Merge tag 'media/v6.12-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
75bb4625
JA
2/*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
320ae51f
JA
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/backing-dev.h>
11#include <linux/bio.h>
12#include <linux/blkdev.h>
fe45e630 13#include <linux/blk-integrity.h>
f75782e4 14#include <linux/kmemleak.h>
320ae51f
JA
15#include <linux/mm.h>
16#include <linux/init.h>
17#include <linux/slab.h>
18#include <linux/workqueue.h>
19#include <linux/smp.h>
e41d12f5 20#include <linux/interrupt.h>
320ae51f 21#include <linux/llist.h>
320ae51f
JA
22#include <linux/cpu.h>
23#include <linux/cache.h>
105ab3d8 24#include <linux/sched/topology.h>
174cd4b1 25#include <linux/sched/signal.h>
320ae51f 26#include <linux/delay.h>
aedcd72f 27#include <linux/crash_dump.h>
88c7b2b7 28#include <linux/prefetch.h>
a892c8d5 29#include <linux/blk-crypto.h>
82d981d4 30#include <linux/part_stat.h>
a46c2702 31#include <linux/sched/isolation.h>
320ae51f
JA
32
33#include <trace/events/block.h>
34
54d4e6ab 35#include <linux/t10-pi.h>
320ae51f
JA
36#include "blk.h"
37#include "blk-mq.h"
9c1051aa 38#include "blk-mq-debugfs.h"
986d413b 39#include "blk-pm.h"
cf43e6be 40#include "blk-stat.h"
bd166ef1 41#include "blk-mq-sched.h"
c1c80384 42#include "blk-rq-qos.h"
320ae51f 43
f9ab4918 44static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
660e802c 45static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
c3077b5d 46
710fa378 47static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
360f2648
CH
48static void blk_mq_request_bypass_insert(struct request *rq,
49 blk_insert_t flags);
94aa228c
CH
50static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51 struct list_head *list);
f6c80cff
KB
52static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
53 struct io_comp_batch *iob, unsigned int flags);
3e08773c 54
320ae51f 55/*
85fae294
YY
56 * Check if any of the ctx, dispatch list or elevator
57 * have pending work in this hardware queue.
320ae51f 58 */
79f720a7 59static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 60{
79f720a7
JA
61 return !list_empty_careful(&hctx->dispatch) ||
62 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 63 blk_mq_sched_has_work(hctx);
1429d7c9
JA
64}
65
320ae51f
JA
66/*
67 * Mark this ctx as having pending work in this hardware queue
68 */
69static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 struct blk_mq_ctx *ctx)
71{
f31967f0
JA
72 const int bit = ctx->index_hw[hctx->type];
73
74 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
75 sbitmap_set_bit(&hctx->ctx_map, bit);
1429d7c9
JA
76}
77
78static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
79 struct blk_mq_ctx *ctx)
80{
f31967f0
JA
81 const int bit = ctx->index_hw[hctx->type];
82
83 sbitmap_clear_bit(&hctx->ctx_map, bit);
320ae51f
JA
84}
85
f299b7c7 86struct mq_inflight {
8446fe92 87 struct block_device *part;
a2e80f6f 88 unsigned int inflight[2];
f299b7c7
JA
89};
90
2dd6532e 91static bool blk_mq_check_inflight(struct request *rq, void *priv)
f299b7c7
JA
92{
93 struct mq_inflight *mi = priv;
94
b81c14ca 95 if (rq->part && blk_do_io_stat(rq) &&
3f9b8fb4 96 (!bdev_is_partition(mi->part) || rq->part == mi->part) &&
b0d97557 97 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
bb4e6b14 98 mi->inflight[rq_data_dir(rq)]++;
7baa8572
JA
99
100 return true;
f299b7c7
JA
101}
102
8446fe92
CH
103unsigned int blk_mq_in_flight(struct request_queue *q,
104 struct block_device *part)
f299b7c7 105{
a2e80f6f 106 struct mq_inflight mi = { .part = part };
f299b7c7 107
f299b7c7 108 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
e016b782 109
a2e80f6f 110 return mi.inflight[0] + mi.inflight[1];
bf0ddaba
OS
111}
112
8446fe92
CH
113void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
114 unsigned int inflight[2])
bf0ddaba 115{
a2e80f6f 116 struct mq_inflight mi = { .part = part };
bf0ddaba 117
bb4e6b14 118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
a2e80f6f
PB
119 inflight[0] = mi.inflight[0];
120 inflight[1] = mi.inflight[1];
bf0ddaba
OS
121}
122
1671d522 123void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 124{
7996a8b5
BL
125 mutex_lock(&q->mq_freeze_lock);
126 if (++q->mq_freeze_depth == 1) {
3ef28e83 127 percpu_ref_kill(&q->q_usage_counter);
7996a8b5 128 mutex_unlock(&q->mq_freeze_lock);
344e9ffc 129 if (queue_is_mq(q))
055f6e18 130 blk_mq_run_hw_queues(q, false);
7996a8b5
BL
131 } else {
132 mutex_unlock(&q->mq_freeze_lock);
cddd5d17 133 }
f3af020b 134}
1671d522 135EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 136
6bae363e 137void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 138{
3ef28e83 139 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 140}
6bae363e 141EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 142
f91328c4
KB
143int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
144 unsigned long timeout)
145{
146 return wait_event_timeout(q->mq_freeze_wq,
147 percpu_ref_is_zero(&q->q_usage_counter),
148 timeout);
149}
150EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 151
f3af020b
TH
152/*
153 * Guarantee no request is in use, so we can change any data structure of
154 * the queue afterward.
155 */
3ef28e83 156void blk_freeze_queue(struct request_queue *q)
f3af020b 157{
3ef28e83
DW
158 /*
159 * In the !blk_mq case we are only calling this to kill the
160 * q_usage_counter, otherwise this increases the freeze depth
161 * and waits for it to return to zero. For this reason there is
162 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
163 * exported to drivers as the only user for unfreeze is blk_mq.
164 */
1671d522 165 blk_freeze_queue_start(q);
f3af020b
TH
166 blk_mq_freeze_queue_wait(q);
167}
3ef28e83
DW
168
169void blk_mq_freeze_queue(struct request_queue *q)
170{
171 /*
172 * ...just an alias to keep freeze and unfreeze actions balanced
173 * in the blk_mq_* namespace
174 */
175 blk_freeze_queue(q);
176}
c761d96b 177EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 178
aec89dc5 179void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
320ae51f 180{
7996a8b5 181 mutex_lock(&q->mq_freeze_lock);
aec89dc5
CH
182 if (force_atomic)
183 q->q_usage_counter.data->force_atomic = true;
7996a8b5
BL
184 q->mq_freeze_depth--;
185 WARN_ON_ONCE(q->mq_freeze_depth < 0);
186 if (!q->mq_freeze_depth) {
bdd63160 187 percpu_ref_resurrect(&q->q_usage_counter);
320ae51f 188 wake_up_all(&q->mq_freeze_wq);
add703fd 189 }
7996a8b5 190 mutex_unlock(&q->mq_freeze_lock);
320ae51f 191}
aec89dc5
CH
192
193void blk_mq_unfreeze_queue(struct request_queue *q)
194{
195 __blk_mq_unfreeze_queue(q, false);
196}
b4c6a028 197EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 198
852ec809
BVA
199/*
200 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201 * mpt3sas driver such that this function can be removed.
202 */
203void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204{
e70feb8b
ML
205 unsigned long flags;
206
207 spin_lock_irqsave(&q->queue_lock, flags);
208 if (!q->quiesce_depth++)
209 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
210 spin_unlock_irqrestore(&q->queue_lock, flags);
852ec809
BVA
211}
212EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
6a83e74d 214/**
9ef4d020 215 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
483239c7 216 * @set: tag_set to wait on
6a83e74d 217 *
9ef4d020 218 * Note: it is driver's responsibility for making sure that quiesce has
483239c7
CH
219 * been started on or more of the request_queues of the tag_set. This
220 * function only waits for the quiesce on those request_queues that had
221 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
6a83e74d 222 */
483239c7 223void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
6a83e74d 224{
483239c7
CH
225 if (set->flags & BLK_MQ_F_BLOCKING)
226 synchronize_srcu(set->srcu);
704b914f 227 else
6a83e74d
BVA
228 synchronize_rcu();
229}
9ef4d020
ML
230EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
231
232/**
233 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
234 * @q: request queue.
235 *
236 * Note: this function does not prevent that the struct request end_io()
237 * callback function is invoked. Once this function is returned, we make
238 * sure no dispatch can happen until the queue is unquiesced via
239 * blk_mq_unquiesce_queue().
240 */
241void blk_mq_quiesce_queue(struct request_queue *q)
242{
243 blk_mq_quiesce_queue_nowait(q);
8537380b
CH
244 /* nothing to wait for non-mq queues */
245 if (queue_is_mq(q))
483239c7 246 blk_mq_wait_quiesce_done(q->tag_set);
9ef4d020 247}
6a83e74d
BVA
248EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249
e4e73913
ML
250/*
251 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252 * @q: request queue.
253 *
254 * This function recovers queue into the state before quiescing
255 * which is done by blk_mq_quiesce_queue.
256 */
257void blk_mq_unquiesce_queue(struct request_queue *q)
258{
e70feb8b
ML
259 unsigned long flags;
260 bool run_queue = false;
261
262 spin_lock_irqsave(&q->queue_lock, flags);
263 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
264 ;
265 } else if (!--q->quiesce_depth) {
266 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
267 run_queue = true;
268 }
269 spin_unlock_irqrestore(&q->queue_lock, flags);
f4560ffe 270
1d9e9bc6 271 /* dispatch requests which are inserted during quiescing */
e70feb8b
ML
272 if (run_queue)
273 blk_mq_run_hw_queues(q, true);
e4e73913
ML
274}
275EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
276
414dd48e
CL
277void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
278{
279 struct request_queue *q;
280
281 mutex_lock(&set->tag_list_lock);
282 list_for_each_entry(q, &set->tag_list, tag_set_list) {
283 if (!blk_queue_skip_tagset_quiesce(q))
284 blk_mq_quiesce_queue_nowait(q);
285 }
286 blk_mq_wait_quiesce_done(set);
287 mutex_unlock(&set->tag_list_lock);
288}
289EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
290
291void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
292{
293 struct request_queue *q;
294
295 mutex_lock(&set->tag_list_lock);
296 list_for_each_entry(q, &set->tag_list, tag_set_list) {
297 if (!blk_queue_skip_tagset_quiesce(q))
298 blk_mq_unquiesce_queue(q);
299 }
300 mutex_unlock(&set->tag_list_lock);
301}
302EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
303
aed3ea94
JA
304void blk_mq_wake_waiters(struct request_queue *q)
305{
306 struct blk_mq_hw_ctx *hctx;
4f481208 307 unsigned long i;
aed3ea94
JA
308
309 queue_for_each_hw_ctx(q, hctx, i)
310 if (blk_mq_hw_queue_mapped(hctx))
311 blk_mq_tag_wakeup_all(hctx->tags, true);
312}
313
52fdbbcc
CH
314void blk_rq_init(struct request_queue *q, struct request *rq)
315{
316 memset(rq, 0, sizeof(*rq));
317
318 INIT_LIST_HEAD(&rq->queuelist);
319 rq->q = q;
320 rq->__sector = (sector_t) -1;
321 INIT_HLIST_NODE(&rq->hash);
322 RB_CLEAR_NODE(&rq->rb_node);
323 rq->tag = BLK_MQ_NO_TAG;
324 rq->internal_tag = BLK_MQ_NO_TAG;
08420cf7 325 rq->start_time_ns = blk_time_get_ns();
52fdbbcc
CH
326 rq->part = NULL;
327 blk_crypto_rq_set_defaults(rq);
328}
329EXPORT_SYMBOL(blk_rq_init);
330
5c17f45e
CZ
331/* Set start and alloc time when the allocated request is actually used */
332static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
333{
334 if (blk_mq_need_time_stamp(rq))
08420cf7 335 rq->start_time_ns = blk_time_get_ns();
5c17f45e
CZ
336 else
337 rq->start_time_ns = 0;
338
339#ifdef CONFIG_BLK_RQ_ALLOC_TIME
340 if (blk_queue_rq_alloc_time(rq->q))
341 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
342 else
343 rq->alloc_time_ns = 0;
344#endif
345}
346
e4cdf1a1 347static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
5c17f45e 348 struct blk_mq_tags *tags, unsigned int tag)
320ae51f 349{
605f784e
PB
350 struct blk_mq_ctx *ctx = data->ctx;
351 struct blk_mq_hw_ctx *hctx = data->hctx;
352 struct request_queue *q = data->q;
e4cdf1a1 353 struct request *rq = tags->static_rqs[tag];
c3a148d2 354
c7b84d42
JA
355 rq->q = q;
356 rq->mq_ctx = ctx;
357 rq->mq_hctx = hctx;
358 rq->cmd_flags = data->cmd_flags;
359
360 if (data->flags & BLK_MQ_REQ_PM)
361 data->rq_flags |= RQF_PM;
362 if (blk_queue_io_stat(q))
363 data->rq_flags |= RQF_IO_STAT;
364 rq->rq_flags = data->rq_flags;
365
dd6216bb 366 if (data->rq_flags & RQF_SCHED_TAGS) {
56f8da64
JA
367 rq->tag = BLK_MQ_NO_TAG;
368 rq->internal_tag = tag;
dd6216bb
CH
369 } else {
370 rq->tag = tag;
371 rq->internal_tag = BLK_MQ_NO_TAG;
e4cdf1a1 372 }
c7b84d42 373 rq->timeout = 0;
e4cdf1a1 374
af76e555 375 rq->part = NULL;
544ccc8d 376 rq->io_start_time_ns = 0;
3d244306 377 rq->stats_sectors = 0;
af76e555
CH
378 rq->nr_phys_segments = 0;
379#if defined(CONFIG_BLK_DEV_INTEGRITY)
380 rq->nr_integrity_segments = 0;
381#endif
af76e555
CH
382 rq->end_io = NULL;
383 rq->end_io_data = NULL;
af76e555 384
4f266f2b
PB
385 blk_crypto_rq_set_defaults(rq);
386 INIT_LIST_HEAD(&rq->queuelist);
387 /* tag was already set */
388 WRITE_ONCE(rq->deadline, 0);
0a467d0f 389 req_ref_set(rq, 1);
7ea4d8a4 390
dd6216bb 391 if (rq->rq_flags & RQF_USE_SCHED) {
7ea4d8a4
CH
392 struct elevator_queue *e = data->q->elevator;
393
4f266f2b
PB
394 INIT_HLIST_NODE(&rq->hash);
395 RB_CLEAR_NODE(&rq->rb_node);
396
dd6216bb 397 if (e->type->ops.prepare_request)
7ea4d8a4 398 e->type->ops.prepare_request(rq);
7ea4d8a4
CH
399 }
400
e4cdf1a1 401 return rq;
5dee8577
CH
402}
403
349302da 404static inline struct request *
5c17f45e 405__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
349302da
JA
406{
407 unsigned int tag, tag_offset;
fe6134f6 408 struct blk_mq_tags *tags;
349302da 409 struct request *rq;
fe6134f6 410 unsigned long tag_mask;
349302da
JA
411 int i, nr = 0;
412
fe6134f6
JA
413 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
414 if (unlikely(!tag_mask))
349302da
JA
415 return NULL;
416
fe6134f6
JA
417 tags = blk_mq_tags_from_data(data);
418 for (i = 0; tag_mask; i++) {
419 if (!(tag_mask & (1UL << i)))
349302da
JA
420 continue;
421 tag = tag_offset + i;
a22c00be 422 prefetch(tags->static_rqs[tag]);
fe6134f6 423 tag_mask &= ~(1UL << i);
5c17f45e 424 rq = blk_mq_rq_ctx_init(data, tags, tag);
013a7f95 425 rq_list_add(data->cached_rq, rq);
c5fc7b93 426 nr++;
349302da 427 }
b8643d68
CZ
428 if (!(data->rq_flags & RQF_SCHED_TAGS))
429 blk_mq_add_active_requests(data->hctx, nr);
c5fc7b93
JA
430 /* caller already holds a reference, add for remainder */
431 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
349302da
JA
432 data->nr_tags -= nr;
433
013a7f95 434 return rq_list_pop(data->cached_rq);
349302da
JA
435}
436
b90cfaed 437static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
d2c0d383 438{
e6e7abff 439 struct request_queue *q = data->q;
6f816b4b 440 u64 alloc_time_ns = 0;
47c122e3 441 struct request *rq;
600c3b0c 442 unsigned int tag;
d2c0d383 443
6f816b4b
TH
444 /* alloc_time includes depth and tag waits */
445 if (blk_queue_rq_alloc_time(q))
08420cf7 446 alloc_time_ns = blk_time_get_ns();
6f816b4b 447
f9afca4d 448 if (data->cmd_flags & REQ_NOWAIT)
03a07c92 449 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383 450
6259151c
BVA
451retry:
452 data->ctx = blk_mq_get_ctx(q);
453 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
454
781dd830 455 if (q->elevator) {
dd6216bb
CH
456 /*
457 * All requests use scheduler tags when an I/O scheduler is
458 * enabled for the queue.
459 */
460 data->rq_flags |= RQF_SCHED_TAGS;
781dd830 461
d2c0d383 462 /*
8d663f34 463 * Flush/passthrough requests are special and go directly to the
dd6216bb 464 * dispatch list.
d2c0d383 465 */
be4c4278 466 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
dd6216bb
CH
467 !blk_op_is_passthrough(data->cmd_flags)) {
468 struct elevator_mq_ops *ops = &q->elevator->type->ops;
469
470 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
471
472 data->rq_flags |= RQF_USE_SCHED;
473 if (ops->limit_depth)
474 ops->limit_depth(data->cmd_flags, data);
475 }
6259151c 476 } else {
600c3b0c 477 blk_mq_tag_busy(data->hctx);
6259151c 478 }
600c3b0c 479
99e48cd6
JG
480 if (data->flags & BLK_MQ_REQ_RESERVED)
481 data->rq_flags |= RQF_RESV;
482
349302da
JA
483 /*
484 * Try batched alloc if we want more than 1 tag.
485 */
486 if (data->nr_tags > 1) {
5c17f45e
CZ
487 rq = __blk_mq_alloc_requests_batch(data);
488 if (rq) {
489 blk_mq_rq_time_init(rq, alloc_time_ns);
349302da 490 return rq;
5c17f45e 491 }
349302da
JA
492 data->nr_tags = 1;
493 }
494
bf0beec0
ML
495 /*
496 * Waiting allocations only fail because of an inactive hctx. In that
497 * case just retry the hctx assignment and tag allocation as CPU hotplug
498 * should have migrated us to an online CPU by now.
499 */
e4cdf1a1 500 tag = blk_mq_get_tag(data);
bf0beec0
ML
501 if (tag == BLK_MQ_NO_TAG) {
502 if (data->flags & BLK_MQ_REQ_NOWAIT)
503 return NULL;
bf0beec0 504 /*
349302da
JA
505 * Give up the CPU and sleep for a random short time to
506 * ensure that thread using a realtime scheduling class
507 * are migrated off the CPU, and thus off the hctx that
508 * is going away.
bf0beec0
ML
509 */
510 msleep(3);
511 goto retry;
512 }
47c122e3 513
b8643d68
CZ
514 if (!(data->rq_flags & RQF_SCHED_TAGS))
515 blk_mq_inc_active_requests(data->hctx);
5c17f45e
CZ
516 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
517 blk_mq_rq_time_init(rq, alloc_time_ns);
518 return rq;
d2c0d383
CH
519}
520
4b6a5d9c
JA
521static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
522 struct blk_plug *plug,
523 blk_opf_t opf,
524 blk_mq_req_flags_t flags)
320ae51f 525{
e6e7abff
CH
526 struct blk_mq_alloc_data data = {
527 .q = q,
528 .flags = flags,
16458cf3 529 .cmd_flags = opf,
4b6a5d9c
JA
530 .nr_tags = plug->nr_ios,
531 .cached_rq = &plug->cached_rq,
e6e7abff 532 };
bd166ef1 533 struct request *rq;
320ae51f 534
4b6a5d9c
JA
535 if (blk_queue_enter(q, flags))
536 return NULL;
537
538 plug->nr_ios = 1;
320ae51f 539
b90cfaed 540 rq = __blk_mq_alloc_requests(&data);
4b6a5d9c
JA
541 if (unlikely(!rq))
542 blk_queue_exit(q);
543 return rq;
544}
545
546static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
547 blk_opf_t opf,
548 blk_mq_req_flags_t flags)
549{
550 struct blk_plug *plug = current->plug;
551 struct request *rq;
552
553 if (!plug)
554 return NULL;
40467282 555
4b6a5d9c
JA
556 if (rq_list_empty(plug->cached_rq)) {
557 if (plug->nr_ios == 1)
558 return NULL;
559 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
40467282
JC
560 if (!rq)
561 return NULL;
562 } else {
563 rq = rq_list_peek(&plug->cached_rq);
564 if (!rq || rq->q != q)
565 return NULL;
4b6a5d9c 566
40467282
JC
567 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
568 return NULL;
569 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
570 return NULL;
571
572 plug->cached_rq = rq_list_next(rq);
5c17f45e 573 blk_mq_rq_time_init(rq, 0);
40467282 574 }
4b6a5d9c 575
4b6a5d9c
JA
576 rq->cmd_flags = opf;
577 INIT_LIST_HEAD(&rq->queuelist);
578 return rq;
579}
580
581struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
582 blk_mq_req_flags_t flags)
583{
584 struct request *rq;
585
586 rq = blk_mq_alloc_cached_request(q, opf, flags);
587 if (!rq) {
588 struct blk_mq_alloc_data data = {
589 .q = q,
590 .flags = flags,
591 .cmd_flags = opf,
592 .nr_tags = 1,
593 };
594 int ret;
595
596 ret = blk_queue_enter(q, flags);
597 if (ret)
598 return ERR_PTR(ret);
599
600 rq = __blk_mq_alloc_requests(&data);
601 if (!rq)
602 goto out_queue_exit;
603 }
0c4de0f3
CH
604 rq->__data_len = 0;
605 rq->__sector = (sector_t) -1;
606 rq->bio = rq->biotail = NULL;
320ae51f 607 return rq;
a5ea5811
CH
608out_queue_exit:
609 blk_queue_exit(q);
610 return ERR_PTR(-EWOULDBLOCK);
320ae51f 611}
4bb659b1 612EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 613
cd6ce148 614struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
16458cf3 615 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 616{
e6e7abff
CH
617 struct blk_mq_alloc_data data = {
618 .q = q,
619 .flags = flags,
16458cf3 620 .cmd_flags = opf,
47c122e3 621 .nr_tags = 1,
e6e7abff 622 };
600c3b0c 623 u64 alloc_time_ns = 0;
e3c5a78c 624 struct request *rq;
6d2809d5 625 unsigned int cpu;
600c3b0c 626 unsigned int tag;
1f5bd336
ML
627 int ret;
628
600c3b0c
CH
629 /* alloc_time includes depth and tag waits */
630 if (blk_queue_rq_alloc_time(q))
08420cf7 631 alloc_time_ns = blk_time_get_ns();
600c3b0c 632
1f5bd336
ML
633 /*
634 * If the tag allocator sleeps we could get an allocation for a
635 * different hardware context. No need to complicate the low level
636 * allocator for this for the rare use case of a command tied to
637 * a specific queue.
