block: hold a request_queue reference for the lifetime of struct gendisk
[linux-block.git] / block / blk-settings.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
86db1e29
JA
2/*
3 * Functions related to setting various queue properties from drivers
4 */
5#include <linux/kernel.h>
6#include <linux/module.h>
7#include <linux/init.h>
8#include <linux/bio.h>
9#include <linux/blkdev.h>
4ee60ec1 10#include <linux/pagemap.h>
edb0872f 11#include <linux/backing-dev-defs.h>
70dd5bf3 12#include <linux/gcd.h>
2cda2728 13#include <linux/lcm.h>
ad5ebd2f 14#include <linux/jiffies.h>
5a0e3ad6 15#include <linux/gfp.h>
45147fb5 16#include <linux/dma-mapping.h>
86db1e29
JA
17
18#include "blk.h"
87760e5e 19#include "blk-wbt.h"
86db1e29 20
242f9dcb
JA
21void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
22{
23 q->rq_timeout = timeout;
24}
25EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
26
e475bba2
MP
27/**
28 * blk_set_default_limits - reset limits to default values
f740f5ca 29 * @lim: the queue_limits structure to reset
e475bba2
MP
30 *
31 * Description:
b1bd055d 32 * Returns a queue_limit struct to its default state.
e475bba2
MP
33 */
34void blk_set_default_limits(struct queue_limits *lim)
35{
8a78362c 36 lim->max_segments = BLK_MAX_SEGMENTS;
1e739730 37 lim->max_discard_segments = 1;
13f05c8d 38 lim->max_integrity_segments = 0;
e475bba2 39 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
03100aad 40 lim->virt_boundary_mask = 0;
eb28d31b 41 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
5f009d3f
KB
42 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
43 lim->max_dev_sectors = 0;
762380ad 44 lim->chunk_sectors = 0;
4363ac7c 45 lim->max_write_same_sectors = 0;
a6f0788e 46 lim->max_write_zeroes_sectors = 0;
0512a75b 47 lim->max_zone_append_sectors = 0;
86b37281 48 lim->max_discard_sectors = 0;
0034af03 49 lim->max_hw_discard_sectors = 0;
86b37281
MP
50 lim->discard_granularity = 0;
51 lim->discard_alignment = 0;
52 lim->discard_misaligned = 0;
e475bba2 53 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
9bb33f24 54 lim->bounce = BLK_BOUNCE_NONE;
e475bba2
MP
55 lim->alignment_offset = 0;
56 lim->io_opt = 0;
57 lim->misaligned = 0;
797476b8 58 lim->zoned = BLK_ZONED_NONE;
a805a4fa 59 lim->zone_write_granularity = 0;
e475bba2
MP
60}
61EXPORT_SYMBOL(blk_set_default_limits);
62
b1bd055d
MP
63/**
64 * blk_set_stacking_limits - set default limits for stacking devices
65 * @lim: the queue_limits structure to reset
66 *
67 * Description:
68 * Returns a queue_limit struct to its default state. Should be used
69 * by stacking drivers like DM that have no internal limits.
70 */
71void blk_set_stacking_limits(struct queue_limits *lim)
72{
73 blk_set_default_limits(lim);
74
75 /* Inherit limits from component devices */
b1bd055d 76 lim->max_segments = USHRT_MAX;
42c9cdfe 77 lim->max_discard_segments = USHRT_MAX;
b1bd055d 78 lim->max_hw_sectors = UINT_MAX;
d82ae52e 79 lim->max_segment_size = UINT_MAX;
fe86cdce 80 lim->max_sectors = UINT_MAX;
ca369d51 81 lim->max_dev_sectors = UINT_MAX;
4363ac7c 82 lim->max_write_same_sectors = UINT_MAX;
a6f0788e 83 lim->max_write_zeroes_sectors = UINT_MAX;
0512a75b 84 lim->max_zone_append_sectors = UINT_MAX;
b1bd055d
MP
85}
86EXPORT_SYMBOL(blk_set_stacking_limits);
87
86db1e29
JA
88/**
89 * blk_queue_bounce_limit - set bounce buffer limit for queue
cd0aca2d 90 * @q: the request queue for the device
9bb33f24 91 * @bounce: bounce limit to enforce
86db1e29
JA
92 *
93 * Description:
9bb33f24
CH
94 * Force bouncing for ISA DMA ranges or highmem.
