blk-mq: don't keep offline CPUs mapped to hctx 0
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
9c1051aa 34#include "blk-mq-debugfs.h"
320ae51f 35#include "blk-mq-tag.h"
cf43e6be 36#include "blk-stat.h"
87760e5e 37#include "blk-wbt.h"
bd166ef1 38#include "blk-mq-sched.h"
320ae51f 39
ea435e1b 40static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
34dbad5d
OS
41static void blk_mq_poll_stats_start(struct request_queue *q);
42static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
720b8ccc
SB
44static int blk_mq_poll_stats_bkt(const struct request *rq)
45{
46 int ddir, bytes, bucket;
47
99c749a4 48 ddir = rq_data_dir(rq);
720b8ccc
SB
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59}
60
320ae51f
JA
61/*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
79f720a7 64static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 65{
79f720a7
JA
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 68 blk_mq_sched_has_work(hctx);
1429d7c9
JA
69}
70
320ae51f
JA
71/*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76{
88459642
OS
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
79}
80
81static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83{
88459642 84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
85}
86
f299b7c7
JA
87struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90};
91
92static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95{
96 struct mq_inflight *mi = priv;
97
67818d25 98 if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
f299b7c7 99 /*
b8d62b3a
JA
100 * index[0] counts the specific partition that was asked
101 * for. index[1] counts the ones that are active on the
102 * whole device, so increment that if mi->part is indeed
103 * a partition, and not a whole device.
f299b7c7 104 */
b8d62b3a 105 if (rq->part == mi->part)
f299b7c7 106 mi->inflight[0]++;
b8d62b3a
JA
107 if (mi->part->partno)
108 mi->inflight[1]++;
f299b7c7
JA
109 }
110}
111
112void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113 unsigned int inflight[2])
114{
115 struct mq_inflight mi = { .part = part, .inflight = inflight, };
116
b8d62b3a 117 inflight[0] = inflight[1] = 0;
f299b7c7
JA
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119}
120
1671d522 121void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 122{
4ecd4fef 123 int freeze_depth;
cddd5d17 124
4ecd4fef
CH
125 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126 if (freeze_depth == 1) {
3ef28e83 127 percpu_ref_kill(&q->q_usage_counter);
055f6e18
ML
128 if (q->mq_ops)
129 blk_mq_run_hw_queues(q, false);
cddd5d17 130 }
f3af020b 131}
1671d522 132EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 133
6bae363e 134void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 135{
3ef28e83 136 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 137}
6bae363e 138EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 139
f91328c4
KB
140int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
141 unsigned long timeout)
142{
143 return wait_event_timeout(q->mq_freeze_wq,
144 percpu_ref_is_zero(&q->q_usage_counter),
145 timeout);
146}
147EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 148
f3af020b
TH
149/*
150 * Guarantee no request is in use, so we can change any data structure of
151 * the queue afterward.
152 */
3ef28e83 153void blk_freeze_queue(struct request_queue *q)
f3af020b 154{
3ef28e83
DW
155 /*
156 * In the !blk_mq case we are only calling this to kill the
157 * q_usage_counter, otherwise this increases the freeze depth
158 * and waits for it to return to zero. For this reason there is
159 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
160 * exported to drivers as the only user for unfreeze is blk_mq.
161 */
1671d522 162 blk_freeze_queue_start(q);
454be724
ML
163 if (!q->mq_ops)
164 blk_drain_queue(q);
f3af020b
TH
165 blk_mq_freeze_queue_wait(q);
166}
3ef28e83
DW
167
168void blk_mq_freeze_queue(struct request_queue *q)
169{
170 /*
171 * ...just an alias to keep freeze and unfreeze actions balanced
172 * in the blk_mq_* namespace
173 */
174 blk_freeze_queue(q);
175}
c761d96b 176EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 177
b4c6a028 178void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 179{
4ecd4fef 180 int freeze_depth;
320ae51f 181
4ecd4fef
CH
182 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
183 WARN_ON_ONCE(freeze_depth < 0);
184 if (!freeze_depth) {
3ef28e83 185 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 186 wake_up_all(&q->mq_freeze_wq);
add703fd 187 }
320ae51f 188}
b4c6a028 189EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 190
852ec809
BVA
191/*
192 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
193 * mpt3sas driver such that this function can be removed.
194 */
195void blk_mq_quiesce_queue_nowait(struct request_queue *q)
196{
8814ce8a 197 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
852ec809
BVA
198}
199EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
200
6a83e74d 201/**
69e07c4a 202 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
203 * @q: request queue.
204 *
205 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
206 * callback function is invoked. Once this function is returned, we make
207 * sure no dispatch can happen until the queue is unquiesced via
208 * blk_mq_unquiesce_queue().
6a83e74d
BVA
209 */
210void blk_mq_quiesce_queue(struct request_queue *q)
211{
212 struct blk_mq_hw_ctx *hctx;
213 unsigned int i;
214 bool rcu = false;
215
1d9e9bc6 216 blk_mq_quiesce_queue_nowait(q);
f4560ffe 217
6a83e74d
BVA
218 queue_for_each_hw_ctx(q, hctx, i) {
219 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 220 synchronize_srcu(hctx->srcu);
6a83e74d
BVA
221 else
222 rcu = true;
223 }
224 if (rcu)
225 synchronize_rcu();
226}
227EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
228
e4e73913
ML
229/*
230 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
231 * @q: request queue.
232 *
233 * This function recovers queue into the state before quiescing
234 * which is done by blk_mq_quiesce_queue.
235 */
236void blk_mq_unquiesce_queue(struct request_queue *q)
237{
8814ce8a 238 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
f4560ffe 239
1d9e9bc6
ML
240 /* dispatch requests which are inserted during quiescing */
241 blk_mq_run_hw_queues(q, true);
e4e73913
ML
242}
243EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
244
aed3ea94
JA
245void blk_mq_wake_waiters(struct request_queue *q)
246{
247 struct blk_mq_hw_ctx *hctx;
248 unsigned int i;
249
250 queue_for_each_hw_ctx(q, hctx, i)
251 if (blk_mq_hw_queue_mapped(hctx))
252 blk_mq_tag_wakeup_all(hctx->tags, true);
253}
254
320ae51f
JA
255bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
256{
257 return blk_mq_has_free_tags(hctx->tags);
258}
259EXPORT_SYMBOL(blk_mq_can_queue);
260
e4cdf1a1
CH
261static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
262 unsigned int tag, unsigned int op)
320ae51f 263{
e4cdf1a1
CH
264 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
265 struct request *rq = tags->static_rqs[tag];
bf9ae8c5 266 req_flags_t rq_flags = 0;
c3a148d2 267
e4cdf1a1
CH
268 if (data->flags & BLK_MQ_REQ_INTERNAL) {
269 rq->tag = -1;
270 rq->internal_tag = tag;
271 } else {
272 if (blk_mq_tag_busy(data->hctx)) {
bf9ae8c5 273 rq_flags = RQF_MQ_INFLIGHT;
e4cdf1a1
CH
274 atomic_inc(&data->hctx->nr_active);
275 }
276 rq->tag = tag;
277 rq->internal_tag = -1;
278 data->hctx->tags->rqs[rq->tag] = rq;
279 }
280
af76e555 281 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
282 rq->q = data->q;
283 rq->mq_ctx = data->ctx;
bf9ae8c5 284 rq->rq_flags = rq_flags;
7c3fb70f 285 rq->cpu = -1;
ef295ecf 286 rq->cmd_flags = op;
1b6d65a0
BVA
287 if (data->flags & BLK_MQ_REQ_PREEMPT)
288 rq->rq_flags |= RQF_PREEMPT;
e4cdf1a1 289 if (blk_queue_io_stat(data->q))
e8064021 290 rq->rq_flags |= RQF_IO_STAT;
7c3fb70f 291 INIT_LIST_HEAD(&rq->queuelist);
af76e555
CH
292 INIT_HLIST_NODE(&rq->hash);
293 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
294 rq->rq_disk = NULL;
295 rq->part = NULL;
3ee32372 296 rq->start_time = jiffies;
af76e555
CH
297 rq->nr_phys_segments = 0;
298#if defined(CONFIG_BLK_DEV_INTEGRITY)
299 rq->nr_integrity_segments = 0;
300#endif
af76e555
CH
301 rq->special = NULL;
302 /* tag was already set */
af76e555 303 rq->extra_len = 0;
e14575b3 304 rq->__deadline = 0;
af76e555 305
af76e555 306 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
307 rq->timeout = 0;
308
af76e555
CH
309 rq->end_io = NULL;
310 rq->end_io_data = NULL;
311 rq->next_rq = NULL;
312
7c3fb70f
JA
313#ifdef CONFIG_BLK_CGROUP
314 rq->rl = NULL;
315 set_start_time_ns(rq);
316 rq->io_start_time_ns = 0;
317#endif
318
e4cdf1a1
CH
319 data->ctx->rq_dispatched[op_is_sync(op)]++;
320 return rq;
5dee8577
CH
321}
322
d2c0d383
CH
323static struct request *blk_mq_get_request(struct request_queue *q,
324 struct bio *bio, unsigned int op,
325 struct blk_mq_alloc_data *data)
326{
327 struct elevator_queue *e = q->elevator;
328 struct request *rq;
e4cdf1a1 329 unsigned int tag;
21e768b4 330 bool put_ctx_on_error = false;
d2c0d383
CH
331
332 blk_queue_enter_live(q);
333 data->q = q;
21e768b4
BVA
334 if (likely(!data->ctx)) {
335 data->ctx = blk_mq_get_ctx(q);
336 put_ctx_on_error = true;
337 }
d2c0d383
CH
338 if (likely(!data->hctx))
339 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
03a07c92
GR
340 if (op & REQ_NOWAIT)
341 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
342
343 if (e) {
344 data->flags |= BLK_MQ_REQ_INTERNAL;
345
346 /*
347 * Flush requests are special and go directly to the
348 * dispatch list.
349 */
5bbf4e5a
CH
350 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
351 e->type->ops.mq.limit_depth(op, data);
d2c0d383
CH
352 }
353
e4cdf1a1
CH
354 tag = blk_mq_get_tag(data);
355 if (tag == BLK_MQ_TAG_FAIL) {
21e768b4
BVA
356 if (put_ctx_on_error) {
357 blk_mq_put_ctx(data->ctx);
1ad43c00
ML
358 data->ctx = NULL;
359 }
037cebb8
CH
360 blk_queue_exit(q);
361 return NULL;
d2c0d383
CH
362 }
363
e4cdf1a1 364 rq = blk_mq_rq_ctx_init(data, tag, op);
037cebb8
CH
365 if (!op_is_flush(op)) {
366 rq->elv.icq = NULL;
5bbf4e5a 367 if (e && e->type->ops.mq.prepare_request) {
44e8c2bf
CH
368 if (e->type->icq_cache && rq_ioc(bio))
369 blk_mq_sched_assign_ioc(rq, bio);
370
5bbf4e5a
CH
371 e->type->ops.mq.prepare_request(rq, bio);
372 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 373 }
037cebb8
CH
374 }
375 data->hctx->queued++;
376 return rq;
d2c0d383
CH
377}
378
cd6ce148 379struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 380 blk_mq_req_flags_t flags)
320ae51f 381{
5a797e00 382 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 383 struct request *rq;
a492f075 384 int ret;
320ae51f 385
3a0a5299 386 ret = blk_queue_enter(q, flags);
a492f075
JL
387 if (ret)
388 return ERR_PTR(ret);
320ae51f 389
cd6ce148 390 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 391 blk_queue_exit(q);
841bac2c 392
bd166ef1 393 if (!rq)
a492f075 394 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3 395
1ad43c00 396 blk_mq_put_ctx(alloc_data.ctx);
1ad43c00 397
0c4de0f3
CH
398 rq->__data_len = 0;
399 rq->__sector = (sector_t) -1;
400 rq->bio = rq->biotail = NULL;
320ae51f
JA
401 return rq;
402}
4bb659b1 403EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 404
cd6ce148 405struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 406 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 407{
6d2809d5 408 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 409 struct request *rq;
6d2809d5 410 unsigned int cpu;
1f5bd336
ML
411 int ret;
412
413 /*
414 * If the tag allocator sleeps we could get an allocation for a
415 * different hardware context. No need to complicate the low level
416 * allocator for this for the rare use case of a command tied to
417 * a specific queue.
418 */
419 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
420 return ERR_PTR(-EINVAL);
421
422 if (hctx_idx >= q->nr_hw_queues)
423 return ERR_PTR(-EIO);
424
3a0a5299 425 ret = blk_queue_enter(q, flags);
1f5bd336
ML
426 if (ret)
427 return ERR_PTR(ret);
428
c8712c6a
CH
429 /*
430 * Check if the hardware context is actually mapped to anything.
431 * If not tell the caller that it should skip this queue.