638 */
6ee858a3
KS
639 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
640 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
1f5bd336
ML
641 return ERR_PTR(-EINVAL);
642
643 if (hctx_idx >= q->nr_hw_queues)
644 return ERR_PTR(-EIO);
645
3a0a5299 646 ret = blk_queue_enter(q, flags);
1f5bd336
ML
647 if (ret)
648 return ERR_PTR(ret);
649
c8712c6a
CH
650 /*
651 * Check if the hardware context is actually mapped to anything.
652 * If not tell the caller that it should skip this queue.
653 */
a5ea5811 654 ret = -EXDEV;
4e5cc99e 655 data.hctx = xa_load(&q->hctx_table, hctx_idx);
e6e7abff 656 if (!blk_mq_hw_queue_mapped(data.hctx))
a5ea5811 657 goto out_queue_exit;
e6e7abff 658 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
14dc7a18
BVA
659 if (cpu >= nr_cpu_ids)
660 goto out_queue_exit;
e6e7abff 661 data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 662
dd6216bb
CH
663 if (q->elevator)
664 data.rq_flags |= RQF_SCHED_TAGS;
781dd830 665 else
dd6216bb 666 blk_mq_tag_busy(data.hctx);
600c3b0c 667
99e48cd6
JG
668 if (flags & BLK_MQ_REQ_RESERVED)
669 data.rq_flags |= RQF_RESV;
670
a5ea5811 671 ret = -EWOULDBLOCK;
600c3b0c
CH
672 tag = blk_mq_get_tag(&data);
673 if (tag == BLK_MQ_NO_TAG)
a5ea5811 674 goto out_queue_exit;
b8643d68
CZ
675 if (!(data.rq_flags & RQF_SCHED_TAGS))
676 blk_mq_inc_active_requests(data.hctx);
5c17f45e
CZ
677 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
678 blk_mq_rq_time_init(rq, alloc_time_ns);
e3c5a78c
JG
679 rq->__data_len = 0;
680 rq->__sector = (sector_t) -1;
681 rq->bio = rq->biotail = NULL;
682 return rq;
600c3b0c 683
a5ea5811
CH
684out_queue_exit:
685 blk_queue_exit(q);
686 return ERR_PTR(ret);
1f5bd336
ML
687}
688EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
689
e5c0ca13
CZ
690static void blk_mq_finish_request(struct request *rq)
691{
692 struct request_queue *q = rq->q;
693
347bde9d
DLM
694 blk_zone_finish_request(rq);
695
e5c0ca13
CZ
696 if (rq->rq_flags & RQF_USE_SCHED) {
697 q->elevator->type->ops.finish_request(rq);
698 /*
699 * For postflush request that may need to be
700 * completed twice, we should clear this flag
701 * to avoid double finish_request() on the rq.
702 */
703 rq->rq_flags &= ~RQF_USE_SCHED;
704 }
705}
706
12f5b931
KB
707static void __blk_mq_free_request(struct request *rq)
708{
709 struct request_queue *q = rq->q;
710 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 711 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
12f5b931
KB
712 const int sched_tag = rq->internal_tag;
713
a892c8d5 714 blk_crypto_free_request(rq);
986d413b 715 blk_pm_mark_last_busy(rq);
ea4f995e 716 rq->mq_hctx = NULL;
ddad5933 717
b8643d68
CZ
718 if (rq->tag != BLK_MQ_NO_TAG) {
719 blk_mq_dec_active_requests(hctx);
cae740a0 720 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
b8643d68 721 }
76647368 722 if (sched_tag != BLK_MQ_NO_TAG)
cae740a0 723 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
12f5b931
KB
724 blk_mq_sched_restart(hctx);
725 blk_queue_exit(q);
726}
727
6af54051 728void blk_mq_free_request(struct request *rq)
320ae51f 729{
320ae51f 730 struct request_queue *q = rq->q;
6af54051 731
e5c0ca13 732 blk_mq_finish_request(rq);
320ae51f 733
7beb2f84 734 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
d152c682 735 laptop_io_completion(q->disk->bdi);
7beb2f84 736
a7905043 737 rq_qos_done(q, rq);
0d2602ca 738
12f5b931 739 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
0a467d0f 740 if (req_ref_put_and_test(rq))
12f5b931 741 __blk_mq_free_request(rq);
320ae51f 742}
1a3b595a 743EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 744
47c122e3 745void blk_mq_free_plug_rqs(struct blk_plug *plug)
320ae51f 746{
013a7f95 747 struct request *rq;
fe1f4526 748
c5fc7b93 749 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
47c122e3 750 blk_mq_free_request(rq);
47c122e3 751}
522a7775 752
22350ad7
CH
753void blk_dump_rq_flags(struct request *rq, char *msg)
754{
755 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
f3fa33ac 756 rq->q->disk ? rq->q->disk->disk_name : "?",
16458cf3 757 (__force unsigned long long) rq->cmd_flags);
22350ad7
CH
758
759 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
760 (unsigned long long)blk_rq_pos(rq),
761 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
762 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
763 rq->bio, rq->biotail, blk_rq_bytes(rq));
764}
765EXPORT_SYMBOL(blk_dump_rq_flags);
766
9be3e06f
JA
767static void blk_account_io_completion(struct request *req, unsigned int bytes)
768{
769 if (req->part && blk_do_io_stat(req)) {
770 const int sgrp = op_stat_group(req_op(req));
771
772 part_stat_lock();
773 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
774 part_stat_unlock();
775 }
776}
777
0d7a29a2
CH
778static void blk_print_req_error(struct request *req, blk_status_t status)
779{
780 printk_ratelimited(KERN_ERR
781 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
782 "phys_seg %u prio class %u\n",
783 blk_status_to_str(status),
f3fa33ac 784 req->q->disk ? req->q->disk->disk_name : "?",
16458cf3
BVA
785 blk_rq_pos(req), (__force u32)req_op(req),
786 blk_op_str(req_op(req)),
787 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
0d7a29a2
CH
788 req->nr_phys_segments,
789 IOPRIO_PRIO_CLASS(req->ioprio));
790}
791
5581a5dd
JA
792/*
793 * Fully end IO on a request. Does not support partial completions, or
794 * errors.
795 */
796static void blk_complete_request(struct request *req)
797{
798 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
799 int total_bytes = blk_rq_bytes(req);
800 struct bio *bio = req->bio;
801
802 trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
803
804 if (!bio)
805 return;
806
5581a5dd 807 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
e9f5f44a 808 blk_integrity_complete(req, total_bytes);
5581a5dd 809
9cd1e566
EB
810 /*
811 * Upper layers may call blk_crypto_evict_key() anytime after the last
812 * bio_endio(). Therefore, the keyslot must be released before that.
813 */
814 blk_crypto_rq_put_keyslot(req);
815
5581a5dd
JA
816 blk_account_io_completion(req, total_bytes);
817
818 do {
819 struct bio *next = bio->bi_next;
820
821 /* Completion has already been traced */
822 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
a12821d5 823
a0508c36 824 blk_zone_update_request_bio(req, bio);
a12821d5 825
5581a5dd
JA
826 if (!is_flush)
827 bio_endio(bio);
828 bio = next;
829 } while (bio);
830
831 /*
832 * Reset counters so that the request stacking driver
833 * can find how many bytes remain in the request
834 * later.
835 */
ab3e1d3b
JA
836 if (!req->end_io) {
837 req->bio = NULL;
838 req->__data_len = 0;
839 }
5581a5dd
JA
840}
841
9be3e06f
JA
842/**
843 * blk_update_request - Complete multiple bytes without completing the request
844 * @req: the request being processed
845 * @error: block status code
846 * @nr_bytes: number of bytes to complete for @req
847 *
848 * Description:
849 * Ends I/O on a number of bytes attached to @req, but doesn't complete
850 * the request structure even if @req doesn't have leftover.
851 * If @req has leftover, sets it up for the next range of segments.
852 *
853 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
854 * %false return from this function.
855 *
856 * Note:
857 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
858 * except in the consistency check at the end of this function.
859 *
860 * Return:
861 * %false - this request doesn't have any more data
862 * %true - this request has more data
863 **/
864bool blk_update_request(struct request *req, blk_status_t error,
865 unsigned int nr_bytes)
866{
c0da26f9
DLM
867 bool is_flush = req->rq_flags & RQF_FLUSH_SEQ;
868 bool quiet = req->rq_flags & RQF_QUIET;
9be3e06f
JA
869 int total_bytes;
870
8a7d267b 871 trace_block_rq_complete(req, error, nr_bytes);
9be3e06f
JA
872
873 if (!req->bio)
874 return false;
875
9be3e06f
JA
876 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
877 error == BLK_STS_OK)
e9f5f44a 878 blk_integrity_complete(req, nr_bytes);
9be3e06f 879
9cd1e566
EB
880 /*
881 * Upper layers may call blk_crypto_evict_key() anytime after the last
882 * bio_endio(). Therefore, the keyslot must be released before that.
883 */
884 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
885 __blk_crypto_rq_put_keyslot(req);
886
c0da26f9
DLM
887 if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) &&
888 !test_bit(GD_DEAD, &req->q->disk->state)) {
9be3e06f 889 blk_print_req_error(req, error);
d5869fdc
YS
890 trace_block_rq_error(req, error, nr_bytes);
891 }
9be3e06f
JA
892
893 blk_account_io_completion(req, nr_bytes);
894
895 total_bytes = 0;
896 while (req->bio) {
897 struct bio *bio = req->bio;
898 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
899
c0da26f9
DLM
900 if (unlikely(error))
901 bio->bi_status = error;
902
903 if (bio_bytes == bio->bi_iter.bi_size) {
9be3e06f 904 req->bio = bio->bi_next;
9b1ce7f0 905 } else if (bio_is_zone_append(bio) && error == BLK_STS_OK) {
c0da26f9
DLM
906 /*
907 * Partial zone append completions cannot be supported
908 * as the BIO fragments may end up not being written
909 * sequentially.
910 */
911 bio->bi_status = BLK_STS_IOERR;
912 }
9be3e06f
JA
913
914 /* Completion has already been traced */
915 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
c0da26f9
DLM
916 if (unlikely(quiet))
917 bio_set_flag(bio, BIO_QUIET);
918
919 bio_advance(bio, bio_bytes);
920
921 /* Don't actually finish bio if it's part of flush sequence */
a0508c36
DLM
922 if (!bio->bi_iter.bi_size) {
923 blk_zone_update_request_bio(req, bio);
924 if (!is_flush)
925 bio_endio(bio);
c0da26f9 926 }
9be3e06f
JA
927
928 total_bytes += bio_bytes;
929 nr_bytes -= bio_bytes;
930
931 if (!nr_bytes)
932 break;
933 }
934
935 /*
936 * completely done
937 */
938 if (!req->bio) {
939 /*
940 * Reset counters so that the request stacking driver
941 * can find how many bytes remain in the request
942 * later.
943 */
944 req->__data_len = 0;
945 return false;
946 }
947
948 req->__data_len -= total_bytes;
949
950 /* update sector only for requests with clear definition of sector */
951 if (!blk_rq_is_passthrough(req))
952 req->__sector += total_bytes >> 9;
953
954 /* mixed attributes always follow the first bio */
955 if (req->rq_flags & RQF_MIXED_MERGE) {
956 req->cmd_flags &= ~REQ_FAILFAST_MASK;
957 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
958 }
959
960 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
961 /*
962 * If total number of sectors is less than the first segment
963 * size, something has gone terribly wrong.
964 */
965 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
966 blk_dump_rq_flags(req, "request botched");
967 req->__data_len = blk_rq_cur_bytes(req);
968 }
969
970 /* recalculate the number of segments */
971 req->nr_phys_segments = blk_recalc_rq_segments(req);
972 }
973
974 return true;
975}
976EXPORT_SYMBOL_GPL(blk_update_request);
977
450b7879
CH
978static inline void blk_account_io_done(struct request *req, u64 now)
979{
5a80bd07
HC
980 trace_block_io_done(req);
981
450b7879
CH
982 /*
983 * Account IO completion. flush_rq isn't accounted as a
984 * normal IO on queueing nor completion. Accounting the
985 * containing request is enough.
986 */
987 if (blk_do_io_stat(req) && req->part &&
06965037
CK
988 !(req->rq_flags & RQF_FLUSH_SEQ)) {
989 const int sgrp = op_stat_group(req_op(req));
450b7879 990
06965037
CK
991 part_stat_lock();
992 update_io_ticks(req->part, jiffies, true);
993 part_stat_inc(req->part, ios[sgrp]);
994 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
99dc4223
YK
995 part_stat_local_dec(req->part,
996 in_flight[op_is_write(req_op(req))]);
06965037
CK
997 part_stat_unlock();
998 }
450b7879
CH
999}
1000
1001static inline void blk_account_io_start(struct request *req)
1002{
5a80bd07
HC
1003 trace_block_io_start(req);
1004
e165fb4d
CK
1005 if (blk_do_io_stat(req)) {
1006 /*
1007 * All non-passthrough requests are created from a bio with one
1008 * exception: when a flush command that is part of a flush sequence
1009 * generated by the state machine in blk-flush.c is cloned onto the
1010 * lower device by dm-multipath we can get here without a bio.
1011 */
1012 if (req->bio)
1013 req->part = req->bio->bi_bdev;
1014 else
1015 req->part = req->q->disk->part0;
1016
1017 part_stat_lock();
1018 update_io_ticks(req->part, jiffies, false);
99dc4223
YK
1019 part_stat_local_inc(req->part,
1020 in_flight[op_is_write(req_op(req))]);
e165fb4d
CK
1021 part_stat_unlock();
1022 }
450b7879
CH
1023}
1024
f794f335 1025static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
320ae51f 1026{
54bdd67d 1027 if (rq->rq_flags & RQF_STATS)
522a7775 1028 blk_stat_add(rq, now);
4bc6339a 1029
87890092 1030 blk_mq_sched_completed_request(rq, now);
522a7775 1031 blk_account_io_done(rq, now);
f794f335 1032}
522a7775 1033
f794f335
JA
1034inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1035{
1036 if (blk_mq_need_time_stamp(rq))
08420cf7 1037 __blk_mq_end_request_acct(rq, blk_time_get_ns());
0d11e6ac 1038
e5c0ca13
CZ
1039 blk_mq_finish_request(rq);
1040
91b63639 1041 if (rq->end_io) {
a7905043 1042 rq_qos_done(rq->q, rq);
de671d61
JA
1043 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1044 blk_mq_free_request(rq);
91b63639 1045 } else {
320ae51f 1046 blk_mq_free_request(rq);
91b63639 1047 }
320ae51f 1048}
c8a446ad 1049EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 1050
2a842aca 1051void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
1052{
1053 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1054 BUG();
c8a446ad 1055 __blk_mq_end_request(rq, error);
63151a44 1056}
c8a446ad 1057EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 1058
f794f335
JA
1059#define TAG_COMP_BATCH 32
1060
1061static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1062 int *tag_array, int nr_tags)
1063{
1064 struct request_queue *q = hctx->queue;
1065
b8643d68 1066 blk_mq_sub_active_requests(hctx, nr_tags);
3b87c6ea 1067
f794f335
JA
1068 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1069 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1070}
1071
1072void blk_mq_end_request_batch(struct io_comp_batch *iob)
1073{
1074 int tags[TAG_COMP_BATCH], nr_tags = 0;
02f7eab0 1075 struct blk_mq_hw_ctx *cur_hctx = NULL;
f794f335
JA
1076 struct request *rq;
1077 u64 now = 0;
1078
1079 if (iob->need_ts)
08420cf7 1080 now = blk_time_get_ns();
f794f335
JA
1081
1082 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1083 prefetch(rq->bio);
1084 prefetch(rq->rq_next);
1085
5581a5dd 1086 blk_complete_request(rq);
f794f335
JA
1087 if (iob->need_ts)
1088 __blk_mq_end_request_acct(rq, now);
1089
e5c0ca13
CZ
1090 blk_mq_finish_request(rq);
1091
98b26a0e
JA
1092 rq_qos_done(rq->q, rq);
1093
ab3e1d3b
JA
1094 /*
1095 * If end_io handler returns NONE, then it still has
1096 * ownership of the request.
1097 */
1098 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1099 continue;
1100
f794f335 1101 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
0a467d0f 1102 if (!req_ref_put_and_test(rq))
f794f335
JA
1103 continue;
1104
1105 blk_crypto_free_request(rq);
1106 blk_pm_mark_last_busy(rq);
f794f335 1107
02f7eab0
JA
1108 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1109 if (cur_hctx)
1110 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
f794f335 1111 nr_tags = 0;
02f7eab0 1112 cur_hctx = rq->mq_hctx;
f794f335
JA
1113 }
1114 tags[nr_tags++] = rq->tag;
f794f335
JA
1115 }
1116
1117 if (nr_tags)
02f7eab0 1118 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
f794f335
JA
1119}
1120EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1121
f9ab4918 1122static void blk_complete_reqs(struct llist_head *list)
320ae51f 1123{
f9ab4918
SAS
1124 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1125 struct request *rq, *next;
c3077b5d 1126
f9ab4918 1127 llist_for_each_entry_safe(rq, next, entry, ipi_list)
c3077b5d 1128 rq->q->mq_ops->complete(rq);
320ae51f 1129}
320ae51f 1130
e68ac2b4 1131static __latent_entropy void blk_done_softirq(void)
320ae51f 1132{
f9ab4918 1133 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
115243f5
CH
1134}
1135
c3077b5d
CH
1136static int blk_softirq_cpu_dead(unsigned int cpu)
1137{
f9ab4918 1138 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
c3077b5d
CH
1139 return 0;
1140}
1141
40d09b53 1142static void __blk_mq_complete_request_remote(void *data)
c3077b5d 1143{
f9ab4918 1144 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
c3077b5d
CH
1145}
1146
96339526
CH
1147static inline bool blk_mq_complete_need_ipi(struct request *rq)
1148{
1149 int cpu = raw_smp_processor_id();
1150
1151 if (!IS_ENABLED(CONFIG_SMP) ||
1152 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1153 return false;
71425189
SAS
1154 /*
1155 * With force threaded interrupts enabled, raising softirq from an SMP
1156 * function call will always result in waking the ksoftirqd thread.
1157 * This is probably worse than completing the request on a different
1158 * cache domain.
1159 */
91cc470e 1160 if (force_irqthreads())
71425189 1161 return false;
96339526 1162
af550e4c 1163 /* same CPU or cache domain and capacity? Complete locally */
96339526
CH
1164 if (cpu == rq->mq_ctx->cpu ||
1165 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
af550e4c
QY
1166 cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1167 cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
96339526
CH
1168 return false;
1169
1170 /* don't try to IPI to an offline CPU */
1171 return cpu_online(rq->mq_ctx->cpu);
1172}
1173
f9ab4918
SAS
1174static void blk_mq_complete_send_ipi(struct request *rq)
1175{
f9ab4918
SAS
1176 unsigned int cpu;
1177
1178 cpu = rq->mq_ctx->cpu;
660e802c
CZ
1179 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1180 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
f9ab4918
SAS
1181}
1182
1183static void blk_mq_raise_softirq(struct request *rq)
1184{
1185 struct llist_head *list;
1186
1187 preempt_disable();
1188 list = this_cpu_ptr(&blk_cpu_done);
1189 if (llist_add(&rq->ipi_list, list))
1190 raise_softirq(BLOCK_SOFTIRQ);
1191 preempt_enable();
1192}
1193
40d09b53 1194bool blk_mq_complete_request_remote(struct request *rq)
320ae51f 1195{
af78ff7c 1196 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
36e76539 1197
4ab32bf3 1198 /*
f168420c
LS
1199 * For request which hctx has only one ctx mapping,
1200 * or a polled request, always complete locally,
1201 * it's pointless to redirect the completion.
4ab32bf3 1202 */
30654614
ET
1203 if ((rq->mq_hctx->nr_ctx == 1 &&
1204 rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1205 rq->cmd_flags & REQ_POLLED)
40d09b53 1206 return false;
38535201 1207
96339526 1208 if (blk_mq_complete_need_ipi(rq)) {
f9ab4918
SAS
1209 blk_mq_complete_send_ipi(rq);
1210 return true;
3d6efbf6 1211 }
40d09b53 1212
f9ab4918
SAS
1213 if (rq->q->nr_hw_queues == 1) {
1214 blk_mq_raise_softirq(rq);
1215 return true;
1216 }
1217 return false;
40d09b53
CH
1218}
1219EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1220
1221/**
1222 * blk_mq_complete_request - end I/O on a request
1223 * @rq: the request being processed
1224 *
1225 * Description:
1226 * Complete a request by scheduling the ->complete_rq operation.
1227 **/
1228void blk_mq_complete_request(struct request *rq)
1229{
1230 if (!blk_mq_complete_request_remote(rq))
1231 rq->q->mq_ops->complete(rq);
320ae51f 1232}
15f73f5b 1233EXPORT_SYMBOL(blk_mq_complete_request);
30a91cb4 1234
105663f7
AA
1235/**
1236 * blk_mq_start_request - Start processing a request
1237 * @rq: Pointer to request to be started
1238 *
1239 * Function used by device drivers to notify the block layer that a request
1240 * is going to be processed now, so blk layer can do proper initializations
1241 * such as starting the timeout timer.
1242 */
e2490073 1243void blk_mq_start_request(struct request *rq)
320ae51f
JA
1244{
1245 struct request_queue *q = rq->q;
1246
a54895fa 1247 trace_block_rq_issue(rq);
320ae51f 1248
847c5bcd
KK
1249 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1250 !blk_rq_is_passthrough(rq)) {
08420cf7 1251 rq->io_start_time_ns = blk_time_get_ns();
3d244306 1252 rq->stats_sectors = blk_rq_sectors(rq);
cf43e6be 1253 rq->rq_flags |= RQF_STATS;
a7905043 1254 rq_qos_issue(q, rq);
cf43e6be
JA
1255 }
1256
1d9bd516 1257 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
538b7534 1258
1d9bd516 1259 blk_add_timer(rq);
12f5b931 1260 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
217b613a 1261 rq->mq_hctx->tags->rqs[rq->tag] = rq;
49f5baa5 1262
54d4e6ab 1263 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
e9f5f44a
CH
1264 blk_integrity_prepare(rq);
1265
3e08773c 1266 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
f6c80cff 1267 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
320ae51f 1268}
e2490073 1269EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 1270
a327c341
ML
1271/*
1272 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1273 * queues. This is important for md arrays to benefit from merging
1274 * requests.