95 *
96 * DEPRECATED, don't use in new code.
86db1e29 97 **/
9bb33f24 98void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
86db1e29 99{
9bb33f24 100 q->limits.bounce = bounce;
86db1e29 101}
86db1e29
JA
102EXPORT_SYMBOL(blk_queue_bounce_limit);
103
104/**
ca369d51
MP
105 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
106 * @q: the request queue for the device
2800aac1 107 * @max_hw_sectors: max hardware sectors in the usual 512b unit
86db1e29
JA
108 *
109 * Description:
2800aac1
MP
110 * Enables a low level driver to set a hard upper limit,
111 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
4f258a46
MP
112 * the device driver based upon the capabilities of the I/O
113 * controller.
2800aac1 114 *
ca369d51
MP
115 * max_dev_sectors is a hard limit imposed by the storage device for
116 * READ/WRITE requests. It is set by the disk driver.
117 *
2800aac1
MP
118 * max_sectors is a soft limit imposed by the block layer for
119 * filesystem type requests. This value can be overridden on a
120 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
121 * The soft limit can not exceed max_hw_sectors.
86db1e29 122 **/
ca369d51 123void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
86db1e29 124{
ca369d51
MP
125 struct queue_limits *limits = &q->limits;
126 unsigned int max_sectors;
127
09cbfeaf
KS
128 if ((max_hw_sectors << 9) < PAGE_SIZE) {
129 max_hw_sectors = 1 << (PAGE_SHIFT - 9);
24c03d47 130 printk(KERN_INFO "%s: set to minimum %d\n",
2800aac1 131 __func__, max_hw_sectors);
86db1e29
JA
132 }
133
817046ec
DLM
134 max_hw_sectors = round_down(max_hw_sectors,
135 limits->logical_block_size >> SECTOR_SHIFT);
30e2bc08 136 limits->max_hw_sectors = max_hw_sectors;
817046ec 137
ca369d51
MP
138 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
139 max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
817046ec
DLM
140 max_sectors = round_down(max_sectors,
141 limits->logical_block_size >> SECTOR_SHIFT);
ca369d51 142 limits->max_sectors = max_sectors;
817046ec 143
edb0872f
CH
144 if (!queue_has_disk(q))
145 return;
146 queue_to_disk(q)->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9);
86db1e29 147}
086fa5ff 148EXPORT_SYMBOL(blk_queue_max_hw_sectors);
86db1e29 149
762380ad
JA
150/**
151 * blk_queue_chunk_sectors - set size of the chunk for this queue
152 * @q: the request queue for the device
153 * @chunk_sectors: chunk sectors in the usual 512b unit
154 *
155 * Description:
156 * If a driver doesn't want IOs to cross a given chunk size, it can set
07d098e6
MS
157 * this limit and prevent merging across chunks. Note that the block layer
158 * must accept a page worth of data at any offset. So if the crossing of
159 * chunks is a hard limitation in the driver, it must still be prepared
160 * to split single page bios.
762380ad
JA
161 **/
162void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
163{
762380ad
JA
164 q->limits.chunk_sectors = chunk_sectors;
165}
166EXPORT_SYMBOL(blk_queue_chunk_sectors);
167
67efc925
CH
168/**
169 * blk_queue_max_discard_sectors - set max sectors for a single discard
170 * @q: the request queue for the device
c7ebf065 171 * @max_discard_sectors: maximum number of sectors to discard
67efc925
CH
172 **/
173void blk_queue_max_discard_sectors(struct request_queue *q,
174 unsigned int max_discard_sectors)
175{
0034af03 176 q->limits.max_hw_discard_sectors = max_discard_sectors;
67efc925
CH
177 q->limits.max_discard_sectors = max_discard_sectors;
178}
179EXPORT_SYMBOL(blk_queue_max_discard_sectors);
180
4363ac7c
MP
181/**
182 * blk_queue_max_write_same_sectors - set max sectors for a single write same
183 * @q: the request queue for the device
184 * @max_write_same_sectors: maximum number of sectors to write per command
185 **/
186void blk_queue_max_write_same_sectors(struct request_queue *q,
187 unsigned int max_write_same_sectors)
188{
189 q->limits.max_write_same_sectors = max_write_same_sectors;
190}
191EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
192
a6f0788e
CK
193/**
194 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
195 * write zeroes
196 * @q: the request queue for the device
197 * @max_write_zeroes_sectors: maximum number of sectors to write per command
198 **/
199void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
200 unsigned int max_write_zeroes_sectors)
201{
202 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
203}
204EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
205
0512a75b
KB
206/**
207 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
208 * @q: the request queue for the device
209 * @max_zone_append_sectors: maximum number of sectors to write per command
210 **/
211void blk_queue_max_zone_append_sectors(struct request_queue *q,
212 unsigned int max_zone_append_sectors)
213{
214 unsigned int max_sectors;
215
216 if (WARN_ON(!blk_queue_is_zoned(q)))
217 return;
218
219 max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
220 max_sectors = min(q->limits.chunk_sectors, max_sectors);
221
222 /*
223 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
224 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
225 * or the max_hw_sectors limit not set.