432 */
6d2809d5
OS
433 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
434 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
435 blk_queue_exit(q);
436 return ERR_PTR(-EXDEV);
c8712c6a 437 }
20e4d813 438 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
6d2809d5 439 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 440
cd6ce148 441 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 442 blk_queue_exit(q);
c8712c6a 443
6d2809d5
OS
444 if (!rq)
445 return ERR_PTR(-EWOULDBLOCK);
446
447 return rq;
1f5bd336
ML
448}
449EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
450
6af54051 451void blk_mq_free_request(struct request *rq)
320ae51f 452{
320ae51f 453 struct request_queue *q = rq->q;
6af54051
CH
454 struct elevator_queue *e = q->elevator;
455 struct blk_mq_ctx *ctx = rq->mq_ctx;
456 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
457 const int sched_tag = rq->internal_tag;
458
5bbf4e5a 459 if (rq->rq_flags & RQF_ELVPRIV) {
6af54051
CH
460 if (e && e->type->ops.mq.finish_request)
461 e->type->ops.mq.finish_request(rq);
462 if (rq->elv.icq) {
463 put_io_context(rq->elv.icq->ioc);
464 rq->elv.icq = NULL;
465 }
466 }
320ae51f 467
6af54051 468 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 469 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 470 atomic_dec(&hctx->nr_active);
87760e5e 471
7beb2f84
JA
472 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
473 laptop_io_completion(q->backing_dev_info);
474
87760e5e 475 wbt_done(q->rq_wb, &rq->issue_stat);
0d2602ca 476
85acb3ba
SL
477 if (blk_rq_rl(rq))
478 blk_put_rl(blk_rq_rl(rq));
479
1d9bd516 480 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
bd166ef1
JA
481 if (rq->tag != -1)
482 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
483 if (sched_tag != -1)
c05f8525 484 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
6d8c6c0f 485 blk_mq_sched_restart(hctx);
3ef28e83 486 blk_queue_exit(q);
320ae51f 487}
1a3b595a 488EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 489
2a842aca 490inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 491{
0d11e6ac
ML
492 blk_account_io_done(rq);
493
91b63639 494 if (rq->end_io) {
87760e5e 495 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 496 rq->end_io(rq, error);
91b63639
CH
497 } else {
498 if (unlikely(blk_bidi_rq(rq)))
499 blk_mq_free_request(rq->next_rq);
320ae51f 500 blk_mq_free_request(rq);
91b63639 501 }
320ae51f 502}
c8a446ad 503EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 504
2a842aca 505void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
506{
507 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
508 BUG();
c8a446ad 509 __blk_mq_end_request(rq, error);
63151a44 510}
c8a446ad 511EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 512
30a91cb4 513static void __blk_mq_complete_request_remote(void *data)
320ae51f 514{
3d6efbf6 515 struct request *rq = data;
320ae51f 516
30a91cb4 517 rq->q->softirq_done_fn(rq);
320ae51f 518}
320ae51f 519
453f8341 520static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
521{
522 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 523 bool shared = false;
320ae51f
JA
524 int cpu;
525
1d9bd516 526 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
5a61c363 527 blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
1d9bd516 528
453f8341
CH
529 if (rq->internal_tag != -1)
530 blk_mq_sched_completed_request(rq);
531 if (rq->rq_flags & RQF_STATS) {
532 blk_mq_poll_stats_start(rq->q);
533 blk_stat_add(rq);
534 }
535
38535201 536 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
537 rq->q->softirq_done_fn(rq);
538 return;
539 }
320ae51f
JA
540
541 cpu = get_cpu();
38535201
CH
542 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
543 shared = cpus_share_cache(cpu, ctx->cpu);
544
545 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 546 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
547 rq->csd.info = rq;
548 rq->csd.flags = 0;
c46fff2a 549 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 550 } else {
30a91cb4 551 rq->q->softirq_done_fn(rq);
3d6efbf6 552 }
320ae51f
JA
553 put_cpu();
554}
30a91cb4 555
04ced159 556static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
b7435db8 557 __releases(hctx->srcu)
04ced159
JA
558{
559 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
560 rcu_read_unlock();
561 else
05707b64 562 srcu_read_unlock(hctx->srcu, srcu_idx);
04ced159
JA
563}
564
565static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
b7435db8 566 __acquires(hctx->srcu)
04ced159 567{
08b5a6e2
JA
568 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
569 /* shut up gcc false positive */
570 *srcu_idx = 0;
04ced159 571 rcu_read_lock();
08b5a6e2 572 } else
05707b64 573 *srcu_idx = srcu_read_lock(hctx->srcu);
04ced159
JA
574}
575
1d9bd516
TH
576static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
577{
578 unsigned long flags;
579
580 /*
581 * blk_mq_rq_aborted_gstate() is used from the completion path and
582 * can thus be called from irq context. u64_stats_fetch in the
583 * middle of update on the same CPU leads to lockup. Disable irq
584 * while updating.
585 */
586 local_irq_save(flags);
587 u64_stats_update_begin(&rq->aborted_gstate_sync);
588 rq->aborted_gstate = gstate;
589 u64_stats_update_end(&rq->aborted_gstate_sync);
590 local_irq_restore(flags);
591}
592
593static u64 blk_mq_rq_aborted_gstate(struct request *rq)
594{
595 unsigned int start;
596 u64 aborted_gstate;
597
598 do {
599 start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
600 aborted_gstate = rq->aborted_gstate;
601 } while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
602
603 return aborted_gstate;
604}
605
30a91cb4
CH
606/**
607 * blk_mq_complete_request - end I/O on a request
608 * @rq: the request being processed
609 *
610 * Description:
611 * Ends all I/O on a request. It does not handle partial completions.
612 * The actual completion happens out-of-order, through a IPI handler.
613 **/
08e0029a 614void blk_mq_complete_request(struct request *rq)
30a91cb4 615{
95f09684 616 struct request_queue *q = rq->q;
5197c05e
TH
617 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
618 int srcu_idx;
95f09684
JA
619
620 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 621 return;
5197c05e 622
1d9bd516
TH
623 /*
624 * If @rq->aborted_gstate equals the current instance, timeout is
625 * claiming @rq and we lost. This is synchronized through
626 * hctx_lock(). See blk_mq_timeout_work() for details.
627 *
628 * Completion path never blocks and we can directly use RCU here
629 * instead of hctx_lock() which can be either RCU or SRCU.
630 * However, that would complicate paths which want to synchronize
631 * against us. Let stay in sync with the issue path so that
632 * hctx_lock() covers both issue and completion paths.
633 */
5197c05e 634 hctx_lock(hctx, &srcu_idx);
634f9e46 635 if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
ed851860 636 __blk_mq_complete_request(rq);
5197c05e 637 hctx_unlock(hctx, srcu_idx);
30a91cb4
CH
638}
639EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 640
973c0191
KB
641int blk_mq_request_started(struct request *rq)
642{
5a61c363 643 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
973c0191
KB
644}
645EXPORT_SYMBOL_GPL(blk_mq_request_started);
646
e2490073 647void blk_mq_start_request(struct request *rq)
320ae51f
JA
648{
649 struct request_queue *q = rq->q;
650
bd166ef1
JA
651 blk_mq_sched_started_request(rq);
652
320ae51f
JA
653 trace_block_rq_issue(q, rq);
654
cf43e6be 655 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 656 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 657 rq->rq_flags |= RQF_STATS;
87760e5e 658 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
659 }
660
1d9bd516 661 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
538b7534 662
87ee7b11 663 /*
1d9bd516
TH
664 * Mark @rq in-flight which also advances the generation number,
665 * and register for timeout. Protect with a seqcount to allow the
666 * timeout path to read both @rq->gstate and @rq->deadline
667 * coherently.
a7af0af3 668 *
1d9bd516
TH
669 * This is the only place where a request is marked in-flight. If
670 * the timeout path reads an in-flight @rq->gstate, the
671 * @rq->deadline it reads together under @rq->gstate_seq is
672 * guaranteed to be the matching one.
87ee7b11 673 */
1d9bd516
TH
674 preempt_disable();
675 write_seqcount_begin(&rq->gstate_seq);
676
677 blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
678 blk_add_timer(rq);
679
680 write_seqcount_end(&rq->gstate_seq);
681 preempt_enable();
49f5baa5
CH
682
683 if (q->dma_drain_size && blk_rq_bytes(rq)) {
684 /*
685 * Make sure space for the drain appears. We know we can do
686 * this because max_hw_segments has been adjusted to be one
687 * fewer than the device can handle.
688 */
689 rq->nr_phys_segments++;
690 }
320ae51f 691}
e2490073 692EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 693
d9d149a3 694/*
5a61c363
TH
695 * When we reach here because queue is busy, it's safe to change the state
696 * to IDLE without checking @rq->aborted_gstate because we should still be
697 * holding the RCU read lock and thus protected against timeout.
d9d149a3 698 */
ed0791b2 699static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
700{
701 struct request_queue *q = rq->q;
702
923218f6
ML
703 blk_mq_put_driver_tag(rq);
704
320ae51f 705 trace_block_rq_requeue(q, rq);
87760e5e 706 wbt_requeue(q->rq_wb, &rq->issue_stat);
49f5baa5 707
5a61c363 708 if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
1d9bd516 709 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
e2490073
CH
710 if (q->dma_drain_size && blk_rq_bytes(rq))
711 rq->nr_phys_segments--;
712 }
320ae51f
JA
713}
714
2b053aca 715void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 716{
ed0791b2 717 __blk_mq_requeue_request(rq);
ed0791b2 718
105976f5
ML
719 /* this request will be re-inserted to io scheduler queue */
720 blk_mq_sched_requeue_request(rq);
721
ed0791b2 722 BUG_ON(blk_queued_rq(rq));
2b053aca 723 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
724}
725EXPORT_SYMBOL(blk_mq_requeue_request);
726
6fca6a61
CH
727static void blk_mq_requeue_work(struct work_struct *work)
728{
729 struct request_queue *q =
2849450a 730 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
731 LIST_HEAD(rq_list);
732 struct request *rq, *next;
6fca6a61 733
18e9781d 734 spin_lock_irq(&q->requeue_lock);
6fca6a61 735 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 736 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
737
738 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 739 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
740 continue;
741
e8064021 742 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 743 list_del_init(&rq->queuelist);
9e97d295 744 blk_mq_sched_insert_request(rq, true, false, false);
6fca6a61
CH
745 }
746
747 while (!list_empty(&rq_list)) {
748 rq = list_entry(rq_list.next, struct request, queuelist);
749 list_del_init(&rq->queuelist);
9e97d295 750 blk_mq_sched_insert_request(rq, false, false, false);
6fca6a61
CH
751 }
752
52d7f1b5 753 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
754}
755
2b053aca
BVA
756void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
757 bool kick_requeue_list)
6fca6a61
CH
758{
759 struct request_queue *q = rq->q;
760 unsigned long flags;
761
762 /*
763 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 764 * request head insertion from the workqueue.
6fca6a61 765 */
e8064021 766 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
767
768 spin_lock_irqsave(&q->requeue_lock, flags);
769 if (at_head) {
e8064021 770 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
771 list_add(&rq->queuelist, &q->requeue_list);
772 } else {
773 list_add_tail(&rq->queuelist, &q->requeue_list);
774 }
775 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
776
777 if (kick_requeue_list)
778 blk_mq_kick_requeue_list(q);
6fca6a61
CH
779}
780EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
781
782void blk_mq_kick_requeue_list(struct request_queue *q)
783{
ae943d20 784 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
6fca6a61
CH
785}
786EXPORT_SYMBOL(blk_mq_kick_requeue_list);
787
2849450a
MS
788void blk_mq_delay_kick_requeue_list(struct request_queue *q,
789 unsigned long msecs)
790{
d4acf365
BVA
791 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
792 msecs_to_jiffies(msecs));
2849450a
MS
793}
794EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
795
0e62f51f
JA
796struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
797{
88c7b2b7
JA
798 if (tag < tags->nr_tags) {
799 prefetch(tags->rqs[tag]);
4ee86bab 800 return tags->rqs[tag];
88c7b2b7 801 }
4ee86bab
HR
802
803 return NULL;
24d2f903
CH
804}
805EXPORT_SYMBOL(blk_mq_tag_to_rq);
806
320ae51f 807struct blk_mq_timeout_data {
46f92d42
CH
808 unsigned long next;
809 unsigned int next_set;
1d9bd516 810 unsigned int nr_expired;
320ae51f
JA
811};
812
358f70da 813static void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 814{
f8a5b122 815 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 816 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11 817
634f9e46 818 req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
87ee7b11 819
46f92d42 820 if (ops->timeout)
0152fb6b 821 ret = ops->timeout(req, reserved);
46f92d42
CH
822
823 switch (ret) {
824 case BLK_EH_HANDLED:
825 __blk_mq_complete_request(req);
826 break;
827 case BLK_EH_RESET_TIMER:
1d9bd516
TH
828 /*
829 * As nothing prevents from completion happening while
830 * ->aborted_gstate is set, this may lead to ignored
831 * completions and further spurious timeouts.
