spi: soc: qcom: GENI SE SPI controller device tree binding
[linux-2.6-block.git] / block / blk-throttle.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
e43473b7
VG
2/*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
7
8#include <linux/module.h>
9#include <linux/slab.h>
10#include <linux/blkdev.h>
11#include <linux/bio.h>
12#include <linux/blktrace_api.h>
eea8f41c 13#include <linux/blk-cgroup.h>
bc9fcbf9 14#include "blk.h"
e43473b7
VG
15
16/* Max dispatch from a group in 1 round */
17static int throtl_grp_quantum = 8;
18
19/* Total max dispatch from all groups in one round */
20static int throtl_quantum = 32;
21
d61fcfa4
SL
22/* Throttling is performed over a slice and after that slice is renewed */
23#define DFL_THROTL_SLICE_HD (HZ / 10)
24#define DFL_THROTL_SLICE_SSD (HZ / 50)
297e3d85 25#define MAX_THROTL_SLICE (HZ)
9e234eea 26#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
9bb67aeb
SL
27#define MIN_THROTL_BPS (320 * 1024)
28#define MIN_THROTL_IOPS (10)
b4f428ef
SL
29#define DFL_LATENCY_TARGET (-1L)
30#define DFL_IDLE_THRESHOLD (0)
6679a90c
SL
31#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
32#define LATENCY_FILTERED_SSD (0)
33/*
34 * For HD, very small latency comes from sequential IO. Such IO is helpless to
35 * help determine if its IO is impacted by others, hence we ignore the IO
36 */
37#define LATENCY_FILTERED_HD (1000L) /* 1ms */
e43473b7 38
3c798398 39static struct blkcg_policy blkcg_policy_throtl;
0381411e 40
450adcbe
VG
41/* A workqueue to queue throttle related work */
42static struct workqueue_struct *kthrotld_workqueue;
450adcbe 43
c5cc2070
TH
44/*
45 * To implement hierarchical throttling, throtl_grps form a tree and bios
46 * are dispatched upwards level by level until they reach the top and get
47 * issued. When dispatching bios from the children and local group at each
48 * level, if the bios are dispatched into a single bio_list, there's a risk
49 * of a local or child group which can queue many bios at once filling up
50 * the list starving others.
51 *
52 * To avoid such starvation, dispatched bios are queued separately
53 * according to where they came from. When they are again dispatched to
54 * the parent, they're popped in round-robin order so that no single source
55 * hogs the dispatch window.
56 *
57 * throtl_qnode is used to keep the queued bios separated by their sources.
58 * Bios are queued to throtl_qnode which in turn is queued to
59 * throtl_service_queue and then dispatched in round-robin order.
60 *
61 * It's also used to track the reference counts on blkg's. A qnode always
62 * belongs to a throtl_grp and gets queued on itself or the parent, so
63 * incrementing the reference of the associated throtl_grp when a qnode is
64 * queued and decrementing when dequeued is enough to keep the whole blkg
65 * tree pinned while bios are in flight.
66 */
67struct throtl_qnode {
68 struct list_head node; /* service_queue->queued[] */
69 struct bio_list bios; /* queued bios */
70 struct throtl_grp *tg; /* tg this qnode belongs to */
71};
72
c9e0332e 73struct throtl_service_queue {
77216b04
TH
74 struct throtl_service_queue *parent_sq; /* the parent service_queue */
75
73f0d49a
TH
76 /*
77 * Bios queued directly to this service_queue or dispatched from
78 * children throtl_grp's.
79 */
c5cc2070 80 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
73f0d49a
TH
81 unsigned int nr_queued[2]; /* number of queued bios */
82
83 /*
84 * RB tree of active children throtl_grp's, which are sorted by
85 * their ->disptime.
86 */
c9e0332e
TH
87 struct rb_root pending_tree; /* RB tree of active tgs */
88 struct rb_node *first_pending; /* first node in the tree */
89 unsigned int nr_pending; /* # queued in the tree */
90 unsigned long first_pending_disptime; /* disptime of the first tg */
69df0ab0 91 struct timer_list pending_timer; /* fires on first_pending_disptime */
e43473b7
VG
92};
93
5b2c16aa
TH
94enum tg_state_flags {
95 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
0e9f4164 96 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
5b2c16aa
TH
97};
98
e43473b7
VG
99#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
100
9f626e37 101enum {
cd5ab1b0 102 LIMIT_LOW,
9f626e37
SL
103 LIMIT_MAX,
104 LIMIT_CNT,
105};
106
e43473b7 107struct throtl_grp {
f95a04af
TH
108 /* must be the first member */
109 struct blkg_policy_data pd;
110
c9e0332e 111 /* active throtl group service_queue member */
e43473b7
VG
112 struct rb_node rb_node;
113
0f3457f6
TH
114 /* throtl_data this group belongs to */
115 struct throtl_data *td;
116
49a2f1e3
TH
117 /* this group's service queue */
118 struct throtl_service_queue service_queue;
119
c5cc2070
TH
120 /*
121 * qnode_on_self is used when bios are directly queued to this
122 * throtl_grp so that local bios compete fairly with bios
123 * dispatched from children. qnode_on_parent is used when bios are
124 * dispatched from this throtl_grp into its parent and will compete
125 * with the sibling qnode_on_parents and the parent's
126 * qnode_on_self.
127 */
128 struct throtl_qnode qnode_on_self[2];
129 struct throtl_qnode qnode_on_parent[2];
130
e43473b7
VG
131 /*
132 * Dispatch time in jiffies. This is the estimated time when group
133 * will unthrottle and is ready to dispatch more bio. It is used as
134 * key to sort active groups in service tree.
135 */
136 unsigned long disptime;
137
e43473b7
VG
138 unsigned int flags;
139
693e751e
TH
140 /* are there any throtl rules between this group and td? */
141 bool has_rules[2];
142
cd5ab1b0 143 /* internally used bytes per second rate limits */
9f626e37 144 uint64_t bps[2][LIMIT_CNT];
cd5ab1b0
SL
145 /* user configured bps limits */
146 uint64_t bps_conf[2][LIMIT_CNT];
e43473b7 147
cd5ab1b0 148 /* internally used IOPS limits */
9f626e37 149 unsigned int iops[2][LIMIT_CNT];
cd5ab1b0
SL
150 /* user configured IOPS limits */
151 unsigned int iops_conf[2][LIMIT_CNT];
8e89d13f 152
e43473b7
VG
153 /* Number of bytes disptached in current slice */
154 uint64_t bytes_disp[2];
8e89d13f
VG
155 /* Number of bio's dispatched in current slice */
156 unsigned int io_disp[2];
e43473b7 157
3f0abd80
SL
158 unsigned long last_low_overflow_time[2];
159
160 uint64_t last_bytes_disp[2];
161 unsigned int last_io_disp[2];
162
163 unsigned long last_check_time;
164
ec80991d 165 unsigned long latency_target; /* us */
5b81fc3c 166 unsigned long latency_target_conf; /* us */
e43473b7
VG
167 /* When did we start a new slice */
168 unsigned long slice_start[2];
169 unsigned long slice_end[2];
9e234eea
SL
170
171 unsigned long last_finish_time; /* ns / 1024 */
172 unsigned long checked_last_finish_time; /* ns / 1024 */
173 unsigned long avg_idletime; /* ns / 1024 */
174 unsigned long idletime_threshold; /* us */
5b81fc3c 175 unsigned long idletime_threshold_conf; /* us */
53696b8d
SL
176
177 unsigned int bio_cnt; /* total bios */
178 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
179 unsigned long bio_cnt_reset_time;
e43473b7
VG
180};
181
b9147dd1
SL
182/* We measure latency for request size from <= 4k to >= 1M */
183#define LATENCY_BUCKET_SIZE 9
184
185struct latency_bucket {
186 unsigned long total_latency; /* ns / 1024 */
187 int samples;
188};
189
190struct avg_latency_bucket {
191 unsigned long latency; /* ns / 1024 */
192 bool valid;
193};
194
e43473b7
VG
195struct throtl_data
196{
e43473b7 197 /* service tree for active throtl groups */
c9e0332e 198 struct throtl_service_queue service_queue;
e43473b7 199
e43473b7
VG
200 struct request_queue *queue;
201
202 /* Total Number of queued bios on READ and WRITE lists */
203 unsigned int nr_queued[2];
204
297e3d85
SL
205 unsigned int throtl_slice;
206
e43473b7 207 /* Work for dispatching throttled bios */
69df0ab0 208 struct work_struct dispatch_work;
9f626e37
SL
209 unsigned int limit_index;
210 bool limit_valid[LIMIT_CNT];
3f0abd80
SL
211
212 unsigned long low_upgrade_time;
213 unsigned long low_downgrade_time;
7394e31f
SL
214
215 unsigned int scale;
b9147dd1 216
b889bf66
JQ
217 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
218 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
219 struct latency_bucket __percpu *latency_buckets[2];
b9147dd1 220 unsigned long last_calculate_time;
6679a90c 221 unsigned long filtered_latency;
b9147dd1
SL
222
223 bool track_bio_latency;
e43473b7
VG
224};
225
e99e88a9 226static void throtl_pending_timer_fn(struct timer_list *t);
69df0ab0 227
f95a04af
TH
228static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
229{
230 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
231}
232
3c798398 233static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
0381411e 234{
f95a04af 235 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
0381411e
TH
236}
237
3c798398 238static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 239{
f95a04af 240 return pd_to_blkg(&tg->pd);
0381411e
TH
241}
242
fda6f272
TH
243/**
244 * sq_to_tg - return the throl_grp the specified service queue belongs to
245 * @sq: the throtl_service_queue of interest
246 *
247 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
248 * embedded in throtl_data, %NULL is returned.
249 */
250static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
251{
252 if (sq && sq->parent_sq)
253 return container_of(sq, struct throtl_grp, service_queue);
254 else
255 return NULL;
256}
257
258/**
259 * sq_to_td - return throtl_data the specified service queue belongs to
260 * @sq: the throtl_service_queue of interest
261 *
b43daedc 262 * A service_queue can be embedded in either a throtl_grp or throtl_data.
fda6f272
TH
263 * Determine the associated throtl_data accordingly and return it.
264 */
265static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
266{
267 struct throtl_grp *tg = sq_to_tg(sq);
268
269 if (tg)
270 return tg->td;
271 else
272 return container_of(sq, struct throtl_data, service_queue);
273}
274
7394e31f
SL
275/*
276 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
277 * make the IO dispatch more smooth.