226 */
227 WARN_ON(!max_sectors);
228
229 q->limits.max_zone_append_sectors = max_sectors;
230}
231EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
232
86db1e29 233/**
8a78362c 234 * blk_queue_max_segments - set max hw segments for a request for this queue
86db1e29
JA
235 * @q: the request queue for the device
236 * @max_segments: max number of segments
237 *
238 * Description:
239 * Enables a low level driver to set an upper limit on the number of
8a78362c 240 * hw data segments in a request.
86db1e29 241 **/
8a78362c 242void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
86db1e29
JA
243{
244 if (!max_segments) {
245 max_segments = 1;
24c03d47
HH
246 printk(KERN_INFO "%s: set to minimum %d\n",
247 __func__, max_segments);
86db1e29
JA
248 }
249
8a78362c 250 q->limits.max_segments = max_segments;
86db1e29 251}
8a78362c 252EXPORT_SYMBOL(blk_queue_max_segments);
86db1e29 253
1e739730
CH
254/**
255 * blk_queue_max_discard_segments - set max segments for discard requests
256 * @q: the request queue for the device
257 * @max_segments: max number of segments
258 *
259 * Description:
260 * Enables a low level driver to set an upper limit on the number of
261 * segments in a discard request.
262 **/
263void blk_queue_max_discard_segments(struct request_queue *q,
264 unsigned short max_segments)
265{
266 q->limits.max_discard_segments = max_segments;
267}
268EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
269
86db1e29
JA
270/**
271 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
272 * @q: the request queue for the device
273 * @max_size: max size of segment in bytes
274 *
275 * Description:
276 * Enables a low level driver to set an upper limit on the size of a
277 * coalesced segment
278 **/
279void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
280{
09cbfeaf
KS
281 if (max_size < PAGE_SIZE) {
282 max_size = PAGE_SIZE;
24c03d47
HH
283 printk(KERN_INFO "%s: set to minimum %d\n",
284 __func__, max_size);
86db1e29
JA
285 }
286
09324d32
CH
287 /* see blk_queue_virt_boundary() for the explanation */
288 WARN_ON_ONCE(q->limits.virt_boundary_mask);
289
025146e1 290 q->limits.max_segment_size = max_size;
86db1e29 291}
86db1e29
JA
292EXPORT_SYMBOL(blk_queue_max_segment_size);
293
294/**
e1defc4f 295 * blk_queue_logical_block_size - set logical block size for the queue
86db1e29 296 * @q: the request queue for the device
e1defc4f 297 * @size: the logical block size, in bytes
86db1e29
JA
298 *
299 * Description:
e1defc4f
MP
300 * This should be set to the lowest possible block size that the
301 * storage device can address. The default of 512 covers most
302 * hardware.
86db1e29 303 **/
ad6bf88a 304void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
86db1e29 305{
817046ec
DLM
306 struct queue_limits *limits = &q->limits;
307
308 limits->logical_block_size = size;
309
310 if (limits->physical_block_size < size)
311 limits->physical_block_size = size;
c72758f3 312
817046ec
DLM
313 if (limits->io_min < limits->physical_block_size)
314 limits->io_min = limits->physical_block_size;
c72758f3 315
817046ec
DLM
316 limits->max_hw_sectors =
317 round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
318 limits->max_sectors =
319 round_down(limits->max_sectors, size >> SECTOR_SHIFT);
86db1e29 320}
e1defc4f 321EXPORT_SYMBOL(blk_queue_logical_block_size);
86db1e29 322
c72758f3
MP
323/**
324 * blk_queue_physical_block_size - set physical block size for the queue
325 * @q: the request queue for the device
326 * @size: the physical block size, in bytes
327 *
328 * Description:
329 * This should be set to the lowest possible sector size that the
330 * hardware can operate on without reverting to read-modify-write
331 * operations.
