blk-mq: merge the softirq vs non-softirq IPI logic
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
75bb4625
JA
2/*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
320ae51f
JA
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/backing-dev.h>
11#include <linux/bio.h>
12#include <linux/blkdev.h>
f75782e4 13#include <linux/kmemleak.h>
320ae51f
JA
14#include <linux/mm.h>
15#include <linux/init.h>
16#include <linux/slab.h>
17#include <linux/workqueue.h>
18#include <linux/smp.h>
19#include <linux/llist.h>
20#include <linux/list_sort.h>
21#include <linux/cpu.h>
22#include <linux/cache.h>
23#include <linux/sched/sysctl.h>
105ab3d8 24#include <linux/sched/topology.h>
174cd4b1 25#include <linux/sched/signal.h>
320ae51f 26#include <linux/delay.h>
aedcd72f 27#include <linux/crash_dump.h>
88c7b2b7 28#include <linux/prefetch.h>
a892c8d5 29#include <linux/blk-crypto.h>
320ae51f
JA
30
31#include <trace/events/block.h>
32
33#include <linux/blk-mq.h>
54d4e6ab 34#include <linux/t10-pi.h>
320ae51f
JA
35#include "blk.h"
36#include "blk-mq.h"
9c1051aa 37#include "blk-mq-debugfs.h"
320ae51f 38#include "blk-mq-tag.h"
986d413b 39#include "blk-pm.h"
cf43e6be 40#include "blk-stat.h"
bd166ef1 41#include "blk-mq-sched.h"
c1c80384 42#include "blk-rq-qos.h"
320ae51f 43
c3077b5d
CH
44static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45
34dbad5d
OS
46static void blk_mq_poll_stats_start(struct request_queue *q);
47static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
720b8ccc
SB
49static int blk_mq_poll_stats_bkt(const struct request *rq)
50{
3d244306 51 int ddir, sectors, bucket;
720b8ccc 52
99c749a4 53 ddir = rq_data_dir(rq);
3d244306 54 sectors = blk_rq_stats_sectors(rq);
720b8ccc 55
3d244306 56 bucket = ddir + 2 * ilog2(sectors);
720b8ccc
SB
57
58 if (bucket < 0)
59 return -1;
60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63 return bucket;
64}
65
320ae51f 66/*
85fae294
YY
67 * Check if any of the ctx, dispatch list or elevator
68 * have pending work in this hardware queue.
320ae51f 69 */
79f720a7 70static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 71{
79f720a7
JA
72 return !list_empty_careful(&hctx->dispatch) ||
73 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 74 blk_mq_sched_has_work(hctx);
1429d7c9
JA
75}
76
320ae51f
JA
77/*
78 * Mark this ctx as having pending work in this hardware queue
79 */
80static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82{
f31967f0
JA
83 const int bit = ctx->index_hw[hctx->type];
84
85 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 sbitmap_set_bit(&hctx->ctx_map, bit);
1429d7c9
JA
87}
88
89static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 struct blk_mq_ctx *ctx)
91{
f31967f0
JA
92 const int bit = ctx->index_hw[hctx->type];
93
94 sbitmap_clear_bit(&hctx->ctx_map, bit);
320ae51f
JA
95}
96
f299b7c7
JA
97struct mq_inflight {
98 struct hd_struct *part;
a2e80f6f 99 unsigned int inflight[2];
f299b7c7
JA
100};
101
7baa8572 102static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
f299b7c7
JA
103 struct request *rq, void *priv,
104 bool reserved)
105{
106 struct mq_inflight *mi = priv;
107
6131837b 108 if (rq->part == mi->part)
bb4e6b14 109 mi->inflight[rq_data_dir(rq)]++;
7baa8572
JA
110
111 return true;
f299b7c7
JA
112}
113
e016b782 114unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
f299b7c7 115{
a2e80f6f 116 struct mq_inflight mi = { .part = part };
f299b7c7 117
f299b7c7 118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
e016b782 119
a2e80f6f 120 return mi.inflight[0] + mi.inflight[1];
bf0ddaba
OS
121}
122
123void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
124 unsigned int inflight[2])
125{
a2e80f6f 126 struct mq_inflight mi = { .part = part };
bf0ddaba 127
bb4e6b14 128 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
a2e80f6f
PB
129 inflight[0] = mi.inflight[0];
130 inflight[1] = mi.inflight[1];
bf0ddaba
OS
131}
132
1671d522 133void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 134{
7996a8b5
BL
135 mutex_lock(&q->mq_freeze_lock);
136 if (++q->mq_freeze_depth == 1) {
3ef28e83 137 percpu_ref_kill(&q->q_usage_counter);
7996a8b5 138 mutex_unlock(&q->mq_freeze_lock);
344e9ffc 139 if (queue_is_mq(q))
055f6e18 140 blk_mq_run_hw_queues(q, false);
7996a8b5
BL
141 } else {
142 mutex_unlock(&q->mq_freeze_lock);
cddd5d17 143 }
f3af020b 144}
1671d522 145EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 146
6bae363e 147void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 148{
3ef28e83 149 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 150}
6bae363e 151EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 152
f91328c4
KB
153int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
154 unsigned long timeout)
155{
156 return wait_event_timeout(q->mq_freeze_wq,
157 percpu_ref_is_zero(&q->q_usage_counter),
158 timeout);
159}
160EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 161
f3af020b
TH
162/*
163 * Guarantee no request is in use, so we can change any data structure of
164 * the queue afterward.
165 */
3ef28e83 166void blk_freeze_queue(struct request_queue *q)
f3af020b 167{
3ef28e83
DW
168 /*
169 * In the !blk_mq case we are only calling this to kill the
170 * q_usage_counter, otherwise this increases the freeze depth
171 * and waits for it to return to zero. For this reason there is
172 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
173 * exported to drivers as the only user for unfreeze is blk_mq.
174 */
1671d522 175 blk_freeze_queue_start(q);
f3af020b
TH
176 blk_mq_freeze_queue_wait(q);
177}
3ef28e83
DW
178
179void blk_mq_freeze_queue(struct request_queue *q)
180{
181 /*
182 * ...just an alias to keep freeze and unfreeze actions balanced
183 * in the blk_mq_* namespace
184 */
185 blk_freeze_queue(q);
186}
c761d96b 187EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 188
b4c6a028 189void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 190{
7996a8b5
BL
191 mutex_lock(&q->mq_freeze_lock);
192 q->mq_freeze_depth--;
193 WARN_ON_ONCE(q->mq_freeze_depth < 0);
194 if (!q->mq_freeze_depth) {
bdd63160 195 percpu_ref_resurrect(&q->q_usage_counter);
320ae51f 196 wake_up_all(&q->mq_freeze_wq);
add703fd 197 }
7996a8b5 198 mutex_unlock(&q->mq_freeze_lock);
320ae51f 199}
b4c6a028 200EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 201
852ec809
BVA
202/*
203 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
204 * mpt3sas driver such that this function can be removed.
205 */
206void blk_mq_quiesce_queue_nowait(struct request_queue *q)
207{
8814ce8a 208 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
852ec809
BVA
209}
210EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
211
6a83e74d 212/**
69e07c4a 213 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
214 * @q: request queue.
215 *
216 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
217 * callback function is invoked. Once this function is returned, we make
218 * sure no dispatch can happen until the queue is unquiesced via
219 * blk_mq_unquiesce_queue().
6a83e74d
BVA
220 */
221void blk_mq_quiesce_queue(struct request_queue *q)
222{
223 struct blk_mq_hw_ctx *hctx;
224 unsigned int i;
225 bool rcu = false;
226
1d9e9bc6 227 blk_mq_quiesce_queue_nowait(q);
f4560ffe 228
6a83e74d
BVA
229 queue_for_each_hw_ctx(q, hctx, i) {
230 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 231 synchronize_srcu(hctx->srcu);
6a83e74d
BVA
232 else
233 rcu = true;
234 }
235 if (rcu)
236 synchronize_rcu();
237}
238EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
239
e4e73913
ML
240/*
241 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
242 * @q: request queue.
243 *
244 * This function recovers queue into the state before quiescing
245 * which is done by blk_mq_quiesce_queue.
246 */
247void blk_mq_unquiesce_queue(struct request_queue *q)
248{
8814ce8a 249 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
f4560ffe 250
1d9e9bc6
ML
251 /* dispatch requests which are inserted during quiescing */
252 blk_mq_run_hw_queues(q, true);
e4e73913
ML
253}
254EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
255
aed3ea94
JA
256void blk_mq_wake_waiters(struct request_queue *q)
257{
258 struct blk_mq_hw_ctx *hctx;
259 unsigned int i;
260
261 queue_for_each_hw_ctx(q, hctx, i)
262 if (blk_mq_hw_queue_mapped(hctx))
263 blk_mq_tag_wakeup_all(hctx->tags, true);
264}
265
fe1f4526 266/*
9a91b05b
HT
267 * Only need start/end time stamping if we have iostat or
268 * blk stats enabled, or using an IO scheduler.
fe1f4526
JA
269 */
270static inline bool blk_mq_need_time_stamp(struct request *rq)
271{
9a91b05b 272 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
fe1f4526
JA
273}
274
e4cdf1a1 275static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
7ea4d8a4 276 unsigned int tag, u64 alloc_time_ns)
320ae51f 277{
e4cdf1a1
CH
278 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
279 struct request *rq = tags->static_rqs[tag];
bf9ae8c5 280 req_flags_t rq_flags = 0;
c3a148d2 281
e4cdf1a1 282 if (data->flags & BLK_MQ_REQ_INTERNAL) {
76647368 283 rq->tag = BLK_MQ_NO_TAG;
e4cdf1a1
CH
284 rq->internal_tag = tag;
285 } else {
d263ed99 286 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
bf9ae8c5 287 rq_flags = RQF_MQ_INFLIGHT;
e4cdf1a1
CH
288 atomic_inc(&data->hctx->nr_active);
289 }
290 rq->tag = tag;
76647368 291 rq->internal_tag = BLK_MQ_NO_TAG;
e4cdf1a1
CH
292 data->hctx->tags->rqs[rq->tag] = rq;
293 }
294
af76e555 295 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
296 rq->q = data->q;
297 rq->mq_ctx = data->ctx;
ea4f995e 298 rq->mq_hctx = data->hctx;
bf9ae8c5 299 rq->rq_flags = rq_flags;
7ea4d8a4 300 rq->cmd_flags = data->cmd_flags;
1b6d65a0
BVA
301 if (data->flags & BLK_MQ_REQ_PREEMPT)
302 rq->rq_flags |= RQF_PREEMPT;
e4cdf1a1 303 if (blk_queue_io_stat(data->q))
e8064021 304 rq->rq_flags |= RQF_IO_STAT;
7c3fb70f 305 INIT_LIST_HEAD(&rq->queuelist);
af76e555
CH
306 INIT_HLIST_NODE(&rq->hash);
307 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
308 rq->rq_disk = NULL;
309 rq->part = NULL;
6f816b4b
TH
310#ifdef CONFIG_BLK_RQ_ALLOC_TIME
311 rq->alloc_time_ns = alloc_time_ns;
312#endif
fe1f4526
JA
313 if (blk_mq_need_time_stamp(rq))
314 rq->start_time_ns = ktime_get_ns();
315 else
316 rq->start_time_ns = 0;
544ccc8d 317 rq->io_start_time_ns = 0;
3d244306 318 rq->stats_sectors = 0;
af76e555
CH
319 rq->nr_phys_segments = 0;
320#if defined(CONFIG_BLK_DEV_INTEGRITY)
321 rq->nr_integrity_segments = 0;
322#endif
a892c8d5 323 blk_crypto_rq_set_defaults(rq);
af76e555 324 /* tag was already set */
079076b3 325 WRITE_ONCE(rq->deadline, 0);
af76e555 326
f6be4fb4
JA
327 rq->timeout = 0;
328
af76e555
CH
329 rq->end_io = NULL;
330 rq->end_io_data = NULL;
af76e555 331
7ea4d8a4 332 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
12f5b931 333 refcount_set(&rq->ref, 1);
7ea4d8a4
CH
334
335 if (!op_is_flush(data->cmd_flags)) {
336 struct elevator_queue *e = data->q->elevator;
337
338 rq->elv.icq = NULL;
339 if (e && e->type->ops.prepare_request) {
340 if (e->type->icq_cache)
341 blk_mq_sched_assign_ioc(rq);
342
343 e->type->ops.prepare_request(rq);
344 rq->rq_flags |= RQF_ELVPRIV;
345 }
346 }
347
348 data->hctx->queued++;
e4cdf1a1 349 return rq;
5dee8577
CH
350}
351
e6e7abff 352static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
d2c0d383 353{
e6e7abff 354 struct request_queue *q = data->q;
d2c0d383 355 struct elevator_queue *e = q->elevator;
6f816b4b 356 u64 alloc_time_ns = 0;
600c3b0c 357 unsigned int tag;
d2c0d383 358
6f816b4b
TH
359 /* alloc_time includes depth and tag waits */
360 if (blk_queue_rq_alloc_time(q))
361 alloc_time_ns = ktime_get_ns();
362
f9afca4d 363 if (data->cmd_flags & REQ_NOWAIT)
03a07c92 364 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
365
366 if (e) {
367 data->flags |= BLK_MQ_REQ_INTERNAL;
368
369 /*
370 * Flush requests are special and go directly to the
17a51199
JA
371 * dispatch list. Don't include reserved tags in the
372 * limiting, as it isn't useful.
d2c0d383 373 */
f9afca4d
JA
374 if (!op_is_flush(data->cmd_flags) &&
375 e->type->ops.limit_depth &&
17a51199 376 !(data->flags & BLK_MQ_REQ_RESERVED))
f9afca4d 377 e->type->ops.limit_depth(data->cmd_flags, data);
d2c0d383
CH
378 }
379
bf0beec0 380retry:
600c3b0c
CH
381 data->ctx = blk_mq_get_ctx(q);
382 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
383 if (!(data->flags & BLK_MQ_REQ_INTERNAL))
384 blk_mq_tag_busy(data->hctx);
385
bf0beec0
ML
386 /*
387 * Waiting allocations only fail because of an inactive hctx. In that
388 * case just retry the hctx assignment and tag allocation as CPU hotplug
389 * should have migrated us to an online CPU by now.
390 */
e4cdf1a1 391 tag = blk_mq_get_tag(data);
bf0beec0
ML
392 if (tag == BLK_MQ_NO_TAG) {
393 if (data->flags & BLK_MQ_REQ_NOWAIT)
394 return NULL;
395
396 /*
397 * Give up the CPU and sleep for a random short time to ensure
398 * that thread using a realtime scheduling class are migrated
399 * off the the CPU, and thus off the hctx that is going away.
400 */
401 msleep(3);
402 goto retry;
403 }
7ea4d8a4 404 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
d2c0d383
CH
405}
406
cd6ce148 407struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 408 blk_mq_req_flags_t flags)
320ae51f 409{
e6e7abff
CH
410 struct blk_mq_alloc_data data = {
411 .q = q,
412 .flags = flags,
413 .cmd_flags = op,
414 };
bd166ef1 415 struct request *rq;
a492f075 416 int ret;
320ae51f 417
3a0a5299 418 ret = blk_queue_enter(q, flags);
a492f075
JL
419 if (ret)
420 return ERR_PTR(ret);
320ae51f 421
e6e7abff 422 rq = __blk_mq_alloc_request(&data);
bd166ef1 423 if (!rq)
a5ea5811 424 goto out_queue_exit;
0c4de0f3
CH
425 rq->__data_len = 0;
426 rq->__sector = (sector_t) -1;
427 rq->bio = rq->biotail = NULL;
320ae51f 428 return rq;
a5ea5811
CH
429out_queue_exit:
430 blk_queue_exit(q);
431 return ERR_PTR(-EWOULDBLOCK);
320ae51f 432}
4bb659b1 433EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 434
cd6ce148 435struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 436 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 437{
e6e7abff
CH
438 struct blk_mq_alloc_data data = {
439 .q = q,
440 .flags = flags,
441 .cmd_flags = op,
442 };
600c3b0c 443 u64 alloc_time_ns = 0;
6d2809d5 444 unsigned int cpu;
600c3b0c 445 unsigned int tag;
1f5bd336
ML
446 int ret;
447
600c3b0c
CH
448 /* alloc_time includes depth and tag waits */
449 if (blk_queue_rq_alloc_time(q))
450 alloc_time_ns = ktime_get_ns();
451
1f5bd336
ML
452 /*
453 * If the tag allocator sleeps we could get an allocation for a
454 * different hardware context. No need to complicate the low level
455 * allocator for this for the rare use case of a command tied to
456 * a specific queue.
457 */
600c3b0c 458 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
1f5bd336
ML
459 return ERR_PTR(-EINVAL);
460
461 if (hctx_idx >= q->nr_hw_queues)
462 return ERR_PTR(-EIO);
463
3a0a5299 464 ret = blk_queue_enter(q, flags);
1f5bd336
ML
465 if (ret)
466 return ERR_PTR(ret);
467
c8712c6a
CH
468 /*
469 * Check if the hardware context is actually mapped to anything.
