->limit_valid[td->limit_index] &&
438 (tg_bps_limit(tg, rw) != U64_MAX ||
439 tg_iops_limit(tg, rw) != UINT_MAX));
693e751e
TH
440}
441
a9520cd6 442static void throtl_pd_online(struct blkg_policy_data *pd)
693e751e
TH
443{
444 /*
445 * We don't want new groups to escape the limits of its ancestors.
446 * Update has_rules[] after a new group is brought online.
447 */
a9520cd6 448 tg_update_has_rules(pd_to_tg(pd));
693e751e
TH
449}
450
cd5ab1b0
SL
451static void blk_throtl_update_limit_valid(struct throtl_data *td)
452{
453 struct cgroup_subsys_state *pos_css;
454 struct blkcg_gq *blkg;
455 bool low_valid = false;
456
457 rcu_read_lock();
458 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
459 struct throtl_grp *tg = blkg_to_tg(blkg);
460
461 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
462 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
463 low_valid = true;
464 }
465 rcu_read_unlock();
466
467 td->limit_valid[LIMIT_LOW] = low_valid;
468}
469
c79892c5 470static void throtl_upgrade_state(struct throtl_data *td);
cd5ab1b0
SL
471static void throtl_pd_offline(struct blkg_policy_data *pd)
472{
473 struct throtl_grp *tg = pd_to_tg(pd);
474
475 tg->bps[READ][LIMIT_LOW] = 0;
476 tg->bps[WRITE][LIMIT_LOW] = 0;
477 tg->iops[READ][LIMIT_LOW] = 0;
478 tg->iops[WRITE][LIMIT_LOW] = 0;
479
480 blk_throtl_update_limit_valid(tg->td);
481
c79892c5
SL
482 if (!tg->td->limit_valid[tg->td->limit_index])
483 throtl_upgrade_state(tg->td);
cd5ab1b0
SL
484}
485
001bea73
TH
486static void throtl_pd_free(struct blkg_policy_data *pd)
487{
4fb72036
TH
488 struct throtl_grp *tg = pd_to_tg(pd);
489
b2ce2643 490 del_timer_sync(&tg->service_queue.pending_timer);
4fb72036 491 kfree(tg);
001bea73
TH
492}
493
0049af73
TH
494static struct throtl_grp *
495throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7
VG
496{
497 /* Service tree is empty */
0049af73 498 if (!parent_sq->nr_pending)
e43473b7
VG
499 return NULL;
500
0049af73
TH
501 if (!parent_sq->first_pending)
502 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
e43473b7 503
0049af73
TH
504 if (parent_sq->first_pending)
505 return rb_entry_tg(parent_sq->first_pending);
e43473b7
VG
506
507 return NULL;
508}
509
510static void rb_erase_init(struct rb_node *n, struct rb_root *root)
511{
512 rb_erase(n, root);
513 RB_CLEAR_NODE(n);
514}
515
0049af73
TH
516static void throtl_rb_erase(struct rb_node *n,
517 struct throtl_service_queue *parent_sq)
e43473b7 518{
0049af73
TH
519 if (parent_sq->first_pending == n)
520 parent_sq->first_pending = NULL;
521 rb_erase_init(n, &parent_sq->pending_tree);
522 --parent_sq->nr_pending;
e43473b7
VG
523}
524
0049af73 525static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
526{
527 struct throtl_grp *tg;
528
0049af73 529 tg = throtl_rb_first(parent_sq);
e43473b7
VG
530 if (!tg)
531 return;
532
0049af73 533 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
534}
535
77216b04 536static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 537{
77216b04 538 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
0049af73 539 struct rb_node **node = &parent_sq->pending_tree.rb_node;
e43473b7
VG
540 struct rb_node *parent = NULL;
541 struct throtl_grp *__tg;
542 unsigned long key = tg->disptime;
543 int left = 1;
544
545 while (*node != NULL) {
546 parent = *node;
547 __tg = rb_entry_tg(parent);
548
549 if (time_before(key, __tg->disptime))
550 node = &parent->rb_left;
551 else {
552 node = &parent->rb_right;
553 left = 0;
554 }
555 }
556
557 if (left)
0049af73 558 parent_sq->first_pending = &tg->rb_node;
e43473b7
VG
559
560 rb_link_node(&tg->rb_node, parent, node);
0049af73 561 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
e43473b7
VG
562}
563
77216b04 564static void __throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 565{
77216b04 566 tg_service_queue_add(tg);
5b2c16aa 567 tg->flags |= THROTL_TG_PENDING;
77216b04 568 tg->service_queue.parent_sq->nr_pending++;
e43473b7
VG
569}
570
77216b04 571static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 572{
5b2c16aa 573 if (!(tg->flags & THROTL_TG_PENDING))
77216b04 574 __throtl_enqueue_tg(tg);
e43473b7
VG
575}
576
77216b04 577static void __throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 578{
77216b04 579 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
5b2c16aa 580 tg->flags &= ~THROTL_TG_PENDING;
e43473b7
VG
581}
582
77216b04 583static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 584{
5b2c16aa 585 if (tg->flags & THROTL_TG_PENDING)
77216b04 586 __throtl_dequeue_tg(tg);
e43473b7
VG
587}
588
a9131a27 589/* Call with queue lock held */
69df0ab0
TH
590static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
591 unsigned long expires)
a9131a27 592{
06cceedc
SL
593 unsigned long max_expire = jiffies + 8 * throtl_slice;
594
595 /*
596 * Since we are adjusting the throttle limit dynamically, the sleep
597 * time calculated according to previous limit might be invalid. It's
598 * possible the cgroup sleep time is very long and no other cgroups
599 * have IO running so notify the limit changes. Make sure the cgroup
600 * doesn't sleep too long to avoid the missed notification.
601 */
602 if (time_after(expires, max_expire))
603 expires = max_expire;
69df0ab0
TH
604 mod_timer(&sq->pending_timer, expires);
605 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
606 expires - jiffies, jiffies);
a9131a27
TH
607}
608
7f52f98c
TH
609/**
610 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
611 * @sq: the service_queue to schedule dispatch for
612 * @force: force scheduling
613 *
614 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
615 * dispatch time of the first pending child. Returns %true if either timer
616 * is armed or there's no pending child left. %false if the current
617 * dispatch window is still open and the caller should continue
618 * dispatching.
619 *
620 * If @force is %true, the dispatch timer is always scheduled and this
621 * function is guaranteed to return %true. This is to be used when the
622 * caller can't dispatch itself and needs to invoke pending_timer
623 * unconditionally. Note that forced scheduling is likely to induce short
624 * delay before dispatch starts even if @sq->first_pending_disptime is not
625 * in the future and thus shouldn't be used in hot paths.
