ext4: don't use the orphan list when migrating an inode
[linux-block.git] / block / blk-throttle.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
e43473b7
VG
2/*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
7
8#include <linux/module.h>
9#include <linux/slab.h>
10#include <linux/blkdev.h>
11#include <linux/bio.h>
12#include <linux/blktrace_api.h>
eea8f41c 13#include <linux/blk-cgroup.h>
bc9fcbf9 14#include "blk.h"
1d156646 15#include "blk-cgroup-rwstat.h"
a7b36ee6 16#include "blk-throttle.h"
e43473b7
VG
17
18/* Max dispatch from a group in 1 round */
e675df2a 19#define THROTL_GRP_QUANTUM 8
e43473b7
VG
20
21/* Total max dispatch from all groups in one round */
e675df2a 22#define THROTL_QUANTUM 32
e43473b7 23
d61fcfa4
SL
24/* Throttling is performed over a slice and after that slice is renewed */
25#define DFL_THROTL_SLICE_HD (HZ / 10)
26#define DFL_THROTL_SLICE_SSD (HZ / 50)
297e3d85 27#define MAX_THROTL_SLICE (HZ)
9e234eea 28#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
9bb67aeb
SL
29#define MIN_THROTL_BPS (320 * 1024)
30#define MIN_THROTL_IOPS (10)
b4f428ef
SL
31#define DFL_LATENCY_TARGET (-1L)
32#define DFL_IDLE_THRESHOLD (0)
6679a90c
SL
33#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34#define LATENCY_FILTERED_SSD (0)
35/*
36 * For HD, very small latency comes from sequential IO. Such IO is helpless to
37 * help determine if its IO is impacted by others, hence we ignore the IO
38 */
39#define LATENCY_FILTERED_HD (1000L) /* 1ms */
e43473b7 40
450adcbe
VG
41/* A workqueue to queue throttle related work */
42static struct workqueue_struct *kthrotld_workqueue;
450adcbe 43
5b2c16aa
TH
44enum tg_state_flags {
45 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
0e9f4164 46 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
5b2c16aa
TH
47};
48
e43473b7
VG
49#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
50
b9147dd1
SL
51/* We measure latency for request size from <= 4k to >= 1M */
52#define LATENCY_BUCKET_SIZE 9
53
54struct latency_bucket {
55 unsigned long total_latency; /* ns / 1024 */
56 int samples;
57};
58
59struct avg_latency_bucket {
60 unsigned long latency; /* ns / 1024 */
61 bool valid;
62};
63
e43473b7
VG
64struct throtl_data
65{
e43473b7 66 /* service tree for active throtl groups */
c9e0332e 67 struct throtl_service_queue service_queue;
e43473b7 68
e43473b7
VG
69 struct request_queue *queue;
70
71 /* Total Number of queued bios on READ and WRITE lists */
72 unsigned int nr_queued[2];
73
297e3d85
SL
74 unsigned int throtl_slice;
75
e43473b7 76 /* Work for dispatching throttled bios */
69df0ab0 77 struct work_struct dispatch_work;
9f626e37
SL
78 unsigned int limit_index;
79 bool limit_valid[LIMIT_CNT];
3f0abd80
SL
80
81 unsigned long low_upgrade_time;
82 unsigned long low_downgrade_time;
7394e31f
SL
83
84 unsigned int scale;
b9147dd1 85
b889bf66
JQ
86 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
87 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
88 struct latency_bucket __percpu *latency_buckets[2];
b9147dd1 89 unsigned long last_calculate_time;
6679a90c 90 unsigned long filtered_latency;
b9147dd1
SL
91
92 bool track_bio_latency;
e43473b7
VG
93};
94
e99e88a9 95static void throtl_pending_timer_fn(struct timer_list *t);
69df0ab0 96
3c798398 97static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 98{
f95a04af 99 return pd_to_blkg(&tg->pd);
0381411e
TH
100}
101
fda6f272
TH
102/**
103 * sq_to_tg - return the throl_grp the specified service queue belongs to
104 * @sq: the throtl_service_queue of interest
105 *
106 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
107 * embedded in throtl_data, %NULL is returned.
108 */
109static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
110{
111 if (sq && sq->parent_sq)
112 return container_of(sq, struct throtl_grp, service_queue);
113 else
114 return NULL;
115}
116
117/**
118 * sq_to_td - return throtl_data the specified service queue belongs to
119 * @sq: the throtl_service_queue of interest
120 *
b43daedc 121 * A service_queue can be embedded in either a throtl_grp or throtl_data.
fda6f272
TH
122 * Determine the associated throtl_data accordingly and return it.
123 */
124static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
125{
126 struct throtl_grp *tg = sq_to_tg(sq);
127
128 if (tg)
129 return tg->td;
130 else
131 return container_of(sq, struct throtl_data, service_queue);
132}
133
7394e31f
SL
134/*
135 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
136 * make the IO dispatch more smooth.
137 * Scale up: linearly scale up according to lapsed time since upgrade. For
138 * every throtl_slice, the limit scales up 1/2 .low limit till the
139 * limit hits .max limit
140 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
141 */
142static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
143{
144 /* arbitrary value to avoid too big scale */
145 if (td->scale < 4096 && time_after_eq(jiffies,
146 td->low_upgrade_time + td->scale * td->throtl_slice))
147 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
148
149 return low + (low >> 1) * td->scale;
150}
151
9f626e37
SL
152static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
153{
b22c417c 154 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 155 struct throtl_data *td;
b22c417c
SL
156 uint64_t ret;
157
158 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
159 return U64_MAX;
7394e31f
SL
160
161 td = tg->td;
162 ret = tg->bps[rw][td->limit_index];
9bb67aeb
SL
163 if (ret == 0 && td->limit_index == LIMIT_LOW) {
164 /* intermediate node or iops isn't 0 */
165 if (!list_empty(&blkg->blkcg->css.children) ||
166 tg->iops[rw][td->limit_index])
167 return U64_MAX;
168 else
169 return MIN_THROTL_BPS;
170 }
7394e31f
SL
171
172 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
173 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
174 uint64_t adjusted;
175
176 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
177 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
178 }
b22c417c 179 return ret;
9f626e37
SL
180}
181
182static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
183{
b22c417c 184 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 185 struct throtl_data *td;
b22c417c
SL
186 unsigned int ret;
187
188 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
189 return UINT_MAX;
9bb67aeb 190
7394e31f
SL
191 td = tg->td;
192 ret = tg->iops[rw][td->limit_index];
9bb67aeb
SL
193 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
194 /* intermediate node or bps isn't 0 */
195 if (!list_empty(&blkg->blkcg->css.children) ||
196 tg->bps[rw][td->limit_index])
197 return UINT_MAX;
198 else
199 return MIN_THROTL_IOPS;
200 }
7394e31f
SL
201
202 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
203 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
204 uint64_t adjusted;
205
206 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
207 if (adjusted > UINT_MAX)
208 adjusted = UINT_MAX;
209 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
210 }
b22c417c 211 return ret;
9f626e37
SL
212}
213
b9147dd1
SL
214#define request_bucket_index(sectors) \
215 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
216
fda6f272
TH
217/**
218 * throtl_log - log debug message via blktrace
219 * @sq: the service_queue being reported
220 * @fmt: printf format string
221 * @args: printf args
222 *
223 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
224 * throtl_grp; otherwise, just "throtl".
fda6f272
TH
225 */
226#define throtl_log(sq, fmt, args...) do { \
227 struct throtl_grp *__tg = sq_to_tg((sq)); \
228 struct throtl_data *__td = sq_to_td((sq)); \
229 \
230 (void)__td; \
59fa0224
SL
231 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
232 break; \
fda6f272 233 if ((__tg)) { \
35fe6d76
SL
234 blk_add_cgroup_trace_msg(__td->queue, \
235 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
fda6f272
TH
236 } else { \
237 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
238 } \
54e7ed12 239} while (0)
e43473b7 240
ea0ea2bc
SL
241static inline unsigned int throtl_bio_data_size(struct bio *bio)
242{
243 /* assume it's one sector */
244 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
245 return 512;
246 return bio->bi_iter.bi_size;
247}
248
c5cc2070
TH
249static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
250{
251 INIT_LIST_HEAD(&qn->node);
252 bio_list_init(&qn->bios);
253 qn->tg = tg;
254}
255
256/**
257 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
258 * @bio: bio being added
259 * @qn: qnode to add bio to
260 * @queued: the service_queue->queued[] list @qn belongs to
261 *
262 * Add @bio to @qn and put @qn on @queued if it's not already on.
263 * @qn->tg's reference count is bumped when @qn is activated. See the
264 * comment on top of throtl_qnode definition for details.
265 */
266static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
267 struct list_head *queued)
268{
269 bio_list_add(&qn->bios, bio);
270 if (list_empty(&qn->node)) {
271 list_add_tail(&qn->node, queued);
272 blkg_get(tg_to_blkg(qn->tg));
273 }
274}
275
276/**
277 * throtl_peek_queued - peek the first bio on a qnode list
278 * @queued: the qnode list to peek
279 */
280static struct bio *throtl_peek_queued(struct list_head *queued)
281{
b7b609de 282 struct throtl_qnode *qn;
c5cc2070
TH
283 struct bio *bio;
284
285 if (list_empty(queued))
286 return NULL;
287
b7b609de 288 qn = list_first_entry(queued, struct throtl_qnode, node);
c5cc2070
TH
289 bio = bio_list_peek(&qn->bios);
290 WARN_ON_ONCE(!bio);
291 return bio;
292}
293
294/**
295 * throtl_pop_queued - pop the first bio form a qnode list
296 * @queued: the qnode list to pop a bio from
297 * @tg_to_put: optional out argument for throtl_grp to put
298 *
299 * Pop the first bio from the qnode list @queued. After popping, the first
300 * qnode is removed from @queued if empty or moved to the end of @queued so
301 * that the popping order is round-robin.
302 *
303 * When the first qnode is removed, its associated throtl_grp should be put
304 * too. If @tg_to_put is NULL, this function automatically puts it;
305 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
306 * responsible for putting it.