278 * Scale up: linearly scale up according to lapsed time since upgrade. For
279 * every throtl_slice, the limit scales up 1/2 .low limit till the
280 * limit hits .max limit
281 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
282 */
283static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
284{
285 /* arbitrary value to avoid too big scale */
286 if (td->scale < 4096 && time_after_eq(jiffies,
287 td->low_upgrade_time + td->scale * td->throtl_slice))
288 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
289
290 return low + (low >> 1) * td->scale;
291}
292
9f626e37
SL
293static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
294{
b22c417c 295 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 296 struct throtl_data *td;
b22c417c
SL
297 uint64_t ret;
298
299 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
300 return U64_MAX;
7394e31f
SL
301
302 td = tg->td;
303 ret = tg->bps[rw][td->limit_index];
9bb67aeb
SL
304 if (ret == 0 && td->limit_index == LIMIT_LOW) {
305 /* intermediate node or iops isn't 0 */
306 if (!list_empty(&blkg->blkcg->css.children) ||
307 tg->iops[rw][td->limit_index])
308 return U64_MAX;
309 else
310 return MIN_THROTL_BPS;
311 }
7394e31f
SL
312
313 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
314 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
315 uint64_t adjusted;
316
317 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
318 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
319 }
b22c417c 320 return ret;
9f626e37
SL
321}
322
323static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
324{
b22c417c 325 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 326 struct throtl_data *td;
b22c417c
SL
327 unsigned int ret;
328
329 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
330 return UINT_MAX;
9bb67aeb 331
7394e31f
SL
332 td = tg->td;
333 ret = tg->iops[rw][td->limit_index];
9bb67aeb
SL
334 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
335 /* intermediate node or bps isn't 0 */
336 if (!list_empty(&blkg->blkcg->css.children) ||
337 tg->bps[rw][td->limit_index])
338 return UINT_MAX;
339 else
340 return MIN_THROTL_IOPS;
341 }
7394e31f
SL
342
343 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
344 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
345 uint64_t adjusted;
346
347 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
348 if (adjusted > UINT_MAX)
349 adjusted = UINT_MAX;
350 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
351 }
b22c417c 352 return ret;
9f626e37
SL
353}
354
b9147dd1
SL
355#define request_bucket_index(sectors) \
356 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
357
fda6f272
TH
358/**
359 * throtl_log - log debug message via blktrace
360 * @sq: the service_queue being reported
361 * @fmt: printf format string
362 * @args: printf args
363 *
364 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
365 * throtl_grp; otherwise, just "throtl".
fda6f272
TH
366 */
367#define throtl_log(sq, fmt, args...) do { \
368 struct throtl_grp *__tg = sq_to_tg((sq)); \
369 struct throtl_data *__td = sq_to_td((sq)); \
370 \
371 (void)__td; \
59fa0224
SL
372 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
373 break; \
fda6f272 374 if ((__tg)) { \
35fe6d76
SL
375 blk_add_cgroup_trace_msg(__td->queue, \
376 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
fda6f272
TH
377 } else { \
378 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
379 } \
54e7ed12 380} while (0)
e43473b7 381
ea0ea2bc
SL
382static inline unsigned int throtl_bio_data_size(struct bio *bio)
383{
384 /* assume it's one sector */
385 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
386 return 512;
387 return bio->bi_iter.bi_size;
388}
389
c5cc2070
TH
390static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
391{
392 INIT_LIST_HEAD(&qn->node);
393 bio_list_init(&qn->bios);
394 qn->tg = tg;
395}
396
397/**
398 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
399 * @bio: bio being added
400 * @qn: qnode to add bio to
401 * @queued: the service_queue->queued[] list @qn belongs to
402 *
403 * Add @bio to @qn and put @qn on @queued if it's not already on.
404 * @qn->tg's reference count is bumped when @qn is activated. See the
405 * comment on top of throtl_qnode definition for details.
406 */
407static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
408 struct list_head *queued)
409{
410 bio_list_add(&qn->bios, bio);
411 if (list_empty(&qn->node)) {
412 list_add_tail(&qn->node, queued);
413 blkg_get(tg_to_blkg(qn->tg));
414 }
415}
416
417/**
418 * throtl_peek_queued - peek the first bio on a qnode list
419 * @queued: the qnode list to peek
420 */
421static struct bio *throtl_peek_queued(struct list_head *queued)
422{
423 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
424 struct bio *bio;
425
426 if (list_empty(queued))
427 return NULL;
428
429 bio = bio_list_peek(&qn->bios);
430 WARN_ON_ONCE(!bio);
431 return bio;
432}
433
434/**
435 * throtl_pop_queued - pop the first bio form a qnode list
436 * @queued: the qnode list to pop a bio from
437 * @tg_to_put: optional out argument for throtl_grp to put
438 *
439 * Pop the first bio from the qnode list @queued. After popping, the first
440 * qnode is removed from @queued if empty or moved to the end of @queued so
441 * that the popping order is round-robin.
442 *
443 * When the first qnode is removed, its associated throtl_grp should be put
444 * too. If @tg_to_put is NULL, this function automatically puts it;
445 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
446 * responsible for putting it.
447 */
448static struct bio *throtl_pop_queued(struct list_head *queued,
449 struct throtl_grp **tg_to_put)
450{
451 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
452 struct bio *bio;
453
454 if (list_empty(queued))
455 return NULL;
456
457 bio = bio_list_pop(&qn->bios);
458 WARN_ON_ONCE(!bio);
459
460 if (bio_list_empty(&qn->bios)) {
461 list_del_init(&qn->node);
462 if (tg_to_put)
463 *tg_to_put = qn->tg;
464 else
465 blkg_put(tg_to_blkg(qn->tg));
466 } else {
467 list_move_tail(&qn->node, queued);
468 }
469
470 return bio;
471}
472
49a2f1e3 473/* init a service_queue, assumes the caller zeroed it */
b2ce2643 474static void throtl_service_queue_init(struct throtl_service_queue *sq)
49a2f1e3 475{
c5cc2070
TH
476 INIT_LIST_HEAD(&sq->queued[0]);
477 INIT_LIST_HEAD(&sq->queued[1]);
49a2f1e3 478 sq->pending_tree = RB_ROOT;
e99e88a9 479 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
69df0ab0
TH
480}
481
001bea73
TH
482static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
483{
4fb72036 484 struct throtl_grp *tg;
24bdb8ef 485 int rw;
4fb72036
TH
486
487 tg = kzalloc_node(sizeof(*tg), gfp, node);
488 if (!tg)
77ea7338 489 return NULL;
4fb72036 490
b2ce2643
TH
491 throtl_service_queue_init(&tg->service_queue);
492
493 for (rw = READ; rw <= WRITE; rw++) {
494 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
495 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
496 }
497
498 RB_CLEAR_NODE(&tg->rb_node);
9f626e37
SL
499 tg->bps[READ][LIMIT_MAX] = U64_MAX;
500 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
501 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
502 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
cd5ab1b0
SL
503 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
504 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
505 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
506 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
507 /* LIMIT_LOW will have default value 0 */
b2ce2643 508
ec80991d 509 tg->latency_target = DFL_LATENCY_TARGET;
5b81fc3c 510 tg->latency_target_conf = DFL_LATENCY_TARGET;
b4f428ef
SL
511 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
512 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
ec80991d 513
4fb72036 514 return &tg->pd;
001bea73
TH
515}
516
a9520cd6 517static void throtl_pd_init(struct blkg_policy_data *pd)
a29a171e 518{
a9520cd6
TH
519 struct throtl_grp *tg = pd_to_tg(pd);
520 struct blkcg_gq *blkg = tg_to_blkg(tg);
77216b04 521 struct throtl_data *td = blkg->q->td;
b2ce2643 522 struct throtl_service_queue *sq = &tg->service_queue;
cd1604fa 523
9138125b 524 /*
aa6ec29b 525 * If on the default hierarchy, we switch to properly hierarchical
9138125b
TH
526 * behavior where limits on a given throtl_grp are applied to the
527 * whole subtree rather than just the group itself. e.g. If 16M
528 * read_bps limit is set on the root group, the whole system can't
529 * exceed 16M for the device.
530 *
aa6ec29b 531 * If not on the default hierarchy, the broken flat hierarchy
9138125b
TH
532 * behavior is retained where all throtl_grps are treated as if
533 * they're all separate root groups right below throtl_data.
534 * Limits of a group don't interact with limits of other groups
535 * regardless of the position of the group in the hierarchy.
536 */
b2ce2643 537 sq->parent_sq = &td->service_queue;
9e10a130 538 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
b2ce2643 539 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
77216b04 540 tg->td = td;
8a3d2615
TH
541}
542
693e751e
TH
543/*
544 * Set has_rules[] if @tg or any of its parents have limits configured.
545 * This doesn't require walking up to the top of the hierarchy as the
546 * parent's has_rules[] is guaranteed to be correct.
547 */
548static void tg_update_has_rules(struct throtl_grp *tg)
549{
550 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
9f626e37 551 struct throtl_data *td = tg->td;
693e751e
TH
552 int rw;
553
554 for (rw = READ; rw <= WRITE; rw++)
555 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
9f626e37
SL
556 (td->limit_valid[td->limit_index] &&
557 (tg_bps_limit(tg, rw) != U64_MAX ||
558 tg_iops_limit(tg, rw) != UINT_MAX));
693e751e
TH
559}
560
a9520cd6 561static void throtl_pd_online(struct blkg_policy_data *pd)
693e751e 562{
aec24246 563 struct throtl_grp *tg = pd_to_tg(pd);
693e751e
TH
564 /*
565 * We don't want new groups to escape the limits of its ancestors.
566 * Update has_rules[] after a new group is brought online.
567 */
aec24246 568 tg_update_has_rules(tg);
693e751e
TH
569}
570
cd5ab1b0
SL
571static void blk_throtl_update_limit_valid(struct throtl_data *td)
572{
573 struct cgroup_subsys_state *pos_css;
574 struct blkcg_gq *blkg;
575 bool low_valid = false;
576
577 rcu_read_lock();
578 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
579 struct throtl_grp *tg = blkg_to_tg(blkg);
580
581 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
43ada787 582 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
cd5ab1b0 583 low_valid = true;
43ada787
LB
584 break;
585 }
cd5ab1b0
SL
586 }
587 rcu_read_unlock();
588
589 td->limit_valid[LIMIT_LOW] = low_valid;
590}
591
c79892c5 592static void throtl_upgrade_state(struct throtl_data *td);
cd5ab1b0
SL
593static void throtl_pd_offline(struct blkg_policy_data *pd)
594{
595 struct throtl_grp *tg = pd_to_tg(pd);
596
597 tg->bps[READ][LIMIT_LOW] = 0;
598 tg->bps[WRITE][LIMIT_LOW] = 0;
599 tg->iops[READ][LIMIT_LOW] = 0;
600 tg->iops[WRITE][LIMIT_LOW] = 0;
601
602 blk_throtl_update_limit_valid(tg->td);
603
c79892c5
SL
604 if (!tg->td->limit_valid[tg->td->limit_index])
605 throtl_upgrade_state(tg->td);
cd5ab1b0
SL
606}
607
001bea73
TH
608static void throtl_pd_free(struct blkg_policy_data *pd)
609{
4fb72036
TH
610 struct throtl_grp *tg = pd_to_tg(pd);
611
b2ce2643 612 del_timer_sync(&tg->service_queue.pending_timer);
4fb72036 613 kfree(tg);
001bea73
TH
614}
615
0049af73
TH
616static struct throtl_grp *
617throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7
VG
618{
619 /* Service tree is empty */
0049af73 620 if (!parent_sq->nr_pending)
e43473b7
VG
621 return NULL;
622
0049af73
TH
623 if (!parent_sq->first_pending)
624 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
e43473b7 625
0049af73
TH
626 if (parent_sq->first_pending)
627 return rb_entry_tg(parent_sq->first_pending);
e43473b7
VG
628
629 return NULL;
630}
631
632static void rb_erase_init(struct rb_node *n, struct rb_root *root)
633{
634 rb_erase(n, root);
635 RB_CLEAR_NODE(n);
636}
637
0049af73
TH
638static void throtl_rb_erase(struct rb_node *n,
639 struct throtl_service_queue *parent_sq)
e43473b7 640{
0049af73
TH
641 if (parent_sq->first_pending == n)
642 parent_sq->first_pending = NULL;
643 rb_erase_init(n, &parent_sq->pending_tree);
644 --parent_sq->nr_pending;
e43473b7
VG
645}
646
0049af73 647static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
648{
649 struct throtl_grp *tg;
650
0049af73 651 tg = throtl_rb_first(parent_sq);
e43473b7
VG
652 if (!tg)
653 return;
654
0049af73 655 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
656}
657
77216b04 658static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 659{
77216b04 660 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
0049af73 661 struct rb_node **node = &parent_sq->pending_tree.rb_node;
e43473b7
VG
662 struct rb_node *parent = NULL;
663 struct throtl_grp *__tg;
664 unsigned long key = tg->disptime;
665 int left = 1;
666
667 while (*node != NULL) {
668 parent = *node;
669 __tg = rb_entry_tg(parent);
670
671 if (time_before(key, __tg->disptime))
672 node = &parent->rb_left;
673 else {
674 node = &parent->rb_right;
675 left = 0;
676 }
677 }
678
679 if (left)
0049af73 680 parent_sq->first_pending = &tg->rb_node;
e43473b7
VG
681
682 rb_link_node(&tg->rb_node, parent, node);
0049af73 683 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
e43473b7
VG
684}
685
77216b04 686static void __throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 687{
77216b04 688 tg_service_queue_add(tg);
5b2c16aa 689 tg->flags |= THROTL_TG_PENDING;
77216b04 690 tg->service_queue.parent_sq->nr_pending++;
e43473b7
VG
691}
692
77216b04 693static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 694{
5b2c16aa 695 if (!(tg->flags & THROTL_TG_PENDING))
77216b04 696 __throtl_enqueue_tg(tg);
e43473b7
VG
697}
698
77216b04 699static void __throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 700{
77216b04 701 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
5b2c16aa 702 tg->flags &= ~THROTL_TG_PENDING;
e43473b7
VG
703}
704
77216b04 705static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 706{
5b2c16aa 707 if (tg->flags & THROTL_TG_PENDING)
77216b04 708 __throtl_dequeue_tg(tg);
e43473b7
VG
709}
710
a9131a27 711/* Call with queue lock held */
69df0ab0
TH
712static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
713 unsigned long expires)
a9131a27 714{
a41b816c 715 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
06cceedc
SL
716
717 /*
718 * Since we are adjusting the throttle limit dynamically, the sleep
719 * time calculated according to previous limit might be invalid. It's
720 * possible the cgroup sleep time is very long and no other cgroups
721 * have IO running so notify the limit changes. Make sure the cgroup
722 * doesn't sleep too long to avoid the missed notification.