1275 */
1276static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1277{
1278 if (plug->multiple_queues)
1279 return BLK_MAX_REQUEST_COUNT * 2;
1280 return BLK_MAX_REQUEST_COUNT;
1281}
1282
1283static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1284{
1285 struct request *last = rq_list_peek(&plug->mq_list);
1286
1287 if (!plug->rq_count) {
1288 trace_block_plug(rq->q);
1289 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1290 (!blk_queue_nomerges(rq->q) &&
1291 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1292 blk_mq_flush_plug_list(plug, false);
878eb6e4 1293 last = NULL;
a327c341
ML
1294 trace_block_plug(rq->q);
1295 }
1296
1297 if (!plug->multiple_queues && last && last->q != rq->q)
1298 plug->multiple_queues = true;
c6b7a3a2
ML
1299 /*
1300 * Any request allocated from sched tags can't be issued to
1301 * ->queue_rqs() directly
1302 */
1303 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
a327c341
ML
1304 plug->has_elevator = true;
1305 rq->rq_next = NULL;
1306 rq_list_add(&plug->mq_list, rq);
1307 plug->rq_count++;
1308}
1309
4054cff9
CH
1310/**
1311 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
4054cff9
CH
1312 * @rq: request to insert
1313 * @at_head: insert request at head or tail of queue
4054cff9
CH
1314 *
1315 * Description:
1316 * Insert a fully prepared request at the back of the I/O scheduler queue
1317 * for execution. Don't wait for completion.
1318 *
1319 * Note:
1320 * This function will invoke @done directly if the queue is dead.
1321 */
e2e53086 1322void blk_execute_rq_nowait(struct request *rq, bool at_head)
4054cff9 1323{
f0dbe6e8
CH
1324 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1325
ae948fd6
CH
1326 WARN_ON(irqs_disabled());
1327 WARN_ON(!blk_rq_is_passthrough(rq));
4054cff9 1328
ae948fd6 1329 blk_account_io_start(rq);
110fdb44 1330
f0dbe6e8 1331 if (current->plug && !at_head) {
ae948fd6 1332 blk_add_rq_to_plug(current->plug, rq);
f0dbe6e8
CH
1333 return;
1334 }
1335
710fa378 1336 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
65a558f6 1337 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
4054cff9
CH
1338}
1339EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1340
32ac5a9b
CH
1341struct blk_rq_wait {
1342 struct completion done;
1343 blk_status_t ret;
1344};
1345
de671d61 1346static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
32ac5a9b
CH
1347{
1348 struct blk_rq_wait *wait = rq->end_io_data;
1349
1350 wait->ret = ret;
1351 complete(&wait->done);
de671d61 1352 return RQ_END_IO_NONE;
32ac5a9b
CH
1353}
1354
c6e99ea4 1355bool blk_rq_is_poll(struct request *rq)
4054cff9
CH
1356{
1357 if (!rq->mq_hctx)
1358 return false;
1359 if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1360 return false;
4054cff9
CH
1361 return true;
1362}
c6e99ea4 1363EXPORT_SYMBOL_GPL(blk_rq_is_poll);
4054cff9
CH
1364
1365static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1366{
1367 do {
f6c80cff 1368 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
4054cff9
CH
1369 cond_resched();
1370 } while (!completion_done(wait));
1371}
1372
1373/**
1374 * blk_execute_rq - insert a request into queue for execution
4054cff9
CH
1375 * @rq: request to insert
1376 * @at_head: insert request at head or tail of queue
1377 *
1378 * Description:
1379 * Insert a fully prepared request at the back of the I/O scheduler queue
1380 * for execution and wait for completion.
1381 * Return: The blk_status_t result provided to blk_mq_end_request().
1382 */
b84ba30b 1383blk_status_t blk_execute_rq(struct request *rq, bool at_head)
4054cff9 1384{
f0dbe6e8 1385 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
32ac5a9b
CH
1386 struct blk_rq_wait wait = {
1387 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1388 };
4054cff9 1389
ae948fd6
CH
1390 WARN_ON(irqs_disabled());
1391 WARN_ON(!blk_rq_is_passthrough(rq));
4054cff9
CH
1392
1393 rq->end_io_data = &wait;
ae948fd6 1394 rq->end_io = blk_end_sync_rq;
4054cff9 1395
ae948fd6 1396 blk_account_io_start(rq);
710fa378 1397 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
f0dbe6e8 1398 blk_mq_run_hw_queue(hctx, false);
4054cff9 1399
0eb4db47 1400 if (blk_rq_is_poll(rq))
32ac5a9b 1401 blk_rq_poll_completion(rq, &wait.done);
0eb4db47
KB
1402 else
1403 blk_wait_io(&wait.done);
4054cff9 1404
32ac5a9b 1405 return wait.ret;
4054cff9
CH
1406}
1407EXPORT_SYMBOL(blk_execute_rq);
1408
ed0791b2 1409static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
1410{
1411 struct request_queue *q = rq->q;
1412
923218f6
ML
1413 blk_mq_put_driver_tag(rq);
1414
a54895fa 1415 trace_block_rq_requeue(rq);
a7905043 1416 rq_qos_requeue(q, rq);
49f5baa5 1417
12f5b931
KB
1418 if (blk_mq_request_started(rq)) {
1419 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
da661267 1420 rq->rq_flags &= ~RQF_TIMED_OUT;
e2490073 1421 }
320ae51f
JA
1422}
1423
2b053aca 1424void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 1425{
214a4418 1426 struct request_queue *q = rq->q;
9a67aa52 1427 unsigned long flags;
214a4418 1428
ed0791b2 1429 __blk_mq_requeue_request(rq);
ed0791b2 1430
105976f5
ML
1431 /* this request will be re-inserted to io scheduler queue */
1432 blk_mq_sched_requeue_request(rq);
1433
9a67aa52
CH
1434 spin_lock_irqsave(&q->requeue_lock, flags);
1435 list_add_tail(&rq->queuelist, &q->requeue_list);
1436 spin_unlock_irqrestore(&q->requeue_lock, flags);
214a4418
CH
1437
1438 if (kick_requeue_list)
1439 blk_mq_kick_requeue_list(q);
ed0791b2
CH
1440}
1441EXPORT_SYMBOL(blk_mq_requeue_request);
1442
6fca6a61
CH
1443static void blk_mq_requeue_work(struct work_struct *work)
1444{
1445 struct request_queue *q =
2849450a 1446 container_of(work, struct request_queue, requeue_work.work);
6fca6a61 1447 LIST_HEAD(rq_list);
9a67aa52
CH
1448 LIST_HEAD(flush_list);
1449 struct request *rq;
6fca6a61 1450
18e9781d 1451 spin_lock_irq(&q->requeue_lock);
6fca6a61 1452 list_splice_init(&q->requeue_list, &rq_list);
9a67aa52 1453 list_splice_init(&q->flush_list, &flush_list);
18e9781d 1454 spin_unlock_irq(&q->requeue_lock);
6fca6a61 1455
9a67aa52
CH
1456 while (!list_empty(&rq_list)) {
1457 rq = list_entry(rq_list.next, struct request, queuelist);
aef1897c 1458 /*
a1e948b8
CH
1459 * If RQF_DONTPREP ist set, the request has been started by the
1460 * driver already and might have driver-specific data allocated
1461 * already. Insert it into the hctx dispatch list to avoid
1462 * block layer merges for the request.
aef1897c 1463 */
a1e948b8 1464 if (rq->rq_flags & RQF_DONTPREP) {
a1e948b8 1465 list_del_init(&rq->queuelist);
2b597613 1466 blk_mq_request_bypass_insert(rq, 0);
9a67aa52 1467 } else {
a1e948b8 1468 list_del_init(&rq->queuelist);
710fa378 1469 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
a1e948b8 1470 }
6fca6a61
CH
1471 }
1472
9a67aa52
CH
1473 while (!list_empty(&flush_list)) {
1474 rq = list_entry(flush_list.next, struct request, queuelist);
6fca6a61 1475 list_del_init(&rq->queuelist);
710fa378 1476 blk_mq_insert_request(rq, 0);
6fca6a61
CH
1477 }
1478
52d7f1b5 1479 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
1480}
1481
6fca6a61
CH
1482void blk_mq_kick_requeue_list(struct request_queue *q)
1483{
ae943d20 1484 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
6fca6a61
CH
1485}
1486EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1487
2849450a
MS
1488void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1489 unsigned long msecs)
1490{
d4acf365
BVA
1491 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1492 msecs_to_jiffies(msecs));
2849450a
MS
1493}
1494EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1495
0e4237ae
ML
1496static bool blk_is_flush_data_rq(struct request *rq)
1497{
1498 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1499}
1500
2dd6532e 1501static bool blk_mq_rq_inflight(struct request *rq, void *priv)
ae879912
JA
1502{
1503 /*
8ab30a33
JG
1504 * If we find a request that isn't idle we know the queue is busy
1505 * as it's checked in the iter.
1506 * Return false to stop the iteration.
0e4237ae
ML
1507 *
1508 * In case of queue quiesce, if one flush data request is completed,
1509 * don't count it as inflight given the flush sequence is suspended,
1510 * and the original flush data request is invisible to driver, just
1511 * like other pending requests because of quiesce
ae879912 1512 */
0e4237ae
ML
1513 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1514 blk_is_flush_data_rq(rq) &&
1515 blk_mq_request_completed(rq))) {
ae879912
JA
1516 bool *busy = priv;
1517
1518 *busy = true;
1519 return false;
1520 }
1521
1522 return true;
1523}
1524
3c94d83c 1525bool blk_mq_queue_inflight(struct request_queue *q)
ae879912
JA
1526{
1527 bool busy = false;
1528
3c94d83c 1529 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
ae879912
JA
1530 return busy;
1531}
3c94d83c 1532EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
ae879912 1533
9bdb4833 1534static void blk_mq_rq_timed_out(struct request *req)
320ae51f 1535{
da661267 1536 req->rq_flags |= RQF_TIMED_OUT;
d1210d5a
CH
1537 if (req->q->mq_ops->timeout) {
1538 enum blk_eh_timer_return ret;
1539
9bdb4833 1540 ret = req->q->mq_ops->timeout(req);
d1210d5a
CH
1541 if (ret == BLK_EH_DONE)
1542 return;
1543 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
46f92d42 1544 }
d1210d5a
CH
1545
1546 blk_add_timer(req);
87ee7b11 1547}
5b3f25fc 1548
82c22947
DJ
1549struct blk_expired_data {
1550 bool has_timedout_rq;
1551 unsigned long next;
1552 unsigned long timeout_start;
1553};
1554
1555static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
81481eb4 1556{
12f5b931 1557 unsigned long deadline;
87ee7b11 1558
12f5b931
KB
1559 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1560 return false;
da661267
CH
1561 if (rq->rq_flags & RQF_TIMED_OUT)
1562 return false;
a7af0af3 1563
079076b3 1564 deadline = READ_ONCE(rq->deadline);
82c22947 1565 if (time_after_eq(expired->timeout_start, deadline))
12f5b931 1566 return true;
a7af0af3 1567
82c22947
DJ
1568 if (expired->next == 0)
1569 expired->next = deadline;
1570 else if (time_after(expired->next, deadline))
1571 expired->next = deadline;
12f5b931 1572 return false;
87ee7b11
JA
1573}
1574
2e315dc0
ML
1575void blk_mq_put_rq_ref(struct request *rq)
1576{
de671d61
JA
1577 if (is_flush_rq(rq)) {
1578 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1579 blk_mq_free_request(rq);
1580 } else if (req_ref_put_and_test(rq)) {
2e315dc0 1581 __blk_mq_free_request(rq);
de671d61 1582 }
2e315dc0
ML
1583}
1584
2dd6532e 1585static bool blk_mq_check_expired(struct request *rq, void *priv)
1d9bd516 1586{
82c22947 1587 struct blk_expired_data *expired = priv;
12f5b931
KB
1588
1589 /*
c797b40c
ML
1590 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1591 * be reallocated underneath the timeout handler's processing, then
1592 * the expire check is reliable. If the request is not expired, then
1593 * it was completed and reallocated as a new request after returning
1594 * from blk_mq_check_expired().
1d9bd516 1595 */
82c22947
DJ
1596 if (blk_mq_req_expired(rq, expired)) {
1597 expired->has_timedout_rq = true;
1598 return false;
1599 }
1600 return true;
1601}
1602
1603static bool blk_mq_handle_expired(struct request *rq, void *priv)
1604{
1605 struct blk_expired_data *expired = priv;
1606
1607 if (blk_mq_req_expired(rq, expired))
9bdb4833 1608 blk_mq_rq_timed_out(rq);
7baa8572 1609 return true;
1d9bd516
TH
1610}
1611
287922eb 1612static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 1613{
287922eb
CH
1614 struct request_queue *q =
1615 container_of(work, struct request_queue, timeout_work);
82c22947
DJ
1616 struct blk_expired_data expired = {
1617 .timeout_start = jiffies,
1618 };
1d9bd516 1619 struct blk_mq_hw_ctx *hctx;
4f481208 1620 unsigned long i;
320ae51f 1621
71f79fb3
GKB
1622 /* A deadlock might occur if a request is stuck requiring a
1623 * timeout at the same time a queue freeze is waiting
1624 * completion, since the timeout code would not be able to
1625 * acquire the queue reference here.
1626 *
1627 * That's why we don't use blk_queue_enter here; instead, we use
1628 * percpu_ref_tryget directly, because we need to be able to
1629 * obtain a reference even in the short window between the queue
1630 * starting to freeze, by dropping the first reference in
1671d522 1631 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
1632 * consumed, marked by the instant q_usage_counter reaches
1633 * zero.
1634 */
1635 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
1636 return;
1637
82c22947
DJ
1638 /* check if there is any timed-out request */
1639 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1640 if (expired.has_timedout_rq) {
1641 /*
1642 * Before walking tags, we must ensure any submit started
1643 * before the current time has finished. Since the submit
1644 * uses srcu or rcu, wait for a synchronization point to
1645 * ensure all running submits have finished
1646 */
483239c7 1647 blk_mq_wait_quiesce_done(q->tag_set);
82c22947
DJ
1648
1649 expired.next = 0;
1650 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1651 }
320ae51f 1652
82c22947
DJ
1653 if (expired.next != 0) {
1654 mod_timer(&q->timeout, expired.next);
0d2602ca 1655 } else {
fcd36c36
BVA
1656 /*
1657 * Request timeouts are handled as a forward rolling timer. If
1658 * we end up here it means that no requests are pending and
1659 * also that no request has been pending for a while. Mark
1660 * each hctx as idle.
1661 */
f054b56c
ML
1662 queue_for_each_hw_ctx(q, hctx, i) {
1663 /* the hctx may be unmapped, so check it here */
1664 if (blk_mq_hw_queue_mapped(hctx))
1665 blk_mq_tag_idle(hctx);
1666 }
0d2602ca 1667 }
287922eb 1668 blk_queue_exit(q);
320ae51f
JA
1669}
1670
88459642
OS
1671struct flush_busy_ctx_data {
1672 struct blk_mq_hw_ctx *hctx;
1673 struct list_head *list;
1674};
1675
1676static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1677{
1678 struct flush_busy_ctx_data *flush_data = data;
1679 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1680 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 1681 enum hctx_type type = hctx->type;
88459642 1682
88459642 1683 spin_lock(&ctx->lock);
c16d6b5a 1684 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
e9a99a63 1685 sbitmap_clear_bit(sb, bitnr);
88459642
OS
1686 spin_unlock(&ctx->lock);
1687 return true;
1688}
1689
1429d7c9
JA
1690/*
1691 * Process software queues that have been marked busy, splicing them
1692 * to the for-dispatch
1693 */
2c3ad667 1694void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 1695{
88459642
OS
1696 struct flush_busy_ctx_data data = {
1697 .hctx = hctx,
1698 .list = list,
1699 };
1429d7c9 1700
88459642 1701 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 1702}
2c3ad667 1703EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 1704
b347689f
ML
1705struct dispatch_rq_data {
1706 struct blk_mq_hw_ctx *hctx;
1707 struct request *rq;
1708};
1709
1710static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1711 void *data)
1712{
1713 struct dispatch_rq_data *dispatch_data = data;
1714 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1715 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 1716 enum hctx_type type = hctx->type;
b347689f
ML
1717
1718 spin_lock(&ctx->lock);
c16d6b5a
ML
1719 if (!list_empty(&ctx->rq_lists[type])) {
1720 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
b347689f 1721 list_del_init(&dispatch_data->rq->queuelist);
c16d6b5a 1722 if (list_empty(&ctx->rq_lists[type]))
b347689f
ML
1723 sbitmap_clear_bit(sb, bitnr);
1724 }
1725 spin_unlock(&ctx->lock);
1726
1727 return !dispatch_data->rq;
1728}
1729
1730struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1731 struct blk_mq_ctx *start)
1732{
f31967f0 1733 unsigned off = start ? start->index_hw[hctx->type] : 0;
b347689f
ML
1734 struct dispatch_rq_data data = {
1735 .hctx = hctx,
1736 .rq = NULL,
1737 };
1738
1739 __sbitmap_for_each_set(&hctx->ctx_map, off,
1740 dispatch_rq_from_ctx, &data);
1741
1742 return data.rq;
1743}
1744
b8643d68 1745bool __blk_mq_alloc_driver_tag(struct request *rq)
570e9b73 1746{
ae0f1a73 1747 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
570e9b73 1748 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
570e9b73
ML
1749 int tag;
1750
568f2700
ML
1751 blk_mq_tag_busy(rq->mq_hctx);
1752
570e9b73 1753 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
ae0f1a73 1754 bt = &rq->mq_hctx->tags->breserved_tags;
570e9b73 1755 tag_offset = 0;
28500850
ML
1756 } else {
1757 if (!hctx_may_queue(rq->mq_hctx, bt))
1758 return false;
570e9b73
ML
1759 }
1760
570e9b73
ML
1761 tag = __sbitmap_queue_get(bt);
1762 if (tag == BLK_MQ_NO_TAG)
1763 return false;
1764
1765 rq->tag = tag + tag_offset;
b8643d68 1766 blk_mq_inc_active_requests(rq->mq_hctx);
568f2700 1767 return true;
570e9b73
ML
1768}
1769
eb619fdb
JA
1770static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1771 int flags, void *key)
da55f2cc
OS
1772{
1773 struct blk_mq_hw_ctx *hctx;
1774
1775 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1776
5815839b 1777 spin_lock(&hctx->dispatch_wait_lock);
e8618575
JA
1778 if (!list_empty(&wait->entry)) {
1779 struct sbitmap_queue *sbq;
1780
1781 list_del_init(&wait->entry);
ae0f1a73 1782 sbq = &hctx->tags->bitmap_tags;
e8618575
JA
1783 atomic_dec(&sbq->ws_active);
1784 }
5815839b
ML
1785 spin_unlock(&hctx->dispatch_wait_lock);
1786
da55f2cc
OS
1787 blk_mq_run_hw_queue(hctx, true);
1788 return 1;
1789}
1790
f906a6a0
JA
1791/*
1792 * Mark us waiting for a tag. For shared tags, this involves hooking us into
ee3e4de5
BVA
1793 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1794 * restart. For both cases, take care to check the condition again after
f906a6a0
JA
1795 * marking us as waiting.
1796 */
2278d69f 1797static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
f906a6a0 1798 struct request *rq)
da55f2cc 1799{
98b99e94 1800 struct sbitmap_queue *sbq;
5815839b 1801 struct wait_queue_head *wq;
f906a6a0
JA
1802 wait_queue_entry_t *wait;
1803 bool ret;
da55f2cc 1804
47df9ce9
KS
1805 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1806 !(blk_mq_is_shared_tags(hctx->flags))) {
684b7324 1807 blk_mq_sched_mark_restart_hctx(hctx);
f906a6a0 1808
c27d53fb
BVA
1809 /*
1810 * It's possible that a tag was freed in the window between the
1811 * allocation failure and adding the hardware queue to the wait
1812 * queue.
1813 *
1814 * Don't clear RESTART here, someone else could have set it.
1815 * At most this will cost an extra queue run.
1816 */
8ab6bb9e 1817 return blk_mq_get_driver_tag(rq);
eb619fdb 1818 }
eb619fdb 1819
2278d69f 1820 wait = &hctx->dispatch_wait;
c27d53fb
BVA
1821 if (!list_empty_careful(&wait->entry))
1822 return false;
1823
98b99e94
KS
1824 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1825 sbq = &hctx->tags->breserved_tags;
1826 else
1827 sbq = &hctx->tags->bitmap_tags;
e8618575 1828 wq = &bt_wait_ptr(sbq, hctx)->wait;
5815839b
ML
1829
1830 spin_lock_irq(&wq->lock);
1831 spin_lock(&hctx->dispatch_wait_lock);
c27d53fb 1832 if (!list_empty(&wait->entry)) {
5815839b
ML
1833 spin_unlock(&hctx->dispatch_wait_lock);
1834 spin_unlock_irq(&wq->lock);
c27d53fb 1835 return false;
eb619fdb
JA
1836 }
1837
e8618575 1838 atomic_inc(&sbq->ws_active);
5815839b
ML
1839 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1840 __add_wait_queue(wq, wait);
c27d53fb 1841
5266caaf
ML
1842 /*
1843 * Add one explicit barrier since blk_mq_get_driver_tag() may
1844 * not imply barrier in case of failure.
1845 *
1846 * Order adding us to wait queue and allocating driver tag.
1847 *
1848 * The pair is the one implied in sbitmap_queue_wake_up() which
1849 * orders clearing sbitmap tag bits and waitqueue_active() in
1850 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1851 *
1852 * Otherwise, re-order of adding wait queue and getting driver tag
1853 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1854 * the waitqueue_active() may not observe us in wait queue.
1855 */
1856 smp_mb();
1857
da55f2cc 1858 /*
eb619fdb
JA
1859 * It's possible that a tag was freed in the window between the
1860 * allocation failure and adding the hardware queue to the wait
1861 * queue.
da55f2cc 1862 */
8ab6bb9e 1863 ret = blk_mq_get_driver_tag(rq);
c27d53fb 1864 if (!ret) {
5815839b
ML
1865 spin_unlock(&hctx->dispatch_wait_lock);
1866 spin_unlock_irq(&wq->lock);
c27d53fb 1867 return false;
eb619fdb 1868 }
c27d53fb
BVA
1869
1870 /*
1871 * We got a tag, remove ourselves from the wait queue to ensure
1872 * someone else gets the wakeup.