626 */
627static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
628 bool force)
e43473b7 629{
6a525600 630 /* any pending children left? */
c9e0332e 631 if (!sq->nr_pending)
7f52f98c 632 return true;
e43473b7 633
c9e0332e 634 update_min_dispatch_time(sq);
e43473b7 635
69df0ab0 636 /* is the next dispatch time in the future? */
7f52f98c 637 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 638 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 639 return true;
69df0ab0
TH
640 }
641
7f52f98c
TH
642 /* tell the caller to continue dispatching */
643 return false;
e43473b7
VG
644}
645
32ee5bc4
VG
646static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
647 bool rw, unsigned long start)
648{
649 tg->bytes_disp[rw] = 0;
650 tg->io_disp[rw] = 0;
651
652 /*
653 * Previous slice has expired. We must have trimmed it after last
654 * bio dispatch. That means since start of last slice, we never used
655 * that bandwidth. Do try to make use of that bandwidth while giving
656 * credit.
657 */
658 if (time_after_eq(start, tg->slice_start[rw]))
659 tg->slice_start[rw] = start;
660
661 tg->slice_end[rw] = jiffies + throtl_slice;
662 throtl_log(&tg->service_queue,
663 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
664 rw == READ ? 'R' : 'W', tg->slice_start[rw],
665 tg->slice_end[rw], jiffies);
666}
667
0f3457f6 668static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
e43473b7
VG
669{
670 tg->bytes_disp[rw] = 0;
8e89d13f 671 tg->io_disp[rw] = 0;
e43473b7
VG
672 tg->slice_start[rw] = jiffies;
673 tg->slice_end[rw] = jiffies + throtl_slice;
fda6f272
TH
674 throtl_log(&tg->service_queue,
675 "[%c] new slice start=%lu end=%lu jiffies=%lu",
676 rw == READ ? 'R' : 'W', tg->slice_start[rw],
677 tg->slice_end[rw], jiffies);
e43473b7
VG
678}
679
0f3457f6
TH
680static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
681 unsigned long jiffy_end)
d1ae8ffd
VG
682{
683 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
684}
685
0f3457f6
TH
686static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
687 unsigned long jiffy_end)
e43473b7
VG
688{
689 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
fda6f272
TH
690 throtl_log(&tg->service_queue,
691 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
692 rw == READ ? 'R' : 'W', tg->slice_start[rw],
693 tg->slice_end[rw], jiffies);
e43473b7
VG
694}
695
696/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 697static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
698{
699 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
5cf8c227 700 return false;
e43473b7
VG
701
702 return 1;
703}
704
705/* Trim the used slices and adjust slice start accordingly */
0f3457f6 706static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 707{
3aad5d3e
VG
708 unsigned long nr_slices, time_elapsed, io_trim;
709 u64 bytes_trim, tmp;
e43473b7
VG
710
711 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
712
713 /*
714 * If bps are unlimited (-1), then time slice don't get
715 * renewed. Don't try to trim the slice if slice is used. A new
716 * slice will start when appropriate.
717 */
0f3457f6 718 if (throtl_slice_used(tg, rw))
e43473b7
VG
719 return;
720
d1ae8ffd
VG
721 /*
722 * A bio has been dispatched. Also adjust slice_end. It might happen
723 * that initially cgroup limit was very low resulting in high
724 * slice_end, but later limit was bumped up and bio was dispached
725 * sooner, then we need to reduce slice_end. A high bogus slice_end
726 * is bad because it does not allow new slice to start.
727 */
728
0f3457f6 729 throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
d1ae8ffd 730
e43473b7
VG
731 time_elapsed = jiffies - tg->slice_start[rw];
732
733 nr_slices = time_elapsed / throtl_slice;
734
735 if (!nr_slices)
736 return;
9f626e37 737 tmp = tg_bps_limit(tg, rw) * throtl_slice * nr_slices;
3aad5d3e
VG
738 do_div(tmp, HZ);
739 bytes_trim = tmp;
e43473b7 740
9f626e37 741 io_trim = (tg_iops_limit(tg, rw) * throtl_slice * nr_slices) / HZ;
e43473b7 742
8e89d13f 743 if (!bytes_trim && !io_trim)
e43473b7
VG
744 return;
745
746 if (tg->bytes_disp[rw] >= bytes_trim)
747 tg->bytes_disp[rw] -= bytes_trim;
748 else
749 tg->bytes_disp[rw] = 0;
750
8e89d13f
VG
751 if (tg->io_disp[rw] >= io_trim)
752 tg->io_disp[rw] -= io_trim;
753 else
754 tg->io_disp[rw] = 0;
755
e43473b7
VG
756 tg->slice_start[rw] += nr_slices * throtl_slice;
757
fda6f272
TH
758 throtl_log(&tg->service_queue,
759 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
760 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
761 tg->slice_start[rw], tg->slice_end[rw], jiffies);
e43473b7
VG
762}
763
0f3457f6
TH
764static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
765 unsigned long *wait)
e43473b7
VG
766{
767 bool rw = bio_data_dir(bio);
8e89d13f 768 unsigned int io_allowed;
e43473b7 769 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
c49c06e4 770 u64 tmp;
e43473b7 771
8e89d13f 772 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
e43473b7 773
8e89d13f
VG
774 /* Slice has just started. Consider one slice interval */
775 if (!jiffy_elapsed)
776 jiffy_elapsed_rnd = throtl_slice;
777
778 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
779
c49c06e4
VG
780 /*
781 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
782 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
783 * will allow dispatch after 1 second and after that slice should
784 * have been trimmed.
785 */
786
9f626e37 787 tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
c49c06e4
VG
788 do_div(tmp, HZ);
789
790 if (tmp > UINT_MAX)
791 io_allowed = UINT_MAX;
792 else
793 io_allowed = tmp;
8e89d13f
VG
794
795 if (tg->io_disp[rw] + 1 <= io_allowed) {
e43473b7
VG
796 if (wait)
797 *wait = 0;
5cf8c227 798 return true;
e43473b7
VG
799 }
800
8e89d13f 801 /* Calc approx time to dispatch */
9f626e37 802 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
8e89d13f
VG
803
804 if (jiffy_wait > jiffy_elapsed)
805 jiffy_wait = jiffy_wait - jiffy_elapsed;
806 else
807 jiffy_wait = 1;
808
809 if (wait)
810 *wait = jiffy_wait;
811 return 0;
812}
813
0f3457f6
TH
814static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
815 unsigned long *wait)
8e89d13f
VG
816{
817 bool rw = bio_data_dir(bio);
3aad5d3e 818 u64 bytes_allowed, extra_bytes, tmp;
8e89d13f 819 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
e43473b7
VG
820
821 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
822
823 /* Slice has just started. Consider one slice interval */
824 if (!jiffy_elapsed)
825 jiffy_elapsed_rnd = throtl_slice;
826
827 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
828
9f626e37 829 tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
5e901a2b 830 do_div(tmp, HZ);
3aad5d3e 831 bytes_allowed = tmp;
e43473b7 832
4f024f37 833 if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
e43473b7
VG
834 if (wait)
835 *wait = 0;
5cf8c227 836 return true;
e43473b7
VG
837 }
838
839 /* Calc approx time to dispatch */
4f024f37 840 extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
9f626e37 841 jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
e43473b7
VG
842
843 if (!jiffy_wait)
844 jiffy_wait = 1;
845
846 /*
847 * This wait time is without taking into consideration the rounding
848 * up we did. Add that time also.