723 */
724 if (time_after(expires, max_expire))
725 expires = max_expire;
69df0ab0
TH
726 mod_timer(&sq->pending_timer, expires);
727 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
728 expires - jiffies, jiffies);
a9131a27
TH
729}
730
7f52f98c
TH
731/**
732 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
733 * @sq: the service_queue to schedule dispatch for
734 * @force: force scheduling
735 *
736 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
737 * dispatch time of the first pending child. Returns %true if either timer
738 * is armed or there's no pending child left. %false if the current
739 * dispatch window is still open and the caller should continue
740 * dispatching.
741 *
742 * If @force is %true, the dispatch timer is always scheduled and this
743 * function is guaranteed to return %true. This is to be used when the
744 * caller can't dispatch itself and needs to invoke pending_timer
745 * unconditionally. Note that forced scheduling is likely to induce short
746 * delay before dispatch starts even if @sq->first_pending_disptime is not
747 * in the future and thus shouldn't be used in hot paths.
748 */
749static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
750 bool force)
e43473b7 751{
6a525600 752 /* any pending children left? */
c9e0332e 753 if (!sq->nr_pending)
7f52f98c 754 return true;
e43473b7 755
c9e0332e 756 update_min_dispatch_time(sq);
e43473b7 757
69df0ab0 758 /* is the next dispatch time in the future? */
7f52f98c 759 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 760 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 761 return true;
69df0ab0
TH
762 }
763
7f52f98c
TH
764 /* tell the caller to continue dispatching */
765 return false;
e43473b7
VG
766}
767
32ee5bc4
VG
768static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
769 bool rw, unsigned long start)
770{
771 tg->bytes_disp[rw] = 0;
772 tg->io_disp[rw] = 0;
773
774 /*
775 * Previous slice has expired. We must have trimmed it after last
776 * bio dispatch. That means since start of last slice, we never used
777 * that bandwidth. Do try to make use of that bandwidth while giving
778 * credit.
779 */
780 if (time_after_eq(start, tg->slice_start[rw]))
781 tg->slice_start[rw] = start;
782
297e3d85 783 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
32ee5bc4
VG
784 throtl_log(&tg->service_queue,
785 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
786 rw == READ ? 'R' : 'W', tg->slice_start[rw],
787 tg->slice_end[rw], jiffies);
788}
789
0f3457f6 790static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
e43473b7
VG
791{
792 tg->bytes_disp[rw] = 0;
8e89d13f 793 tg->io_disp[rw] = 0;
e43473b7 794 tg->slice_start[rw] = jiffies;
297e3d85 795 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
fda6f272
TH
796 throtl_log(&tg->service_queue,
797 "[%c] new slice start=%lu end=%lu jiffies=%lu",
798 rw == READ ? 'R' : 'W', tg->slice_start[rw],
799 tg->slice_end[rw], jiffies);
e43473b7
VG
800}
801
0f3457f6
TH
802static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
803 unsigned long jiffy_end)
d1ae8ffd 804{
297e3d85 805 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
d1ae8ffd
VG
806}
807
0f3457f6
TH
808static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
809 unsigned long jiffy_end)
e43473b7 810{
297e3d85 811 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
fda6f272
TH
812 throtl_log(&tg->service_queue,
813 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
814 rw == READ ? 'R' : 'W', tg->slice_start[rw],
815 tg->slice_end[rw], jiffies);
e43473b7
VG
816}
817
818/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 819static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
820{
821 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
5cf8c227 822 return false;
e43473b7 823
0b6bad7d 824 return true;
e43473b7
VG
825}
826
827/* Trim the used slices and adjust slice start accordingly */
0f3457f6 828static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 829{
3aad5d3e
VG
830 unsigned long nr_slices, time_elapsed, io_trim;
831 u64 bytes_trim, tmp;
e43473b7
VG
832
833 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
834
835 /*
836 * If bps are unlimited (-1), then time slice don't get
837 * renewed. Don't try to trim the slice if slice is used. A new
838 * slice will start when appropriate.
839 */
0f3457f6 840 if (throtl_slice_used(tg, rw))
e43473b7
VG
841 return;
842
d1ae8ffd
VG
843 /*
844 * A bio has been dispatched. Also adjust slice_end. It might happen
845 * that initially cgroup limit was very low resulting in high
846 * slice_end, but later limit was bumped up and bio was dispached
847 * sooner, then we need to reduce slice_end. A high bogus slice_end
848 * is bad because it does not allow new slice to start.
849 */
850
297e3d85 851 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
d1ae8ffd 852
e43473b7
VG
853 time_elapsed = jiffies - tg->slice_start[rw];
854
297e3d85 855 nr_slices = time_elapsed / tg->td->throtl_slice;
e43473b7
VG
856
857 if (!nr_slices)
858 return;
297e3d85 859 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
3aad5d3e
VG
860 do_div(tmp, HZ);
861 bytes_trim = tmp;
e43473b7 862
297e3d85
SL
863 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
864 HZ;
e43473b7 865
8e89d13f 866 if (!bytes_trim && !io_trim)
e43473b7
VG
867 return;
868
869 if (tg->bytes_disp[rw] >= bytes_trim)
870 tg->bytes_disp[rw] -= bytes_trim;
871 else
872 tg->bytes_disp[rw] = 0;
873
8e89d13f
VG
874 if (tg->io_disp[rw] >= io_trim)
875 tg->io_disp[rw] -= io_trim;
876 else
877 tg->io_disp[rw] = 0;
878
297e3d85 879 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
e43473b7 880
fda6f272
TH
881 throtl_log(&tg->service_queue,
882 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
883 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
884 tg->slice_start[rw], tg->slice_end[rw], jiffies);
e43473b7
VG
885}
886
0f3457f6
TH
887static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
888 unsigned long *wait)
e43473b7
VG
889{
890 bool rw = bio_data_dir(bio);
8e89d13f 891 unsigned int io_allowed;
e43473b7 892 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
c49c06e4 893 u64 tmp;
e43473b7 894
8e89d13f 895 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
e43473b7 896
8e89d13f
VG
897 /* Slice has just started. Consider one slice interval */
898 if (!jiffy_elapsed)
297e3d85 899 jiffy_elapsed_rnd = tg->td->throtl_slice;
8e89d13f 900
297e3d85 901 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
8e89d13f 902
c49c06e4
VG
903 /*
904 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
905 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
906 * will allow dispatch after 1 second and after that slice should
907 * have been trimmed.
908 */
909
9f626e37 910 tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
c49c06e4
VG
911 do_div(tmp, HZ);
912
913 if (tmp > UINT_MAX)
914 io_allowed = UINT_MAX;
915 else
916 io_allowed = tmp;
8e89d13f
VG
917
918 if (tg->io_disp[rw] + 1 <= io_allowed) {
e43473b7
VG
919 if (wait)
920 *wait = 0;
5cf8c227 921 return true;
e43473b7
VG
922 }
923
8e89d13f 924 /* Calc approx time to dispatch */
991f61fe 925 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
8e89d13f
VG
926
927 if (wait)
928 *wait = jiffy_wait;
0b6bad7d 929 return false;
8e89d13f
VG
930}
931
0f3457f6
TH
932static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
933 unsigned long *wait)
8e89d13f
VG
934{
935 bool rw = bio_data_dir(bio);
3aad5d3e 936 u64 bytes_allowed, extra_bytes, tmp;
8e89d13f 937 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
ea0ea2bc 938 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7
VG
939
940 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
941
942 /* Slice has just started. Consider one slice interval */
943 if (!jiffy_elapsed)
297e3d85 944 jiffy_elapsed_rnd = tg->td->throtl_slice;
e43473b7 945
297e3d85 946 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
e43473b7 947
9f626e37 948 tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
5e901a2b 949 do_div(tmp, HZ);
3aad5d3e 950 bytes_allowed = tmp;
e43473b7 951
ea0ea2bc 952 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
e43473b7
VG
953 if (wait)
954 *wait = 0;
5cf8c227 955 return true;
e43473b7
VG
956 }
957
958 /* Calc approx time to dispatch */
ea0ea2bc 959 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
9f626e37 960 jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
e43473b7
VG
961
962 if (!jiffy_wait)
963 jiffy_wait = 1;
964
965 /*
966 * This wait time is without taking into consideration the rounding
967 * up we did. Add that time also.
968 */
969 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
e43473b7
VG
970 if (wait)
971 *wait = jiffy_wait;
0b6bad7d 972 return false;
8e89d13f
VG
973}
974
975/*
976 * Returns whether one can dispatch a bio or not. Also returns approx number
977 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
978 */
0f3457f6
TH
979static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
980 unsigned long *wait)
8e89d13f
VG
981{
982 bool rw = bio_data_dir(bio);
983 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
984
985 /*
986 * Currently whole state machine of group depends on first bio
987 * queued in the group bio list. So one should not be calling
988 * this function with a different bio if there are other bios
989 * queued.
