Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-block.git] / block / blk-settings.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
86db1e29
JA
2/*
3 * Functions related to setting various queue properties from drivers
4 */
5#include <linux/kernel.h>
6#include <linux/module.h>
7#include <linux/init.h>
8#include <linux/bio.h>
9#include <linux/blkdev.h>
4ee60ec1 10#include <linux/pagemap.h>
edb0872f 11#include <linux/backing-dev-defs.h>
70dd5bf3 12#include <linux/gcd.h>
2cda2728 13#include <linux/lcm.h>
ad5ebd2f 14#include <linux/jiffies.h>
5a0e3ad6 15#include <linux/gfp.h>
45147fb5 16#include <linux/dma-mapping.h>
86db1e29
JA
17
18#include "blk.h"
0bc65bd4 19#include "blk-rq-qos.h"
87760e5e 20#include "blk-wbt.h"
86db1e29 21
242f9dcb
JA
22void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
23{
24 q->rq_timeout = timeout;
25}
26EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
27
b1bd055d
MP
28/**
29 * blk_set_stacking_limits - set default limits for stacking devices
30 * @lim: the queue_limits structure to reset
31 *
c490f226
CH
32 * Prepare queue limits for applying limits from underlying devices using
33 * blk_stack_limits().
b1bd055d
MP
34 */
35void blk_set_stacking_limits(struct queue_limits *lim)
36{
c490f226
CH
37 memset(lim, 0, sizeof(*lim));
38 lim->logical_block_size = SECTOR_SIZE;
39 lim->physical_block_size = SECTOR_SIZE;
40 lim->io_min = SECTOR_SIZE;
41 lim->discard_granularity = SECTOR_SIZE;
42 lim->dma_alignment = SECTOR_SIZE - 1;
43 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
b1bd055d
MP
44
45 /* Inherit limits from component devices */
b1bd055d 46 lim->max_segments = USHRT_MAX;
42c9cdfe 47 lim->max_discard_segments = USHRT_MAX;
b1bd055d 48 lim->max_hw_sectors = UINT_MAX;
d82ae52e 49 lim->max_segment_size = UINT_MAX;
fe86cdce 50 lim->max_sectors = UINT_MAX;
ca369d51 51 lim->max_dev_sectors = UINT_MAX;
a6f0788e 52 lim->max_write_zeroes_sectors = UINT_MAX;
0512a75b 53 lim->max_zone_append_sectors = UINT_MAX;
4f563a64 54 lim->max_user_discard_sectors = UINT_MAX;
b1bd055d
MP
55}
56EXPORT_SYMBOL(blk_set_stacking_limits);
57
b9947297
CH
58static void blk_apply_bdi_limits(struct backing_dev_info *bdi,
59 struct queue_limits *lim)
60{
61 /*
62 * For read-ahead of large files to be effective, we need to read ahead
63 * at least twice the optimal I/O size.
64 */
65 bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
66 bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
67}
68
d690cb8a
CH
69static int blk_validate_zoned_limits(struct queue_limits *lim)
70{
71 if (!lim->zoned) {
72 if (WARN_ON_ONCE(lim->max_open_zones) ||
73 WARN_ON_ONCE(lim->max_active_zones) ||
74 WARN_ON_ONCE(lim->zone_write_granularity) ||
75 WARN_ON_ONCE(lim->max_zone_append_sectors))
76 return -EINVAL;
77 return 0;
78 }
79
80 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
81 return -EINVAL;
82
83 if (lim->zone_write_granularity < lim->logical_block_size)
84 lim->zone_write_granularity = lim->logical_block_size;
85
86 if (lim->max_zone_append_sectors) {
87 /*
88 * The Zone Append size is limited by the maximum I/O size
89 * and the zone size given that it can't span zones.
90 */
91 lim->max_zone_append_sectors =
92 min3(lim->max_hw_sectors,
93 lim->max_zone_append_sectors,
94 lim->chunk_sectors);
95 }
96
97 return 0;
98}
99
100/*
101 * Check that the limits in lim are valid, initialize defaults for unset
102 * values, and cap values based on others where needed.