832 */
833 blk_mq_rq_update_aborted_gstate(req, 0);
46f92d42 834 blk_add_timer(req);
46f92d42
CH
835 break;
836 case BLK_EH_NOT_HANDLED:
837 break;
838 default:
839 printk(KERN_ERR "block: bad eh return: %d\n", ret);
840 break;
841 }
87ee7b11 842}
5b3f25fc 843
81481eb4
CH
844static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
845 struct request *rq, void *priv, bool reserved)
846{
847 struct blk_mq_timeout_data *data = priv;
1d9bd516
TH
848 unsigned long gstate, deadline;
849 int start;
87ee7b11 850
1d9bd516 851 might_sleep();
87ee7b11 852
5a61c363 853 if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
46f92d42 854 return;
a7af0af3 855
1d9bd516
TH
856 /* read coherent snapshots of @rq->state_gen and @rq->deadline */
857 while (true) {
858 start = read_seqcount_begin(&rq->gstate_seq);
859 gstate = READ_ONCE(rq->gstate);
0a72e7f4 860 deadline = blk_rq_deadline(rq);
1d9bd516
TH
861 if (!read_seqcount_retry(&rq->gstate_seq, start))
862 break;
863 cond_resched();
864 }
a7af0af3 865
1d9bd516
TH
866 /* if in-flight && overdue, mark for abortion */
867 if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
868 time_after_eq(jiffies, deadline)) {
869 blk_mq_rq_update_aborted_gstate(rq, gstate);
870 data->nr_expired++;
871 hctx->nr_expired++;
a7af0af3
PZ
872 } else if (!data->next_set || time_after(data->next, deadline)) {
873 data->next = deadline;
46f92d42
CH
874 data->next_set = 1;
875 }
87ee7b11
JA
876}
877
1d9bd516
TH
878static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
879 struct request *rq, void *priv, bool reserved)
880{
881 /*
882 * We marked @rq->aborted_gstate and waited for RCU. If there were
883 * completions that we lost to, they would have finished and
884 * updated @rq->gstate by now; otherwise, the completion path is
885 * now guaranteed to see @rq->aborted_gstate and yield. If
886 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
887 */
634f9e46
TH
888 if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
889 READ_ONCE(rq->gstate) == rq->aborted_gstate)
1d9bd516
TH
890 blk_mq_rq_timed_out(rq, reserved);
891}
892
287922eb 893static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 894{
287922eb
CH
895 struct request_queue *q =
896 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
897 struct blk_mq_timeout_data data = {
898 .next = 0,
899 .next_set = 0,
1d9bd516 900 .nr_expired = 0,
81481eb4 901 };
1d9bd516 902 struct blk_mq_hw_ctx *hctx;
81481eb4 903 int i;
320ae51f 904
71f79fb3
GKB
905 /* A deadlock might occur if a request is stuck requiring a
906 * timeout at the same time a queue freeze is waiting
907 * completion, since the timeout code would not be able to
908 * acquire the queue reference here.
909 *
910 * That's why we don't use blk_queue_enter here; instead, we use
911 * percpu_ref_tryget directly, because we need to be able to
912 * obtain a reference even in the short window between the queue
913 * starting to freeze, by dropping the first reference in
1671d522 914 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
915 * consumed, marked by the instant q_usage_counter reaches
916 * zero.
917 */
918 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
919 return;
920
1d9bd516 921 /* scan for the expired ones and set their ->aborted_gstate */
0bf6cd5b 922 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 923
1d9bd516
TH
924 if (data.nr_expired) {
925 bool has_rcu = false;
926
927 /*
928 * Wait till everyone sees ->aborted_gstate. The
929 * sequential waits for SRCUs aren't ideal. If this ever
930 * becomes a problem, we can add per-hw_ctx rcu_head and
931 * wait in parallel.
932 */
933 queue_for_each_hw_ctx(q, hctx, i) {
934 if (!hctx->nr_expired)
935 continue;
936
937 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
938 has_rcu = true;
939 else
05707b64 940 synchronize_srcu(hctx->srcu);
1d9bd516
TH
941
942 hctx->nr_expired = 0;
943 }
944 if (has_rcu)
945 synchronize_rcu();
946
947 /* terminate the ones we won */
948 blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
949 }
950
81481eb4
CH
951 if (data.next_set) {
952 data.next = blk_rq_timeout(round_jiffies_up(data.next));
953 mod_timer(&q->timeout, data.next);
0d2602ca 954 } else {
fcd36c36
BVA
955 /*
956 * Request timeouts are handled as a forward rolling timer. If
957 * we end up here it means that no requests are pending and
958 * also that no request has been pending for a while. Mark
959 * each hctx as idle.
960 */
f054b56c
ML
961 queue_for_each_hw_ctx(q, hctx, i) {
962 /* the hctx may be unmapped, so check it here */
963 if (blk_mq_hw_queue_mapped(hctx))
964 blk_mq_tag_idle(hctx);
965 }
0d2602ca 966 }
287922eb 967 blk_queue_exit(q);
320ae51f
JA
968}
969
88459642
OS
970struct flush_busy_ctx_data {
971 struct blk_mq_hw_ctx *hctx;
972 struct list_head *list;
973};
974
975static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
976{
977 struct flush_busy_ctx_data *flush_data = data;
978 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
979 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
980
88459642
OS
981 spin_lock(&ctx->lock);
982 list_splice_tail_init(&ctx->rq_list, flush_data->list);
e9a99a63 983 sbitmap_clear_bit(sb, bitnr);
88459642
OS
984 spin_unlock(&ctx->lock);
985 return true;
986}
987
1429d7c9
JA
988/*
989 * Process software queues that have been marked busy, splicing them
990 * to the for-dispatch
991 */
2c3ad667 992void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 993{
88459642
OS
994 struct flush_busy_ctx_data data = {
995 .hctx = hctx,
996 .list = list,
997 };
1429d7c9 998
88459642 999 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 1000}
2c3ad667 1001EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 1002
b347689f
ML
1003struct dispatch_rq_data {
1004 struct blk_mq_hw_ctx *hctx;
1005 struct request *rq;
1006};
1007
1008static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1009 void *data)
1010{
1011 struct dispatch_rq_data *dispatch_data = data;
1012 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1013 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1014
1015 spin_lock(&ctx->lock);
1016 if (unlikely(!list_empty(&ctx->rq_list))) {
1017 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1018 list_del_init(&dispatch_data->rq->queuelist);
1019 if (list_empty(&ctx->rq_list))
1020 sbitmap_clear_bit(sb, bitnr);
1021 }
1022 spin_unlock(&ctx->lock);
1023
1024 return !dispatch_data->rq;
1025}
1026
1027struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1028 struct blk_mq_ctx *start)
1029{
1030 unsigned off = start ? start->index_hw : 0;
1031 struct dispatch_rq_data data = {
1032 .hctx = hctx,
1033 .rq = NULL,
1034 };
1035
1036 __sbitmap_for_each_set(&hctx->ctx_map, off,
1037 dispatch_rq_from_ctx, &data);
1038
1039 return data.rq;
1040}
1041
703fd1c0
JA
1042static inline unsigned int queued_to_index(unsigned int queued)
1043{
1044 if (!queued)
1045 return 0;
1429d7c9 1046
703fd1c0 1047 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
1048}
1049
bd6737f1
JA
1050bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1051 bool wait)
bd166ef1
JA
1052{
1053 struct blk_mq_alloc_data data = {
1054 .q = rq->q,
bd166ef1
JA
1055 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1056 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1057 };
1058
5feeacdd
JA
1059 might_sleep_if(wait);
1060
81380ca1
OS
1061 if (rq->tag != -1)
1062 goto done;
bd166ef1 1063
415b806d
SG
1064 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1065 data.flags |= BLK_MQ_REQ_RESERVED;
1066
bd166ef1
JA
1067 rq->tag = blk_mq_get_tag(&data);
1068 if (rq->tag >= 0) {
200e86b3
JA
1069 if (blk_mq_tag_busy(data.hctx)) {
1070 rq->rq_flags |= RQF_MQ_INFLIGHT;
1071 atomic_inc(&data.hctx->nr_active);
1072 }
bd166ef1 1073 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
1074 }
1075
81380ca1
OS
1076done:
1077 if (hctx)
1078 *hctx = data.hctx;
1079 return rq->tag != -1;
bd166ef1
JA
1080}
1081
eb619fdb
JA
1082static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1083 int flags, void *key)
da55f2cc
OS
1084{
1085 struct blk_mq_hw_ctx *hctx;
1086
1087 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1088
eb619fdb 1089 list_del_init(&wait->entry);
da55f2cc
OS
1090 blk_mq_run_hw_queue(hctx, true);
1091 return 1;
1092}
1093
f906a6a0
JA
1094/*
1095 * Mark us waiting for a tag. For shared tags, this involves hooking us into
ee3e4de5
BVA
1096 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1097 * restart. For both cases, take care to check the condition again after
f906a6a0
JA
1098 * marking us as waiting.
1099 */
1100static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1101 struct request *rq)
da55f2cc 1102{
eb619fdb 1103 struct blk_mq_hw_ctx *this_hctx = *hctx;
da55f2cc 1104 struct sbq_wait_state *ws;
f906a6a0
JA
1105 wait_queue_entry_t *wait;
1106 bool ret;
da55f2cc 1107
c27d53fb 1108 if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
f906a6a0
JA
1109 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1110 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
f906a6a0 1111
c27d53fb
BVA
1112 /*
1113 * It's possible that a tag was freed in the window between the
1114 * allocation failure and adding the hardware queue to the wait
1115 * queue.
1116 *
1117 * Don't clear RESTART here, someone else could have set it.
1118 * At most this will cost an extra queue run.
1119 */
1120 return blk_mq_get_driver_tag(rq, hctx, false);
eb619fdb 1121 }
eb619fdb 1122
c27d53fb
BVA
1123 wait = &this_hctx->dispatch_wait;
1124 if (!list_empty_careful(&wait->entry))
1125 return false;
1126
1127 spin_lock(&this_hctx->lock);
1128 if (!list_empty(&wait->entry)) {
1129 spin_unlock(&this_hctx->lock);
1130 return false;
eb619fdb
JA
1131 }
1132
c27d53fb
BVA
1133 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1134 add_wait_queue(&ws->wait, wait);
1135
da55f2cc 1136 /*
eb619fdb
JA
1137 * It's possible that a tag was freed in the window between the
1138 * allocation failure and adding the hardware queue to the wait
1139 * queue.
da55f2cc 1140 */
f906a6a0 1141 ret = blk_mq_get_driver_tag(rq, hctx, false);
c27d53fb 1142 if (!ret) {
eb619fdb 1143 spin_unlock(&this_hctx->lock);
c27d53fb 1144 return false;
eb619fdb 1145 }
c27d53fb
BVA
1146
1147 /*
1148 * We got a tag, remove ourselves from the wait queue to ensure
1149 * someone else gets the wakeup.
1150 */
1151 spin_lock_irq(&ws->wait.lock);
1152 list_del_init(&wait->entry);
1153 spin_unlock_irq(&ws->wait.lock);
1154 spin_unlock(&this_hctx->lock);
1155
1156 return true;
da55f2cc
OS
1157}
1158
86ff7c2a
ML
1159#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1160
de148297 1161bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
eb619fdb 1162 bool got_budget)
320ae51f 1163{
81380ca1 1164 struct blk_mq_hw_ctx *hctx;
6d6f167c 1165 struct request *rq, *nxt;
eb619fdb 1166 bool no_tag = false;
fc17b653 1167 int errors, queued;
86ff7c2a 1168 blk_status_t ret = BLK_STS_OK;
320ae51f 1169
81380ca1
OS
1170 if (list_empty(list))
1171 return false;
1172
de148297
ML
1173 WARN_ON(!list_is_singular(list) && got_budget);
1174
320ae51f
JA
1175 /*
1176 * Now process all the entries, sending them to the driver.
1177 */
93efe981 1178 errors = queued = 0;
81380ca1 1179 do {
74c45052 1180 struct blk_mq_queue_data bd;
320ae51f 1181
f04c3df3 1182 rq = list_first_entry(list, struct request, queuelist);
0bca799b
ML
1183
1184 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1185 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1186 break;
1187
1188 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
3c782d67 1189 /*
da55f2cc 1190 * The initial allocation attempt failed, so we need to
eb619fdb
JA
1191 * rerun the hardware queue when a tag is freed. The
1192 * waitqueue takes care of that. If the queue is run
1193 * before we add this entry back on the dispatch list,
1194 * we'll re-run it below.
3c782d67 1195 */
f906a6a0 1196 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
0bca799b 1197 blk_mq_put_dispatch_budget(hctx);
f906a6a0
JA
1198 /*
1199 * For non-shared tags, the RESTART check
1200 * will suffice.
1201 */
1202 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1203 no_tag = true;
de148297
ML
1204 break;
1205 }
1206 }
1207
320ae51f 1208 list_del_init(&rq->queuelist);
320ae51f 1209
74c45052 1210 bd.rq = rq;
113285b4
JA
1211
1212 /*
1213 * Flag last if we have no more requests, or if we have more
1214 * but can't assign a driver tag to it.
1215 */
1216 if (list_empty(list))
1217 bd.last = true;
1218 else {
113285b4
JA
1219 nxt = list_first_entry(list, struct request, queuelist);
1220 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1221 }
74c45052
JA
1222
1223 ret = q->mq_ops->queue_rq(hctx, &bd);
86ff7c2a 1224 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
6d6f167c
JW
1225 /*
1226 * If an I/O scheduler has been configured and we got a
ff821d27
JA
1227 * driver tag for the next request already, free it
1228 * again.