990 */
73f0d49a 991 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 992 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 993
8e89d13f 994 /* If tg->bps = -1, then BW is unlimited */
9f626e37
SL
995 if (tg_bps_limit(tg, rw) == U64_MAX &&
996 tg_iops_limit(tg, rw) == UINT_MAX) {
8e89d13f
VG
997 if (wait)
998 *wait = 0;
5cf8c227 999 return true;
8e89d13f
VG
1000 }
1001
1002 /*
1003 * If previous slice expired, start a new one otherwise renew/extend
1004 * existing slice to make sure it is at least throtl_slice interval
164c80ed
VG
1005 * long since now. New slice is started only for empty throttle group.
1006 * If there is queued bio, that means there should be an active
1007 * slice and it should be extended instead.
8e89d13f 1008 */
164c80ed 1009 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
0f3457f6 1010 throtl_start_new_slice(tg, rw);
8e89d13f 1011 else {
297e3d85
SL
1012 if (time_before(tg->slice_end[rw],
1013 jiffies + tg->td->throtl_slice))
1014 throtl_extend_slice(tg, rw,
1015 jiffies + tg->td->throtl_slice);
8e89d13f
VG
1016 }
1017
0f3457f6
TH
1018 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
1019 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
8e89d13f
VG
1020 if (wait)
1021 *wait = 0;
0b6bad7d 1022 return true;
8e89d13f
VG
1023 }
1024
1025 max_wait = max(bps_wait, iops_wait);
1026
1027 if (wait)
1028 *wait = max_wait;
1029
1030 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 1031 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7 1032
0b6bad7d 1033 return false;
e43473b7
VG
1034}
1035
1036static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1037{
1038 bool rw = bio_data_dir(bio);
ea0ea2bc 1039 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7
VG
1040
1041 /* Charge the bio to the group */
ea0ea2bc 1042 tg->bytes_disp[rw] += bio_size;
8e89d13f 1043 tg->io_disp[rw]++;
ea0ea2bc 1044 tg->last_bytes_disp[rw] += bio_size;
3f0abd80 1045 tg->last_io_disp[rw]++;
e43473b7 1046
2a0f61e6 1047 /*
8d2bbd4c 1048 * BIO_THROTTLED is used to prevent the same bio to be throttled
2a0f61e6
TH
1049 * more than once as a throttled bio will go through blk-throtl the
1050 * second time when it eventually gets issued. Set it when a bio
1051 * is being charged to a tg.
2a0f61e6 1052 */
8d2bbd4c
CH
1053 if (!bio_flagged(bio, BIO_THROTTLED))
1054 bio_set_flag(bio, BIO_THROTTLED);
e43473b7
VG
1055}
1056
c5cc2070
TH
1057/**
1058 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1059 * @bio: bio to add
1060 * @qn: qnode to use
1061 * @tg: the target throtl_grp
1062 *
1063 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1064 * tg->qnode_on_self[] is used.
1065 */
1066static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1067 struct throtl_grp *tg)
e43473b7 1068{
73f0d49a 1069 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1070 bool rw = bio_data_dir(bio);
1071
c5cc2070
TH
1072 if (!qn)
1073 qn = &tg->qnode_on_self[rw];
1074
0e9f4164
TH
1075 /*
1076 * If @tg doesn't currently have any bios queued in the same
1077 * direction, queueing @bio can change when @tg should be
1078 * dispatched. Mark that @tg was empty. This is automatically
1079 * cleaered on the next tg_update_disptime().
1080 */
1081 if (!sq->nr_queued[rw])
1082 tg->flags |= THROTL_TG_WAS_EMPTY;
1083
c5cc2070
TH
1084 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1085
73f0d49a 1086 sq->nr_queued[rw]++;
77216b04 1087 throtl_enqueue_tg(tg);
e43473b7
VG
1088}
1089
77216b04 1090static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 1091{
73f0d49a 1092 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1093 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1094 struct bio *bio;
1095
d609af3a
ME
1096 bio = throtl_peek_queued(&sq->queued[READ]);
1097 if (bio)
0f3457f6 1098 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 1099
d609af3a
ME
1100 bio = throtl_peek_queued(&sq->queued[WRITE]);
1101 if (bio)
0f3457f6 1102 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
1103
1104 min_wait = min(read_wait, write_wait);
1105 disptime = jiffies + min_wait;
1106
e43473b7 1107 /* Update dispatch time */
77216b04 1108 throtl_dequeue_tg(tg);
e43473b7 1109 tg->disptime = disptime;
77216b04 1110 throtl_enqueue_tg(tg);
0e9f4164
TH
1111
1112 /* see throtl_add_bio_tg() */
1113 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
1114}
1115
32ee5bc4
VG
1116static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1117 struct throtl_grp *parent_tg, bool rw)
1118{
1119 if (throtl_slice_used(parent_tg, rw)) {
1120 throtl_start_new_slice_with_credit(parent_tg, rw,
1121 child_tg->slice_start[rw]);
1122 }
1123
1124}
1125
77216b04 1126static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 1127{
73f0d49a 1128 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
1129 struct throtl_service_queue *parent_sq = sq->parent_sq;
1130 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 1131 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
1132 struct bio *bio;
1133
c5cc2070
TH
1134 /*
1135 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1136 * from @tg may put its reference and @parent_sq might end up
1137 * getting released prematurely. Remember the tg to put and put it
1138 * after @bio is transferred to @parent_sq.
1139 */
1140 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 1141 sq->nr_queued[rw]--;
e43473b7
VG
1142
1143 throtl_charge_bio(tg, bio);
6bc9c2b4
TH
1144
1145 /*
1146 * If our parent is another tg, we just need to transfer @bio to
1147 * the parent using throtl_add_bio_tg(). If our parent is
1148 * @td->service_queue, @bio is ready to be issued. Put it on its
1149 * bio_lists[] and decrease total number queued. The caller is
1150 * responsible for issuing these bios.
1151 */
1152 if (parent_tg) {
c5cc2070 1153 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
32ee5bc4 1154 start_parent_slice_with_credit(tg, parent_tg, rw);
6bc9c2b4 1155 } else {
c5cc2070
TH
1156 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1157 &parent_sq->queued[rw]);
6bc9c2b4
TH
1158 BUG_ON(tg->td->nr_queued[rw] <= 0);
1159 tg->td->nr_queued[rw]--;
1160 }
e43473b7 1161
0f3457f6 1162 throtl_trim_slice(tg, rw);
6bc9c2b4 1163
c5cc2070
TH
1164 if (tg_to_put)
1165 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
1166}
1167
77216b04 1168static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 1169{
73f0d49a 1170 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1171 unsigned int nr_reads = 0, nr_writes = 0;
1172 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
c2f6805d 1173 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
e43473b7
VG
1174 struct bio *bio;
1175
1176 /* Try to dispatch 75% READS and 25% WRITES */
1177
c5cc2070 1178 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 1179 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1180
77216b04 1181 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1182 nr_reads++;
1183
1184 if (nr_reads >= max_nr_reads)
1185 break;
1186 }
1187
c5cc2070 1188 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 1189 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1190
77216b04 1191 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1192 nr_writes++;
1193
1194 if (nr_writes >= max_nr_writes)
1195 break;
1196 }
1197
1198 return nr_reads + nr_writes;
1199}
1200
651930bc 1201static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
1202{
1203 unsigned int nr_disp = 0;
e43473b7
VG
1204
1205 while (1) {
73f0d49a 1206 struct throtl_grp *tg = throtl_rb_first(parent_sq);
2ab74cd2 1207 struct throtl_service_queue *sq;
e43473b7
VG
1208
1209 if (!tg)
1210 break;
1211
1212 if (time_before(jiffies, tg->disptime))
1213 break;
1214
77216b04 1215 throtl_dequeue_tg(tg);
e43473b7 1216
77216b04 1217 nr_disp += throtl_dispatch_tg(tg);
e43473b7 1218
2ab74cd2 1219 sq = &tg->service_queue;
73f0d49a 1220 if (sq->nr_queued[0] || sq->nr_queued[1])
77216b04 1221 tg_update_disptime(tg);
e43473b7
VG
1222
1223 if (nr_disp >= throtl_quantum)
1224 break;
1225 }
1226
1227 return nr_disp;
1228}
1229
c79892c5
SL
1230static bool throtl_can_upgrade(struct throtl_data *td,
1231 struct throtl_grp *this_tg);
6e1a5704
TH
1232/**
1233 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1234 * @arg: the throtl_service_queue being serviced
1235 *
1236 * This timer is armed when a child throtl_grp with active bio's become
1237 * pending and queued on the service_queue's pending_tree and expires when
1238 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1239 * dispatches bio's from the children throtl_grps to the parent
1240 * service_queue.
1241 *
1242 * If the parent's parent is another throtl_grp, dispatching is propagated
1243 * by either arming its pending_timer or repeating dispatch directly. If
1244 * the top-level service_tree is reached, throtl_data->dispatch_work is
1245 * kicked so that the ready bio's are issued.
6e1a5704 1246 */
e99e88a9 1247static void throtl_pending_timer_fn(struct timer_list *t)
69df0ab0 1248{
e99e88a9 1249 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
2e48a530 1250 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1251 struct throtl_data *td = sq_to_td(sq);
cb76199c 1252 struct request_queue *q = td->queue;
2e48a530
TH
1253 struct throtl_service_queue *parent_sq;
1254 bool dispatched;
6e1a5704 1255 int ret;
e43473b7
VG
1256
1257 spin_lock_irq(q->queue_lock);
c79892c5
SL
1258 if (throtl_can_upgrade(td, NULL))
1259 throtl_upgrade_state(td);
1260
2e48a530
TH
1261again:
1262 parent_sq = sq->parent_sq;
1263 dispatched = false;
e43473b7 1264
7f52f98c
TH
1265 while (true) {
1266 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1267 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1268 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1269
1270 ret = throtl_select_dispatch(sq);
1271 if (ret) {
7f52f98c
TH
1272 throtl_log(sq, "bios disp=%u", ret);
1273 dispatched = true;
1274 }
e43473b7 1275
7f52f98c
TH
1276 if (throtl_schedule_next_dispatch(sq, false))
1277 break;
e43473b7 1278
7f52f98c
TH
1279 /* this dispatch windows is still open, relax and repeat */
1280 spin_unlock_irq(q->queue_lock);
1281 cpu_relax();
1282 spin_lock_irq(q->queue_lock);
651930bc 1283 }
e43473b7 1284
2e48a530
TH
1285 if (!dispatched)
1286 goto out_unlock;
6e1a5704 1287
2e48a530
TH
1288 if (parent_sq) {
1289 /* @parent_sq is another throl_grp, propagate dispatch */
1290 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1291 tg_update_disptime(tg);
1292 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1293 /* window is already open, repeat dispatching */
1294 sq = parent_sq;
1295 tg = sq_to_tg(sq);
1296 goto again;
1297 }
1298 }
1299 } else {
1300 /* reached the top-level, queue issueing */
1301 queue_work(kthrotld_workqueue, &td->dispatch_work);
1302 }
1303out_unlock:
e43473b7 1304 spin_unlock_irq(q->queue_lock);
6e1a5704 1305}
e43473b7 1306
6e1a5704
TH
1307/**
1308 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1309 * @work: work item being executed
1310 *
1311 * This function is queued for execution when bio's reach the bio_lists[]
1312 * of throtl_data->service_queue. Those bio's are ready and issued by this
1313 * function.