103 */
104static int blk_validate_limits(struct queue_limits *lim)
105{
106 unsigned int max_hw_sectors;
107
108 /*
109 * Unless otherwise specified, default to 512 byte logical blocks and a
110 * physical block size equal to the logical block size.
111 */
112 if (!lim->logical_block_size)
113 lim->logical_block_size = SECTOR_SIZE;
114 if (lim->physical_block_size < lim->logical_block_size)
115 lim->physical_block_size = lim->logical_block_size;
116
117 /*
118 * The minimum I/O size defaults to the physical block size unless
119 * explicitly overridden.
120 */
121 if (lim->io_min < lim->physical_block_size)
122 lim->io_min = lim->physical_block_size;
123
124 /*
125 * max_hw_sectors has a somewhat weird default for historical reason,
126 * but driver really should set their own instead of relying on this
127 * value.
128 *
129 * The block layer relies on the fact that every driver can
130 * handle at lest a page worth of data per I/O, and needs the value
131 * aligned to the logical block size.
132 */
133 if (!lim->max_hw_sectors)
134 lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
135 if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
136 return -EINVAL;
137 lim->max_hw_sectors = round_down(lim->max_hw_sectors,
138 lim->logical_block_size >> SECTOR_SHIFT);
139
140 /*
141 * The actual max_sectors value is a complex beast and also takes the
142 * max_dev_sectors value (set by SCSI ULPs) and a user configurable
143 * value into account. The ->max_sectors value is always calculated
144 * from these, so directly setting it won't have any effect.
145 */
146 max_hw_sectors = min_not_zero(lim->max_hw_sectors,
147 lim->max_dev_sectors);
148 if (lim->max_user_sectors) {
038105a2 149 if (lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE)
d690cb8a
CH
150 return -EINVAL;
151 lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
152 } else {
153 lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
154 }
155 lim->max_sectors = round_down(lim->max_sectors,
156 lim->logical_block_size >> SECTOR_SHIFT);
157
158 /*
159 * Random default for the maximum number of segments. Driver should not
160 * rely on this and set their own.
161 */
162 if (!lim->max_segments)
163 lim->max_segments = BLK_MAX_SEGMENTS;
164
4f563a64
CH
165 lim->max_discard_sectors =
166 min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
167
d690cb8a
CH
168 if (!lim->max_discard_segments)
169 lim->max_discard_segments = 1;
170
171 if (lim->discard_granularity < lim->physical_block_size)
172 lim->discard_granularity = lim->physical_block_size;
173
174 /*
175 * By default there is no limit on the segment boundary alignment,
176 * but if there is one it can't be smaller than the page size as
177 * that would break all the normal I/O patterns.
178 */
179 if (!lim->seg_boundary_mask)
180 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
181 if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1))
182 return -EINVAL;
183
d690cb8a 184 /*
b561ea56
ML
185 * Stacking device may have both virtual boundary and max segment
186 * size limit, so allow this setting now, and long-term the two
187 * might need to move out of stacking limits since we have immutable
188 * bvec and lower layer bio splitting is supposed to handle the two
189 * correctly.
d690cb8a 190 */
ffd379c1
ML
191 if (lim->virt_boundary_mask) {
192 if (!lim->max_segment_size)
193 lim->max_segment_size = UINT_MAX;
194 } else {
a3911966
CH
195 /*
196 * The maximum segment size has an odd historic 64k default that
197 * drivers probably should override. Just like the I/O size we
198 * require drivers to at least handle a full page per segment.
199 */
200 if (!lim->max_segment_size)
201 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
202 if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE))
203 return -EINVAL;
d690cb8a
CH
204 }
205
206 /*
207 * We require drivers to at least do logical block aligned I/O, but
208 * historically could not check for that due to the separate calls
209 * to set the limits. Once the transition is finished the check
210 * below should be narrowed down to check the logical block size.
211 */
212 if (!lim->dma_alignment)
213 lim->dma_alignment = SECTOR_SIZE - 1;
214 if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
215 return -EINVAL;
216
217 if (lim->alignment_offset) {
218 lim->alignment_offset &= (lim->physical_block_size - 1);
219 lim->misaligned = 0;
220 }
221
222 return blk_validate_zoned_limits(lim);
223}
224
225/*
226 * Set the default limits for a newly allocated queue. @lim contains the
227 * initial limits set by the driver, which could be no limit in which case
228 * all fields are cleared to zero.