6d6f167c
JW
1229 */
1230 if (!list_empty(list)) {
1231 nxt = list_first_entry(list, struct request, queuelist);
1232 blk_mq_put_driver_tag(nxt);
1233 }
f04c3df3 1234 list_add(&rq->queuelist, list);
ed0791b2 1235 __blk_mq_requeue_request(rq);
320ae51f 1236 break;
fc17b653
CH
1237 }
1238
1239 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1240 errors++;
2a842aca 1241 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1242 continue;
320ae51f
JA
1243 }
1244
fc17b653 1245 queued++;
81380ca1 1246 } while (!list_empty(list));
320ae51f 1247
703fd1c0 1248 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1249
1250 /*
1251 * Any items that need requeuing? Stuff them into hctx->dispatch,
1252 * that is where we will continue on next queue run.
1253 */
f04c3df3 1254 if (!list_empty(list)) {
86ff7c2a
ML
1255 bool needs_restart;
1256
320ae51f 1257 spin_lock(&hctx->lock);
c13660a0 1258 list_splice_init(list, &hctx->dispatch);
320ae51f 1259 spin_unlock(&hctx->lock);
f04c3df3 1260
9ba52e58 1261 /*
710c785f
BVA
1262 * If SCHED_RESTART was set by the caller of this function and
1263 * it is no longer set that means that it was cleared by another
1264 * thread and hence that a queue rerun is needed.
9ba52e58 1265 *
eb619fdb
JA
1266 * If 'no_tag' is set, that means that we failed getting
1267 * a driver tag with an I/O scheduler attached. If our dispatch
1268 * waitqueue is no longer active, ensure that we run the queue
1269 * AFTER adding our entries back to the list.
bd166ef1 1270 *
710c785f
BVA
1271 * If no I/O scheduler has been configured it is possible that
1272 * the hardware queue got stopped and restarted before requests
1273 * were pushed back onto the dispatch list. Rerun the queue to
1274 * avoid starvation. Notes:
1275 * - blk_mq_run_hw_queue() checks whether or not a queue has
1276 * been stopped before rerunning a queue.
1277 * - Some but not all block drivers stop a queue before
fc17b653 1278 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1279 * and dm-rq.
86ff7c2a
ML
1280 *
1281 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1282 * bit is set, run queue after a delay to avoid IO stalls
1283 * that could otherwise occur if the queue is idle.
bd166ef1 1284 */
86ff7c2a
ML
1285 needs_restart = blk_mq_sched_needs_restart(hctx);
1286 if (!needs_restart ||
eb619fdb 1287 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1288 blk_mq_run_hw_queue(hctx, true);
86ff7c2a
ML
1289 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1290 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
320ae51f 1291 }
f04c3df3 1292
93efe981 1293 return (queued + errors) != 0;
f04c3df3
JA
1294}
1295
6a83e74d
BVA
1296static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1297{
1298 int srcu_idx;
1299
b7a71e66
JA
1300 /*
1301 * We should be running this queue from one of the CPUs that
1302 * are mapped to it.
7df938fb
ML
1303 *
1304 * There are at least two related races now between setting
1305 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1306 * __blk_mq_run_hw_queue():
1307 *
1308 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1309 * but later it becomes online, then this warning is harmless
1310 * at all
1311 *
1312 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1313 * but later it becomes offline, then the warning can't be
1314 * triggered, and we depend on blk-mq timeout handler to
1315 * handle dispatched requests to this hctx
b7a71e66 1316 */
7df938fb
ML
1317 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1318 cpu_online(hctx->next_cpu)) {
1319 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1320 raw_smp_processor_id(),
1321 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1322 dump_stack();
1323 }
6a83e74d 1324
b7a71e66
JA
1325 /*
1326 * We can't run the queue inline with ints disabled. Ensure that
1327 * we catch bad users of this early.
1328 */
1329 WARN_ON_ONCE(in_interrupt());
1330
04ced159 1331 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1332
04ced159
JA
1333 hctx_lock(hctx, &srcu_idx);
1334 blk_mq_sched_dispatch_requests(hctx);
1335 hctx_unlock(hctx, srcu_idx);
6a83e74d
BVA
1336}
1337
506e931f
JA
1338/*
1339 * It'd be great if the workqueue API had a way to pass
1340 * in a mask and had some smarts for more clever placement.
1341 * For now we just round-robin here, switching for every
1342 * BLK_MQ_CPU_WORK_BATCH queued items.
1343 */
1344static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1345{
7bed4595
ML
1346 bool tried = false;
1347
b657d7e6
CH
1348 if (hctx->queue->nr_hw_queues == 1)
1349 return WORK_CPU_UNBOUND;
506e931f
JA
1350
1351 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1352 int next_cpu;
7bed4595 1353select_cpu:
20e4d813
CH
1354 next_cpu = cpumask_next_and(hctx->next_cpu, hctx->cpumask,
1355 cpu_online_mask);
506e931f 1356 if (next_cpu >= nr_cpu_ids)
20e4d813 1357 next_cpu = cpumask_first_and(hctx->cpumask,cpu_online_mask);
506e931f 1358
7bed4595
ML
1359 /*
1360 * No online CPU is found, so have to make sure hctx->next_cpu
1361 * is set correctly for not breaking workqueue.
1362 */
1363 if (next_cpu >= nr_cpu_ids)
1364 hctx->next_cpu = cpumask_first(hctx->cpumask);
1365 else
1366 hctx->next_cpu = next_cpu;
506e931f
JA
1367 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1368 }
1369
7bed4595
ML
1370 /*
1371 * Do unbound schedule if we can't find a online CPU for this hctx,
1372 * and it should only happen in the path of handling CPU DEAD.
1373 */
1374 if (!cpu_online(hctx->next_cpu)) {
1375 if (!tried) {
1376 tried = true;
1377 goto select_cpu;
1378 }
1379
1380 /*
1381 * Make sure to re-select CPU next time once after CPUs
1382 * in hctx->cpumask become online again.
1383 */
1384 hctx->next_cpu_batch = 1;
1385 return WORK_CPU_UNBOUND;
1386 }
b657d7e6 1387 return hctx->next_cpu;
506e931f
JA
1388}
1389
7587a5ae
BVA
1390static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1391 unsigned long msecs)
320ae51f 1392{
5435c023
BVA
1393 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1394 return;
1395
1396 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1397 return;
1398
1b792f2f 1399 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1400 int cpu = get_cpu();
1401 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1402 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1403 put_cpu();
398205b8
PB
1404 return;
1405 }
e4043dcf 1406
2a90d4aa 1407 put_cpu();
e4043dcf 1408 }
398205b8 1409
ae943d20
BVA
1410 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1411 msecs_to_jiffies(msecs));
7587a5ae
BVA
1412}
1413
1414void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1415{
1416 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1417}
1418EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1419
79f720a7 1420bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 1421{
24f5a90f
ML
1422 int srcu_idx;
1423 bool need_run;
1424
1425 /*
1426 * When queue is quiesced, we may be switching io scheduler, or
1427 * updating nr_hw_queues, or other things, and we can't run queue
1428 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1429 *
1430 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1431 * quiesced.
1432 */
04ced159
JA
1433 hctx_lock(hctx, &srcu_idx);
1434 need_run = !blk_queue_quiesced(hctx->queue) &&
1435 blk_mq_hctx_has_pending(hctx);
1436 hctx_unlock(hctx, srcu_idx);
24f5a90f
ML
1437
1438 if (need_run) {
79f720a7
JA
1439 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1440 return true;
1441 }
1442
1443 return false;
320ae51f 1444}
5b727272 1445EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1446
b94ec296 1447void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1448{
1449 struct blk_mq_hw_ctx *hctx;
1450 int i;
1451
1452 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 1453 if (blk_mq_hctx_stopped(hctx))
320ae51f
JA
1454 continue;
1455
b94ec296 1456 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1457 }
1458}
b94ec296 1459EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1460
fd001443
BVA
1461/**
1462 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1463 * @q: request queue.
1464 *
1465 * The caller is responsible for serializing this function against
1466 * blk_mq_{start,stop}_hw_queue().
1467 */
1468bool blk_mq_queue_stopped(struct request_queue *q)
1469{
1470 struct blk_mq_hw_ctx *hctx;
1471 int i;
1472
1473 queue_for_each_hw_ctx(q, hctx, i)
1474 if (blk_mq_hctx_stopped(hctx))
1475 return true;
1476
1477 return false;
1478}
1479EXPORT_SYMBOL(blk_mq_queue_stopped);
1480
39a70c76
ML
1481/*
1482 * This function is often used for pausing .queue_rq() by driver when
1483 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1484 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1485 *
1486 * We do not guarantee that dispatch can be drained or blocked
1487 * after blk_mq_stop_hw_queue() returns. Please use
1488 * blk_mq_quiesce_queue() for that requirement.
1489 */
2719aa21
JA
1490void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1491{
641a9ed6 1492 cancel_delayed_work(&hctx->run_work);
280d45f6 1493
641a9ed6 1494 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1495}
641a9ed6 1496EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1497
39a70c76
ML
1498/*
1499 * This function is often used for pausing .queue_rq() by driver when
1500 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1501 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1502 *
1503 * We do not guarantee that dispatch can be drained or blocked
1504 * after blk_mq_stop_hw_queues() returns. Please use
1505 * blk_mq_quiesce_queue() for that requirement.
1506 */
2719aa21
JA
1507void blk_mq_stop_hw_queues(struct request_queue *q)
1508{
641a9ed6
ML
1509 struct blk_mq_hw_ctx *hctx;
1510 int i;
1511
1512 queue_for_each_hw_ctx(q, hctx, i)
1513 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1514}
1515EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1516
320ae51f
JA
1517void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1518{
1519 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1520
0ffbce80 1521 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1522}
1523EXPORT_SYMBOL(blk_mq_start_hw_queue);
1524
2f268556
CH
1525void blk_mq_start_hw_queues(struct request_queue *q)
1526{
1527 struct blk_mq_hw_ctx *hctx;
1528 int i;
1529
1530 queue_for_each_hw_ctx(q, hctx, i)
1531 blk_mq_start_hw_queue(hctx);
1532}
1533EXPORT_SYMBOL(blk_mq_start_hw_queues);
1534
ae911c5e
JA
1535void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1536{
1537 if (!blk_mq_hctx_stopped(hctx))
1538 return;
1539
1540 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1541 blk_mq_run_hw_queue(hctx, async);
1542}
1543EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1544
1b4a3258 1545void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1546{
1547 struct blk_mq_hw_ctx *hctx;
1548 int i;
1549
ae911c5e
JA
1550 queue_for_each_hw_ctx(q, hctx, i)
1551 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1552}
1553EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1554
70f4db63 1555static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1556{
1557 struct blk_mq_hw_ctx *hctx;
1558
9f993737 1559 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1560
21c6e939
JA
1561 /*
1562 * If we are stopped, don't run the queue. The exception is if
1563 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1564 * the STOPPED bit and run it.
1565 */
1566 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1567 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1568 return;
7587a5ae 1569
21c6e939
JA
1570 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1571 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1572 }
7587a5ae
BVA
1573
1574 __blk_mq_run_hw_queue(hctx);
1575}
1576
70f4db63
CH
1577
1578void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1579{
5435c023 1580 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
19c66e59 1581 return;
70f4db63 1582
21c6e939
JA
1583 /*
1584 * Stop the hw queue, then modify currently delayed work.
1585 * This should prevent us from running the queue prematurely.
1586 * Mark the queue as auto-clearing STOPPED when it runs.
1587 */
7e79dadc 1588 blk_mq_stop_hw_queue(hctx);
21c6e939
JA
1589 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1590 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1591 &hctx->run_work,
1592 msecs_to_jiffies(msecs));
70f4db63
CH
1593}
1594EXPORT_SYMBOL(blk_mq_delay_queue);
1595
cfd0c552 1596static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1597 struct request *rq,
1598 bool at_head)
320ae51f 1599{
e57690fe
JA
1600 struct blk_mq_ctx *ctx = rq->mq_ctx;
1601
7b607814
BVA
1602 lockdep_assert_held(&ctx->lock);
1603
01b983c9
JA
1604 trace_block_rq_insert(hctx->queue, rq);
1605
72a0a36e
CH
1606 if (at_head)
1607 list_add(&rq->queuelist, &ctx->rq_list);
1608 else
1609 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1610}
4bb659b1 1611
2c3ad667
JA
1612void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1613 bool at_head)
cfd0c552
ML
1614{
1615 struct blk_mq_ctx *ctx = rq->mq_ctx;
1616
7b607814
BVA
1617 lockdep_assert_held(&ctx->lock);
1618
e57690fe 1619 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1620 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1621}
1622
157f377b
JA
1623/*
1624 * Should only be used carefully, when the caller knows we want to
1625 * bypass a potential IO scheduler on the target device.