1314 */
8876e140 1315static void blk_throtl_dispatch_work_fn(struct work_struct *work)
6e1a5704
TH
1316{
1317 struct throtl_data *td = container_of(work, struct throtl_data,
1318 dispatch_work);
1319 struct throtl_service_queue *td_sq = &td->service_queue;
1320 struct request_queue *q = td->queue;
1321 struct bio_list bio_list_on_stack;
1322 struct bio *bio;
1323 struct blk_plug plug;
1324 int rw;
1325
1326 bio_list_init(&bio_list_on_stack);
1327
1328 spin_lock_irq(q->queue_lock);
c5cc2070
TH
1329 for (rw = READ; rw <= WRITE; rw++)
1330 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1331 bio_list_add(&bio_list_on_stack, bio);
6e1a5704
TH
1332 spin_unlock_irq(q->queue_lock);
1333
1334 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1335 blk_start_plug(&plug);
e43473b7
VG
1336 while((bio = bio_list_pop(&bio_list_on_stack)))
1337 generic_make_request(bio);
69d60eb9 1338 blk_finish_plug(&plug);
e43473b7 1339 }
e43473b7
VG
1340}
1341
f95a04af
TH
1342static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1343 int off)
60c2bc2d 1344{
f95a04af
TH
1345 struct throtl_grp *tg = pd_to_tg(pd);
1346 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1347
2ab5492d 1348 if (v == U64_MAX)
60c2bc2d 1349 return 0;
f95a04af 1350 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1351}
1352
f95a04af
TH
1353static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1354 int off)
e43473b7 1355{
f95a04af
TH
1356 struct throtl_grp *tg = pd_to_tg(pd);
1357 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1358
2ab5492d 1359 if (v == UINT_MAX)
af133ceb 1360 return 0;
f95a04af 1361 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1362}
1363
2da8ca82 1364static int tg_print_conf_u64(struct seq_file *sf, void *v)
8e89d13f 1365{
2da8ca82
TH
1366 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1367 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1368 return 0;
8e89d13f
VG
1369}
1370
2da8ca82 1371static int tg_print_conf_uint(struct seq_file *sf, void *v)
8e89d13f 1372{
2da8ca82
TH
1373 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1374 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1375 return 0;
60c2bc2d
TH
1376}
1377
9bb67aeb 1378static void tg_conf_updated(struct throtl_grp *tg, bool global)
60c2bc2d 1379{
69948b07 1380 struct throtl_service_queue *sq = &tg->service_queue;
492eb21b 1381 struct cgroup_subsys_state *pos_css;
69948b07 1382 struct blkcg_gq *blkg;
af133ceb 1383
fda6f272
TH
1384 throtl_log(&tg->service_queue,
1385 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
9f626e37
SL
1386 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1387 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
632b4493 1388
693e751e
TH
1389 /*
1390 * Update has_rules[] flags for the updated tg's subtree. A tg is
1391 * considered to have rules if either the tg itself or any of its
1392 * ancestors has rules. This identifies groups without any
1393 * restrictions in the whole hierarchy and allows them to bypass
1394 * blk-throttle.
1395 */
9bb67aeb
SL
1396 blkg_for_each_descendant_pre(blkg, pos_css,
1397 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
5b81fc3c
SL
1398 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1399 struct throtl_grp *parent_tg;
1400
1401 tg_update_has_rules(this_tg);
1402 /* ignore root/second level */
1403 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1404 !blkg->parent->parent)
1405 continue;
1406 parent_tg = blkg_to_tg(blkg->parent);
1407 /*
1408 * make sure all children has lower idle time threshold and
1409 * higher latency target
1410 */
1411 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1412 parent_tg->idletime_threshold);
1413 this_tg->latency_target = max(this_tg->latency_target,
1414 parent_tg->latency_target);
1415 }
693e751e 1416
632b4493
TH
1417 /*
1418 * We're already holding queue_lock and know @tg is valid. Let's
1419 * apply the new config directly.
1420 *
1421 * Restart the slices for both READ and WRITES. It might happen
1422 * that a group's limit are dropped suddenly and we don't want to
1423 * account recently dispatched IO with new low rate.
1424 */
0f3457f6
TH
1425 throtl_start_new_slice(tg, 0);
1426 throtl_start_new_slice(tg, 1);
632b4493 1427
5b2c16aa 1428 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1429 tg_update_disptime(tg);
7f52f98c 1430 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1431 }
69948b07
TH
1432}
1433
1434static ssize_t tg_set_conf(struct kernfs_open_file *of,
1435 char *buf, size_t nbytes, loff_t off, bool is_u64)
1436{
1437 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1438 struct blkg_conf_ctx ctx;
1439 struct throtl_grp *tg;
1440 int ret;
1441 u64 v;
1442
1443 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1444 if (ret)
1445 return ret;
1446
1447 ret = -EINVAL;
1448 if (sscanf(ctx.body, "%llu", &v) != 1)
1449 goto out_finish;
1450 if (!v)
2ab5492d 1451 v = U64_MAX;
69948b07
TH
1452
1453 tg = blkg_to_tg(ctx.blkg);
1454
1455 if (is_u64)
1456 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1457 else
1458 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
60c2bc2d 1459
9bb67aeb 1460 tg_conf_updated(tg, false);
36aa9e5f
TH
1461 ret = 0;
1462out_finish:
60c2bc2d 1463 blkg_conf_finish(&ctx);
36aa9e5f 1464 return ret ?: nbytes;
8e89d13f
VG
1465}
1466
451af504
TH
1467static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1468 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1469{
451af504 1470 return tg_set_conf(of, buf, nbytes, off, true);
60c2bc2d
TH
1471}
1472
451af504
TH
1473static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1474 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1475{
451af504 1476 return tg_set_conf(of, buf, nbytes, off, false);
60c2bc2d
TH
1477}
1478
880f50e2 1479static struct cftype throtl_legacy_files[] = {
60c2bc2d
TH
1480 {
1481 .name = "throttle.read_bps_device",
9f626e37 1482 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
2da8ca82 1483 .seq_show = tg_print_conf_u64,
451af504 1484 .write = tg_set_conf_u64,
60c2bc2d
TH
1485 },
1486 {
1487 .name = "throttle.write_bps_device",
9f626e37 1488 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
2da8ca82 1489 .seq_show = tg_print_conf_u64,
451af504 1490 .write = tg_set_conf_u64,
60c2bc2d
TH
1491 },
1492 {
1493 .name = "throttle.read_iops_device",
9f626e37 1494 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
2da8ca82 1495 .seq_show = tg_print_conf_uint,
451af504 1496 .write = tg_set_conf_uint,
60c2bc2d
TH
1497 },
1498 {
1499 .name = "throttle.write_iops_device",
9f626e37 1500 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
2da8ca82 1501 .seq_show = tg_print_conf_uint,
451af504 1502 .write = tg_set_conf_uint,
60c2bc2d
TH
1503 },
1504 {
1505 .name = "throttle.io_service_bytes",
77ea7338
TH
1506 .private = (unsigned long)&blkcg_policy_throtl,
1507 .seq_show = blkg_print_stat_bytes,
60c2bc2d 1508 },
17534c6f 1509 {
1510 .name = "throttle.io_service_bytes_recursive",
1511 .private = (unsigned long)&blkcg_policy_throtl,
1512 .seq_show = blkg_print_stat_bytes_recursive,
1513 },
60c2bc2d
TH
1514 {
1515 .name = "throttle.io_serviced",
77ea7338
TH
1516 .private = (unsigned long)&blkcg_policy_throtl,
1517 .seq_show = blkg_print_stat_ios,
60c2bc2d 1518 },
17534c6f 1519 {
1520 .name = "throttle.io_serviced_recursive",
1521 .private = (unsigned long)&blkcg_policy_throtl,
1522 .seq_show = blkg_print_stat_ios_recursive,
1523 },
60c2bc2d
TH
1524 { } /* terminate */
1525};
1526
cd5ab1b0 1527static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
2ee867dc
TH
1528 int off)
1529{
1530 struct throtl_grp *tg = pd_to_tg(pd);
1531 const char *dname = blkg_dev_name(pd->blkg);
1532 char bufs[4][21] = { "max", "max", "max", "max" };
cd5ab1b0
SL
1533 u64 bps_dft;
1534 unsigned int iops_dft;
ada75b6e 1535 char idle_time[26] = "";
ec80991d 1536 char latency_time[26] = "";
2ee867dc
TH
1537
1538 if (!dname)
1539 return 0;
9f626e37 1540
cd5ab1b0
SL
1541 if (off == LIMIT_LOW) {
1542 bps_dft = 0;
1543 iops_dft = 0;
1544 } else {
1545 bps_dft = U64_MAX;
1546 iops_dft = UINT_MAX;
1547 }
1548
1549 if (tg->bps_conf[READ][off] == bps_dft &&
1550 tg->bps_conf[WRITE][off] == bps_dft &&
1551 tg->iops_conf[READ][off] == iops_dft &&
ada75b6e 1552 tg->iops_conf[WRITE][off] == iops_dft &&
ec80991d 1553 (off != LIMIT_LOW ||
b4f428ef 1554 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
5b81fc3c 1555 tg->latency_target_conf == DFL_LATENCY_TARGET)))
2ee867dc
TH
1556 return 0;
1557
9bb67aeb 1558 if (tg->bps_conf[READ][off] != U64_MAX)
9f626e37 1559 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
cd5ab1b0 1560 tg->bps_conf[READ][off]);
9bb67aeb 1561 if (tg->bps_conf[WRITE][off] != U64_MAX)
9f626e37 1562 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
cd5ab1b0 1563 tg->bps_conf[WRITE][off]);
9bb67aeb 1564 if (tg->iops_conf[READ][off] != UINT_MAX)
9f626e37 1565 snprintf(bufs[2], sizeof(bufs[2]), "%u",
cd5ab1b0 1566 tg->iops_conf[READ][off]);
9bb67aeb 1567 if (tg->iops_conf[WRITE][off] != UINT_MAX)
9f626e37 1568 snprintf(bufs[3], sizeof(bufs[3]), "%u",
cd5ab1b0 1569 tg->iops_conf[WRITE][off]);
ada75b6e 1570 if (off == LIMIT_LOW) {
5b81fc3c 1571 if (tg->idletime_threshold_conf == ULONG_MAX)
ada75b6e
SL
1572 strcpy(idle_time, " idle=max");
1573 else
1574 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
5b81fc3c 1575 tg->idletime_threshold_conf);
ec80991d 1576
5b81fc3c 1577 if (tg->latency_target_conf == ULONG_MAX)
ec80991d
SL
1578 strcpy(latency_time, " latency=max");
1579 else
1580 snprintf(latency_time, sizeof(latency_time),
5b81fc3c 1581 " latency=%lu", tg->latency_target_conf);
ada75b6e 1582 }
2ee867dc 1583
ec80991d
SL
1584 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1585 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1586 latency_time);
2ee867dc
TH
1587 return 0;
1588}
1589
cd5ab1b0 1590static int tg_print_limit(struct seq_file *sf, void *v)
2ee867dc 1591{
cd5ab1b0 1592 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
2ee867dc