229 */
230int blk_set_default_limits(struct queue_limits *lim)
231{
4f563a64
CH
232 /*
233 * Most defaults are set by capping the bounds in blk_validate_limits,
234 * but max_user_discard_sectors is special and needs an explicit
235 * initialization to the max value here.
236 */
237 lim->max_user_discard_sectors = UINT_MAX;
d690cb8a
CH
238 return blk_validate_limits(lim);
239}
240
241/**
242 * queue_limits_commit_update - commit an atomic update of queue limits
243 * @q: queue to update
244 * @lim: limits to apply
245 *
246 * Apply the limits in @lim that were obtained from queue_limits_start_update()
247 * and updated by the caller to @q.
248 *
249 * Returns 0 if successful, else a negative error code.
250 */
251int queue_limits_commit_update(struct request_queue *q,
252 struct queue_limits *lim)
253 __releases(q->limits_lock)
254{
255 int error = blk_validate_limits(lim);
256
257 if (!error) {
258 q->limits = *lim;
259 if (q->disk)
260 blk_apply_bdi_limits(q->disk->bdi, lim);
261 }
262 mutex_unlock(&q->limits_lock);
263 return error;
264}
265EXPORT_SYMBOL_GPL(queue_limits_commit_update);
266
631d4efb 267/**
4c4ab8ae 268 * queue_limits_set - apply queue limits to queue
631d4efb
CH
269 * @q: queue to update
270 * @lim: limits to apply
271 *
272 * Apply the limits in @lim that were freshly initialized to @q.
273 * To update existing limits use queue_limits_start_update() and
274 * queue_limits_commit_update() instead.
275 *
276 * Returns 0 if successful, else a negative error code.
277 */
278int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
279{
280 mutex_lock(&q->limits_lock);
281 return queue_limits_commit_update(q, lim);
282}
283EXPORT_SYMBOL_GPL(queue_limits_set);
284
762380ad
JA
285/**
286 * blk_queue_chunk_sectors - set size of the chunk for this queue
287 * @q: the request queue for the device
288 * @chunk_sectors: chunk sectors in the usual 512b unit
289 *
290 * Description:
291 * If a driver doesn't want IOs to cross a given chunk size, it can set
07d098e6
MS
292 * this limit and prevent merging across chunks. Note that the block layer
293 * must accept a page worth of data at any offset. So if the crossing of
294 * chunks is a hard limitation in the driver, it must still be prepared
295 * to split single page bios.
762380ad
JA
296 **/
297void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
298{
762380ad
JA
299 q->limits.chunk_sectors = chunk_sectors;
300}
301EXPORT_SYMBOL(blk_queue_chunk_sectors);
302
67efc925
CH
303/**
304 * blk_queue_max_discard_sectors - set max sectors for a single discard
305 * @q: the request queue for the device
c7ebf065 306 * @max_discard_sectors: maximum number of sectors to discard
67efc925
CH
307 **/
308void blk_queue_max_discard_sectors(struct request_queue *q,
309 unsigned int max_discard_sectors)
310{
4f563a64
CH
311 struct queue_limits *lim = &q->limits;
312
313 lim->max_hw_discard_sectors = max_discard_sectors;
314 lim->max_discard_sectors =
315 min(max_discard_sectors, lim->max_user_discard_sectors);
67efc925
CH
316}
317EXPORT_SYMBOL(blk_queue_max_discard_sectors);
318
44abff2c
CH
319/**
320 * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase
321 * @q: the request queue for the device
322 * @max_sectors: maximum number of sectors to secure_erase
323 **/
324void blk_queue_max_secure_erase_sectors(struct request_queue *q,
325 unsigned int max_sectors)
326{
327 q->limits.max_secure_erase_sectors = max_sectors;
328}
329EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors);
330
a6f0788e
CK
331/**
332 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
333 * write zeroes
334 * @q: the request queue for the device
335 * @max_write_zeroes_sectors: maximum number of sectors to write per command
336 **/
337void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
338 unsigned int max_write_zeroes_sectors)
339{
340 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
341}
342EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
343
0512a75b
KB
344/**
345 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
346 * @q: the request queue for the device
347 * @max_zone_append_sectors: maximum number of sectors to write per command
ccdbf0aa
DLM
348 *
349 * Sets the maximum number of sectors allowed for zone append commands. If
350 * Specifying 0 for @max_zone_append_sectors indicates that the queue does
351 * not natively support zone append operations and that the block layer must
352 * emulate these operations using regular writes.