1626 */
b0850297 1627void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
157f377b
JA
1628{
1629 struct blk_mq_ctx *ctx = rq->mq_ctx;
1630 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1631
1632 spin_lock(&hctx->lock);
1633 list_add_tail(&rq->queuelist, &hctx->dispatch);
1634 spin_unlock(&hctx->lock);
1635
b0850297
ML
1636 if (run_queue)
1637 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
1638}
1639
bd166ef1
JA
1640void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1641 struct list_head *list)
320ae51f
JA
1642
1643{
320ae51f
JA
1644 /*
1645 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1646 * offline now
1647 */
1648 spin_lock(&ctx->lock);
1649 while (!list_empty(list)) {
1650 struct request *rq;
1651
1652 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1653 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1654 list_del_init(&rq->queuelist);
e57690fe 1655 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1656 }
cfd0c552 1657 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1658 spin_unlock(&ctx->lock);
320ae51f
JA
1659}
1660
1661static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1662{
1663 struct request *rqa = container_of(a, struct request, queuelist);
1664 struct request *rqb = container_of(b, struct request, queuelist);
1665
1666 return !(rqa->mq_ctx < rqb->mq_ctx ||
1667 (rqa->mq_ctx == rqb->mq_ctx &&
1668 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1669}
1670
1671void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1672{
1673 struct blk_mq_ctx *this_ctx;
1674 struct request_queue *this_q;
1675 struct request *rq;
1676 LIST_HEAD(list);
1677 LIST_HEAD(ctx_list);
1678 unsigned int depth;
1679
1680 list_splice_init(&plug->mq_list, &list);
1681
1682 list_sort(NULL, &list, plug_ctx_cmp);
1683
1684 this_q = NULL;
1685 this_ctx = NULL;
1686 depth = 0;
1687
1688 while (!list_empty(&list)) {
1689 rq = list_entry_rq(list.next);
1690 list_del_init(&rq->queuelist);
1691 BUG_ON(!rq->q);
1692 if (rq->mq_ctx != this_ctx) {
1693 if (this_ctx) {
bd166ef1
JA
1694 trace_block_unplug(this_q, depth, from_schedule);
1695 blk_mq_sched_insert_requests(this_q, this_ctx,
1696 &ctx_list,
1697 from_schedule);
320ae51f
JA
1698 }
1699
1700 this_ctx = rq->mq_ctx;
1701 this_q = rq->q;
1702 depth = 0;
1703 }
1704
1705 depth++;
1706 list_add_tail(&rq->queuelist, &ctx_list);
1707 }
1708
1709 /*
1710 * If 'this_ctx' is set, we know we have entries to complete
1711 * on 'ctx_list'. Do those.
1712 */
1713 if (this_ctx) {
bd166ef1
JA
1714 trace_block_unplug(this_q, depth, from_schedule);
1715 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1716 from_schedule);
320ae51f
JA
1717 }
1718}
1719
1720static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1721{
da8d7f07 1722 blk_init_request_from_bio(rq, bio);
4b570521 1723
85acb3ba
SL
1724 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1725
6e85eaf3 1726 blk_account_io_start(rq, true);
320ae51f
JA
1727}
1728
ab42f35d
ML
1729static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1730 struct blk_mq_ctx *ctx,
1731 struct request *rq)
1732{
1733 spin_lock(&ctx->lock);
1734 __blk_mq_insert_request(hctx, rq, false);
1735 spin_unlock(&ctx->lock);
07068d5b 1736}
14ec77f3 1737
fd2d3326
JA
1738static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1739{
bd166ef1
JA
1740 if (rq->tag != -1)
1741 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1742
1743 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1744}
1745
0f95549c
MS
1746static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1747 struct request *rq,
1748 blk_qc_t *cookie)
f984df1f 1749{
f984df1f 1750 struct request_queue *q = rq->q;
f984df1f
SL
1751 struct blk_mq_queue_data bd = {
1752 .rq = rq,
d945a365 1753 .last = true,
f984df1f 1754 };
bd166ef1 1755 blk_qc_t new_cookie;
f06345ad 1756 blk_status_t ret;
0f95549c
MS
1757
1758 new_cookie = request_to_qc_t(hctx, rq);
1759
1760 /*
1761 * For OK queue, we are done. For error, caller may kill it.
1762 * Any other error (busy), just add it to our list as we
1763 * previously would have done.
1764 */
1765 ret = q->mq_ops->queue_rq(hctx, &bd);
1766 switch (ret) {
1767 case BLK_STS_OK:
1768 *cookie = new_cookie;
1769 break;
1770 case BLK_STS_RESOURCE:
86ff7c2a 1771 case BLK_STS_DEV_RESOURCE:
0f95549c
MS
1772 __blk_mq_requeue_request(rq);
1773 break;
1774 default:
1775 *cookie = BLK_QC_T_NONE;
1776 break;
1777 }
1778
1779 return ret;
1780}
1781
0f95549c
MS
1782static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1783 struct request *rq,
396eaf21
ML
1784 blk_qc_t *cookie,
1785 bool bypass_insert)
0f95549c
MS
1786{
1787 struct request_queue *q = rq->q;
d964f04a
ML
1788 bool run_queue = true;
1789
23d4ee19
ML
1790 /*
1791 * RCU or SRCU read lock is needed before checking quiesced flag.
1792 *
1793 * When queue is stopped or quiesced, ignore 'bypass_insert' from
c77ff7fd 1794 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
23d4ee19
ML
1795 * and avoid driver to try to dispatch again.
1796 */
f4560ffe 1797 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a 1798 run_queue = false;
23d4ee19 1799 bypass_insert = false;
d964f04a
ML
1800 goto insert;
1801 }
f984df1f 1802
396eaf21 1803 if (q->elevator && !bypass_insert)
2253efc8
BVA
1804 goto insert;
1805
0bca799b 1806 if (!blk_mq_get_dispatch_budget(hctx))
bd166ef1
JA
1807 goto insert;
1808
0bca799b
ML
1809 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1810 blk_mq_put_dispatch_budget(hctx);
de148297 1811 goto insert;
88022d72 1812 }
de148297 1813
0f95549c 1814 return __blk_mq_issue_directly(hctx, rq, cookie);
2253efc8 1815insert:
396eaf21
ML
1816 if (bypass_insert)
1817 return BLK_STS_RESOURCE;
0f95549c 1818
23d4ee19 1819 blk_mq_sched_insert_request(rq, false, run_queue, false);
0f95549c 1820 return BLK_STS_OK;
f984df1f
SL
1821}
1822
5eb6126e
CH
1823static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1824 struct request *rq, blk_qc_t *cookie)
1825{
0f95549c 1826 blk_status_t ret;
04ced159 1827 int srcu_idx;
bf4907c0 1828
04ced159 1829 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1830
04ced159 1831 hctx_lock(hctx, &srcu_idx);
0f95549c 1832
396eaf21 1833 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
86ff7c2a 1834 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
23d4ee19 1835 blk_mq_sched_insert_request(rq, false, true, false);
0f95549c
MS
1836 else if (ret != BLK_STS_OK)
1837 blk_mq_end_request(rq, ret);
1838
04ced159 1839 hctx_unlock(hctx, srcu_idx);
5eb6126e
CH
1840}
1841
c77ff7fd 1842blk_status_t blk_mq_request_issue_directly(struct request *rq)
396eaf21
ML
1843{
1844 blk_status_t ret;
1845 int srcu_idx;
1846 blk_qc_t unused_cookie;
1847 struct blk_mq_ctx *ctx = rq->mq_ctx;
1848 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1849
1850 hctx_lock(hctx, &srcu_idx);
1851 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1852 hctx_unlock(hctx, srcu_idx);
1853
1854 return ret;
5eb6126e
CH
1855}
1856
dece1635 1857static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1858{
ef295ecf 1859 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1860 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1861 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1862 struct request *rq;
5eb6126e 1863 unsigned int request_count = 0;
f984df1f 1864 struct blk_plug *plug;
5b3f341f 1865 struct request *same_queue_rq = NULL;
7b371636 1866 blk_qc_t cookie;
87760e5e 1867 unsigned int wb_acct;
07068d5b
JA
1868
1869 blk_queue_bounce(q, &bio);
1870
af67c31f 1871 blk_queue_split(q, &bio);
f36ea50c 1872
e23947bd 1873 if (!bio_integrity_prep(bio))
dece1635 1874 return BLK_QC_T_NONE;
07068d5b 1875
87c279e6
OS
1876 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1877 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1878 return BLK_QC_T_NONE;
f984df1f 1879
bd166ef1
JA
1880 if (blk_mq_sched_bio_merge(q, bio))
1881 return BLK_QC_T_NONE;
1882
87760e5e
JA
1883 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1884
bd166ef1
JA
1885 trace_block_getrq(q, bio, bio->bi_opf);
1886
d2c0d383 1887 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1888 if (unlikely(!rq)) {
1889 __wbt_done(q->rq_wb, wb_acct);
03a07c92
GR
1890 if (bio->bi_opf & REQ_NOWAIT)
1891 bio_wouldblock_error(bio);
dece1635 1892 return BLK_QC_T_NONE;
87760e5e
JA
1893 }
1894
1895 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1896
fd2d3326 1897 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1898
f984df1f 1899 plug = current->plug;
07068d5b 1900 if (unlikely(is_flush_fua)) {
f984df1f 1901 blk_mq_put_ctx(data.ctx);
07068d5b 1902 blk_mq_bio_to_request(rq, bio);
923218f6
ML
1903
1904 /* bypass scheduler for flush rq */
1905 blk_insert_flush(rq);
1906 blk_mq_run_hw_queue(data.hctx, true);
a4d907b6 1907 } else if (plug && q->nr_hw_queues == 1) {
600271d9
SL
1908 struct request *last = NULL;
1909
b00c53e8 1910 blk_mq_put_ctx(data.ctx);
e6c4438b 1911 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1912
1913 /*
1914 * @request_count may become stale because of schedule
1915 * out, so check the list again.
1916 */
1917 if (list_empty(&plug->mq_list))
1918 request_count = 0;
254d259d
CH
1919 else if (blk_queue_nomerges(q))
1920 request_count = blk_plug_queued_count(q);
1921
676d0607 1922 if (!request_count)
e6c4438b 1923 trace_block_plug(q);
600271d9
SL
1924 else
1925 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1926
600271d9
SL
1927 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1928 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1929 blk_flush_plug_list(plug, false);
1930 trace_block_plug(q);
320ae51f 1931 }
b094f89c 1932
e6c4438b 1933 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1934 } else if (plug && !blk_queue_nomerges(q)) {
bd166ef1 1935 blk_mq_bio_to_request(rq, bio);
07068d5b 1936
07068d5b 1937 /*
6a83e74d 1938 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1939 * Otherwise the existing request in the plug list will be
1940 * issued. So the plug list will have one request at most
2299722c
CH
1941 * The plug list might get flushed before this. If that happens,
1942 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1943 */
2299722c
CH
1944 if (list_empty(&plug->mq_list))
1945 same_queue_rq = NULL;
1946 if (same_queue_rq)
1947 list_del_init(&same_queue_rq->queuelist);
1948 list_add_tail(&rq->queuelist, &plug->mq_list);
1949
bf4907c0
JA
1950 blk_mq_put_ctx(data.ctx);
1951
dad7a3be
ML
1952 if (same_queue_rq) {
1953 data.hctx = blk_mq_map_queue(q,
1954 same_queue_rq->mq_ctx->cpu);
2299722c
CH
1955 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1956 &cookie);
dad7a3be 1957 }
a4d907b6 1958 } else if (q->nr_hw_queues > 1 && is_sync) {
bf4907c0 1959 blk_mq_put_ctx(data.ctx);
2299722c 1960 blk_mq_bio_to_request(rq, bio);
2299722c 1961 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
a4d907b6 1962 } else if (q->elevator) {
b00c53e8 1963 blk_mq_put_ctx(data.ctx);
bd166ef1 1964 blk_mq_bio_to_request(rq, bio);
9e97d295 1965 blk_mq_sched_insert_request(rq, false, true, true);
ab42f35d 1966 } else {
b00c53e8 1967 blk_mq_put_ctx(data.ctx);
ab42f35d
ML
1968 blk_mq_bio_to_request(rq, bio);
1969 blk_mq_queue_io(data.hctx, data.ctx, rq);
a4d907b6 1970 blk_mq_run_hw_queue(data.hctx, true);
ab42f35d 1971 }
320ae51f 1972
7b371636 1973 return cookie;
320ae51f
JA
1974}
1975
cc71a6f4
JA
1976void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1977 unsigned int hctx_idx)
95363efd 1978{
e9b267d9 1979 struct page *page;
320ae51f 1980
24d2f903 1981 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1982 int i;
320ae51f 1983
24d2f903 1984 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1985 struct request *rq = tags->static_rqs[i];
1986
1987 if (!rq)
e9b267d9 1988 continue;
d6296d39 1989 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 1990 tags->static_rqs[i] = NULL;
e9b267d9 1991 }
320ae51f 1992 }
320ae51f 1993
24d2f903
CH
1994 while (!list_empty(&tags->page_list)) {
1995 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1996 list_del_init(&page->lru);
f75782e4
CM
1997 /*
1998 * Remove kmemleak object previously allocated in
1999 * blk_mq_init_rq_map().