849 */
850 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
e43473b7
VG
851 if (wait)
852 *wait = jiffy_wait;
8e89d13f
VG
853 return 0;
854}
855
856/*
857 * Returns whether one can dispatch a bio or not. Also returns approx number
858 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
859 */
0f3457f6
TH
860static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
861 unsigned long *wait)
8e89d13f
VG
862{
863 bool rw = bio_data_dir(bio);
864 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
865
866 /*
867 * Currently whole state machine of group depends on first bio
868 * queued in the group bio list. So one should not be calling
869 * this function with a different bio if there are other bios
870 * queued.
871 */
73f0d49a 872 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 873 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 874
8e89d13f 875 /* If tg->bps = -1, then BW is unlimited */
9f626e37
SL
876 if (tg_bps_limit(tg, rw) == U64_MAX &&
877 tg_iops_limit(tg, rw) == UINT_MAX) {
8e89d13f
VG
878 if (wait)
879 *wait = 0;
5cf8c227 880 return true;
8e89d13f
VG
881 }
882
883 /*
884 * If previous slice expired, start a new one otherwise renew/extend
885 * existing slice to make sure it is at least throtl_slice interval
164c80ed
VG
886 * long since now. New slice is started only for empty throttle group.
887 * If there is queued bio, that means there should be an active
888 * slice and it should be extended instead.
8e89d13f 889 */
164c80ed 890 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
0f3457f6 891 throtl_start_new_slice(tg, rw);
8e89d13f
VG
892 else {
893 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
0f3457f6 894 throtl_extend_slice(tg, rw, jiffies + throtl_slice);
8e89d13f
VG
895 }
896
0f3457f6
TH
897 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
898 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
8e89d13f
VG
899 if (wait)
900 *wait = 0;
901 return 1;
902 }
903
904 max_wait = max(bps_wait, iops_wait);
905
906 if (wait)
907 *wait = max_wait;
908
909 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 910 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7
VG
911
912 return 0;
913}
914
915static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
916{
917 bool rw = bio_data_dir(bio);
e43473b7
VG
918
919 /* Charge the bio to the group */
4f024f37 920 tg->bytes_disp[rw] += bio->bi_iter.bi_size;
8e89d13f 921 tg->io_disp[rw]++;
3f0abd80
SL
922 tg->last_bytes_disp[rw] += bio->bi_iter.bi_size;
923 tg->last_io_disp[rw]++;
e43473b7 924
2a0f61e6 925 /*
8d2bbd4c 926 * BIO_THROTTLED is used to prevent the same bio to be throttled
2a0f61e6
TH
927 * more than once as a throttled bio will go through blk-throtl the
928 * second time when it eventually gets issued. Set it when a bio
929 * is being charged to a tg.
2a0f61e6 930 */
8d2bbd4c
CH
931 if (!bio_flagged(bio, BIO_THROTTLED))
932 bio_set_flag(bio, BIO_THROTTLED);
e43473b7
VG
933}
934
c5cc2070
TH
935/**
936 * throtl_add_bio_tg - add a bio to the specified throtl_grp
937 * @bio: bio to add
938 * @qn: qnode to use
939 * @tg: the target throtl_grp
940 *
941 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
942 * tg->qnode_on_self[] is used.
943 */
944static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
945 struct throtl_grp *tg)
e43473b7 946{
73f0d49a 947 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
948 bool rw = bio_data_dir(bio);
949
c5cc2070
TH
950 if (!qn)
951 qn = &tg->qnode_on_self[rw];
952
0e9f4164
TH
953 /*
954 * If @tg doesn't currently have any bios queued in the same
955 * direction, queueing @bio can change when @tg should be
956 * dispatched. Mark that @tg was empty. This is automatically
957 * cleaered on the next tg_update_disptime().
958 */
959 if (!sq->nr_queued[rw])
960 tg->flags |= THROTL_TG_WAS_EMPTY;
961
c5cc2070
TH
962 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
963
73f0d49a 964 sq->nr_queued[rw]++;
77216b04 965 throtl_enqueue_tg(tg);
e43473b7
VG
966}
967
77216b04 968static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 969{
73f0d49a 970 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
971 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
972 struct bio *bio;
973
d609af3a
ME
974 bio = throtl_peek_queued(&sq->queued[READ]);
975 if (bio)
0f3457f6 976 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 977
d609af3a
ME
978 bio = throtl_peek_queued(&sq->queued[WRITE]);
979 if (bio)
0f3457f6 980 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
981
982 min_wait = min(read_wait, write_wait);
983 disptime = jiffies + min_wait;
984
e43473b7 985 /* Update dispatch time */
77216b04 986 throtl_dequeue_tg(tg);
e43473b7 987 tg->disptime = disptime;
77216b04 988 throtl_enqueue_tg(tg);
0e9f4164
TH
989
990 /* see throtl_add_bio_tg() */
991 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
992}
993
32ee5bc4
VG
994static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
995 struct throtl_grp *parent_tg, bool rw)
996{
997 if (throtl_slice_used(parent_tg, rw)) {
998 throtl_start_new_slice_with_credit(parent_tg, rw,
999 child_tg->slice_start[rw]);
1000 }
1001
1002}
1003
77216b04 1004static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 1005{
73f0d49a 1006 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
1007 struct throtl_service_queue *parent_sq = sq->parent_sq;
1008 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 1009 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
1010 struct bio *bio;
1011
c5cc2070
TH
1012 /*
1013 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1014 * from @tg may put its reference and @parent_sq might end up
1015 * getting released prematurely. Remember the tg to put and put it
1016 * after @bio is transferred to @parent_sq.
1017 */
1018 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 1019 sq->nr_queued[rw]--;
e43473b7
VG
1020
1021 throtl_charge_bio(tg, bio);
6bc9c2b4
TH
1022
1023 /*
1024 * If our parent is another tg, we just need to transfer @bio to
1025 * the parent using throtl_add_bio_tg(). If our parent is
1026 * @td->service_queue, @bio is ready to be issued. Put it on its
1027 * bio_lists[] and decrease total number queued. The caller is
1028 * responsible for issuing these bios.