332 */
892b6f90 333void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
c72758f3
MP
334{
335 q->limits.physical_block_size = size;
336
337 if (q->limits.physical_block_size < q->limits.logical_block_size)
338 q->limits.physical_block_size = q->limits.logical_block_size;
339
340 if (q->limits.io_min < q->limits.physical_block_size)
341 q->limits.io_min = q->limits.physical_block_size;
342}
343EXPORT_SYMBOL(blk_queue_physical_block_size);
344
a805a4fa
DLM
345/**
346 * blk_queue_zone_write_granularity - set zone write granularity for the queue
347 * @q: the request queue for the zoned device
348 * @size: the zone write granularity size, in bytes
349 *
350 * Description:
351 * This should be set to the lowest possible size allowing to write in
352 * sequential zones of a zoned block device.
353 */
354void blk_queue_zone_write_granularity(struct request_queue *q,
355 unsigned int size)
356{
357 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
358 return;
359
360 q->limits.zone_write_granularity = size;
361
362 if (q->limits.zone_write_granularity < q->limits.logical_block_size)
363 q->limits.zone_write_granularity = q->limits.logical_block_size;
364}
365EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
366
c72758f3
MP
367/**
368 * blk_queue_alignment_offset - set physical block alignment offset
369 * @q: the request queue for the device
8ebf9756 370 * @offset: alignment offset in bytes
c72758f3
MP
371 *
372 * Description:
373 * Some devices are naturally misaligned to compensate for things like
374 * the legacy DOS partition table 63-sector offset. Low-level drivers
375 * should call this function for devices whose first sector is not
376 * naturally aligned.
377 */
378void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
379{
380 q->limits.alignment_offset =
381 offset & (q->limits.physical_block_size - 1);
382 q->limits.misaligned = 0;
383}
384EXPORT_SYMBOL(blk_queue_alignment_offset);
385
471aa704 386void disk_update_readahead(struct gendisk *disk)
c2e4cd57 387{
471aa704
CH
388 struct request_queue *q = disk->queue;
389
c2e4cd57
CH
390 /*
391 * For read-ahead of large files to be effective, we need to read ahead
392 * at least twice the optimal I/O size.
393 */
edb0872f 394 disk->bdi->ra_pages =
c2e4cd57 395 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
edb0872f 396 disk->bdi->io_pages = queue_max_sectors(q) >> (PAGE_SHIFT - 9);
c2e4cd57 397}
471aa704 398EXPORT_SYMBOL_GPL(disk_update_readahead);
c2e4cd57 399
7c958e32
MP
400/**
401 * blk_limits_io_min - set minimum request size for a device
402 * @limits: the queue limits
403 * @min: smallest I/O size in bytes
404 *
405 * Description:
406 * Some devices have an internal block size bigger than the reported
407 * hardware sector size. This function can be used to signal the
408 * smallest I/O the device can perform without incurring a performance
409 * penalty.
410 */
411void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
412{
413 limits->io_min = min;
414
415 if (limits->io_min < limits->logical_block_size)
416 limits->io_min = limits->logical_block_size;
417
418 if (limits->io_min < limits->physical_block_size)
419 limits->io_min = limits->physical_block_size;
420}
421EXPORT_SYMBOL(blk_limits_io_min);
422
c72758f3
MP
423/**
424 * blk_queue_io_min - set minimum request size for the queue
425 * @q: the request queue for the device
8ebf9756 426 * @min: smallest I/O size in bytes
c72758f3
MP
427 *
428 * Description:
7e5f5fb0
MP
429 * Storage devices may report a granularity or preferred minimum I/O
430 * size which is the smallest request the device can perform without
431 * incurring a performance penalty. For disk drives this is often the
432 * physical block size. For RAID arrays it is often the stripe chunk
433 * size. A properly aligned multiple of minimum_io_size is the
434 * preferred request size for workloads where a high number of I/O
435 * operations is desired.
c72758f3
MP
436 */
437void blk_queue_io_min(struct request_queue *q, unsigned int min)
438{
7c958e32 439 blk_limits_io_min(&q->limits, min);
c72758f3
MP
440}
441EXPORT_SYMBOL(blk_queue_io_min);
442
3c5820c7
MP
443/**
444 * blk_limits_io_opt - set optimal request size for a device
445 * @limits: the queue limits
446 * @opt: smallest I/O size in bytes
447 *
448 * Description:
449 * Storage devices may report an optimal I/O size, which is the
450 * device's preferred unit for sustained I/O. This is rarely reported
451 * for disk drives. For RAID arrays it is usually the stripe width or
452 * the internal track size. A properly aligned multiple of
453 * optimal_io_size is the preferred request size for workloads where
454 * sustained throughput is desired.