470 * If not tell the caller that it should skip this queue.
471 */
a5ea5811 472 ret = -EXDEV;
e6e7abff
CH
473 data.hctx = q->queue_hw_ctx[hctx_idx];
474 if (!blk_mq_hw_queue_mapped(data.hctx))
a5ea5811 475 goto out_queue_exit;
e6e7abff
CH
476 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
477 data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 478
600c3b0c
CH
479 if (q->elevator)
480 data.flags |= BLK_MQ_REQ_INTERNAL;
481 else
482 blk_mq_tag_busy(data.hctx);
483
a5ea5811 484 ret = -EWOULDBLOCK;
600c3b0c
CH
485 tag = blk_mq_get_tag(&data);
486 if (tag == BLK_MQ_NO_TAG)
a5ea5811 487 goto out_queue_exit;
600c3b0c
CH
488 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
489
a5ea5811
CH
490out_queue_exit:
491 blk_queue_exit(q);
492 return ERR_PTR(ret);
1f5bd336
ML
493}
494EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
495
12f5b931
KB
496static void __blk_mq_free_request(struct request *rq)
497{
498 struct request_queue *q = rq->q;
499 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 500 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
12f5b931
KB
501 const int sched_tag = rq->internal_tag;
502
a892c8d5 503 blk_crypto_free_request(rq);
986d413b 504 blk_pm_mark_last_busy(rq);
ea4f995e 505 rq->mq_hctx = NULL;
76647368 506 if (rq->tag != BLK_MQ_NO_TAG)
cae740a0 507 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
76647368 508 if (sched_tag != BLK_MQ_NO_TAG)
cae740a0 509 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
12f5b931
KB
510 blk_mq_sched_restart(hctx);
511 blk_queue_exit(q);
512}
513
6af54051 514void blk_mq_free_request(struct request *rq)
320ae51f 515{
320ae51f 516 struct request_queue *q = rq->q;
6af54051
CH
517 struct elevator_queue *e = q->elevator;
518 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 519 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
6af54051 520
5bbf4e5a 521 if (rq->rq_flags & RQF_ELVPRIV) {
f9cd4bfe
JA
522 if (e && e->type->ops.finish_request)
523 e->type->ops.finish_request(rq);
6af54051
CH
524 if (rq->elv.icq) {
525 put_io_context(rq->elv.icq->ioc);
526 rq->elv.icq = NULL;
527 }
528 }
320ae51f 529
6af54051 530 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 531 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 532 atomic_dec(&hctx->nr_active);
87760e5e 533
7beb2f84
JA
534 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
535 laptop_io_completion(q->backing_dev_info);
536
a7905043 537 rq_qos_done(q, rq);
0d2602ca 538
12f5b931
KB
539 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
540 if (refcount_dec_and_test(&rq->ref))
541 __blk_mq_free_request(rq);
320ae51f 542}
1a3b595a 543EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 544
2a842aca 545inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 546{
fe1f4526
JA
547 u64 now = 0;
548
549 if (blk_mq_need_time_stamp(rq))
550 now = ktime_get_ns();
522a7775 551
4bc6339a
OS
552 if (rq->rq_flags & RQF_STATS) {
553 blk_mq_poll_stats_start(rq->q);
522a7775 554 blk_stat_add(rq, now);
4bc6339a
OS
555 }
556
76647368 557 if (rq->internal_tag != BLK_MQ_NO_TAG)
ed88660a
OS
558 blk_mq_sched_completed_request(rq, now);
559
522a7775 560 blk_account_io_done(rq, now);
0d11e6ac 561
91b63639 562 if (rq->end_io) {
a7905043 563 rq_qos_done(rq->q, rq);
320ae51f 564 rq->end_io(rq, error);
91b63639 565 } else {
320ae51f 566 blk_mq_free_request(rq);
91b63639 567 }
320ae51f 568}
c8a446ad 569EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 570
2a842aca 571void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
572{
573 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
574 BUG();
c8a446ad 575 __blk_mq_end_request(rq, error);
63151a44 576}
c8a446ad 577EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 578
c3077b5d
CH
579/*
580 * Softirq action handler - move entries to local list and loop over them
581 * while passing them to the queue registered handler.
582 */
583static __latent_entropy void blk_done_softirq(struct softirq_action *h)
584{
585 struct list_head *cpu_list, local_list;
586
587 local_irq_disable();
588 cpu_list = this_cpu_ptr(&blk_cpu_done);
589 list_replace_init(cpu_list, &local_list);
590 local_irq_enable();
591
592 while (!list_empty(&local_list)) {
593 struct request *rq;
594
595 rq = list_entry(local_list.next, struct request, ipi_list);
596 list_del_init(&rq->ipi_list);
597 rq->q->mq_ops->complete(rq);
598 }
599}
600
115243f5 601static void blk_mq_trigger_softirq(struct request *rq)
c3077b5d 602{
d391a7a3
CH
603 struct list_head *list;
604 unsigned long flags;
c3077b5d 605
d391a7a3
CH
606 local_irq_save(flags);
607 list = this_cpu_ptr(&blk_cpu_done);
c3077b5d
CH
608 list_add_tail(&rq->ipi_list, list);
609
115243f5
CH
610 /*
611 * If the list only contains our just added request, signal a raise of
612 * the softirq. If there are already entries there, someone already
613 * raised the irq but it hasn't run yet.
614 */
c3077b5d
CH
615 if (list->next == &rq->ipi_list)
616 raise_softirq_irqoff(BLOCK_SOFTIRQ);
d391a7a3 617 local_irq_restore(flags);
115243f5
CH
618}
619
c3077b5d
CH
620static int blk_softirq_cpu_dead(unsigned int cpu)
621{
622 /*
623 * If a CPU goes away, splice its entries to the current CPU
624 * and trigger a run of the softirq
625 */
626 local_irq_disable();
627 list_splice_init(&per_cpu(blk_cpu_done, cpu),
628 this_cpu_ptr(&blk_cpu_done));
629 raise_softirq_irqoff(BLOCK_SOFTIRQ);
630 local_irq_enable();
631
632 return 0;
633}
634
d391a7a3 635static void __blk_mq_complete_request(struct request *rq)
c3077b5d 636{
c3077b5d 637 /*
d391a7a3
CH
638 * For most of single queue controllers, there is only one irq vector
639 * for handling I/O completion, and the only irq's affinity is set
640 * to all possible CPUs. On most of ARCHs, this affinity means the irq
641 * is handled on one specific CPU.
642 *
643 * So complete I/O requests in softirq context in case of single queue
644 * devices to avoid degrading I/O performance due to irqsoff latency.
c3077b5d 645 */
d391a7a3
CH
646 if (rq->q->nr_hw_queues == 1)
647 blk_mq_trigger_softirq(rq);
648 else
649 rq->q->mq_ops->complete(rq);
c3077b5d
CH
650}
651
30a91cb4 652static void __blk_mq_complete_request_remote(void *data)
320ae51f 653{
d391a7a3 654 __blk_mq_complete_request(data);
320ae51f 655}
320ae51f 656
7b11eab0
KB
657/**
658 * blk_mq_force_complete_rq() - Force complete the request, bypassing any error
659 * injection that could drop the completion.
660 * @rq: Request to be force completed
661 *
662 * Drivers should use blk_mq_complete_request() to complete requests in their
663 * normal IO path. For timeout error recovery, drivers may call this forced
664 * completion routine after they've reclaimed timed out requests to bypass
665 * potentially subsequent fake timeouts.
666 */
667void blk_mq_force_complete_rq(struct request *rq)
320ae51f
JA
668{
669 struct blk_mq_ctx *ctx = rq->mq_ctx;
c7bb9ad1 670 struct request_queue *q = rq->q;
38535201 671 bool shared = false;
320ae51f
JA
672 int cpu;
673
af78ff7c 674 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
6aab1da6
CH
675
676 /*
677 * For a polled request, always complete locallly, it's pointless
678 * to redirect the completion.
679 */
680 if (rq->cmd_flags & REQ_HIPRI) {
681 q->mq_ops->complete(rq);
682 return;
683 }
684
d6cc464c
CH
685 if (!IS_ENABLED(CONFIG_SMP) ||
686 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
d391a7a3 687 __blk_mq_complete_request(rq);
30a91cb4
CH
688 return;
689 }
320ae51f
JA
690
691 cpu = get_cpu();
c7bb9ad1 692 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
38535201
CH
693 shared = cpus_share_cache(cpu, ctx->cpu);
694
695 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 696 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
697 rq->csd.info = rq;
698 rq->csd.flags = 0;
c46fff2a 699 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 700 } else {
d391a7a3 701 __blk_mq_complete_request(rq);
3d6efbf6 702 }
320ae51f
JA
703 put_cpu();
704}
7b11eab0 705EXPORT_SYMBOL_GPL(blk_mq_force_complete_rq);
30a91cb4 706
04ced159 707static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
b7435db8 708 __releases(hctx->srcu)
04ced159
JA
709{
710 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
711 rcu_read_unlock();
712 else
05707b64 713 srcu_read_unlock(hctx->srcu, srcu_idx);
04ced159
JA
714}
715
716static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
b7435db8 717 __acquires(hctx->srcu)
04ced159 718{
08b5a6e2
JA
719 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
720 /* shut up gcc false positive */
721 *srcu_idx = 0;
04ced159 722 rcu_read_lock();
08b5a6e2 723 } else
05707b64 724 *srcu_idx = srcu_read_lock(hctx->srcu);
04ced159
JA
725}
726
30a91cb4
CH
727/**
728 * blk_mq_complete_request - end I/O on a request
729 * @rq: the request being processed
730 *
731 * Description:
732 * Ends all I/O on a request. It does not handle partial completions.
733 * The actual completion happens out-of-order, through a IPI handler.
734 **/
16c15eb1 735bool blk_mq_complete_request(struct request *rq)
30a91cb4 736{
12f5b931 737 if (unlikely(blk_should_fake_timeout(rq->q)))
16c15eb1 738 return false;
7b11eab0 739 blk_mq_force_complete_rq(rq);
16c15eb1 740 return true;
30a91cb4
CH
741}
742EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 743
105663f7
AA
744/**
745 * blk_mq_start_request - Start processing a request
746 * @rq: Pointer to request to be started
747 *
748 * Function used by device drivers to notify the block layer that a request
749 * is going to be processed now, so blk layer can do proper initializations
750 * such as starting the timeout timer.
751 */
e2490073 752void blk_mq_start_request(struct request *rq)
320ae51f
JA
753{
754 struct request_queue *q = rq->q;
755
756 trace_block_rq_issue(q, rq);
757
cf43e6be 758 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
544ccc8d 759 rq->io_start_time_ns = ktime_get_ns();
3d244306 760 rq->stats_sectors = blk_rq_sectors(rq);
cf43e6be 761 rq->rq_flags |= RQF_STATS;
a7905043 762 rq_qos_issue(q, rq);
cf43e6be
JA
763 }
764
1d9bd516 765 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
538b7534 766
1d9bd516 767 blk_add_timer(rq);
12f5b931 768 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
49f5baa5 769
54d4e6ab
MG
770#ifdef CONFIG_BLK_DEV_INTEGRITY
771 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
772 q->integrity.profile->prepare_fn(rq);
773#endif
320ae51f 774}
e2490073 775EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 776
ed0791b2 777static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
778{
779 struct request_queue *q = rq->q;
780
923218f6
ML
781 blk_mq_put_driver_tag(rq);
782
320ae51f 783 trace_block_rq_requeue(q, rq);
a7905043 784 rq_qos_requeue(q, rq);
49f5baa5 785
12f5b931
KB
786 if (blk_mq_request_started(rq)) {
787 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
da661267 788 rq->rq_flags &= ~RQF_TIMED_OUT;
e2490073 789 }
320ae51f
JA
790}
791
2b053aca 792void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 793{
ed0791b2 794 __blk_mq_requeue_request(rq);
ed0791b2 795
105976f5
ML
796 /* this request will be re-inserted to io scheduler queue */
797 blk_mq_sched_requeue_request(rq);
798
7d692330 799 BUG_ON(!list_empty(&rq->queuelist));
2b053aca 800 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
801}
802EXPORT_SYMBOL(blk_mq_requeue_request);
803
6fca6a61
CH
804static void blk_mq_requeue_work(struct work_struct *work)
805{
806 struct request_queue *q =
2849450a 807 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
808 LIST_HEAD(rq_list);
809 struct request *rq, *next;
6fca6a61 810
18e9781d 811 spin_lock_irq(&q->requeue_lock);
6fca6a61 812 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 813 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
814
815 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
aef1897c 816 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
6fca6a61
CH
817 continue;
818
e8064021 819 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 820 list_del_init(&rq->queuelist);
aef1897c
JW
821 /*
822 * If RQF_DONTPREP, rq has contained some driver specific
823 * data, so insert it to hctx dispatch list to avoid any
824 * merge.
825 */
826 if (rq->rq_flags & RQF_DONTPREP)
01e99aec 827 blk_mq_request_bypass_insert(rq, false, false);
aef1897c
JW
828 else
829 blk_mq_sched_insert_request(rq, true, false, false);
6fca6a61
CH
830 }
831
832 while (!list_empty(&rq_list)) {
833 rq = list_entry(rq_list.next, struct request, queuelist);
834 list_del_init(&rq->queuelist);
9e97d295 835 blk_mq_sched_insert_request(rq, false, false, false);
6fca6a61
CH
836 }
837
52d7f1b5 838 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
839}
840
2b053aca
BVA
841void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
842 bool kick_requeue_list)
6fca6a61
CH
843{
844 struct request_queue *q = rq->q;
845 unsigned long flags;
846
847 /*
848 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 849 * request head insertion from the workqueue.
6fca6a61 850 */
e8064021 851 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
852
853 spin_lock_irqsave(&q->requeue_lock, flags);
854 if (at_head) {
e8064021 855 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
856 list_add(&rq->queuelist, &q->requeue_list);
857 } else {
858 list_add_tail(&rq->queuelist, &q->requeue_list);
859 }
860 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
861
862 if (kick_requeue_list)
863 blk_mq_kick_requeue_list(q);
6fca6a61 864}
6fca6a61
CH
865
866void blk_mq_kick_requeue_list(struct request_queue *q)
867{
ae943d20 868 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
6fca6a61
CH
869}
870EXPORT_SYMBOL(blk_mq_kick_requeue_list);
871
2849450a
MS
872void blk_mq_delay_kick_requeue_list(struct request_queue *q,
873 unsigned long msecs)
874{
d4acf365
BVA
875 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
876 msecs_to_jiffies(msecs));
2849450a
MS
877}
878EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
879
0e62f51f
JA
880struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
881{
88c7b2b7
JA
882 if (tag < tags->nr_tags) {
883 prefetch(tags->rqs[tag]);
4ee86bab 884 return tags->rqs[tag];
88c7b2b7 885 }
4ee86bab
HR
886
887 return NULL;
24d2f903
CH
888}
889EXPORT_SYMBOL(blk_mq_tag_to_rq);
890
3c94d83c
JA
891static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
892 void *priv, bool reserved)
ae879912
JA
893{
894 /*
3c94d83c
JA
895 * If we find a request that is inflight and the queue matches,
896 * we know the queue is busy. Return false to stop the iteration.
ae879912 897 */
3c94d83c 898 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
ae879912
JA
899 bool *busy = priv;
900
901 *busy = true;
902 return false;
903 }
904
905 return true;
906}
907
3c94d83c 908bool blk_mq_queue_inflight(struct request_queue *q)
ae879912
JA
909{
910 bool busy = false;
911
3c94d83c 912 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
ae879912
JA
913 return busy;
914}
3c94d83c 915EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
ae879912 916
358f70da 917static void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 918{
da661267 919 req->rq_flags |= RQF_TIMED_OUT;
d1210d5a
CH
920 if (req->q->mq_ops->timeout) {
921 enum blk_eh_timer_return ret;
922
923 ret = req->q->mq_ops->timeout(req, reserved);
924 if (ret == BLK_EH_DONE)
925 return;
926 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
46f92d42 927 }
d1210d5a
CH
928
929 blk_add_timer(req);
87ee7b11 930}
5b3f25fc 931
12f5b931 932static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
81481eb4 933{
12f5b931 934 unsigned long deadline;
87ee7b11 935
12f5b931
KB
936 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
937 return false;
da661267
CH
938 if (rq->rq_flags & RQF_TIMED_OUT)
939 return false;
a7af0af3 940
079076b3 941 deadline = READ_ONCE(rq->deadline);
12f5b931
KB
942 if (time_after_eq(jiffies, deadline))
943 return true;
a7af0af3 944
12f5b931
KB
945 if (*next == 0)
946 *next = deadline;
947 else if (time_after(*next, deadline))
948 *next = deadline;
949 return false;
87ee7b11
JA
950}
951
7baa8572 952static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1d9bd516
TH
953 struct request *rq, void *priv, bool reserved)
954{
12f5b931
KB
955 unsigned long *next = priv;
956
957 /*
958 * Just do a quick check if it is expired before locking the request in
959 * so we're not unnecessarilly synchronizing across CPUs.