1029 */
1030 if (parent_tg) {
c5cc2070 1031 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
32ee5bc4 1032 start_parent_slice_with_credit(tg, parent_tg, rw);
6bc9c2b4 1033 } else {
c5cc2070
TH
1034 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1035 &parent_sq->queued[rw]);
6bc9c2b4
TH
1036 BUG_ON(tg->td->nr_queued[rw] <= 0);
1037 tg->td->nr_queued[rw]--;
1038 }
e43473b7 1039
0f3457f6 1040 throtl_trim_slice(tg, rw);
6bc9c2b4 1041
c5cc2070
TH
1042 if (tg_to_put)
1043 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
1044}
1045
77216b04 1046static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 1047{
73f0d49a 1048 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1049 unsigned int nr_reads = 0, nr_writes = 0;
1050 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
c2f6805d 1051 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
e43473b7
VG
1052 struct bio *bio;
1053
1054 /* Try to dispatch 75% READS and 25% WRITES */
1055
c5cc2070 1056 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 1057 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1058
77216b04 1059 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1060 nr_reads++;
1061
1062 if (nr_reads >= max_nr_reads)
1063 break;
1064 }
1065
c5cc2070 1066 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 1067 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1068
77216b04 1069 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1070 nr_writes++;
1071
1072 if (nr_writes >= max_nr_writes)
1073 break;
1074 }
1075
1076 return nr_reads + nr_writes;
1077}
1078
651930bc 1079static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
1080{
1081 unsigned int nr_disp = 0;
e43473b7
VG
1082
1083 while (1) {
73f0d49a
TH
1084 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1085 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1086
1087 if (!tg)
1088 break;
1089
1090 if (time_before(jiffies, tg->disptime))
1091 break;
1092
77216b04 1093 throtl_dequeue_tg(tg);
e43473b7 1094
77216b04 1095 nr_disp += throtl_dispatch_tg(tg);
e43473b7 1096
73f0d49a 1097 if (sq->nr_queued[0] || sq->nr_queued[1])
77216b04 1098 tg_update_disptime(tg);
e43473b7
VG
1099
1100 if (nr_disp >= throtl_quantum)
1101 break;
1102 }
1103
1104 return nr_disp;
1105}
1106
c79892c5
SL
1107static bool throtl_can_upgrade(struct throtl_data *td,
1108 struct throtl_grp *this_tg);
6e1a5704
TH
1109/**
1110 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1111 * @arg: the throtl_service_queue being serviced
1112 *
1113 * This timer is armed when a child throtl_grp with active bio's become
1114 * pending and queued on the service_queue's pending_tree and expires when
1115 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1116 * dispatches bio's from the children throtl_grps to the parent
1117 * service_queue.
1118 *
1119 * If the parent's parent is another throtl_grp, dispatching is propagated
1120 * by either arming its pending_timer or repeating dispatch directly. If
1121 * the top-level service_tree is reached, throtl_data->dispatch_work is
1122 * kicked so that the ready bio's are issued.
6e1a5704 1123 */
69df0ab0
TH
1124static void throtl_pending_timer_fn(unsigned long arg)
1125{
1126 struct throtl_service_queue *sq = (void *)arg;
2e48a530 1127 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1128 struct throtl_data *td = sq_to_td(sq);
cb76199c 1129 struct request_queue *q = td->queue;
2e48a530
TH
1130 struct throtl_service_queue *parent_sq;
1131 bool dispatched;
6e1a5704 1132 int ret;
e43473b7
VG
1133
1134 spin_lock_irq(q->queue_lock);
c79892c5
SL
1135 if (throtl_can_upgrade(td, NULL))
1136 throtl_upgrade_state(td);
1137
2e48a530
TH
1138again:
1139 parent_sq = sq->parent_sq;
1140 dispatched = false;
e43473b7 1141
7f52f98c
TH
1142 while (true) {
1143 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1144 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1145 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1146
1147 ret = throtl_select_dispatch(sq);
1148 if (ret) {
7f52f98c
TH
1149 throtl_log(sq, "bios disp=%u", ret);
1150 dispatched = true;
1151 }
e43473b7 1152
7f52f98c
TH
1153 if (throtl_schedule_next_dispatch(sq, false))
1154 break;
e43473b7 1155
7f52f98c
TH
1156 /* this dispatch windows is still open, relax and repeat */
1157 spin_unlock_irq(q->queue_lock);
1158 cpu_relax();
1159 spin_lock_irq(q->queue_lock);
651930bc 1160 }
e43473b7 1161
2e48a530
TH
1162 if (!dispatched)
1163 goto out_unlock;
6e1a5704 1164
2e48a530
TH
1165 if (parent_sq) {
1166 /* @parent_sq is another throl_grp, propagate dispatch */
1167 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1168 tg_update_disptime(tg);
1169 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1170 /* window is already open, repeat dispatching */
1171 sq = parent_sq;
1172 tg = sq_to_tg(sq);
1173 goto again;
1174 }
1175 }
1176 } else {
1177 /* reached the top-level, queue issueing */
1178 queue_work(kthrotld_workqueue, &td->dispatch_work);
1179 }
1180out_unlock:
e43473b7 1181 spin_unlock_irq(q->queue_lock);
6e1a5704 1182}
e43473b7 1183
6e1a5704
TH
1184/**
1185 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1186 * @work: work item being executed
1187 *
1188 * This function is queued for execution when bio's reach the bio_lists[]
1189 * of throtl_data->service_queue. Those bio's are ready and issued by this
1190 * function.
1191 */
8876e140 1192static void blk_throtl_dispatch_work_fn(struct work_struct *work)
6e1a5704
TH
1193{
1194 struct throtl_data *td = container_of(work, struct throtl_data,
1195 dispatch_work);
1196 struct throtl_service_queue *td_sq = &td->service_queue;
1197 struct request_queue *q = td->queue;
1198 struct bio_list bio_list_on_stack;
1199 struct bio *bio;
1200 struct blk_plug plug;
1201 int rw;
1202
1203 bio_list_init(&bio_list_on_stack);
1204
1205 spin_lock_irq(q->queue_lock);
c5cc2070
TH
1206 for (rw = READ; rw <= WRITE; rw++)
1207 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1208 bio_list_add(&bio_list_on_stack, bio);
6e1a5704
TH
1209 spin_unlock_irq(q->queue_lock);
1210
1211 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1212 blk_start_plug(&plug);
e43473b7
VG
1213 while((bio = bio_list_pop(&bio_list_on_stack)))
1214 generic_make_request(bio);
69d60eb9 1215 blk_finish_plug(&plug);
e43473b7 1216 }
e43473b7
VG
1217}
1218
f95a04af
TH
1219static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1220 int off)
60c2bc2d 1221{
f95a04af
TH
1222 struct throtl_grp *tg = pd_to_tg(pd);
1223 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1224
2ab5492d 1225 if (v == U64_MAX)
60c2bc2d 1226 return 0;
f95a04af 1227 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1228}
1229
f95a04af
TH
1230static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1231 int off)
e43473b7 1232{
f95a04af
TH
1233 struct throtl_grp *tg = pd_to_tg(pd);
1234 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1235
2ab5492d 1236 if (v == UINT_MAX)
af133ceb 1237 return 0;
f95a04af 1238 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1239}
1240
2da8ca82 1241static int tg_print_conf_u64(struct seq_file *sf, void *v)
8e89d13f 1242{
2da8ca82
TH
1243 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1244 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1245 return 0;
8e89d13f
VG
1246}
1247
2da8ca82 1248static int tg_print_conf_uint(struct seq_file *sf, void *v)
8e89d13f 1249{
2da8ca82
TH
1250 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1251 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1252 return 0;
60c2bc2d
TH
1253}
1254
69948b07 1255static void tg_conf_updated(struct throtl_grp *tg)
60c2bc2d 1256{
69948b07 1257 struct throtl_service_queue *sq = &tg->service_queue;
492eb21b 1258 struct cgroup_subsys_state *pos_css;
69948b07 1259 struct blkcg_gq *blkg;
af133ceb 1260
fda6f272
TH
1261 throtl_log(&tg->service_queue,
1262 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
9f626e37
SL
1263 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1264 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
632b4493 1265
693e751e
TH
1266 /*
1267 * Update has_rules[] flags for the updated tg's subtree. A tg is
1268 * considered to have rules if either the tg itself or any of its
1269 * ancestors has rules. This identifies groups without any
1270 * restrictions in the whole hierarchy and allows them to bypass
1271 * blk-throttle.