TH
1593 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1594 return 0;
1595}
1596
cd5ab1b0 1597static ssize_t tg_set_limit(struct kernfs_open_file *of,
2ee867dc
TH
1598 char *buf, size_t nbytes, loff_t off)
1599{
1600 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1601 struct blkg_conf_ctx ctx;
1602 struct throtl_grp *tg;
1603 u64 v[4];
ada75b6e 1604 unsigned long idle_time;
ec80991d 1605 unsigned long latency_time;
2ee867dc 1606 int ret;
cd5ab1b0 1607 int index = of_cft(of)->private;
2ee867dc
TH
1608
1609 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1610 if (ret)
1611 return ret;
1612
1613 tg = blkg_to_tg(ctx.blkg);
1614
cd5ab1b0
SL
1615 v[0] = tg->bps_conf[READ][index];
1616 v[1] = tg->bps_conf[WRITE][index];
1617 v[2] = tg->iops_conf[READ][index];
1618 v[3] = tg->iops_conf[WRITE][index];
2ee867dc 1619
5b81fc3c
SL
1620 idle_time = tg->idletime_threshold_conf;
1621 latency_time = tg->latency_target_conf;
2ee867dc
TH
1622 while (true) {
1623 char tok[27]; /* wiops=18446744073709551616 */
1624 char *p;
2ab5492d 1625 u64 val = U64_MAX;
2ee867dc
TH
1626 int len;
1627
1628 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1629 break;
1630 if (tok[0] == '\0')
1631 break;
1632 ctx.body += len;
1633
1634 ret = -EINVAL;
1635 p = tok;
1636 strsep(&p, "=");
1637 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1638 goto out_finish;
1639
1640 ret = -ERANGE;
1641 if (!val)
1642 goto out_finish;
1643
1644 ret = -EINVAL;
1645 if (!strcmp(tok, "rbps"))
1646 v[0] = val;
1647 else if (!strcmp(tok, "wbps"))
1648 v[1] = val;
1649 else if (!strcmp(tok, "riops"))
1650 v[2] = min_t(u64, val, UINT_MAX);
1651 else if (!strcmp(tok, "wiops"))
1652 v[3] = min_t(u64, val, UINT_MAX);
ada75b6e
SL
1653 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1654 idle_time = val;
ec80991d
SL
1655 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1656 latency_time = val;
2ee867dc
TH
1657 else
1658 goto out_finish;
1659 }
1660
cd5ab1b0
SL
1661 tg->bps_conf[READ][index] = v[0];
1662 tg->bps_conf[WRITE][index] = v[1];
1663 tg->iops_conf[READ][index] = v[2];
1664 tg->iops_conf[WRITE][index] = v[3];
2ee867dc 1665
cd5ab1b0
SL
1666 if (index == LIMIT_MAX) {
1667 tg->bps[READ][index] = v[0];
1668 tg->bps[WRITE][index] = v[1];
1669 tg->iops[READ][index] = v[2];
1670 tg->iops[WRITE][index] = v[3];
1671 }
1672 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1673 tg->bps_conf[READ][LIMIT_MAX]);
1674 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1675 tg->bps_conf[WRITE][LIMIT_MAX]);
1676 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1677 tg->iops_conf[READ][LIMIT_MAX]);
1678 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1679 tg->iops_conf[WRITE][LIMIT_MAX]);
b4f428ef
SL
1680 tg->idletime_threshold_conf = idle_time;
1681 tg->latency_target_conf = latency_time;
1682
1683 /* force user to configure all settings for low limit */
1684 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1685 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1686 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1687 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1688 tg->bps[READ][LIMIT_LOW] = 0;
1689 tg->bps[WRITE][LIMIT_LOW] = 0;
1690 tg->iops[READ][LIMIT_LOW] = 0;
1691 tg->iops[WRITE][LIMIT_LOW] = 0;
1692 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1693 tg->latency_target = DFL_LATENCY_TARGET;
1694 } else if (index == LIMIT_LOW) {
5b81fc3c 1695 tg->idletime_threshold = tg->idletime_threshold_conf;
5b81fc3c 1696 tg->latency_target = tg->latency_target_conf;
cd5ab1b0 1697 }
b4f428ef
SL
1698
1699 blk_throtl_update_limit_valid(tg->td);
1700 if (tg->td->limit_valid[LIMIT_LOW]) {
1701 if (index == LIMIT_LOW)
1702 tg->td->limit_index = LIMIT_LOW;
1703 } else
1704 tg->td->limit_index = LIMIT_MAX;
9bb67aeb
SL
1705 tg_conf_updated(tg, index == LIMIT_LOW &&
1706 tg->td->limit_valid[LIMIT_LOW]);
2ee867dc
TH
1707 ret = 0;
1708out_finish:
1709 blkg_conf_finish(&ctx);
1710 return ret ?: nbytes;
1711}
1712
1713static struct cftype throtl_files[] = {
cd5ab1b0
SL
1714#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1715 {
1716 .name = "low",
1717 .flags = CFTYPE_NOT_ON_ROOT,
1718 .seq_show = tg_print_limit,
1719 .write = tg_set_limit,
1720 .private = LIMIT_LOW,
1721 },
1722#endif
2ee867dc
TH
1723 {
1724 .name = "max",
1725 .flags = CFTYPE_NOT_ON_ROOT,
cd5ab1b0
SL
1726 .seq_show = tg_print_limit,
1727 .write = tg_set_limit,
1728 .private = LIMIT_MAX,
2ee867dc
TH
1729 },
1730 { } /* terminate */
1731};
1732
da527770 1733static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1734{
1735 struct throtl_data *td = q->td;
1736
69df0ab0 1737 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1738}
1739
3c798398 1740static struct blkcg_policy blkcg_policy_throtl = {
2ee867dc 1741 .dfl_cftypes = throtl_files,
880f50e2 1742 .legacy_cftypes = throtl_legacy_files,
f9fcc2d3 1743
001bea73 1744 .pd_alloc_fn = throtl_pd_alloc,
f9fcc2d3 1745 .pd_init_fn = throtl_pd_init,
693e751e 1746 .pd_online_fn = throtl_pd_online,
cd5ab1b0 1747 .pd_offline_fn = throtl_pd_offline,
001bea73 1748 .pd_free_fn = throtl_pd_free,
e43473b7
VG
1749};
1750
3f0abd80
SL
1751static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1752{
1753 unsigned long rtime = jiffies, wtime = jiffies;
1754
1755 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1756 rtime = tg->last_low_overflow_time[READ];
1757 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1758 wtime = tg->last_low_overflow_time[WRITE];
1759 return min(rtime, wtime);
1760}
1761
1762/* tg should not be an intermediate node */
1763static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1764{
1765 struct throtl_service_queue *parent_sq;
1766 struct throtl_grp *parent = tg;
1767 unsigned long ret = __tg_last_low_overflow_time(tg);
1768
1769 while (true) {
1770 parent_sq = parent->service_queue.parent_sq;
1771 parent = sq_to_tg(parent_sq);
1772 if (!parent)
1773 break;
1774
1775 /*
1776 * The parent doesn't have low limit, it always reaches low
1777 * limit. Its overflow time is useless for children
1778 */
1779 if (!parent->bps[READ][LIMIT_LOW] &&
1780 !parent->iops[READ][LIMIT_LOW] &&
1781 !parent->bps[WRITE][LIMIT_LOW] &&
1782 !parent->iops[WRITE][LIMIT_LOW])
1783 continue;
1784 if (time_after(__tg_last_low_overflow_time(parent), ret))
1785 ret = __tg_last_low_overflow_time(parent);
1786 }
1787 return ret;
1788}
1789
9e234eea
SL
1790static bool throtl_tg_is_idle(struct throtl_grp *tg)
1791{
1792 /*
1793 * cgroup is idle if:
1794 * - single idle is too long, longer than a fixed value (in case user
b4f428ef 1795 * configure a too big threshold) or 4 times of idletime threshold
9e234eea 1796 * - average think time is more than threshold
53696b8d 1797 * - IO latency is largely below threshold
9e234eea 1798 */
b4f428ef 1799 unsigned long time;
4cff729f 1800 bool ret;
9e234eea 1801
b4f428ef
SL
1802 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1803 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1804 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1805 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1806 tg->avg_idletime > tg->idletime_threshold ||
1807 (tg->latency_target && tg->bio_cnt &&
53696b8d 1808 tg->bad_bio_cnt * 5 < tg->bio_cnt);
4cff729f
SL
1809 throtl_log(&tg->service_queue,
1810 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1811 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1812 tg->bio_cnt, ret, tg->td->scale);
1813 return ret;
9e234eea
SL
1814}
1815
c79892c5
SL
1816static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1817{
1818 struct throtl_service_queue *sq = &tg->service_queue;
1819 bool read_limit, write_limit;
1820
1821 /*
1822 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1823 * reaches), it's ok to upgrade to next limit
1824 */
1825 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1826 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1827 if (!read_limit && !write_limit)
1828 return true;
1829 if (read_limit && sq->nr_queued[READ] &&
1830 (!write_limit || sq->nr_queued[WRITE]))
1831 return true;
1832 if (write_limit && sq->nr_queued[WRITE] &&
1833 (!read_limit || sq->nr_queued[READ]))
1834 return true;
aec24246
SL
1835
1836 if (time_after_eq(jiffies,
fa6fb5aa
SL
1837 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1838 throtl_tg_is_idle(tg))
aec24246 1839 return true;
c79892c5
SL
1840 return false;
1841}
1842
1843static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1844{
1845 while (true) {
1846 if (throtl_tg_can_upgrade(tg))
1847 return true;
1848 tg = sq_to_tg(tg->service_queue.parent_sq);
1849 if (!tg || !tg_to_blkg(tg)->parent)
1850 return false;
1851 }
1852 return false;
1853}
1854
1855static bool throtl_can_upgrade(struct throtl_data *td,
1856 struct throtl_grp *this_tg)
1857{
1858 struct cgroup_subsys_state *pos_css;
1859 struct blkcg_gq *blkg;
1860
1861 if (td->limit_index != LIMIT_LOW)
1862 return false;
1863
297e3d85 1864 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
3f0abd80
SL
1865 return false;
1866
c79892c5
SL
1867 rcu_read_lock();
1868 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1869 struct throtl_grp *tg = blkg_to_tg(blkg);
1870
1871 if (tg == this_tg)
1872 continue;
1873 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1874 continue;
1875 if (!throtl_hierarchy_can_upgrade(tg)) {
1876 rcu_read_unlock();
1877 return false;
1878 }
1879 }
1880 rcu_read_unlock();
1881 return true;
1882}
1883
fa6fb5aa
SL
1884static void throtl_upgrade_check(struct throtl_grp *tg)
1885{
1886 unsigned long now = jiffies;
1887
1888 if (tg->td->limit_index != LIMIT_LOW)
1889 return;
1890
1891 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1892 return;
1893
1894 tg->last_check_time = now;
1895
1896 if (!time_after_eq(now,
1897 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1898 return;
1899
1900 if (throtl_can_upgrade(tg->td, NULL))
1901 throtl_upgrade_state(tg->td);
1902}
1903
c79892c5
SL
1904static void throtl_upgrade_state(struct throtl_data *td)