307 */
308static struct bio *throtl_pop_queued(struct list_head *queued,
309 struct throtl_grp **tg_to_put)
310{
b7b609de 311 struct throtl_qnode *qn;
c5cc2070
TH
312 struct bio *bio;
313
314 if (list_empty(queued))
315 return NULL;
316
b7b609de 317 qn = list_first_entry(queued, struct throtl_qnode, node);
c5cc2070
TH
318 bio = bio_list_pop(&qn->bios);
319 WARN_ON_ONCE(!bio);
320
321 if (bio_list_empty(&qn->bios)) {
322 list_del_init(&qn->node);
323 if (tg_to_put)
324 *tg_to_put = qn->tg;
325 else
326 blkg_put(tg_to_blkg(qn->tg));
327 } else {
328 list_move_tail(&qn->node, queued);
329 }
330
331 return bio;
332}
333
49a2f1e3 334/* init a service_queue, assumes the caller zeroed it */
b2ce2643 335static void throtl_service_queue_init(struct throtl_service_queue *sq)
49a2f1e3 336{
c5cc2070
TH
337 INIT_LIST_HEAD(&sq->queued[0]);
338 INIT_LIST_HEAD(&sq->queued[1]);
9ff01255 339 sq->pending_tree = RB_ROOT_CACHED;
e99e88a9 340 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
69df0ab0
TH
341}
342
cf09a8ee
TH
343static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
344 struct request_queue *q,
345 struct blkcg *blkcg)
001bea73 346{
4fb72036 347 struct throtl_grp *tg;
24bdb8ef 348 int rw;
4fb72036 349
cf09a8ee 350 tg = kzalloc_node(sizeof(*tg), gfp, q->node);
4fb72036 351 if (!tg)
77ea7338 352 return NULL;
4fb72036 353
7ca46438
TH
354 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
355 goto err_free_tg;
356
357 if (blkg_rwstat_init(&tg->stat_ios, gfp))
358 goto err_exit_stat_bytes;
359
b2ce2643
TH
360 throtl_service_queue_init(&tg->service_queue);
361
362 for (rw = READ; rw <= WRITE; rw++) {
363 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
364 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
365 }
366
367 RB_CLEAR_NODE(&tg->rb_node);
9f626e37
SL
368 tg->bps[READ][LIMIT_MAX] = U64_MAX;
369 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
370 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
371 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
cd5ab1b0
SL
372 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
373 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
374 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
375 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
376 /* LIMIT_LOW will have default value 0 */
b2ce2643 377
ec80991d 378 tg->latency_target = DFL_LATENCY_TARGET;
5b81fc3c 379 tg->latency_target_conf = DFL_LATENCY_TARGET;
b4f428ef
SL
380 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
381 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
ec80991d 382
4fb72036 383 return &tg->pd;
7ca46438
TH
384
385err_exit_stat_bytes:
386 blkg_rwstat_exit(&tg->stat_bytes);
387err_free_tg:
388 kfree(tg);
389 return NULL;
001bea73
TH
390}
391
a9520cd6 392static void throtl_pd_init(struct blkg_policy_data *pd)
a29a171e 393{
a9520cd6
TH
394 struct throtl_grp *tg = pd_to_tg(pd);
395 struct blkcg_gq *blkg = tg_to_blkg(tg);
77216b04 396 struct throtl_data *td = blkg->q->td;
b2ce2643 397 struct throtl_service_queue *sq = &tg->service_queue;
cd1604fa 398
9138125b 399 /*
aa6ec29b 400 * If on the default hierarchy, we switch to properly hierarchical
9138125b
TH
401 * behavior where limits on a given throtl_grp are applied to the
402 * whole subtree rather than just the group itself. e.g. If 16M
403 * read_bps limit is set on the root group, the whole system can't
404 * exceed 16M for the device.
405 *
aa6ec29b 406 * If not on the default hierarchy, the broken flat hierarchy
9138125b
TH
407 * behavior is retained where all throtl_grps are treated as if
408 * they're all separate root groups right below throtl_data.
409 * Limits of a group don't interact with limits of other groups
410 * regardless of the position of the group in the hierarchy.
411 */
b2ce2643 412 sq->parent_sq = &td->service_queue;
9e10a130 413 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
b2ce2643 414 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
77216b04 415 tg->td = td;
8a3d2615
TH
416}
417
693e751e
TH
418/*
419 * Set has_rules[] if @tg or any of its parents have limits configured.
420 * This doesn't require walking up to the top of the hierarchy as the
421 * parent's has_rules[] is guaranteed to be correct.
422 */
423static void tg_update_has_rules(struct throtl_grp *tg)
424{
425 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
9f626e37 426 struct throtl_data *td = tg->td;
693e751e
TH
427 int rw;
428
429 for (rw = READ; rw <= WRITE; rw++)
430 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
9f626e37
SL
431 (td->limit_valid[td->limit_index] &&
432 (tg_bps_limit(tg, rw) != U64_MAX ||
433 tg_iops_limit(tg, rw) != UINT_MAX));
693e751e
TH
434}
435
a9520cd6 436static void throtl_pd_online(struct blkg_policy_data *pd)
693e751e 437{
aec24246 438 struct throtl_grp *tg = pd_to_tg(pd);
693e751e
TH
439 /*
440 * We don't want new groups to escape the limits of its ancestors.
441 * Update has_rules[] after a new group is brought online.
442 */
aec24246 443 tg_update_has_rules(tg);
693e751e
TH
444}
445
acaf523a 446#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
cd5ab1b0
SL
447static void blk_throtl_update_limit_valid(struct throtl_data *td)
448{
449 struct cgroup_subsys_state *pos_css;
450 struct blkcg_gq *blkg;
451 bool low_valid = false;
452
453 rcu_read_lock();
454 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
455 struct throtl_grp *tg = blkg_to_tg(blkg);
456
457 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
43ada787 458 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
cd5ab1b0 459 low_valid = true;
43ada787
LB
460 break;
461 }
cd5ab1b0
SL
462 }
463 rcu_read_unlock();
464
465 td->limit_valid[LIMIT_LOW] = low_valid;
466}
acaf523a
YK
467#else
468static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
469{
470}
471#endif
cd5ab1b0 472
c79892c5 473static void throtl_upgrade_state(struct throtl_data *td);
cd5ab1b0
SL
474static void throtl_pd_offline(struct blkg_policy_data *pd)
475{
476 struct throtl_grp *tg = pd_to_tg(pd);
477
478 tg->bps[READ][LIMIT_LOW] = 0;
479 tg->bps[WRITE][LIMIT_LOW] = 0;
480 tg->iops[READ][LIMIT_LOW] = 0;
481 tg->iops[WRITE][LIMIT_LOW] = 0;
482
483 blk_throtl_update_limit_valid(tg->td);
484
c79892c5
SL
485 if (!tg->td->limit_valid[tg->td->limit_index])
486 throtl_upgrade_state(tg->td);
cd5ab1b0
SL
487}
488
001bea73
TH
489static void throtl_pd_free(struct blkg_policy_data *pd)
490{
4fb72036
TH
491 struct throtl_grp *tg = pd_to_tg(pd);
492
b2ce2643 493 del_timer_sync(&tg->service_queue.pending_timer);
7ca46438
TH
494 blkg_rwstat_exit(&tg->stat_bytes);
495 blkg_rwstat_exit(&tg->stat_ios);
4fb72036 496 kfree(tg);
001bea73
TH
497}
498
0049af73
TH
499static struct throtl_grp *
500throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7 501{
9ff01255 502 struct rb_node *n;
e43473b7 503
9ff01255
LB
504 n = rb_first_cached(&parent_sq->pending_tree);
505 WARN_ON_ONCE(!n);
506 if (!n)
507 return NULL;
508 return rb_entry_tg(n);
e43473b7
VG
509}
510
0049af73
TH
511static void throtl_rb_erase(struct rb_node *n,
512 struct throtl_service_queue *parent_sq)
e43473b7 513{
9ff01255
LB
514 rb_erase_cached(n, &parent_sq->pending_tree);
515 RB_CLEAR_NODE(n);
0049af73 516 --parent_sq->nr_pending;
e43473b7
VG
517}
518
0049af73 519static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
520{
521 struct throtl_grp *tg;
522
0049af73 523 tg = throtl_rb_first(parent_sq);
e43473b7
VG
524 if (!tg)
525 return;
526
0049af73 527 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
528}
529
77216b04 530static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 531{
77216b04 532 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
9ff01255 533 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
e43473b7
VG
534 struct rb_node *parent = NULL;
535 struct throtl_grp *__tg;
536 unsigned long key = tg->disptime;
9ff01255 537 bool leftmost = true;
e43473b7
VG
538
539 while (*node != NULL) {
540 parent = *node;
541 __tg = rb_entry_tg(parent);
542
543 if (time_before(key, __tg->disptime))
544 node = &parent->rb_left;
545 else {
546 node = &parent->rb_right;
9ff01255 547 leftmost = false;
e43473b7
VG
548 }
549 }
550
e43473b7 551 rb_link_node(&tg->rb_node, parent, node);
9ff01255
LB
552 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
553 leftmost);
e43473b7
VG
554}
555
77216b04 556static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 557{
29379674
BW
558 if (!(tg->flags & THROTL_TG_PENDING)) {
559 tg_service_queue_add(tg);
560 tg->flags |= THROTL_TG_PENDING;
561 tg->service_queue.parent_sq->nr_pending++;
562 }
e43473b7
VG
563}
564
77216b04 565static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 566{
29379674
BW
567 if (tg->flags & THROTL_TG_PENDING) {
568 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
569 tg->flags &= ~THROTL_TG_PENDING;
570 }
e43473b7
VG
571}
572
a9131a27 573/* Call with queue lock held */
69df0ab0
TH
574static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
575 unsigned long expires)
a9131a27 576{
a41b816c 577 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
06cceedc
SL
578
579 /*
580 * Since we are adjusting the throttle limit dynamically, the sleep
581 * time calculated according to previous limit might be invalid. It's
582 * possible the cgroup sleep time is very long and no other cgroups
583 * have IO running so notify the limit changes. Make sure the cgroup
584 * doesn't sleep too long to avoid the missed notification.
585 */
586 if (time_after(expires, max_expire))
587 expires = max_expire;
69df0ab0
TH
588 mod_timer(&sq->pending_timer, expires);
589 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
590 expires - jiffies, jiffies);
a9131a27
TH
591}
592
7f52f98c
TH
593/**
594 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
595 * @sq: the service_queue to schedule dispatch for
596 * @force: force scheduling
597 *
598 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
599 * dispatch time of the first pending child. Returns %true if either timer
600 * is armed or there's no pending child left. %false if the current
601 * dispatch window is still open and the caller should continue
602 * dispatching.
603 *
604 * If @force is %true, the dispatch timer is always scheduled and this
605 * function is guaranteed to return %true. This is to be used when the
606 * caller can't dispatch itself and needs to invoke pending_timer
607 * unconditionally. Note that forced scheduling is likely to induce short
608 * delay before dispatch starts even if @sq->first_pending_disptime is not
609 * in the future and thus shouldn't be used in hot paths.