1272 */
69948b07 1273 blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
693e751e
TH
1274 tg_update_has_rules(blkg_to_tg(blkg));
1275
632b4493
TH
1276 /*
1277 * We're already holding queue_lock and know @tg is valid. Let's
1278 * apply the new config directly.
1279 *
1280 * Restart the slices for both READ and WRITES. It might happen
1281 * that a group's limit are dropped suddenly and we don't want to
1282 * account recently dispatched IO with new low rate.
1283 */
0f3457f6
TH
1284 throtl_start_new_slice(tg, 0);
1285 throtl_start_new_slice(tg, 1);
632b4493 1286
5b2c16aa 1287 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1288 tg_update_disptime(tg);
7f52f98c 1289 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1290 }
69948b07
TH
1291}
1292
1293static ssize_t tg_set_conf(struct kernfs_open_file *of,
1294 char *buf, size_t nbytes, loff_t off, bool is_u64)
1295{
1296 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1297 struct blkg_conf_ctx ctx;
1298 struct throtl_grp *tg;
1299 int ret;
1300 u64 v;
1301
1302 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1303 if (ret)
1304 return ret;
1305
1306 ret = -EINVAL;
1307 if (sscanf(ctx.body, "%llu", &v) != 1)
1308 goto out_finish;
1309 if (!v)
2ab5492d 1310 v = U64_MAX;
69948b07
TH
1311
1312 tg = blkg_to_tg(ctx.blkg);
1313
1314 if (is_u64)
1315 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1316 else
1317 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
60c2bc2d 1318
69948b07 1319 tg_conf_updated(tg);
36aa9e5f
TH
1320 ret = 0;
1321out_finish:
60c2bc2d 1322 blkg_conf_finish(&ctx);
36aa9e5f 1323 return ret ?: nbytes;
8e89d13f
VG
1324}
1325
451af504
TH
1326static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1327 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1328{
451af504 1329 return tg_set_conf(of, buf, nbytes, off, true);
60c2bc2d
TH
1330}
1331
451af504
TH
1332static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1333 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1334{
451af504 1335 return tg_set_conf(of, buf, nbytes, off, false);
60c2bc2d
TH
1336}
1337
880f50e2 1338static struct cftype throtl_legacy_files[] = {
60c2bc2d
TH
1339 {
1340 .name = "throttle.read_bps_device",
9f626e37 1341 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
2da8ca82 1342 .seq_show = tg_print_conf_u64,
451af504 1343 .write = tg_set_conf_u64,
60c2bc2d
TH
1344 },
1345 {
1346 .name = "throttle.write_bps_device",
9f626e37 1347 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
2da8ca82 1348 .seq_show = tg_print_conf_u64,
451af504 1349 .write = tg_set_conf_u64,
60c2bc2d
TH
1350 },
1351 {
1352 .name = "throttle.read_iops_device",
9f626e37 1353 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
2da8ca82 1354 .seq_show = tg_print_conf_uint,
451af504 1355 .write = tg_set_conf_uint,
60c2bc2d
TH
1356 },
1357 {
1358 .name = "throttle.write_iops_device",
9f626e37 1359 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
2da8ca82 1360 .seq_show = tg_print_conf_uint,
451af504 1361 .write = tg_set_conf_uint,
60c2bc2d
TH
1362 },
1363 {
1364 .name = "throttle.io_service_bytes",
77ea7338
TH
1365 .private = (unsigned long)&blkcg_policy_throtl,
1366 .seq_show = blkg_print_stat_bytes,
60c2bc2d
TH
1367 },
1368 {
1369 .name = "throttle.io_serviced",
77ea7338
TH
1370 .private = (unsigned long)&blkcg_policy_throtl,
1371 .seq_show = blkg_print_stat_ios,
60c2bc2d
TH
1372 },
1373 { } /* terminate */
1374};
1375
cd5ab1b0 1376static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
2ee867dc
TH
1377 int off)
1378{
1379 struct throtl_grp *tg = pd_to_tg(pd);
1380 const char *dname = blkg_dev_name(pd->blkg);
1381 char bufs[4][21] = { "max", "max", "max", "max" };
cd5ab1b0
SL
1382 u64 bps_dft;
1383 unsigned int iops_dft;
2ee867dc
TH
1384
1385 if (!dname)
1386 return 0;
9f626e37 1387
cd5ab1b0
SL
1388 if (off == LIMIT_LOW) {
1389 bps_dft = 0;
1390 iops_dft = 0;
1391 } else {
1392 bps_dft = U64_MAX;
1393 iops_dft = UINT_MAX;
1394 }
1395
1396 if (tg->bps_conf[READ][off] == bps_dft &&
1397 tg->bps_conf[WRITE][off] == bps_dft &&
1398 tg->iops_conf[READ][off] == iops_dft &&
1399 tg->iops_conf[WRITE][off] == iops_dft)
2ee867dc
TH
1400 return 0;
1401
cd5ab1b0 1402 if (tg->bps_conf[READ][off] != bps_dft)
9f626e37 1403 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
cd5ab1b0
SL
1404 tg->bps_conf[READ][off]);
1405 if (tg->bps_conf[WRITE][off] != bps_dft)
9f626e37 1406 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
cd5ab1b0
SL
1407 tg->bps_conf[WRITE][off]);
1408 if (tg->iops_conf[READ][off] != iops_dft)
9f626e37 1409 snprintf(bufs[2], sizeof(bufs[2]), "%u",
cd5ab1b0
SL
1410 tg->iops_conf[READ][off]);
1411 if (tg->iops_conf[WRITE][off] != iops_dft)
9f626e37 1412 snprintf(bufs[3], sizeof(bufs[3]), "%u",
cd5ab1b0 1413 tg->iops_conf[WRITE][off]);
2ee867dc
TH
1414
1415 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s\n",
1416 dname, bufs[0], bufs[1], bufs[2], bufs[3]);
1417 return 0;
1418}
1419
cd5ab1b0 1420static int tg_print_limit(struct seq_file *sf, void *v)
2ee867dc 1421{
cd5ab1b0 1422 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
2ee867dc
TH
1423 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1424 return 0;
1425}
1426
cd5ab1b0 1427static ssize_t tg_set_limit(struct kernfs_open_file *of,
2ee867dc
TH
1428 char *buf, size_t nbytes, loff_t off)
1429{
1430 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1431 struct blkg_conf_ctx ctx;
1432 struct throtl_grp *tg;
1433 u64 v[4];
1434 int ret;
cd5ab1b0 1435 int index = of_cft(of)->private;
2ee867dc
TH
1436
1437 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1438 if (ret)
1439 return ret;
1440
1441 tg = blkg_to_tg(ctx.blkg);
1442
cd5ab1b0
SL
1443 v[0] = tg->bps_conf[READ][index];
1444 v[1] = tg->bps_conf[WRITE][index];