1905{
1906 struct cgroup_subsys_state *pos_css;
1907 struct blkcg_gq *blkg;
1908
4cff729f 1909 throtl_log(&td->service_queue, "upgrade to max");
c79892c5 1910 td->limit_index = LIMIT_MAX;
3f0abd80 1911 td->low_upgrade_time = jiffies;
7394e31f 1912 td->scale = 0;
c79892c5
SL
1913 rcu_read_lock();
1914 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1915 struct throtl_grp *tg = blkg_to_tg(blkg);
1916 struct throtl_service_queue *sq = &tg->service_queue;
1917
1918 tg->disptime = jiffies - 1;
1919 throtl_select_dispatch(sq);
4f02fb76 1920 throtl_schedule_next_dispatch(sq, true);
c79892c5
SL
1921 }
1922 rcu_read_unlock();
1923 throtl_select_dispatch(&td->service_queue);
4f02fb76 1924 throtl_schedule_next_dispatch(&td->service_queue, true);
c79892c5
SL
1925 queue_work(kthrotld_workqueue, &td->dispatch_work);
1926}
1927
3f0abd80
SL
1928static void throtl_downgrade_state(struct throtl_data *td, int new)
1929{
7394e31f
SL
1930 td->scale /= 2;
1931
4cff729f 1932 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
7394e31f
SL
1933 if (td->scale) {
1934 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1935 return;
1936 }
1937
3f0abd80
SL
1938 td->limit_index = new;
1939 td->low_downgrade_time = jiffies;
1940}
1941
1942static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1943{
1944 struct throtl_data *td = tg->td;
1945 unsigned long now = jiffies;
1946
1947 /*
1948 * If cgroup is below low limit, consider downgrade and throttle other
1949 * cgroups
1950 */
297e3d85
SL
1951 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1952 time_after_eq(now, tg_last_low_overflow_time(tg) +
fa6fb5aa
SL
1953 td->throtl_slice) &&
1954 (!throtl_tg_is_idle(tg) ||
1955 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
3f0abd80
SL
1956 return true;
1957 return false;
1958}
1959
1960static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1961{
1962 while (true) {
1963 if (!throtl_tg_can_downgrade(tg))
1964 return false;
1965 tg = sq_to_tg(tg->service_queue.parent_sq);
1966 if (!tg || !tg_to_blkg(tg)->parent)
1967 break;
1968 }
1969 return true;
1970}
1971
1972static void throtl_downgrade_check(struct throtl_grp *tg)
1973{
1974 uint64_t bps;
1975 unsigned int iops;
1976 unsigned long elapsed_time;
1977 unsigned long now = jiffies;
1978
1979 if (tg->td->limit_index != LIMIT_MAX ||
1980 !tg->td->limit_valid[LIMIT_LOW])
1981 return;
1982 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1983 return;
297e3d85 1984 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
3f0abd80
SL
1985 return;
1986
1987 elapsed_time = now - tg->last_check_time;
1988 tg->last_check_time = now;
1989
297e3d85
SL
1990 if (time_before(now, tg_last_low_overflow_time(tg) +
1991 tg->td->throtl_slice))
3f0abd80
SL
1992 return;
1993
1994 if (tg->bps[READ][LIMIT_LOW]) {
1995 bps = tg->last_bytes_disp[READ] * HZ;
1996 do_div(bps, elapsed_time);
1997 if (bps >= tg->bps[READ][LIMIT_LOW])
1998 tg->last_low_overflow_time[READ] = now;
1999 }
2000
2001 if (tg->bps[WRITE][LIMIT_LOW]) {
2002 bps = tg->last_bytes_disp[WRITE] * HZ;
2003 do_div(bps, elapsed_time);
2004 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2005 tg->last_low_overflow_time[WRITE] = now;
2006 }
2007
2008 if (tg->iops[READ][LIMIT_LOW]) {
2009 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2010 if (iops >= tg->iops[READ][LIMIT_LOW])
2011 tg->last_low_overflow_time[READ] = now;
2012 }
2013
2014 if (tg->iops[WRITE][LIMIT_LOW]) {
2015 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2016 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2017 tg->last_low_overflow_time[WRITE] = now;
2018 }
2019
2020 /*
2021 * If cgroup is below low limit, consider downgrade and throttle other
2022 * cgroups
2023 */
2024 if (throtl_hierarchy_can_downgrade(tg))
2025 throtl_downgrade_state(tg->td, LIMIT_LOW);
2026
2027 tg->last_bytes_disp[READ] = 0;
2028 tg->last_bytes_disp[WRITE] = 0;
2029 tg->last_io_disp[READ] = 0;
2030 tg->last_io_disp[WRITE] = 0;
2031}
2032
9e234eea
SL
2033static void blk_throtl_update_idletime(struct throtl_grp *tg)
2034{
2035 unsigned long now = ktime_get_ns() >> 10;
2036 unsigned long last_finish_time = tg->last_finish_time;
2037
2038 if (now <= last_finish_time || last_finish_time == 0 ||
2039 last_finish_time == tg->checked_last_finish_time)
2040 return;
2041
2042 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2043 tg->checked_last_finish_time = last_finish_time;
2044}
2045
b9147dd1
SL
2046#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2047static void throtl_update_latency_buckets(struct throtl_data *td)
2048{
b889bf66
JQ
2049 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2050 int i, cpu, rw;
2051 unsigned long last_latency[2] = { 0 };
2052 unsigned long latency[2];
b9147dd1
SL
2053
2054 if (!blk_queue_nonrot(td->queue))
2055 return;
2056 if (time_before(jiffies, td->last_calculate_time + HZ))
2057 return;
2058 td->last_calculate_time = jiffies;
2059
2060 memset(avg_latency, 0, sizeof(avg_latency));
b889bf66
JQ
2061 for (rw = READ; rw <= WRITE; rw++) {
2062 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2063 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2064
2065 for_each_possible_cpu(cpu) {
2066 struct latency_bucket *bucket;
2067
2068 /* this isn't race free, but ok in practice */
2069 bucket = per_cpu_ptr(td->latency_buckets[rw],
2070 cpu);
2071 tmp->total_latency += bucket[i].total_latency;
2072 tmp->samples += bucket[i].samples;
2073 bucket[i].total_latency = 0;
2074 bucket[i].samples = 0;
2075 }
b9147dd1 2076
b889bf66
JQ
2077 if (tmp->samples >= 32) {
2078 int samples = tmp->samples;
b9147dd1 2079
b889bf66 2080 latency[rw] = tmp->total_latency;
b9147dd1 2081
b889bf66
JQ
2082 tmp->total_latency = 0;
2083 tmp->samples = 0;
2084 latency[rw] /= samples;
2085 if (latency[rw] == 0)
2086 continue;
2087 avg_latency[rw][i].latency = latency[rw];
2088 }
b9147dd1
SL
2089 }
2090 }
2091
b889bf66
JQ
2092 for (rw = READ; rw <= WRITE; rw++) {
2093 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2094 if (!avg_latency[rw][i].latency) {
2095 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2096 td->avg_buckets[rw][i].latency =
2097 last_latency[rw];
2098 continue;
2099 }
b9147dd1 2100
b889bf66
JQ
2101 if (!td->avg_buckets[rw][i].valid)
2102 latency[rw] = avg_latency[rw][i].latency;
2103 else
2104 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2105 avg_latency[rw][i].latency) >> 3;
b9147dd1 2106
b889bf66
JQ
2107 td->avg_buckets[rw][i].latency = max(latency[rw],
2108 last_latency[rw]);
2109 td->avg_buckets[rw][i].valid = true;
2110 last_latency[rw] = td->avg_buckets[rw][i].latency;
2111 }
b9147dd1 2112 }
4cff729f
SL
2113
2114 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2115 throtl_log(&td->service_queue,
b889bf66
JQ
2116 "Latency bucket %d: read latency=%ld, read valid=%d, "
2117 "write latency=%ld, write valid=%d", i,
2118 td->avg_buckets[READ][i].latency,
2119 td->avg_buckets[READ][i].valid,
2120 td->avg_buckets[WRITE][i].latency,
2121 td->avg_buckets[WRITE][i].valid);
b9147dd1
SL
2122}
2123#else
2124static inline void throtl_update_latency_buckets(struct throtl_data *td)
2125{
2126}
2127#endif
2128
2bc19cd5
JA
2129static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
2130{
2131#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
08e18eab
JB
2132 if (bio->bi_css)
2133 bio_associate_blkg(bio, tg_to_blkg(tg));
5238dcf4 2134 bio_issue_init(&bio->bi_issue, bio_sectors(bio));
2bc19cd5
JA
2135#endif
2136}
2137
ae118896
TH
2138bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2139 struct bio *bio)
e43473b7 2140{
c5cc2070 2141 struct throtl_qnode *qn = NULL;
ae118896 2142 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
73f0d49a 2143 struct throtl_service_queue *sq;
0e9f4164 2144 bool rw = bio_data_dir(bio);
bc16a4f9 2145 bool throttled = false;
b9147dd1 2146 struct throtl_data *td = tg->td;
e43473b7 2147
ae118896
TH
2148 WARN_ON_ONCE(!rcu_read_lock_held());
2149
2a0f61e6 2150 /* see throtl_charge_bio() */
8d2bbd4c 2151 if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
bc16a4f9 2152 goto out;
e43473b7
VG
2153
2154 spin_lock_irq(q->queue_lock);
c9589f03 2155
b9147dd1
SL
2156 throtl_update_latency_buckets(td);
2157
c9589f03 2158 if (unlikely(blk_queue_bypass(q)))
bc16a4f9 2159 goto out_unlock;
f469a7b4 2160
2bc19cd5 2161 blk_throtl_assoc_bio(tg, bio);
9e234eea
SL
2162 blk_throtl_update_idletime(tg);
2163
73f0d49a
TH
2164 sq = &tg->service_queue;
2165
c79892c5 2166again:
9e660acf 2167 while (true) {
3f0abd80
SL
2168 if (tg->last_low_overflow_time[rw] == 0)
2169 tg->last_low_overflow_time[rw] = jiffies;
2170 throtl_downgrade_check(tg);
fa6fb5aa 2171 throtl_upgrade_check(tg);
9e660acf
TH
2172 /* throtl is FIFO - if bios are already queued, should queue */
2173 if (sq->nr_queued[rw])
2174 break;
de701c74 2175
9e660acf 2176 /* if above limits, break to queue */
c79892c5 2177 if (!tg_may_dispatch(tg, bio, NULL)) {
3f0abd80 2178 tg->last_low_overflow_time[rw] = jiffies;
b9147dd1
SL
2179 if (throtl_can_upgrade(td, tg)) {
2180 throtl_upgrade_state(td);
c79892c5
SL
2181 goto again;
2182 }
9e660acf 2183 break;
c79892c5 2184 }
9e660acf
TH
2185
2186 /* within limits, let's charge and dispatch directly */
e43473b7 2187 throtl_charge_bio(tg, bio);
04521db0
VG
2188
2189 /*
2190 * We need to trim slice even when bios are not being queued
2191 * otherwise it might happen that a bio is not queued for
2192 * a long time and slice keeps on extending and trim is not
2193 * called for a long time. Now if limits are reduced suddenly
2194 * we take into account all the IO dispatched so far at new
2195 * low rate and * newly queued IO gets a really long dispatch
2196 * time.
2197 *
2198 * So keep on trimming slice even if bio is not queued.
2199 */
0f3457f6 2200 throtl_trim_slice(tg, rw);
9e660acf
TH
2201
2202 /*
2203 * @bio passed through this layer without being throttled.
2204 * Climb up the ladder. If we''re already at the top, it
2205 * can be executed directly.