2000 */
2001 kmemleak_free(page_address(page));
320ae51f
JA
2002 __free_pages(page, page->private);
2003 }
cc71a6f4 2004}
320ae51f 2005
cc71a6f4
JA
2006void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2007{
24d2f903 2008 kfree(tags->rqs);
cc71a6f4 2009 tags->rqs = NULL;
2af8cbe3
JA
2010 kfree(tags->static_rqs);
2011 tags->static_rqs = NULL;
320ae51f 2012
24d2f903 2013 blk_mq_free_tags(tags);
320ae51f
JA
2014}
2015
cc71a6f4
JA
2016struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2017 unsigned int hctx_idx,
2018 unsigned int nr_tags,
2019 unsigned int reserved_tags)
320ae51f 2020{
24d2f903 2021 struct blk_mq_tags *tags;
59f082e4 2022 int node;
320ae51f 2023
59f082e4
SL
2024 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2025 if (node == NUMA_NO_NODE)
2026 node = set->numa_node;
2027
2028 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 2029 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
2030 if (!tags)
2031 return NULL;
320ae51f 2032
cc71a6f4 2033 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 2034 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 2035 node);
24d2f903
CH
2036 if (!tags->rqs) {
2037 blk_mq_free_tags(tags);
2038 return NULL;
2039 }
320ae51f 2040
2af8cbe3
JA
2041 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2042 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 2043 node);
2af8cbe3
JA
2044 if (!tags->static_rqs) {
2045 kfree(tags->rqs);
2046 blk_mq_free_tags(tags);
2047 return NULL;
2048 }
2049
cc71a6f4
JA
2050 return tags;
2051}
2052
2053static size_t order_to_size(unsigned int order)
2054{
2055 return (size_t)PAGE_SIZE << order;
2056}
2057
1d9bd516
TH
2058static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2059 unsigned int hctx_idx, int node)
2060{
2061 int ret;
2062
2063 if (set->ops->init_request) {
2064 ret = set->ops->init_request(set, rq, hctx_idx, node);
2065 if (ret)
2066 return ret;
2067 }
2068
2069 seqcount_init(&rq->gstate_seq);
2070 u64_stats_init(&rq->aborted_gstate_sync);
2071 return 0;
2072}
2073
cc71a6f4
JA
2074int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2075 unsigned int hctx_idx, unsigned int depth)
2076{
2077 unsigned int i, j, entries_per_page, max_order = 4;
2078 size_t rq_size, left;
59f082e4
SL
2079 int node;
2080
2081 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2082 if (node == NUMA_NO_NODE)
2083 node = set->numa_node;
cc71a6f4
JA
2084
2085 INIT_LIST_HEAD(&tags->page_list);
2086
320ae51f
JA
2087 /*
2088 * rq_size is the size of the request plus driver payload, rounded
2089 * to the cacheline size
2090 */
24d2f903 2091 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 2092 cache_line_size());
cc71a6f4 2093 left = rq_size * depth;
320ae51f 2094
cc71a6f4 2095 for (i = 0; i < depth; ) {
320ae51f
JA
2096 int this_order = max_order;
2097 struct page *page;
2098 int to_do;
2099 void *p;
2100
b3a834b1 2101 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
2102 this_order--;
2103
2104 do {
59f082e4 2105 page = alloc_pages_node(node,
36e1f3d1 2106 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 2107 this_order);
320ae51f
JA
2108 if (page)
2109 break;
2110 if (!this_order--)
2111 break;
2112 if (order_to_size(this_order) < rq_size)
2113 break;
2114 } while (1);
2115
2116 if (!page)
24d2f903 2117 goto fail;
320ae51f
JA
2118
2119 page->private = this_order;
24d2f903 2120 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
2121
2122 p = page_address(page);
f75782e4
CM
2123 /*
2124 * Allow kmemleak to scan these pages as they contain pointers
2125 * to additional allocations like via ops->init_request().
2126 */
36e1f3d1 2127 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 2128 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 2129 to_do = min(entries_per_page, depth - i);
320ae51f
JA
2130 left -= to_do * rq_size;
2131 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
2132 struct request *rq = p;
2133
2134 tags->static_rqs[i] = rq;
1d9bd516
TH
2135 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2136 tags->static_rqs[i] = NULL;
2137 goto fail;
e9b267d9
CH
2138 }
2139
320ae51f
JA
2140 p += rq_size;
2141 i++;
2142 }
2143 }
cc71a6f4 2144 return 0;
320ae51f 2145
24d2f903 2146fail:
cc71a6f4
JA
2147 blk_mq_free_rqs(set, tags, hctx_idx);
2148 return -ENOMEM;
320ae51f
JA
2149}
2150
e57690fe
JA
2151/*
2152 * 'cpu' is going away. splice any existing rq_list entries from this
2153 * software queue to the hw queue dispatch list, and ensure that it
2154 * gets run.
2155 */
9467f859 2156static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 2157{
9467f859 2158 struct blk_mq_hw_ctx *hctx;
484b4061
JA
2159 struct blk_mq_ctx *ctx;
2160 LIST_HEAD(tmp);
2161
9467f859 2162 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 2163 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
2164
2165 spin_lock(&ctx->lock);
2166 if (!list_empty(&ctx->rq_list)) {
2167 list_splice_init(&ctx->rq_list, &tmp);
2168 blk_mq_hctx_clear_pending(hctx, ctx);
2169 }
2170 spin_unlock(&ctx->lock);
2171
2172 if (list_empty(&tmp))
9467f859 2173 return 0;
484b4061 2174
e57690fe
JA
2175 spin_lock(&hctx->lock);
2176 list_splice_tail_init(&tmp, &hctx->dispatch);
2177 spin_unlock(&hctx->lock);
484b4061
JA
2178
2179 blk_mq_run_hw_queue(hctx, true);
9467f859 2180 return 0;
484b4061
JA
2181}
2182
9467f859 2183static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 2184{
9467f859
TG
2185 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2186 &hctx->cpuhp_dead);
484b4061
JA
2187}
2188
c3b4afca 2189/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
2190static void blk_mq_exit_hctx(struct request_queue *q,
2191 struct blk_mq_tag_set *set,
2192 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2193{
9c1051aa
OS
2194 blk_mq_debugfs_unregister_hctx(hctx);
2195
8ab0b7dc
ML
2196 if (blk_mq_hw_queue_mapped(hctx))
2197 blk_mq_tag_idle(hctx);
08e98fc6 2198
f70ced09 2199 if (set->ops->exit_request)
d6296d39 2200 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 2201
93252632
OS
2202 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2203
08e98fc6
ML
2204 if (set->ops->exit_hctx)
2205 set->ops->exit_hctx(hctx, hctx_idx);
2206
6a83e74d 2207 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2208 cleanup_srcu_struct(hctx->srcu);
6a83e74d 2209
9467f859 2210 blk_mq_remove_cpuhp(hctx);
f70ced09 2211 blk_free_flush_queue(hctx->fq);
88459642 2212 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2213}
2214
624dbe47
ML
2215static void blk_mq_exit_hw_queues(struct request_queue *q,
2216 struct blk_mq_tag_set *set, int nr_queue)
2217{
2218 struct blk_mq_hw_ctx *hctx;
2219 unsigned int i;
2220
2221 queue_for_each_hw_ctx(q, hctx, i) {
2222 if (i == nr_queue)
2223 break;
08e98fc6 2224 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 2225 }
624dbe47
ML
2226}
2227
08e98fc6
ML
2228static int blk_mq_init_hctx(struct request_queue *q,
2229 struct blk_mq_tag_set *set,
2230 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 2231{
08e98fc6
ML
2232 int node;
2233
2234 node = hctx->numa_node;
2235 if (node == NUMA_NO_NODE)
2236 node = hctx->numa_node = set->numa_node;
2237
9f993737 2238 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2239 spin_lock_init(&hctx->lock);
2240 INIT_LIST_HEAD(&hctx->dispatch);
2241 hctx->queue = q;
2404e607 2242 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 2243
9467f859 2244 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
2245
2246 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
2247
2248 /*
08e98fc6
ML
2249 * Allocate space for all possible cpus to avoid allocation at
2250 * runtime
320ae51f 2251 */
d904bfa7 2252 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
08e98fc6
ML
2253 GFP_KERNEL, node);
2254 if (!hctx->ctxs)
2255 goto unregister_cpu_notifier;
320ae51f 2256
88459642
OS
2257 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2258 node))
08e98fc6 2259 goto free_ctxs;
320ae51f 2260
08e98fc6 2261 hctx->nr_ctx = 0;
320ae51f 2262
eb619fdb
JA
2263 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2264 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2265
08e98fc6
ML
2266 if (set->ops->init_hctx &&
2267 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2268 goto free_bitmap;
320ae51f 2269
93252632
OS
2270 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2271 goto exit_hctx;
2272
f70ced09
ML
2273 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2274 if (!hctx->fq)
93252632 2275 goto sched_exit_hctx;
320ae51f 2276
1d9bd516 2277 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
f70ced09 2278 goto free_fq;
320ae51f 2279
6a83e74d 2280 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2281 init_srcu_struct(hctx->srcu);
6a83e74d 2282
9c1051aa
OS
2283 blk_mq_debugfs_register_hctx(q, hctx);
2284
08e98fc6 2285 return 0;
320ae51f 2286
f70ced09
ML
2287 free_fq:
2288 kfree(hctx->fq);
93252632
OS
2289 sched_exit_hctx:
2290 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
f70ced09
ML
2291 exit_hctx:
2292 if (set->ops->exit_hctx)
2293 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 2294 free_bitmap:
88459642 2295 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2296 free_ctxs:
2297 kfree(hctx->ctxs);
2298 unregister_cpu_notifier:
9467f859 2299 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
2300 return -1;
2301}
320ae51f 2302
320ae51f
JA
2303static void blk_mq_init_cpu_queues(struct request_queue *q,
2304 unsigned int nr_hw_queues)
2305{
2306 unsigned int i;
2307
2308 for_each_possible_cpu(i) {
2309 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2310 struct blk_mq_hw_ctx *hctx;
2311
320ae51f
JA
2312 __ctx->cpu = i;
2313 spin_lock_init(&__ctx->lock);
2314 INIT_LIST_HEAD(&__ctx->rq_list);
2315 __ctx->queue = q;
2316
320ae51f
JA
2317 /*
2318 * Set local node, IFF we have more than one hw queue. If
2319 * not, we remain on the home node of the device
2320 */
20e4d813 2321 hctx = blk_mq_map_queue(q, i);
320ae51f 2322 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 2323 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
2324 }
2325}
2326
cc71a6f4
JA
2327static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2328{
2329 int ret = 0;
2330
2331 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2332 set->queue_depth, set->reserved_tags);
2333 if (!set->tags[hctx_idx])
2334 return false;
2335
2336 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2337 set->queue_depth);
2338 if (!ret)
2339 return true;
2340
2341 blk_mq_free_rq_map(set->tags[hctx_idx]);
2342 set->tags[hctx_idx] = NULL;
2343 return false;
2344}
2345
2346static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2347 unsigned int hctx_idx)
2348{
bd166ef1
JA
2349 if (set->tags[hctx_idx]) {
2350 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2351 blk_mq_free_rq_map(set->tags[hctx_idx]);
2352 set->tags[hctx_idx] = NULL;
2353 }
cc71a6f4
JA
2354}
2355
4b855ad3 2356static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2357{
d1b1cea1 2358 unsigned int i, hctx_idx;
320ae51f
JA
2359 struct blk_mq_hw_ctx *hctx;
2360 struct blk_mq_ctx *ctx;
2a34c087 2361 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2362
60de074b
AM
2363 /*
2364 * Avoid others reading imcomplete hctx->cpumask through sysfs
2365 */
2366 mutex_lock(&q->sysfs_lock);
2367
320ae51f 2368 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2369 cpumask_clear(hctx->cpumask);
320ae51f
JA
2370 hctx->nr_ctx = 0;
2371 }
2372
2373 /*
4b855ad3
CH
2374 * Map software to hardware queues.
2375 *
2376 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2377 */
20e4d813 2378 for_each_possible_cpu(i) {
d1b1cea1
GKB
2379 hctx_idx = q->mq_map[i];
2380 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2381 if (!set->tags[hctx_idx] &&
2382 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2383 /*
2384 * If tags initialization fail for some hctx,
2385 * that hctx won't be brought online. In this
2386 * case, remap the current ctx to hctx[0] which
2387 * is guaranteed to always have tags allocated
2388 */
cc71a6f4 2389 q->mq_map[i] = 0;
d1b1cea1
GKB
2390 }
2391
897bb0c7 2392 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2393 hctx = blk_mq_map_queue(q, i);
868f2f0b 2394
e4043dcf 2395 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2396 ctx->index_hw = hctx->nr_ctx;
2397 hctx->ctxs[hctx->nr_ctx++] = ctx;
2398 }
506e931f 2399
60de074b
AM
2400 mutex_unlock(&q->sysfs_lock);
2401
506e931f 2402 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2403 /*
a68aafa5
JA
2404 * If no software queues are mapped to this hardware queue,
2405 * disable it and free the request entries.