0512a75b
KB
353 **/
354void blk_queue_max_zone_append_sectors(struct request_queue *q,
355 unsigned int max_zone_append_sectors)
356{
ccdbf0aa 357 unsigned int max_sectors = 0;
0512a75b
KB
358
359 if (WARN_ON(!blk_queue_is_zoned(q)))
360 return;
361
ccdbf0aa
DLM
362 if (max_zone_append_sectors) {
363 max_sectors = min(q->limits.max_hw_sectors,
364 max_zone_append_sectors);
365 max_sectors = min(q->limits.chunk_sectors, max_sectors);
0512a75b 366
ccdbf0aa
DLM
367 /*
368 * Signal eventual driver bugs resulting in the max_zone_append
369 * sectors limit being 0 due to the chunk_sectors limit (zone
370 * size) not set or the max_hw_sectors limit not set.
371 */
372 WARN_ON_ONCE(!max_sectors);
373 }
0512a75b
KB
374
375 q->limits.max_zone_append_sectors = max_sectors;
376}
377EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
378
86db1e29 379/**
e1defc4f 380 * blk_queue_logical_block_size - set logical block size for the queue
86db1e29 381 * @q: the request queue for the device
e1defc4f 382 * @size: the logical block size, in bytes
86db1e29
JA
383 *
384 * Description:
e1defc4f
MP
385 * This should be set to the lowest possible block size that the
386 * storage device can address. The default of 512 covers most
387 * hardware.
86db1e29 388 **/
ad6bf88a 389void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
86db1e29 390{
817046ec
DLM
391 struct queue_limits *limits = &q->limits;
392
393 limits->logical_block_size = size;
394
3c407dc7
CH
395 if (limits->discard_granularity < limits->logical_block_size)
396 limits->discard_granularity = limits->logical_block_size;
397
817046ec
DLM
398 if (limits->physical_block_size < size)
399 limits->physical_block_size = size;
c72758f3 400
817046ec
DLM
401 if (limits->io_min < limits->physical_block_size)
402 limits->io_min = limits->physical_block_size;
c72758f3 403
817046ec
DLM
404 limits->max_hw_sectors =
405 round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
406 limits->max_sectors =
407 round_down(limits->max_sectors, size >> SECTOR_SHIFT);
86db1e29 408}
e1defc4f 409EXPORT_SYMBOL(blk_queue_logical_block_size);
86db1e29 410
c72758f3
MP
411/**
412 * blk_queue_physical_block_size - set physical block size for the queue
413 * @q: the request queue for the device
414 * @size: the physical block size, in bytes
415 *
416 * Description:
417 * This should be set to the lowest possible sector size that the
418 * hardware can operate on without reverting to read-modify-write
419 * operations.
420 */
892b6f90 421void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
c72758f3
MP
422{
423 q->limits.physical_block_size = size;
424
425 if (q->limits.physical_block_size < q->limits.logical_block_size)
426 q->limits.physical_block_size = q->limits.logical_block_size;
427
458aa1a0
CH
428 if (q->limits.discard_granularity < q->limits.physical_block_size)
429 q->limits.discard_granularity = q->limits.physical_block_size;
430
c72758f3
MP
431 if (q->limits.io_min < q->limits.physical_block_size)
432 q->limits.io_min = q->limits.physical_block_size;
433}
434EXPORT_SYMBOL(blk_queue_physical_block_size);
435
a805a4fa
DLM
436/**
437 * blk_queue_zone_write_granularity - set zone write granularity for the queue
438 * @q: the request queue for the zoned device
439 * @size: the zone write granularity size, in bytes
440 *
441 * Description:
442 * This should be set to the lowest possible size allowing to write in
443 * sequential zones of a zoned block device.