2206 */
c5cc2070 2207 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
2208 sq = sq->parent_sq;
2209 tg = sq_to_tg(sq);
2210 if (!tg)
2211 goto out_unlock;
e43473b7
VG
2212 }
2213
9e660acf 2214 /* out-of-limit, queue to @tg */
fda6f272
TH
2215 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2216 rw == READ ? 'R' : 'W',
9f626e37
SL
2217 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2218 tg_bps_limit(tg, rw),
2219 tg->io_disp[rw], tg_iops_limit(tg, rw),
fda6f272 2220 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 2221
3f0abd80
SL
2222 tg->last_low_overflow_time[rw] = jiffies;
2223
b9147dd1 2224 td->nr_queued[rw]++;
c5cc2070 2225 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 2226 throttled = true;
e43473b7 2227
7f52f98c
TH
2228 /*
2229 * Update @tg's dispatch time and force schedule dispatch if @tg
2230 * was empty before @bio. The forced scheduling isn't likely to
2231 * cause undue delay as @bio is likely to be dispatched directly if
2232 * its @tg's disptime is not in the future.
2233 */
0e9f4164 2234 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 2235 tg_update_disptime(tg);
7f52f98c 2236 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
2237 }
2238
bc16a4f9 2239out_unlock:
e43473b7 2240 spin_unlock_irq(q->queue_lock);
bc16a4f9 2241out:
111be883 2242 bio_set_flag(bio, BIO_THROTTLED);
b9147dd1
SL
2243
2244#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2245 if (throttled || !td->track_bio_latency)
5238dcf4 2246 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
b9147dd1 2247#endif
bc16a4f9 2248 return throttled;
e43473b7
VG
2249}
2250
9e234eea 2251#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
b9147dd1
SL
2252static void throtl_track_latency(struct throtl_data *td, sector_t size,
2253 int op, unsigned long time)
2254{
2255 struct latency_bucket *latency;
2256 int index;
2257
b889bf66
JQ
2258 if (!td || td->limit_index != LIMIT_LOW ||
2259 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
b9147dd1
SL
2260 !blk_queue_nonrot(td->queue))
2261 return;
2262
2263 index = request_bucket_index(size);
2264
b889bf66 2265 latency = get_cpu_ptr(td->latency_buckets[op]);
b9147dd1
SL
2266 latency[index].total_latency += time;
2267 latency[index].samples++;
b889bf66 2268 put_cpu_ptr(td->latency_buckets[op]);
b9147dd1
SL
2269}
2270
2271void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2272{
2273 struct request_queue *q = rq->q;
2274 struct throtl_data *td = q->td;
2275
544ccc8d 2276 throtl_track_latency(td, rq->throtl_size, req_op(rq), time_ns >> 10);
b9147dd1
SL
2277}
2278
9e234eea
SL
2279void blk_throtl_bio_endio(struct bio *bio)
2280{
08e18eab 2281 struct blkcg_gq *blkg;
9e234eea 2282 struct throtl_grp *tg;
b9147dd1
SL
2283 u64 finish_time_ns;
2284 unsigned long finish_time;
2285 unsigned long start_time;
2286 unsigned long lat;
b889bf66 2287 int rw = bio_data_dir(bio);
9e234eea 2288
08e18eab
JB
2289 blkg = bio->bi_blkg;
2290 if (!blkg)
9e234eea 2291 return;
08e18eab 2292 tg = blkg_to_tg(blkg);
9e234eea 2293
b9147dd1
SL
2294 finish_time_ns = ktime_get_ns();
2295 tg->last_finish_time = finish_time_ns >> 10;
2296
5238dcf4
OS
2297 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2298 finish_time = __bio_issue_time(finish_time_ns) >> 10;
08e18eab 2299 if (!start_time || finish_time <= start_time)
53696b8d
SL
2300 return;
2301
2302 lat = finish_time - start_time;
b9147dd1 2303 /* this is only for bio based driver */
5238dcf4
OS
2304 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2305 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2306 bio_op(bio), lat);
53696b8d 2307
6679a90c 2308 if (tg->latency_target && lat >= tg->td->filtered_latency) {
53696b8d
SL
2309 int bucket;
2310 unsigned int threshold;
2311
5238dcf4 2312 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
b889bf66 2313 threshold = tg->td->avg_buckets[rw][bucket].latency +
53696b8d
SL
2314 tg->latency_target;
2315 if (lat > threshold)
2316 tg->bad_bio_cnt++;
2317 /*
2318 * Not race free, could get wrong count, which means cgroups
2319 * will be throttled
2320 */
2321 tg->bio_cnt++;
2322 }
2323
2324 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2325 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2326 tg->bio_cnt /= 2;
2327 tg->bad_bio_cnt /= 2;
b9147dd1 2328 }
9e234eea
SL
2329}
2330#endif
2331
2a12f0dc
TH
2332/*
2333 * Dispatch all bios from all children tg's queued on @parent_sq. On
2334 * return, @parent_sq is guaranteed to not have any active children tg's
2335 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2336 */
2337static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2338{
2339 struct throtl_grp *tg;
2340
2341 while ((tg = throtl_rb_first(parent_sq))) {
2342 struct throtl_service_queue *sq = &tg->service_queue;
2343 struct bio *bio;
2344
2345 throtl_dequeue_tg(tg);
2346
c5cc2070 2347 while ((bio = throtl_peek_queued(&sq->queued[READ])))
2a12f0dc 2348 tg_dispatch_one_bio(tg, bio_data_dir(bio));
c5cc2070 2349 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2a12f0dc
TH
2350 tg_dispatch_one_bio(tg, bio_data_dir(bio));
2351 }
2352}
2353
c9a929dd
TH
2354/**
2355 * blk_throtl_drain - drain throttled bios
2356 * @q: request_queue to drain throttled bios for
2357 *
2358 * Dispatch all currently throttled bios on @q through ->make_request_fn().
2359 */
2360void blk_throtl_drain(struct request_queue *q)
2361 __releases(q->queue_lock) __acquires(q->queue_lock)
2362{
2363 struct throtl_data *td = q->td;
2a12f0dc 2364 struct blkcg_gq *blkg;
492eb21b 2365 struct cgroup_subsys_state *pos_css;
c9a929dd 2366 struct bio *bio;
651930bc 2367 int rw;
c9a929dd 2368
8bcb6c7d 2369 queue_lockdep_assert_held(q);
2a12f0dc 2370 rcu_read_lock();
c9a929dd 2371
2a12f0dc
TH
2372 /*
2373 * Drain each tg while doing post-order walk on the blkg tree, so
2374 * that all bios are propagated to td->service_queue. It'd be
2375 * better to walk service_queue tree directly but blkg walk is
2376 * easier.
2377 */
492eb21b 2378 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2a12f0dc 2379 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
73f0d49a 2380
2a12f0dc
TH
2381 /* finally, transfer bios from top-level tg's into the td */
2382 tg_drain_bios(&td->service_queue);
2383
2384 rcu_read_unlock();
c9a929dd
TH
2385 spin_unlock_irq(q->queue_lock);
2386
2a12f0dc 2387 /* all bios now should be in td->service_queue, issue them */
651930bc 2388 for (rw = READ; rw <= WRITE; rw++)
c5cc2070
TH
2389 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2390 NULL)))
651930bc 2391 generic_make_request(bio);
c9a929dd
TH
2392
2393 spin_lock_irq(q->queue_lock);
2394}
2395
e43473b7
VG
2396int blk_throtl_init(struct request_queue *q)
2397{
2398 struct throtl_data *td;
a2b1693b 2399 int ret;
e43473b7
VG
2400
2401 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2402 if (!td)
2403 return -ENOMEM;
b889bf66 2404 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2405 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2406 if (!td->latency_buckets[READ]) {
2407 kfree(td);
2408 return -ENOMEM;
2409 }
2410 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2411 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2412 if (!td->latency_buckets[WRITE]) {
2413 free_percpu(td->latency_buckets[READ]);
b9147dd1
SL
2414 kfree(td);
2415 return -ENOMEM;
2416 }
e43473b7 2417
69df0ab0 2418 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
b2ce2643 2419 throtl_service_queue_init(&td->service_queue);
e43473b7 2420
cd1604fa 2421 q->td = td;
29b12589 2422 td->queue = q;
02977e4a 2423
9f626e37 2424 td->limit_valid[LIMIT_MAX] = true;
cd5ab1b0 2425 td->limit_index = LIMIT_MAX;
3f0abd80
SL
2426 td->low_upgrade_time = jiffies;
2427 td->low_downgrade_time = jiffies;
9e234eea 2428
a2b1693b 2429 /* activate policy */
3c798398 2430 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
b9147dd1 2431 if (ret) {
b889bf66
JQ
2432 free_percpu(td->latency_buckets[READ]);
2433 free_percpu(td->latency_buckets[WRITE]);
f51b802c 2434 kfree(td);
b9147dd1 2435 }
a2b1693b 2436 return ret;
e43473b7
VG
2437}
2438
2439void blk_throtl_exit(struct request_queue *q)
2440{
c875f4d0 2441 BUG_ON(!q->td);
da527770 2442 throtl_shutdown_wq(q);
3c798398 2443 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
b889bf66
JQ
2444 free_percpu(q->td->latency_buckets[READ]);
2445 free_percpu(q->td->latency_buckets[WRITE]);
c9a929dd 2446 kfree(q->td);
e43473b7
VG
2447}
2448
d61fcfa4
SL
2449void blk_throtl_register_queue(struct request_queue *q)
2450{
2451 struct throtl_data *td;
6679a90c 2452 int i;
d61fcfa4
SL
2453
2454 td = q->td;
2455 BUG_ON(!td);
2456
6679a90c 2457 if (blk_queue_nonrot(q)) {
d61fcfa4 2458 td->throtl_slice = DFL_THROTL_SLICE_SSD;
6679a90c
SL
2459 td->filtered_latency = LATENCY_FILTERED_SSD;
2460 } else {
d61fcfa4 2461 td->throtl_slice = DFL_THROTL_SLICE_HD;
6679a90c 2462 td->filtered_latency = LATENCY_FILTERED_HD;
b889bf66
JQ
2463 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2464 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2465 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2466 }
6679a90c 2467 }
d61fcfa4
SL
2468#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2469 /* if no low limit, use previous default */
2470 td->throtl_slice = DFL_THROTL_SLICE_HD;
2471#endif
9e234eea 2472
475a055e 2473 td->track_bio_latency = !queue_is_rq_based(q);
b9147dd1
SL
2474 if (!td->track_bio_latency)
2475 blk_stat_enable_accounting(q);
d61fcfa4
SL
2476}
2477
297e3d85
SL
2478#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2479ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2480{
2481 if (!q->td)
2482 return -EINVAL;
2483 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2484}
2485
2486ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2487 const char *page, size_t count)
2488{
2489 unsigned long v;
2490 unsigned long t;
2491
2492 if (!q->td)
2493 return -EINVAL;
2494 if (kstrtoul(page, 10, &v))
2495 return -EINVAL;
2496 t = msecs_to_jiffies(v);
2497 if (t == 0 || t > MAX_THROTL_SLICE)
2498 return -EINVAL;
2499 q->td->throtl_slice = t;
2500 return count;
2501}
2502#endif
2503
e43473b7
VG
2504static int __init throtl_init(void)
2505{
450adcbe
VG
2506 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2507 if (!kthrotld_workqueue)
2508 panic("Failed to create kthrotld\n");
2509
3c798398 2510 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
2511}
2512
2513module_init(throtl_init);