610 */
611static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
612 bool force)
e43473b7 613{
6a525600 614 /* any pending children left? */
c9e0332e 615 if (!sq->nr_pending)
7f52f98c 616 return true;
e43473b7 617
c9e0332e 618 update_min_dispatch_time(sq);
e43473b7 619
69df0ab0 620 /* is the next dispatch time in the future? */
7f52f98c 621 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 622 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 623 return true;
69df0ab0
TH
624 }
625
7f52f98c
TH
626 /* tell the caller to continue dispatching */
627 return false;
e43473b7
VG
628}
629
32ee5bc4
VG
630static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
631 bool rw, unsigned long start)
632{
633 tg->bytes_disp[rw] = 0;
634 tg->io_disp[rw] = 0;
635
4f1e9630
CX
636 atomic_set(&tg->io_split_cnt[rw], 0);
637
32ee5bc4
VG
638 /*
639 * Previous slice has expired. We must have trimmed it after last
640 * bio dispatch. That means since start of last slice, we never used
641 * that bandwidth. Do try to make use of that bandwidth while giving
642 * credit.
643 */
644 if (time_after_eq(start, tg->slice_start[rw]))
645 tg->slice_start[rw] = start;
646
297e3d85 647 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
32ee5bc4
VG
648 throtl_log(&tg->service_queue,
649 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
650 rw == READ ? 'R' : 'W', tg->slice_start[rw],
651 tg->slice_end[rw], jiffies);
652}
653
0f3457f6 654static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
e43473b7
VG
655{
656 tg->bytes_disp[rw] = 0;
8e89d13f 657 tg->io_disp[rw] = 0;
e43473b7 658 tg->slice_start[rw] = jiffies;
297e3d85 659 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
4f1e9630
CX
660
661 atomic_set(&tg->io_split_cnt[rw], 0);
662
fda6f272
TH
663 throtl_log(&tg->service_queue,
664 "[%c] new slice start=%lu end=%lu jiffies=%lu",
665 rw == READ ? 'R' : 'W', tg->slice_start[rw],
666 tg->slice_end[rw], jiffies);
e43473b7
VG
667}
668
0f3457f6
TH
669static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
670 unsigned long jiffy_end)
d1ae8ffd 671{
297e3d85 672 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
d1ae8ffd
VG
673}
674
0f3457f6
TH
675static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
676 unsigned long jiffy_end)
e43473b7 677{
1da30f95 678 throtl_set_slice_end(tg, rw, jiffy_end);
fda6f272
TH
679 throtl_log(&tg->service_queue,
680 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
681 rw == READ ? 'R' : 'W', tg->slice_start[rw],
682 tg->slice_end[rw], jiffies);
e43473b7
VG
683}
684
685/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 686static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
687{
688 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
5cf8c227 689 return false;
e43473b7 690
0b6bad7d 691 return true;
e43473b7
VG
692}
693
694/* Trim the used slices and adjust slice start accordingly */
0f3457f6 695static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 696{
3aad5d3e
VG
697 unsigned long nr_slices, time_elapsed, io_trim;
698 u64 bytes_trim, tmp;
e43473b7
VG
699
700 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
701
702 /*
703 * If bps are unlimited (-1), then time slice don't get
704 * renewed. Don't try to trim the slice if slice is used. A new
705 * slice will start when appropriate.
706 */
0f3457f6 707 if (throtl_slice_used(tg, rw))
e43473b7
VG
708 return;
709
d1ae8ffd
VG
710 /*
711 * A bio has been dispatched. Also adjust slice_end. It might happen
712 * that initially cgroup limit was very low resulting in high
b53b072c 713 * slice_end, but later limit was bumped up and bio was dispatched
d1ae8ffd
VG
714 * sooner, then we need to reduce slice_end. A high bogus slice_end
715 * is bad because it does not allow new slice to start.
716 */
717
297e3d85 718 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
d1ae8ffd 719
e43473b7
VG
720 time_elapsed = jiffies - tg->slice_start[rw];
721
297e3d85 722 nr_slices = time_elapsed / tg->td->throtl_slice;
e43473b7
VG
723
724 if (!nr_slices)
725 return;
297e3d85 726 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
3aad5d3e
VG
727 do_div(tmp, HZ);
728 bytes_trim = tmp;
e43473b7 729
297e3d85
SL
730 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
731 HZ;
e43473b7 732
8e89d13f 733 if (!bytes_trim && !io_trim)
e43473b7
VG
734 return;
735
736 if (tg->bytes_disp[rw] >= bytes_trim)
737 tg->bytes_disp[rw] -= bytes_trim;
738 else
739 tg->bytes_disp[rw] = 0;
740
8e89d13f
VG
741 if (tg->io_disp[rw] >= io_trim)
742 tg->io_disp[rw] -= io_trim;
743 else
744 tg->io_disp[rw] = 0;
745
297e3d85 746 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
e43473b7 747
fda6f272
TH
748 throtl_log(&tg->service_queue,
749 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
750 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
751 tg->slice_start[rw], tg->slice_end[rw], jiffies);
e43473b7
VG
752}
753
0f3457f6 754static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
4599ea49 755 u32 iops_limit, unsigned long *wait)
e43473b7
VG
756{
757 bool rw = bio_data_dir(bio);
8e89d13f 758 unsigned int io_allowed;
e43473b7 759 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
c49c06e4 760 u64 tmp;
e43473b7 761
87fbeb88
BW
762 if (iops_limit == UINT_MAX) {
763 if (wait)
764 *wait = 0;
765 return true;
766 }
767
3a10f999 768 jiffy_elapsed = jiffies - tg->slice_start[rw];
e43473b7 769
3a10f999
KK
770 /* Round up to the next throttle slice, wait time must be nonzero */
771 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
8e89d13f 772
c49c06e4
VG
773 /*
774 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
775 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
776 * will allow dispatch after 1 second and after that slice should
777 * have been trimmed.
778 */
779
4599ea49 780 tmp = (u64)iops_limit * jiffy_elapsed_rnd;
c49c06e4
VG
781 do_div(tmp, HZ);
782
783 if (tmp > UINT_MAX)
784 io_allowed = UINT_MAX;
785 else
786 io_allowed = tmp;
8e89d13f
VG
787
788 if (tg->io_disp[rw] + 1 <= io_allowed) {
e43473b7
VG
789 if (wait)
790 *wait = 0;
5cf8c227 791 return true;
e43473b7
VG
792 }
793
8e89d13f 794 /* Calc approx time to dispatch */
991f61fe 795 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
8e89d13f
VG
796
797 if (wait)
798 *wait = jiffy_wait;
0b6bad7d 799 return false;
8e89d13f
VG
800}
801
0f3457f6 802static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
4599ea49 803 u64 bps_limit, unsigned long *wait)
8e89d13f
VG
804{
805 bool rw = bio_data_dir(bio);
3aad5d3e 806 u64 bytes_allowed, extra_bytes, tmp;
8e89d13f 807 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
ea0ea2bc 808 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7 809
87fbeb88
BW
810 if (bps_limit == U64_MAX) {
811 if (wait)
812 *wait = 0;
813 return true;
814 }
815
e43473b7
VG
816 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
817
818 /* Slice has just started. Consider one slice interval */
819 if (!jiffy_elapsed)
297e3d85 820 jiffy_elapsed_rnd = tg->td->throtl_slice;
e43473b7 821
297e3d85 822 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
e43473b7 823
4599ea49 824 tmp = bps_limit * jiffy_elapsed_rnd;
5e901a2b 825 do_div(tmp, HZ);
3aad5d3e 826 bytes_allowed = tmp;
e43473b7 827
ea0ea2bc 828 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
e43473b7
VG
829 if (wait)
830 *wait = 0;
5cf8c227 831 return true;
e43473b7
VG
832 }
833
834 /* Calc approx time to dispatch */
ea0ea2bc 835 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
4599ea49 836 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
e43473b7
VG
837
838 if (!jiffy_wait)
839 jiffy_wait = 1;
840
841 /*
842 * This wait time is without taking into consideration the rounding
843 * up we did. Add that time also.
844 */
845 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
e43473b7
VG
846 if (wait)
847 *wait = jiffy_wait;
0b6bad7d 848 return false;
8e89d13f
VG
849}
850
851/*
852 * Returns whether one can dispatch a bio or not. Also returns approx number
853 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
854 */
0f3457f6
TH
855static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
856 unsigned long *wait)
8e89d13f
VG
857{
858 bool rw = bio_data_dir(bio);
859 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
4599ea49
BW
860 u64 bps_limit = tg_bps_limit(tg, rw);
861 u32 iops_limit = tg_iops_limit(tg, rw);
8e89d13f
VG
862
863 /*
864 * Currently whole state machine of group depends on first bio
865 * queued in the group bio list. So one should not be calling
866 * this function with a different bio if there are other bios
867 * queued.
868 */
73f0d49a 869 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 870 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 871
8e89d13f 872 /* If tg->bps = -1, then BW is unlimited */
4599ea49 873 if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
8e89d13f
VG
874 if (wait)
875 *wait = 0;
5cf8c227 876 return true;
8e89d13f
VG
877 }
878
879 /*
880 * If previous slice expired, start a new one otherwise renew/extend
881 * existing slice to make sure it is at least throtl_slice interval
164c80ed
VG
882 * long since now. New slice is started only for empty throttle group.
883 * If there is queued bio, that means there should be an active
884 * slice and it should be extended instead.
8e89d13f 885 */
164c80ed 886 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
0f3457f6 887 throtl_start_new_slice(tg, rw);
8e89d13f 888 else {
297e3d85
SL
889 if (time_before(tg->slice_end[rw],
890 jiffies + tg->td->throtl_slice))
891 throtl_extend_slice(tg, rw,
892 jiffies + tg->td->throtl_slice);
8e89d13f
VG
893 }
894
4f1e9630
CX
895 if (iops_limit != UINT_MAX)
896 tg->io_disp[rw] += atomic_xchg(&tg->io_split_cnt[rw], 0);
897
4599ea49
BW
898 if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
899 tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
8e89d13f
VG
900 if (wait)
901 *wait = 0;
0b6bad7d 902 return true;
8e89d13f
VG
903 }
904
905 max_wait = max(bps_wait, iops_wait);
906
907 if (wait)
908 *wait = max_wait;
909
910 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 911 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7 912
0b6bad7d 913 return false;
e43473b7
VG
914}
915
916static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
917{
918 bool rw = bio_data_dir(bio);
ea0ea2bc 919 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7
VG
920
921 /* Charge the bio to the group */
ea0ea2bc 922 tg->bytes_disp[rw] += bio_size;
8e89d13f 923 tg->io_disp[rw]++;
ea0ea2bc 924 tg->last_bytes_disp[rw] += bio_size;
3f0abd80 925 tg->last_io_disp[rw]++;
e43473b7 926
2a0f61e6 927 /*
8d2bbd4c 928 * BIO_THROTTLED is used to prevent the same bio to be throttled
2a0f61e6
TH
929 * more than once as a throttled bio will go through blk-throtl the
930 * second time when it eventually gets issued. Set it when a bio
931 * is being charged to a tg.