960 */
961 if (!blk_mq_req_expired(rq, next))
7baa8572 962 return true;
12f5b931
KB
963
964 /*
965 * We have reason to believe the request may be expired. Take a
966 * reference on the request to lock this request lifetime into its
967 * currently allocated context to prevent it from being reallocated in
968 * the event the completion by-passes this timeout handler.
969 *
970 * If the reference was already released, then the driver beat the
971 * timeout handler to posting a natural completion.
972 */
973 if (!refcount_inc_not_zero(&rq->ref))
7baa8572 974 return true;
12f5b931 975
1d9bd516 976 /*
12f5b931
KB
977 * The request is now locked and cannot be reallocated underneath the
978 * timeout handler's processing. Re-verify this exact request is truly
979 * expired; if it is not expired, then the request was completed and
980 * reallocated as a new request.
1d9bd516 981 */
12f5b931 982 if (blk_mq_req_expired(rq, next))
1d9bd516 983 blk_mq_rq_timed_out(rq, reserved);
8d699663
YY
984
985 if (is_flush_rq(rq, hctx))
986 rq->end_io(rq, 0);
987 else if (refcount_dec_and_test(&rq->ref))
12f5b931 988 __blk_mq_free_request(rq);
7baa8572
JA
989
990 return true;
1d9bd516
TH
991}
992
287922eb 993static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 994{
287922eb
CH
995 struct request_queue *q =
996 container_of(work, struct request_queue, timeout_work);
12f5b931 997 unsigned long next = 0;
1d9bd516 998 struct blk_mq_hw_ctx *hctx;
81481eb4 999 int i;
320ae51f 1000
71f79fb3
GKB
1001 /* A deadlock might occur if a request is stuck requiring a
1002 * timeout at the same time a queue freeze is waiting
1003 * completion, since the timeout code would not be able to
1004 * acquire the queue reference here.
1005 *
1006 * That's why we don't use blk_queue_enter here; instead, we use
1007 * percpu_ref_tryget directly, because we need to be able to
1008 * obtain a reference even in the short window between the queue
1009 * starting to freeze, by dropping the first reference in
1671d522 1010 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
1011 * consumed, marked by the instant q_usage_counter reaches
1012 * zero.
1013 */
1014 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
1015 return;
1016
12f5b931 1017 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
320ae51f 1018
12f5b931
KB
1019 if (next != 0) {
1020 mod_timer(&q->timeout, next);
0d2602ca 1021 } else {
fcd36c36
BVA
1022 /*
1023 * Request timeouts are handled as a forward rolling timer. If
1024 * we end up here it means that no requests are pending and
1025 * also that no request has been pending for a while. Mark
1026 * each hctx as idle.
1027 */
f054b56c
ML
1028 queue_for_each_hw_ctx(q, hctx, i) {
1029 /* the hctx may be unmapped, so check it here */
1030 if (blk_mq_hw_queue_mapped(hctx))
1031 blk_mq_tag_idle(hctx);
1032 }
0d2602ca 1033 }
287922eb 1034 blk_queue_exit(q);
320ae51f
JA
1035}
1036
88459642
OS
1037struct flush_busy_ctx_data {
1038 struct blk_mq_hw_ctx *hctx;
1039 struct list_head *list;
1040};
1041
1042static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1043{
1044 struct flush_busy_ctx_data *flush_data = data;
1045 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1046 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 1047 enum hctx_type type = hctx->type;
88459642 1048
88459642 1049 spin_lock(&ctx->lock);
c16d6b5a 1050 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
e9a99a63 1051 sbitmap_clear_bit(sb, bitnr);
88459642
OS
1052 spin_unlock(&ctx->lock);
1053 return true;
1054}
1055
1429d7c9
JA
1056/*
1057 * Process software queues that have been marked busy, splicing them
1058 * to the for-dispatch
1059 */
2c3ad667 1060void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 1061{
88459642
OS
1062 struct flush_busy_ctx_data data = {
1063 .hctx = hctx,
1064 .list = list,
1065 };
1429d7c9 1066
88459642 1067 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 1068}
2c3ad667 1069EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 1070
b347689f
ML
1071struct dispatch_rq_data {
1072 struct blk_mq_hw_ctx *hctx;
1073 struct request *rq;
1074};
1075
1076static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1077 void *data)
1078{
1079 struct dispatch_rq_data *dispatch_data = data;
1080 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1081 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 1082 enum hctx_type type = hctx->type;
b347689f
ML
1083
1084 spin_lock(&ctx->lock);
c16d6b5a
ML
1085 if (!list_empty(&ctx->rq_lists[type])) {
1086 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
b347689f 1087 list_del_init(&dispatch_data->rq->queuelist);
c16d6b5a 1088 if (list_empty(&ctx->rq_lists[type]))
b347689f
ML
1089 sbitmap_clear_bit(sb, bitnr);
1090 }
1091 spin_unlock(&ctx->lock);
1092
1093 return !dispatch_data->rq;
1094}
1095
1096struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1097 struct blk_mq_ctx *start)
1098{
f31967f0 1099 unsigned off = start ? start->index_hw[hctx->type] : 0;
b347689f
ML
1100 struct dispatch_rq_data data = {
1101 .hctx = hctx,
1102 .rq = NULL,
1103 };
1104
1105 __sbitmap_for_each_set(&hctx->ctx_map, off,
1106 dispatch_rq_from_ctx, &data);
1107
1108 return data.rq;
1109}
1110
703fd1c0
JA
1111static inline unsigned int queued_to_index(unsigned int queued)
1112{
1113 if (!queued)
1114 return 0;
1429d7c9 1115
703fd1c0 1116 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
1117}
1118
eb619fdb
JA
1119static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1120 int flags, void *key)
da55f2cc
OS
1121{
1122 struct blk_mq_hw_ctx *hctx;
1123
1124 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1125
5815839b 1126 spin_lock(&hctx->dispatch_wait_lock);
e8618575
JA
1127 if (!list_empty(&wait->entry)) {
1128 struct sbitmap_queue *sbq;
1129
1130 list_del_init(&wait->entry);
1131 sbq = &hctx->tags->bitmap_tags;
1132 atomic_dec(&sbq->ws_active);
1133 }
5815839b
ML
1134 spin_unlock(&hctx->dispatch_wait_lock);
1135
da55f2cc
OS
1136 blk_mq_run_hw_queue(hctx, true);
1137 return 1;
1138}
1139
f906a6a0
JA
1140/*
1141 * Mark us waiting for a tag. For shared tags, this involves hooking us into
ee3e4de5
BVA
1142 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1143 * restart. For both cases, take care to check the condition again after
f906a6a0
JA
1144 * marking us as waiting.
1145 */
2278d69f 1146static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
f906a6a0 1147 struct request *rq)
da55f2cc 1148{
e8618575 1149 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
5815839b 1150 struct wait_queue_head *wq;
f906a6a0
JA
1151 wait_queue_entry_t *wait;
1152 bool ret;
da55f2cc 1153
2278d69f 1154 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
684b7324 1155 blk_mq_sched_mark_restart_hctx(hctx);
f906a6a0 1156
c27d53fb
BVA
1157 /*
1158 * It's possible that a tag was freed in the window between the
1159 * allocation failure and adding the hardware queue to the wait
1160 * queue.
1161 *
1162 * Don't clear RESTART here, someone else could have set it.
1163 * At most this will cost an extra queue run.
1164 */
8ab6bb9e 1165 return blk_mq_get_driver_tag(rq);
eb619fdb 1166 }
eb619fdb 1167
2278d69f 1168 wait = &hctx->dispatch_wait;
c27d53fb
BVA
1169 if (!list_empty_careful(&wait->entry))
1170 return false;
1171
e8618575 1172 wq = &bt_wait_ptr(sbq, hctx)->wait;
5815839b
ML
1173
1174 spin_lock_irq(&wq->lock);
1175 spin_lock(&hctx->dispatch_wait_lock);
c27d53fb 1176 if (!list_empty(&wait->entry)) {
5815839b
ML
1177 spin_unlock(&hctx->dispatch_wait_lock);
1178 spin_unlock_irq(&wq->lock);
c27d53fb 1179 return false;
eb619fdb
JA
1180 }
1181
e8618575 1182 atomic_inc(&sbq->ws_active);
5815839b
ML
1183 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1184 __add_wait_queue(wq, wait);
c27d53fb 1185
da55f2cc 1186 /*
eb619fdb
JA
1187 * It's possible that a tag was freed in the window between the
1188 * allocation failure and adding the hardware queue to the wait
1189 * queue.
da55f2cc 1190 */
8ab6bb9e 1191 ret = blk_mq_get_driver_tag(rq);
c27d53fb 1192 if (!ret) {
5815839b
ML
1193 spin_unlock(&hctx->dispatch_wait_lock);
1194 spin_unlock_irq(&wq->lock);
c27d53fb 1195 return false;
eb619fdb 1196 }
c27d53fb
BVA
1197
1198 /*
1199 * We got a tag, remove ourselves from the wait queue to ensure
1200 * someone else gets the wakeup.
1201 */
c27d53fb 1202 list_del_init(&wait->entry);
e8618575 1203 atomic_dec(&sbq->ws_active);
5815839b
ML
1204 spin_unlock(&hctx->dispatch_wait_lock);
1205 spin_unlock_irq(&wq->lock);
c27d53fb
BVA
1206
1207 return true;
da55f2cc
OS
1208}
1209
6e768717
ML
1210#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1211#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1212/*
1213 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1214 * - EWMA is one simple way to compute running average value
1215 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1216 * - take 4 as factor for avoiding to get too small(0) result, and this
1217 * factor doesn't matter because EWMA decreases exponentially
1218 */
1219static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1220{
1221 unsigned int ewma;
1222
1223 if (hctx->queue->elevator)
1224 return;
1225
1226 ewma = hctx->dispatch_busy;
1227
1228 if (!ewma && !busy)
1229 return;
1230
1231 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1232 if (busy)
1233 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1234 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1235
1236 hctx->dispatch_busy = ewma;
1237}
1238
86ff7c2a
ML
1239#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1240
c92a4103
JT
1241static void blk_mq_handle_dev_resource(struct request *rq,
1242 struct list_head *list)
1243{
1244 struct request *next =
1245 list_first_entry_or_null(list, struct request, queuelist);
1246
1247 /*
1248 * If an I/O scheduler has been configured and we got a driver tag for
1249 * the next request already, free it.
1250 */
1251 if (next)
1252 blk_mq_put_driver_tag(next);
1253
1254 list_add(&rq->queuelist, list);
1255 __blk_mq_requeue_request(rq);
1256}
1257
0512a75b
KB
1258static void blk_mq_handle_zone_resource(struct request *rq,
1259 struct list_head *zone_list)
1260{
1261 /*
1262 * If we end up here it is because we cannot dispatch a request to a
1263 * specific zone due to LLD level zone-write locking or other zone
1264 * related resource not being available. In this case, set the request
1265 * aside in zone_list for retrying it later.
1266 */
1267 list_add(&rq->queuelist, zone_list);
1268 __blk_mq_requeue_request(rq);
1269}
1270
1f57f8d4
JA
1271/*
1272 * Returns true if we did some work AND can potentially do more.
1273 */
de148297 1274bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
eb619fdb 1275 bool got_budget)
320ae51f 1276{
81380ca1 1277 struct blk_mq_hw_ctx *hctx;
6d6f167c 1278 struct request *rq, *nxt;
eb619fdb 1279 bool no_tag = false;
fc17b653 1280 int errors, queued;
86ff7c2a 1281 blk_status_t ret = BLK_STS_OK;
ab3cee37 1282 bool no_budget_avail = false;
0512a75b 1283 LIST_HEAD(zone_list);
320ae51f 1284
81380ca1
OS
1285 if (list_empty(list))
1286 return false;
1287
de148297
ML
1288 WARN_ON(!list_is_singular(list) && got_budget);
1289
320ae51f
JA
1290 /*
1291 * Now process all the entries, sending them to the driver.
1292 */
93efe981 1293 errors = queued = 0;
81380ca1 1294 do {
74c45052 1295 struct blk_mq_queue_data bd;
320ae51f 1296
f04c3df3 1297 rq = list_first_entry(list, struct request, queuelist);
0bca799b 1298
ea4f995e 1299 hctx = rq->mq_hctx;
5fe56de7
JG
1300 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1301 blk_mq_put_driver_tag(rq);
ab3cee37 1302 no_budget_avail = true;
0bca799b 1303 break;
5fe56de7 1304 }
0bca799b 1305
8ab6bb9e 1306 if (!blk_mq_get_driver_tag(rq)) {
3c782d67 1307 /*
da55f2cc 1308 * The initial allocation attempt failed, so we need to
eb619fdb
JA
1309 * rerun the hardware queue when a tag is freed. The
1310 * waitqueue takes care of that. If the queue is run
1311 * before we add this entry back on the dispatch list,
1312 * we'll re-run it below.
3c782d67 1313 */
2278d69f 1314 if (!blk_mq_mark_tag_wait(hctx, rq)) {
0bca799b 1315 blk_mq_put_dispatch_budget(hctx);
f906a6a0
JA
1316 /*
1317 * For non-shared tags, the RESTART check
1318 * will suffice.
1319 */
1320 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1321 no_tag = true;
de148297
ML
1322 break;
1323 }
1324 }
1325
320ae51f 1326 list_del_init(&rq->queuelist);
320ae51f 1327
74c45052 1328 bd.rq = rq;
113285b4
JA
1329
1330 /*
1331 * Flag last if we have no more requests, or if we have more
1332 * but can't assign a driver tag to it.
1333 */
1334 if (list_empty(list))
1335 bd.last = true;
1336 else {
113285b4 1337 nxt = list_first_entry(list, struct request, queuelist);
8ab6bb9e 1338 bd.last = !blk_mq_get_driver_tag(nxt);
113285b4 1339 }
74c45052
JA
1340
1341 ret = q->mq_ops->queue_rq(hctx, &bd);
86ff7c2a 1342 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
c92a4103 1343 blk_mq_handle_dev_resource(rq, list);
320ae51f 1344 break;
0512a75b
KB
1345 } else if (ret == BLK_STS_ZONE_RESOURCE) {
1346 /*
1347 * Move the request to zone_list and keep going through
1348 * the dispatch list to find more requests the drive can
1349 * accept.
1350 */
1351 blk_mq_handle_zone_resource(rq, &zone_list);
1352 if (list_empty(list))
1353 break;
1354 continue;
fc17b653
CH
1355 }
1356
1357 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1358 errors++;
2a842aca 1359 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1360 continue;
320ae51f
JA
1361 }
1362
fc17b653 1363 queued++;
81380ca1 1364 } while (!list_empty(list));
320ae51f 1365
0512a75b
KB
1366 if (!list_empty(&zone_list))
1367 list_splice_tail_init(&zone_list, list);
1368
703fd1c0 1369 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1370
1371 /*
1372 * Any items that need requeuing? Stuff them into hctx->dispatch,
1373 * that is where we will continue on next queue run.
1374 */
f04c3df3 1375 if (!list_empty(list)) {
86ff7c2a
ML
1376 bool needs_restart;
1377
d666ba98
JA
1378 /*
1379 * If we didn't flush the entire list, we could have told
1380 * the driver there was more coming, but that turned out to
1381 * be a lie.
1382 */
536167d4 1383 if (q->mq_ops->commit_rqs && queued)
d666ba98
JA
1384 q->mq_ops->commit_rqs(hctx);
1385
320ae51f 1386 spin_lock(&hctx->lock);
01e99aec 1387 list_splice_tail_init(list, &hctx->dispatch);
320ae51f 1388 spin_unlock(&hctx->lock);
f04c3df3 1389
9ba52e58 1390 /*
710c785f
BVA
1391 * If SCHED_RESTART was set by the caller of this function and
1392 * it is no longer set that means that it was cleared by another
1393 * thread and hence that a queue rerun is needed.
9ba52e58 1394 *
eb619fdb
JA
1395 * If 'no_tag' is set, that means that we failed getting
1396 * a driver tag with an I/O scheduler attached. If our dispatch
1397 * waitqueue is no longer active, ensure that we run the queue
1398 * AFTER adding our entries back to the list.
bd166ef1 1399 *
710c785f
BVA
1400 * If no I/O scheduler has been configured it is possible that
1401 * the hardware queue got stopped and restarted before requests
1402 * were pushed back onto the dispatch list. Rerun the queue to
1403 * avoid starvation. Notes:
1404 * - blk_mq_run_hw_queue() checks whether or not a queue has
1405 * been stopped before rerunning a queue.
1406 * - Some but not all block drivers stop a queue before
fc17b653 1407 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1408 * and dm-rq.