455 */
456void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
457{
458 limits->io_opt = opt;
459}
460EXPORT_SYMBOL(blk_limits_io_opt);
461
c72758f3
MP
462/**
463 * blk_queue_io_opt - set optimal request size for the queue
464 * @q: the request queue for the device
8ebf9756 465 * @opt: optimal request size in bytes
c72758f3
MP
466 *
467 * Description:
7e5f5fb0
MP
468 * Storage devices may report an optimal I/O size, which is the
469 * device's preferred unit for sustained I/O. This is rarely reported
470 * for disk drives. For RAID arrays it is usually the stripe width or
471 * the internal track size. A properly aligned multiple of
472 * optimal_io_size is the preferred request size for workloads where
473 * sustained throughput is desired.
c72758f3
MP
474 */
475void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
476{
3c5820c7 477 blk_limits_io_opt(&q->limits, opt);
edb0872f
CH
478 if (!queue_has_disk(q))
479 return;
480 queue_to_disk(q)->bdi->ra_pages =
c2e4cd57 481 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
c72758f3
MP
482}
483EXPORT_SYMBOL(blk_queue_io_opt);
484
97f433c3
MP
485static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
486{
487 sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
488 if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
489 sectors = PAGE_SIZE >> SECTOR_SHIFT;
490 return sectors;
491}
492
c72758f3
MP
493/**
494 * blk_stack_limits - adjust queue_limits for stacked devices
81744ee4
MP
495 * @t: the stacking driver limits (top device)
496 * @b: the underlying queue limits (bottom, component device)
e03a72e1 497 * @start: first data sector within component device
c72758f3
MP
498 *
499 * Description:
81744ee4
MP
500 * This function is used by stacking drivers like MD and DM to ensure
501 * that all component devices have compatible block sizes and
502 * alignments. The stacking driver must provide a queue_limits
503 * struct (top) and then iteratively call the stacking function for
504 * all component (bottom) devices. The stacking function will
505 * attempt to combine the values and ensure proper alignment.
506 *
507 * Returns 0 if the top and bottom queue_limits are compatible. The
508 * top device's block sizes and alignment offsets may be adjusted to
509 * ensure alignment with the bottom device. If no compatible sizes
510 * and alignments exist, -1 is returned and the resulting top
511 * queue_limits will have the misaligned flag set to indicate that
512 * the alignment_offset is undefined.
c72758f3
MP
513 */
514int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
e03a72e1 515 sector_t start)
c72758f3 516{
e03a72e1 517 unsigned int top, bottom, alignment, ret = 0;
86b37281 518
c72758f3
MP
519 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
520 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
ca369d51 521 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
4363ac7c
MP
522 t->max_write_same_sectors = min(t->max_write_same_sectors,
523 b->max_write_same_sectors);
a6f0788e
CK
524 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
525 b->max_write_zeroes_sectors);
0512a75b
KB
526 t->max_zone_append_sectors = min(t->max_zone_append_sectors,
527 b->max_zone_append_sectors);
9bb33f24 528 t->bounce = max(t->bounce, b->bounce);
c72758f3
MP
529
530 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
531 b->seg_boundary_mask);
03100aad
KB
532 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
533 b->virt_boundary_mask);
c72758f3 534
8a78362c 535 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
1e739730
CH
536 t->max_discard_segments = min_not_zero(t->max_discard_segments,
537 b->max_discard_segments);
13f05c8d
MP
538 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
539 b->max_integrity_segments);
c72758f3
MP
540
541 t->max_segment_size = min_not_zero(t->max_segment_size,
542 b->max_segment_size);
543
fe0b393f
MP
544 t->misaligned |= b->misaligned;
545
e03a72e1 546 alignment = queue_limit_alignment_offset(b, start);
9504e086 547
81744ee4
MP
548 /* Bottom device has different alignment. Check that it is
549 * compatible with the current top alignment.