2a0f61e6 932 */
8d2bbd4c
CH
933 if (!bio_flagged(bio, BIO_THROTTLED))
934 bio_set_flag(bio, BIO_THROTTLED);
e43473b7
VG
935}
936
c5cc2070
TH
937/**
938 * throtl_add_bio_tg - add a bio to the specified throtl_grp
939 * @bio: bio to add
940 * @qn: qnode to use
941 * @tg: the target throtl_grp
942 *
943 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
944 * tg->qnode_on_self[] is used.
945 */
946static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
947 struct throtl_grp *tg)
e43473b7 948{
73f0d49a 949 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
950 bool rw = bio_data_dir(bio);
951
c5cc2070
TH
952 if (!qn)
953 qn = &tg->qnode_on_self[rw];
954
0e9f4164
TH
955 /*
956 * If @tg doesn't currently have any bios queued in the same
957 * direction, queueing @bio can change when @tg should be
958 * dispatched. Mark that @tg was empty. This is automatically
b53b072c 959 * cleared on the next tg_update_disptime().
0e9f4164
TH
960 */
961 if (!sq->nr_queued[rw])
962 tg->flags |= THROTL_TG_WAS_EMPTY;
963
c5cc2070
TH
964 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
965
73f0d49a 966 sq->nr_queued[rw]++;
77216b04 967 throtl_enqueue_tg(tg);
e43473b7
VG
968}
969
77216b04 970static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 971{
73f0d49a 972 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
973 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
974 struct bio *bio;
975
d609af3a
ME
976 bio = throtl_peek_queued(&sq->queued[READ]);
977 if (bio)
0f3457f6 978 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 979
d609af3a
ME
980 bio = throtl_peek_queued(&sq->queued[WRITE]);
981 if (bio)
0f3457f6 982 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
983
984 min_wait = min(read_wait, write_wait);
985 disptime = jiffies + min_wait;
986
e43473b7 987 /* Update dispatch time */
77216b04 988 throtl_dequeue_tg(tg);
e43473b7 989 tg->disptime = disptime;
77216b04 990 throtl_enqueue_tg(tg);
0e9f4164
TH
991
992 /* see throtl_add_bio_tg() */
993 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
994}
995
32ee5bc4
VG
996static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
997 struct throtl_grp *parent_tg, bool rw)
998{
999 if (throtl_slice_used(parent_tg, rw)) {
1000 throtl_start_new_slice_with_credit(parent_tg, rw,
1001 child_tg->slice_start[rw]);
1002 }
1003
1004}
1005
77216b04 1006static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 1007{
73f0d49a 1008 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
1009 struct throtl_service_queue *parent_sq = sq->parent_sq;
1010 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 1011 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
1012 struct bio *bio;
1013
c5cc2070
TH
1014 /*
1015 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1016 * from @tg may put its reference and @parent_sq might end up
1017 * getting released prematurely. Remember the tg to put and put it
1018 * after @bio is transferred to @parent_sq.
1019 */
1020 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 1021 sq->nr_queued[rw]--;
e43473b7
VG
1022
1023 throtl_charge_bio(tg, bio);
6bc9c2b4
TH
1024
1025 /*
1026 * If our parent is another tg, we just need to transfer @bio to
1027 * the parent using throtl_add_bio_tg(). If our parent is
1028 * @td->service_queue, @bio is ready to be issued. Put it on its
1029 * bio_lists[] and decrease total number queued. The caller is
1030 * responsible for issuing these bios.
1031 */
1032 if (parent_tg) {
c5cc2070 1033 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
32ee5bc4 1034 start_parent_slice_with_credit(tg, parent_tg, rw);
6bc9c2b4 1035 } else {
c5cc2070
TH
1036 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1037 &parent_sq->queued[rw]);
6bc9c2b4
TH
1038 BUG_ON(tg->td->nr_queued[rw] <= 0);
1039 tg->td->nr_queued[rw]--;
1040 }
e43473b7 1041
0f3457f6 1042 throtl_trim_slice(tg, rw);
6bc9c2b4 1043
c5cc2070
TH
1044 if (tg_to_put)
1045 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
1046}
1047
77216b04 1048static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 1049{
73f0d49a 1050 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7 1051 unsigned int nr_reads = 0, nr_writes = 0;
e675df2a
BW
1052 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1053 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
e43473b7
VG
1054 struct bio *bio;
1055
1056 /* Try to dispatch 75% READS and 25% WRITES */
1057
c5cc2070 1058 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 1059 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1060
77216b04 1061 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1062 nr_reads++;
1063
1064 if (nr_reads >= max_nr_reads)
1065 break;
1066 }
1067
c5cc2070 1068 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 1069 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1070
77216b04 1071 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1072 nr_writes++;
1073
1074 if (nr_writes >= max_nr_writes)
1075 break;
1076 }
1077
1078 return nr_reads + nr_writes;
1079}
1080
651930bc 1081static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
1082{
1083 unsigned int nr_disp = 0;
e43473b7
VG
1084
1085 while (1) {
2397611a 1086 struct throtl_grp *tg;
2ab74cd2 1087 struct throtl_service_queue *sq;
e43473b7 1088
2397611a
BW
1089 if (!parent_sq->nr_pending)
1090 break;
1091
1092 tg = throtl_rb_first(parent_sq);
e43473b7
VG
1093 if (!tg)
1094 break;
1095
1096 if (time_before(jiffies, tg->disptime))
1097 break;
1098
77216b04 1099 throtl_dequeue_tg(tg);
e43473b7 1100
77216b04 1101 nr_disp += throtl_dispatch_tg(tg);
e43473b7 1102
2ab74cd2 1103 sq = &tg->service_queue;
73f0d49a 1104 if (sq->nr_queued[0] || sq->nr_queued[1])
77216b04 1105 tg_update_disptime(tg);
e43473b7 1106
e675df2a 1107 if (nr_disp >= THROTL_QUANTUM)
e43473b7
VG
1108 break;
1109 }
1110
1111 return nr_disp;
1112}
1113
c79892c5
SL
1114static bool throtl_can_upgrade(struct throtl_data *td,
1115 struct throtl_grp *this_tg);
6e1a5704
TH
1116/**
1117 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
216382dc 1118 * @t: the pending_timer member of the throtl_service_queue being serviced
6e1a5704
TH
1119 *
1120 * This timer is armed when a child throtl_grp with active bio's become
1121 * pending and queued on the service_queue's pending_tree and expires when
1122 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1123 * dispatches bio's from the children throtl_grps to the parent
1124 * service_queue.
1125 *
1126 * If the parent's parent is another throtl_grp, dispatching is propagated
1127 * by either arming its pending_timer or repeating dispatch directly. If
1128 * the top-level service_tree is reached, throtl_data->dispatch_work is
1129 * kicked so that the ready bio's are issued.
6e1a5704 1130 */
e99e88a9 1131static void throtl_pending_timer_fn(struct timer_list *t)
69df0ab0 1132{
e99e88a9 1133 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
2e48a530 1134 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1135 struct throtl_data *td = sq_to_td(sq);
cb76199c 1136 struct request_queue *q = td->queue;
2e48a530
TH
1137 struct throtl_service_queue *parent_sq;
1138 bool dispatched;
6e1a5704 1139 int ret;
e43473b7 1140
0d945c1f 1141 spin_lock_irq(&q->queue_lock);
c79892c5
SL
1142 if (throtl_can_upgrade(td, NULL))
1143 throtl_upgrade_state(td);
1144
2e48a530
TH
1145again:
1146 parent_sq = sq->parent_sq;
1147 dispatched = false;
e43473b7 1148
7f52f98c
TH
1149 while (true) {
1150 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1151 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1152 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1153
1154 ret = throtl_select_dispatch(sq);
1155 if (ret) {
7f52f98c
TH
1156 throtl_log(sq, "bios disp=%u", ret);
1157 dispatched = true;
1158 }
e43473b7 1159
7f52f98c
TH
1160 if (throtl_schedule_next_dispatch(sq, false))
1161 break;
e43473b7 1162
7f52f98c 1163 /* this dispatch windows is still open, relax and repeat */
0d945c1f 1164 spin_unlock_irq(&q->queue_lock);
7f52f98c 1165 cpu_relax();
0d945c1f 1166 spin_lock_irq(&q->queue_lock);
651930bc 1167 }
e43473b7 1168
2e48a530
TH
1169 if (!dispatched)
1170 goto out_unlock;
6e1a5704 1171
2e48a530
TH
1172 if (parent_sq) {
1173 /* @parent_sq is another throl_grp, propagate dispatch */
1174 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1175 tg_update_disptime(tg);
1176 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1177 /* window is already open, repeat dispatching */
1178 sq = parent_sq;
1179 tg = sq_to_tg(sq);
1180 goto again;
1181 }
1182 }
1183 } else {
b53b072c 1184 /* reached the top-level, queue issuing */
2e48a530
TH
1185 queue_work(kthrotld_workqueue, &td->dispatch_work);
1186 }
1187out_unlock:
0d945c1f 1188 spin_unlock_irq(&q->queue_lock);
6e1a5704 1189}
e43473b7 1190
6e1a5704
TH
1191/**
1192 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1193 * @work: work item being executed
1194 *
b53b072c
BW
1195 * This function is queued for execution when bios reach the bio_lists[]
1196 * of throtl_data->service_queue. Those bios are ready and issued by this
6e1a5704
TH
1197 * function.
1198 */
8876e140 1199static void blk_throtl_dispatch_work_fn(struct work_struct *work)
6e1a5704
TH
1200{
1201 struct throtl_data *td = container_of(work, struct throtl_data,
1202 dispatch_work);
1203 struct throtl_service_queue *td_sq = &td->service_queue;
1204 struct request_queue *q = td->queue;
1205 struct bio_list bio_list_on_stack;
1206 struct bio *bio;
1207 struct blk_plug plug;
1208 int rw;
1209
1210 bio_list_init(&bio_list_on_stack);
1211
0d945c1f 1212 spin_lock_irq(&q->queue_lock);
c5cc2070
TH
1213 for (rw = READ; rw <= WRITE; rw++)
1214 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1215 bio_list_add(&bio_list_on_stack, bio);
0d945c1f 1216 spin_unlock_irq(&q->queue_lock);
6e1a5704
TH
1217
1218 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1219 blk_start_plug(&plug);
ed00aabd
CH
1220 while ((bio = bio_list_pop(&bio_list_on_stack)))
1221 submit_bio_noacct(bio);
69d60eb9 1222 blk_finish_plug(&plug);
e43473b7 1223 }
e43473b7
VG
1224}
1225
f95a04af
TH
1226static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1227 int off)
60c2bc2d 1228{
f95a04af
TH
1229 struct throtl_grp *tg = pd_to_tg(pd);
1230 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1231
2ab5492d 1232 if (v == U64_MAX)
60c2bc2d 1233 return 0;
f95a04af 1234 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1235}
1236
f95a04af
TH
1237static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1238 int off)
e43473b7 1239{
f95a04af
TH
1240 struct throtl_grp *tg = pd_to_tg(pd);
1241 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1242
2ab5492d 1243 if (v == UINT_MAX)
af133ceb 1244 return 0;
f95a04af 1245 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1246}
1247
2da8ca82 1248static int tg_print_conf_u64(struct seq_file *sf, void *v)
8e89d13f 1249{
2da8ca82
TH
1250 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1251 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1252 return 0;
8e89d13f
VG
1253}
1254
2da8ca82 1255static int tg_print_conf_uint(struct seq_file *sf, void *v)
8e89d13f 1256{
2da8ca82
TH
1257 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1258 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1259 return 0;
60c2bc2d
TH
1260}
1261
9bb67aeb 1262static void tg_conf_updated(struct throtl_grp *tg, bool global)
60c2bc2d 1263{
69948b07 1264 struct throtl_service_queue *sq = &tg->service_queue;
492eb21b 1265 struct cgroup_subsys_state *pos_css;
69948b07 1266 struct blkcg_gq *blkg;
af133ceb 1267
fda6f272
TH
1268 throtl_log(&tg->service_queue,
1269 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
9f626e37
SL
1270 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1271 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
632b4493 1272
693e751e
TH
1273 /*
1274 * Update has_rules[] flags for the updated tg's subtree. A tg is
1275 * considered to have rules if either the tg itself or any of its
1276 * ancestors has rules. This identifies groups without any
1277 * restrictions in the whole hierarchy and allows them to bypass
1278 * blk-throttle.