444 */
445void blk_queue_zone_write_granularity(struct request_queue *q,
446 unsigned int size)
447{
448 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
449 return;
450
451 q->limits.zone_write_granularity = size;
452
453 if (q->limits.zone_write_granularity < q->limits.logical_block_size)
454 q->limits.zone_write_granularity = q->limits.logical_block_size;
455}
456EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
457
c72758f3
MP
458/**
459 * blk_queue_alignment_offset - set physical block alignment offset
460 * @q: the request queue for the device
8ebf9756 461 * @offset: alignment offset in bytes
c72758f3
MP
462 *
463 * Description:
464 * Some devices are naturally misaligned to compensate for things like
465 * the legacy DOS partition table 63-sector offset. Low-level drivers
466 * should call this function for devices whose first sector is not
467 * naturally aligned.
468 */
469void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
470{
471 q->limits.alignment_offset =
472 offset & (q->limits.physical_block_size - 1);
473 q->limits.misaligned = 0;
474}
475EXPORT_SYMBOL(blk_queue_alignment_offset);
476
471aa704 477void disk_update_readahead(struct gendisk *disk)
c2e4cd57 478{
b9947297 479 blk_apply_bdi_limits(disk->bdi, &disk->queue->limits);
c2e4cd57 480}
471aa704 481EXPORT_SYMBOL_GPL(disk_update_readahead);
c2e4cd57 482
7c958e32
MP
483/**
484 * blk_limits_io_min - set minimum request size for a device
485 * @limits: the queue limits
486 * @min: smallest I/O size in bytes
487 *
488 * Description:
489 * Some devices have an internal block size bigger than the reported
490 * hardware sector size. This function can be used to signal the
491 * smallest I/O the device can perform without incurring a performance
492 * penalty.
493 */
494void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
495{
496 limits->io_min = min;
497
498 if (limits->io_min < limits->logical_block_size)
499 limits->io_min = limits->logical_block_size;
500
501 if (limits->io_min < limits->physical_block_size)
502 limits->io_min = limits->physical_block_size;
503}
504EXPORT_SYMBOL(blk_limits_io_min);
505
c72758f3
MP
506/**
507 * blk_queue_io_min - set minimum request size for the queue
508 * @q: the request queue for the device
8ebf9756 509 * @min: smallest I/O size in bytes
c72758f3
MP
510 *
511 * Description:
7e5f5fb0
MP
512 * Storage devices may report a granularity or preferred minimum I/O
513 * size which is the smallest request the device can perform without
514 * incurring a performance penalty. For disk drives this is often the
515 * physical block size. For RAID arrays it is often the stripe chunk
516 * size. A properly aligned multiple of minimum_io_size is the
517 * preferred request size for workloads where a high number of I/O
518 * operations is desired.
c72758f3
MP
519 */
520void blk_queue_io_min(struct request_queue *q, unsigned int min)
521{
7c958e32 522 blk_limits_io_min(&q->limits, min);
c72758f3
MP
523}
524EXPORT_SYMBOL(blk_queue_io_min);
525
3c5820c7
MP
526/**
527 * blk_limits_io_opt - set optimal request size for a device
528 * @limits: the queue limits
529 * @opt: smallest I/O size in bytes
530 *
531 * Description:
532 * Storage devices may report an optimal I/O size, which is the
533 * device's preferred unit for sustained I/O. This is rarely reported
534 * for disk drives. For RAID arrays it is usually the stripe width or
535 * the internal track size. A properly aligned multiple of
536 * optimal_io_size is the preferred request size for workloads where
537 * sustained throughput is desired.
