mm: hide laptop_mode_wb_timer entirely behind the BDI API
[linux-block.git] / block / blk-settings.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
86db1e29
JA
2/*
3 * Functions related to setting various queue properties from drivers
4 */
5#include <linux/kernel.h>
6#include <linux/module.h>
7#include <linux/init.h>
8#include <linux/bio.h>
9#include <linux/blkdev.h>
4ee60ec1 10#include <linux/pagemap.h>
70dd5bf3 11#include <linux/gcd.h>
2cda2728 12#include <linux/lcm.h>
ad5ebd2f 13#include <linux/jiffies.h>
5a0e3ad6 14#include <linux/gfp.h>
45147fb5 15#include <linux/dma-mapping.h>
86db1e29
JA
16
17#include "blk.h"
87760e5e 18#include "blk-wbt.h"
86db1e29 19
242f9dcb
JA
20void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
21{
22 q->rq_timeout = timeout;
23}
24EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
25
e475bba2
MP
26/**
27 * blk_set_default_limits - reset limits to default values
f740f5ca 28 * @lim: the queue_limits structure to reset
e475bba2
MP
29 *
30 * Description:
b1bd055d 31 * Returns a queue_limit struct to its default state.
e475bba2
MP
32 */
33void blk_set_default_limits(struct queue_limits *lim)
34{
8a78362c 35 lim->max_segments = BLK_MAX_SEGMENTS;
1e739730 36 lim->max_discard_segments = 1;
13f05c8d 37 lim->max_integrity_segments = 0;
e475bba2 38 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
03100aad 39 lim->virt_boundary_mask = 0;
eb28d31b 40 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
5f009d3f
KB
41 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
42 lim->max_dev_sectors = 0;
762380ad 43 lim->chunk_sectors = 0;
4363ac7c 44 lim->max_write_same_sectors = 0;
a6f0788e 45 lim->max_write_zeroes_sectors = 0;
0512a75b 46 lim->max_zone_append_sectors = 0;
86b37281 47 lim->max_discard_sectors = 0;
0034af03 48 lim->max_hw_discard_sectors = 0;
86b37281
MP
49 lim->discard_granularity = 0;
50 lim->discard_alignment = 0;
51 lim->discard_misaligned = 0;
e475bba2 52 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
9bb33f24 53 lim->bounce = BLK_BOUNCE_NONE;
e475bba2
MP
54 lim->alignment_offset = 0;
55 lim->io_opt = 0;
56 lim->misaligned = 0;
797476b8 57 lim->zoned = BLK_ZONED_NONE;
a805a4fa 58 lim->zone_write_granularity = 0;
e475bba2
MP
59}
60EXPORT_SYMBOL(blk_set_default_limits);
61
b1bd055d
MP
62/**
63 * blk_set_stacking_limits - set default limits for stacking devices
64 * @lim: the queue_limits structure to reset
65 *
66 * Description:
67 * Returns a queue_limit struct to its default state. Should be used
68 * by stacking drivers like DM that have no internal limits.
69 */
70void blk_set_stacking_limits(struct queue_limits *lim)
71{
72 blk_set_default_limits(lim);
73
74 /* Inherit limits from component devices */
b1bd055d 75 lim->max_segments = USHRT_MAX;
42c9cdfe 76 lim->max_discard_segments = USHRT_MAX;
b1bd055d 77 lim->max_hw_sectors = UINT_MAX;
d82ae52e 78 lim->max_segment_size = UINT_MAX;
fe86cdce 79 lim->max_sectors = UINT_MAX;
ca369d51 80 lim->max_dev_sectors = UINT_MAX;
4363ac7c 81 lim->max_write_same_sectors = UINT_MAX;
a6f0788e 82 lim->max_write_zeroes_sectors = UINT_MAX;
0512a75b 83 lim->max_zone_append_sectors = UINT_MAX;
b1bd055d
MP
84}
85EXPORT_SYMBOL(blk_set_stacking_limits);
86
86db1e29
JA
87/**
88 * blk_queue_bounce_limit - set bounce buffer limit for queue
cd0aca2d 89 * @q: the request queue for the device
9bb33f24 90 * @bounce: bounce limit to enforce
86db1e29
JA
91 *
92 * Description:
9bb33f24
CH
93 * Force bouncing for ISA DMA ranges or highmem.