1279 */
9bb67aeb
SL
1280 blkg_for_each_descendant_pre(blkg, pos_css,
1281 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
5b81fc3c
SL
1282 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1283 struct throtl_grp *parent_tg;
1284
1285 tg_update_has_rules(this_tg);
1286 /* ignore root/second level */
1287 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1288 !blkg->parent->parent)
1289 continue;
1290 parent_tg = blkg_to_tg(blkg->parent);
1291 /*
1292 * make sure all children has lower idle time threshold and
1293 * higher latency target
1294 */
1295 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1296 parent_tg->idletime_threshold);
1297 this_tg->latency_target = max(this_tg->latency_target,
1298 parent_tg->latency_target);
1299 }
693e751e 1300
632b4493
TH
1301 /*
1302 * We're already holding queue_lock and know @tg is valid. Let's
1303 * apply the new config directly.
1304 *
1305 * Restart the slices for both READ and WRITES. It might happen
1306 * that a group's limit are dropped suddenly and we don't want to
1307 * account recently dispatched IO with new low rate.
1308 */
ff8b22c0
BW
1309 throtl_start_new_slice(tg, READ);
1310 throtl_start_new_slice(tg, WRITE);
632b4493 1311
5b2c16aa 1312 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1313 tg_update_disptime(tg);
7f52f98c 1314 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1315 }
69948b07
TH
1316}
1317
1318static ssize_t tg_set_conf(struct kernfs_open_file *of,
1319 char *buf, size_t nbytes, loff_t off, bool is_u64)
1320{
1321 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1322 struct blkg_conf_ctx ctx;
1323 struct throtl_grp *tg;
1324 int ret;
1325 u64 v;
1326
1327 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1328 if (ret)
1329 return ret;
1330
1331 ret = -EINVAL;
1332 if (sscanf(ctx.body, "%llu", &v) != 1)
1333 goto out_finish;
1334 if (!v)
2ab5492d 1335 v = U64_MAX;
69948b07
TH
1336
1337 tg = blkg_to_tg(ctx.blkg);
1338
1339 if (is_u64)
1340 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1341 else
1342 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
60c2bc2d 1343
9bb67aeb 1344 tg_conf_updated(tg, false);
36aa9e5f
TH
1345 ret = 0;
1346out_finish:
60c2bc2d 1347 blkg_conf_finish(&ctx);
36aa9e5f 1348 return ret ?: nbytes;
8e89d13f
VG
1349}
1350
451af504
TH
1351static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1352 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1353{
451af504 1354 return tg_set_conf(of, buf, nbytes, off, true);
60c2bc2d
TH
1355}
1356
451af504
TH
1357static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1358 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1359{
451af504 1360 return tg_set_conf(of, buf, nbytes, off, false);
60c2bc2d
TH
1361}
1362
7ca46438
TH
1363static int tg_print_rwstat(struct seq_file *sf, void *v)
1364{
1365 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1366 blkg_prfill_rwstat, &blkcg_policy_throtl,
1367 seq_cft(sf)->private, true);
1368 return 0;
1369}
1370
1371static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1372 struct blkg_policy_data *pd, int off)
1373{
1374 struct blkg_rwstat_sample sum;
1375
1376 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1377 &sum);
1378 return __blkg_prfill_rwstat(sf, pd, &sum);
1379}
1380
1381static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1382{
1383 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1384 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1385 seq_cft(sf)->private, true);
1386 return 0;
1387}
1388
880f50e2 1389static struct cftype throtl_legacy_files[] = {
60c2bc2d
TH
1390 {
1391 .name = "throttle.read_bps_device",
9f626e37 1392 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
2da8ca82 1393 .seq_show = tg_print_conf_u64,
451af504 1394 .write = tg_set_conf_u64,
60c2bc2d
TH
1395 },
1396 {
1397 .name = "throttle.write_bps_device",
9f626e37 1398 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
2da8ca82 1399 .seq_show = tg_print_conf_u64,
451af504 1400 .write = tg_set_conf_u64,
60c2bc2d
TH
1401 },
1402 {
1403 .name = "throttle.read_iops_device",
9f626e37 1404 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
2da8ca82 1405 .seq_show = tg_print_conf_uint,
451af504 1406 .write = tg_set_conf_uint,
60c2bc2d
TH
1407 },
1408 {
1409 .name = "throttle.write_iops_device",
9f626e37 1410 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
2da8ca82 1411 .seq_show = tg_print_conf_uint,
451af504 1412 .write = tg_set_conf_uint,
60c2bc2d
TH
1413 },
1414 {
1415 .name = "throttle.io_service_bytes",
7ca46438
TH
1416 .private = offsetof(struct throtl_grp, stat_bytes),
1417 .seq_show = tg_print_rwstat,
60c2bc2d 1418 },
17534c6f 1419 {
1420 .name = "throttle.io_service_bytes_recursive",
7ca46438
TH
1421 .private = offsetof(struct throtl_grp, stat_bytes),
1422 .seq_show = tg_print_rwstat_recursive,
17534c6f 1423 },
60c2bc2d
TH
1424 {
1425 .name = "throttle.io_serviced",
7ca46438
TH
1426 .private = offsetof(struct throtl_grp, stat_ios),
1427 .seq_show = tg_print_rwstat,
60c2bc2d 1428 },
17534c6f 1429 {
1430 .name = "throttle.io_serviced_recursive",
7ca46438
TH
1431 .private = offsetof(struct throtl_grp, stat_ios),
1432 .seq_show = tg_print_rwstat_recursive,
17534c6f 1433 },
60c2bc2d
TH
1434 { } /* terminate */
1435};
1436
cd5ab1b0 1437static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
2ee867dc
TH
1438 int off)
1439{
1440 struct throtl_grp *tg = pd_to_tg(pd);
1441 const char *dname = blkg_dev_name(pd->blkg);
1442 char bufs[4][21] = { "max", "max", "max", "max" };
cd5ab1b0
SL
1443 u64 bps_dft;
1444 unsigned int iops_dft;
ada75b6e 1445 char idle_time[26] = "";
ec80991d 1446 char latency_time[26] = "";
2ee867dc
TH
1447
1448 if (!dname)
1449 return 0;
9f626e37 1450
cd5ab1b0
SL
1451 if (off == LIMIT_LOW) {
1452 bps_dft = 0;
1453 iops_dft = 0;
1454 } else {
1455 bps_dft = U64_MAX;
1456 iops_dft = UINT_MAX;
1457 }
1458
1459 if (tg->bps_conf[READ][off] == bps_dft &&
1460 tg->bps_conf[WRITE][off] == bps_dft &&
1461 tg->iops_conf[READ][off] == iops_dft &&
ada75b6e 1462 tg->iops_conf[WRITE][off] == iops_dft &&
ec80991d 1463 (off != LIMIT_LOW ||
b4f428ef 1464 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
5b81fc3c 1465 tg->latency_target_conf == DFL_LATENCY_TARGET)))
2ee867dc
TH
1466 return 0;
1467
9bb67aeb 1468 if (tg->bps_conf[READ][off] != U64_MAX)
9f626e37 1469 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
cd5ab1b0 1470 tg->bps_conf[READ][off]);
9bb67aeb 1471 if (tg->bps_conf[WRITE][off] != U64_MAX)
9f626e37 1472 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
cd5ab1b0 1473 tg->bps_conf[WRITE][off]);
9bb67aeb 1474 if (tg->iops_conf[READ][off] != UINT_MAX)
9f626e37 1475 snprintf(bufs[2], sizeof(bufs[2]), "%u",
cd5ab1b0 1476 tg->iops_conf[READ][off]);
9bb67aeb 1477 if (tg->iops_conf[WRITE][off] != UINT_MAX)
9f626e37 1478 snprintf(bufs[3], sizeof(bufs[3]), "%u",
cd5ab1b0 1479 tg->iops_conf[WRITE][off]);
ada75b6e 1480 if (off == LIMIT_LOW) {
5b81fc3c 1481 if (tg->idletime_threshold_conf == ULONG_MAX)
ada75b6e
SL
1482 strcpy(idle_time, " idle=max");
1483 else
1484 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
5b81fc3c 1485 tg->idletime_threshold_conf);
ec80991d 1486
5b81fc3c 1487 if (tg->latency_target_conf == ULONG_MAX)
ec80991d
SL
1488 strcpy(latency_time, " latency=max");
1489 else
1490 snprintf(latency_time, sizeof(latency_time),
5b81fc3c 1491 " latency=%lu", tg->latency_target_conf);
ada75b6e 1492 }
2ee867dc 1493
ec80991d
SL
1494 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1495 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1496 latency_time);
2ee867dc
TH
1497 return 0;
1498}
1499
cd5ab1b0 1500static int tg_print_limit(struct seq_file *sf, void *v)
2ee867dc 1501{
cd5ab1b0 1502 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
2ee867dc
TH
1503 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1504 return 0;
1505}
1506
cd5ab1b0 1507static ssize_t tg_set_limit(struct kernfs_open_file *of,
2ee867dc
TH
1508 char *buf, size_t nbytes, loff_t off)
1509{
1510 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1511 struct blkg_conf_ctx ctx;
1512 struct throtl_grp *tg;
1513 u64 v[4];
ada75b6e 1514 unsigned long idle_time;
ec80991d 1515 unsigned long latency_time;
2ee867dc 1516 int ret;
cd5ab1b0 1517 int index = of_cft(of)->private;
2ee867dc
TH
1518
1519 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1520 if (ret)
1521 return ret;
1522
1523 tg = blkg_to_tg(ctx.blkg);
1524
cd5ab1b0
SL
1525 v[0] = tg->bps_conf[READ][index];
1526 v[1] = tg->bps_conf[WRITE][index];
1527 v[2] = tg->iops_conf[READ][index];
1528 v[3] = tg->iops_conf[WRITE][index];
2ee867dc 1529
5b81fc3c
SL
1530 idle_time = tg->idletime_threshold_conf;
1531 latency_time = tg->latency_target_conf;
2ee867dc
TH
1532 while (true) {
1533 char tok[27]; /* wiops=18446744073709551616 */
1534 char *p;
2ab5492d 1535 u64 val = U64_MAX;
2ee867dc
TH
1536 int len;
1537
1538 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1539 break;
1540 if (tok[0] == '\0')
1541 break;
1542 ctx.body += len;
1543
1544 ret = -EINVAL;
1545 p = tok;
1546 strsep(&p, "=");
1547 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1548 goto out_finish;
1549
1550 ret = -ERANGE;
1551 if (!val)
1552 goto out_finish;
1553
1554 ret = -EINVAL;
5b7048b8 1555 if (!strcmp(tok, "rbps") && val > 1)
2ee867dc 1556 v[0] = val;
5b7048b8 1557 else if (!strcmp(tok, "wbps") && val > 1)