484b4061
JA
2406 */
2407 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2408 /* Never unmap queue 0. We need it as a
2409 * fallback in case of a new remap fails
2410 * allocation
2411 */
cc71a6f4
JA
2412 if (i && set->tags[i])
2413 blk_mq_free_map_and_requests(set, i);
2414
2a34c087 2415 hctx->tags = NULL;
484b4061
JA
2416 continue;
2417 }
2418
2a34c087
ML
2419 hctx->tags = set->tags[i];
2420 WARN_ON(!hctx->tags);
2421
889fa31f
CY
2422 /*
2423 * Set the map size to the number of mapped software queues.
2424 * This is more accurate and more efficient than looping
2425 * over all possibly mapped software queues.
2426 */
88459642 2427 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2428
484b4061
JA
2429 /*
2430 * Initialize batch roundrobin counts
2431 */
20e4d813
CH
2432 hctx->next_cpu = cpumask_first_and(hctx->cpumask,
2433 cpu_online_mask);
a1c735fb
ML
2434 if (hctx->next_cpu >= nr_cpu_ids)
2435 hctx->next_cpu = cpumask_first(hctx->cpumask);
506e931f
JA
2436 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2437 }
320ae51f
JA
2438}
2439
8e8320c9
JA
2440/*
2441 * Caller needs to ensure that we're either frozen/quiesced, or that
2442 * the queue isn't live yet.
2443 */
2404e607 2444static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2445{
2446 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2447 int i;
2448
2404e607 2449 queue_for_each_hw_ctx(q, hctx, i) {
8e8320c9
JA
2450 if (shared) {
2451 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2452 atomic_inc(&q->shared_hctx_restart);
2404e607 2453 hctx->flags |= BLK_MQ_F_TAG_SHARED;
8e8320c9
JA
2454 } else {
2455 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2456 atomic_dec(&q->shared_hctx_restart);
2404e607 2457 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
8e8320c9 2458 }
2404e607
JM
2459 }
2460}
2461
8e8320c9
JA
2462static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2463 bool shared)
2404e607
JM
2464{
2465 struct request_queue *q;
0d2602ca 2466
705cda97
BVA
2467 lockdep_assert_held(&set->tag_list_lock);
2468
0d2602ca
JA
2469 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2470 blk_mq_freeze_queue(q);
2404e607 2471 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2472 blk_mq_unfreeze_queue(q);
2473 }
2474}
2475
2476static void blk_mq_del_queue_tag_set(struct request_queue *q)
2477{
2478 struct blk_mq_tag_set *set = q->tag_set;
2479
0d2602ca 2480 mutex_lock(&set->tag_list_lock);
705cda97
BVA
2481 list_del_rcu(&q->tag_set_list);
2482 INIT_LIST_HEAD(&q->tag_set_list);
2404e607
JM
2483 if (list_is_singular(&set->tag_list)) {
2484 /* just transitioned to unshared */
2485 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2486 /* update existing queue */
2487 blk_mq_update_tag_set_depth(set, false);
2488 }
0d2602ca 2489 mutex_unlock(&set->tag_list_lock);
705cda97
BVA
2490
2491 synchronize_rcu();
0d2602ca
JA
2492}
2493
2494static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2495 struct request_queue *q)
2496{
2497 q->tag_set = set;
2498
2499 mutex_lock(&set->tag_list_lock);
2404e607 2500
ff821d27
JA
2501 /*
2502 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2503 */
2504 if (!list_empty(&set->tag_list) &&
2505 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2404e607
JM
2506 set->flags |= BLK_MQ_F_TAG_SHARED;
2507 /* update existing queue */
2508 blk_mq_update_tag_set_depth(set, true);
2509 }
2510 if (set->flags & BLK_MQ_F_TAG_SHARED)
2511 queue_set_hctx_shared(q, true);
705cda97 2512 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2513
0d2602ca
JA
2514 mutex_unlock(&set->tag_list_lock);
2515}
2516
e09aae7e
ML
2517/*
2518 * It is the actual release handler for mq, but we do it from
2519 * request queue's release handler for avoiding use-after-free
2520 * and headache because q->mq_kobj shouldn't have been introduced,
2521 * but we can't group ctx/kctx kobj without it.
2522 */
2523void blk_mq_release(struct request_queue *q)
2524{
2525 struct blk_mq_hw_ctx *hctx;
2526 unsigned int i;
2527
2528 /* hctx kobj stays in hctx */
c3b4afca
ML
2529 queue_for_each_hw_ctx(q, hctx, i) {
2530 if (!hctx)
2531 continue;
6c8b232e 2532 kobject_put(&hctx->kobj);
c3b4afca 2533 }
e09aae7e 2534
a723bab3
AM
2535 q->mq_map = NULL;
2536
e09aae7e
ML
2537 kfree(q->queue_hw_ctx);
2538
7ea5fe31
ML
2539 /*
2540 * release .mq_kobj and sw queue's kobject now because
2541 * both share lifetime with request queue.
2542 */
2543 blk_mq_sysfs_deinit(q);
2544
e09aae7e
ML
2545 free_percpu(q->queue_ctx);
2546}
2547
24d2f903 2548struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2549{
2550 struct request_queue *uninit_q, *q;
2551
5ee0524b 2552 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
b62c21b7
MS
2553 if (!uninit_q)
2554 return ERR_PTR(-ENOMEM);
2555
2556 q = blk_mq_init_allocated_queue(set, uninit_q);
2557 if (IS_ERR(q))
2558 blk_cleanup_queue(uninit_q);
2559
2560 return q;
2561}
2562EXPORT_SYMBOL(blk_mq_init_queue);
2563
07319678
BVA
2564static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2565{
2566 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2567
05707b64 2568 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
07319678
BVA
2569 __alignof__(struct blk_mq_hw_ctx)) !=
2570 sizeof(struct blk_mq_hw_ctx));
2571
2572 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2573 hw_ctx_size += sizeof(struct srcu_struct);
2574
2575 return hw_ctx_size;
2576}
2577
868f2f0b
KB
2578static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2579 struct request_queue *q)
320ae51f 2580{
868f2f0b
KB
2581 int i, j;
2582 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2583
868f2f0b 2584 blk_mq_sysfs_unregister(q);
fb350e0a
ML
2585
2586 /* protect against switching io scheduler */
2587 mutex_lock(&q->sysfs_lock);
24d2f903 2588 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2589 int node;
f14bbe77 2590
868f2f0b
KB
2591 if (hctxs[i])
2592 continue;
2593
2594 node = blk_mq_hw_queue_to_node(q->mq_map, i);
07319678 2595 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
cdef54dd 2596 GFP_KERNEL, node);
320ae51f 2597 if (!hctxs[i])
868f2f0b 2598 break;
320ae51f 2599
a86073e4 2600 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2601 node)) {
2602 kfree(hctxs[i]);
2603 hctxs[i] = NULL;
2604 break;
2605 }
e4043dcf 2606
0d2602ca 2607 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2608 hctxs[i]->numa_node = node;
320ae51f 2609 hctxs[i]->queue_num = i;
868f2f0b
KB
2610
2611 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2612 free_cpumask_var(hctxs[i]->cpumask);
2613 kfree(hctxs[i]);
2614 hctxs[i] = NULL;
2615 break;
2616 }
2617 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2618 }
868f2f0b
KB
2619 for (j = i; j < q->nr_hw_queues; j++) {
2620 struct blk_mq_hw_ctx *hctx = hctxs[j];
2621
2622 if (hctx) {
cc71a6f4
JA
2623 if (hctx->tags)
2624 blk_mq_free_map_and_requests(set, j);
868f2f0b 2625 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2626 kobject_put(&hctx->kobj);
868f2f0b
KB
2627 hctxs[j] = NULL;
2628
2629 }
2630 }
2631 q->nr_hw_queues = i;
fb350e0a 2632 mutex_unlock(&q->sysfs_lock);
868f2f0b
KB
2633 blk_mq_sysfs_register(q);
2634}
2635
2636struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2637 struct request_queue *q)
2638{
66841672
ML
2639 /* mark the queue as mq asap */
2640 q->mq_ops = set->ops;
2641
34dbad5d 2642 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2643 blk_mq_poll_stats_bkt,
2644 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2645 if (!q->poll_cb)
2646 goto err_exit;
2647
868f2f0b
KB
2648 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2649 if (!q->queue_ctx)
c7de5726 2650 goto err_exit;
868f2f0b 2651
737f98cf
ML
2652 /* init q->mq_kobj and sw queues' kobjects */
2653 blk_mq_sysfs_init(q);
2654
868f2f0b
KB
2655 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2656 GFP_KERNEL, set->numa_node);
2657 if (!q->queue_hw_ctx)
2658 goto err_percpu;
2659
bdd17e75 2660 q->mq_map = set->mq_map;
868f2f0b
KB
2661
2662 blk_mq_realloc_hw_ctxs(set, q);
2663 if (!q->nr_hw_queues)
2664 goto err_hctxs;
320ae51f 2665
287922eb 2666 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2667 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2668
2669 q->nr_queues = nr_cpu_ids;
320ae51f 2670
94eddfbe 2671 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2672
05f1dd53 2673 if (!(set->flags & BLK_MQ_F_SG_MERGE))
f78bac2c 2674 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
05f1dd53 2675
1be036e9
CH
2676 q->sg_reserved_size = INT_MAX;
2677
2849450a 2678 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2679 INIT_LIST_HEAD(&q->requeue_list);
2680 spin_lock_init(&q->requeue_lock);
2681
254d259d 2682 blk_queue_make_request(q, blk_mq_make_request);
ea435e1b
CH
2683 if (q->mq_ops->poll)
2684 q->poll_fn = blk_mq_poll;
07068d5b 2685
eba71768
JA
2686 /*
2687 * Do this after blk_queue_make_request() overrides it...
2688 */
2689 q->nr_requests = set->queue_depth;
2690
64f1c21e
JA
2691 /*
2692 * Default to classic polling
2693 */
2694 q->poll_nsec = -1;
2695
24d2f903
CH
2696 if (set->ops->complete)
2697 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2698
24d2f903 2699 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 2700 blk_mq_add_queue_tag_set(set, q);
4b855ad3 2701 blk_mq_map_swqueue(q);
4593fdbe 2702
d3484991
JA
2703 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2704 int ret;
2705
2706 ret = blk_mq_sched_init(q);
2707 if (ret)
2708 return ERR_PTR(ret);
2709 }
2710
320ae51f 2711 return q;
18741986 2712
320ae51f 2713err_hctxs:
868f2f0b 2714 kfree(q->queue_hw_ctx);
320ae51f 2715err_percpu:
868f2f0b 2716 free_percpu(q->queue_ctx);
c7de5726
ML
2717err_exit:
2718 q->mq_ops = NULL;
320ae51f
JA
2719 return ERR_PTR(-ENOMEM);
2720}
b62c21b7 2721EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2722
2723void blk_mq_free_queue(struct request_queue *q)
2724{
624dbe47 2725 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2726
0d2602ca 2727 blk_mq_del_queue_tag_set(q);
624dbe47 2728 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2729}
320ae51f
JA
2730
2731/* Basically redo blk_mq_init_queue with queue frozen */
4b855ad3 2732static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f 2733{
4ecd4fef 2734 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2735
9c1051aa 2736 blk_mq_debugfs_unregister_hctxs(q);
67aec14c
JA
2737 blk_mq_sysfs_unregister(q);
2738
320ae51f
JA
2739 /*
2740 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
ff821d27
JA
2741 * we should change hctx numa_node according to the new topology (this
2742 * involves freeing and re-allocating memory, worth doing?)
320ae51f 2743 */
4b855ad3 2744 blk_mq_map_swqueue(q);
320ae51f 2745
67aec14c 2746 blk_mq_sysfs_register(q);
9c1051aa 2747 blk_mq_debugfs_register_hctxs(q);
320ae51f
JA
2748}
2749
a5164405
JA
2750static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2751{
2752 int i;
2753
cc71a6f4
JA
2754 for (i = 0; i < set->nr_hw_queues; i++)
2755 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2756 goto out_unwind;
a5164405
JA
2757
2758 return 0;
2759
2760out_unwind:
2761 while (--i >= 0)
cc71a6f4 2762 blk_mq_free_rq_map(set->tags[i]);
a5164405 2763
a5164405
JA
2764 return -ENOMEM;
2765}
2766
2767/*
2768 * Allocate the request maps associated with this tag_set. Note that this
2769 * may reduce the depth asked for, if memory is tight. set->queue_depth
2770 * will be updated to reflect the allocated depth.
2771 */
2772static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2773{
2774 unsigned int depth;
2775 int err;
2776
2777 depth = set->queue_depth;
2778 do {
2779 err = __blk_mq_alloc_rq_maps(set);
2780 if (!err)
2781 break;
2782
2783 set->queue_depth >>= 1;
2784 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2785 err = -ENOMEM;
2786 break;
2787 }
2788 } while (set->queue_depth);
2789
2790 if (!set->queue_depth || err) {
2791 pr_err("blk-mq: failed to allocate request map\n");
2792 return -ENOMEM;
2793 }
2794
2795 if (depth != set->queue_depth)
2796 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2797 depth, set->queue_depth);
2798
2799 return 0;
2800}
2801
ebe8bddb
OS
2802static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2803{
7d4901a9
ML
2804 if (set->ops->map_queues) {
2805 int cpu;
2806 /*
2807 * transport .map_queues is usually done in the following
2808 * way:
2809 *
2810 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2811 * mask = get_cpu_mask(queue)
2812 * for_each_cpu(cpu, mask)
2813 * set->mq_map[cpu] = queue;
2814 * }
2815 *
2816 * When we need to remap, the table has to be cleared for
2817 * killing stale mapping since one CPU may not be mapped
2818 * to any hw queue.