94 *
95 * DEPRECATED, don't use in new code.
86db1e29 96 **/
9bb33f24 97void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
86db1e29 98{
9bb33f24 99 q->limits.bounce = bounce;
86db1e29 100}
86db1e29
JA
101EXPORT_SYMBOL(blk_queue_bounce_limit);
102
103/**
ca369d51
MP
104 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
105 * @q: the request queue for the device
2800aac1 106 * @max_hw_sectors: max hardware sectors in the usual 512b unit
86db1e29
JA
107 *
108 * Description:
2800aac1
MP
109 * Enables a low level driver to set a hard upper limit,
110 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
4f258a46
MP
111 * the device driver based upon the capabilities of the I/O
112 * controller.
2800aac1 113 *
ca369d51
MP
114 * max_dev_sectors is a hard limit imposed by the storage device for
115 * READ/WRITE requests. It is set by the disk driver.
116 *
2800aac1
MP
117 * max_sectors is a soft limit imposed by the block layer for
118 * filesystem type requests. This value can be overridden on a
119 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
120 * The soft limit can not exceed max_hw_sectors.
86db1e29 121 **/
ca369d51 122void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
86db1e29 123{
ca369d51
MP
124 struct queue_limits *limits = &q->limits;
125 unsigned int max_sectors;
126
09cbfeaf
KS
127 if ((max_hw_sectors << 9) < PAGE_SIZE) {
128 max_hw_sectors = 1 << (PAGE_SHIFT - 9);
24c03d47 129 printk(KERN_INFO "%s: set to minimum %d\n",
2800aac1 130 __func__, max_hw_sectors);
86db1e29
JA
131 }
132
817046ec
DLM
133 max_hw_sectors = round_down(max_hw_sectors,
134 limits->logical_block_size >> SECTOR_SHIFT);
30e2bc08 135 limits->max_hw_sectors = max_hw_sectors;
817046ec 136
ca369d51
MP
137 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
138 max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
817046ec
DLM
139 max_sectors = round_down(max_sectors,
140 limits->logical_block_size >> SECTOR_SHIFT);
ca369d51 141 limits->max_sectors = max_sectors;
817046ec 142
dc3b17cc 143 q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
86db1e29 144}
086fa5ff 145EXPORT_SYMBOL(blk_queue_max_hw_sectors);
86db1e29 146
762380ad
JA
147/**
148 * blk_queue_chunk_sectors - set size of the chunk for this queue
149 * @q: the request queue for the device
150 * @chunk_sectors: chunk sectors in the usual 512b unit
151 *
152 * Description:
153 * If a driver doesn't want IOs to cross a given chunk size, it can set
07d098e6
MS
154 * this limit and prevent merging across chunks. Note that the block layer
155 * must accept a page worth of data at any offset. So if the crossing of
156 * chunks is a hard limitation in the driver, it must still be prepared
157 * to split single page bios.
762380ad
JA
158 **/
159void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
160{
762380ad
JA
161 q->limits.chunk_sectors = chunk_sectors;
162}
163EXPORT_SYMBOL(blk_queue_chunk_sectors);
164
67efc925
CH
165/**
166 * blk_queue_max_discard_sectors - set max sectors for a single discard
167 * @q: the request queue for the device
c7ebf065 168 * @max_discard_sectors: maximum number of sectors to discard
67efc925
CH
169 **/
170void blk_queue_max_discard_sectors(struct request_queue *q,
171 unsigned int max_discard_sectors)
172{
0034af03 173 q->limits.max_hw_discard_sectors = max_discard_sectors;
67efc925
CH
174 q->limits.max_discard_sectors = max_discard_sectors;
175}
176EXPORT_SYMBOL(blk_queue_max_discard_sectors);
177
4363ac7c
MP
178/**
179 * blk_queue_max_write_same_sectors - set max sectors for a single write same
180 * @q: the request queue for the device
181 * @max_write_same_sectors: maximum number of sectors to write per command
182 **/
183void blk_queue_max_write_same_sectors(struct request_queue *q,
184 unsigned int max_write_same_sectors)
185{
186 q->limits.max_write_same_sectors = max_write_same_sectors;
187}
188EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
189
a6f0788e
CK
190/**
191 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
192 * write zeroes
193 * @q: the request queue for the device
194 * @max_write_zeroes_sectors: maximum number of sectors to write per command
195 **/
196void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
197 unsigned int max_write_zeroes_sectors)
198{
199 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
200}
201EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
202
0512a75b
KB
203/**
204 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
205 * @q: the request queue for the device
206 * @max_zone_append_sectors: maximum number of sectors to write per command
207 **/
208void blk_queue_max_zone_append_sectors(struct request_queue *q,
209 unsigned int max_zone_append_sectors)
210{
211 unsigned int max_sectors;
212
213 if (WARN_ON(!blk_queue_is_zoned(q)))
214 return;
215
216 max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
217 max_sectors = min(q->limits.chunk_sectors, max_sectors);
218
219 /*
220 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
221 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
222 * or the max_hw_sectors limit not set.