2ee867dc 1558 v[1] = val;
5b7048b8 1559 else if (!strcmp(tok, "riops") && val > 1)
2ee867dc 1560 v[2] = min_t(u64, val, UINT_MAX);
5b7048b8 1561 else if (!strcmp(tok, "wiops") && val > 1)
2ee867dc 1562 v[3] = min_t(u64, val, UINT_MAX);
ada75b6e
SL
1563 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1564 idle_time = val;
ec80991d
SL
1565 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1566 latency_time = val;
2ee867dc
TH
1567 else
1568 goto out_finish;
1569 }
1570
cd5ab1b0
SL
1571 tg->bps_conf[READ][index] = v[0];
1572 tg->bps_conf[WRITE][index] = v[1];
1573 tg->iops_conf[READ][index] = v[2];
1574 tg->iops_conf[WRITE][index] = v[3];
2ee867dc 1575
cd5ab1b0
SL
1576 if (index == LIMIT_MAX) {
1577 tg->bps[READ][index] = v[0];
1578 tg->bps[WRITE][index] = v[1];
1579 tg->iops[READ][index] = v[2];
1580 tg->iops[WRITE][index] = v[3];
1581 }
1582 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1583 tg->bps_conf[READ][LIMIT_MAX]);
1584 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1585 tg->bps_conf[WRITE][LIMIT_MAX]);
1586 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1587 tg->iops_conf[READ][LIMIT_MAX]);
1588 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1589 tg->iops_conf[WRITE][LIMIT_MAX]);
b4f428ef
SL
1590 tg->idletime_threshold_conf = idle_time;
1591 tg->latency_target_conf = latency_time;
1592
1593 /* force user to configure all settings for low limit */
1594 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1595 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1596 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1597 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1598 tg->bps[READ][LIMIT_LOW] = 0;
1599 tg->bps[WRITE][LIMIT_LOW] = 0;
1600 tg->iops[READ][LIMIT_LOW] = 0;
1601 tg->iops[WRITE][LIMIT_LOW] = 0;
1602 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1603 tg->latency_target = DFL_LATENCY_TARGET;
1604 } else if (index == LIMIT_LOW) {
5b81fc3c 1605 tg->idletime_threshold = tg->idletime_threshold_conf;
5b81fc3c 1606 tg->latency_target = tg->latency_target_conf;
cd5ab1b0 1607 }
b4f428ef
SL
1608
1609 blk_throtl_update_limit_valid(tg->td);
1610 if (tg->td->limit_valid[LIMIT_LOW]) {
1611 if (index == LIMIT_LOW)
1612 tg->td->limit_index = LIMIT_LOW;
1613 } else
1614 tg->td->limit_index = LIMIT_MAX;
9bb67aeb
SL
1615 tg_conf_updated(tg, index == LIMIT_LOW &&
1616 tg->td->limit_valid[LIMIT_LOW]);
2ee867dc
TH
1617 ret = 0;
1618out_finish:
1619 blkg_conf_finish(&ctx);
1620 return ret ?: nbytes;
1621}
1622
1623static struct cftype throtl_files[] = {
cd5ab1b0
SL
1624#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1625 {
1626 .name = "low",
1627 .flags = CFTYPE_NOT_ON_ROOT,
1628 .seq_show = tg_print_limit,
1629 .write = tg_set_limit,
1630 .private = LIMIT_LOW,
1631 },
1632#endif
2ee867dc
TH
1633 {
1634 .name = "max",
1635 .flags = CFTYPE_NOT_ON_ROOT,
cd5ab1b0
SL
1636 .seq_show = tg_print_limit,
1637 .write = tg_set_limit,
1638 .private = LIMIT_MAX,
2ee867dc
TH
1639 },
1640 { } /* terminate */
1641};
1642
da527770 1643static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1644{
1645 struct throtl_data *td = q->td;
1646
69df0ab0 1647 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1648}
1649
a7b36ee6 1650struct blkcg_policy blkcg_policy_throtl = {
2ee867dc 1651 .dfl_cftypes = throtl_files,
880f50e2 1652 .legacy_cftypes = throtl_legacy_files,
f9fcc2d3 1653
001bea73 1654 .pd_alloc_fn = throtl_pd_alloc,
f9fcc2d3 1655 .pd_init_fn = throtl_pd_init,
693e751e 1656 .pd_online_fn = throtl_pd_online,
cd5ab1b0 1657 .pd_offline_fn = throtl_pd_offline,
001bea73 1658 .pd_free_fn = throtl_pd_free,
e43473b7
VG
1659};
1660
3f0abd80
SL
1661static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1662{
1663 unsigned long rtime = jiffies, wtime = jiffies;
1664
1665 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1666 rtime = tg->last_low_overflow_time[READ];
1667 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1668 wtime = tg->last_low_overflow_time[WRITE];
1669 return min(rtime, wtime);
1670}
1671
1672/* tg should not be an intermediate node */
1673static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1674{
1675 struct throtl_service_queue *parent_sq;
1676 struct throtl_grp *parent = tg;
1677 unsigned long ret = __tg_last_low_overflow_time(tg);
1678
1679 while (true) {
1680 parent_sq = parent->service_queue.parent_sq;
1681 parent = sq_to_tg(parent_sq);
1682 if (!parent)
1683 break;
1684
1685 /*
1686 * The parent doesn't have low limit, it always reaches low
1687 * limit. Its overflow time is useless for children
1688 */
1689 if (!parent->bps[READ][LIMIT_LOW] &&
1690 !parent->iops[READ][LIMIT_LOW] &&
1691 !parent->bps[WRITE][LIMIT_LOW] &&
1692 !parent->iops[WRITE][LIMIT_LOW])
1693 continue;
1694 if (time_after(__tg_last_low_overflow_time(parent), ret))
1695 ret = __tg_last_low_overflow_time(parent);
1696 }
1697 return ret;
1698}
1699
9e234eea
SL
1700static bool throtl_tg_is_idle(struct throtl_grp *tg)
1701{
1702 /*
1703 * cgroup is idle if:
1704 * - single idle is too long, longer than a fixed value (in case user
b4f428ef 1705 * configure a too big threshold) or 4 times of idletime threshold
9e234eea 1706 * - average think time is more than threshold
53696b8d 1707 * - IO latency is largely below threshold
9e234eea 1708 */
b4f428ef 1709 unsigned long time;
4cff729f 1710 bool ret;
9e234eea 1711
b4f428ef
SL
1712 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1713 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1714 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1715 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1716 tg->avg_idletime > tg->idletime_threshold ||
1717 (tg->latency_target && tg->bio_cnt &&
53696b8d 1718 tg->bad_bio_cnt * 5 < tg->bio_cnt);
4cff729f
SL
1719 throtl_log(&tg->service_queue,
1720 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1721 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1722 tg->bio_cnt, ret, tg->td->scale);
1723 return ret;
9e234eea
SL
1724}
1725
c79892c5
SL
1726static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1727{
1728 struct throtl_service_queue *sq = &tg->service_queue;
1729 bool read_limit, write_limit;
1730
1731 /*
1732 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1733 * reaches), it's ok to upgrade to next limit
1734 */
1735 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1736 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1737 if (!read_limit && !write_limit)
1738 return true;
1739 if (read_limit && sq->nr_queued[READ] &&
1740 (!write_limit || sq->nr_queued[WRITE]))
1741 return true;
1742 if (write_limit && sq->nr_queued[WRITE] &&
1743 (!read_limit || sq->nr_queued[READ]))
1744 return true;
aec24246
SL
1745
1746 if (time_after_eq(jiffies,
fa6fb5aa
SL
1747 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1748 throtl_tg_is_idle(tg))
aec24246 1749 return true;
c79892c5
SL
1750 return false;
1751}
1752
1753static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1754{
1755 while (true) {
1756 if (throtl_tg_can_upgrade(tg))
1757 return true;
1758 tg = sq_to_tg(tg->service_queue.parent_sq);
1759 if (!tg || !tg_to_blkg(tg)->parent)
1760 return false;
1761 }
1762 return false;
1763}
1764
1765static bool throtl_can_upgrade(struct throtl_data *td,
1766 struct throtl_grp *this_tg)
1767{
1768 struct cgroup_subsys_state *pos_css;
1769 struct blkcg_gq *blkg;
1770
1771 if (td->limit_index != LIMIT_LOW)
1772 return false;
1773
297e3d85 1774 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
3f0abd80
SL
1775 return false;
1776
c79892c5
SL
1777 rcu_read_lock();
1778 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1779 struct throtl_grp *tg = blkg_to_tg(blkg);
1780
1781 if (tg == this_tg)
1782 continue;
1783 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1784 continue;
1785 if (!throtl_hierarchy_can_upgrade(tg)) {
1786 rcu_read_unlock();
1787 return false;
1788 }
1789 }
1790 rcu_read_unlock();
1791 return true;
1792}
1793
fa6fb5aa
SL
1794static void throtl_upgrade_check(struct throtl_grp *tg)
1795{
1796 unsigned long now = jiffies;
1797
1798 if (tg->td->limit_index != LIMIT_LOW)
1799 return;
1800
1801 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1802 return;
1803
1804 tg->last_check_time = now;
1805
1806 if (!time_after_eq(now,
1807 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1808 return;
1809
1810 if (throtl_can_upgrade(tg->td, NULL))
1811 throtl_upgrade_state(tg->td);
1812}
1813
c79892c5
SL
1814static void throtl_upgrade_state(struct throtl_data *td)
1815{
1816 struct cgroup_subsys_state *pos_css;
1817 struct blkcg_gq *blkg;
1818
4cff729f 1819 throtl_log(&td->service_queue, "upgrade to max");
c79892c5 1820 td->limit_index = LIMIT_MAX;
3f0abd80 1821 td->low_upgrade_time = jiffies;
7394e31f 1822 td->scale = 0;
c79892c5
SL
1823 rcu_read_lock();
1824 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1825 struct throtl_grp *tg = blkg_to_tg(blkg);
1826 struct throtl_service_queue *sq = &tg->service_queue;
1827
1828 tg->disptime = jiffies - 1;
1829 throtl_select_dispatch(sq);
4f02fb76 1830 throtl_schedule_next_dispatch(sq, true);
c79892c5
SL
1831 }
1832 rcu_read_unlock();
1833 throtl_select_dispatch(&td->service_queue);
4f02fb76 1834 throtl_schedule_next_dispatch(&td->service_queue, true);
c79892c5
SL
1835 queue_work(kthrotld_workqueue, &td->dispatch_work);