86ff7c2a
ML
1409 *
1410 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1411 * bit is set, run queue after a delay to avoid IO stalls
ab3cee37
DA
1412 * that could otherwise occur if the queue is idle. We'll do
1413 * similar if we couldn't get budget and SCHED_RESTART is set.
bd166ef1 1414 */
86ff7c2a
ML
1415 needs_restart = blk_mq_sched_needs_restart(hctx);
1416 if (!needs_restart ||
eb619fdb 1417 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1418 blk_mq_run_hw_queue(hctx, true);
ab3cee37
DA
1419 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1420 no_budget_avail))
86ff7c2a 1421 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1f57f8d4 1422
6e768717 1423 blk_mq_update_dispatch_busy(hctx, true);
1f57f8d4 1424 return false;
6e768717
ML
1425 } else
1426 blk_mq_update_dispatch_busy(hctx, false);
f04c3df3 1427
1f57f8d4
JA
1428 /*
1429 * If the host/device is unable to accept more work, inform the
1430 * caller of that.
1431 */
1432 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1433 return false;
1434
93efe981 1435 return (queued + errors) != 0;
f04c3df3
JA
1436}
1437
105663f7
AA
1438/**
1439 * __blk_mq_run_hw_queue - Run a hardware queue.
1440 * @hctx: Pointer to the hardware queue to run.
1441 *
1442 * Send pending requests to the hardware.
1443 */
6a83e74d
BVA
1444static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1445{
1446 int srcu_idx;
1447
b7a71e66
JA
1448 /*
1449 * We should be running this queue from one of the CPUs that
1450 * are mapped to it.
7df938fb
ML
1451 *
1452 * There are at least two related races now between setting
1453 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1454 * __blk_mq_run_hw_queue():
1455 *
1456 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1457 * but later it becomes online, then this warning is harmless
1458 * at all
1459 *
1460 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1461 * but later it becomes offline, then the warning can't be
1462 * triggered, and we depend on blk-mq timeout handler to
1463 * handle dispatched requests to this hctx
b7a71e66 1464 */
7df938fb
ML
1465 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1466 cpu_online(hctx->next_cpu)) {
1467 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1468 raw_smp_processor_id(),
1469 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1470 dump_stack();
1471 }
6a83e74d 1472
b7a71e66
JA
1473 /*
1474 * We can't run the queue inline with ints disabled. Ensure that
1475 * we catch bad users of this early.
1476 */
1477 WARN_ON_ONCE(in_interrupt());
1478
04ced159 1479 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1480
04ced159
JA
1481 hctx_lock(hctx, &srcu_idx);
1482 blk_mq_sched_dispatch_requests(hctx);
1483 hctx_unlock(hctx, srcu_idx);
6a83e74d
BVA
1484}
1485
f82ddf19
ML
1486static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1487{
1488 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1489
1490 if (cpu >= nr_cpu_ids)
1491 cpu = cpumask_first(hctx->cpumask);
1492 return cpu;
1493}
1494
506e931f
JA
1495/*
1496 * It'd be great if the workqueue API had a way to pass
1497 * in a mask and had some smarts for more clever placement.
1498 * For now we just round-robin here, switching for every
1499 * BLK_MQ_CPU_WORK_BATCH queued items.
1500 */
1501static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1502{
7bed4595 1503 bool tried = false;
476f8c98 1504 int next_cpu = hctx->next_cpu;
7bed4595 1505
b657d7e6
CH
1506 if (hctx->queue->nr_hw_queues == 1)
1507 return WORK_CPU_UNBOUND;
506e931f
JA
1508
1509 if (--hctx->next_cpu_batch <= 0) {
7bed4595 1510select_cpu:
476f8c98 1511 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
20e4d813 1512 cpu_online_mask);
506e931f 1513 if (next_cpu >= nr_cpu_ids)
f82ddf19 1514 next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
1515 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1516 }
1517
7bed4595
ML
1518 /*
1519 * Do unbound schedule if we can't find a online CPU for this hctx,
1520 * and it should only happen in the path of handling CPU DEAD.
1521 */
476f8c98 1522 if (!cpu_online(next_cpu)) {
7bed4595
ML
1523 if (!tried) {
1524 tried = true;
1525 goto select_cpu;
1526 }
1527
1528 /*
1529 * Make sure to re-select CPU next time once after CPUs
1530 * in hctx->cpumask become online again.
1531 */
476f8c98 1532 hctx->next_cpu = next_cpu;
7bed4595
ML
1533 hctx->next_cpu_batch = 1;
1534 return WORK_CPU_UNBOUND;
1535 }
476f8c98
ML
1536
1537 hctx->next_cpu = next_cpu;
1538 return next_cpu;
506e931f
JA
1539}
1540
105663f7
AA
1541/**
1542 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1543 * @hctx: Pointer to the hardware queue to run.
1544 * @async: If we want to run the queue asynchronously.
1545 * @msecs: Microseconds of delay to wait before running the queue.
1546 *
1547 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1548 * with a delay of @msecs.
1549 */
7587a5ae
BVA
1550static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1551 unsigned long msecs)
320ae51f 1552{
5435c023 1553 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1554 return;
1555
1b792f2f 1556 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1557 int cpu = get_cpu();
1558 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1559 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1560 put_cpu();
398205b8
PB
1561 return;
1562 }
e4043dcf 1563
2a90d4aa 1564 put_cpu();
e4043dcf 1565 }
398205b8 1566
ae943d20
BVA
1567 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1568 msecs_to_jiffies(msecs));
7587a5ae
BVA
1569}
1570
105663f7
AA
1571/**
1572 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1573 * @hctx: Pointer to the hardware queue to run.
1574 * @msecs: Microseconds of delay to wait before running the queue.
1575 *
1576 * Run a hardware queue asynchronously with a delay of @msecs.
1577 */
7587a5ae
BVA
1578void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1579{
1580 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1581}
1582EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1583
105663f7
AA
1584/**
1585 * blk_mq_run_hw_queue - Start to run a hardware queue.
1586 * @hctx: Pointer to the hardware queue to run.
1587 * @async: If we want to run the queue asynchronously.
1588 *
1589 * Check if the request queue is not in a quiesced state and if there are
1590 * pending requests to be sent. If this is true, run the queue to send requests
1591 * to hardware.
1592 */
626fb735 1593void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 1594{
24f5a90f
ML
1595 int srcu_idx;
1596 bool need_run;
1597
1598 /*
1599 * When queue is quiesced, we may be switching io scheduler, or
1600 * updating nr_hw_queues, or other things, and we can't run queue
1601 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1602 *
1603 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1604 * quiesced.
1605 */
04ced159
JA
1606 hctx_lock(hctx, &srcu_idx);
1607 need_run = !blk_queue_quiesced(hctx->queue) &&
1608 blk_mq_hctx_has_pending(hctx);
1609 hctx_unlock(hctx, srcu_idx);
24f5a90f 1610
626fb735 1611 if (need_run)
79f720a7 1612 __blk_mq_delay_run_hw_queue(hctx, async, 0);
320ae51f 1613}
5b727272 1614EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1615
105663f7
AA
1616/**
1617 * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
1618 * @q: Pointer to the request queue to run.
1619 * @async: If we want to run the queue asynchronously.
1620 */
b94ec296 1621void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1622{
1623 struct blk_mq_hw_ctx *hctx;
1624 int i;
1625
1626 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 1627 if (blk_mq_hctx_stopped(hctx))
320ae51f
JA
1628 continue;
1629
b94ec296 1630 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1631 }
1632}
b94ec296 1633EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1634
b9151e7b
DA
1635/**
1636 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1637 * @q: Pointer to the request queue to run.
1638 * @msecs: Microseconds of delay to wait before running the queues.
1639 */
1640void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1641{
1642 struct blk_mq_hw_ctx *hctx;
1643 int i;
1644
1645 queue_for_each_hw_ctx(q, hctx, i) {
1646 if (blk_mq_hctx_stopped(hctx))
1647 continue;
1648
1649 blk_mq_delay_run_hw_queue(hctx, msecs);
1650 }
1651}
1652EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1653
fd001443
BVA
1654/**
1655 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1656 * @q: request queue.
1657 *
1658 * The caller is responsible for serializing this function against
1659 * blk_mq_{start,stop}_hw_queue().
1660 */
1661bool blk_mq_queue_stopped(struct request_queue *q)
1662{
1663 struct blk_mq_hw_ctx *hctx;
1664 int i;
1665
1666 queue_for_each_hw_ctx(q, hctx, i)
1667 if (blk_mq_hctx_stopped(hctx))
1668 return true;
1669
1670 return false;
1671}
1672EXPORT_SYMBOL(blk_mq_queue_stopped);
1673
39a70c76
ML
1674/*
1675 * This function is often used for pausing .queue_rq() by driver when
1676 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1677 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1678 *
1679 * We do not guarantee that dispatch can be drained or blocked
1680 * after blk_mq_stop_hw_queue() returns. Please use
1681 * blk_mq_quiesce_queue() for that requirement.
1682 */
2719aa21
JA
1683void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1684{
641a9ed6 1685 cancel_delayed_work(&hctx->run_work);
280d45f6 1686
641a9ed6 1687 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1688}
641a9ed6 1689EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1690
39a70c76
ML
1691/*
1692 * This function is often used for pausing .queue_rq() by driver when
1693 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1694 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1695 *
1696 * We do not guarantee that dispatch can be drained or blocked
1697 * after blk_mq_stop_hw_queues() returns. Please use
1698 * blk_mq_quiesce_queue() for that requirement.
1699 */
2719aa21
JA
1700void blk_mq_stop_hw_queues(struct request_queue *q)
1701{
641a9ed6
ML
1702 struct blk_mq_hw_ctx *hctx;
1703 int i;
1704
1705 queue_for_each_hw_ctx(q, hctx, i)
1706 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1707}
1708EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1709
320ae51f
JA
1710void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1711{
1712 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1713
0ffbce80 1714 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1715}
1716EXPORT_SYMBOL(blk_mq_start_hw_queue);
1717
2f268556
CH
1718void blk_mq_start_hw_queues(struct request_queue *q)
1719{
1720 struct blk_mq_hw_ctx *hctx;
1721 int i;
1722
1723 queue_for_each_hw_ctx(q, hctx, i)
1724 blk_mq_start_hw_queue(hctx);
1725}
1726EXPORT_SYMBOL(blk_mq_start_hw_queues);
1727
ae911c5e
JA
1728void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1729{
1730 if (!blk_mq_hctx_stopped(hctx))
1731 return;
1732
1733 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1734 blk_mq_run_hw_queue(hctx, async);
1735}
1736EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1737
1b4a3258 1738void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1739{
1740 struct blk_mq_hw_ctx *hctx;
1741 int i;
1742
ae911c5e
JA
1743 queue_for_each_hw_ctx(q, hctx, i)
1744 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1745}
1746EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1747
70f4db63 1748static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1749{
1750 struct blk_mq_hw_ctx *hctx;
1751
9f993737 1752 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1753
21c6e939 1754 /*
15fe8a90 1755 * If we are stopped, don't run the queue.
21c6e939 1756 */
15fe8a90 1757 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
0196d6b4 1758 return;
7587a5ae
BVA
1759
1760 __blk_mq_run_hw_queue(hctx);
1761}
1762
cfd0c552 1763static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1764 struct request *rq,
1765 bool at_head)
320ae51f 1766{
e57690fe 1767 struct blk_mq_ctx *ctx = rq->mq_ctx;
c16d6b5a 1768 enum hctx_type type = hctx->type;
e57690fe 1769
7b607814
BVA
1770 lockdep_assert_held(&ctx->lock);
1771
01b983c9
JA
1772 trace_block_rq_insert(hctx->queue, rq);
1773
72a0a36e 1774 if (at_head)
c16d6b5a 1775 list_add(&rq->queuelist, &ctx->rq_lists[type]);
72a0a36e 1776 else
c16d6b5a 1777 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
cfd0c552 1778}
4bb659b1 1779
2c3ad667
JA
1780void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1781 bool at_head)
cfd0c552
ML
1782{
1783 struct blk_mq_ctx *ctx = rq->mq_ctx;
1784
7b607814
BVA
1785 lockdep_assert_held(&ctx->lock);
1786
e57690fe 1787 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1788 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1789}
1790
105663f7
AA
1791/**
1792 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1793 * @rq: Pointer to request to be inserted.
1794 * @run_queue: If we should run the hardware queue after inserting the request.
1795 *
157f377b
JA
1796 * Should only be used carefully, when the caller knows we want to
1797 * bypass a potential IO scheduler on the target device.
1798 */
01e99aec
ML
1799void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1800 bool run_queue)
157f377b 1801{
ea4f995e 1802 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
157f377b
JA
1803
1804 spin_lock(&hctx->lock);
01e99aec
ML
1805 if (at_head)
1806 list_add(&rq->queuelist, &hctx->dispatch);
1807 else
1808 list_add_tail(&rq->queuelist, &hctx->dispatch);
157f377b
JA
1809 spin_unlock(&hctx->lock);
1810
b0850297
ML
1811 if (run_queue)
1812 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
1813}
1814
bd166ef1
JA
1815void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1816 struct list_head *list)
320ae51f
JA
1817
1818{
3f0cedc7 1819 struct request *rq;
c16d6b5a 1820 enum hctx_type type = hctx->type;
3f0cedc7 1821
320ae51f
JA
1822 /*
1823 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1824 * offline now
1825 */
3f0cedc7 1826 list_for_each_entry(rq, list, queuelist) {
e57690fe 1827 BUG_ON(rq->mq_ctx != ctx);
3f0cedc7 1828 trace_block_rq_insert(hctx->queue, rq);
320ae51f 1829 }
3f0cedc7
ML
1830
1831 spin_lock(&ctx->lock);
c16d6b5a 1832 list_splice_tail_init(list, &ctx->rq_lists[type]);
cfd0c552 1833 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1834 spin_unlock(&ctx->lock);
320ae51f
JA
1835}
1836
3110fc79 1837static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
320ae51f
JA
1838{
1839 struct request *rqa = container_of(a, struct request, queuelist);
1840 struct request *rqb = container_of(b, struct request, queuelist);
1841
7d30a621
PB
1842 if (rqa->mq_ctx != rqb->mq_ctx)
1843 return rqa->mq_ctx > rqb->mq_ctx;
1844 if (rqa->mq_hctx != rqb->mq_hctx)
1845 return rqa->mq_hctx > rqb->mq_hctx;
3110fc79
JA
1846
1847 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
320ae51f
JA
1848}
1849
1850void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1851{
320ae51f 1852 LIST_HEAD(list);
320ae51f 1853
95ed0c5b
PB
1854 if (list_empty(&plug->mq_list))
1855 return;
320ae51f
JA
1856 list_splice_init(&plug->mq_list, &list);
1857
ce5b009c
JA
1858 if (plug->rq_count > 2 && plug->multiple_queues)
1859 list_sort(NULL, &list, plug_rq_cmp);
320ae51f 1860
bcc816df
DZ
1861 plug->rq_count = 0;
1862
95ed0c5b
PB
1863 do {
1864 struct list_head rq_list;
1865 struct request *rq, *head_rq = list_entry_rq(list.next);
1866 struct list_head *pos = &head_rq->queuelist; /* skip first */
1867 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1868 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1869 unsigned int depth = 1;
1870
1871 list_for_each_continue(pos, &list) {
1872 rq = list_entry_rq(pos);
1873 BUG_ON(!rq->q);
1874 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1875 break;
1876 depth++;
320ae51f
JA
1877 }
1878
95ed0c5b
PB
1879 list_cut_before(&rq_list, &list, pos);
1880 trace_block_unplug(head_rq->q, depth, !from_schedule);
67cae4c9 1881 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
bd166ef1 1882 from_schedule);
95ed0c5b 1883 } while(!list_empty(&list));
320ae51f
JA
1884}
1885
14ccb66b
CH
1886static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1887 unsigned int nr_segs)
320ae51f 1888{
f924cdde
CH
1889 if (bio->bi_opf & REQ_RAHEAD)
1890 rq->cmd_flags |= REQ_FAILFAST_MASK;
1891
1892 rq->__sector = bio->bi_iter.bi_sector;
1893 rq->write_hint = bio->bi_write_hint;
14ccb66b 1894 blk_rq_bio_prep(rq, bio, nr_segs);
a892c8d5 1895 blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
4b570521 1896
b5af37ab 1897 blk_account_io_start(rq);
320ae51f
JA
1898}
1899
0f95549c
MS
1900static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1901 struct request *rq,
be94f058 1902 blk_qc_t *cookie, bool last)
f984df1f 1903{
f984df1f 1904 struct request_queue *q = rq->q;
f984df1f
SL
1905 struct blk_mq_queue_data bd = {
1906 .rq = rq,
be94f058 1907 .last = last,
f984df1f 1908 };
bd166ef1 1909 blk_qc_t new_cookie;
f06345ad 1910 blk_status_t ret;
0f95549c
MS
1911
1912 new_cookie = request_to_qc_t(hctx, rq);
1913
1914 /*
1915 * For OK queue, we are done. For error, caller may kill it.
1916 * Any other error (busy), just add it to our list as we
1917 * previously would have done.