1873 */
c27d53fb 1874 list_del_init(&wait->entry);
e8618575 1875 atomic_dec(&sbq->ws_active);
5815839b
ML
1876 spin_unlock(&hctx->dispatch_wait_lock);
1877 spin_unlock_irq(&wq->lock);
c27d53fb
BVA
1878
1879 return true;
da55f2cc
OS
1880}
1881
6e768717
ML
1882#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1883#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1884/*
1885 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1886 * - EWMA is one simple way to compute running average value
1887 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1888 * - take 4 as factor for avoiding to get too small(0) result, and this
1889 * factor doesn't matter because EWMA decreases exponentially
1890 */
1891static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1892{
1893 unsigned int ewma;
1894
6e768717
ML
1895 ewma = hctx->dispatch_busy;
1896
1897 if (!ewma && !busy)
1898 return;
1899
1900 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1901 if (busy)
1902 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1903 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1904
1905 hctx->dispatch_busy = ewma;
1906}
1907
86ff7c2a
ML
1908#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1909
c92a4103
JT
1910static void blk_mq_handle_dev_resource(struct request *rq,
1911 struct list_head *list)
1912{
c92a4103
JT
1913 list_add(&rq->queuelist, list);
1914 __blk_mq_requeue_request(rq);
1915}
1916
75383524
ML
1917enum prep_dispatch {
1918 PREP_DISPATCH_OK,
1919 PREP_DISPATCH_NO_TAG,
1920 PREP_DISPATCH_NO_BUDGET,
1921};
1922
1923static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1924 bool need_budget)
1925{
1926 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2a5a24aa 1927 int budget_token = -1;
75383524 1928
2a5a24aa
ML
1929 if (need_budget) {
1930 budget_token = blk_mq_get_dispatch_budget(rq->q);
1931 if (budget_token < 0) {
1932 blk_mq_put_driver_tag(rq);
1933 return PREP_DISPATCH_NO_BUDGET;
1934 }
1935 blk_mq_set_rq_budget_token(rq, budget_token);
75383524
ML
1936 }
1937
1938 if (!blk_mq_get_driver_tag(rq)) {
1939 /*
1940 * The initial allocation attempt failed, so we need to
1941 * rerun the hardware queue when a tag is freed. The
1942 * waitqueue takes care of that. If the queue is run
1943 * before we add this entry back on the dispatch list,
1944 * we'll re-run it below.
1945 */
1946 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1fd40b5e
ML
1947 /*
1948 * All budgets not got from this function will be put
1949 * together during handling partial dispatch
1950 */
1951 if (need_budget)
2a5a24aa 1952 blk_mq_put_dispatch_budget(rq->q, budget_token);
75383524
ML
1953 return PREP_DISPATCH_NO_TAG;
1954 }
1955 }
1956
1957 return PREP_DISPATCH_OK;
1958}
1959
1fd40b5e
ML
1960/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1961static void blk_mq_release_budgets(struct request_queue *q,
2a5a24aa 1962 struct list_head *list)
1fd40b5e 1963{
2a5a24aa 1964 struct request *rq;
1fd40b5e 1965
2a5a24aa
ML
1966 list_for_each_entry(rq, list, queuelist) {
1967 int budget_token = blk_mq_get_rq_budget_token(rq);
1fd40b5e 1968
2a5a24aa
ML
1969 if (budget_token >= 0)
1970 blk_mq_put_dispatch_budget(q, budget_token);
1971 }
1fd40b5e
ML
1972}
1973
34c9f547
KS
1974/*
1975 * blk_mq_commit_rqs will notify driver using bd->last that there is no
1976 * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1977 * details)
1978 * Attention, we should explicitly call this in unusual cases:
1979 * 1) did not queue everything initially scheduled to queue
1980 * 2) the last attempt to queue a request failed
1981 */
1982static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1983 bool from_schedule)
1984{
1985 if (hctx->queue->mq_ops->commit_rqs && queued) {
1986 trace_block_unplug(hctx->queue, queued, !from_schedule);
1987 hctx->queue->mq_ops->commit_rqs(hctx);
1988 }
1989}
1990
1f57f8d4
JA
1991/*
1992 * Returns true if we did some work AND can potentially do more.
1993 */
445874e8 1994bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1fd40b5e 1995 unsigned int nr_budgets)
320ae51f 1996{
75383524 1997 enum prep_dispatch prep;
445874e8 1998 struct request_queue *q = hctx->queue;
f1ce99f7 1999 struct request *rq;
4ea58fe4 2000 int queued;
86ff7c2a 2001 blk_status_t ret = BLK_STS_OK;
9586e67b 2002 bool needs_resource = false;
320ae51f 2003
81380ca1
OS
2004 if (list_empty(list))
2005 return false;
2006
320ae51f
JA
2007 /*
2008 * Now process all the entries, sending them to the driver.
2009 */
4ea58fe4 2010 queued = 0;
81380ca1 2011 do {
74c45052 2012 struct blk_mq_queue_data bd;
320ae51f 2013
f04c3df3 2014 rq = list_first_entry(list, struct request, queuelist);
0bca799b 2015
445874e8 2016 WARN_ON_ONCE(hctx != rq->mq_hctx);
1fd40b5e 2017 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
75383524 2018 if (prep != PREP_DISPATCH_OK)
0bca799b 2019 break;
de148297 2020
320ae51f 2021 list_del_init(&rq->queuelist);
320ae51f 2022
74c45052 2023 bd.rq = rq;
f1ce99f7 2024 bd.last = list_empty(list);
74c45052 2025
1fd40b5e
ML
2026 /*
2027 * once the request is queued to lld, no need to cover the
2028 * budget any more
2029 */
2030 if (nr_budgets)
2031 nr_budgets--;
74c45052 2032 ret = q->mq_ops->queue_rq(hctx, &bd);
7bf13729
ML
2033 switch (ret) {
2034 case BLK_STS_OK:
2035 queued++;
320ae51f 2036 break;
7bf13729 2037 case BLK_STS_RESOURCE:
9586e67b
NA
2038 needs_resource = true;
2039 fallthrough;
7bf13729
ML
2040 case BLK_STS_DEV_RESOURCE:
2041 blk_mq_handle_dev_resource(rq, list);
2042 goto out;
7bf13729 2043 default:
e21ee5a6 2044 blk_mq_end_request(rq, ret);
320ae51f 2045 }
81380ca1 2046 } while (!list_empty(list));
7bf13729 2047out:
632bfb63 2048 /* If we didn't flush the entire list, we could have told the driver
2049 * there was more coming, but that turned out to be a lie.
2050 */
e4ef2e05
KS
2051 if (!list_empty(list) || ret != BLK_STS_OK)
2052 blk_mq_commit_rqs(hctx, queued, false);
2053
320ae51f
JA
2054 /*
2055 * Any items that need requeuing? Stuff them into hctx->dispatch,
2056 * that is where we will continue on next queue run.
2057 */
f04c3df3 2058 if (!list_empty(list)) {
86ff7c2a 2059 bool needs_restart;
75383524
ML
2060 /* For non-shared tags, the RESTART check will suffice */
2061 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
47df9ce9
KS
2062 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2063 blk_mq_is_shared_tags(hctx->flags));
86ff7c2a 2064
2a5a24aa
ML
2065 if (nr_budgets)
2066 blk_mq_release_budgets(q, list);
86ff7c2a 2067
320ae51f 2068 spin_lock(&hctx->lock);
01e99aec 2069 list_splice_tail_init(list, &hctx->dispatch);
320ae51f 2070 spin_unlock(&hctx->lock);
f04c3df3 2071
d7d8535f
ML
2072 /*
2073 * Order adding requests to hctx->dispatch and checking
2074 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2075 * in blk_mq_sched_restart(). Avoid restart code path to
2076 * miss the new added requests to hctx->dispatch, meantime
2077 * SCHED_RESTART is observed here.
2078 */
2079 smp_mb();
2080
9ba52e58 2081 /*
710c785f
BVA
2082 * If SCHED_RESTART was set by the caller of this function and
2083 * it is no longer set that means that it was cleared by another
2084 * thread and hence that a queue rerun is needed.
9ba52e58 2085 *
eb619fdb
JA
2086 * If 'no_tag' is set, that means that we failed getting
2087 * a driver tag with an I/O scheduler attached. If our dispatch
2088 * waitqueue is no longer active, ensure that we run the queue
2089 * AFTER adding our entries back to the list.
bd166ef1 2090 *
710c785f
BVA
2091 * If no I/O scheduler has been configured it is possible that
2092 * the hardware queue got stopped and restarted before requests
2093 * were pushed back onto the dispatch list. Rerun the queue to
2094 * avoid starvation. Notes:
2095 * - blk_mq_run_hw_queue() checks whether or not a queue has
2096 * been stopped before rerunning a queue.
2097 * - Some but not all block drivers stop a queue before
fc17b653 2098 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 2099 * and dm-rq.
86ff7c2a
ML
2100 *
2101 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2102 * bit is set, run queue after a delay to avoid IO stalls
ab3cee37 2103 * that could otherwise occur if the queue is idle. We'll do
9586e67b
NA
2104 * similar if we couldn't get budget or couldn't lock a zone
2105 * and SCHED_RESTART is set.
bd166ef1 2106 */
86ff7c2a 2107 needs_restart = blk_mq_sched_needs_restart(hctx);
9586e67b
NA
2108 if (prep == PREP_DISPATCH_NO_BUDGET)
2109 needs_resource = true;
86ff7c2a 2110 if (!needs_restart ||
eb619fdb 2111 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 2112 blk_mq_run_hw_queue(hctx, true);
6d5e8d21 2113 else if (needs_resource)
86ff7c2a 2114 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1f57f8d4 2115
6e768717 2116 blk_mq_update_dispatch_busy(hctx, true);
1f57f8d4 2117 return false;
4ea58fe4 2118 }
f04c3df3 2119
4ea58fe4
KS
2120 blk_mq_update_dispatch_busy(hctx, false);
2121 return true;
f04c3df3
JA
2122}
2123
f82ddf19
ML
2124static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2125{
2126 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2127
2128 if (cpu >= nr_cpu_ids)
2129 cpu = cpumask_first(hctx->cpumask);
2130 return cpu;
2131}
2132
a46c2702
ML
2133/*
2134 * ->next_cpu is always calculated from hctx->cpumask, so simply use
2135 * it for speeding up the check
2136 */
2137static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
2138{
2139 return hctx->next_cpu >= nr_cpu_ids;
2140}
2141
506e931f
JA
2142/*
2143 * It'd be great if the workqueue API had a way to pass
2144 * in a mask and had some smarts for more clever placement.
2145 * For now we just round-robin here, switching for every
2146 * BLK_MQ_CPU_WORK_BATCH queued items.
2147 */
2148static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2149{
7bed4595 2150 bool tried = false;
476f8c98 2151 int next_cpu = hctx->next_cpu;
7bed4595 2152
a46c2702
ML
2153 /* Switch to unbound if no allowable CPUs in this hctx */
2154 if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
b657d7e6 2155 return WORK_CPU_UNBOUND;
506e931f
JA
2156
2157 if (--hctx->next_cpu_batch <= 0) {
7bed4595 2158select_cpu:
476f8c98 2159 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
20e4d813 2160 cpu_online_mask);
506e931f 2161 if (next_cpu >= nr_cpu_ids)
f82ddf19 2162 next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
2163 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2164 }
2165
7bed4595
ML
2166 /*
2167 * Do unbound schedule if we can't find a online CPU for this hctx,
2168 * and it should only happen in the path of handling CPU DEAD.
2169 */
476f8c98 2170 if (!cpu_online(next_cpu)) {
7bed4595
ML
2171 if (!tried) {
2172 tried = true;
2173 goto select_cpu;
2174 }
2175
2176 /*
2177 * Make sure to re-select CPU next time once after CPUs
2178 * in hctx->cpumask become online again.
2179 */
476f8c98 2180 hctx->next_cpu = next_cpu;
7bed4595
ML
2181 hctx->next_cpu_batch = 1;
2182 return WORK_CPU_UNBOUND;
2183 }
476f8c98
ML
2184
2185 hctx->next_cpu = next_cpu;
2186 return next_cpu;
506e931f
JA
2187}
2188
105663f7 2189/**
1aa8d875 2190 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
105663f7 2191 * @hctx: Pointer to the hardware queue to run.
fa94ba8a 2192 * @msecs: Milliseconds of delay to wait before running the queue.
105663f7 2193 *
1aa8d875 2194 * Run a hardware queue asynchronously with a delay of @msecs.
105663f7 2195 */
1aa8d875 2196void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
320ae51f 2197{
5435c023 2198 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f 2199 return;
ae943d20
BVA
2200 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2201 msecs_to_jiffies(msecs));
7587a5ae 2202}
7587a5ae
BVA
2203EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2204
105663f7
AA
2205/**
2206 * blk_mq_run_hw_queue - Start to run a hardware queue.
2207 * @hctx: Pointer to the hardware queue to run.
2208 * @async: If we want to run the queue asynchronously.
2209 *
2210 * Check if the request queue is not in a quiesced state and if there are
2211 * pending requests to be sent. If this is true, run the queue to send requests
2212 * to hardware.
2213 */
626fb735 2214void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 2215{
24f5a90f
ML
2216 bool need_run;
2217
4d5bba5b
CH
2218 /*
2219 * We can't run the queue inline with interrupts disabled.
2220 */
2221 WARN_ON_ONCE(!async && in_interrupt());
2222
65a558f6
BVA
2223 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2224
24f5a90f
ML
2225 /*
2226 * When queue is quiesced, we may be switching io scheduler, or
2227 * updating nr_hw_queues, or other things, and we can't run queue
2228 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2229 *
2230 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2231 * quiesced.
2232 */
41adf531 2233 __blk_mq_run_dispatch_ops(hctx->queue, false,
2a904d00
ML
2234 need_run = !blk_queue_quiesced(hctx->queue) &&
2235 blk_mq_hctx_has_pending(hctx));
24f5a90f 2236
1aa8d875
CH
2237 if (!need_run)
2238 return;
2239
65a558f6 2240 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
1aa8d875
CH
2241 blk_mq_delay_run_hw_queue(hctx, 0);
2242 return;
2243 }
2244
4d5bba5b
CH
2245 blk_mq_run_dispatch_ops(hctx->queue,
2246 blk_mq_sched_dispatch_requests(hctx));
320ae51f 2247}
5b727272 2248EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 2249
b6e68ee8
JK
2250/*
2251 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2252 * scheduler.
2253 */
2254static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2255{
5d05426e 2256 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
b6e68ee8
JK
2257 /*
2258 * If the IO scheduler does not respect hardware queues when
2259 * dispatching, we just don't bother with multiple HW queues and
2260 * dispatch from hctx for the current CPU since running multiple queues
2261 * just causes lock contention inside the scheduler and pointless cache
2262 * bouncing.
2263 */
51ab80f0 2264 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
5d05426e 2265
b6e68ee8
JK
2266 if (!blk_mq_hctx_stopped(hctx))
2267 return hctx;
2268 return NULL;
2269}
2270
105663f7 2271/**
24f7bb88 2272 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
105663f7
AA
2273 * @q: Pointer to the request queue to run.
2274 * @async: If we want to run the queue asynchronously.
2275 */
b94ec296 2276void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f 2277{
b6e68ee8 2278 struct blk_mq_hw_ctx *hctx, *sq_hctx;
4f481208 2279 unsigned long i;
320ae51f 2280
b6e68ee8 2281 sq_hctx = NULL;
4d337ceb 2282 if (blk_queue_sq_sched(q))
b6e68ee8 2283 sq_hctx = blk_mq_get_sq_hctx(q);
320ae51f 2284 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 2285 if (blk_mq_hctx_stopped(hctx))
320ae51f 2286 continue;
b6e68ee8
JK
2287 /*
2288 * Dispatch from this hctx either if there's no hctx preferred
2289 * by IO scheduler or if it has requests that bypass the
2290 * scheduler.
2291 */
2292 if (!sq_hctx || sq_hctx == hctx ||
2293 !list_empty_careful(&hctx->dispatch))
2294 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
2295 }
2296}
b94ec296 2297EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 2298
b9151e7b
DA
2299/**
2300 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2301 * @q: Pointer to the request queue to run.
fa94ba8a 2302 * @msecs: Milliseconds of delay to wait before running the queues.
b9151e7b
DA
2303 */
2304void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2305{
b6e68ee8 2306 struct blk_mq_hw_ctx *hctx, *sq_hctx;
4f481208 2307 unsigned long i;
b9151e7b 2308
b6e68ee8 2309 sq_hctx = NULL;
4d337ceb 2310 if (blk_queue_sq_sched(q))
b6e68ee8 2311 sq_hctx = blk_mq_get_sq_hctx(q);
b9151e7b
DA
2312 queue_for_each_hw_ctx(q, hctx, i) {
2313 if (blk_mq_hctx_stopped(hctx))
2314 continue;
8f5fea65
DJ
2315 /*
2316 * If there is already a run_work pending, leave the
2317 * pending delay untouched. Otherwise, a hctx can stall
2318 * if another hctx is re-delaying the other's work
2319 * before the work executes.
2320 */
2321 if (delayed_work_pending(&hctx->run_work))
2322 continue;
b6e68ee8
JK
2323 /*
2324 * Dispatch from this hctx either if there's no hctx preferred
2325 * by IO scheduler or if it has requests that bypass the
2326 * scheduler.
2327 */
2328 if (!sq_hctx || sq_hctx == hctx ||
2329 !list_empty_careful(&hctx->dispatch))
2330 blk_mq_delay_run_hw_queue(hctx, msecs);
b9151e7b
DA
2331 }
2332}
2333EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2334
39a70c76
ML
2335/*
2336 * This function is often used for pausing .queue_rq() by driver when
2337 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 2338 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
2339 *
2340 * We do not guarantee that dispatch can be drained or blocked
2341 * after blk_mq_stop_hw_queue() returns. Please use
2342 * blk_mq_quiesce_queue() for that requirement.
2343 */
2719aa21
JA
2344void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2345{
641a9ed6 2346 cancel_delayed_work(&hctx->run_work);
280d45f6 2347
641a9ed6 2348 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 2349}
641a9ed6 2350EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 2351
39a70c76
ML
2352/*
2353 * This function is often used for pausing .queue_rq() by driver when
2354 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 2355 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
2356 *
2357 * We do not guarantee that dispatch can be drained or blocked
2358 * after blk_mq_stop_hw_queues() returns. Please use
2359 * blk_mq_quiesce_queue() for that requirement.
2360 */
2719aa21
JA
2361void blk_mq_stop_hw_queues(struct request_queue *q)
2362{
641a9ed6 2363 struct blk_mq_hw_ctx *hctx;
4f481208 2364 unsigned long i;
641a9ed6
ML
2365
2366 queue_for_each_hw_ctx(q, hctx, i)
2367 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
2368}
2369EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2370
320ae51f
JA
2371void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2372{
2373 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 2374
65a558f6 2375 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
320ae51f
JA
2376}
2377EXPORT_SYMBOL(blk_mq_start_hw_queue);
2378
2f268556
CH
2379void blk_mq_start_hw_queues(struct request_queue *q)
2380{
2381 struct blk_mq_hw_ctx *hctx;
4f481208 2382 unsigned long i;
2f268556
CH
2383
2384 queue_for_each_hw_ctx(q, hctx, i)
2385 blk_mq_start_hw_queue(hctx);
2386}
2387EXPORT_SYMBOL(blk_mq_start_hw_queues);
2388
ae911c5e
JA
2389void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2390{
2391 if (!blk_mq_hctx_stopped(hctx))
2392 return;
2393
2394 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2395 blk_mq_run_hw_queue(hctx, async);
2396}
2397EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2398
1b4a3258 2399void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
2400{
2401 struct blk_mq_hw_ctx *hctx;
4f481208 2402 unsigned long i;
320ae51f 2403
ae911c5e 2404 queue_for_each_hw_ctx(q, hctx, i)
65a558f6
BVA
2405 blk_mq_start_stopped_hw_queue(hctx, async ||
2406 (hctx->flags & BLK_MQ_F_BLOCKING));
320ae51f
JA
2407}
2408EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2409
70f4db63 2410static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f 2411{
c20a1a2c
CH
2412 struct blk_mq_hw_ctx *hctx =
2413 container_of(work, struct blk_mq_hw_ctx, run_work.work);
7b607814 2414
4d5bba5b
CH
2415 blk_mq_run_dispatch_ops(hctx->queue,
2416 blk_mq_sched_dispatch_requests(hctx));
320ae51f
JA
2417}
2418
105663f7
AA
2419/**
2420 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2421 * @rq: Pointer to request to be inserted.
2b597613 2422 * @flags: BLK_MQ_INSERT_*
105663f7 2423 *
157f377b
JA
2424 * Should only be used carefully, when the caller knows we want to
2425 * bypass a potential IO scheduler on the target device.
2426 */
360f2648 2427static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
157f377b 2428{
ea4f995e 2429 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
157f377b
JA
2430
2431 spin_lock(&hctx->lock);
2b597613 2432 if (flags & BLK_MQ_INSERT_AT_HEAD)
01e99aec
ML
2433 list_add(&rq->queuelist, &hctx->dispatch);
2434 else
2435 list_add_tail(&rq->queuelist, &hctx->dispatch);
157f377b 2436 spin_unlock(&hctx->lock);
157f377b
JA
2437}
2438
05a93117
CH
2439static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2440 struct blk_mq_ctx *ctx, struct list_head *list,
2441 bool run_queue_async)
320ae51f 2442{
3f0cedc7 2443 struct request *rq;
c16d6b5a 2444 enum hctx_type type = hctx->type;
3f0cedc7 2445
94aa228c
CH
2446 /*
2447 * Try to issue requests directly if the hw queue isn't busy to save an
2448 * extra enqueue & dequeue to the sw queue.
2449 */
2450 if (!hctx->dispatch_busy && !run_queue_async) {
2451 blk_mq_run_dispatch_ops(hctx->queue,
2452 blk_mq_try_issue_list_directly(hctx, list));
2453 if (list_empty(list))
2454 goto out;
2455 }
2456
320ae51f
JA
2457 /*
2458 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2459 * offline now
2460 */
3f0cedc7 2461 list_for_each_entry(rq, list, queuelist) {
e57690fe 2462 BUG_ON(rq->mq_ctx != ctx);
a54895fa 2463 trace_block_rq_insert(rq);
65a558f6
BVA
2464 if (rq->cmd_flags & REQ_NOWAIT)
2465 run_queue_async = true;
320ae51f 2466 }
3f0cedc7
ML
2467
2468 spin_lock(&ctx->lock);
c16d6b5a 2469 list_splice_tail_init(list, &ctx->rq_lists[type]);
cfd0c552 2470 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 2471 spin_unlock(&ctx->lock);
94aa228c
CH
2472out:
2473 blk_mq_run_hw_queue(hctx, run_queue_async);
320ae51f
JA
2474}
2475
710fa378 2476static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2bd215df
CH
2477{
2478 struct request_queue *q = rq->q;
2bd215df
CH
2479 struct blk_mq_ctx *ctx = rq->mq_ctx;
2480 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2481
53548d2a
CH
2482 if (blk_rq_is_passthrough(rq)) {
2483 /*
2484 * Passthrough request have to be added to hctx->dispatch
2485 * directly. The device may be in a situation where it can't
2486 * handle FS request, and always returns BLK_STS_RESOURCE for
2487 * them, which gets them added to hctx->dispatch.