223 */
224 WARN_ON(!max_sectors);
225
226 q->limits.max_zone_append_sectors = max_sectors;
227}
228EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
229
86db1e29 230/**
8a78362c 231 * blk_queue_max_segments - set max hw segments for a request for this queue
86db1e29
JA
232 * @q: the request queue for the device
233 * @max_segments: max number of segments
234 *
235 * Description:
236 * Enables a low level driver to set an upper limit on the number of
8a78362c 237 * hw data segments in a request.
86db1e29 238 **/
8a78362c 239void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
86db1e29
JA
240{
241 if (!max_segments) {
242 max_segments = 1;
24c03d47
HH
243 printk(KERN_INFO "%s: set to minimum %d\n",
244 __func__, max_segments);
86db1e29
JA
245 }
246
8a78362c 247 q->limits.max_segments = max_segments;
86db1e29 248}
8a78362c 249EXPORT_SYMBOL(blk_queue_max_segments);
86db1e29 250
1e739730
CH
251/**
252 * blk_queue_max_discard_segments - set max segments for discard requests
253 * @q: the request queue for the device
254 * @max_segments: max number of segments
255 *
256 * Description:
257 * Enables a low level driver to set an upper limit on the number of
258 * segments in a discard request.
259 **/
260void blk_queue_max_discard_segments(struct request_queue *q,
261 unsigned short max_segments)
262{
263 q->limits.max_discard_segments = max_segments;
264}
265EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
266
86db1e29
JA
267/**
268 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
269 * @q: the request queue for the device
270 * @max_size: max size of segment in bytes
271 *
272 * Description:
273 * Enables a low level driver to set an upper limit on the size of a
274 * coalesced segment
275 **/
276void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
277{
09cbfeaf
KS
278 if (max_size < PAGE_SIZE) {
279 max_size = PAGE_SIZE;
24c03d47
HH
280 printk(KERN_INFO "%s: set to minimum %d\n",
281 __func__, max_size);
86db1e29
JA
282 }
283
09324d32
CH
284 /* see blk_queue_virt_boundary() for the explanation */
285 WARN_ON_ONCE(q->limits.virt_boundary_mask);
286
025146e1 287 q->limits.max_segment_size = max_size;
86db1e29 288}
86db1e29
JA
289EXPORT_SYMBOL(blk_queue_max_segment_size);
290
291/**
e1defc4f 292 * blk_queue_logical_block_size - set logical block size for the queue
86db1e29 293 * @q: the request queue for the device
e1defc4f 294 * @size: the logical block size, in bytes
86db1e29
JA
295 *
296 * Description:
e1defc4f
MP
297 * This should be set to the lowest possible block size that the
298 * storage device can address. The default of 512 covers most
299 * hardware.
86db1e29 300 **/
ad6bf88a 301void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
86db1e29 302{
817046ec
DLM
303 struct queue_limits *limits = &q->limits;
304
305 limits->logical_block_size = size;
306
307 if (limits->physical_block_size < size)
308 limits->physical_block_size = size;
c72758f3 309
817046ec
DLM
310 if (limits->io_min < limits->physical_block_size)
311 limits->io_min = limits->physical_block_size;
c72758f3 312
817046ec
DLM
313 limits->max_hw_sectors =
314 round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
315 limits->max_sectors =
316 round_down(limits->max_sectors, size >> SECTOR_SHIFT);
86db1e29 317}
e1defc4f 318EXPORT_SYMBOL(blk_queue_logical_block_size);
86db1e29 319
c72758f3
MP
320/**
321 * blk_queue_physical_block_size - set physical block size for the queue
322 * @q: the request queue for the device
323 * @size: the physical block size, in bytes
324 *
325 * Description:
326 * This should be set to the lowest possible sector size that the
327 * hardware can operate on without reverting to read-modify-write
328 * operations.