1836}
1837
4247d9c8 1838static void throtl_downgrade_state(struct throtl_data *td)
3f0abd80 1839{
7394e31f
SL
1840 td->scale /= 2;
1841
4cff729f 1842 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
7394e31f
SL
1843 if (td->scale) {
1844 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1845 return;
1846 }
1847
4247d9c8 1848 td->limit_index = LIMIT_LOW;
3f0abd80
SL
1849 td->low_downgrade_time = jiffies;
1850}
1851
1852static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1853{
1854 struct throtl_data *td = tg->td;
1855 unsigned long now = jiffies;
1856
1857 /*
1858 * If cgroup is below low limit, consider downgrade and throttle other
1859 * cgroups
1860 */
297e3d85
SL
1861 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1862 time_after_eq(now, tg_last_low_overflow_time(tg) +
fa6fb5aa
SL
1863 td->throtl_slice) &&
1864 (!throtl_tg_is_idle(tg) ||
1865 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
3f0abd80
SL
1866 return true;
1867 return false;
1868}
1869
1870static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1871{
1872 while (true) {
1873 if (!throtl_tg_can_downgrade(tg))
1874 return false;
1875 tg = sq_to_tg(tg->service_queue.parent_sq);
1876 if (!tg || !tg_to_blkg(tg)->parent)
1877 break;
1878 }
1879 return true;
1880}
1881
1882static void throtl_downgrade_check(struct throtl_grp *tg)
1883{
1884 uint64_t bps;
1885 unsigned int iops;
1886 unsigned long elapsed_time;
1887 unsigned long now = jiffies;
1888
1889 if (tg->td->limit_index != LIMIT_MAX ||
1890 !tg->td->limit_valid[LIMIT_LOW])
1891 return;
1892 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1893 return;
297e3d85 1894 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
3f0abd80
SL
1895 return;
1896
1897 elapsed_time = now - tg->last_check_time;
1898 tg->last_check_time = now;
1899
297e3d85
SL
1900 if (time_before(now, tg_last_low_overflow_time(tg) +
1901 tg->td->throtl_slice))
3f0abd80
SL
1902 return;
1903
1904 if (tg->bps[READ][LIMIT_LOW]) {
1905 bps = tg->last_bytes_disp[READ] * HZ;
1906 do_div(bps, elapsed_time);
1907 if (bps >= tg->bps[READ][LIMIT_LOW])
1908 tg->last_low_overflow_time[READ] = now;
1909 }
1910
1911 if (tg->bps[WRITE][LIMIT_LOW]) {
1912 bps = tg->last_bytes_disp[WRITE] * HZ;
1913 do_div(bps, elapsed_time);
1914 if (bps >= tg->bps[WRITE][LIMIT_LOW])
1915 tg->last_low_overflow_time[WRITE] = now;
1916 }
1917
1918 if (tg->iops[READ][LIMIT_LOW]) {
4f1e9630 1919 tg->last_io_disp[READ] += atomic_xchg(&tg->last_io_split_cnt[READ], 0);
3f0abd80
SL
1920 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1921 if (iops >= tg->iops[READ][LIMIT_LOW])
1922 tg->last_low_overflow_time[READ] = now;
1923 }
1924
1925 if (tg->iops[WRITE][LIMIT_LOW]) {
4f1e9630 1926 tg->last_io_disp[WRITE] += atomic_xchg(&tg->last_io_split_cnt[WRITE], 0);
3f0abd80
SL
1927 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
1928 if (iops >= tg->iops[WRITE][LIMIT_LOW])
1929 tg->last_low_overflow_time[WRITE] = now;
1930 }
1931
1932 /*
1933 * If cgroup is below low limit, consider downgrade and throttle other
1934 * cgroups
1935 */
1936 if (throtl_hierarchy_can_downgrade(tg))
4247d9c8 1937 throtl_downgrade_state(tg->td);
3f0abd80
SL
1938
1939 tg->last_bytes_disp[READ] = 0;
1940 tg->last_bytes_disp[WRITE] = 0;
1941 tg->last_io_disp[READ] = 0;
1942 tg->last_io_disp[WRITE] = 0;
1943}
1944
9e234eea
SL
1945static void blk_throtl_update_idletime(struct throtl_grp *tg)
1946{
7901601a 1947 unsigned long now;
9e234eea
SL
1948 unsigned long last_finish_time = tg->last_finish_time;
1949
7901601a
BW
1950 if (last_finish_time == 0)
1951 return;
1952
1953 now = ktime_get_ns() >> 10;
1954 if (now <= last_finish_time ||
9e234eea
SL
1955 last_finish_time == tg->checked_last_finish_time)
1956 return;
1957
1958 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
1959 tg->checked_last_finish_time = last_finish_time;
1960}
1961
b9147dd1
SL
1962#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1963static void throtl_update_latency_buckets(struct throtl_data *td)
1964{
b889bf66
JQ
1965 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
1966 int i, cpu, rw;
1967 unsigned long last_latency[2] = { 0 };
1968 unsigned long latency[2];
b9147dd1 1969
b185efa7 1970 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
b9147dd1
SL
1971 return;
1972 if (time_before(jiffies, td->last_calculate_time + HZ))
1973 return;
1974 td->last_calculate_time = jiffies;
1975
1976 memset(avg_latency, 0, sizeof(avg_latency));
b889bf66
JQ
1977 for (rw = READ; rw <= WRITE; rw++) {
1978 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
1979 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
1980
1981 for_each_possible_cpu(cpu) {
1982 struct latency_bucket *bucket;
1983
1984 /* this isn't race free, but ok in practice */
1985 bucket = per_cpu_ptr(td->latency_buckets[rw],
1986 cpu);
1987 tmp->total_latency += bucket[i].total_latency;
1988 tmp->samples += bucket[i].samples;
1989 bucket[i].total_latency = 0;
1990 bucket[i].samples = 0;
1991 }
b9147dd1 1992
b889bf66
JQ
1993 if (tmp->samples >= 32) {
1994 int samples = tmp->samples;
b9147dd1 1995
b889bf66 1996 latency[rw] = tmp->total_latency;
b9147dd1 1997
b889bf66
JQ
1998 tmp->total_latency = 0;
1999 tmp->samples = 0;
2000 latency[rw] /= samples;
2001 if (latency[rw] == 0)
2002 continue;
2003 avg_latency[rw][i].latency = latency[rw];
2004 }
b9147dd1
SL
2005 }
2006 }
2007
b889bf66
JQ
2008 for (rw = READ; rw <= WRITE; rw++) {
2009 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2010 if (!avg_latency[rw][i].latency) {
2011 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2012 td->avg_buckets[rw][i].latency =
2013 last_latency[rw];
2014 continue;
2015 }
b9147dd1 2016
b889bf66
JQ
2017 if (!td->avg_buckets[rw][i].valid)
2018 latency[rw] = avg_latency[rw][i].latency;
2019 else
2020 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2021 avg_latency[rw][i].latency) >> 3;
b9147dd1 2022
b889bf66
JQ
2023 td->avg_buckets[rw][i].latency = max(latency[rw],
2024 last_latency[rw]);
2025 td->avg_buckets[rw][i].valid = true;
2026 last_latency[rw] = td->avg_buckets[rw][i].latency;
2027 }
b9147dd1 2028 }
4cff729f
SL
2029
2030 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2031 throtl_log(&td->service_queue,
b889bf66
JQ
2032 "Latency bucket %d: read latency=%ld, read valid=%d, "
2033 "write latency=%ld, write valid=%d", i,
2034 td->avg_buckets[READ][i].latency,
2035 td->avg_buckets[READ][i].valid,
2036 td->avg_buckets[WRITE][i].latency,
2037 td->avg_buckets[WRITE][i].valid);
b9147dd1
SL
2038}
2039#else
2040static inline void throtl_update_latency_buckets(struct throtl_data *td)
2041{
2042}
2043#endif
2044
4f1e9630
CX
2045void blk_throtl_charge_bio_split(struct bio *bio)
2046{
2047 struct blkcg_gq *blkg = bio->bi_blkg;
2048 struct throtl_grp *parent = blkg_to_tg(blkg);
2049 struct throtl_service_queue *parent_sq;
2050 bool rw = bio_data_dir(bio);
2051
2052 do {
2053 if (!parent->has_rules[rw])
2054 break;
2055
2056 atomic_inc(&parent->io_split_cnt[rw]);
2057 atomic_inc(&parent->last_io_split_cnt[rw]);
2058
2059 parent_sq = parent->service_queue.parent_sq;
2060 parent = sq_to_tg(parent_sq);
2061 } while (parent);
2062}
2063
a7b36ee6 2064bool __blk_throtl_bio(struct bio *bio)
e43473b7 2065{
ed6cddef 2066 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
db18a53e 2067 struct blkcg_gq *blkg = bio->bi_blkg;
c5cc2070 2068 struct throtl_qnode *qn = NULL;
a2e83ef9 2069 struct throtl_grp *tg = blkg_to_tg(blkg);
73f0d49a 2070 struct throtl_service_queue *sq;
0e9f4164 2071 bool rw = bio_data_dir(bio);
bc16a4f9 2072 bool throttled = false;
b9147dd1 2073 struct throtl_data *td = tg->td;
e43473b7 2074
93b80638 2075 rcu_read_lock();
ae118896 2076
7ca46438
TH
2077 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2078 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2079 bio->bi_iter.bi_size);
2080 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2081 }
2082
0d945c1f 2083 spin_lock_irq(&q->queue_lock);
c9589f03 2084
b9147dd1
SL
2085 throtl_update_latency_buckets(td);
2086
9e234eea
SL
2087 blk_throtl_update_idletime(tg);
2088
73f0d49a
TH
2089 sq = &tg->service_queue;
2090
c79892c5 2091again:
9e660acf 2092 while (true) {
3f0abd80
SL
2093 if (tg->last_low_overflow_time[rw] == 0)
2094 tg->last_low_overflow_time[rw] = jiffies;
2095 throtl_downgrade_check(tg);
fa6fb5aa 2096 throtl_upgrade_check(tg);
9e660acf
TH
2097 /* throtl is FIFO - if bios are already queued, should queue */
2098 if (sq->nr_queued[rw])
2099 break;
de701c74 2100
9e660acf 2101 /* if above limits, break to queue */
c79892c5 2102 if (!tg_may_dispatch(tg, bio, NULL)) {
3f0abd80 2103 tg->last_low_overflow_time[rw] = jiffies;
b9147dd1
SL
2104 if (throtl_can_upgrade(td, tg)) {
2105 throtl_upgrade_state(td);
c79892c5
SL
2106 goto again;
2107 }
9e660acf 2108 break;
c79892c5 2109 }
9e660acf
TH
2110
2111 /* within limits, let's charge and dispatch directly */
e43473b7 2112 throtl_charge_bio(tg, bio);
04521db0
VG
2113
2114 /*
2115 * We need to trim slice even when bios are not being queued
2116 * otherwise it might happen that a bio is not queued for
2117 * a long time and slice keeps on extending and trim is not
2118 * called for a long time. Now if limits are reduced suddenly
2119 * we take into account all the IO dispatched so far at new
2120 * low rate and * newly queued IO gets a really long dispatch
2121 * time.