550 */
9504e086
MP
551 if (t->alignment_offset != alignment) {
552
553 top = max(t->physical_block_size, t->io_min)
554 + t->alignment_offset;
81744ee4 555 bottom = max(b->physical_block_size, b->io_min) + alignment;
9504e086 556
81744ee4 557 /* Verify that top and bottom intervals line up */
b8839b8c 558 if (max(top, bottom) % min(top, bottom)) {
9504e086 559 t->misaligned = 1;
fe0b393f
MP
560 ret = -1;
561 }
9504e086
MP
562 }
563
c72758f3
MP
564 t->logical_block_size = max(t->logical_block_size,
565 b->logical_block_size);
566
567 t->physical_block_size = max(t->physical_block_size,
568 b->physical_block_size);
569
570 t->io_min = max(t->io_min, b->io_min);
e9637415 571 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
7e7986f9
MS
572
573 /* Set non-power-of-2 compatible chunk_sectors boundary */
574 if (b->chunk_sectors)
575 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
9504e086 576
81744ee4 577 /* Physical block size a multiple of the logical block size? */
9504e086
MP
578 if (t->physical_block_size & (t->logical_block_size - 1)) {
579 t->physical_block_size = t->logical_block_size;
c72758f3 580 t->misaligned = 1;
fe0b393f 581 ret = -1;
86b37281
MP
582 }
583
81744ee4 584 /* Minimum I/O a multiple of the physical block size? */
9504e086
MP
585 if (t->io_min & (t->physical_block_size - 1)) {
586 t->io_min = t->physical_block_size;
587 t->misaligned = 1;
fe0b393f 588 ret = -1;
c72758f3
MP
589 }
590
81744ee4 591 /* Optimal I/O a multiple of the physical block size? */
9504e086
MP
592 if (t->io_opt & (t->physical_block_size - 1)) {
593 t->io_opt = 0;
594 t->misaligned = 1;
fe0b393f 595 ret = -1;
9504e086 596 }
c72758f3 597
22ada802
MS
598 /* chunk_sectors a multiple of the physical block size? */
599 if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
600 t->chunk_sectors = 0;
601 t->misaligned = 1;
602 ret = -1;
603 }
604
c78afc62
KO
605 t->raid_partial_stripes_expensive =
606 max(t->raid_partial_stripes_expensive,
607 b->raid_partial_stripes_expensive);
608
81744ee4 609 /* Find lowest common alignment_offset */
e9637415 610 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
b8839b8c 611 % max(t->physical_block_size, t->io_min);
86b37281 612
81744ee4 613 /* Verify that new alignment_offset is on a logical block boundary */
fe0b393f 614 if (t->alignment_offset & (t->logical_block_size - 1)) {
c72758f3 615 t->misaligned = 1;
fe0b393f
MP
616 ret = -1;
617 }
c72758f3 618
97f433c3
MP
619 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
620 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
621 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
622
9504e086
MP
623 /* Discard alignment and granularity */
624 if (b->discard_granularity) {
e03a72e1 625 alignment = queue_limit_discard_alignment(b, start);
9504e086
MP
626
627 if (t->discard_granularity != 0 &&
628 t->discard_alignment != alignment) {
629 top = t->discard_granularity + t->discard_alignment;
630 bottom = b->discard_granularity + alignment;
70dd5bf3 631
9504e086 632 /* Verify that top and bottom intervals line up */
8dd2cb7e 633 if ((max(top, bottom) % min(top, bottom)) != 0)
9504e086
MP
634 t->discard_misaligned = 1;
635 }
636
81744ee4
MP
637 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
638 b->max_discard_sectors);
0034af03
JA
639 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
640 b->max_hw_discard_sectors);
9504e086
MP
641 t->discard_granularity = max(t->discard_granularity,
642 b->discard_granularity);
e9637415 643 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
8dd2cb7e 644 t->discard_granularity;
9504e086 645 }
70dd5bf3 646
a805a4fa
DLM
647 t->zone_write_granularity = max(t->zone_write_granularity,
648 b->zone_write_granularity);
3093a479 649 t->zoned = max(t->zoned, b->zoned);
fe0b393f 650 return ret;
c72758f3 651}
5d85d324 652EXPORT_SYMBOL(blk_stack_limits);
c72758f3
MP
653
654/**
655 * disk_stack_limits - adjust queue limits for stacked drivers
77634f33 656 * @disk: MD/DM gendisk (top)
c72758f3
MP
657 * @bdev: the underlying block device (bottom)
658 * @offset: offset to beginning of data within component device
659 *
660 * Description:
e03a72e1
MP
661 * Merges the limits for a top level gendisk and a bottom level
662 * block_device.