1445 v[2] = tg->iops_conf[READ][index];
1446 v[3] = tg->iops_conf[WRITE][index];
2ee867dc
TH
1447
1448 while (true) {
1449 char tok[27]; /* wiops=18446744073709551616 */
1450 char *p;
2ab5492d 1451 u64 val = U64_MAX;
2ee867dc
TH
1452 int len;
1453
1454 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1455 break;
1456 if (tok[0] == '\0')
1457 break;
1458 ctx.body += len;
1459
1460 ret = -EINVAL;
1461 p = tok;
1462 strsep(&p, "=");
1463 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1464 goto out_finish;
1465
1466 ret = -ERANGE;
1467 if (!val)
1468 goto out_finish;
1469
1470 ret = -EINVAL;
1471 if (!strcmp(tok, "rbps"))
1472 v[0] = val;
1473 else if (!strcmp(tok, "wbps"))
1474 v[1] = val;
1475 else if (!strcmp(tok, "riops"))
1476 v[2] = min_t(u64, val, UINT_MAX);
1477 else if (!strcmp(tok, "wiops"))
1478 v[3] = min_t(u64, val, UINT_MAX);
1479 else
1480 goto out_finish;
1481 }
1482
cd5ab1b0
SL
1483 tg->bps_conf[READ][index] = v[0];
1484 tg->bps_conf[WRITE][index] = v[1];
1485 tg->iops_conf[READ][index] = v[2];
1486 tg->iops_conf[WRITE][index] = v[3];
2ee867dc 1487
cd5ab1b0
SL
1488 if (index == LIMIT_MAX) {
1489 tg->bps[READ][index] = v[0];
1490 tg->bps[WRITE][index] = v[1];
1491 tg->iops[READ][index] = v[2];
1492 tg->iops[WRITE][index] = v[3];
1493 }
1494 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1495 tg->bps_conf[READ][LIMIT_MAX]);
1496 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1497 tg->bps_conf[WRITE][LIMIT_MAX]);
1498 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1499 tg->iops_conf[READ][LIMIT_MAX]);
1500 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1501 tg->iops_conf[WRITE][LIMIT_MAX]);
1502
1503 if (index == LIMIT_LOW) {
1504 blk_throtl_update_limit_valid(tg->td);
1505 if (tg->td->limit_valid[LIMIT_LOW])
1506 tg->td->limit_index = LIMIT_LOW;
1507 }
2ee867dc
TH
1508 tg_conf_updated(tg);
1509 ret = 0;
1510out_finish:
1511 blkg_conf_finish(&ctx);
1512 return ret ?: nbytes;
1513}
1514
1515static struct cftype throtl_files[] = {
cd5ab1b0
SL
1516#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1517 {
1518 .name = "low",
1519 .flags = CFTYPE_NOT_ON_ROOT,
1520 .seq_show = tg_print_limit,
1521 .write = tg_set_limit,
1522 .private = LIMIT_LOW,
1523 },
1524#endif
2ee867dc
TH
1525 {
1526 .name = "max",
1527 .flags = CFTYPE_NOT_ON_ROOT,
cd5ab1b0
SL
1528 .seq_show = tg_print_limit,
1529 .write = tg_set_limit,
1530 .private = LIMIT_MAX,
2ee867dc
TH
1531 },
1532 { } /* terminate */
1533};
1534
da527770 1535static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1536{
1537 struct throtl_data *td = q->td;
1538
69df0ab0 1539 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1540}
1541
3c798398 1542static struct blkcg_policy blkcg_policy_throtl = {
2ee867dc 1543 .dfl_cftypes = throtl_files,
880f50e2 1544 .legacy_cftypes = throtl_legacy_files,
f9fcc2d3 1545
001bea73 1546 .pd_alloc_fn = throtl_pd_alloc,
f9fcc2d3 1547 .pd_init_fn = throtl_pd_init,
693e751e 1548 .pd_online_fn = throtl_pd_online,
cd5ab1b0 1549 .pd_offline_fn = throtl_pd_offline,
001bea73 1550 .pd_free_fn = throtl_pd_free,
e43473b7
VG
1551};
1552
3f0abd80
SL
1553static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1554{
1555 unsigned long rtime = jiffies, wtime = jiffies;
1556
1557 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1558 rtime = tg->last_low_overflow_time[READ];
1559 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1560 wtime = tg->last_low_overflow_time[WRITE];
1561 return min(rtime, wtime);
1562}
1563
1564/* tg should not be an intermediate node */
1565static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1566{
1567 struct throtl_service_queue *parent_sq;
1568 struct throtl_grp *parent = tg;
1569 unsigned long ret = __tg_last_low_overflow_time(tg);
1570
1571 while (true) {
1572 parent_sq = parent->service_queue.parent_sq;
1573 parent = sq_to_tg(parent_sq);
1574 if (!parent)
1575 break;
1576
1577 /*
1578 * The parent doesn't have low limit, it always reaches low
1579 * limit. Its overflow time is useless for children
1580 */
1581 if (!parent->bps[READ][LIMIT_LOW] &&
1582 !parent->iops[READ][LIMIT_LOW] &&
1583 !parent->bps[WRITE][LIMIT_LOW] &&
1584 !parent->iops[WRITE][LIMIT_LOW])
1585 continue;
1586 if (time_after(__tg_last_low_overflow_time(parent), ret))
1587 ret = __tg_last_low_overflow_time(parent);
1588 }
1589 return ret;
1590}
1591
c79892c5
SL
1592static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1593{
1594 struct throtl_service_queue *sq = &tg->service_queue;
1595 bool read_limit, write_limit;
1596
1597 /*
1598 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1599 * reaches), it's ok to upgrade to next limit
1600 */
1601 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1602 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1603 if (!read_limit && !write_limit)
1604 return true;
1605 if (read_limit && sq->nr_queued[READ] &&
1606 (!write_limit || sq->nr_queued[WRITE]))
1607 return true;
1608 if (write_limit && sq->nr_queued[WRITE] &&
1609 (!read_limit || sq->nr_queued[READ]))
1610 return true;
1611 return false;
1612}
1613
1614static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1615{
1616 while (true) {
1617 if (throtl_tg_can_upgrade(tg))
1618 return true;
1619 tg = sq_to_tg(tg->service_queue.parent_sq);
1620 if (!tg || !tg_to_blkg(tg)->parent)
1621 return false;
1622 }
1623 return false;
1624}
1625
1626static bool throtl_can_upgrade(struct throtl_data *td,
1627 struct throtl_grp *this_tg)
1628{
1629 struct cgroup_subsys_state *pos_css;
1630 struct blkcg_gq *blkg;
1631
1632 if (td->limit_index != LIMIT_LOW)
1633 return false;
1634
3f0abd80
SL
1635 if (time_before(jiffies, td->low_downgrade_time + throtl_slice))
1636 return false;
1637
c79892c5
SL
1638 rcu_read_lock();