538 */
539void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
540{
541 limits->io_opt = opt;
542}
543EXPORT_SYMBOL(blk_limits_io_opt);
544
aa261f20 545static int queue_limit_alignment_offset(const struct queue_limits *lim,
89098b07
CH
546 sector_t sector)
547{
548 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
549 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
550 << SECTOR_SHIFT;
551
552 return (granularity + lim->alignment_offset - alignment) % granularity;
553}
554
aa261f20
BVA
555static unsigned int queue_limit_discard_alignment(
556 const struct queue_limits *lim, sector_t sector)
5c4b4a5c
CH
557{
558 unsigned int alignment, granularity, offset;
559
560 if (!lim->max_discard_sectors)
561 return 0;
562
563 /* Why are these in bytes, not sectors? */
564 alignment = lim->discard_alignment >> SECTOR_SHIFT;
565 granularity = lim->discard_granularity >> SECTOR_SHIFT;
566 if (!granularity)
567 return 0;
568
569 /* Offset of the partition start in 'granularity' sectors */
570 offset = sector_div(sector, granularity);
571
572 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
573 offset = (granularity + alignment - offset) % granularity;
574
575 /* Turn it back into bytes, gaah */
576 return offset << SECTOR_SHIFT;
577}
578
97f433c3
MP
579static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
580{
581 sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
582 if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
583 sectors = PAGE_SIZE >> SECTOR_SHIFT;
584 return sectors;
585}
586
c72758f3
MP
587/**
588 * blk_stack_limits - adjust queue_limits for stacked devices
81744ee4
MP
589 * @t: the stacking driver limits (top device)
590 * @b: the underlying queue limits (bottom, component device)
e03a72e1 591 * @start: first data sector within component device
c72758f3
MP
592 *
593 * Description:
81744ee4
MP
594 * This function is used by stacking drivers like MD and DM to ensure
595 * that all component devices have compatible block sizes and
596 * alignments. The stacking driver must provide a queue_limits
597 * struct (top) and then iteratively call the stacking function for
598 * all component (bottom) devices. The stacking function will
599 * attempt to combine the values and ensure proper alignment.
600 *
601 * Returns 0 if the top and bottom queue_limits are compatible. The
602 * top device's block sizes and alignment offsets may be adjusted to
603 * ensure alignment with the bottom device. If no compatible sizes
604 * and alignments exist, -1 is returned and the resulting top
605 * queue_limits will have the misaligned flag set to indicate that
606 * the alignment_offset is undefined.
c72758f3
MP
607 */
608int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
e03a72e1 609 sector_t start)
c72758f3 610{
e03a72e1 611 unsigned int top, bottom, alignment, ret = 0;
86b37281 612
c72758f3
MP
613 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
614 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
ca369d51 615 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
a6f0788e
CK
616 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
617 b->max_write_zeroes_sectors);
ccdbf0aa
DLM
618 t->max_zone_append_sectors = min(queue_limits_max_zone_append_sectors(t),
619 queue_limits_max_zone_append_sectors(b));
9bb33f24 620 t->bounce = max(t->bounce, b->bounce);
c72758f3
MP
621
622 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
623 b->seg_boundary_mask);
03100aad
KB
624 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
625 b->virt_boundary_mask);
c72758f3 626
8a78362c 627 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
1e739730
CH
628 t->max_discard_segments = min_not_zero(t->max_discard_segments,
629 b->max_discard_segments);
13f05c8d
MP
630 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
631 b->max_integrity_segments);
c72758f3
MP
632
633 t->max_segment_size = min_not_zero(t->max_segment_size,
634 b->max_segment_size);
635
fe0b393f
MP
636 t->misaligned |= b->misaligned;
637
e03a72e1 638 alignment = queue_limit_alignment_offset(b, start);
9504e086 639
81744ee4
MP
640 /* Bottom device has different alignment. Check that it is
641 * compatible with the current top alignment.