329 */
892b6f90 330void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
c72758f3
MP
331{
332 q->limits.physical_block_size = size;
333
334 if (q->limits.physical_block_size < q->limits.logical_block_size)
335 q->limits.physical_block_size = q->limits.logical_block_size;
336
337 if (q->limits.io_min < q->limits.physical_block_size)
338 q->limits.io_min = q->limits.physical_block_size;
339}
340EXPORT_SYMBOL(blk_queue_physical_block_size);
341
a805a4fa
DLM
342/**
343 * blk_queue_zone_write_granularity - set zone write granularity for the queue
344 * @q: the request queue for the zoned device
345 * @size: the zone write granularity size, in bytes
346 *
347 * Description:
348 * This should be set to the lowest possible size allowing to write in
349 * sequential zones of a zoned block device.
350 */
351void blk_queue_zone_write_granularity(struct request_queue *q,
352 unsigned int size)
353{
354 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
355 return;
356
357 q->limits.zone_write_granularity = size;
358
359 if (q->limits.zone_write_granularity < q->limits.logical_block_size)
360 q->limits.zone_write_granularity = q->limits.logical_block_size;
361}
362EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
363
c72758f3
MP
364/**
365 * blk_queue_alignment_offset - set physical block alignment offset
366 * @q: the request queue for the device
8ebf9756 367 * @offset: alignment offset in bytes
c72758f3
MP
368 *
369 * Description:
370 * Some devices are naturally misaligned to compensate for things like
371 * the legacy DOS partition table 63-sector offset. Low-level drivers
372 * should call this function for devices whose first sector is not
373 * naturally aligned.
374 */
375void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
376{
377 q->limits.alignment_offset =
378 offset & (q->limits.physical_block_size - 1);
379 q->limits.misaligned = 0;
380}
381EXPORT_SYMBOL(blk_queue_alignment_offset);
382
c2e4cd57
CH
383void blk_queue_update_readahead(struct request_queue *q)
384{
385 /*
386 * For read-ahead of large files to be effective, we need to read ahead
387 * at least twice the optimal I/O size.
388 */
389 q->backing_dev_info->ra_pages =
390 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
391 q->backing_dev_info->io_pages =
392 queue_max_sectors(q) >> (PAGE_SHIFT - 9);
393}
394EXPORT_SYMBOL_GPL(blk_queue_update_readahead);
395
7c958e32
MP
396/**
397 * blk_limits_io_min - set minimum request size for a device
398 * @limits: the queue limits
399 * @min: smallest I/O size in bytes
400 *
401 * Description:
402 * Some devices have an internal block size bigger than the reported
403 * hardware sector size. This function can be used to signal the
404 * smallest I/O the device can perform without incurring a performance
405 * penalty.
406 */
407void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
408{
409 limits->io_min = min;
410
411 if (limits->io_min < limits->logical_block_size)
412 limits->io_min = limits->logical_block_size;
413
414 if (limits->io_min < limits->physical_block_size)
415 limits->io_min = limits->physical_block_size;
416}
417EXPORT_SYMBOL(blk_limits_io_min);
418
c72758f3
MP
419/**
420 * blk_queue_io_min - set minimum request size for the queue
421 * @q: the request queue for the device
8ebf9756 422 * @min: smallest I/O size in bytes
c72758f3
MP
423 *
424 * Description:
7e5f5fb0
MP
425 * Storage devices may report a granularity or preferred minimum I/O
426 * size which is the smallest request the device can perform without
427 * incurring a performance penalty. For disk drives this is often the
428 * physical block size. For RAID arrays it is often the stripe chunk
429 * size. A properly aligned multiple of minimum_io_size is the
430 * preferred request size for workloads where a high number of I/O
431 * operations is desired.
c72758f3
MP
432 */
433void blk_queue_io_min(struct request_queue *q, unsigned int min)
434{
7c958e32 435 blk_limits_io_min(&q->limits, min);
c72758f3
MP
436}
437EXPORT_SYMBOL(blk_queue_io_min);
438
3c5820c7
MP
439/**
440 * blk_limits_io_opt - set optimal request size for a device
441 * @limits: the queue limits
442 * @opt: smallest I/O size in bytes
443 *
444 * Description:
445 * Storage devices may report an optimal I/O size, which is the
446 * device's preferred unit for sustained I/O. This is rarely reported
447 * for disk drives. For RAID arrays it is usually the stripe width or
448 * the internal track size. A properly aligned multiple of
449 * optimal_io_size is the preferred request size for workloads where
450 * sustained throughput is desired.