2122 *
2123 * So keep on trimming slice even if bio is not queued.
2124 */
0f3457f6 2125 throtl_trim_slice(tg, rw);
9e660acf
TH
2126
2127 /*
2128 * @bio passed through this layer without being throttled.
b53b072c 2129 * Climb up the ladder. If we're already at the top, it
9e660acf
TH
2130 * can be executed directly.
2131 */
c5cc2070 2132 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
2133 sq = sq->parent_sq;
2134 tg = sq_to_tg(sq);
2135 if (!tg)
2136 goto out_unlock;
e43473b7
VG
2137 }
2138
9e660acf 2139 /* out-of-limit, queue to @tg */
fda6f272
TH
2140 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2141 rw == READ ? 'R' : 'W',
9f626e37
SL
2142 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2143 tg_bps_limit(tg, rw),
2144 tg->io_disp[rw], tg_iops_limit(tg, rw),
fda6f272 2145 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 2146
3f0abd80
SL
2147 tg->last_low_overflow_time[rw] = jiffies;
2148
b9147dd1 2149 td->nr_queued[rw]++;
c5cc2070 2150 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 2151 throttled = true;
e43473b7 2152
7f52f98c
TH
2153 /*
2154 * Update @tg's dispatch time and force schedule dispatch if @tg
2155 * was empty before @bio. The forced scheduling isn't likely to
2156 * cause undue delay as @bio is likely to be dispatched directly if
2157 * its @tg's disptime is not in the future.
2158 */
0e9f4164 2159 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 2160 tg_update_disptime(tg);
7f52f98c 2161 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
2162 }
2163
bc16a4f9 2164out_unlock:
0d945c1f 2165 spin_unlock_irq(&q->queue_lock);
111be883 2166 bio_set_flag(bio, BIO_THROTTLED);
b9147dd1
SL
2167
2168#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2169 if (throttled || !td->track_bio_latency)
5238dcf4 2170 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
b9147dd1 2171#endif
93b80638 2172 rcu_read_unlock();
bc16a4f9 2173 return throttled;
e43473b7
VG
2174}
2175
9e234eea 2176#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
b9147dd1
SL
2177static void throtl_track_latency(struct throtl_data *td, sector_t size,
2178 int op, unsigned long time)
2179{
2180 struct latency_bucket *latency;
2181 int index;
2182
b889bf66
JQ
2183 if (!td || td->limit_index != LIMIT_LOW ||
2184 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
b9147dd1
SL
2185 !blk_queue_nonrot(td->queue))
2186 return;
2187
2188 index = request_bucket_index(size);
2189
b889bf66 2190 latency = get_cpu_ptr(td->latency_buckets[op]);
b9147dd1
SL
2191 latency[index].total_latency += time;
2192 latency[index].samples++;
b889bf66 2193 put_cpu_ptr(td->latency_buckets[op]);
b9147dd1
SL
2194}
2195
2196void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2197{
2198 struct request_queue *q = rq->q;
2199 struct throtl_data *td = q->td;
2200
3d244306
HT
2201 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2202 time_ns >> 10);
b9147dd1
SL
2203}
2204
9e234eea
SL
2205void blk_throtl_bio_endio(struct bio *bio)
2206{
08e18eab 2207 struct blkcg_gq *blkg;
9e234eea 2208 struct throtl_grp *tg;
b9147dd1
SL
2209 u64 finish_time_ns;
2210 unsigned long finish_time;
2211 unsigned long start_time;
2212 unsigned long lat;
b889bf66 2213 int rw = bio_data_dir(bio);
9e234eea 2214
08e18eab
JB
2215 blkg = bio->bi_blkg;
2216 if (!blkg)
9e234eea 2217 return;
08e18eab 2218 tg = blkg_to_tg(blkg);
b185efa7
BW
2219 if (!tg->td->limit_valid[LIMIT_LOW])
2220 return;
9e234eea 2221
b9147dd1
SL
2222 finish_time_ns = ktime_get_ns();
2223 tg->last_finish_time = finish_time_ns >> 10;
2224
5238dcf4
OS
2225 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2226 finish_time = __bio_issue_time(finish_time_ns) >> 10;
08e18eab 2227 if (!start_time || finish_time <= start_time)
53696b8d
SL
2228 return;
2229
2230 lat = finish_time - start_time;
b9147dd1 2231 /* this is only for bio based driver */
5238dcf4
OS
2232 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2233 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2234 bio_op(bio), lat);
53696b8d 2235
6679a90c 2236 if (tg->latency_target && lat >= tg->td->filtered_latency) {
53696b8d
SL
2237 int bucket;
2238 unsigned int threshold;
2239
5238dcf4 2240 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
b889bf66 2241 threshold = tg->td->avg_buckets[rw][bucket].latency +
53696b8d
SL
2242 tg->latency_target;
2243 if (lat > threshold)
2244 tg->bad_bio_cnt++;
2245 /*
2246 * Not race free, could get wrong count, which means cgroups
2247 * will be throttled
2248 */
2249 tg->bio_cnt++;
2250 }
2251
2252 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2253 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2254 tg->bio_cnt /= 2;
2255 tg->bad_bio_cnt /= 2;
b9147dd1 2256 }
9e234eea
SL
2257}
2258#endif
2259
e43473b7
VG
2260int blk_throtl_init(struct request_queue *q)
2261{
2262 struct throtl_data *td;
a2b1693b 2263 int ret;
e43473b7
VG
2264
2265 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2266 if (!td)
2267 return -ENOMEM;
b889bf66 2268 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2269 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2270 if (!td->latency_buckets[READ]) {
2271 kfree(td);
2272 return -ENOMEM;
2273 }
2274 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2275 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2276 if (!td->latency_buckets[WRITE]) {
2277 free_percpu(td->latency_buckets[READ]);
b9147dd1
SL
2278 kfree(td);
2279 return -ENOMEM;
2280 }
e43473b7 2281
69df0ab0 2282 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
b2ce2643 2283 throtl_service_queue_init(&td->service_queue);
e43473b7 2284
cd1604fa 2285 q->td = td;
29b12589 2286 td->queue = q;
02977e4a 2287
9f626e37 2288 td->limit_valid[LIMIT_MAX] = true;
cd5ab1b0 2289 td->limit_index = LIMIT_MAX;
3f0abd80
SL
2290 td->low_upgrade_time = jiffies;
2291 td->low_downgrade_time = jiffies;
9e234eea 2292
a2b1693b 2293 /* activate policy */
3c798398 2294 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
b9147dd1 2295 if (ret) {
b889bf66
JQ
2296 free_percpu(td->latency_buckets[READ]);
2297 free_percpu(td->latency_buckets[WRITE]);
f51b802c 2298 kfree(td);
b9147dd1 2299 }
a2b1693b 2300 return ret;
e43473b7
VG
2301}
2302
2303void blk_throtl_exit(struct request_queue *q)
2304{
c875f4d0 2305 BUG_ON(!q->td);
884f0e84 2306 del_timer_sync(&q->td->service_queue.pending_timer);
da527770 2307 throtl_shutdown_wq(q);
3c798398 2308 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
b889bf66
JQ
2309 free_percpu(q->td->latency_buckets[READ]);
2310 free_percpu(q->td->latency_buckets[WRITE]);
c9a929dd 2311 kfree(q->td);
e43473b7
VG
2312}
2313
d61fcfa4
SL
2314void blk_throtl_register_queue(struct request_queue *q)
2315{
2316 struct throtl_data *td;
6679a90c 2317 int i;
d61fcfa4
SL
2318
2319 td = q->td;
2320 BUG_ON(!td);
2321
6679a90c 2322 if (blk_queue_nonrot(q)) {
d61fcfa4 2323 td->throtl_slice = DFL_THROTL_SLICE_SSD;
6679a90c
SL
2324 td->filtered_latency = LATENCY_FILTERED_SSD;
2325 } else {
d61fcfa4 2326 td->throtl_slice = DFL_THROTL_SLICE_HD;
6679a90c 2327 td->filtered_latency = LATENCY_FILTERED_HD;
b889bf66
JQ
2328 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2329 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2330 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2331 }
6679a90c 2332 }
d61fcfa4
SL
2333#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2334 /* if no low limit, use previous default */
2335 td->throtl_slice = DFL_THROTL_SLICE_HD;
2336#endif
9e234eea 2337
344e9ffc 2338 td->track_bio_latency = !queue_is_mq(q);
b9147dd1
SL
2339 if (!td->track_bio_latency)
2340 blk_stat_enable_accounting(q);
d61fcfa4
SL
2341}
2342
297e3d85
SL
2343#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2344ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2345{
2346 if (!q->td)
2347 return -EINVAL;
2348 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2349}
2350
2351ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2352 const char *page, size_t count)
2353{
2354 unsigned long v;
2355 unsigned long t;
2356
2357 if (!q->td)
2358 return -EINVAL;
2359 if (kstrtoul(page, 10, &v))
2360 return -EINVAL;
2361 t = msecs_to_jiffies(v);
2362 if (t == 0 || t > MAX_THROTL_SLICE)
2363 return -EINVAL;
2364 q->td->throtl_slice = t;
2365 return count;
2366}
2367#endif
2368
e43473b7
VG
2369static int __init throtl_init(void)
2370{
450adcbe
VG
2371 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2372 if (!kthrotld_workqueue)
2373 panic("Failed to create kthrotld\n");
2374
3c798398 2375 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
2376}
2377
2378module_init(throtl_init);