642 */
9504e086
MP
643 if (t->alignment_offset != alignment) {
644
645 top = max(t->physical_block_size, t->io_min)
646 + t->alignment_offset;
81744ee4 647 bottom = max(b->physical_block_size, b->io_min) + alignment;
9504e086 648
81744ee4 649 /* Verify that top and bottom intervals line up */
b8839b8c 650 if (max(top, bottom) % min(top, bottom)) {
9504e086 651 t->misaligned = 1;
fe0b393f
MP
652 ret = -1;
653 }
9504e086
MP
654 }
655
c72758f3
MP
656 t->logical_block_size = max(t->logical_block_size,
657 b->logical_block_size);
658
659 t->physical_block_size = max(t->physical_block_size,
660 b->physical_block_size);
661
662 t->io_min = max(t->io_min, b->io_min);
e9637415 663 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
c964d62f 664 t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
7e7986f9
MS
665
666 /* Set non-power-of-2 compatible chunk_sectors boundary */
667 if (b->chunk_sectors)
668 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
9504e086 669
81744ee4 670 /* Physical block size a multiple of the logical block size? */
9504e086
MP
671 if (t->physical_block_size & (t->logical_block_size - 1)) {
672 t->physical_block_size = t->logical_block_size;
c72758f3 673 t->misaligned = 1;
fe0b393f 674 ret = -1;
86b37281
MP
675 }
676
81744ee4 677 /* Minimum I/O a multiple of the physical block size? */
9504e086
MP
678 if (t->io_min & (t->physical_block_size - 1)) {
679 t->io_min = t->physical_block_size;
680 t->misaligned = 1;
fe0b393f 681 ret = -1;
c72758f3
MP
682 }
683
81744ee4 684 /* Optimal I/O a multiple of the physical block size? */
9504e086
MP
685 if (t->io_opt & (t->physical_block_size - 1)) {
686 t->io_opt = 0;
687 t->misaligned = 1;
fe0b393f 688 ret = -1;
9504e086 689 }
c72758f3 690
22ada802
MS
691 /* chunk_sectors a multiple of the physical block size? */
692 if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
693 t->chunk_sectors = 0;
694 t->misaligned = 1;
695 ret = -1;
696 }
697
c78afc62
KO
698 t->raid_partial_stripes_expensive =
699 max(t->raid_partial_stripes_expensive,
700 b->raid_partial_stripes_expensive);
701
81744ee4 702 /* Find lowest common alignment_offset */
e9637415 703 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
b8839b8c 704 % max(t->physical_block_size, t->io_min);
86b37281 705
81744ee4 706 /* Verify that new alignment_offset is on a logical block boundary */
fe0b393f 707 if (t->alignment_offset & (t->logical_block_size - 1)) {
c72758f3 708 t->misaligned = 1;
fe0b393f
MP
709 ret = -1;
710 }
c72758f3 711
97f433c3
MP
712 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
713 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
714 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
715
9504e086
MP
716 /* Discard alignment and granularity */
717 if (b->discard_granularity) {
e03a72e1 718 alignment = queue_limit_discard_alignment(b, start);
9504e086
MP
719
720 if (t->discard_granularity != 0 &&
721 t->discard_alignment != alignment) {
722 top = t->discard_granularity + t->discard_alignment;
723 bottom = b->discard_granularity + alignment;
70dd5bf3 724
9504e086 725 /* Verify that top and bottom intervals line up */
8dd2cb7e 726 if ((max(top, bottom) % min(top, bottom)) != 0)
9504e086
MP
727 t->discard_misaligned = 1;
728 }
729
81744ee4
MP
730 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
731 b->max_discard_sectors);
0034af03
JA
732 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
733 b->max_hw_discard_sectors);
9504e086
MP
734 t->discard_granularity = max(t->discard_granularity,
735 b->discard_granularity);
e9637415 736 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
8dd2cb7e 737 t->discard_granularity;
9504e086 738 }
44abff2c
CH
739 t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
740 b->max_secure_erase_sectors);
a805a4fa
DLM
741 t->zone_write_granularity = max(t->zone_write_granularity,
742 b->zone_write_granularity);
3093a479 743 t->zoned = max(t->zoned, b->zoned);
c8f6f88d
DLM
744 if (!t->zoned) {
745 t->zone_write_granularity = 0;
746 t->max_zone_append_sectors = 0;
747 }
fe0b393f 748 return ret;
c72758f3 749}
5d85d324 750EXPORT_SYMBOL(blk_stack_limits);
c72758f3 751
c1373f1c
CH
752/**
753 * queue_limits_stack_bdev - adjust queue_limits for stacked devices
754 * @t: the stacking driver limits (top device)
755 * @bdev: the underlying block device (bottom)
756 * @offset: offset to beginning of data within component device
757 * @pfx: prefix to use for warnings logged
758 *
759 * Description:
760 * This function is used by stacking drivers like MD and DM to ensure
761 * that all component devices have compatible block sizes and
762 * alignments. The stacking driver must provide a queue_limits
763 * struct (top) and then iteratively call the stacking function for
764 * all component (bottom) devices. The stacking function will
765 * attempt to combine the values and ensure proper alignment.