451 */
452void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
453{
454 limits->io_opt = opt;
455}
456EXPORT_SYMBOL(blk_limits_io_opt);
457
c72758f3
MP
458/**
459 * blk_queue_io_opt - set optimal request size for the queue
460 * @q: the request queue for the device
8ebf9756 461 * @opt: optimal request size in bytes
c72758f3
MP
462 *
463 * Description:
7e5f5fb0
MP
464 * Storage devices may report an optimal I/O size, which is the
465 * device's preferred unit for sustained I/O. This is rarely reported
466 * for disk drives. For RAID arrays it is usually the stripe width or
467 * the internal track size. A properly aligned multiple of
468 * optimal_io_size is the preferred request size for workloads where
469 * sustained throughput is desired.
c72758f3
MP
470 */
471void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
472{
3c5820c7 473 blk_limits_io_opt(&q->limits, opt);
c2e4cd57
CH
474 q->backing_dev_info->ra_pages =
475 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
c72758f3
MP
476}
477EXPORT_SYMBOL(blk_queue_io_opt);
478
97f433c3
MP
479static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
480{
481 sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
482 if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
483 sectors = PAGE_SIZE >> SECTOR_SHIFT;
484 return sectors;
485}
486
c72758f3
MP
487/**
488 * blk_stack_limits - adjust queue_limits for stacked devices
81744ee4
MP
489 * @t: the stacking driver limits (top device)
490 * @b: the underlying queue limits (bottom, component device)
e03a72e1 491 * @start: first data sector within component device
c72758f3
MP
492 *
493 * Description:
81744ee4
MP
494 * This function is used by stacking drivers like MD and DM to ensure
495 * that all component devices have compatible block sizes and
496 * alignments. The stacking driver must provide a queue_limits
497 * struct (top) and then iteratively call the stacking function for
498 * all component (bottom) devices. The stacking function will
499 * attempt to combine the values and ensure proper alignment.
500 *
501 * Returns 0 if the top and bottom queue_limits are compatible. The
502 * top device's block sizes and alignment offsets may be adjusted to
503 * ensure alignment with the bottom device. If no compatible sizes
504 * and alignments exist, -1 is returned and the resulting top
505 * queue_limits will have the misaligned flag set to indicate that
506 * the alignment_offset is undefined.
c72758f3
MP
507 */
508int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
e03a72e1 509 sector_t start)
c72758f3 510{
e03a72e1 511 unsigned int top, bottom, alignment, ret = 0;
86b37281 512
c72758f3
MP
513 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
514 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
ca369d51 515 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
4363ac7c
MP
516 t->max_write_same_sectors = min(t->max_write_same_sectors,
517 b->max_write_same_sectors);
a6f0788e
CK
518 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
519 b->max_write_zeroes_sectors);
0512a75b
KB
520 t->max_zone_append_sectors = min(t->max_zone_append_sectors,
521 b->max_zone_append_sectors);
9bb33f24 522 t->bounce = max(t->bounce, b->bounce);
c72758f3
MP
523
524 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
525 b->seg_boundary_mask);
03100aad
KB
526 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
527 b->virt_boundary_mask);
c72758f3 528
8a78362c 529 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
1e739730
CH
530 t->max_discard_segments = min_not_zero(t->max_discard_segments,
531 b->max_discard_segments);
13f05c8d
MP
532 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
533 b->max_integrity_segments);
c72758f3
MP
534
535 t->max_segment_size = min_not_zero(t->max_segment_size,
536 b->max_segment_size);
537
fe0b393f
MP
538 t->misaligned |= b->misaligned;
539
e03a72e1 540 alignment = queue_limit_alignment_offset(b, start);
9504e086 541
81744ee4
MP
542 /* Bottom device has different alignment. Check that it is
543 * compatible with the current top alignment.