2488 *
2489 * If a passthrough request is required to unblock the queues,
2490 * and it is added to the scheduler queue, there is no chance to
2491 * dispatch it given we prioritize requests in hctx->dispatch.
2492 */
2b597613 2493 blk_mq_request_bypass_insert(rq, flags);
be4c4278 2494 } else if (req_op(rq) == REQ_OP_FLUSH) {
2bd215df
CH
2495 /*
2496 * Firstly normal IO request is inserted to scheduler queue or
2497 * sw queue, meantime we add flush request to dispatch queue(
2498 * hctx->dispatch) directly and there is at most one in-flight
2499 * flush request for each hw queue, so it doesn't matter to add
2500 * flush request to tail or front of the dispatch queue.
2501 *
2502 * Secondly in case of NCQ, flush request belongs to non-NCQ
2503 * command, and queueing it will fail when there is any
2504 * in-flight normal IO request(NCQ command). When adding flush
2505 * rq to the front of hctx->dispatch, it is easier to introduce
2506 * extra time to flush rq's latency because of S_SCHED_RESTART
2507 * compared with adding to the tail of dispatch queue, then
2508 * chance of flush merge is increased, and less flush requests
2509 * will be issued to controller. It is observed that ~10% time
2510 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2511 * drive when adding flush rq to the front of hctx->dispatch.
2512 *
2513 * Simply queue flush rq to the front of hctx->dispatch so that
2514 * intensive flush workloads can benefit in case of NCQ HW.
2515 */
2b597613 2516 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
53548d2a 2517 } else if (q->elevator) {
2bd215df
CH
2518 LIST_HEAD(list);
2519
53548d2a
CH
2520 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2521
2bd215df 2522 list_add(&rq->queuelist, &list);
93fffe16 2523 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2bd215df 2524 } else {
4ec5c055
CH
2525 trace_block_rq_insert(rq);
2526
2bd215df 2527 spin_lock(&ctx->lock);
710fa378 2528 if (flags & BLK_MQ_INSERT_AT_HEAD)
4ec5c055
CH
2529 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2530 else
2531 list_add_tail(&rq->queuelist,
2532 &ctx->rq_lists[hctx->type]);
a88db1e0 2533 blk_mq_hctx_mark_pending(hctx, ctx);
2bd215df
CH
2534 spin_unlock(&ctx->lock);
2535 }
320ae51f
JA
2536}
2537
14ccb66b
CH
2538static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2539 unsigned int nr_segs)
320ae51f 2540{
93f221ae
EB
2541 int err;
2542
f924cdde
CH
2543 if (bio->bi_opf & REQ_RAHEAD)
2544 rq->cmd_flags |= REQ_FAILFAST_MASK;
2545
2546 rq->__sector = bio->bi_iter.bi_sector;
44981351 2547 rq->write_hint = bio->bi_write_hint;
14ccb66b 2548 blk_rq_bio_prep(rq, bio, nr_segs);
93f221ae
EB
2549
2550 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2551 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2552 WARN_ON_ONCE(err);
4b570521 2553
b5af37ab 2554 blk_account_io_start(rq);
320ae51f
JA
2555}
2556
0f95549c 2557static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
3e08773c 2558 struct request *rq, bool last)
f984df1f 2559{
f984df1f 2560 struct request_queue *q = rq->q;
f984df1f
SL
2561 struct blk_mq_queue_data bd = {
2562 .rq = rq,
be94f058 2563 .last = last,
f984df1f 2564 };
f06345ad 2565 blk_status_t ret;
0f95549c 2566
0f95549c
MS
2567 /*
2568 * For OK queue, we are done. For error, caller may kill it.
2569 * Any other error (busy), just add it to our list as we
2570 * previously would have done.
2571 */
2572 ret = q->mq_ops->queue_rq(hctx, &bd);
2573 switch (ret) {
2574 case BLK_STS_OK:
6ce3dd6e 2575 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
2576 break;
2577 case BLK_STS_RESOURCE:
86ff7c2a 2578 case BLK_STS_DEV_RESOURCE:
6ce3dd6e 2579 blk_mq_update_dispatch_busy(hctx, true);
0f95549c
MS
2580 __blk_mq_requeue_request(rq);
2581 break;
2582 default:
6ce3dd6e 2583 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
2584 break;
2585 }
2586
2587 return ret;
2588}
2589
2b71b877 2590static bool blk_mq_get_budget_and_tag(struct request *rq)
0f95549c 2591{
2a5a24aa 2592 int budget_token;
d964f04a 2593
2b71b877 2594 budget_token = blk_mq_get_dispatch_budget(rq->q);
2a5a24aa 2595 if (budget_token < 0)
2b71b877 2596 return false;
2a5a24aa 2597 blk_mq_set_rq_budget_token(rq, budget_token);
8ab6bb9e 2598 if (!blk_mq_get_driver_tag(rq)) {
2b71b877
CH
2599 blk_mq_put_dispatch_budget(rq->q, budget_token);
2600 return false;
88022d72 2601 }
2b71b877 2602 return true;
fd9c40f6
BVA
2603}
2604
105663f7
AA
2605/**
2606 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2607 * @hctx: Pointer of the associated hardware queue.
2608 * @rq: Pointer to request to be sent.
105663f7
AA
2609 *
2610 * If the device has enough resources to accept a new request now, send the
2611 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2612 * we can try send it another time in the future. Requests inserted at this
2613 * queue have higher priority.
2614 */
fd9c40f6 2615static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
3e08773c 2616 struct request *rq)
fd9c40f6 2617{
e1f44ac0
CH
2618 blk_status_t ret;
2619
2620 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
710fa378 2621 blk_mq_insert_request(rq, 0);
e1f44ac0
CH
2622 return;
2623 }
2624
dd6216bb 2625 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
710fa378 2626 blk_mq_insert_request(rq, 0);
65a558f6 2627 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
e1f44ac0
CH
2628 return;
2629 }
fd9c40f6 2630
e1f44ac0
CH
2631 ret = __blk_mq_issue_directly(hctx, rq, true);
2632 switch (ret) {
2633 case BLK_STS_OK:
2634 break;
2635 case BLK_STS_RESOURCE:
2636 case BLK_STS_DEV_RESOURCE:
2b597613 2637 blk_mq_request_bypass_insert(rq, 0);
2394395c 2638 blk_mq_run_hw_queue(hctx, false);
e1f44ac0
CH
2639 break;
2640 default:
fd9c40f6 2641 blk_mq_end_request(rq, ret);
e1f44ac0
CH
2642 break;
2643 }
fd9c40f6
BVA
2644}
2645
06c8c691 2646static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
fd9c40f6 2647{
e1f44ac0
CH
2648 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2649
2650 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
710fa378 2651 blk_mq_insert_request(rq, 0);
e1f44ac0
CH
2652 return BLK_STS_OK;
2653 }
2654
2655 if (!blk_mq_get_budget_and_tag(rq))
2656 return BLK_STS_RESOURCE;
2657 return __blk_mq_issue_directly(hctx, rq, last);
5eb6126e
CH
2658}
2659
3e368fb0 2660static void blk_mq_plug_issue_direct(struct blk_plug *plug)
b84c5b50
CH
2661{
2662 struct blk_mq_hw_ctx *hctx = NULL;
2663 struct request *rq;
2664 int queued = 0;
0d617a83 2665 blk_status_t ret = BLK_STS_OK;
b84c5b50
CH
2666
2667 while ((rq = rq_list_pop(&plug->mq_list))) {
2668 bool last = rq_list_empty(plug->mq_list);
b84c5b50
CH
2669
2670 if (hctx != rq->mq_hctx) {
34c9f547
KS
2671 if (hctx) {
2672 blk_mq_commit_rqs(hctx, queued, false);
2673 queued = 0;
2674 }
b84c5b50
CH
2675 hctx = rq->mq_hctx;
2676 }
2677
2678 ret = blk_mq_request_issue_directly(rq, last);
2679 switch (ret) {
2680 case BLK_STS_OK:
2681 queued++;
2682 break;
2683 case BLK_STS_RESOURCE:
2684 case BLK_STS_DEV_RESOURCE:
2b597613 2685 blk_mq_request_bypass_insert(rq, 0);
2394395c 2686 blk_mq_run_hw_queue(hctx, false);
0d617a83 2687 goto out;
b84c5b50
CH
2688 default:
2689 blk_mq_end_request(rq, ret);
b84c5b50
CH
2690 break;
2691 }
2692 }
2693
0d617a83
KS
2694out:
2695 if (ret != BLK_STS_OK)
34c9f547 2696 blk_mq_commit_rqs(hctx, queued, false);
b84c5b50
CH
2697}
2698
518579a9
KB
2699static void __blk_mq_flush_plug_list(struct request_queue *q,
2700 struct blk_plug *plug)
2701{
2702 if (blk_queue_quiesced(q))
2703 return;
2704 q->mq_ops->queue_rqs(&plug->mq_list);
2705}
2706
26fed4ac
JA
2707static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2708{
2709 struct blk_mq_hw_ctx *this_hctx = NULL;
2710 struct blk_mq_ctx *this_ctx = NULL;
2711 struct request *requeue_list = NULL;
34e0a279 2712 struct request **requeue_lastp = &requeue_list;
26fed4ac 2713 unsigned int depth = 0;
d97217e7 2714 bool is_passthrough = false;
26fed4ac
JA
2715 LIST_HEAD(list);
2716
2717 do {
2718 struct request *rq = rq_list_pop(&plug->mq_list);
2719
2720 if (!this_hctx) {
2721 this_hctx = rq->mq_hctx;
2722 this_ctx = rq->mq_ctx;
d97217e7
ML
2723 is_passthrough = blk_rq_is_passthrough(rq);
2724 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2725 is_passthrough != blk_rq_is_passthrough(rq)) {
34e0a279 2726 rq_list_add_tail(&requeue_lastp, rq);
26fed4ac
JA
2727 continue;
2728 }
34e0a279 2729 list_add(&rq->queuelist, &list);
26fed4ac
JA
2730 depth++;
2731 } while (!rq_list_empty(plug->mq_list));
2732
2733 plug->mq_list = requeue_list;
2734 trace_block_unplug(this_hctx->queue, depth, !from_sched);
05a93117
CH
2735
2736 percpu_ref_get(&this_hctx->queue->q_usage_counter);
d97217e7 2737 /* passthrough requests should never be issued to the I/O scheduler */
2293cae7
ML
2738 if (is_passthrough) {
2739 spin_lock(&this_hctx->lock);
2740 list_splice_tail_init(&list, &this_hctx->dispatch);
2741 spin_unlock(&this_hctx->lock);
2742 blk_mq_run_hw_queue(this_hctx, from_sched);
2743 } else if (this_hctx->queue->elevator) {
05a93117 2744 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
93fffe16 2745 &list, 0);
05a93117
CH
2746 blk_mq_run_hw_queue(this_hctx, from_sched);
2747 } else {
2748 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2749 }
2750 percpu_ref_put(&this_hctx->queue->q_usage_counter);
26fed4ac
JA
2751}
2752
b84c5b50
CH
2753void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2754{
3c67d44d 2755 struct request *rq;
acc8c0a9 2756 unsigned int depth;
b84c5b50 2757
70904263
RL
2758 /*
2759 * We may have been called recursively midway through handling
2760 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2761 * To avoid mq_list changing under our feet, clear rq_count early and
2762 * bail out specifically if rq_count is 0 rather than checking
2763 * whether the mq_list is empty.
2764 */
2765 if (plug->rq_count == 0)
b84c5b50 2766 return;
acc8c0a9 2767 depth = plug->rq_count;
b84c5b50
CH
2768 plug->rq_count = 0;
2769
2770 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
3c67d44d
JA
2771 struct request_queue *q;
2772
2773 rq = rq_list_peek(&plug->mq_list);
2774 q = rq->q;
acc8c0a9 2775 trace_block_unplug(q, depth, true);
3c67d44d
JA
2776
2777 /*
2778 * Peek first request and see if we have a ->queue_rqs() hook.
2779 * If we do, we can dispatch the whole plug list in one go. We
2780 * already know at this point that all requests belong to the
2781 * same queue, caller must ensure that's the case.
3c67d44d 2782 */
434097ee 2783 if (q->mq_ops->queue_rqs) {
3c67d44d 2784 blk_mq_run_dispatch_ops(q,
518579a9 2785 __blk_mq_flush_plug_list(q, plug));
3c67d44d
JA
2786 if (rq_list_empty(plug->mq_list))
2787 return;
2788 }
73f3760e
ML
2789
2790 blk_mq_run_dispatch_ops(q,
3e368fb0 2791 blk_mq_plug_issue_direct(plug));
b84c5b50
CH
2792 if (rq_list_empty(plug->mq_list))
2793 return;
2794 }
2795
b84c5b50 2796 do {
26fed4ac 2797 blk_mq_dispatch_plug_list(plug, from_schedule);
b84c5b50 2798 } while (!rq_list_empty(plug->mq_list));
b84c5b50
CH
2799}
2800
94aa228c 2801static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
6ce3dd6e
ML
2802 struct list_head *list)
2803{
536167d4 2804 int queued = 0;
984ce0a7 2805 blk_status_t ret = BLK_STS_OK;
536167d4 2806
6ce3dd6e 2807 while (!list_empty(list)) {
6ce3dd6e
ML
2808 struct request *rq = list_first_entry(list, struct request,
2809 queuelist);
2810
2811 list_del_init(&rq->queuelist);
fd9c40f6 2812 ret = blk_mq_request_issue_directly(rq, list_empty(list));
27e8b2bb
KS
2813 switch (ret) {
2814 case BLK_STS_OK:
536167d4 2815 queued++;
27e8b2bb
KS
2816 break;
2817 case BLK_STS_RESOURCE:
2818 case BLK_STS_DEV_RESOURCE:
2b597613 2819 blk_mq_request_bypass_insert(rq, 0);
2394395c
CH
2820 if (list_empty(list))
2821 blk_mq_run_hw_queue(hctx, false);
27e8b2bb
KS
2822 goto out;
2823 default:
2824 blk_mq_end_request(rq, ret);
2825 break;
2826 }
6ce3dd6e 2827 }
d666ba98 2828
27e8b2bb 2829out:
984ce0a7
KS
2830 if (ret != BLK_STS_OK)
2831 blk_mq_commit_rqs(hctx, queued, false);
6ce3dd6e
ML
2832}
2833
b131f201 2834static bool blk_mq_attempt_bio_merge(struct request_queue *q,
0c5bcc92 2835 struct bio *bio, unsigned int nr_segs)
900e0807
JA
2836{
2837 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
0c5bcc92 2838 if (blk_attempt_plug_merge(q, bio, nr_segs))
900e0807
JA
2839 return true;
2840 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2841 return true;
2842 }
2843 return false;
2844}
2845
71539717
JA
2846static struct request *blk_mq_get_new_requests(struct request_queue *q,
2847 struct blk_plug *plug,
0a5aa8d1
SK
2848 struct bio *bio,
2849 unsigned int nsegs)
71539717
JA
2850{
2851 struct blk_mq_alloc_data data = {
2852 .q = q,
2853 .nr_tags = 1,
9d497e29 2854 .cmd_flags = bio->bi_opf,
71539717
JA
2855 };
2856 struct request *rq;
2857
0a5aa8d1
SK
2858 rq_qos_throttle(q, bio);
2859
71539717
JA
2860 if (plug) {
2861 data.nr_tags = plug->nr_ios;
2862 plug->nr_ios = 1;
2863 data.cached_rq = &plug->cached_rq;
2864 }
2865
2866 rq = __blk_mq_alloc_requests(&data);
373b5416
JA
2867 if (rq)
2868 return rq;
71539717
JA
2869 rq_qos_cleanup(q, bio);
2870 if (bio->bi_opf & REQ_NOWAIT)
2871 bio_wouldblock_error(bio);
2872 return NULL;
2873}
2874
309ce674 2875/*
337e89fe 2876 * Check if there is a suitable cached request and return it.
309ce674 2877 */
337e89fe
CH
2878static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
2879 struct request_queue *q, blk_opf_t opf)
71539717 2880{
337e89fe
CH
2881 enum hctx_type type = blk_mq_get_hctx_type(opf);
2882 struct request *rq;
71539717 2883
337e89fe
CH
2884 if (!plug)
2885 return NULL;
2886 rq = rq_list_peek(&plug->cached_rq);
2887 if (!rq || rq->q != q)
2888 return NULL;
2889 if (type != rq->mq_hctx->type &&
2890 (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
2891 return NULL;
2892 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
2893 return NULL;
2894 return rq;
2895}
0a5aa8d1 2896
337e89fe
CH
2897static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
2898 struct bio *bio)
2899{
2900 WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
5b13bc8a 2901
2645672f
JA
2902 /*
2903 * If any qos ->throttle() end up blocking, we will have flushed the
2904 * plug and hence killed the cached_rq list as well. Pop this entry
2905 * before we throttle.
2906 */
5b13bc8a 2907 plug->cached_rq = rq_list_next(rq);
b0077e26 2908 rq_qos_throttle(rq->q, bio);
2645672f 2909
5c17f45e 2910 blk_mq_rq_time_init(rq, 0);
b0077e26 2911 rq->cmd_flags = bio->bi_opf;
5b13bc8a 2912 INIT_LIST_HEAD(&rq->queuelist);
71539717
JA
2913}
2914
0676c434
ML
2915static bool bio_unaligned(const struct bio *bio, struct request_queue *q)
2916{
2917 unsigned int bs_mask = queue_logical_block_size(q) - 1;
2918
2919 /* .bi_sector of any zero sized bio need to be initialized */
2920 if ((bio->bi_iter.bi_size & bs_mask) ||
2921 ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask))
2922 return true;
2923 return false;
2924}
2925
105663f7 2926/**
c62b37d9 2927 * blk_mq_submit_bio - Create and send a request to block device.
105663f7
AA
2928 * @bio: Bio pointer.
2929 *
2930 * Builds up a request structure from @q and @bio and send to the device. The
2931 * request may not be queued directly to hardware if:
2932 * * This request can be merged with another one
2933 * * We want to place request at plug queue for possible future merging
2934 * * There is an IO scheduler active at this queue
2935 *
2936 * It will not queue the request if there is an error with the bio, or at the
2937 * request creation.
105663f7 2938 */
3e08773c 2939void blk_mq_submit_bio(struct bio *bio)
07068d5b 2940{
ed6cddef 2941 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
99a9476b 2942 struct blk_plug *plug = current->plug;
ef295ecf 2943 const int is_sync = op_is_sync(bio->bi_opf);
f0dbe6e8 2944 struct blk_mq_hw_ctx *hctx;
b35243a4 2945 unsigned int nr_segs;
72e84e90 2946 struct request *rq;
a892c8d5 2947 blk_status_t ret;
07068d5b 2948
dd291d77
DLM
2949 /*
2950 * If the plug has a cached request for this queue, try to use it.
2951 */
2952 rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
2953
2954 /*
2955 * A BIO that was released from a zone write plug has already been
2956 * through the preparation in this function, already holds a reference
2957 * on the queue usage counter, and is the only write BIO in-flight for
2958 * the target zone. Go straight to preparing a request for it.
2959 */
2960 if (bio_zone_write_plugging(bio)) {
2961 nr_segs = bio->__bi_nr_segments;
2962 if (rq)
2963 blk_queue_exit(q);
2964 goto new_request;
2965 }
2966
51d798cd 2967 bio = blk_queue_bounce(bio, q);
9c6227e0 2968
72e84e90 2969 /*
72e84e90
CH
2970 * The cached request already holds a q_usage_counter reference and we
2971 * don't have to acquire a new one if we use it.
2972 */
72e84e90 2973 if (!rq) {
b0077e26 2974 if (unlikely(bio_queue_enter(bio)))
5b13bc8a 2975 return;
b0077e26
CH
2976 }
2977
0676c434
ML
2978 /*
2979 * Device reconfiguration may change logical block size, so alignment
2980 * check has to be done with queue usage counter held
2981 */
2982 if (unlikely(bio_unaligned(bio, q))) {
2983 bio_io_error(bio);
2984 goto queue_exit;
2985 }
2986
b35243a4
CH
2987 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2988 if (!bio)
2989 goto queue_exit;
2990
337e89fe
CH
2991 if (!bio_integrity_prep(bio))
2992 goto queue_exit;
b0077e26 2993
0f299da5
CH
2994 if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2995 goto queue_exit;
2996
dd291d77
DLM
2997 if (blk_queue_is_zoned(q) && blk_zone_plug_bio(bio, nr_segs))
2998 goto queue_exit;
2999
3000new_request:
72e84e90
CH
3001 if (!rq) {
3002 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3003 if (unlikely(!rq))
3004 goto queue_exit;
3005 } else {
3006 blk_mq_use_cached_rq(rq, plug, bio);
5b13bc8a 3007 }
87760e5e 3008
e8a676d6 3009 trace_block_getrq(bio);
d6f1dda2 3010
c1c80384 3011 rq_qos_track(q, rq, bio);
07068d5b 3012
970d168d
BVA
3013 blk_mq_bio_to_request(rq, bio, nr_segs);
3014
9cd1e566 3015 ret = blk_crypto_rq_get_keyslot(rq);
a892c8d5
ST
3016 if (ret != BLK_STS_OK) {
3017 bio->bi_status = ret;
3018 bio_endio(bio);
3019 blk_mq_free_request(rq);
3e08773c 3020 return;
a892c8d5
ST
3021 }
3022
096bc7ea
DLM
3023 if (bio_zone_write_plugging(bio))
3024 blk_zone_write_plug_init_request(rq);
3025
360f2648 3026 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
d92ca9d8
CH
3027 return;
3028
f0dbe6e8 3029 if (plug) {
ce5b009c 3030 blk_add_rq_to_plug(plug, rq);
f0dbe6e8
CH
3031 return;
3032 }
3033
3034 hctx = rq->mq_hctx;
dd6216bb 3035 if ((rq->rq_flags & RQF_USE_SCHED) ||
f0dbe6e8 3036 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
710fa378 3037 blk_mq_insert_request(rq, 0);
f0dbe6e8
CH
3038 blk_mq_run_hw_queue(hctx, true);
3039 } else {
3040 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3041 }
0f299da5
CH
3042 return;
3043
3044queue_exit:
72e84e90
CH
3045 /*
3046 * Don't drop the queue reference if we were trying to use a cached
3047 * request and thus didn't acquire one.