c72758f3
MP
663 */
664void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
665 sector_t offset)
666{
667 struct request_queue *t = disk->queue;
c72758f3 668
9efa82ef 669 if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
453b8ab6
CH
670 get_start_sect(bdev) + (offset >> 9)) < 0)
671 pr_notice("%s: Warning: Device %pg is misaligned\n",
672 disk->disk_name, bdev);
e74d93e9 673
471aa704 674 disk_update_readahead(disk);
c72758f3
MP
675}
676EXPORT_SYMBOL(disk_stack_limits);
677
27f8221a
FT
678/**
679 * blk_queue_update_dma_pad - update pad mask
680 * @q: the request queue for the device
681 * @mask: pad mask
682 *
683 * Update dma pad mask.
684 *
685 * Appending pad buffer to a request modifies the last entry of a
686 * scatter list such that it includes the pad buffer.
687 **/
688void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
689{
690 if (mask > q->dma_pad_mask)
691 q->dma_pad_mask = mask;
692}
693EXPORT_SYMBOL(blk_queue_update_dma_pad);
694
86db1e29
JA
695/**
696 * blk_queue_segment_boundary - set boundary rules for segment merging
697 * @q: the request queue for the device
698 * @mask: the memory boundary mask
699 **/
700void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
701{
09cbfeaf
KS
702 if (mask < PAGE_SIZE - 1) {
703 mask = PAGE_SIZE - 1;
24c03d47
HH
704 printk(KERN_INFO "%s: set to minimum %lx\n",
705 __func__, mask);
86db1e29
JA
706 }
707
025146e1 708 q->limits.seg_boundary_mask = mask;
86db1e29 709}
86db1e29
JA
710EXPORT_SYMBOL(blk_queue_segment_boundary);
711
03100aad
KB
712/**
713 * blk_queue_virt_boundary - set boundary rules for bio merging
714 * @q: the request queue for the device
715 * @mask: the memory boundary mask
716 **/
717void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
718{
719 q->limits.virt_boundary_mask = mask;
09324d32
CH
720
721 /*
722 * Devices that require a virtual boundary do not support scatter/gather
723 * I/O natively, but instead require a descriptor list entry for each
724 * page (which might not be idential to the Linux PAGE_SIZE). Because
725 * of that they are not limited by our notion of "segment size".
726 */
c6c84f78
CH
727 if (mask)
728 q->limits.max_segment_size = UINT_MAX;
03100aad
KB
729}
730EXPORT_SYMBOL(blk_queue_virt_boundary);
731
86db1e29
JA
732/**
733 * blk_queue_dma_alignment - set dma length and memory alignment
734 * @q: the request queue for the device
735 * @mask: alignment mask
736 *
737 * description:
710027a4 738 * set required memory and length alignment for direct dma transactions.
8feb4d20 739 * this is used when building direct io requests for the queue.
86db1e29
JA
740 *
741 **/
742void blk_queue_dma_alignment(struct request_queue *q, int mask)
743{
744 q->dma_alignment = mask;
745}
86db1e29
JA
746EXPORT_SYMBOL(blk_queue_dma_alignment);
747
748/**
749 * blk_queue_update_dma_alignment - update dma length and memory alignment
750 * @q: the request queue for the device
751 * @mask: alignment mask
752 *
753 * description:
710027a4 754 * update required memory and length alignment for direct dma transactions.
86db1e29
JA
755 * If the requested alignment is larger than the current alignment, then
756 * the current queue alignment is updated to the new value, otherwise it
757 * is left alone. The design of this is to allow multiple objects
758 * (driver, device, transport etc) to set their respective
759 * alignments without having them interfere.