544 */
9504e086
MP
545 if (t->alignment_offset != alignment) {
546
547 top = max(t->physical_block_size, t->io_min)
548 + t->alignment_offset;
81744ee4 549 bottom = max(b->physical_block_size, b->io_min) + alignment;
9504e086 550
81744ee4 551 /* Verify that top and bottom intervals line up */
b8839b8c 552 if (max(top, bottom) % min(top, bottom)) {
9504e086 553 t->misaligned = 1;
fe0b393f
MP
554 ret = -1;
555 }
9504e086
MP
556 }
557
c72758f3
MP
558 t->logical_block_size = max(t->logical_block_size,
559 b->logical_block_size);
560
561 t->physical_block_size = max(t->physical_block_size,
562 b->physical_block_size);
563
564 t->io_min = max(t->io_min, b->io_min);
e9637415 565 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
7e7986f9
MS
566
567 /* Set non-power-of-2 compatible chunk_sectors boundary */
568 if (b->chunk_sectors)
569 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
9504e086 570
81744ee4 571 /* Physical block size a multiple of the logical block size? */
9504e086
MP
572 if (t->physical_block_size & (t->logical_block_size - 1)) {
573 t->physical_block_size = t->logical_block_size;
c72758f3 574 t->misaligned = 1;
fe0b393f 575 ret = -1;
86b37281
MP
576 }
577
81744ee4 578 /* Minimum I/O a multiple of the physical block size? */
9504e086
MP
579 if (t->io_min & (t->physical_block_size - 1)) {
580 t->io_min = t->physical_block_size;
581 t->misaligned = 1;
fe0b393f 582 ret = -1;
c72758f3
MP
583 }
584
81744ee4 585 /* Optimal I/O a multiple of the physical block size? */
9504e086
MP
586 if (t->io_opt & (t->physical_block_size - 1)) {
587 t->io_opt = 0;
588 t->misaligned = 1;
fe0b393f 589 ret = -1;
9504e086 590 }
c72758f3 591
22ada802
MS
592 /* chunk_sectors a multiple of the physical block size? */
593 if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
594 t->chunk_sectors = 0;
595 t->misaligned = 1;
596 ret = -1;
597 }
598
c78afc62
KO
599 t->raid_partial_stripes_expensive =
600 max(t->raid_partial_stripes_expensive,
601 b->raid_partial_stripes_expensive);
602
81744ee4 603 /* Find lowest common alignment_offset */
e9637415 604 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
b8839b8c 605 % max(t->physical_block_size, t->io_min);
86b37281 606
81744ee4 607 /* Verify that new alignment_offset is on a logical block boundary */
fe0b393f 608 if (t->alignment_offset & (t->logical_block_size - 1)) {
c72758f3 609 t->misaligned = 1;
fe0b393f
MP
610 ret = -1;
611 }
c72758f3 612
97f433c3
MP
613 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
614 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
615 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
616
9504e086
MP
617 /* Discard alignment and granularity */
618 if (b->discard_granularity) {
e03a72e1 619 alignment = queue_limit_discard_alignment(b, start);
9504e086
MP
620
621 if (t->discard_granularity != 0 &&
622 t->discard_alignment != alignment) {
623 top = t->discard_granularity + t->discard_alignment;
624 bottom = b->discard_granularity + alignment;
70dd5bf3 625
9504e086 626 /* Verify that top and bottom intervals line up */
8dd2cb7e 627 if ((max(top, bottom) % min(top, bottom)) != 0)
9504e086
MP
628 t->discard_misaligned = 1;
629 }
630
81744ee4
MP
631 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
632 b->max_discard_sectors);
0034af03
JA
633 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
634 b->max_hw_discard_sectors);
9504e086
MP
635 t->discard_granularity = max(t->discard_granularity,
636 b->discard_granularity);
e9637415 637 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
8dd2cb7e 638 t->discard_granularity;
9504e086 639 }
70dd5bf3 640
a805a4fa
DLM
641 t->zone_write_granularity = max(t->zone_write_granularity,
642 b->zone_write_granularity);
3093a479 643 t->zoned = max(t->zoned, b->zoned);
fe0b393f 644 return ret;
c72758f3 645}
5d85d324 646EXPORT_SYMBOL(blk_stack_limits);
c72758f3
MP
647
648/**
649 * disk_stack_limits - adjust queue limits for stacked drivers
77634f33 650 * @disk: MD/DM gendisk (top)
c72758f3
MP
651 * @bdev: the underlying block device (bottom)
652 * @offset: offset to beginning of data within component device
653 *
654 * Description:
e03a72e1
MP
655 * Merges the limits for a top level gendisk and a bottom level
656 * block_device.