1918 */
1919 ret = q->mq_ops->queue_rq(hctx, &bd);
1920 switch (ret) {
1921 case BLK_STS_OK:
6ce3dd6e 1922 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1923 *cookie = new_cookie;
1924 break;
1925 case BLK_STS_RESOURCE:
86ff7c2a 1926 case BLK_STS_DEV_RESOURCE:
6ce3dd6e 1927 blk_mq_update_dispatch_busy(hctx, true);
0f95549c
MS
1928 __blk_mq_requeue_request(rq);
1929 break;
1930 default:
6ce3dd6e 1931 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1932 *cookie = BLK_QC_T_NONE;
1933 break;
1934 }
1935
1936 return ret;
1937}
1938
fd9c40f6 1939static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
0f95549c 1940 struct request *rq,
396eaf21 1941 blk_qc_t *cookie,
fd9c40f6 1942 bool bypass_insert, bool last)
0f95549c
MS
1943{
1944 struct request_queue *q = rq->q;
d964f04a
ML
1945 bool run_queue = true;
1946
23d4ee19 1947 /*
fd9c40f6 1948 * RCU or SRCU read lock is needed before checking quiesced flag.
23d4ee19 1949 *
fd9c40f6
BVA
1950 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1951 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1952 * and avoid driver to try to dispatch again.
23d4ee19 1953 */
fd9c40f6 1954 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a 1955 run_queue = false;
fd9c40f6
BVA
1956 bypass_insert = false;
1957 goto insert;
d964f04a 1958 }
f984df1f 1959
fd9c40f6
BVA
1960 if (q->elevator && !bypass_insert)
1961 goto insert;
2253efc8 1962
0bca799b 1963 if (!blk_mq_get_dispatch_budget(hctx))
fd9c40f6 1964 goto insert;
bd166ef1 1965
8ab6bb9e 1966 if (!blk_mq_get_driver_tag(rq)) {
0bca799b 1967 blk_mq_put_dispatch_budget(hctx);
fd9c40f6 1968 goto insert;
88022d72 1969 }
de148297 1970
fd9c40f6
BVA
1971 return __blk_mq_issue_directly(hctx, rq, cookie, last);
1972insert:
1973 if (bypass_insert)
1974 return BLK_STS_RESOURCE;
1975
01e99aec 1976 blk_mq_request_bypass_insert(rq, false, run_queue);
fd9c40f6
BVA
1977 return BLK_STS_OK;
1978}
1979
105663f7
AA
1980/**
1981 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
1982 * @hctx: Pointer of the associated hardware queue.
1983 * @rq: Pointer to request to be sent.
1984 * @cookie: Request queue cookie.
1985 *
1986 * If the device has enough resources to accept a new request now, send the
1987 * request directly to device driver. Else, insert at hctx->dispatch queue, so
1988 * we can try send it another time in the future. Requests inserted at this
1989 * queue have higher priority.
1990 */
fd9c40f6
BVA
1991static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1992 struct request *rq, blk_qc_t *cookie)
1993{
1994 blk_status_t ret;
1995 int srcu_idx;
1996
1997 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1998
1999 hctx_lock(hctx, &srcu_idx);
2000
2001 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2002 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
01e99aec 2003 blk_mq_request_bypass_insert(rq, false, true);
fd9c40f6
BVA
2004 else if (ret != BLK_STS_OK)
2005 blk_mq_end_request(rq, ret);
2006
2007 hctx_unlock(hctx, srcu_idx);
2008}
2009
2010blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2011{
2012 blk_status_t ret;
2013 int srcu_idx;
2014 blk_qc_t unused_cookie;
2015 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2016
2017 hctx_lock(hctx, &srcu_idx);
2018 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
04ced159 2019 hctx_unlock(hctx, srcu_idx);
7f556a44
JW
2020
2021 return ret;
5eb6126e
CH
2022}
2023
6ce3dd6e
ML
2024void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2025 struct list_head *list)
2026{
536167d4
KB
2027 int queued = 0;
2028
6ce3dd6e 2029 while (!list_empty(list)) {
fd9c40f6 2030 blk_status_t ret;
6ce3dd6e
ML
2031 struct request *rq = list_first_entry(list, struct request,
2032 queuelist);
2033
2034 list_del_init(&rq->queuelist);
fd9c40f6
BVA
2035 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2036 if (ret != BLK_STS_OK) {
2037 if (ret == BLK_STS_RESOURCE ||
2038 ret == BLK_STS_DEV_RESOURCE) {
01e99aec 2039 blk_mq_request_bypass_insert(rq, false,
c616cbee 2040 list_empty(list));
fd9c40f6
BVA
2041 break;
2042 }
2043 blk_mq_end_request(rq, ret);
536167d4
KB
2044 } else
2045 queued++;
6ce3dd6e 2046 }
d666ba98
JA
2047
2048 /*
2049 * If we didn't flush the entire list, we could have told
2050 * the driver there was more coming, but that turned out to
2051 * be a lie.
2052 */
536167d4 2053 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued)
d666ba98 2054 hctx->queue->mq_ops->commit_rqs(hctx);
6ce3dd6e
ML
2055}
2056
ce5b009c
JA
2057static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2058{
2059 list_add_tail(&rq->queuelist, &plug->mq_list);
2060 plug->rq_count++;
2061 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2062 struct request *tmp;
2063
2064 tmp = list_first_entry(&plug->mq_list, struct request,
2065 queuelist);
2066 if (tmp->q != rq->q)
2067 plug->multiple_queues = true;
2068 }
2069}
2070
105663f7
AA
2071/**
2072 * blk_mq_make_request - Create and send a request to block device.
2073 * @q: Request queue pointer.
2074 * @bio: Bio pointer.
2075 *
2076 * Builds up a request structure from @q and @bio and send to the device. The
2077 * request may not be queued directly to hardware if:
2078 * * This request can be merged with another one
2079 * * We want to place request at plug queue for possible future merging
2080 * * There is an IO scheduler active at this queue
2081 *
2082 * It will not queue the request if there is an error with the bio, or at the
2083 * request creation.
2084 *
2085 * Returns: Request queue cookie.
2086 */
8cf7961d 2087blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 2088{
ef295ecf 2089 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 2090 const int is_flush_fua = op_is_flush(bio->bi_opf);
e6e7abff
CH
2091 struct blk_mq_alloc_data data = {
2092 .q = q,
2093 };
07068d5b 2094 struct request *rq;
f984df1f 2095 struct blk_plug *plug;
5b3f341f 2096 struct request *same_queue_rq = NULL;
14ccb66b 2097 unsigned int nr_segs;
7b371636 2098 blk_qc_t cookie;
a892c8d5 2099 blk_status_t ret;
07068d5b
JA
2100
2101 blk_queue_bounce(q, &bio);
14ccb66b 2102 __blk_queue_split(q, &bio, &nr_segs);
f36ea50c 2103
e23947bd 2104 if (!bio_integrity_prep(bio))
ac7c5675 2105 goto queue_exit;
07068d5b 2106
87c279e6 2107 if (!is_flush_fua && !blk_queue_nomerges(q) &&
14ccb66b 2108 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
ac7c5675 2109 goto queue_exit;
f984df1f 2110
14ccb66b 2111 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
ac7c5675 2112 goto queue_exit;
bd166ef1 2113
d5337560 2114 rq_qos_throttle(q, bio);
87760e5e 2115
7809167d 2116 data.cmd_flags = bio->bi_opf;
e6e7abff 2117 rq = __blk_mq_alloc_request(&data);
87760e5e 2118 if (unlikely(!rq)) {
c1c80384 2119 rq_qos_cleanup(q, bio);
7b6620d7 2120 if (bio->bi_opf & REQ_NOWAIT)
03a07c92 2121 bio_wouldblock_error(bio);
ac7c5675 2122 goto queue_exit;
87760e5e
JA
2123 }
2124
d6f1dda2
XW
2125 trace_block_getrq(q, bio, bio->bi_opf);
2126
c1c80384 2127 rq_qos_track(q, rq, bio);
07068d5b 2128
fd2d3326 2129 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 2130
970d168d
BVA
2131 blk_mq_bio_to_request(rq, bio, nr_segs);
2132
a892c8d5
ST
2133 ret = blk_crypto_init_request(rq);
2134 if (ret != BLK_STS_OK) {
2135 bio->bi_status = ret;
2136 bio_endio(bio);
2137 blk_mq_free_request(rq);
2138 return BLK_QC_T_NONE;
2139 }
2140
b49773e7 2141 plug = blk_mq_plug(q, bio);
07068d5b 2142 if (unlikely(is_flush_fua)) {
105663f7 2143 /* Bypass scheduler for flush requests */
923218f6
ML
2144 blk_insert_flush(rq);
2145 blk_mq_run_hw_queue(data.hctx, true);
3154df26
ML
2146 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2147 !blk_queue_nonrot(q))) {
b2c5d16b
JA
2148 /*
2149 * Use plugging if we have a ->commit_rqs() hook as well, as
2150 * we know the driver uses bd->last in a smart fashion.
3154df26
ML
2151 *
2152 * Use normal plugging if this disk is slow HDD, as sequential
2153 * IO may benefit a lot from plug merging.
b2c5d16b 2154 */
5f0ed774 2155 unsigned int request_count = plug->rq_count;
600271d9
SL
2156 struct request *last = NULL;
2157
676d0607 2158 if (!request_count)
e6c4438b 2159 trace_block_plug(q);
600271d9
SL
2160 else
2161 last = list_entry_rq(plug->mq_list.prev);
b094f89c 2162
600271d9
SL
2163 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2164 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
2165 blk_flush_plug_list(plug, false);
2166 trace_block_plug(q);
320ae51f 2167 }
b094f89c 2168
ce5b009c 2169 blk_add_rq_to_plug(plug, rq);
a12de1d4 2170 } else if (q->elevator) {
105663f7 2171 /* Insert the request at the IO scheduler queue */
a12de1d4 2172 blk_mq_sched_insert_request(rq, false, true, true);
2299722c 2173 } else if (plug && !blk_queue_nomerges(q)) {
07068d5b 2174 /*
6a83e74d 2175 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
2176 * Otherwise the existing request in the plug list will be
2177 * issued. So the plug list will have one request at most
2299722c
CH
2178 * The plug list might get flushed before this. If that happens,
2179 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 2180 */
2299722c
CH
2181 if (list_empty(&plug->mq_list))
2182 same_queue_rq = NULL;
4711b573 2183 if (same_queue_rq) {
2299722c 2184 list_del_init(&same_queue_rq->queuelist);
4711b573
JA
2185 plug->rq_count--;
2186 }
ce5b009c 2187 blk_add_rq_to_plug(plug, rq);
ff3b74b8 2188 trace_block_plug(q);
2299722c 2189
dad7a3be 2190 if (same_queue_rq) {
ea4f995e 2191 data.hctx = same_queue_rq->mq_hctx;
ff3b74b8 2192 trace_block_unplug(q, 1, true);
2299722c 2193 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
fd9c40f6 2194 &cookie);
dad7a3be 2195 }
a12de1d4
ML
2196 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2197 !data.hctx->dispatch_busy) {
105663f7
AA
2198 /*
2199 * There is no scheduler and we can try to send directly
2200 * to the hardware.
2201 */
fd9c40f6 2202 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
ab42f35d 2203 } else {
105663f7 2204 /* Default case. */
8fa9f556 2205 blk_mq_sched_insert_request(rq, false, true, true);
ab42f35d 2206 }
320ae51f 2207
7b371636 2208 return cookie;
ac7c5675
CH
2209queue_exit:
2210 blk_queue_exit(q);
2211 return BLK_QC_T_NONE;
320ae51f 2212}
8cf7961d 2213EXPORT_SYMBOL_GPL(blk_mq_make_request); /* only for request based dm */
320ae51f 2214
cc71a6f4
JA
2215void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2216 unsigned int hctx_idx)
95363efd 2217{
e9b267d9 2218 struct page *page;
320ae51f 2219
24d2f903 2220 if (tags->rqs && set->ops->exit_request) {
e9b267d9 2221 int i;
320ae51f 2222
24d2f903 2223 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
2224 struct request *rq = tags->static_rqs[i];
2225
2226 if (!rq)
e9b267d9 2227 continue;
d6296d39 2228 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 2229 tags->static_rqs[i] = NULL;
e9b267d9 2230 }
320ae51f 2231 }
320ae51f 2232
24d2f903
CH
2233 while (!list_empty(&tags->page_list)) {
2234 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 2235 list_del_init(&page->lru);
f75782e4
CM
2236 /*
2237 * Remove kmemleak object previously allocated in
273938bf 2238 * blk_mq_alloc_rqs().
f75782e4
CM
2239 */
2240 kmemleak_free(page_address(page));
320ae51f
JA
2241 __free_pages(page, page->private);
2242 }
cc71a6f4 2243}
320ae51f 2244
cc71a6f4
JA
2245void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2246{
24d2f903 2247 kfree(tags->rqs);
cc71a6f4 2248 tags->rqs = NULL;
2af8cbe3
JA
2249 kfree(tags->static_rqs);
2250 tags->static_rqs = NULL;
320ae51f 2251
24d2f903 2252 blk_mq_free_tags(tags);
320ae51f
JA
2253}
2254
cc71a6f4
JA
2255struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2256 unsigned int hctx_idx,
2257 unsigned int nr_tags,
2258 unsigned int reserved_tags)
320ae51f 2259{
24d2f903 2260 struct blk_mq_tags *tags;
59f082e4 2261 int node;
320ae51f 2262
7d76f856 2263 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
59f082e4
SL
2264 if (node == NUMA_NO_NODE)
2265 node = set->numa_node;
2266
2267 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 2268 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
2269 if (!tags)
2270 return NULL;
320ae51f 2271
590b5b7d 2272 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
36e1f3d1 2273 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 2274 node);
24d2f903
CH
2275 if (!tags->rqs) {
2276 blk_mq_free_tags(tags);
2277 return NULL;
2278 }
320ae51f 2279
590b5b7d
KC
2280 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2281 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2282 node);
2af8cbe3
JA
2283 if (!tags->static_rqs) {
2284 kfree(tags->rqs);
2285 blk_mq_free_tags(tags);
2286 return NULL;
2287 }
2288
cc71a6f4
JA
2289 return tags;
2290}
2291
2292static size_t order_to_size(unsigned int order)
2293{
2294 return (size_t)PAGE_SIZE << order;
2295}
2296
1d9bd516
TH
2297static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2298 unsigned int hctx_idx, int node)
2299{
2300 int ret;
2301
2302 if (set->ops->init_request) {
2303 ret = set->ops->init_request(set, rq, hctx_idx, node);
2304 if (ret)
2305 return ret;
2306 }
2307
12f5b931 2308 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1d9bd516
TH
2309 return 0;
2310}
2311
cc71a6f4
JA
2312int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2313 unsigned int hctx_idx, unsigned int depth)
2314{
2315 unsigned int i, j, entries_per_page, max_order = 4;
2316 size_t rq_size, left;
59f082e4
SL
2317 int node;
2318
7d76f856 2319 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
59f082e4
SL
2320 if (node == NUMA_NO_NODE)
2321 node = set->numa_node;
cc71a6f4
JA
2322
2323 INIT_LIST_HEAD(&tags->page_list);
2324
320ae51f
JA
2325 /*
2326 * rq_size is the size of the request plus driver payload, rounded
2327 * to the cacheline size
2328 */
24d2f903 2329 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 2330 cache_line_size());
cc71a6f4 2331 left = rq_size * depth;
320ae51f 2332
cc71a6f4 2333 for (i = 0; i < depth; ) {
320ae51f
JA
2334 int this_order = max_order;
2335 struct page *page;
2336 int to_do;
2337 void *p;
2338
b3a834b1 2339 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
2340 this_order--;
2341
2342 do {
59f082e4 2343 page = alloc_pages_node(node,
36e1f3d1 2344 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 2345 this_order);
320ae51f
JA
2346 if (page)
2347 break;
2348 if (!this_order--)
2349 break;
2350 if (order_to_size(this_order) < rq_size)
2351 break;
2352 } while (1);
2353
2354 if (!page)
24d2f903 2355 goto fail;
320ae51f
JA
2356
2357 page->private = this_order;
24d2f903 2358 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
2359
2360 p = page_address(page);
f75782e4
CM
2361 /*
2362 * Allow kmemleak to scan these pages as they contain pointers
2363 * to additional allocations like via ops->init_request().