2819 */
2820 for_each_possible_cpu(cpu)
2821 set->mq_map[cpu] = 0;
2822
ebe8bddb 2823 return set->ops->map_queues(set);
7d4901a9 2824 } else
ebe8bddb
OS
2825 return blk_mq_map_queues(set);
2826}
2827
a4391c64
JA
2828/*
2829 * Alloc a tag set to be associated with one or more request queues.
2830 * May fail with EINVAL for various error conditions. May adjust the
2831 * requested depth down, if if it too large. In that case, the set
2832 * value will be stored in set->queue_depth.
2833 */
24d2f903
CH
2834int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2835{
da695ba2
CH
2836 int ret;
2837
205fb5f5
BVA
2838 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2839
24d2f903
CH
2840 if (!set->nr_hw_queues)
2841 return -EINVAL;
a4391c64 2842 if (!set->queue_depth)
24d2f903
CH
2843 return -EINVAL;
2844 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2845 return -EINVAL;
2846
7d7e0f90 2847 if (!set->ops->queue_rq)
24d2f903
CH
2848 return -EINVAL;
2849
de148297
ML
2850 if (!set->ops->get_budget ^ !set->ops->put_budget)
2851 return -EINVAL;
2852
a4391c64
JA
2853 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2854 pr_info("blk-mq: reduced tag depth to %u\n",
2855 BLK_MQ_MAX_DEPTH);
2856 set->queue_depth = BLK_MQ_MAX_DEPTH;
2857 }
24d2f903 2858
6637fadf
SL
2859 /*
2860 * If a crashdump is active, then we are potentially in a very
2861 * memory constrained environment. Limit us to 1 queue and
2862 * 64 tags to prevent using too much memory.
2863 */
2864 if (is_kdump_kernel()) {
2865 set->nr_hw_queues = 1;
2866 set->queue_depth = min(64U, set->queue_depth);
2867 }
868f2f0b
KB
2868 /*
2869 * There is no use for more h/w queues than cpus.
2870 */
2871 if (set->nr_hw_queues > nr_cpu_ids)
2872 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2873
868f2f0b 2874 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2875 GFP_KERNEL, set->numa_node);
2876 if (!set->tags)
a5164405 2877 return -ENOMEM;
24d2f903 2878
da695ba2
CH
2879 ret = -ENOMEM;
2880 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2881 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2882 if (!set->mq_map)
2883 goto out_free_tags;
2884
ebe8bddb 2885 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2886 if (ret)
2887 goto out_free_mq_map;
2888
2889 ret = blk_mq_alloc_rq_maps(set);
2890 if (ret)
bdd17e75 2891 goto out_free_mq_map;
24d2f903 2892
0d2602ca
JA
2893 mutex_init(&set->tag_list_lock);
2894 INIT_LIST_HEAD(&set->tag_list);
2895
24d2f903 2896 return 0;
bdd17e75
CH
2897
2898out_free_mq_map:
2899 kfree(set->mq_map);
2900 set->mq_map = NULL;
2901out_free_tags:
5676e7b6
RE
2902 kfree(set->tags);
2903 set->tags = NULL;
da695ba2 2904 return ret;
24d2f903
CH
2905}
2906EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2907
2908void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2909{
2910 int i;
2911
cc71a6f4
JA
2912 for (i = 0; i < nr_cpu_ids; i++)
2913 blk_mq_free_map_and_requests(set, i);
484b4061 2914
bdd17e75
CH
2915 kfree(set->mq_map);
2916 set->mq_map = NULL;
2917
981bd189 2918 kfree(set->tags);
5676e7b6 2919 set->tags = NULL;
24d2f903
CH
2920}
2921EXPORT_SYMBOL(blk_mq_free_tag_set);
2922
e3a2b3f9
JA
2923int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2924{
2925 struct blk_mq_tag_set *set = q->tag_set;
2926 struct blk_mq_hw_ctx *hctx;
2927 int i, ret;
2928
bd166ef1 2929 if (!set)
e3a2b3f9
JA
2930 return -EINVAL;
2931
70f36b60 2932 blk_mq_freeze_queue(q);
24f5a90f 2933 blk_mq_quiesce_queue(q);
70f36b60 2934
e3a2b3f9
JA
2935 ret = 0;
2936 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2937 if (!hctx->tags)
2938 continue;
bd166ef1
JA
2939 /*
2940 * If we're using an MQ scheduler, just update the scheduler
2941 * queue depth. This is similar to what the old code would do.
2942 */
70f36b60 2943 if (!hctx->sched_tags) {
c2e82a23 2944 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60
JA
2945 false);
2946 } else {
2947 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2948 nr, true);
2949 }
e3a2b3f9
JA
2950 if (ret)
2951 break;
2952 }
2953
2954 if (!ret)
2955 q->nr_requests = nr;
2956
24f5a90f 2957 blk_mq_unquiesce_queue(q);
70f36b60 2958 blk_mq_unfreeze_queue(q);
70f36b60 2959
e3a2b3f9
JA
2960 return ret;
2961}
2962
e4dc2b32
KB
2963static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2964 int nr_hw_queues)
868f2f0b
KB
2965{
2966 struct request_queue *q;
2967
705cda97
BVA
2968 lockdep_assert_held(&set->tag_list_lock);
2969
868f2f0b
KB
2970 if (nr_hw_queues > nr_cpu_ids)
2971 nr_hw_queues = nr_cpu_ids;
2972 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2973 return;
2974
2975 list_for_each_entry(q, &set->tag_list, tag_set_list)
2976 blk_mq_freeze_queue(q);
2977
2978 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 2979 blk_mq_update_queue_map(set);
868f2f0b
KB
2980 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2981 blk_mq_realloc_hw_ctxs(set, q);
4b855ad3 2982 blk_mq_queue_reinit(q);
868f2f0b
KB
2983 }
2984
2985 list_for_each_entry(q, &set->tag_list, tag_set_list)
2986 blk_mq_unfreeze_queue(q);
2987}
e4dc2b32
KB
2988
2989void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2990{
2991 mutex_lock(&set->tag_list_lock);
2992 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2993 mutex_unlock(&set->tag_list_lock);
2994}
868f2f0b
KB
2995EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2996
34dbad5d
OS
2997/* Enable polling stats and return whether they were already enabled. */
2998static bool blk_poll_stats_enable(struct request_queue *q)
2999{
3000 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
7dfdbc73 3001 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
34dbad5d
OS
3002 return true;
3003 blk_stat_add_callback(q, q->poll_cb);
3004 return false;
3005}
3006
3007static void blk_mq_poll_stats_start(struct request_queue *q)
3008{
3009 /*
3010 * We don't arm the callback if polling stats are not enabled or the
3011 * callback is already active.
3012 */
3013 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3014 blk_stat_is_active(q->poll_cb))
3015 return;
3016
3017 blk_stat_activate_msecs(q->poll_cb, 100);
3018}
3019
3020static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3021{
3022 struct request_queue *q = cb->data;
720b8ccc 3023 int bucket;
34dbad5d 3024
720b8ccc
SB
3025 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3026 if (cb->stat[bucket].nr_samples)
3027 q->poll_stat[bucket] = cb->stat[bucket];
3028 }
34dbad5d
OS
3029}
3030
64f1c21e
JA
3031static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3032 struct blk_mq_hw_ctx *hctx,
3033 struct request *rq)
3034{
64f1c21e 3035 unsigned long ret = 0;
720b8ccc 3036 int bucket;
64f1c21e
JA
3037
3038 /*
3039 * If stats collection isn't on, don't sleep but turn it on for
3040 * future users
3041 */
34dbad5d 3042 if (!blk_poll_stats_enable(q))
64f1c21e
JA
3043 return 0;
3044
64f1c21e
JA
3045 /*
3046 * As an optimistic guess, use half of the mean service time
3047 * for this type of request. We can (and should) make this smarter.
3048 * For instance, if the completion latencies are tight, we can
3049 * get closer than just half the mean. This is especially
3050 * important on devices where the completion latencies are longer
720b8ccc
SB
3051 * than ~10 usec. We do use the stats for the relevant IO size
3052 * if available which does lead to better estimates.
64f1c21e 3053 */
720b8ccc
SB
3054 bucket = blk_mq_poll_stats_bkt(rq);
3055 if (bucket < 0)
3056 return ret;
3057
3058 if (q->poll_stat[bucket].nr_samples)
3059 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
3060
3061 return ret;
3062}
3063
06426adf 3064static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 3065 struct blk_mq_hw_ctx *hctx,
06426adf
JA
3066 struct request *rq)
3067{
3068 struct hrtimer_sleeper hs;
3069 enum hrtimer_mode mode;
64f1c21e 3070 unsigned int nsecs;
06426adf
JA
3071 ktime_t kt;
3072
76a86f9d 3073 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
64f1c21e
JA
3074 return false;
3075
3076 /*
3077 * poll_nsec can be:
3078 *
3079 * -1: don't ever hybrid sleep
3080 * 0: use half of prev avg
3081 * >0: use this specific value
3082 */
3083 if (q->poll_nsec == -1)
3084 return false;
3085 else if (q->poll_nsec > 0)
3086 nsecs = q->poll_nsec;
3087 else
3088 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3089
3090 if (!nsecs)
06426adf
JA
3091 return false;
3092
76a86f9d 3093 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
06426adf
JA
3094
3095 /*
3096 * This will be replaced with the stats tracking code, using
3097 * 'avg_completion_time / 2' as the pre-sleep target.
3098 */
8b0e1953 3099 kt = nsecs;
06426adf
JA
3100
3101 mode = HRTIMER_MODE_REL;
3102 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3103 hrtimer_set_expires(&hs.timer, kt);
3104
3105 hrtimer_init_sleeper(&hs, current);
3106 do {
5a61c363 3107 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
06426adf
JA
3108 break;
3109 set_current_state(TASK_UNINTERRUPTIBLE);
3110 hrtimer_start_expires(&hs.timer, mode);
3111 if (hs.task)
3112 io_schedule();
3113 hrtimer_cancel(&hs.timer);
3114 mode = HRTIMER_MODE_ABS;
3115 } while (hs.task && !signal_pending(current));
3116
3117 __set_current_state(TASK_RUNNING);
3118 destroy_hrtimer_on_stack(&hs.timer);
3119 return true;
3120}
3121
bbd7bb70
JA
3122static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3123{
3124 struct request_queue *q = hctx->queue;
3125 long state;
3126
06426adf
JA
3127 /*
3128 * If we sleep, have the caller restart the poll loop to reset
3129 * the state. Like for the other success return cases, the
3130 * caller is responsible for checking if the IO completed. If
3131 * the IO isn't complete, we'll get called again and will go
3132 * straight to the busy poll loop.
3133 */
64f1c21e 3134 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
3135 return true;
3136
bbd7bb70
JA
3137 hctx->poll_considered++;
3138
3139 state = current->state;
3140 while (!need_resched()) {
3141 int ret;
3142
3143 hctx->poll_invoked++;
3144
3145 ret = q->mq_ops->poll(hctx, rq->tag);
3146 if (ret > 0) {
3147 hctx->poll_success++;
3148 set_current_state(TASK_RUNNING);
3149 return true;
3150 }
3151
3152 if (signal_pending_state(state, current))
3153 set_current_state(TASK_RUNNING);
3154
3155 if (current->state == TASK_RUNNING)
3156 return true;
3157 if (ret < 0)
3158 break;
3159 cpu_relax();
3160 }
3161
67b4110f 3162 __set_current_state(TASK_RUNNING);
bbd7bb70
JA
3163 return false;
3164}
3165
ea435e1b 3166static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
bbd7bb70
JA
3167{
3168 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
3169 struct request *rq;
3170
ea435e1b 3171 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
bbd7bb70
JA
3172 return false;
3173
bbd7bb70 3174 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
3175 if (!blk_qc_t_is_internal(cookie))
3176 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3a07bb1d 3177 else {
bd166ef1 3178 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3a07bb1d
JA
3179 /*
3180 * With scheduling, if the request has completed, we'll
3181 * get a NULL return here, as we clear the sched tag when
3182 * that happens. The request still remains valid, like always,
3183 * so we should be safe with just the NULL check.
3184 */
3185 if (!rq)
3186 return false;
3187 }
bbd7bb70
JA
3188
3189 return __blk_mq_poll(hctx, rq);
3190}
bbd7bb70 3191
320ae51f
JA
3192static int __init blk_mq_init(void)
3193{
9467f859
TG
3194 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3195 blk_mq_hctx_notify_dead);
320ae51f
JA
3196 return 0;
3197}
3198subsys_initcall(blk_mq_init);