c72758f3
MP
657 */
658void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
659 sector_t offset)
660{
661 struct request_queue *t = disk->queue;
c72758f3 662
9efa82ef 663 if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
453b8ab6
CH
664 get_start_sect(bdev) + (offset >> 9)) < 0)
665 pr_notice("%s: Warning: Device %pg is misaligned\n",
666 disk->disk_name, bdev);
e74d93e9 667
c2e4cd57 668 blk_queue_update_readahead(disk->queue);
c72758f3
MP
669}
670EXPORT_SYMBOL(disk_stack_limits);
671
27f8221a
FT
672/**
673 * blk_queue_update_dma_pad - update pad mask
674 * @q: the request queue for the device
675 * @mask: pad mask
676 *
677 * Update dma pad mask.
678 *
679 * Appending pad buffer to a request modifies the last entry of a
680 * scatter list such that it includes the pad buffer.
681 **/
682void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
683{
684 if (mask > q->dma_pad_mask)
685 q->dma_pad_mask = mask;
686}
687EXPORT_SYMBOL(blk_queue_update_dma_pad);
688
86db1e29
JA
689/**
690 * blk_queue_segment_boundary - set boundary rules for segment merging
691 * @q: the request queue for the device
692 * @mask: the memory boundary mask
693 **/
694void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
695{
09cbfeaf
KS
696 if (mask < PAGE_SIZE - 1) {
697 mask = PAGE_SIZE - 1;
24c03d47
HH
698 printk(KERN_INFO "%s: set to minimum %lx\n",
699 __func__, mask);
86db1e29
JA
700 }
701
025146e1 702 q->limits.seg_boundary_mask = mask;
86db1e29 703}
86db1e29
JA
704EXPORT_SYMBOL(blk_queue_segment_boundary);
705
03100aad
KB
706/**
707 * blk_queue_virt_boundary - set boundary rules for bio merging
708 * @q: the request queue for the device
709 * @mask: the memory boundary mask
710 **/
711void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
712{
713 q->limits.virt_boundary_mask = mask;
09324d32
CH
714
715 /*
716 * Devices that require a virtual boundary do not support scatter/gather
717 * I/O natively, but instead require a descriptor list entry for each
718 * page (which might not be idential to the Linux PAGE_SIZE). Because
719 * of that they are not limited by our notion of "segment size".
720 */
c6c84f78
CH
721 if (mask)
722 q->limits.max_segment_size = UINT_MAX;
03100aad
KB
723}
724EXPORT_SYMBOL(blk_queue_virt_boundary);
725
86db1e29
JA
726/**
727 * blk_queue_dma_alignment - set dma length and memory alignment
728 * @q: the request queue for the device
729 * @mask: alignment mask
730 *
731 * description:
710027a4 732 * set required memory and length alignment for direct dma transactions.
8feb4d20 733 * this is used when building direct io requests for the queue.
86db1e29
JA
734 *
735 **/
736void blk_queue_dma_alignment(struct request_queue *q, int mask)
737{
738 q->dma_alignment = mask;
739}
86db1e29
JA
740EXPORT_SYMBOL(blk_queue_dma_alignment);
741
742/**
743 * blk_queue_update_dma_alignment - update dma length and memory alignment
744 * @q: the request queue for the device
745 * @mask: alignment mask
746 *
747 * description:
710027a4 748 * update required memory and length alignment for direct dma transactions.
86db1e29
JA
749 * If the requested alignment is larger than the current alignment, then
750 * the current queue alignment is updated to the new value, otherwise it
751 * is left alone. The design of this is to allow multiple objects
752 * (driver, device, transport etc) to set their respective
753 * alignments without having them interfere.