2364 */
36e1f3d1 2365 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 2366 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 2367 to_do = min(entries_per_page, depth - i);
320ae51f
JA
2368 left -= to_do * rq_size;
2369 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
2370 struct request *rq = p;
2371
2372 tags->static_rqs[i] = rq;
1d9bd516
TH
2373 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2374 tags->static_rqs[i] = NULL;
2375 goto fail;
e9b267d9
CH
2376 }
2377
320ae51f
JA
2378 p += rq_size;
2379 i++;
2380 }
2381 }
cc71a6f4 2382 return 0;
320ae51f 2383
24d2f903 2384fail:
cc71a6f4
JA
2385 blk_mq_free_rqs(set, tags, hctx_idx);
2386 return -ENOMEM;
320ae51f
JA
2387}
2388
bf0beec0
ML
2389struct rq_iter_data {
2390 struct blk_mq_hw_ctx *hctx;
2391 bool has_rq;
2392};
2393
2394static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2395{
2396 struct rq_iter_data *iter_data = data;
2397
2398 if (rq->mq_hctx != iter_data->hctx)
2399 return true;
2400 iter_data->has_rq = true;
2401 return false;
2402}
2403
2404static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2405{
2406 struct blk_mq_tags *tags = hctx->sched_tags ?
2407 hctx->sched_tags : hctx->tags;
2408 struct rq_iter_data data = {
2409 .hctx = hctx,
2410 };
2411
2412 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2413 return data.has_rq;
2414}
2415
2416static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2417 struct blk_mq_hw_ctx *hctx)
2418{
2419 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2420 return false;
2421 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2422 return false;
2423 return true;
2424}
2425
2426static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2427{
2428 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2429 struct blk_mq_hw_ctx, cpuhp_online);
2430
2431 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2432 !blk_mq_last_cpu_in_hctx(cpu, hctx))
2433 return 0;
2434
2435 /*
2436 * Prevent new request from being allocated on the current hctx.
2437 *
2438 * The smp_mb__after_atomic() Pairs with the implied barrier in
2439 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
2440 * seen once we return from the tag allocator.
2441 */
2442 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2443 smp_mb__after_atomic();
2444
2445 /*
2446 * Try to grab a reference to the queue and wait for any outstanding
2447 * requests. If we could not grab a reference the queue has been
2448 * frozen and there are no requests.
2449 */
2450 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2451 while (blk_mq_hctx_has_requests(hctx))
2452 msleep(5);
2453 percpu_ref_put(&hctx->queue->q_usage_counter);
2454 }
2455
2456 return 0;
2457}
2458
2459static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2460{
2461 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2462 struct blk_mq_hw_ctx, cpuhp_online);
2463
2464 if (cpumask_test_cpu(cpu, hctx->cpumask))
2465 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2466 return 0;
2467}
2468
e57690fe
JA
2469/*
2470 * 'cpu' is going away. splice any existing rq_list entries from this
2471 * software queue to the hw queue dispatch list, and ensure that it
2472 * gets run.
2473 */
9467f859 2474static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 2475{
9467f859 2476 struct blk_mq_hw_ctx *hctx;
484b4061
JA
2477 struct blk_mq_ctx *ctx;
2478 LIST_HEAD(tmp);
c16d6b5a 2479 enum hctx_type type;
484b4061 2480
9467f859 2481 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
bf0beec0
ML
2482 if (!cpumask_test_cpu(cpu, hctx->cpumask))
2483 return 0;
2484
e57690fe 2485 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
c16d6b5a 2486 type = hctx->type;
484b4061
JA
2487
2488 spin_lock(&ctx->lock);
c16d6b5a
ML
2489 if (!list_empty(&ctx->rq_lists[type])) {
2490 list_splice_init(&ctx->rq_lists[type], &tmp);
484b4061
JA
2491 blk_mq_hctx_clear_pending(hctx, ctx);
2492 }
2493 spin_unlock(&ctx->lock);
2494
2495 if (list_empty(&tmp))
9467f859 2496 return 0;
484b4061 2497
e57690fe
JA
2498 spin_lock(&hctx->lock);
2499 list_splice_tail_init(&tmp, &hctx->dispatch);
2500 spin_unlock(&hctx->lock);
484b4061
JA
2501
2502 blk_mq_run_hw_queue(hctx, true);
9467f859 2503 return 0;
484b4061
JA
2504}
2505
9467f859 2506static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 2507{
bf0beec0
ML
2508 if (!(hctx->flags & BLK_MQ_F_STACKING))
2509 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2510 &hctx->cpuhp_online);
9467f859
TG
2511 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2512 &hctx->cpuhp_dead);
484b4061
JA
2513}
2514
c3b4afca 2515/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
2516static void blk_mq_exit_hctx(struct request_queue *q,
2517 struct blk_mq_tag_set *set,
2518 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2519{
8ab0b7dc
ML
2520 if (blk_mq_hw_queue_mapped(hctx))
2521 blk_mq_tag_idle(hctx);
08e98fc6 2522
f70ced09 2523 if (set->ops->exit_request)
d6296d39 2524 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 2525
08e98fc6
ML
2526 if (set->ops->exit_hctx)
2527 set->ops->exit_hctx(hctx, hctx_idx);
2528
9467f859 2529 blk_mq_remove_cpuhp(hctx);
2f8f1336
ML
2530
2531 spin_lock(&q->unused_hctx_lock);
2532 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2533 spin_unlock(&q->unused_hctx_lock);
08e98fc6
ML
2534}
2535
624dbe47
ML
2536static void blk_mq_exit_hw_queues(struct request_queue *q,
2537 struct blk_mq_tag_set *set, int nr_queue)
2538{
2539 struct blk_mq_hw_ctx *hctx;
2540 unsigned int i;
2541
2542 queue_for_each_hw_ctx(q, hctx, i) {
2543 if (i == nr_queue)
2544 break;
477e19de 2545 blk_mq_debugfs_unregister_hctx(hctx);
08e98fc6 2546 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 2547 }
624dbe47
ML
2548}
2549
7c6c5b7c
ML
2550static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2551{
2552 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2553
2554 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2555 __alignof__(struct blk_mq_hw_ctx)) !=
2556 sizeof(struct blk_mq_hw_ctx));
2557
2558 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2559 hw_ctx_size += sizeof(struct srcu_struct);
2560
2561 return hw_ctx_size;
2562}
2563
08e98fc6
ML
2564static int blk_mq_init_hctx(struct request_queue *q,
2565 struct blk_mq_tag_set *set,
2566 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 2567{
7c6c5b7c
ML
2568 hctx->queue_num = hctx_idx;
2569
bf0beec0
ML
2570 if (!(hctx->flags & BLK_MQ_F_STACKING))
2571 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2572 &hctx->cpuhp_online);
7c6c5b7c
ML
2573 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2574
2575 hctx->tags = set->tags[hctx_idx];
2576
2577 if (set->ops->init_hctx &&
2578 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2579 goto unregister_cpu_notifier;
08e98fc6 2580
7c6c5b7c
ML
2581 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2582 hctx->numa_node))
2583 goto exit_hctx;
2584 return 0;
2585
2586 exit_hctx:
2587 if (set->ops->exit_hctx)
2588 set->ops->exit_hctx(hctx, hctx_idx);
2589 unregister_cpu_notifier:
2590 blk_mq_remove_cpuhp(hctx);
2591 return -1;
2592}
2593
2594static struct blk_mq_hw_ctx *
2595blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2596 int node)
2597{
2598 struct blk_mq_hw_ctx *hctx;
2599 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2600
2601 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2602 if (!hctx)
2603 goto fail_alloc_hctx;
2604
2605 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2606 goto free_hctx;
2607
2608 atomic_set(&hctx->nr_active, 0);
08e98fc6 2609 if (node == NUMA_NO_NODE)
7c6c5b7c
ML
2610 node = set->numa_node;
2611 hctx->numa_node = node;
08e98fc6 2612
9f993737 2613 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2614 spin_lock_init(&hctx->lock);
2615 INIT_LIST_HEAD(&hctx->dispatch);
2616 hctx->queue = q;
2404e607 2617 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 2618
2f8f1336
ML
2619 INIT_LIST_HEAD(&hctx->hctx_list);
2620
320ae51f 2621 /*
08e98fc6
ML
2622 * Allocate space for all possible cpus to avoid allocation at
2623 * runtime
320ae51f 2624 */
d904bfa7 2625 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
7c6c5b7c 2626 gfp, node);
08e98fc6 2627 if (!hctx->ctxs)
7c6c5b7c 2628 goto free_cpumask;
320ae51f 2629
5b202853 2630 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
7c6c5b7c 2631 gfp, node))
08e98fc6 2632 goto free_ctxs;
08e98fc6 2633 hctx->nr_ctx = 0;
320ae51f 2634
5815839b 2635 spin_lock_init(&hctx->dispatch_wait_lock);
eb619fdb
JA
2636 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2637 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2638
754a1572 2639 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
f70ced09 2640 if (!hctx->fq)
7c6c5b7c 2641 goto free_bitmap;
320ae51f 2642
6a83e74d 2643 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2644 init_srcu_struct(hctx->srcu);
7c6c5b7c 2645 blk_mq_hctx_kobj_init(hctx);
6a83e74d 2646
7c6c5b7c 2647 return hctx;
320ae51f 2648
08e98fc6 2649 free_bitmap:
88459642 2650 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2651 free_ctxs:
2652 kfree(hctx->ctxs);
7c6c5b7c
ML
2653 free_cpumask:
2654 free_cpumask_var(hctx->cpumask);
2655 free_hctx:
2656 kfree(hctx);
2657 fail_alloc_hctx:
2658 return NULL;
08e98fc6 2659}
320ae51f 2660
320ae51f
JA
2661static void blk_mq_init_cpu_queues(struct request_queue *q,
2662 unsigned int nr_hw_queues)
2663{
b3c661b1
JA
2664 struct blk_mq_tag_set *set = q->tag_set;
2665 unsigned int i, j;
320ae51f
JA
2666
2667 for_each_possible_cpu(i) {
2668 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2669 struct blk_mq_hw_ctx *hctx;
c16d6b5a 2670 int k;
320ae51f 2671
320ae51f
JA
2672 __ctx->cpu = i;
2673 spin_lock_init(&__ctx->lock);
c16d6b5a
ML
2674 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2675 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2676
320ae51f
JA
2677 __ctx->queue = q;
2678
320ae51f
JA
2679 /*
2680 * Set local node, IFF we have more than one hw queue. If
2681 * not, we remain on the home node of the device
2682 */
b3c661b1
JA
2683 for (j = 0; j < set->nr_maps; j++) {
2684 hctx = blk_mq_map_queue_type(q, j, i);
2685 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2686 hctx->numa_node = local_memory_node(cpu_to_node(i));
2687 }
320ae51f
JA
2688 }
2689}
2690
03b63b02
WZ
2691static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2692 int hctx_idx)
cc71a6f4
JA
2693{
2694 int ret = 0;
2695
2696 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2697 set->queue_depth, set->reserved_tags);
2698 if (!set->tags[hctx_idx])
2699 return false;
2700
2701 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2702 set->queue_depth);
2703 if (!ret)
2704 return true;
2705
2706 blk_mq_free_rq_map(set->tags[hctx_idx]);
2707 set->tags[hctx_idx] = NULL;
2708 return false;
2709}
2710
2711static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2712 unsigned int hctx_idx)
2713{
4e6db0f2 2714 if (set->tags && set->tags[hctx_idx]) {
bd166ef1
JA
2715 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2716 blk_mq_free_rq_map(set->tags[hctx_idx]);
2717 set->tags[hctx_idx] = NULL;
2718 }
cc71a6f4
JA
2719}
2720
4b855ad3 2721static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2722{
b3c661b1 2723 unsigned int i, j, hctx_idx;
320ae51f
JA
2724 struct blk_mq_hw_ctx *hctx;
2725 struct blk_mq_ctx *ctx;
2a34c087 2726 struct blk_mq_tag_set *set = q->tag_set;
320ae51f
JA
2727
2728 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2729 cpumask_clear(hctx->cpumask);
320ae51f 2730 hctx->nr_ctx = 0;
d416c92c 2731 hctx->dispatch_from = NULL;
320ae51f
JA
2732 }
2733
2734 /*
4b855ad3 2735 * Map software to hardware queues.
4412efec
ML
2736 *
2737 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2738 */
20e4d813 2739 for_each_possible_cpu(i) {
4412efec 2740
897bb0c7 2741 ctx = per_cpu_ptr(q->queue_ctx, i);
b3c661b1 2742 for (j = 0; j < set->nr_maps; j++) {
bb94aea1
JW
2743 if (!set->map[j].nr_queues) {
2744 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2745 HCTX_TYPE_DEFAULT, i);
e5edd5f2 2746 continue;
bb94aea1 2747 }
fd689871
ML
2748 hctx_idx = set->map[j].mq_map[i];
2749 /* unmapped hw queue can be remapped after CPU topo changed */
2750 if (!set->tags[hctx_idx] &&
03b63b02 2751 !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
fd689871
ML
2752 /*
2753 * If tags initialization fail for some hctx,
2754 * that hctx won't be brought online. In this
2755 * case, remap the current ctx to hctx[0] which
2756 * is guaranteed to always have tags allocated
2757 */
2758 set->map[j].mq_map[i] = 0;
2759 }
e5edd5f2 2760
b3c661b1 2761 hctx = blk_mq_map_queue_type(q, j, i);
8ccdf4a3 2762 ctx->hctxs[j] = hctx;
b3c661b1
JA
2763 /*
2764 * If the CPU is already set in the mask, then we've
2765 * mapped this one already. This can happen if
2766 * devices share queues across queue maps.
2767 */
2768 if (cpumask_test_cpu(i, hctx->cpumask))
2769 continue;
2770
2771 cpumask_set_cpu(i, hctx->cpumask);
2772 hctx->type = j;
2773 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2774 hctx->ctxs[hctx->nr_ctx++] = ctx;
2775
2776 /*
2777 * If the nr_ctx type overflows, we have exceeded the
2778 * amount of sw queues we can support.
2779 */
2780 BUG_ON(!hctx->nr_ctx);
2781 }
bb94aea1
JW
2782
2783 for (; j < HCTX_MAX_TYPES; j++)
2784 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2785 HCTX_TYPE_DEFAULT, i);
320ae51f 2786 }
506e931f
JA
2787
2788 queue_for_each_hw_ctx(q, hctx, i) {
4412efec
ML
2789 /*
2790 * If no software queues are mapped to this hardware queue,
2791 * disable it and free the request entries.
2792 */
2793 if (!hctx->nr_ctx) {
2794 /* Never unmap queue 0. We need it as a
2795 * fallback in case of a new remap fails
2796 * allocation
2797 */
2798 if (i && set->tags[i])
2799 blk_mq_free_map_and_requests(set, i);
2800
2801 hctx->tags = NULL;
2802 continue;
2803 }
484b4061 2804
2a34c087
ML
2805 hctx->tags = set->tags[i];
2806 WARN_ON(!hctx->tags);
2807
889fa31f
CY
2808 /*
2809 * Set the map size to the number of mapped software queues.
2810 * This is more accurate and more efficient than looping
2811 * over all possibly mapped software queues.
2812 */
88459642 2813 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2814
484b4061
JA
2815 /*
2816 * Initialize batch roundrobin counts
2817 */
f82ddf19 2818 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
2819 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2820 }
320ae51f
JA
2821}
2822
8e8320c9
JA
2823/*
2824 * Caller needs to ensure that we're either frozen/quiesced, or that
2825 * the queue isn't live yet.
2826 */
2404e607 2827static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2828{
2829 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2830 int i;
2831
2404e607 2832 queue_for_each_hw_ctx(q, hctx, i) {
97889f9a 2833 if (shared)
2404e607 2834 hctx->flags |= BLK_MQ_F_TAG_SHARED;
97889f9a 2835 else
2404e607
JM
2836 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2837 }
2838}
2839
8e8320c9
JA
2840static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2841 bool shared)
2404e607
JM
2842{
2843 struct request_queue *q;
0d2602ca 2844
705cda97
BVA
2845 lockdep_assert_held(&set->tag_list_lock);
2846
0d2602ca
JA
2847 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2848 blk_mq_freeze_queue(q);
2404e607 2849 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2850 blk_mq_unfreeze_queue(q);
2851 }
2852}
2853
2854static void blk_mq_del_queue_tag_set(struct request_queue *q)
2855{
2856 struct blk_mq_tag_set *set = q->tag_set;
2857
0d2602ca 2858 mutex_lock(&set->tag_list_lock);
705cda97 2859 list_del_rcu(&q->tag_set_list);
2404e607
JM
2860 if (list_is_singular(&set->tag_list)) {
2861 /* just transitioned to unshared */
2862 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2863 /* update existing queue */
2864 blk_mq_update_tag_set_depth(set, false);
2865 }
0d2602ca 2866 mutex_unlock(&set->tag_list_lock);
a347c7ad 2867 INIT_LIST_HEAD(&q->tag_set_list);
0d2602ca
JA
2868}
2869
2870static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2871 struct request_queue *q)
2872{
0d2602ca 2873 mutex_lock(&set->tag_list_lock);
2404e607 2874
ff821d27
JA
2875 /*
2876 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2877 */
2878 if (!list_empty(&set->tag_list) &&
2879 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2404e607
JM
2880 set->flags |= BLK_MQ_F_TAG_SHARED;
2881 /* update existing queue */
2882 blk_mq_update_tag_set_depth(set, true);
2883 }
2884 if (set->flags & BLK_MQ_F_TAG_SHARED)
2885 queue_set_hctx_shared(q, true);
705cda97 2886 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2887
0d2602ca
JA
2888 mutex_unlock(&set->tag_list_lock);
2889}
2890
1db4909e
ML
2891/* All allocations will be freed in release handler of q->mq_kobj */
2892static int blk_mq_alloc_ctxs(struct request_queue *q)
2893{
2894 struct blk_mq_ctxs *ctxs;
2895 int cpu;
2896
2897 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2898 if (!ctxs)
2899 return -ENOMEM;
2900
2901 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2902 if (!ctxs->queue_ctx)
2903 goto fail;
2904
2905 for_each_possible_cpu(cpu) {
2906 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2907 ctx->ctxs = ctxs;
2908 }
2909
2910 q->mq_kobj = &ctxs->kobj;
2911 q->queue_ctx = ctxs->queue_ctx;
2912
2913 return 0;
2914 fail:
2915 kfree(ctxs);
2916 return -ENOMEM;
2917}
2918
e09aae7e
ML
2919/*
2920 * It is the actual release handler for mq, but we do it from
2921 * request queue's release handler for avoiding use-after-free
2922 * and headache because q->mq_kobj shouldn't have been introduced,
2923 * but we can't group ctx/kctx kobj without it.