1639 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1640 struct throtl_grp *tg = blkg_to_tg(blkg);
1641
1642 if (tg == this_tg)
1643 continue;
1644 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1645 continue;
1646 if (!throtl_hierarchy_can_upgrade(tg)) {
1647 rcu_read_unlock();
1648 return false;
1649 }
1650 }
1651 rcu_read_unlock();
1652 return true;
1653}
1654
1655static void throtl_upgrade_state(struct throtl_data *td)
1656{
1657 struct cgroup_subsys_state *pos_css;
1658 struct blkcg_gq *blkg;
1659
1660 td->limit_index = LIMIT_MAX;
3f0abd80 1661 td->low_upgrade_time = jiffies;
c79892c5
SL
1662 rcu_read_lock();
1663 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1664 struct throtl_grp *tg = blkg_to_tg(blkg);
1665 struct throtl_service_queue *sq = &tg->service_queue;
1666
1667 tg->disptime = jiffies - 1;
1668 throtl_select_dispatch(sq);
1669 throtl_schedule_next_dispatch(sq, false);
1670 }
1671 rcu_read_unlock();
1672 throtl_select_dispatch(&td->service_queue);
1673 throtl_schedule_next_dispatch(&td->service_queue, false);
1674 queue_work(kthrotld_workqueue, &td->dispatch_work);
1675}
1676
3f0abd80
SL
1677static void throtl_downgrade_state(struct throtl_data *td, int new)
1678{
1679 td->limit_index = new;
1680 td->low_downgrade_time = jiffies;
1681}
1682
1683static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1684{
1685 struct throtl_data *td = tg->td;
1686 unsigned long now = jiffies;
1687
1688 /*
1689 * If cgroup is below low limit, consider downgrade and throttle other
1690 * cgroups
1691 */
1692 if (time_after_eq(now, td->low_upgrade_time + throtl_slice) &&
1693 time_after_eq(now, tg_last_low_overflow_time(tg) + throtl_slice))
1694 return true;
1695 return false;
1696}
1697
1698static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1699{
1700 while (true) {
1701 if (!throtl_tg_can_downgrade(tg))
1702 return false;
1703 tg = sq_to_tg(tg->service_queue.parent_sq);
1704 if (!tg || !tg_to_blkg(tg)->parent)
1705 break;
1706 }
1707 return true;
1708}
1709
1710static void throtl_downgrade_check(struct throtl_grp *tg)
1711{
1712 uint64_t bps;
1713 unsigned int iops;
1714 unsigned long elapsed_time;
1715 unsigned long now = jiffies;
1716
1717 if (tg->td->limit_index != LIMIT_MAX ||
1718 !tg->td->limit_valid[LIMIT_LOW])
1719 return;
1720 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1721 return;
1722 if (time_after(tg->last_check_time + throtl_slice, now))
1723 return;
1724
1725 elapsed_time = now - tg->last_check_time;
1726 tg->last_check_time = now;
1727
1728 if (time_before(now, tg_last_low_overflow_time(tg) + throtl_slice))
1729 return;
1730
1731 if (tg->bps[READ][LIMIT_LOW]) {
1732 bps = tg->last_bytes_disp[READ] * HZ;
1733 do_div(bps, elapsed_time);
1734 if (bps >= tg->bps[READ][LIMIT_LOW])
1735 tg->last_low_overflow_time[READ] = now;
1736 }
1737
1738 if (tg->bps[WRITE][LIMIT_LOW]) {
1739 bps = tg->last_bytes_disp[WRITE] * HZ;
1740 do_div(bps, elapsed_time);
1741 if (bps >= tg->bps[WRITE][LIMIT_LOW])
1742 tg->last_low_overflow_time[WRITE] = now;
1743 }
1744
1745 if (tg->iops[READ][LIMIT_LOW]) {
1746 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1747 if (iops >= tg->iops[READ][LIMIT_LOW])
1748 tg->last_low_overflow_time[READ] = now;
1749 }
1750
1751 if (tg->iops[WRITE][LIMIT_LOW]) {
1752 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
1753 if (iops >= tg->iops[WRITE][LIMIT_LOW])
1754 tg->last_low_overflow_time[WRITE] = now;
1755 }
1756
1757 /*
1758 * If cgroup is below low limit, consider downgrade and throttle other
1759 * cgroups
1760 */
1761 if (throtl_hierarchy_can_downgrade(tg))
1762 throtl_downgrade_state(tg->td, LIMIT_LOW);
1763
1764 tg->last_bytes_disp[READ] = 0;
1765 tg->last_bytes_disp[WRITE] = 0;
1766 tg->last_io_disp[READ] = 0;
1767 tg->last_io_disp[WRITE] = 0;
1768}
1769
ae118896
TH
1770bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
1771 struct bio *bio)
e43473b7 1772{
c5cc2070 1773 struct throtl_qnode *qn = NULL;
ae118896 1774 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
73f0d49a 1775 struct throtl_service_queue *sq;
0e9f4164 1776 bool rw = bio_data_dir(bio);
bc16a4f9 1777 bool throttled = false;
e43473b7 1778
ae118896
TH
1779 WARN_ON_ONCE(!rcu_read_lock_held());
1780
2a0f61e6 1781 /* see throtl_charge_bio() */
8d2bbd4c 1782 if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
bc16a4f9 1783 goto out;
e43473b7
VG
1784
1785 spin_lock_irq(q->queue_lock);
c9589f03
TH
1786
1787 if (unlikely(blk_queue_bypass(q)))
bc16a4f9 1788 goto out_unlock;
f469a7b4 1789
73f0d49a
TH
1790 sq = &tg->service_queue;
1791
c79892c5 1792again:
9e660acf 1793 while (true) {
3f0abd80
SL
1794 if (tg->last_low_overflow_time[rw] == 0)
1795 tg->last_low_overflow_time[rw] = jiffies;
1796 throtl_downgrade_check(tg);
9e660acf
TH
1797 /* throtl is FIFO - if bios are already queued, should queue */
1798 if (sq->nr_queued[rw])
1799 break;
de701c74 1800
9e660acf 1801 /* if above limits, break to queue */
c79892c5 1802 if (!tg_may_dispatch(tg, bio, NULL)) {
3f0abd80 1803 tg->last_low_overflow_time[rw] = jiffies;
c79892c5
SL
1804 if (throtl_can_upgrade(tg->td, tg)) {
1805 throtl_upgrade_state(tg->td);
1806 goto again;
1807 }
9e660acf 1808 break;
c79892c5 1809 }
9e660acf
TH
1810
1811 /* within limits, let's charge and dispatch directly */
e43473b7 1812 throtl_charge_bio(tg, bio);
04521db0
VG
1813
1814 /*
1815 * We need to trim slice even when bios are not being queued
1816 * otherwise it might happen that a bio is not queued for
1817 * a long time and slice keeps on extending and trim is not
1818 * called for a long time. Now if limits are reduced suddenly
1819 * we take into account all the IO dispatched so far at new
1820 * low rate and * newly queued IO gets a really long dispatch
1821 * time.