3048 */
3049 if (!rq)
3050 blk_queue_exit(q);
320ae51f
JA
3051}
3052
248c7933 3053#ifdef CONFIG_BLK_MQ_STACKING
06c8c691 3054/**
a5efda3c 3055 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
a5efda3c 3056 * @rq: the request being queued
06c8c691 3057 */
28db4711 3058blk_status_t blk_insert_cloned_request(struct request *rq)
06c8c691 3059{
28db4711 3060 struct request_queue *q = rq->q;
8d1dfd51 3061 unsigned int max_sectors = blk_queue_get_max_sectors(rq);
49d24398 3062 unsigned int max_segments = blk_rq_get_max_segments(rq);
a5efda3c 3063 blk_status_t ret;
06c8c691
CH
3064
3065 if (blk_rq_sectors(rq) > max_sectors) {
3066 /*
3067 * SCSI device does not have a good way to return if
3068 * Write Same/Zero is actually supported. If a device rejects
3069 * a non-read/write command (discard, write same,etc.) the
3070 * low-level device driver will set the relevant queue limit to
3071 * 0 to prevent blk-lib from issuing more of the offending
3072 * operations. Commands queued prior to the queue limit being
3073 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3074 * errors being propagated to upper layers.
3075 */
3076 if (max_sectors == 0)
3077 return BLK_STS_NOTSUPP;
3078
3079 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3080 __func__, blk_rq_sectors(rq), max_sectors);
3081 return BLK_STS_IOERR;
3082 }
3083
3084 /*
3085 * The queue settings related to segment counting may differ from the
3086 * original queue.
3087 */
3088 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
49d24398
US
3089 if (rq->nr_phys_segments > max_segments) {
3090 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3091 __func__, rq->nr_phys_segments, max_segments);
06c8c691
CH
3092 return BLK_STS_IOERR;
3093 }
3094
28db4711 3095 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
06c8c691
CH
3096 return BLK_STS_IOERR;
3097
5b8562f0
EB
3098 ret = blk_crypto_rq_get_keyslot(rq);
3099 if (ret != BLK_STS_OK)
3100 return ret;
06c8c691
CH
3101
3102 blk_account_io_start(rq);
3103
3104 /*
3105 * Since we have a scheduler attached on the top device,
3106 * bypass a potential scheduler on the bottom device for
3107 * insert.
3108 */
28db4711 3109 blk_mq_run_dispatch_ops(q,
4cafe86c 3110 ret = blk_mq_request_issue_directly(rq, true));
592ee119 3111 if (ret)
08420cf7 3112 blk_account_io_done(rq, blk_time_get_ns());
4cafe86c 3113 return ret;
06c8c691
CH
3114}
3115EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3116
3117/**
3118 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3119 * @rq: the clone request to be cleaned up
3120 *
3121 * Description:
3122 * Free all bios in @rq for a cloned request.
3123 */
3124void blk_rq_unprep_clone(struct request *rq)
3125{
3126 struct bio *bio;
3127
3128 while ((bio = rq->bio) != NULL) {
3129 rq->bio = bio->bi_next;
3130
3131 bio_put(bio);
3132 }
3133}
3134EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3135
3136/**
3137 * blk_rq_prep_clone - Helper function to setup clone request
3138 * @rq: the request to be setup
3139 * @rq_src: original request to be cloned
3140 * @bs: bio_set that bios for clone are allocated from
3141 * @gfp_mask: memory allocation mask for bio
3142 * @bio_ctr: setup function to be called for each clone bio.
3143 * Returns %0 for success, non %0 for failure.
3144 * @data: private data to be passed to @bio_ctr
3145 *
3146 * Description:
3147 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3148 * Also, pages which the original bios are pointing to are not copied
3149 * and the cloned bios just point same pages.
3150 * So cloned bios must be completed before original bios, which means
3151 * the caller must complete @rq before @rq_src.
3152 */
3153int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3154 struct bio_set *bs, gfp_t gfp_mask,
3155 int (*bio_ctr)(struct bio *, struct bio *, void *),
3156 void *data)
3157{
3158 struct bio *bio, *bio_src;
3159
3160 if (!bs)
3161 bs = &fs_bio_set;
3162
3163 __rq_for_each_bio(bio_src, rq_src) {
abfc426d
CH
3164 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3165 bs);
06c8c691
CH
3166 if (!bio)
3167 goto free_and_out;
3168
3169 if (bio_ctr && bio_ctr(bio, bio_src, data))
3170 goto free_and_out;
3171
3172 if (rq->bio) {
3173 rq->biotail->bi_next = bio;
3174 rq->biotail = bio;
3175 } else {
3176 rq->bio = rq->biotail = bio;
3177 }
3178 bio = NULL;
3179 }
3180
3181 /* Copy attributes of the original request to the clone request. */
3182 rq->__sector = blk_rq_pos(rq_src);
3183 rq->__data_len = blk_rq_bytes(rq_src);
3184 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3185 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3186 rq->special_vec = rq_src->special_vec;
3187 }
3188 rq->nr_phys_segments = rq_src->nr_phys_segments;
3189 rq->ioprio = rq_src->ioprio;
44981351 3190 rq->write_hint = rq_src->write_hint;
06c8c691
CH
3191
3192 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3193 goto free_and_out;
3194
3195 return 0;
3196
3197free_and_out:
3198 if (bio)
3199 bio_put(bio);
3200 blk_rq_unprep_clone(rq);
3201
3202 return -ENOMEM;
3203}
3204EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
248c7933 3205#endif /* CONFIG_BLK_MQ_STACKING */
06c8c691 3206
f2b8f3ce
CH
3207/*
3208 * Steal bios from a request and add them to a bio list.
3209 * The request must not have been partially completed before.
3210 */
3211void blk_steal_bios(struct bio_list *list, struct request *rq)
3212{
3213 if (rq->bio) {
3214 if (list->tail)
3215 list->tail->bi_next = rq->bio;
3216 else
3217 list->head = rq->bio;
3218 list->tail = rq->biotail;
3219
3220 rq->bio = NULL;
3221 rq->biotail = NULL;
3222 }
3223
3224 rq->__data_len = 0;
3225}
3226EXPORT_SYMBOL_GPL(blk_steal_bios);
3227
bd63141d
ML
3228static size_t order_to_size(unsigned int order)
3229{
3230 return (size_t)PAGE_SIZE << order;
3231}
3232
3233/* called before freeing request pool in @tags */
f32e4eaf
JG
3234static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3235 struct blk_mq_tags *tags)
bd63141d 3236{
bd63141d
ML
3237 struct page *page;
3238 unsigned long flags;
3239
76dd2980
YK
3240 /*
3241 * There is no need to clear mapping if driver tags is not initialized
3242 * or the mapping belongs to the driver tags.
3243 */
3244 if (!drv_tags || drv_tags == tags)
4f245d5b
JG
3245 return;
3246
bd63141d
ML
3247 list_for_each_entry(page, &tags->page_list, lru) {
3248 unsigned long start = (unsigned long)page_address(page);
3249 unsigned long end = start + order_to_size(page->private);
3250 int i;
3251
f32e4eaf 3252 for (i = 0; i < drv_tags->nr_tags; i++) {
bd63141d
ML
3253 struct request *rq = drv_tags->rqs[i];
3254 unsigned long rq_addr = (unsigned long)rq;
3255
3256 if (rq_addr >= start && rq_addr < end) {
0a467d0f 3257 WARN_ON_ONCE(req_ref_read(rq) != 0);
bd63141d
ML
3258 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3259 }
3260 }
3261 }
3262
3263 /*
3264 * Wait until all pending iteration is done.
3265 *
3266 * Request reference is cleared and it is guaranteed to be observed
3267 * after the ->lock is released.
3268 */
3269 spin_lock_irqsave(&drv_tags->lock, flags);
3270 spin_unlock_irqrestore(&drv_tags->lock, flags);
3271}
3272
cc71a6f4
JA
3273void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3274 unsigned int hctx_idx)
95363efd 3275{
f32e4eaf 3276 struct blk_mq_tags *drv_tags;
e9b267d9 3277 struct page *page;
320ae51f 3278
e02657ea
ML
3279 if (list_empty(&tags->page_list))
3280 return;
3281
079a2e3e
JG
3282 if (blk_mq_is_shared_tags(set->flags))
3283 drv_tags = set->shared_tags;
e155b0c2
JG
3284 else
3285 drv_tags = set->tags[hctx_idx];
f32e4eaf 3286
65de57bb 3287 if (tags->static_rqs && set->ops->exit_request) {
e9b267d9 3288 int i;
320ae51f 3289
24d2f903 3290 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
3291 struct request *rq = tags->static_rqs[i];
3292
3293 if (!rq)
e9b267d9 3294 continue;
d6296d39 3295 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 3296 tags->static_rqs[i] = NULL;
e9b267d9 3297 }
320ae51f 3298 }
320ae51f 3299
f32e4eaf 3300 blk_mq_clear_rq_mapping(drv_tags, tags);
bd63141d 3301
24d2f903
CH
3302 while (!list_empty(&tags->page_list)) {
3303 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 3304 list_del_init(&page->lru);
f75782e4
CM
3305 /*
3306 * Remove kmemleak object previously allocated in
273938bf 3307 * blk_mq_alloc_rqs().
f75782e4
CM
3308 */
3309 kmemleak_free(page_address(page));
320ae51f
JA
3310 __free_pages(page, page->private);
3311 }
cc71a6f4 3312}
320ae51f 3313
e155b0c2 3314void blk_mq_free_rq_map(struct blk_mq_tags *tags)
cc71a6f4 3315{
24d2f903 3316 kfree(tags->rqs);
cc71a6f4 3317 tags->rqs = NULL;
2af8cbe3
JA
3318 kfree(tags->static_rqs);
3319 tags->static_rqs = NULL;
320ae51f 3320
e155b0c2 3321 blk_mq_free_tags(tags);
320ae51f
JA
3322}
3323
4d805131
ML
3324static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3325 unsigned int hctx_idx)
3326{
3327 int i;
3328
3329 for (i = 0; i < set->nr_maps; i++) {
3330 unsigned int start = set->map[i].queue_offset;
3331 unsigned int end = start + set->map[i].nr_queues;
3332
3333 if (hctx_idx >= start && hctx_idx < end)
3334 break;
3335 }
3336
3337 if (i >= set->nr_maps)
3338 i = HCTX_TYPE_DEFAULT;
3339
3340 return i;
3341}
3342
3343static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3344 unsigned int hctx_idx)
3345{
3346 enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3347
3348 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3349}
3350
63064be1
JG
3351static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3352 unsigned int hctx_idx,
3353 unsigned int nr_tags,
e155b0c2 3354 unsigned int reserved_tags)
320ae51f 3355{
4d805131 3356 int node = blk_mq_get_hctx_node(set, hctx_idx);
24d2f903 3357 struct blk_mq_tags *tags;
320ae51f 3358
59f082e4
SL
3359 if (node == NUMA_NO_NODE)
3360 node = set->numa_node;
3361
e155b0c2
JG
3362 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3363 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
3364 if (!tags)
3365 return NULL;
320ae51f 3366
590b5b7d 3367 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
36e1f3d1 3368 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 3369 node);
7edfd681
JC
3370 if (!tags->rqs)
3371 goto err_free_tags;
320ae51f 3372
590b5b7d
KC
3373 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3374 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3375 node);
7edfd681
JC
3376 if (!tags->static_rqs)
3377 goto err_free_rqs;
2af8cbe3 3378
cc71a6f4 3379 return tags;
7edfd681
JC
3380
3381err_free_rqs:
3382 kfree(tags->rqs);
3383err_free_tags:
3384 blk_mq_free_tags(tags);
3385 return NULL;
cc71a6f4
JA
3386}
3387
1d9bd516
TH
3388static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3389 unsigned int hctx_idx, int node)
3390{
3391 int ret;
3392
3393 if (set->ops->init_request) {
3394 ret = set->ops->init_request(set, rq, hctx_idx, node);
3395 if (ret)
3396 return ret;
3397 }
3398
12f5b931 3399 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1d9bd516
TH
3400 return 0;
3401}
3402
63064be1
JG
3403static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3404 struct blk_mq_tags *tags,
3405 unsigned int hctx_idx, unsigned int depth)
cc71a6f4
JA
3406{
3407 unsigned int i, j, entries_per_page, max_order = 4;
4d805131 3408 int node = blk_mq_get_hctx_node(set, hctx_idx);
cc71a6f4 3409 size_t rq_size, left;
59f082e4 3410
59f082e4
SL
3411 if (node == NUMA_NO_NODE)
3412 node = set->numa_node;
cc71a6f4
JA
3413
3414 INIT_LIST_HEAD(&tags->page_list);
3415
320ae51f
JA
3416 /*
3417 * rq_size is the size of the request plus driver payload, rounded
3418 * to the cacheline size
3419 */
24d2f903 3420 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 3421 cache_line_size());
cc71a6f4 3422 left = rq_size * depth;
320ae51f 3423
cc71a6f4 3424 for (i = 0; i < depth; ) {
320ae51f
JA
3425 int this_order = max_order;
3426 struct page *page;
3427 int to_do;
3428 void *p;
3429
b3a834b1 3430 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
3431 this_order--;
3432
3433 do {
59f082e4 3434 page = alloc_pages_node(node,
36e1f3d1 3435 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 3436 this_order);
320ae51f
JA
3437 if (page)
3438 break;
3439 if (!this_order--)
3440 break;
3441 if (order_to_size(this_order) < rq_size)
3442 break;
3443 } while (1);
3444
3445 if (!page)
24d2f903 3446 goto fail;
320ae51f
JA
3447
3448 page->private = this_order;
24d2f903 3449 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
3450
3451 p = page_address(page);
f75782e4
CM
3452 /*
3453 * Allow kmemleak to scan these pages as they contain pointers
3454 * to additional allocations like via ops->init_request().
3455 */
36e1f3d1 3456 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 3457 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 3458 to_do = min(entries_per_page, depth - i);
320ae51f
JA
3459 left -= to_do * rq_size;
3460 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
3461 struct request *rq = p;
3462
3463 tags->static_rqs[i] = rq;
1d9bd516
TH
3464 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3465 tags->static_rqs[i] = NULL;
3466 goto fail;
e9b267d9
CH
3467 }
3468
320ae51f
JA
3469 p += rq_size;
3470 i++;
3471 }
3472 }
cc71a6f4 3473 return 0;
320ae51f 3474
24d2f903 3475fail:
cc71a6f4
JA
3476 blk_mq_free_rqs(set, tags, hctx_idx);
3477 return -ENOMEM;
320ae51f
JA
3478}
3479
bf0beec0
ML
3480struct rq_iter_data {
3481 struct blk_mq_hw_ctx *hctx;
3482 bool has_rq;
3483};
3484
2dd6532e 3485static bool blk_mq_has_request(struct request *rq, void *data)
bf0beec0
ML
3486{
3487 struct rq_iter_data *iter_data = data;
3488
3489 if (rq->mq_hctx != iter_data->hctx)
3490 return true;
3491 iter_data->has_rq = true;
3492 return false;
3493}
3494
3495static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3496{
3497 struct blk_mq_tags *tags = hctx->sched_tags ?
3498 hctx->sched_tags : hctx->tags;
3499 struct rq_iter_data data = {
3500 .hctx = hctx,
3501 };
3502
3503 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3504 return data.has_rq;
3505}
3506
a46c2702
ML
3507static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
3508 unsigned int this_cpu)
bf0beec0 3509{
a46c2702
ML
3510 enum hctx_type type = hctx->type;
3511 int cpu;
3512
3513 /*
3514 * hctx->cpumask has to rule out isolated CPUs, but userspace still
3515 * might submit IOs on these isolated CPUs, so use the queue map to
3516 * check if all CPUs mapped to this hctx are offline
3517 */
3518 for_each_online_cpu(cpu) {
3519 struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
3520 type, cpu);
3521
3522 if (h != hctx)
3523 continue;
3524
3525 /* this hctx has at least one online CPU */
3526 if (this_cpu != cpu)
3527 return true;
3528 }
3529
3530 return false;
bf0beec0
ML
3531}
3532
3533static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3534{
3535 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3536 struct blk_mq_hw_ctx, cpuhp_online);
3537
a46c2702 3538 if (blk_mq_hctx_has_online_cpu(hctx, cpu))
bf0beec0
ML
3539 return 0;
3540
3541 /*
3542 * Prevent new request from being allocated on the current hctx.
3543 *
3544 * The smp_mb__after_atomic() Pairs with the implied barrier in
3545 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3546 * seen once we return from the tag allocator.
3547 */
3548 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3549 smp_mb__after_atomic();
3550
3551 /*
3552 * Try to grab a reference to the queue and wait for any outstanding
3553 * requests. If we could not grab a reference the queue has been
3554 * frozen and there are no requests.
3555 */
3556 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3557 while (blk_mq_hctx_has_requests(hctx))
3558 msleep(5);
3559 percpu_ref_put(&hctx->queue->q_usage_counter);
3560 }
3561
3562 return 0;
3563}
3564
7b815817
ML
3565/*
3566 * Check if one CPU is mapped to the specified hctx
3567 *
3568 * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3569 * to be used for scheduling kworker only. For other usage, please call this
3570 * helper for checking if one CPU belongs to the specified hctx
3571 */
3572static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu,
3573 const struct blk_mq_hw_ctx *hctx)
3574{
3575 struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue,
3576 hctx->type, cpu);
3577
3578 return mapped_hctx == hctx;
3579}
3580
bf0beec0
ML
3581static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3582{
3583 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3584 struct blk_mq_hw_ctx, cpuhp_online);
3585
7b815817 3586 if (blk_mq_cpu_mapped_to_hctx(cpu, hctx))
bf0beec0
ML
3587 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3588 return 0;
3589}
3590
e57690fe
JA
3591/*
3592 * 'cpu' is going away. splice any existing rq_list entries from this
3593 * software queue to the hw queue dispatch list, and ensure that it
3594 * gets run.
3595 */
9467f859 3596static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 3597{
9467f859 3598 struct blk_mq_hw_ctx *hctx;
484b4061
JA
3599 struct blk_mq_ctx *ctx;
3600 LIST_HEAD(tmp);
c16d6b5a 3601 enum hctx_type type;
484b4061 3602
9467f859 3603 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
7b815817 3604 if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx))
bf0beec0
ML
3605 return 0;
3606
e57690fe 3607 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
c16d6b5a 3608 type = hctx->type;
484b4061
JA
3609
3610 spin_lock(&ctx->lock);
c16d6b5a
ML
3611 if (!list_empty(&ctx->rq_lists[type])) {
3612 list_splice_init(&ctx->rq_lists[type], &tmp);
484b4061
JA
3613 blk_mq_hctx_clear_pending(hctx, ctx);
3614 }
3615 spin_unlock(&ctx->lock);
3616
3617 if (list_empty(&tmp))
9467f859 3618 return 0;
484b4061 3619
e57690fe
JA
3620 spin_lock(&hctx->lock);
3621 list_splice_tail_init(&tmp, &hctx->dispatch);
3622 spin_unlock(&hctx->lock);
484b4061
JA
3623
3624 blk_mq_run_hw_queue(hctx, true);
9467f859 3625 return 0;
484b4061
JA
3626}
3627
9467f859 3628static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 3629{
bf0beec0
ML
3630 if (!(hctx->flags & BLK_MQ_F_STACKING))
3631 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3632 &hctx->cpuhp_online);
9467f859
TG
3633 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3634 &hctx->cpuhp_dead);
484b4061
JA
3635}
3636
364b6181
ML
3637/*
3638 * Before freeing hw queue, clearing the flush request reference in
3639 * tags->rqs[] for avoiding potential UAF.
3640 */
3641static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3642 unsigned int queue_depth, struct request *flush_rq)
3643{
3644 int i;
3645 unsigned long flags;
3646
3647 /* The hw queue may not be mapped yet */
3648 if (!tags)
3649 return;
3650
0a467d0f 3651 WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
364b6181
ML
3652
3653 for (i = 0; i < queue_depth; i++)
3654 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3655
3656 /*
3657 * Wait until all pending iteration is done.
3658 *
3659 * Request reference is cleared and it is guaranteed to be observed
3660 * after the ->lock is released.