2924 */
2925void blk_mq_release(struct request_queue *q)
2926{
2f8f1336
ML
2927 struct blk_mq_hw_ctx *hctx, *next;
2928 int i;
e09aae7e 2929
2f8f1336
ML
2930 queue_for_each_hw_ctx(q, hctx, i)
2931 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2932
2933 /* all hctx are in .unused_hctx_list now */
2934 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2935 list_del_init(&hctx->hctx_list);
6c8b232e 2936 kobject_put(&hctx->kobj);
c3b4afca 2937 }
e09aae7e
ML
2938
2939 kfree(q->queue_hw_ctx);
2940
7ea5fe31
ML
2941 /*
2942 * release .mq_kobj and sw queue's kobject now because
2943 * both share lifetime with request queue.
2944 */
2945 blk_mq_sysfs_deinit(q);
e09aae7e
ML
2946}
2947
2f227bb9
CH
2948struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
2949 void *queuedata)
b62c21b7
MS
2950{
2951 struct request_queue *uninit_q, *q;
2952
3d745ea5 2953 uninit_q = __blk_alloc_queue(set->numa_node);
b62c21b7
MS
2954 if (!uninit_q)
2955 return ERR_PTR(-ENOMEM);
2f227bb9 2956 uninit_q->queuedata = queuedata;
b62c21b7 2957
737eb78e
DLM
2958 /*
2959 * Initialize the queue without an elevator. device_add_disk() will do
2960 * the initialization.
2961 */
2962 q = blk_mq_init_allocated_queue(set, uninit_q, false);
b62c21b7
MS
2963 if (IS_ERR(q))
2964 blk_cleanup_queue(uninit_q);
2965
2966 return q;
2967}
2f227bb9
CH
2968EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
2969
2970struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2971{
2972 return blk_mq_init_queue_data(set, NULL);
2973}
b62c21b7
MS
2974EXPORT_SYMBOL(blk_mq_init_queue);
2975
9316a9ed
JA
2976/*
2977 * Helper for setting up a queue with mq ops, given queue depth, and
2978 * the passed in mq ops flags.
2979 */
2980struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2981 const struct blk_mq_ops *ops,
2982 unsigned int queue_depth,
2983 unsigned int set_flags)
2984{
2985 struct request_queue *q;
2986 int ret;
2987
2988 memset(set, 0, sizeof(*set));
2989 set->ops = ops;
2990 set->nr_hw_queues = 1;
b3c661b1 2991 set->nr_maps = 1;
9316a9ed
JA
2992 set->queue_depth = queue_depth;
2993 set->numa_node = NUMA_NO_NODE;
2994 set->flags = set_flags;
2995
2996 ret = blk_mq_alloc_tag_set(set);
2997 if (ret)
2998 return ERR_PTR(ret);
2999
3000 q = blk_mq_init_queue(set);
3001 if (IS_ERR(q)) {
3002 blk_mq_free_tag_set(set);
3003 return q;
3004 }
3005
3006 return q;
3007}
3008EXPORT_SYMBOL(blk_mq_init_sq_queue);
3009
34d11ffa
JW
3010static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3011 struct blk_mq_tag_set *set, struct request_queue *q,
3012 int hctx_idx, int node)
3013{
2f8f1336 3014 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
34d11ffa 3015
2f8f1336
ML
3016 /* reuse dead hctx first */
3017 spin_lock(&q->unused_hctx_lock);
3018 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3019 if (tmp->numa_node == node) {
3020 hctx = tmp;
3021 break;
3022 }
3023 }
3024 if (hctx)
3025 list_del_init(&hctx->hctx_list);
3026 spin_unlock(&q->unused_hctx_lock);
3027
3028 if (!hctx)
3029 hctx = blk_mq_alloc_hctx(q, set, node);
34d11ffa 3030 if (!hctx)
7c6c5b7c 3031 goto fail;
34d11ffa 3032
7c6c5b7c
ML
3033 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3034 goto free_hctx;
34d11ffa
JW
3035
3036 return hctx;
7c6c5b7c
ML
3037
3038 free_hctx:
3039 kobject_put(&hctx->kobj);
3040 fail:
3041 return NULL;
34d11ffa
JW
3042}
3043
868f2f0b
KB
3044static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3045 struct request_queue *q)
320ae51f 3046{
e01ad46d 3047 int i, j, end;
868f2f0b 3048 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 3049
ac0d6b92
BVA
3050 if (q->nr_hw_queues < set->nr_hw_queues) {
3051 struct blk_mq_hw_ctx **new_hctxs;
3052
3053 new_hctxs = kcalloc_node(set->nr_hw_queues,
3054 sizeof(*new_hctxs), GFP_KERNEL,
3055 set->numa_node);
3056 if (!new_hctxs)
3057 return;
3058 if (hctxs)
3059 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3060 sizeof(*hctxs));
3061 q->queue_hw_ctx = new_hctxs;
ac0d6b92
BVA
3062 kfree(hctxs);
3063 hctxs = new_hctxs;
3064 }
3065
fb350e0a
ML
3066 /* protect against switching io scheduler */
3067 mutex_lock(&q->sysfs_lock);
24d2f903 3068 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 3069 int node;
34d11ffa 3070 struct blk_mq_hw_ctx *hctx;
868f2f0b 3071
7d76f856 3072 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
34d11ffa
JW
3073 /*
3074 * If the hw queue has been mapped to another numa node,
3075 * we need to realloc the hctx. If allocation fails, fallback
3076 * to use the previous one.
3077 */
3078 if (hctxs[i] && (hctxs[i]->numa_node == node))
3079 continue;
868f2f0b 3080
34d11ffa
JW
3081 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3082 if (hctx) {
2f8f1336 3083 if (hctxs[i])
34d11ffa 3084 blk_mq_exit_hctx(q, set, hctxs[i], i);
34d11ffa
JW
3085 hctxs[i] = hctx;
3086 } else {
3087 if (hctxs[i])
3088 pr_warn("Allocate new hctx on node %d fails,\
3089 fallback to previous one on node %d\n",
3090 node, hctxs[i]->numa_node);
3091 else
3092 break;
868f2f0b 3093 }
320ae51f 3094 }
e01ad46d
JW
3095 /*
3096 * Increasing nr_hw_queues fails. Free the newly allocated
3097 * hctxs and keep the previous q->nr_hw_queues.
3098 */
3099 if (i != set->nr_hw_queues) {
3100 j = q->nr_hw_queues;
3101 end = i;
3102 } else {
3103 j = i;
3104 end = q->nr_hw_queues;
3105 q->nr_hw_queues = set->nr_hw_queues;
3106 }
34d11ffa 3107
e01ad46d 3108 for (; j < end; j++) {
868f2f0b
KB
3109 struct blk_mq_hw_ctx *hctx = hctxs[j];
3110
3111 if (hctx) {
cc71a6f4
JA
3112 if (hctx->tags)
3113 blk_mq_free_map_and_requests(set, j);
868f2f0b 3114 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 3115 hctxs[j] = NULL;
868f2f0b
KB
3116 }
3117 }
fb350e0a 3118 mutex_unlock(&q->sysfs_lock);
868f2f0b
KB
3119}
3120
3121struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
737eb78e
DLM
3122 struct request_queue *q,
3123 bool elevator_init)
868f2f0b 3124{
66841672
ML
3125 /* mark the queue as mq asap */
3126 q->mq_ops = set->ops;
3127
34dbad5d 3128 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
3129 blk_mq_poll_stats_bkt,
3130 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
3131 if (!q->poll_cb)
3132 goto err_exit;
3133
1db4909e 3134 if (blk_mq_alloc_ctxs(q))
41de54c6 3135 goto err_poll;
868f2f0b 3136
737f98cf
ML
3137 /* init q->mq_kobj and sw queues' kobjects */
3138 blk_mq_sysfs_init(q);
3139
2f8f1336
ML
3140 INIT_LIST_HEAD(&q->unused_hctx_list);
3141 spin_lock_init(&q->unused_hctx_lock);
3142
868f2f0b
KB
3143 blk_mq_realloc_hw_ctxs(set, q);
3144 if (!q->nr_hw_queues)
3145 goto err_hctxs;
320ae51f 3146
287922eb 3147 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 3148 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f 3149
a8908939 3150 q->tag_set = set;
320ae51f 3151
94eddfbe 3152 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
cd19181b
ML
3153 if (set->nr_maps > HCTX_TYPE_POLL &&
3154 set->map[HCTX_TYPE_POLL].nr_queues)
6544d229 3155 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
320ae51f 3156
1be036e9
CH
3157 q->sg_reserved_size = INT_MAX;
3158
2849450a 3159 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
3160 INIT_LIST_HEAD(&q->requeue_list);
3161 spin_lock_init(&q->requeue_lock);
3162
eba71768
JA
3163 q->nr_requests = set->queue_depth;
3164
64f1c21e
JA
3165 /*
3166 * Default to classic polling
3167 */
29ece8b4 3168 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
64f1c21e 3169
24d2f903 3170 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 3171 blk_mq_add_queue_tag_set(set, q);
4b855ad3 3172 blk_mq_map_swqueue(q);
4593fdbe 3173
737eb78e
DLM
3174 if (elevator_init)
3175 elevator_init_mq(q);
d3484991 3176
320ae51f 3177 return q;
18741986 3178
320ae51f 3179err_hctxs:
868f2f0b 3180 kfree(q->queue_hw_ctx);
73d9c8d4 3181 q->nr_hw_queues = 0;
1db4909e 3182 blk_mq_sysfs_deinit(q);
41de54c6
JS
3183err_poll:
3184 blk_stat_free_callback(q->poll_cb);
3185 q->poll_cb = NULL;
c7de5726
ML
3186err_exit:
3187 q->mq_ops = NULL;
320ae51f
JA
3188 return ERR_PTR(-ENOMEM);
3189}
b62c21b7 3190EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f 3191
c7e2d94b
ML
3192/* tags can _not_ be used after returning from blk_mq_exit_queue */
3193void blk_mq_exit_queue(struct request_queue *q)
320ae51f 3194{
624dbe47 3195 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 3196
0d2602ca 3197 blk_mq_del_queue_tag_set(q);
624dbe47 3198 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 3199}
320ae51f 3200
a5164405
JA
3201static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3202{
3203 int i;
3204
cc71a6f4 3205 for (i = 0; i < set->nr_hw_queues; i++)
03b63b02 3206 if (!__blk_mq_alloc_map_and_request(set, i))
a5164405 3207 goto out_unwind;
a5164405
JA
3208
3209 return 0;
3210
3211out_unwind:
3212 while (--i >= 0)
2e194422 3213 blk_mq_free_map_and_requests(set, i);
a5164405 3214
a5164405
JA
3215 return -ENOMEM;
3216}
3217
3218/*
3219 * Allocate the request maps associated with this tag_set. Note that this
3220 * may reduce the depth asked for, if memory is tight. set->queue_depth
3221 * will be updated to reflect the allocated depth.
3222 */
79fab528 3223static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
a5164405
JA
3224{
3225 unsigned int depth;
3226 int err;
3227
3228 depth = set->queue_depth;
3229 do {
3230 err = __blk_mq_alloc_rq_maps(set);
3231 if (!err)
3232 break;
3233
3234 set->queue_depth >>= 1;
3235 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3236 err = -ENOMEM;
3237 break;
3238 }
3239 } while (set->queue_depth);
3240
3241 if (!set->queue_depth || err) {
3242 pr_err("blk-mq: failed to allocate request map\n");
3243 return -ENOMEM;
3244 }
3245
3246 if (depth != set->queue_depth)
3247 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3248 depth, set->queue_depth);
3249
3250 return 0;
3251}
3252
ebe8bddb
OS
3253static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3254{
6e66b493
BVA
3255 /*
3256 * blk_mq_map_queues() and multiple .map_queues() implementations
3257 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3258 * number of hardware queues.
3259 */
3260 if (set->nr_maps == 1)
3261 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3262
59388702 3263 if (set->ops->map_queues && !is_kdump_kernel()) {
b3c661b1
JA
3264 int i;
3265
7d4901a9
ML
3266 /*
3267 * transport .map_queues is usually done in the following
3268 * way:
3269 *
3270 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3271 * mask = get_cpu_mask(queue)
3272 * for_each_cpu(cpu, mask)
b3c661b1 3273 * set->map[x].mq_map[cpu] = queue;
7d4901a9
ML
3274 * }
3275 *
3276 * When we need to remap, the table has to be cleared for
3277 * killing stale mapping since one CPU may not be mapped
3278 * to any hw queue.
3279 */
b3c661b1
JA
3280 for (i = 0; i < set->nr_maps; i++)
3281 blk_mq_clear_mq_map(&set->map[i]);
7d4901a9 3282
ebe8bddb 3283 return set->ops->map_queues(set);
b3c661b1
JA
3284 } else {
3285 BUG_ON(set->nr_maps > 1);
7d76f856 3286 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
b3c661b1 3287 }
ebe8bddb
OS
3288}
3289
f7e76dbc
BVA
3290static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3291 int cur_nr_hw_queues, int new_nr_hw_queues)
3292{
3293 struct blk_mq_tags **new_tags;
3294
3295 if (cur_nr_hw_queues >= new_nr_hw_queues)
3296 return 0;
3297
3298 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3299 GFP_KERNEL, set->numa_node);
3300 if (!new_tags)
3301 return -ENOMEM;
3302
3303 if (set->tags)
3304 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3305 sizeof(*set->tags));
3306 kfree(set->tags);
3307 set->tags = new_tags;
3308 set->nr_hw_queues = new_nr_hw_queues;
3309
3310 return 0;
3311}
3312
a4391c64
JA
3313/*
3314 * Alloc a tag set to be associated with one or more request queues.
3315 * May fail with EINVAL for various error conditions. May adjust the
c018c84f 3316 * requested depth down, if it's too large. In that case, the set
a4391c64
JA
3317 * value will be stored in set->queue_depth.
3318 */
24d2f903
CH
3319int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3320{
b3c661b1 3321 int i, ret;
da695ba2 3322
205fb5f5
BVA
3323 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3324
24d2f903
CH
3325 if (!set->nr_hw_queues)
3326 return -EINVAL;
a4391c64 3327 if (!set->queue_depth)
24d2f903
CH
3328 return -EINVAL;
3329 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3330 return -EINVAL;
3331
7d7e0f90 3332 if (!set->ops->queue_rq)
24d2f903
CH
3333 return -EINVAL;
3334
de148297
ML
3335 if (!set->ops->get_budget ^ !set->ops->put_budget)
3336 return -EINVAL;
3337
a4391c64
JA
3338 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3339 pr_info("blk-mq: reduced tag depth to %u\n",
3340 BLK_MQ_MAX_DEPTH);
3341 set->queue_depth = BLK_MQ_MAX_DEPTH;
3342 }
24d2f903 3343
b3c661b1
JA
3344 if (!set->nr_maps)
3345 set->nr_maps = 1;
3346 else if (set->nr_maps > HCTX_MAX_TYPES)
3347 return -EINVAL;
3348
6637fadf
SL
3349 /*
3350 * If a crashdump is active, then we are potentially in a very
3351 * memory constrained environment. Limit us to 1 queue and
3352 * 64 tags to prevent using too much memory.