1822 *
1823 * So keep on trimming slice even if bio is not queued.
1824 */
0f3457f6 1825 throtl_trim_slice(tg, rw);
9e660acf
TH
1826
1827 /*
1828 * @bio passed through this layer without being throttled.
1829 * Climb up the ladder. If we''re already at the top, it
1830 * can be executed directly.
1831 */
c5cc2070 1832 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
1833 sq = sq->parent_sq;
1834 tg = sq_to_tg(sq);
1835 if (!tg)
1836 goto out_unlock;
e43473b7
VG
1837 }
1838
9e660acf 1839 /* out-of-limit, queue to @tg */
fda6f272
TH
1840 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1841 rw == READ ? 'R' : 'W',
9f626e37
SL
1842 tg->bytes_disp[rw], bio->bi_iter.bi_size,
1843 tg_bps_limit(tg, rw),
1844 tg->io_disp[rw], tg_iops_limit(tg, rw),
fda6f272 1845 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 1846
3f0abd80
SL
1847 tg->last_low_overflow_time[rw] = jiffies;
1848
671058fb 1849 bio_associate_current(bio);
6bc9c2b4 1850 tg->td->nr_queued[rw]++;
c5cc2070 1851 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 1852 throttled = true;
e43473b7 1853
7f52f98c
TH
1854 /*
1855 * Update @tg's dispatch time and force schedule dispatch if @tg
1856 * was empty before @bio. The forced scheduling isn't likely to
1857 * cause undue delay as @bio is likely to be dispatched directly if
1858 * its @tg's disptime is not in the future.
1859 */
0e9f4164 1860 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 1861 tg_update_disptime(tg);
7f52f98c 1862 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
1863 }
1864
bc16a4f9 1865out_unlock:
e43473b7 1866 spin_unlock_irq(q->queue_lock);
bc16a4f9 1867out:
2a0f61e6
TH
1868 /*
1869 * As multiple blk-throtls may stack in the same issue path, we
1870 * don't want bios to leave with the flag set. Clear the flag if
1871 * being issued.
1872 */
1873 if (!throttled)
8d2bbd4c 1874 bio_clear_flag(bio, BIO_THROTTLED);
bc16a4f9 1875 return throttled;
e43473b7
VG
1876}
1877
2a12f0dc
TH
1878/*
1879 * Dispatch all bios from all children tg's queued on @parent_sq. On
1880 * return, @parent_sq is guaranteed to not have any active children tg's
1881 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1882 */
1883static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1884{
1885 struct throtl_grp *tg;
1886
1887 while ((tg = throtl_rb_first(parent_sq))) {
1888 struct throtl_service_queue *sq = &tg->service_queue;
1889 struct bio *bio;
1890
1891 throtl_dequeue_tg(tg);
1892
c5cc2070 1893 while ((bio = throtl_peek_queued(&sq->queued[READ])))
2a12f0dc 1894 tg_dispatch_one_bio(tg, bio_data_dir(bio));
c5cc2070 1895 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2a12f0dc
TH
1896 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1897 }
1898}
1899
c9a929dd
TH
1900/**
1901 * blk_throtl_drain - drain throttled bios
1902 * @q: request_queue to drain throttled bios for
1903 *
1904 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1905 */
1906void blk_throtl_drain(struct request_queue *q)
1907 __releases(q->queue_lock) __acquires(q->queue_lock)
1908{
1909 struct throtl_data *td = q->td;
2a12f0dc 1910 struct blkcg_gq *blkg;
492eb21b 1911 struct cgroup_subsys_state *pos_css;
c9a929dd 1912 struct bio *bio;
651930bc 1913 int rw;
c9a929dd 1914
8bcb6c7d 1915 queue_lockdep_assert_held(q);
2a12f0dc 1916 rcu_read_lock();
c9a929dd 1917
2a12f0dc
TH
1918 /*
1919 * Drain each tg while doing post-order walk on the blkg tree, so
1920 * that all bios are propagated to td->service_queue. It'd be
1921 * better to walk service_queue tree directly but blkg walk is
1922 * easier.
1923 */
492eb21b 1924 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2a12f0dc 1925 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
73f0d49a 1926
2a12f0dc
TH
1927 /* finally, transfer bios from top-level tg's into the td */
1928 tg_drain_bios(&td->service_queue);
1929
1930 rcu_read_unlock();
c9a929dd
TH
1931 spin_unlock_irq(q->queue_lock);
1932
2a12f0dc 1933 /* all bios now should be in td->service_queue, issue them */
651930bc 1934 for (rw = READ; rw <= WRITE; rw++)
c5cc2070
TH
1935 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1936 NULL)))
651930bc 1937 generic_make_request(bio);
c9a929dd
TH
1938
1939 spin_lock_irq(q->queue_lock);
1940}
1941
e43473b7
VG
1942int blk_throtl_init(struct request_queue *q)
1943{
1944 struct throtl_data *td;
a2b1693b 1945 int ret;
e43473b7
VG
1946
1947 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1948 if (!td)
1949 return -ENOMEM;
1950
69df0ab0 1951 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
b2ce2643 1952 throtl_service_queue_init(&td->service_queue);
e43473b7 1953
cd1604fa 1954 q->td = td;
29b12589 1955 td->queue = q;
02977e4a 1956
9f626e37 1957 td->limit_valid[LIMIT_MAX] = true;
cd5ab1b0 1958 td->limit_index = LIMIT_MAX;
3f0abd80
SL
1959 td->low_upgrade_time = jiffies;
1960 td->low_downgrade_time = jiffies;
a2b1693b 1961 /* activate policy */
3c798398 1962 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
a2b1693b 1963 if (ret)
f51b802c 1964 kfree(td);
a2b1693b 1965 return ret;
e43473b7
VG
1966}
1967
1968void blk_throtl_exit(struct request_queue *q)
1969{
c875f4d0 1970 BUG_ON(!q->td);
da527770 1971 throtl_shutdown_wq(q);
3c798398 1972 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
c9a929dd 1973 kfree(q->td);
e43473b7
VG
1974}
1975
1976static int __init throtl_init(void)
1977{
450adcbe
VG
1978 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1979 if (!kthrotld_workqueue)
1980 panic("Failed to create kthrotld\n");
1981
3c798398 1982 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
1983}
1984
1985module_init(throtl_init);