3661 */
3662 spin_lock_irqsave(&tags->lock, flags);
3663 spin_unlock_irqrestore(&tags->lock, flags);
3664}
3665
c3b4afca 3666/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
3667static void blk_mq_exit_hctx(struct request_queue *q,
3668 struct blk_mq_tag_set *set,
3669 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3670{
364b6181
ML
3671 struct request *flush_rq = hctx->fq->flush_rq;
3672
8ab0b7dc
ML
3673 if (blk_mq_hw_queue_mapped(hctx))
3674 blk_mq_tag_idle(hctx);
08e98fc6 3675
6cfeadbf
ML
3676 if (blk_queue_init_done(q))
3677 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3678 set->queue_depth, flush_rq);
f70ced09 3679 if (set->ops->exit_request)
364b6181 3680 set->ops->exit_request(set, flush_rq, hctx_idx);
f70ced09 3681
08e98fc6
ML
3682 if (set->ops->exit_hctx)
3683 set->ops->exit_hctx(hctx, hctx_idx);
3684
9467f859 3685 blk_mq_remove_cpuhp(hctx);
2f8f1336 3686
4e5cc99e
ML
3687 xa_erase(&q->hctx_table, hctx_idx);
3688
2f8f1336
ML
3689 spin_lock(&q->unused_hctx_lock);
3690 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3691 spin_unlock(&q->unused_hctx_lock);
08e98fc6
ML
3692}
3693
624dbe47
ML
3694static void blk_mq_exit_hw_queues(struct request_queue *q,
3695 struct blk_mq_tag_set *set, int nr_queue)
3696{
3697 struct blk_mq_hw_ctx *hctx;
4f481208 3698 unsigned long i;
624dbe47
ML
3699
3700 queue_for_each_hw_ctx(q, hctx, i) {
3701 if (i == nr_queue)
3702 break;
08e98fc6 3703 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 3704 }
624dbe47
ML
3705}
3706
08e98fc6
ML
3707static int blk_mq_init_hctx(struct request_queue *q,
3708 struct blk_mq_tag_set *set,
3709 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 3710{
7c6c5b7c
ML
3711 hctx->queue_num = hctx_idx;
3712
bf0beec0
ML
3713 if (!(hctx->flags & BLK_MQ_F_STACKING))
3714 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3715 &hctx->cpuhp_online);
7c6c5b7c
ML
3716 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3717
3718 hctx->tags = set->tags[hctx_idx];
3719
3720 if (set->ops->init_hctx &&
3721 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3722 goto unregister_cpu_notifier;
08e98fc6 3723
7c6c5b7c
ML
3724 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3725 hctx->numa_node))
3726 goto exit_hctx;
4e5cc99e
ML
3727
3728 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3729 goto exit_flush_rq;
3730
7c6c5b7c
ML
3731 return 0;
3732
4e5cc99e
ML
3733 exit_flush_rq:
3734 if (set->ops->exit_request)
3735 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
7c6c5b7c
ML
3736 exit_hctx:
3737 if (set->ops->exit_hctx)
3738 set->ops->exit_hctx(hctx, hctx_idx);
3739 unregister_cpu_notifier:
3740 blk_mq_remove_cpuhp(hctx);
3741 return -1;
3742}
3743
3744static struct blk_mq_hw_ctx *
3745blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3746 int node)
3747{
3748 struct blk_mq_hw_ctx *hctx;
3749 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3750
704b914f 3751 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
7c6c5b7c
ML
3752 if (!hctx)
3753 goto fail_alloc_hctx;
3754
3755 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3756 goto free_hctx;
3757
3758 atomic_set(&hctx->nr_active, 0);
08e98fc6 3759 if (node == NUMA_NO_NODE)
7c6c5b7c
ML
3760 node = set->numa_node;
3761 hctx->numa_node = node;
08e98fc6 3762
9f993737 3763 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
3764 spin_lock_init(&hctx->lock);
3765 INIT_LIST_HEAD(&hctx->dispatch);
3766 hctx->queue = q;
51db1c37 3767 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
08e98fc6 3768
2f8f1336
ML
3769 INIT_LIST_HEAD(&hctx->hctx_list);
3770
320ae51f 3771 /*
08e98fc6
ML
3772 * Allocate space for all possible cpus to avoid allocation at
3773 * runtime
320ae51f 3774 */
d904bfa7 3775 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
7c6c5b7c 3776 gfp, node);
08e98fc6 3777 if (!hctx->ctxs)
7c6c5b7c 3778 goto free_cpumask;
320ae51f 3779
5b202853 3780 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
c548e62b 3781 gfp, node, false, false))
08e98fc6 3782 goto free_ctxs;
08e98fc6 3783 hctx->nr_ctx = 0;
320ae51f 3784
5815839b 3785 spin_lock_init(&hctx->dispatch_wait_lock);
eb619fdb
JA
3786 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3787 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3788
754a1572 3789 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
f70ced09 3790 if (!hctx->fq)
7c6c5b7c 3791 goto free_bitmap;
320ae51f 3792
7c6c5b7c 3793 blk_mq_hctx_kobj_init(hctx);
6a83e74d 3794
7c6c5b7c 3795 return hctx;
320ae51f 3796
08e98fc6 3797 free_bitmap:
88459642 3798 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
3799 free_ctxs:
3800 kfree(hctx->ctxs);
7c6c5b7c
ML
3801 free_cpumask:
3802 free_cpumask_var(hctx->cpumask);
3803 free_hctx:
3804 kfree(hctx);
3805 fail_alloc_hctx:
3806 return NULL;
08e98fc6 3807}
320ae51f 3808
320ae51f
JA
3809static void blk_mq_init_cpu_queues(struct request_queue *q,
3810 unsigned int nr_hw_queues)
3811{
b3c661b1
JA
3812 struct blk_mq_tag_set *set = q->tag_set;
3813 unsigned int i, j;
320ae51f
JA
3814
3815 for_each_possible_cpu(i) {
3816 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3817 struct blk_mq_hw_ctx *hctx;
c16d6b5a 3818 int k;
320ae51f 3819
320ae51f
JA
3820 __ctx->cpu = i;
3821 spin_lock_init(&__ctx->lock);
c16d6b5a
ML
3822 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3823 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3824
320ae51f
JA
3825 __ctx->queue = q;
3826
320ae51f
JA
3827 /*
3828 * Set local node, IFF we have more than one hw queue. If
3829 * not, we remain on the home node of the device
3830 */
b3c661b1
JA
3831 for (j = 0; j < set->nr_maps; j++) {
3832 hctx = blk_mq_map_queue_type(q, j, i);
3833 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
576e85c5 3834 hctx->numa_node = cpu_to_node(i);
b3c661b1 3835 }
320ae51f
JA
3836 }
3837}
3838
63064be1
JG
3839struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3840 unsigned int hctx_idx,
3841 unsigned int depth)
cc71a6f4 3842{
63064be1
JG
3843 struct blk_mq_tags *tags;
3844 int ret;
cc71a6f4 3845
e155b0c2 3846 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
63064be1
JG
3847 if (!tags)
3848 return NULL;
cc71a6f4 3849
63064be1
JG
3850 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3851 if (ret) {
e155b0c2 3852 blk_mq_free_rq_map(tags);
63064be1
JG
3853 return NULL;
3854 }
cc71a6f4 3855
63064be1 3856 return tags;
cc71a6f4
JA
3857}
3858
63064be1
JG
3859static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3860 int hctx_idx)
cc71a6f4 3861{
079a2e3e
JG
3862 if (blk_mq_is_shared_tags(set->flags)) {
3863 set->tags[hctx_idx] = set->shared_tags;
1c0706a7 3864
e155b0c2 3865 return true;
bd166ef1 3866 }
e155b0c2 3867
63064be1
JG
3868 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3869 set->queue_depth);
3870
3871 return set->tags[hctx_idx];
cc71a6f4
JA
3872}
3873
645db34e
JG
3874void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3875 struct blk_mq_tags *tags,
3876 unsigned int hctx_idx)
cc71a6f4 3877{
645db34e
JG
3878 if (tags) {
3879 blk_mq_free_rqs(set, tags, hctx_idx);
e155b0c2 3880 blk_mq_free_rq_map(tags);
bd166ef1 3881 }
cc71a6f4
JA
3882}
3883
e155b0c2
JG
3884static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3885 unsigned int hctx_idx)
3886{
079a2e3e 3887 if (!blk_mq_is_shared_tags(set->flags))
e155b0c2
JG
3888 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3889
3890 set->tags[hctx_idx] = NULL;
cc71a6f4
JA
3891}
3892
4b855ad3 3893static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 3894{
4f481208
ML
3895 unsigned int j, hctx_idx;
3896 unsigned long i;
320ae51f
JA
3897 struct blk_mq_hw_ctx *hctx;
3898 struct blk_mq_ctx *ctx;
2a34c087 3899 struct blk_mq_tag_set *set = q->tag_set;
320ae51f
JA
3900
3901 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 3902 cpumask_clear(hctx->cpumask);
320ae51f 3903 hctx->nr_ctx = 0;
d416c92c 3904 hctx->dispatch_from = NULL;
320ae51f
JA
3905 }
3906
3907 /*
4b855ad3 3908 * Map software to hardware queues.
4412efec
ML
3909 *
3910 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 3911 */
20e4d813 3912 for_each_possible_cpu(i) {
4412efec 3913
897bb0c7 3914 ctx = per_cpu_ptr(q->queue_ctx, i);
b3c661b1 3915 for (j = 0; j < set->nr_maps; j++) {
bb94aea1
JW
3916 if (!set->map[j].nr_queues) {
3917 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3918 HCTX_TYPE_DEFAULT, i);
e5edd5f2 3919 continue;
bb94aea1 3920 }
fd689871
ML
3921 hctx_idx = set->map[j].mq_map[i];
3922 /* unmapped hw queue can be remapped after CPU topo changed */
3923 if (!set->tags[hctx_idx] &&
63064be1 3924 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
fd689871
ML
3925 /*
3926 * If tags initialization fail for some hctx,
3927 * that hctx won't be brought online. In this
3928 * case, remap the current ctx to hctx[0] which
3929 * is guaranteed to always have tags allocated
3930 */
3931 set->map[j].mq_map[i] = 0;
3932 }
e5edd5f2 3933
b3c661b1 3934 hctx = blk_mq_map_queue_type(q, j, i);
8ccdf4a3 3935 ctx->hctxs[j] = hctx;
b3c661b1
JA
3936 /*
3937 * If the CPU is already set in the mask, then we've
3938 * mapped this one already. This can happen if
3939 * devices share queues across queue maps.
3940 */
3941 if (cpumask_test_cpu(i, hctx->cpumask))
3942 continue;
3943
3944 cpumask_set_cpu(i, hctx->cpumask);
3945 hctx->type = j;
3946 ctx->index_hw[hctx->type] = hctx->nr_ctx;
3947 hctx->ctxs[hctx->nr_ctx++] = ctx;
3948
3949 /*
3950 * If the nr_ctx type overflows, we have exceeded the
3951 * amount of sw queues we can support.
3952 */
3953 BUG_ON(!hctx->nr_ctx);
3954 }
bb94aea1
JW
3955
3956 for (; j < HCTX_MAX_TYPES; j++)
3957 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3958 HCTX_TYPE_DEFAULT, i);
320ae51f 3959 }
506e931f
JA
3960
3961 queue_for_each_hw_ctx(q, hctx, i) {
a46c2702
ML
3962 int cpu;
3963
4412efec
ML
3964 /*
3965 * If no software queues are mapped to this hardware queue,
3966 * disable it and free the request entries.
3967 */
3968 if (!hctx->nr_ctx) {
3969 /* Never unmap queue 0. We need it as a
3970 * fallback in case of a new remap fails
3971 * allocation
3972 */
e155b0c2
JG
3973 if (i)
3974 __blk_mq_free_map_and_rqs(set, i);
4412efec
ML
3975
3976 hctx->tags = NULL;
3977 continue;
3978 }
484b4061 3979
2a34c087
ML
3980 hctx->tags = set->tags[i];
3981 WARN_ON(!hctx->tags);
3982
889fa31f
CY
3983 /*
3984 * Set the map size to the number of mapped software queues.
3985 * This is more accurate and more efficient than looping
3986 * over all possibly mapped software queues.
3987 */
88459642 3988 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 3989
a46c2702
ML
3990 /*
3991 * Rule out isolated CPUs from hctx->cpumask to avoid
3992 * running block kworker on isolated CPUs
3993 */
3994 for_each_cpu(cpu, hctx->cpumask) {
3995 if (cpu_is_isolated(cpu))
3996 cpumask_clear_cpu(cpu, hctx->cpumask);
3997 }
3998
484b4061
JA
3999 /*
4000 * Initialize batch roundrobin counts
4001 */
f82ddf19 4002 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
4003 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
4004 }
320ae51f
JA
4005}
4006
8e8320c9
JA
4007/*
4008 * Caller needs to ensure that we're either frozen/quiesced, or that
4009 * the queue isn't live yet.
4010 */
2404e607 4011static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
4012{
4013 struct blk_mq_hw_ctx *hctx;
4f481208 4014 unsigned long i;
0d2602ca 4015
2404e607 4016 queue_for_each_hw_ctx(q, hctx, i) {
454bb677 4017 if (shared) {
51db1c37 4018 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
454bb677
YK
4019 } else {
4020 blk_mq_tag_idle(hctx);
51db1c37 4021 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
454bb677 4022 }
2404e607
JM
4023 }
4024}
4025
655ac300
HR
4026static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4027 bool shared)
2404e607
JM
4028{
4029 struct request_queue *q;
0d2602ca 4030
705cda97
BVA
4031 lockdep_assert_held(&set->tag_list_lock);
4032
0d2602ca
JA
4033 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4034 blk_mq_freeze_queue(q);
2404e607 4035 queue_set_hctx_shared(q, shared);
0d2602ca
JA
4036 blk_mq_unfreeze_queue(q);
4037 }
4038}
4039
4040static void blk_mq_del_queue_tag_set(struct request_queue *q)
4041{
4042 struct blk_mq_tag_set *set = q->tag_set;
4043
0d2602ca 4044 mutex_lock(&set->tag_list_lock);
08c875cb 4045 list_del(&q->tag_set_list);
2404e607
JM
4046 if (list_is_singular(&set->tag_list)) {
4047 /* just transitioned to unshared */
51db1c37 4048 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2404e607 4049 /* update existing queue */
655ac300 4050 blk_mq_update_tag_set_shared(set, false);
2404e607 4051 }
0d2602ca 4052 mutex_unlock(&set->tag_list_lock);
a347c7ad 4053 INIT_LIST_HEAD(&q->tag_set_list);
0d2602ca
JA
4054}
4055
4056static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4057 struct request_queue *q)
4058{
0d2602ca 4059 mutex_lock(&set->tag_list_lock);
2404e607 4060
ff821d27
JA
4061 /*
4062 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4063 */
4064 if (!list_empty(&set->tag_list) &&
51db1c37
ML
4065 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4066 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2404e607 4067 /* update existing queue */
655ac300 4068 blk_mq_update_tag_set_shared(set, true);
2404e607 4069 }
51db1c37 4070 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2404e607 4071 queue_set_hctx_shared(q, true);
08c875cb 4072 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 4073
0d2602ca
JA
4074 mutex_unlock(&set->tag_list_lock);
4075}
4076
1db4909e
ML
4077/* All allocations will be freed in release handler of q->mq_kobj */
4078static int blk_mq_alloc_ctxs(struct request_queue *q)
4079{
4080 struct blk_mq_ctxs *ctxs;
4081 int cpu;
4082
4083 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4084 if (!ctxs)
4085 return -ENOMEM;
4086
4087 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4088 if (!ctxs->queue_ctx)
4089 goto fail;
4090
4091 for_each_possible_cpu(cpu) {
4092 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4093 ctx->ctxs = ctxs;
4094 }
4095
4096 q->mq_kobj = &ctxs->kobj;
4097 q->queue_ctx = ctxs->queue_ctx;
4098
4099 return 0;
4100 fail:
4101 kfree(ctxs);
4102 return -ENOMEM;
4103}
4104
e09aae7e
ML
4105/*
4106 * It is the actual release handler for mq, but we do it from
4107 * request queue's release handler for avoiding use-after-free
4108 * and headache because q->mq_kobj shouldn't have been introduced,
4109 * but we can't group ctx/kctx kobj without it.
4110 */
4111void blk_mq_release(struct request_queue *q)
4112{
2f8f1336 4113 struct blk_mq_hw_ctx *hctx, *next;
4f481208 4114 unsigned long i;
e09aae7e 4115
2f8f1336
ML
4116 queue_for_each_hw_ctx(q, hctx, i)
4117 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4118
4119 /* all hctx are in .unused_hctx_list now */
4120 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4121 list_del_init(&hctx->hctx_list);
6c8b232e 4122 kobject_put(&hctx->kobj);
c3b4afca 4123 }
e09aae7e 4124
4e5cc99e 4125 xa_destroy(&q->hctx_table);
e09aae7e 4126
7ea5fe31
ML
4127 /*
4128 * release .mq_kobj and sw queue's kobject now because
4129 * both share lifetime with request queue.
4130 */
4131 blk_mq_sysfs_deinit(q);
e09aae7e
ML
4132}
4133
8023e144
CH
4134static bool blk_mq_can_poll(struct blk_mq_tag_set *set)
4135{
4136 return set->nr_maps > HCTX_TYPE_POLL &&
4137 set->map[HCTX_TYPE_POLL].nr_queues;
4138}
4139
9ac4dd8c
CH
4140struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4141 struct queue_limits *lim, void *queuedata)
b62c21b7 4142{
9ac4dd8c 4143 struct queue_limits default_lim = { };
26a9750a
CH
4144 struct request_queue *q;
4145 int ret;
b62c21b7 4146
cdb24979
CH
4147 if (!lim)
4148 lim = &default_lim;
f76af42f 4149 lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT;
8023e144
CH
4150 if (blk_mq_can_poll(set))
4151 lim->features |= BLK_FEAT_POLL;
cdb24979
CH
4152
4153 q = blk_alloc_queue(lim, set->numa_node);
ad751ba1
CH
4154 if (IS_ERR(q))
4155 return q;
26a9750a
CH
4156 q->queuedata = queuedata;
4157 ret = blk_mq_init_allocated_queue(set, q);
4158 if (ret) {
6f8191fd 4159 blk_put_queue(q);
26a9750a
CH
4160 return ERR_PTR(ret);
4161 }
b62c21b7
MS
4162 return q;
4163}
9ac4dd8c 4164EXPORT_SYMBOL(blk_mq_alloc_queue);
b62c21b7 4165
6f8191fd
CH
4166/**
4167 * blk_mq_destroy_queue - shutdown a request queue
4168 * @q: request queue to shutdown
4169 *
9ac4dd8c 4170 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
81ea42b9 4171 * requests will be failed with -ENODEV. The caller is responsible for dropping
9ac4dd8c 4172 * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
6f8191fd
CH
4173 *
4174 * Context: can sleep
4175 */
4176void blk_mq_destroy_queue(struct request_queue *q)
4177{
4178 WARN_ON_ONCE(!queue_is_mq(q));
4179 WARN_ON_ONCE(blk_queue_registered(q));
4180
4181 might_sleep();
4182
4183 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4184 blk_queue_start_drain(q);
56c1ee92 4185 blk_mq_freeze_queue_wait(q);
6f8191fd
CH
4186
4187 blk_sync_queue(q);
4188 blk_mq_cancel_work_sync(q);
4189 blk_mq_exit_queue(q);
6f8191fd
CH
4190}
4191EXPORT_SYMBOL(blk_mq_destroy_queue);
4192
27e32cd2
CH
4193struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4194 struct queue_limits *lim, void *queuedata,
4dcc4874 4195 struct lock_class_key *lkclass)
9316a9ed
JA
4196{
4197 struct request_queue *q;
b461dfc4 4198 struct gendisk *disk;
9316a9ed 4199
27e32cd2 4200 q = blk_mq_alloc_queue(set, lim, queuedata);
b461dfc4
CH
4201 if (IS_ERR(q))
4202 return ERR_CAST(q);
9316a9ed 4203
4a1fa41d 4204 disk = __alloc_disk_node(q, set->numa_node, lkclass);
b461dfc4 4205 if (!disk) {
0a3e5cc7 4206 blk_mq_destroy_queue(q);
2b3f056f 4207 blk_put_queue(q);
b461dfc4 4208 return ERR_PTR(-ENOMEM);
9316a9ed 4209 }
6f8191fd 4210 set_bit(GD_OWNS_QUEUE, &disk->state);
b461dfc4 4211 return disk;
9316a9ed 4212}
b461dfc4 4213EXPORT_SYMBOL(__blk_mq_alloc_disk);
9316a9ed 4214
6f8191fd
CH
4215struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4216 struct lock_class_key *lkclass)
4217{
22c17e27
CH
4218 struct gendisk *disk;
4219
6f8191fd
CH
4220 if (!blk_get_queue(q))
4221 return NULL;
22c17e27
CH
4222 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4223 if (!disk)
4224 blk_put_queue(q);
4225 return disk;
6f8191fd
CH
4226}
4227EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4228
34d11ffa
JW
4229static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4230 struct blk_mq_tag_set *set, struct request_queue *q,
4231 int hctx_idx, int node)
4232{
2f8f1336 4233 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
34d11ffa 4234
2f8f1336
ML
4235 /* reuse dead hctx first */
4236 spin_lock(&q->unused_hctx_lock);
4237 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4238 if (tmp->numa_node == node) {
4239 hctx = tmp;
4240 break;
4241 }
4242 }
4243 if (hctx)
4244 list_del_init(&hctx->hctx_list);
4245 spin_unlock(&q->unused_hctx_lock);
4246
4247 if (!hctx)
4248 hctx = blk_mq_alloc_hctx(q, set, node);
34d11ffa 4249 if (!hctx)
7c6c5b7c 4250 goto fail;
34d11ffa 4251
7c6c5b7c
ML
4252 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4253 goto free_hctx;
34d11ffa
JW
4254
4255 return hctx;
7c6c5b7c
ML
4256
4257 free_hctx:
4258 kobject_put(&hctx->kobj);
4259 fail:
4260 return NULL;
34d11ffa
JW
4261}
4262
868f2f0b
KB
4263static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4264 struct request_queue *q)
320ae51f 4265{
4e5cc99e
ML
4266 struct blk_mq_hw_ctx *hctx;
4267 unsigned long i, j;
ac0d6b92 4268
fb350e0a
ML
4269 /* protect against switching io scheduler */
4270 mutex_lock(&q->sysfs_lock);
24d2f903 4271 for (i = 0; i < set->nr_hw_queues; i++) {
306f13ee 4272 int old_node;
4d805131 4273 int node = blk_mq_get_hctx_node(set, i);
4e5cc99e 4274 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
868f2f0b 4275
306f13ee
ML
4276 if (old_hctx) {
4277 old_node = old_hctx->numa_node;
4278 blk_mq_exit_hctx(q, set, old_hctx, i);
4279 }
868f2f0b 4280
4e5cc99e 4281 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
306f13ee 4282 if (!old_hctx)
34d11ffa 4283 break;
306f13ee
ML
4284 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4285 node, old_node);
4e5cc99e
ML
4286 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4287 WARN_ON_ONCE(!hctx);
868f2f0b 4288 }
320ae51f 4289 }
e01ad46d
JW
4290 /*
4291 * Increasing nr_hw_queues fails. Free the newly allocated
4292 * hctxs and keep the previous q->nr_hw_queues.
4293 */
4294 if (i != set->nr_hw_queues) {
4295 j = q->nr_hw_queues;
e01ad46d
JW
4296 } else {
4297 j = i;
e01ad46d
JW
4298 q->nr_hw_queues = set->nr_hw_queues;
4299 }
34d11ffa 4300
4e5cc99e
ML
4301 xa_for_each_start(&q->hctx_table, j, hctx, j)
4302 blk_mq_exit_hctx(q, set, hctx, j);
fb350e0a 4303 mutex_unlock(&q->sysfs_lock);
868f2f0b
KB
4304}
4305
26a9750a
CH
4306int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4307 struct request_queue *q)
868f2f0b 4308{
66841672
ML
4309 /* mark the queue as mq asap */
4310 q->mq_ops = set->ops;
4311
1db4909e 4312 if (blk_mq_alloc_ctxs(q))
54bdd67d 4313 goto err_exit;
868f2f0b 4314
737f98cf
ML
4315 /* init q->mq_kobj and sw queues' kobjects */
4316 blk_mq_sysfs_init(q);
4317
2f8f1336
ML
4318 INIT_LIST_HEAD(&q->unused_hctx_list);
4319 spin_lock_init(&q->unused_hctx_lock);
4320
4e5cc99e
ML
4321 xa_init(&q->hctx_table);
4322
868f2f0b
KB
4323 blk_mq_realloc_hw_ctxs(set, q);
4324 if (!q->nr_hw_queues)
4325 goto err_hctxs;
320ae51f 4326
287922eb 4327 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 4328 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f 4329
a8908939 4330 q->tag_set = set;
320ae51f 4331
94eddfbe 4332 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 4333
2849450a 4334 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
9a67aa52 4335 INIT_LIST_HEAD(&q->flush_list);
6fca6a61
CH
4336 INIT_LIST_HEAD(&q->requeue_list);
4337 spin_lock_init(&q->requeue_lock);
4338
eba71768
JA
4339 q->nr_requests = set->queue_depth;
4340
24d2f903 4341 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 4342 blk_mq_add_queue_tag_set(set, q);
4b855ad3 4343 blk_mq_map_swqueue(q);
26a9750a 4344 return 0;
18741986 4345
320ae51f 4346err_hctxs:
943f45b9 4347 blk_mq_release(q);
c7de5726
ML
4348err_exit:
4349 q->mq_ops = NULL;
26a9750a 4350 return -ENOMEM;
320ae51f 4351}
b62c21b7 4352EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f 4353
c7e2d94b
ML
4354/* tags can _not_ be used after returning from blk_mq_exit_queue */
4355void blk_mq_exit_queue(struct request_queue *q)
320ae51f 4356{
630ef623 4357 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 4358
630ef623 4359 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
624dbe47 4360 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
630ef623
BVA
4361 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4362 blk_mq_del_queue_tag_set(q);
320ae51f 4363}
320ae51f 4364
a5164405
JA
4365static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4366{
4367 int i;
4368
079a2e3e
JG
4369 if (blk_mq_is_shared_tags(set->flags)) {
4370 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
e155b0c2
JG
4371 BLK_MQ_NO_HCTX_IDX,
4372 set->queue_depth);
079a2e3e 4373 if (!set->shared_tags)
e155b0c2
JG
4374 return -ENOMEM;
4375 }
4376
8229cca8 4377 for (i = 0; i < set->nr_hw_queues; i++) {
63064be1 4378 if (!__blk_mq_alloc_map_and_rqs(set, i))
a5164405 4379 goto out_unwind;
8229cca8
XT
4380 cond_resched();
4381 }
a5164405
JA
4382
4383 return 0;
4384
4385out_unwind:
4386 while (--i >= 0)
e155b0c2
JG
4387 __blk_mq_free_map_and_rqs(set, i);
4388
079a2e3e
JG
4389 if (blk_mq_is_shared_tags(set->flags)) {
4390 blk_mq_free_map_and_rqs(set, set->shared_tags,
e155b0c2 4391 BLK_MQ_NO_HCTX_IDX);
645db34e 4392 }
a5164405 4393
a5164405
JA
4394 return -ENOMEM;
4395}
4396
4397/*
4398 * Allocate the request maps associated with this tag_set. Note that this
4399 * may reduce the depth asked for, if memory is tight. set->queue_depth
4400 * will be updated to reflect the allocated depth.