760 *
761 **/
762void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
763{
764 BUG_ON(mask > PAGE_SIZE);
765
766 if (mask > q->dma_alignment)
767 q->dma_alignment = mask;
768}
86db1e29
JA
769EXPORT_SYMBOL(blk_queue_update_dma_alignment);
770
d278d4a8
JA
771/**
772 * blk_set_queue_depth - tell the block layer about the device queue depth
773 * @q: the request queue for the device
774 * @depth: queue depth
775 *
776 */
777void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
778{
779 q->queue_depth = depth;
9677a3e0 780 rq_qos_queue_depth_changed(q);
d278d4a8
JA
781}
782EXPORT_SYMBOL(blk_set_queue_depth);
783
93e9d8e8
JA
784/**
785 * blk_queue_write_cache - configure queue's write cache
786 * @q: the request queue for the device
787 * @wc: write back cache on or off
788 * @fua: device supports FUA writes, if true
789 *
790 * Tell the block layer about the write cache of @q.
791 */
792void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
793{
c888a8f9 794 if (wc)
57d74df9 795 blk_queue_flag_set(QUEUE_FLAG_WC, q);
c888a8f9 796 else
57d74df9 797 blk_queue_flag_clear(QUEUE_FLAG_WC, q);
c888a8f9 798 if (fua)
57d74df9 799 blk_queue_flag_set(QUEUE_FLAG_FUA, q);
c888a8f9 800 else
57d74df9 801 blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
87760e5e 802
a7905043 803 wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
93e9d8e8
JA
804}
805EXPORT_SYMBOL_GPL(blk_queue_write_cache);
806
68c43f13
DLM
807/**
808 * blk_queue_required_elevator_features - Set a queue required elevator features
809 * @q: the request queue for the target device
810 * @features: Required elevator features OR'ed together
811 *
812 * Tell the block layer that for the device controlled through @q, only the
813 * only elevators that can be used are those that implement at least the set of
814 * features specified by @features.
815 */
816void blk_queue_required_elevator_features(struct request_queue *q,
817 unsigned int features)
818{
819 q->required_elevator_features = features;
820}
821EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
822
45147fb5
YS
823/**
824 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
825 * @q: the request queue for the device
826 * @dev: the device pointer for dma
827 *
828 * Tell the block layer about merging the segments by dma map of @q.
829 */
830bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
831 struct device *dev)
832{
833 unsigned long boundary = dma_get_merge_boundary(dev);
834
835 if (!boundary)
836 return false;
837
838 /* No need to update max_segment_size. see blk_queue_virt_boundary() */
839 blk_queue_virt_boundary(q, boundary);
840
841 return true;
842}
843EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
844
27ba3e8f
DLM
845/**
846 * blk_queue_set_zoned - configure a disk queue zoned model.
847 * @disk: the gendisk of the queue to configure
848 * @model: the zoned model to set
849 *
850 * Set the zoned model of the request queue of @disk according to @model.
851 * When @model is BLK_ZONED_HM (host managed), this should be called only
852 * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
853 * If @model specifies BLK_ZONED_HA (host aware), the effective model used
854 * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
855 * on the disk.
856 */
857void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
858{
a805a4fa
DLM
859 struct request_queue *q = disk->queue;
860
27ba3e8f
DLM
861 switch (model) {
862 case BLK_ZONED_HM:
863 /*
864 * Host managed devices are supported only if
865 * CONFIG_BLK_DEV_ZONED is enabled.
866 */
867 WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
868 break;
869 case BLK_ZONED_HA:
870 /*
871 * Host aware devices can be treated either as regular block
872 * devices (similar to drive managed devices) or as zoned block
873 * devices to take advantage of the zone command set, similarly
874 * to host managed devices. We try the latter if there are no
875 * partitions and zoned block device support is enabled, else
876 * we do nothing special as far as the block layer is concerned.
877 */
878 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
a33df75c 879 !xa_empty(&disk->part_tbl))
27ba3e8f
DLM
880 model = BLK_ZONED_NONE;
881 break;
882 case BLK_ZONED_NONE:
883 default:
884 if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
885 model = BLK_ZONED_NONE;
886 break;
887 }
888
a805a4fa
DLM
889 q->limits.zoned = model;
890 if (model != BLK_ZONED_NONE) {
891 /*
892 * Set the zone write granularity to the device logical block
893 * size by default. The driver can change this value if needed.
894 */
895 blk_queue_zone_write_granularity(q,
896 queue_logical_block_size(q));
508aebb8
DLM
897 } else {
898 blk_queue_clear_zone_settings(q);
a805a4fa 899 }
27ba3e8f
DLM
900}
901EXPORT_SYMBOL_GPL(blk_queue_set_zoned);