754 *
755 **/
756void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
757{
758 BUG_ON(mask > PAGE_SIZE);
759
760 if (mask > q->dma_alignment)
761 q->dma_alignment = mask;
762}
86db1e29
JA
763EXPORT_SYMBOL(blk_queue_update_dma_alignment);
764
d278d4a8
JA
765/**
766 * blk_set_queue_depth - tell the block layer about the device queue depth
767 * @q: the request queue for the device
768 * @depth: queue depth
769 *
770 */
771void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
772{
773 q->queue_depth = depth;
9677a3e0 774 rq_qos_queue_depth_changed(q);
d278d4a8
JA
775}
776EXPORT_SYMBOL(blk_set_queue_depth);
777
93e9d8e8
JA
778/**
779 * blk_queue_write_cache - configure queue's write cache
780 * @q: the request queue for the device
781 * @wc: write back cache on or off
782 * @fua: device supports FUA writes, if true
783 *
784 * Tell the block layer about the write cache of @q.
785 */
786void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
787{
c888a8f9 788 if (wc)
57d74df9 789 blk_queue_flag_set(QUEUE_FLAG_WC, q);
c888a8f9 790 else
57d74df9 791 blk_queue_flag_clear(QUEUE_FLAG_WC, q);
c888a8f9 792 if (fua)
57d74df9 793 blk_queue_flag_set(QUEUE_FLAG_FUA, q);
c888a8f9 794 else
57d74df9 795 blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
87760e5e 796
a7905043 797 wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
93e9d8e8
JA
798}
799EXPORT_SYMBOL_GPL(blk_queue_write_cache);
800
68c43f13
DLM
801/**
802 * blk_queue_required_elevator_features - Set a queue required elevator features
803 * @q: the request queue for the target device
804 * @features: Required elevator features OR'ed together
805 *
806 * Tell the block layer that for the device controlled through @q, only the
807 * only elevators that can be used are those that implement at least the set of
808 * features specified by @features.
809 */
810void blk_queue_required_elevator_features(struct request_queue *q,
811 unsigned int features)
812{
813 q->required_elevator_features = features;
814}
815EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
816
45147fb5
YS
817/**
818 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
819 * @q: the request queue for the device
820 * @dev: the device pointer for dma
821 *
822 * Tell the block layer about merging the segments by dma map of @q.
823 */
824bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
825 struct device *dev)
826{
827 unsigned long boundary = dma_get_merge_boundary(dev);
828
829 if (!boundary)
830 return false;
831
832 /* No need to update max_segment_size. see blk_queue_virt_boundary() */
833 blk_queue_virt_boundary(q, boundary);
834
835 return true;
836}
837EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
838
27ba3e8f
DLM
839/**
840 * blk_queue_set_zoned - configure a disk queue zoned model.
841 * @disk: the gendisk of the queue to configure
842 * @model: the zoned model to set
843 *
844 * Set the zoned model of the request queue of @disk according to @model.
845 * When @model is BLK_ZONED_HM (host managed), this should be called only
846 * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
847 * If @model specifies BLK_ZONED_HA (host aware), the effective model used
848 * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
849 * on the disk.
850 */
851void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
852{
a805a4fa
DLM
853 struct request_queue *q = disk->queue;
854
27ba3e8f
DLM
855 switch (model) {
856 case BLK_ZONED_HM:
857 /*
858 * Host managed devices are supported only if
859 * CONFIG_BLK_DEV_ZONED is enabled.
860 */
861 WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
862 break;
863 case BLK_ZONED_HA:
864 /*
865 * Host aware devices can be treated either as regular block
866 * devices (similar to drive managed devices) or as zoned block
867 * devices to take advantage of the zone command set, similarly
868 * to host managed devices. We try the latter if there are no
869 * partitions and zoned block device support is enabled, else
870 * we do nothing special as far as the block layer is concerned.
871 */
872 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
a33df75c 873 !xa_empty(&disk->part_tbl))
27ba3e8f
DLM
874 model = BLK_ZONED_NONE;
875 break;
876 case BLK_ZONED_NONE:
877 default:
878 if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
879 model = BLK_ZONED_NONE;
880 break;
881 }
882
a805a4fa
DLM
883 q->limits.zoned = model;
884 if (model != BLK_ZONED_NONE) {
885 /*
886 * Set the zone write granularity to the device logical block
887 * size by default. The driver can change this value if needed.
888 */
889 blk_queue_zone_write_granularity(q,
890 queue_logical_block_size(q));
508aebb8
DLM
891 } else {
892 blk_queue_clear_zone_settings(q);
a805a4fa 893 }
27ba3e8f
DLM
894}
895EXPORT_SYMBOL_GPL(blk_queue_set_zoned);