4401 */
63064be1 4402static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
a5164405
JA
4403{
4404 unsigned int depth;
4405 int err;
4406
4407 depth = set->queue_depth;
4408 do {
4409 err = __blk_mq_alloc_rq_maps(set);
4410 if (!err)
4411 break;
4412
4413 set->queue_depth >>= 1;
4414 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4415 err = -ENOMEM;
4416 break;
4417 }
4418 } while (set->queue_depth);
4419
4420 if (!set->queue_depth || err) {
4421 pr_err("blk-mq: failed to allocate request map\n");
4422 return -ENOMEM;
4423 }
4424
4425 if (depth != set->queue_depth)
4426 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4427 depth, set->queue_depth);
4428
4429 return 0;
4430}
4431
a4e1d0b7 4432static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
ebe8bddb 4433{
6e66b493
BVA
4434 /*
4435 * blk_mq_map_queues() and multiple .map_queues() implementations
4436 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4437 * number of hardware queues.
4438 */
4439 if (set->nr_maps == 1)
4440 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4441
ec30b461 4442 if (set->ops->map_queues) {
b3c661b1
JA
4443 int i;
4444
7d4901a9
ML
4445 /*
4446 * transport .map_queues is usually done in the following
4447 * way:
4448 *
4449 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4450 * mask = get_cpu_mask(queue)
4451 * for_each_cpu(cpu, mask)
b3c661b1 4452 * set->map[x].mq_map[cpu] = queue;
7d4901a9
ML
4453 * }
4454 *
4455 * When we need to remap, the table has to be cleared for
4456 * killing stale mapping since one CPU may not be mapped
4457 * to any hw queue.
4458 */
b3c661b1
JA
4459 for (i = 0; i < set->nr_maps; i++)
4460 blk_mq_clear_mq_map(&set->map[i]);
7d4901a9 4461
a4e1d0b7 4462 set->ops->map_queues(set);
b3c661b1
JA
4463 } else {
4464 BUG_ON(set->nr_maps > 1);
a4e1d0b7 4465 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
b3c661b1 4466 }
ebe8bddb
OS
4467}
4468
f7e76dbc 4469static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
ee9d5521 4470 int new_nr_hw_queues)
f7e76dbc
BVA
4471{
4472 struct blk_mq_tags **new_tags;
e1dd7bc9 4473 int i;
f7e76dbc 4474
6be6d112 4475 if (set->nr_hw_queues >= new_nr_hw_queues)
d4b2e0d4 4476 goto done;
f7e76dbc
BVA
4477
4478 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4479 GFP_KERNEL, set->numa_node);
4480 if (!new_tags)
4481 return -ENOMEM;
4482
4483 if (set->tags)
ee9d5521 4484 memcpy(new_tags, set->tags, set->nr_hw_queues *
f7e76dbc
BVA
4485 sizeof(*set->tags));
4486 kfree(set->tags);
4487 set->tags = new_tags;
7222657e
CZ
4488
4489 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4490 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4491 while (--i >= set->nr_hw_queues)
4492 __blk_mq_free_map_and_rqs(set, i);
4493 return -ENOMEM;
4494 }
4495 cond_resched();
4496 }
4497
d4b2e0d4 4498done:
f7e76dbc 4499 set->nr_hw_queues = new_nr_hw_queues;
f7e76dbc
BVA
4500 return 0;
4501}
4502
a4391c64
JA
4503/*
4504 * Alloc a tag set to be associated with one or more request queues.
4505 * May fail with EINVAL for various error conditions. May adjust the
c018c84f 4506 * requested depth down, if it's too large. In that case, the set
a4391c64
JA
4507 * value will be stored in set->queue_depth.
4508 */
24d2f903
CH
4509int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4510{
b3c661b1 4511 int i, ret;
da695ba2 4512
205fb5f5
BVA
4513 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4514
24d2f903
CH
4515 if (!set->nr_hw_queues)
4516 return -EINVAL;
a4391c64 4517 if (!set->queue_depth)
24d2f903
CH
4518 return -EINVAL;
4519 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4520 return -EINVAL;
4521
7d7e0f90 4522 if (!set->ops->queue_rq)
24d2f903
CH
4523 return -EINVAL;
4524
de148297
ML
4525 if (!set->ops->get_budget ^ !set->ops->put_budget)
4526 return -EINVAL;
4527
a4391c64
JA
4528 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4529 pr_info("blk-mq: reduced tag depth to %u\n",
4530 BLK_MQ_MAX_DEPTH);
4531 set->queue_depth = BLK_MQ_MAX_DEPTH;
4532 }
24d2f903 4533
b3c661b1
JA
4534 if (!set->nr_maps)
4535 set->nr_maps = 1;
4536 else if (set->nr_maps > HCTX_MAX_TYPES)
4537 return -EINVAL;
4538
6637fadf
SL
4539 /*
4540 * If a crashdump is active, then we are potentially in a very
ec30b461
ML
4541 * memory constrained environment. Limit us to 64 tags to prevent
4542 * using too much memory.
6637fadf 4543 */
ec30b461 4544 if (is_kdump_kernel())
6637fadf 4545 set->queue_depth = min(64U, set->queue_depth);
ec30b461 4546
868f2f0b 4547 /*
392546ae
JA
4548 * There is no use for more h/w queues than cpus if we just have
4549 * a single map
868f2f0b 4550 */
392546ae 4551 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
868f2f0b 4552 set->nr_hw_queues = nr_cpu_ids;
6637fadf 4553
80bd4a7a
CH
4554 if (set->flags & BLK_MQ_F_BLOCKING) {
4555 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4556 if (!set->srcu)
4557 return -ENOMEM;
4558 ret = init_srcu_struct(set->srcu);
4559 if (ret)
4560 goto out_free_srcu;
4561 }
24d2f903 4562
da695ba2 4563 ret = -ENOMEM;
5ee20298
CH
4564 set->tags = kcalloc_node(set->nr_hw_queues,
4565 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4566 set->numa_node);
4567 if (!set->tags)
80bd4a7a 4568 goto out_cleanup_srcu;
24d2f903 4569
b3c661b1
JA
4570 for (i = 0; i < set->nr_maps; i++) {
4571 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
07b35eb5 4572 sizeof(set->map[i].mq_map[0]),
b3c661b1
JA
4573 GFP_KERNEL, set->numa_node);
4574 if (!set->map[i].mq_map)
4575 goto out_free_mq_map;
ec30b461 4576 set->map[i].nr_queues = set->nr_hw_queues;
b3c661b1 4577 }
bdd17e75 4578
a4e1d0b7 4579 blk_mq_update_queue_map(set);
da695ba2 4580
63064be1 4581 ret = blk_mq_alloc_set_map_and_rqs(set);
da695ba2 4582 if (ret)
bdd17e75 4583 goto out_free_mq_map;
24d2f903 4584
0d2602ca
JA
4585 mutex_init(&set->tag_list_lock);
4586 INIT_LIST_HEAD(&set->tag_list);
4587
24d2f903 4588 return 0;
bdd17e75
CH
4589
4590out_free_mq_map:
b3c661b1
JA
4591 for (i = 0; i < set->nr_maps; i++) {
4592 kfree(set->map[i].mq_map);
4593 set->map[i].mq_map = NULL;
4594 }
5676e7b6
RE
4595 kfree(set->tags);
4596 set->tags = NULL;
80bd4a7a
CH
4597out_cleanup_srcu:
4598 if (set->flags & BLK_MQ_F_BLOCKING)
4599 cleanup_srcu_struct(set->srcu);
4600out_free_srcu:
4601 if (set->flags & BLK_MQ_F_BLOCKING)
4602 kfree(set->srcu);
da695ba2 4603 return ret;
24d2f903
CH
4604}
4605EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4606
cdb14e0f
CH
4607/* allocate and initialize a tagset for a simple single-queue device */
4608int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4609 const struct blk_mq_ops *ops, unsigned int queue_depth,
4610 unsigned int set_flags)
4611{
4612 memset(set, 0, sizeof(*set));
4613 set->ops = ops;
4614 set->nr_hw_queues = 1;
4615 set->nr_maps = 1;
4616 set->queue_depth = queue_depth;
4617 set->numa_node = NUMA_NO_NODE;
4618 set->flags = set_flags;
4619 return blk_mq_alloc_tag_set(set);
4620}
4621EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4622
24d2f903
CH
4623void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4624{
b3c661b1 4625 int i, j;
24d2f903 4626
f7e76dbc 4627 for (i = 0; i < set->nr_hw_queues; i++)
e155b0c2 4628 __blk_mq_free_map_and_rqs(set, i);
484b4061 4629
079a2e3e
JG
4630 if (blk_mq_is_shared_tags(set->flags)) {
4631 blk_mq_free_map_and_rqs(set, set->shared_tags,
e155b0c2
JG
4632 BLK_MQ_NO_HCTX_IDX);
4633 }
32bc15af 4634
b3c661b1
JA
4635 for (j = 0; j < set->nr_maps; j++) {
4636 kfree(set->map[j].mq_map);
4637 set->map[j].mq_map = NULL;
4638 }
bdd17e75 4639
981bd189 4640 kfree(set->tags);
5676e7b6 4641 set->tags = NULL;
80bd4a7a
CH
4642 if (set->flags & BLK_MQ_F_BLOCKING) {
4643 cleanup_srcu_struct(set->srcu);
4644 kfree(set->srcu);
4645 }
24d2f903
CH
4646}
4647EXPORT_SYMBOL(blk_mq_free_tag_set);
4648
e3a2b3f9
JA
4649int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4650{
4651 struct blk_mq_tag_set *set = q->tag_set;
4652 struct blk_mq_hw_ctx *hctx;
4f481208
ML
4653 int ret;
4654 unsigned long i;
e3a2b3f9 4655
af281414
CH
4656 if (WARN_ON_ONCE(!q->mq_freeze_depth))
4657 return -EINVAL;
4658
bd166ef1 4659 if (!set)
e3a2b3f9
JA
4660 return -EINVAL;
4661
e5fa8140
AZ
4662 if (q->nr_requests == nr)
4663 return 0;
4664
24f5a90f 4665 blk_mq_quiesce_queue(q);
70f36b60 4666
e3a2b3f9
JA
4667 ret = 0;
4668 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
4669 if (!hctx->tags)
4670 continue;
bd166ef1
JA
4671 /*
4672 * If we're using an MQ scheduler, just update the scheduler
4673 * queue depth. This is similar to what the old code would do.
4674 */
f6adcef5 4675 if (hctx->sched_tags) {
70f36b60 4676 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
f6adcef5 4677 nr, true);
f6adcef5
JG
4678 } else {
4679 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4680 false);
70f36b60 4681 }
e3a2b3f9
JA
4682 if (ret)
4683 break;
77f1e0a5
JA
4684 if (q->elevator && q->elevator->type->ops.depth_updated)
4685 q->elevator->type->ops.depth_updated(hctx);
e3a2b3f9 4686 }
d97e594c 4687 if (!ret) {
e3a2b3f9 4688 q->nr_requests = nr;
079a2e3e 4689 if (blk_mq_is_shared_tags(set->flags)) {
8fa04464 4690 if (q->elevator)
079a2e3e 4691 blk_mq_tag_update_sched_shared_tags(q);
8fa04464 4692 else
079a2e3e 4693 blk_mq_tag_resize_shared_tags(set, nr);
8fa04464 4694 }
d97e594c 4695 }
e3a2b3f9 4696
24f5a90f 4697 blk_mq_unquiesce_queue(q);
70f36b60 4698
e3a2b3f9
JA
4699 return ret;
4700}
4701
d48ece20
JW
4702/*
4703 * request_queue and elevator_type pair.
4704 * It is just used by __blk_mq_update_nr_hw_queues to cache
4705 * the elevator_type associated with a request_queue.
4706 */
4707struct blk_mq_qe_pair {
4708 struct list_head node;
4709 struct request_queue *q;
4710 struct elevator_type *type;
4711};
4712
4713/*
4714 * Cache the elevator_type in qe pair list and switch the
4715 * io scheduler to 'none'
4716 */
4717static bool blk_mq_elv_switch_none(struct list_head *head,
4718 struct request_queue *q)
4719{
4720 struct blk_mq_qe_pair *qe;
4721
d48ece20
JW
4722 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4723 if (!qe)
4724 return false;
4725
5fd7a84a
ML
4726 /* q->elevator needs protection from ->sysfs_lock */
4727 mutex_lock(&q->sysfs_lock);
4728
24516565
ML
4729 /* the check has to be done with holding sysfs_lock */
4730 if (!q->elevator) {
4731 kfree(qe);
4732 goto unlock;
4733 }
4734
d48ece20
JW
4735 INIT_LIST_HEAD(&qe->node);
4736 qe->q = q;
4737 qe->type = q->elevator->type;
dd6f7f17
CH
4738 /* keep a reference to the elevator module as we'll switch back */
4739 __elevator_get(qe->type);
d48ece20 4740 list_add(&qe->node, head);
64b36075 4741 elevator_disable(q);
24516565 4742unlock:
d48ece20
JW
4743 mutex_unlock(&q->sysfs_lock);
4744
4745 return true;
4746}
4747
4a3b666e
JK
4748static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4749 struct request_queue *q)
d48ece20
JW
4750{
4751 struct blk_mq_qe_pair *qe;
d48ece20
JW
4752
4753 list_for_each_entry(qe, head, node)
4a3b666e
JK
4754 if (qe->q == q)
4755 return qe;
d48ece20 4756
4a3b666e
JK
4757 return NULL;
4758}
d48ece20 4759
4a3b666e
JK
4760static void blk_mq_elv_switch_back(struct list_head *head,
4761 struct request_queue *q)
4762{
4763 struct blk_mq_qe_pair *qe;
4764 struct elevator_type *t;
4765
4766 qe = blk_lookup_qe_pair(head, q);
4767 if (!qe)
4768 return;
4769 t = qe->type;
d48ece20
JW
4770 list_del(&qe->node);
4771 kfree(qe);
4772
4773 mutex_lock(&q->sysfs_lock);
8237c01f 4774 elevator_switch(q, t);
8ed40ee3
JC
4775 /* drop the reference acquired in blk_mq_elv_switch_none */
4776 elevator_put(t);
d48ece20
JW
4777 mutex_unlock(&q->sysfs_lock);
4778}
4779
e4dc2b32
KB
4780static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4781 int nr_hw_queues)
868f2f0b
KB
4782{
4783 struct request_queue *q;
d48ece20 4784 LIST_HEAD(head);
6be6d112
CZ
4785 int prev_nr_hw_queues = set->nr_hw_queues;
4786 int i;
868f2f0b 4787
705cda97
BVA
4788 lockdep_assert_held(&set->tag_list_lock);
4789
392546ae 4790 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
868f2f0b 4791 nr_hw_queues = nr_cpu_ids;
fe35ec58
WZ
4792 if (nr_hw_queues < 1)
4793 return;
4794 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
868f2f0b
KB
4795 return;
4796
4797 list_for_each_entry(q, &set->tag_list, tag_set_list)
4798 blk_mq_freeze_queue(q);
d48ece20
JW
4799 /*
4800 * Switch IO scheduler to 'none', cleaning up the data associated
4801 * with the previous scheduler. We will switch back once we are done
4802 * updating the new sw to hw queue mappings.
4803 */
4804 list_for_each_entry(q, &set->tag_list, tag_set_list)
4805 if (!blk_mq_elv_switch_none(&head, q))
4806 goto switch_back;
868f2f0b 4807
477e19de
JW
4808 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4809 blk_mq_debugfs_unregister_hctxs(q);
eaa870f9 4810 blk_mq_sysfs_unregister_hctxs(q);
477e19de
JW
4811 }
4812
ee9d5521 4813 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
f7e76dbc
BVA
4814 goto reregister;
4815
e01ad46d 4816fallback:
aa880ad6 4817 blk_mq_update_queue_map(set);
868f2f0b 4818 list_for_each_entry(q, &set->tag_list, tag_set_list) {
8023e144
CH
4819 struct queue_limits lim;
4820
868f2f0b 4821 blk_mq_realloc_hw_ctxs(set, q);
8023e144 4822
e01ad46d 4823 if (q->nr_hw_queues != set->nr_hw_queues) {
a846a8e6
YB
4824 int i = prev_nr_hw_queues;
4825
e01ad46d
JW
4826 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4827 nr_hw_queues, prev_nr_hw_queues);
a846a8e6
YB
4828 for (; i < set->nr_hw_queues; i++)
4829 __blk_mq_free_map_and_rqs(set, i);
4830
e01ad46d 4831 set->nr_hw_queues = prev_nr_hw_queues;
e01ad46d
JW
4832 goto fallback;
4833 }
8023e144
CH
4834 lim = queue_limits_start_update(q);
4835 if (blk_mq_can_poll(set))
4836 lim.features |= BLK_FEAT_POLL;
4837 else
4838 lim.features &= ~BLK_FEAT_POLL;
4839 if (queue_limits_commit_update(q, &lim) < 0)
4840 pr_warn("updating the poll flag failed\n");
477e19de
JW
4841 blk_mq_map_swqueue(q);
4842 }
4843
f7e76dbc 4844reregister:
477e19de 4845 list_for_each_entry(q, &set->tag_list, tag_set_list) {
eaa870f9 4846 blk_mq_sysfs_register_hctxs(q);
477e19de 4847 blk_mq_debugfs_register_hctxs(q);
868f2f0b
KB
4848 }
4849
d48ece20
JW
4850switch_back:
4851 list_for_each_entry(q, &set->tag_list, tag_set_list)
4852 blk_mq_elv_switch_back(&head, q);
4853
868f2f0b
KB
4854 list_for_each_entry(q, &set->tag_list, tag_set_list)
4855 blk_mq_unfreeze_queue(q);
6be6d112
CZ
4856
4857 /* Free the excess tags when nr_hw_queues shrink. */
4858 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4859 __blk_mq_free_map_and_rqs(set, i);
868f2f0b 4860}
e4dc2b32
KB
4861
4862void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4863{
4864 mutex_lock(&set->tag_list_lock);
4865 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4866 mutex_unlock(&set->tag_list_lock);
4867}
868f2f0b
KB
4868EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4869
f6c80cff
KB
4870static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4871 struct io_comp_batch *iob, unsigned int flags)
bbd7bb70 4872{
c6699d6f
CH
4873 long state = get_current_state();
4874 int ret;
bbd7bb70 4875
aa61bec3 4876 do {
5a72e899 4877 ret = q->mq_ops->poll(hctx, iob);
bbd7bb70 4878 if (ret > 0) {
849a3700 4879 __set_current_state(TASK_RUNNING);
85f4d4b6 4880 return ret;
bbd7bb70
JA
4881 }
4882
4883 if (signal_pending_state(state, current))
849a3700 4884 __set_current_state(TASK_RUNNING);
b03fbd4f 4885 if (task_is_running(current))
85f4d4b6 4886 return 1;
c6699d6f 4887
ef99b2d3 4888 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
bbd7bb70
JA
4889 break;
4890 cpu_relax();
aa61bec3 4891 } while (!need_resched());
bbd7bb70 4892
67b4110f 4893 __set_current_state(TASK_RUNNING);
85f4d4b6 4894 return 0;
bbd7bb70 4895}
1052b8ac 4896
f6c80cff
KB
4897int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4898 struct io_comp_batch *iob, unsigned int flags)
4899{
4900 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4901
4902 return blk_hctx_poll(q, hctx, iob, flags);
4903}
4904
4905int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4906 unsigned int poll_flags)
4907{
4908 struct request_queue *q = rq->q;
4909 int ret;
4910
4911 if (!blk_rq_is_poll(rq))
4912 return 0;
4913 if (!percpu_ref_tryget(&q->q_usage_counter))
4914 return 0;
4915
4916 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4917 blk_queue_exit(q);
4918
4919 return ret;
4920}
4921EXPORT_SYMBOL_GPL(blk_rq_poll);
4922
9cf2bab6
JA
4923unsigned int blk_mq_rq_cpu(struct request *rq)
4924{
4925 return rq->mq_ctx->cpu;
4926}
4927EXPORT_SYMBOL(blk_mq_rq_cpu);
4928
2a19b28f
ML
4929void blk_mq_cancel_work_sync(struct request_queue *q)
4930{
219cf43c
JC
4931 struct blk_mq_hw_ctx *hctx;
4932 unsigned long i;
2a19b28f 4933
219cf43c 4934 cancel_delayed_work_sync(&q->requeue_work);
2a19b28f 4935
219cf43c
JC
4936 queue_for_each_hw_ctx(q, hctx, i)
4937 cancel_delayed_work_sync(&hctx->run_work);
2a19b28f
ML
4938}
4939
320ae51f
JA
4940static int __init blk_mq_init(void)
4941{
c3077b5d
CH
4942 int i;
4943
4944 for_each_possible_cpu(i)
f9ab4918 4945 init_llist_head(&per_cpu(blk_cpu_done, i));
660e802c
CZ
4946 for_each_possible_cpu(i)
4947 INIT_CSD(&per_cpu(blk_cpu_csd, i),
4948 __blk_mq_complete_request_remote, NULL);
c3077b5d
CH
4949 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4950
4951 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4952 "block/softirq:dead", NULL,
4953 blk_softirq_cpu_dead);
9467f859
TG
4954 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4955 blk_mq_hctx_notify_dead);
bf0beec0
ML
4956 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4957 blk_mq_hctx_notify_online,
4958 blk_mq_hctx_notify_offline);
320ae51f
JA
4959 return 0;
4960}
4961subsys_initcall(blk_mq_init);