766 */
767void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
768 sector_t offset, const char *pfx)
769{
770 if (blk_stack_limits(t, &bdev_get_queue(bdev)->limits,
771 get_start_sect(bdev) + offset))
772 pr_notice("%s: Warning: Device %pg is misaligned\n",
773 pfx, bdev);
774}
775EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
776
27f8221a
FT
777/**
778 * blk_queue_update_dma_pad - update pad mask
779 * @q: the request queue for the device
780 * @mask: pad mask
781 *
782 * Update dma pad mask.
783 *
784 * Appending pad buffer to a request modifies the last entry of a
785 * scatter list such that it includes the pad buffer.
786 **/
787void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
788{
789 if (mask > q->dma_pad_mask)
790 q->dma_pad_mask = mask;
791}
792EXPORT_SYMBOL(blk_queue_update_dma_pad);
793
d278d4a8
JA
794/**
795 * blk_set_queue_depth - tell the block layer about the device queue depth
796 * @q: the request queue for the device
797 * @depth: queue depth
798 *
799 */
800void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
801{
802 q->queue_depth = depth;
9677a3e0 803 rq_qos_queue_depth_changed(q);
d278d4a8
JA
804}
805EXPORT_SYMBOL(blk_set_queue_depth);
806
93e9d8e8
JA
807/**
808 * blk_queue_write_cache - configure queue's write cache
809 * @q: the request queue for the device
810 * @wc: write back cache on or off
811 * @fua: device supports FUA writes, if true
812 *
813 * Tell the block layer about the write cache of @q.
814 */
815void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
816{
43c9835b
CH
817 if (wc) {
818 blk_queue_flag_set(QUEUE_FLAG_HW_WC, q);
57d74df9 819 blk_queue_flag_set(QUEUE_FLAG_WC, q);
43c9835b
CH
820 } else {
821 blk_queue_flag_clear(QUEUE_FLAG_HW_WC, q);
57d74df9 822 blk_queue_flag_clear(QUEUE_FLAG_WC, q);
43c9835b 823 }
c888a8f9 824 if (fua)
57d74df9 825 blk_queue_flag_set(QUEUE_FLAG_FUA, q);
c888a8f9 826 else
57d74df9 827 blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
93e9d8e8
JA
828}
829EXPORT_SYMBOL_GPL(blk_queue_write_cache);
830
27ba3e8f 831/**
d73e93b4
CH
832 * disk_set_zoned - inidicate a zoned device
833 * @disk: gendisk to configure
27ba3e8f 834 */
d73e93b4 835void disk_set_zoned(struct gendisk *disk)
27ba3e8f 836{
a805a4fa
DLM
837 struct request_queue *q = disk->queue;
838
d73e93b4
CH
839 WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
840
841 /*
842 * Set the zone write granularity to the device logical block
843 * size by default. The driver can change this value if needed.
844 */
845 q->limits.zoned = true;
846 blk_queue_zone_write_granularity(q, queue_logical_block_size(q));
27ba3e8f 847}
6b2bd274 848EXPORT_SYMBOL_GPL(disk_set_zoned);
89098b07
CH
849
850int bdev_alignment_offset(struct block_device *bdev)
851{
852 struct request_queue *q = bdev_get_queue(bdev);
853
854 if (q->limits.misaligned)
855 return -1;
856 if (bdev_is_partition(bdev))
857 return queue_limit_alignment_offset(&q->limits,
858 bdev->bd_start_sect);
859 return q->limits.alignment_offset;
860}
861EXPORT_SYMBOL_GPL(bdev_alignment_offset);
5c4b4a5c
CH
862
863unsigned int bdev_discard_alignment(struct block_device *bdev)
864{
865 struct request_queue *q = bdev_get_queue(bdev);
866
867 if (bdev_is_partition(bdev))
868 return queue_limit_discard_alignment(&q->limits,
869 bdev->bd_start_sect);
870 return q->limits.discard_alignment;
871}
872EXPORT_SYMBOL_GPL(bdev_discard_alignment);