3353 */
3354 if (is_kdump_kernel()) {
3355 set->nr_hw_queues = 1;
59388702 3356 set->nr_maps = 1;
6637fadf
SL
3357 set->queue_depth = min(64U, set->queue_depth);
3358 }
868f2f0b 3359 /*
392546ae
JA
3360 * There is no use for more h/w queues than cpus if we just have
3361 * a single map
868f2f0b 3362 */
392546ae 3363 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
868f2f0b 3364 set->nr_hw_queues = nr_cpu_ids;
6637fadf 3365
f7e76dbc 3366 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
a5164405 3367 return -ENOMEM;
24d2f903 3368
da695ba2 3369 ret = -ENOMEM;
b3c661b1
JA
3370 for (i = 0; i < set->nr_maps; i++) {
3371 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
07b35eb5 3372 sizeof(set->map[i].mq_map[0]),
b3c661b1
JA
3373 GFP_KERNEL, set->numa_node);
3374 if (!set->map[i].mq_map)
3375 goto out_free_mq_map;
59388702 3376 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
b3c661b1 3377 }
bdd17e75 3378
ebe8bddb 3379 ret = blk_mq_update_queue_map(set);
da695ba2
CH
3380 if (ret)
3381 goto out_free_mq_map;
3382
79fab528 3383 ret = blk_mq_alloc_map_and_requests(set);
da695ba2 3384 if (ret)
bdd17e75 3385 goto out_free_mq_map;
24d2f903 3386
0d2602ca
JA
3387 mutex_init(&set->tag_list_lock);
3388 INIT_LIST_HEAD(&set->tag_list);
3389
24d2f903 3390 return 0;
bdd17e75
CH
3391
3392out_free_mq_map:
b3c661b1
JA
3393 for (i = 0; i < set->nr_maps; i++) {
3394 kfree(set->map[i].mq_map);
3395 set->map[i].mq_map = NULL;
3396 }
5676e7b6
RE
3397 kfree(set->tags);
3398 set->tags = NULL;
da695ba2 3399 return ret;
24d2f903
CH
3400}
3401EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3402
3403void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3404{
b3c661b1 3405 int i, j;
24d2f903 3406
f7e76dbc 3407 for (i = 0; i < set->nr_hw_queues; i++)
cc71a6f4 3408 blk_mq_free_map_and_requests(set, i);
484b4061 3409
b3c661b1
JA
3410 for (j = 0; j < set->nr_maps; j++) {
3411 kfree(set->map[j].mq_map);
3412 set->map[j].mq_map = NULL;
3413 }
bdd17e75 3414
981bd189 3415 kfree(set->tags);
5676e7b6 3416 set->tags = NULL;
24d2f903
CH
3417}
3418EXPORT_SYMBOL(blk_mq_free_tag_set);
3419
e3a2b3f9
JA
3420int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3421{
3422 struct blk_mq_tag_set *set = q->tag_set;
3423 struct blk_mq_hw_ctx *hctx;
3424 int i, ret;
3425
bd166ef1 3426 if (!set)
e3a2b3f9
JA
3427 return -EINVAL;
3428
e5fa8140
AZ
3429 if (q->nr_requests == nr)
3430 return 0;
3431
70f36b60 3432 blk_mq_freeze_queue(q);
24f5a90f 3433 blk_mq_quiesce_queue(q);
70f36b60 3434
e3a2b3f9
JA
3435 ret = 0;
3436 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
3437 if (!hctx->tags)
3438 continue;
bd166ef1
JA
3439 /*
3440 * If we're using an MQ scheduler, just update the scheduler
3441 * queue depth. This is similar to what the old code would do.
3442 */
70f36b60 3443 if (!hctx->sched_tags) {
c2e82a23 3444 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60
JA
3445 false);
3446 } else {
3447 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3448 nr, true);
3449 }
e3a2b3f9
JA
3450 if (ret)
3451 break;
77f1e0a5
JA
3452 if (q->elevator && q->elevator->type->ops.depth_updated)
3453 q->elevator->type->ops.depth_updated(hctx);
e3a2b3f9
JA
3454 }
3455
3456 if (!ret)
3457 q->nr_requests = nr;
3458
24f5a90f 3459 blk_mq_unquiesce_queue(q);
70f36b60 3460 blk_mq_unfreeze_queue(q);
70f36b60 3461
e3a2b3f9
JA
3462 return ret;
3463}
3464
d48ece20
JW
3465/*
3466 * request_queue and elevator_type pair.
3467 * It is just used by __blk_mq_update_nr_hw_queues to cache
3468 * the elevator_type associated with a request_queue.
3469 */
3470struct blk_mq_qe_pair {
3471 struct list_head node;
3472 struct request_queue *q;
3473 struct elevator_type *type;
3474};
3475
3476/*
3477 * Cache the elevator_type in qe pair list and switch the
3478 * io scheduler to 'none'
3479 */
3480static bool blk_mq_elv_switch_none(struct list_head *head,
3481 struct request_queue *q)
3482{
3483 struct blk_mq_qe_pair *qe;
3484
3485 if (!q->elevator)
3486 return true;
3487
3488 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3489 if (!qe)
3490 return false;
3491
3492 INIT_LIST_HEAD(&qe->node);
3493 qe->q = q;
3494 qe->type = q->elevator->type;
3495 list_add(&qe->node, head);
3496
3497 mutex_lock(&q->sysfs_lock);
3498 /*
3499 * After elevator_switch_mq, the previous elevator_queue will be
3500 * released by elevator_release. The reference of the io scheduler
3501 * module get by elevator_get will also be put. So we need to get
3502 * a reference of the io scheduler module here to prevent it to be
3503 * removed.
3504 */
3505 __module_get(qe->type->elevator_owner);
3506 elevator_switch_mq(q, NULL);
3507 mutex_unlock(&q->sysfs_lock);
3508
3509 return true;
3510}
3511
3512static void blk_mq_elv_switch_back(struct list_head *head,
3513 struct request_queue *q)
3514{
3515 struct blk_mq_qe_pair *qe;
3516 struct elevator_type *t = NULL;
3517
3518 list_for_each_entry(qe, head, node)
3519 if (qe->q == q) {
3520 t = qe->type;
3521 break;
3522 }
3523
3524 if (!t)
3525 return;
3526
3527 list_del(&qe->node);
3528 kfree(qe);
3529
3530 mutex_lock(&q->sysfs_lock);
3531 elevator_switch_mq(q, t);
3532 mutex_unlock(&q->sysfs_lock);
3533}
3534
e4dc2b32
KB
3535static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3536 int nr_hw_queues)
868f2f0b
KB
3537{
3538 struct request_queue *q;
d48ece20 3539 LIST_HEAD(head);
e01ad46d 3540 int prev_nr_hw_queues;
868f2f0b 3541
705cda97
BVA
3542 lockdep_assert_held(&set->tag_list_lock);
3543
392546ae 3544 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
868f2f0b 3545 nr_hw_queues = nr_cpu_ids;
fe35ec58
WZ
3546 if (nr_hw_queues < 1)
3547 return;
3548 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
868f2f0b
KB
3549 return;
3550
3551 list_for_each_entry(q, &set->tag_list, tag_set_list)
3552 blk_mq_freeze_queue(q);
d48ece20
JW
3553 /*
3554 * Switch IO scheduler to 'none', cleaning up the data associated
3555 * with the previous scheduler. We will switch back once we are done
3556 * updating the new sw to hw queue mappings.
3557 */
3558 list_for_each_entry(q, &set->tag_list, tag_set_list)
3559 if (!blk_mq_elv_switch_none(&head, q))
3560 goto switch_back;
868f2f0b 3561
477e19de
JW
3562 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3563 blk_mq_debugfs_unregister_hctxs(q);
3564 blk_mq_sysfs_unregister(q);
3565 }
3566
a2584e43 3567 prev_nr_hw_queues = set->nr_hw_queues;
f7e76dbc
BVA
3568 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3569 0)
3570 goto reregister;
3571
868f2f0b 3572 set->nr_hw_queues = nr_hw_queues;
e01ad46d 3573fallback:
aa880ad6 3574 blk_mq_update_queue_map(set);
868f2f0b
KB
3575 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3576 blk_mq_realloc_hw_ctxs(set, q);
e01ad46d
JW
3577 if (q->nr_hw_queues != set->nr_hw_queues) {
3578 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3579 nr_hw_queues, prev_nr_hw_queues);
3580 set->nr_hw_queues = prev_nr_hw_queues;
7d76f856 3581 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
e01ad46d
JW
3582 goto fallback;
3583 }
477e19de
JW
3584 blk_mq_map_swqueue(q);
3585 }
3586
f7e76dbc 3587reregister:
477e19de
JW
3588 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3589 blk_mq_sysfs_register(q);
3590 blk_mq_debugfs_register_hctxs(q);
868f2f0b
KB
3591 }
3592
d48ece20
JW
3593switch_back:
3594 list_for_each_entry(q, &set->tag_list, tag_set_list)
3595 blk_mq_elv_switch_back(&head, q);
3596
868f2f0b
KB
3597 list_for_each_entry(q, &set->tag_list, tag_set_list)
3598 blk_mq_unfreeze_queue(q);
3599}
e4dc2b32
KB
3600
3601void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3602{
3603 mutex_lock(&set->tag_list_lock);
3604 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3605 mutex_unlock(&set->tag_list_lock);
3606}
868f2f0b
KB
3607EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3608
34dbad5d
OS
3609/* Enable polling stats and return whether they were already enabled. */
3610static bool blk_poll_stats_enable(struct request_queue *q)
3611{
3612 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
7dfdbc73 3613 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
34dbad5d
OS
3614 return true;
3615 blk_stat_add_callback(q, q->poll_cb);
3616 return false;
3617}
3618
3619static void blk_mq_poll_stats_start(struct request_queue *q)
3620{
3621 /*
3622 * We don't arm the callback if polling stats are not enabled or the
3623 * callback is already active.
3624 */
3625 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3626 blk_stat_is_active(q->poll_cb))
3627 return;
3628
3629 blk_stat_activate_msecs(q->poll_cb, 100);
3630}
3631
3632static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3633{
3634 struct request_queue *q = cb->data;
720b8ccc 3635 int bucket;
34dbad5d 3636
720b8ccc
SB
3637 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3638 if (cb->stat[bucket].nr_samples)
3639 q->poll_stat[bucket] = cb->stat[bucket];
3640 }
34dbad5d
OS
3641}
3642
64f1c21e 3643static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
64f1c21e
JA
3644 struct request *rq)
3645{
64f1c21e 3646 unsigned long ret = 0;
720b8ccc 3647 int bucket;
64f1c21e
JA
3648
3649 /*
3650 * If stats collection isn't on, don't sleep but turn it on for
3651 * future users
3652 */
34dbad5d 3653 if (!blk_poll_stats_enable(q))
64f1c21e
JA
3654 return 0;
3655
64f1c21e
JA
3656 /*
3657 * As an optimistic guess, use half of the mean service time
3658 * for this type of request. We can (and should) make this smarter.
3659 * For instance, if the completion latencies are tight, we can
3660 * get closer than just half the mean. This is especially
3661 * important on devices where the completion latencies are longer
720b8ccc
SB
3662 * than ~10 usec. We do use the stats for the relevant IO size
3663 * if available which does lead to better estimates.
64f1c21e 3664 */
720b8ccc
SB
3665 bucket = blk_mq_poll_stats_bkt(rq);
3666 if (bucket < 0)
3667 return ret;
3668
3669 if (q->poll_stat[bucket].nr_samples)
3670 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
3671
3672 return ret;
3673}
3674
06426adf
JA
3675static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3676 struct request *rq)
3677{
3678 struct hrtimer_sleeper hs;
3679 enum hrtimer_mode mode;
64f1c21e 3680 unsigned int nsecs;
06426adf
JA
3681 ktime_t kt;
3682
76a86f9d 3683 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
64f1c21e
JA
3684 return false;
3685
3686 /*
1052b8ac 3687 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
64f1c21e 3688 *
64f1c21e
JA
3689 * 0: use half of prev avg
3690 * >0: use this specific value
3691 */
1052b8ac 3692 if (q->poll_nsec > 0)
64f1c21e
JA
3693 nsecs = q->poll_nsec;
3694 else
cae740a0 3695 nsecs = blk_mq_poll_nsecs(q, rq);
64f1c21e
JA
3696
3697 if (!nsecs)
06426adf
JA
3698 return false;
3699
76a86f9d 3700 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
06426adf
JA
3701
3702 /*
3703 * This will be replaced with the stats tracking code, using
3704 * 'avg_completion_time / 2' as the pre-sleep target.
3705 */
8b0e1953 3706 kt = nsecs;
06426adf
JA
3707
3708 mode = HRTIMER_MODE_REL;
dbc1625f 3709 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
06426adf
JA
3710 hrtimer_set_expires(&hs.timer, kt);
3711
06426adf 3712 do {
5a61c363 3713 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
06426adf
JA
3714 break;
3715 set_current_state(TASK_UNINTERRUPTIBLE);
9dd8813e 3716 hrtimer_sleeper_start_expires(&hs, mode);
06426adf
JA
3717 if (hs.task)
3718 io_schedule();
3719 hrtimer_cancel(&hs.timer);
3720 mode = HRTIMER_MODE_ABS;
3721 } while (hs.task && !signal_pending(current));
3722
3723 __set_current_state(TASK_RUNNING);
3724 destroy_hrtimer_on_stack(&hs.timer);
3725 return true;
3726}
3727
1052b8ac
JA
3728static bool blk_mq_poll_hybrid(struct request_queue *q,
3729 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
bbd7bb70 3730{
1052b8ac
JA
3731 struct request *rq;
3732
29ece8b4 3733 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
1052b8ac
JA
3734 return false;
3735
3736 if (!blk_qc_t_is_internal(cookie))
3737 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3738 else {
3739 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3740 /*
3741 * With scheduling, if the request has completed, we'll
3742 * get a NULL return here, as we clear the sched tag when
3743 * that happens. The request still remains valid, like always,
3744 * so we should be safe with just the NULL check.
3745 */
3746 if (!rq)
3747 return false;
3748 }
3749
cae740a0 3750 return blk_mq_poll_hybrid_sleep(q, rq);
1052b8ac
JA
3751}
3752
529262d5
CH
3753/**
3754 * blk_poll - poll for IO completions
3755 * @q: the queue
3756 * @cookie: cookie passed back at IO submission time
3757 * @spin: whether to spin for completions
3758 *
3759 * Description:
3760 * Poll for completions on the passed in queue. Returns number of
3761 * completed entries found. If @spin is true, then blk_poll will continue
3762 * looping until at least one completion is found, unless the task is
3763 * otherwise marked running (or we need to reschedule).
3764 */
3765int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
1052b8ac
JA
3766{
3767 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
3768 long state;
3769
529262d5
CH
3770 if (!blk_qc_t_valid(cookie) ||
3771 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
1052b8ac
JA
3772 return 0;
3773
529262d5
CH
3774 if (current->plug)
3775 blk_flush_plug_list(current->plug, false);
3776
1052b8ac
JA
3777 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3778
06426adf
JA
3779 /*
3780 * If we sleep, have the caller restart the poll loop to reset
3781 * the state. Like for the other success return cases, the
3782 * caller is responsible for checking if the IO completed. If
3783 * the IO isn't complete, we'll get called again and will go
3784 * straight to the busy poll loop.
3785 */
1052b8ac 3786 if (blk_mq_poll_hybrid(q, hctx, cookie))
85f4d4b6 3787 return 1;
06426adf 3788
bbd7bb70
JA
3789 hctx->poll_considered++;
3790
3791 state = current->state;
aa61bec3 3792 do {
bbd7bb70
JA
3793 int ret;
3794
3795 hctx->poll_invoked++;
3796
9743139c 3797 ret = q->mq_ops->poll(hctx);
bbd7bb70
JA
3798 if (ret > 0) {
3799 hctx->poll_success++;
849a3700 3800 __set_current_state(TASK_RUNNING);
85f4d4b6 3801 return ret;
bbd7bb70
JA
3802 }
3803
3804 if (signal_pending_state(state, current))
849a3700 3805 __set_current_state(TASK_RUNNING);
bbd7bb70
JA
3806
3807 if (current->state == TASK_RUNNING)
85f4d4b6 3808 return 1;
0a1b8b87 3809 if (ret < 0 || !spin)
bbd7bb70
JA
3810 break;
3811 cpu_relax();
aa61bec3 3812 } while (!need_resched());
bbd7bb70 3813
67b4110f 3814 __set_current_state(TASK_RUNNING);
85f4d4b6 3815 return 0;
bbd7bb70 3816}
529262d5 3817EXPORT_SYMBOL_GPL(blk_poll);
bbd7bb70 3818
9cf2bab6
JA
3819unsigned int blk_mq_rq_cpu(struct request *rq)
3820{
3821 return rq->mq_ctx->cpu;
3822}
3823EXPORT_SYMBOL(blk_mq_rq_cpu);
3824
320ae51f
JA
3825static int __init blk_mq_init(void)
3826{
c3077b5d
CH
3827 int i;
3828
3829 for_each_possible_cpu(i)
3830 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3831 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3832
3833 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3834 "block/softirq:dead", NULL,
3835 blk_softirq_cpu_dead);
9467f859
TG
3836 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3837 blk_mq_hctx_notify_dead);
bf0beec0
ML
3838 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3839 blk_mq_hctx_notify_online,
3840 blk_mq_hctx_notify_offline);
320ae51f
JA
3841 return 0;
3842}
3843subsys_initcall(blk_mq_init);