blk-mq-sched: add flush insertion into blk_mq_sched_insert_request()
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
23#include <linux/delay.h>
aedcd72f 24#include <linux/crash_dump.h>
88c7b2b7 25#include <linux/prefetch.h>
320ae51f
JA
26
27#include <trace/events/block.h>
28
29#include <linux/blk-mq.h>
30#include "blk.h"
31#include "blk-mq.h"
32#include "blk-mq-tag.h"
cf43e6be 33#include "blk-stat.h"
87760e5e 34#include "blk-wbt.h"
bd166ef1 35#include "blk-mq-sched.h"
320ae51f
JA
36
37static DEFINE_MUTEX(all_q_mutex);
38static LIST_HEAD(all_q_list);
39
320ae51f
JA
40/*
41 * Check if any of the ctx's have pending work in this hardware queue
42 */
50e1dab8 43bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 44{
bd166ef1
JA
45 return sbitmap_any_bit_set(&hctx->ctx_map) ||
46 !list_empty_careful(&hctx->dispatch) ||
47 blk_mq_sched_has_work(hctx);
1429d7c9
JA
48}
49
320ae51f
JA
50/*
51 * Mark this ctx as having pending work in this hardware queue
52 */
53static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
54 struct blk_mq_ctx *ctx)
55{
88459642
OS
56 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
57 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
58}
59
60static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
61 struct blk_mq_ctx *ctx)
62{
88459642 63 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
64}
65
b4c6a028 66void blk_mq_freeze_queue_start(struct request_queue *q)
43a5e4e2 67{
4ecd4fef 68 int freeze_depth;
cddd5d17 69
4ecd4fef
CH
70 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
71 if (freeze_depth == 1) {
3ef28e83 72 percpu_ref_kill(&q->q_usage_counter);
b94ec296 73 blk_mq_run_hw_queues(q, false);
cddd5d17 74 }
f3af020b 75}
b4c6a028 76EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
f3af020b
TH
77
78static void blk_mq_freeze_queue_wait(struct request_queue *q)
79{
3ef28e83 80 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2
ML
81}
82
f3af020b
TH
83/*
84 * Guarantee no request is in use, so we can change any data structure of
85 * the queue afterward.
86 */
3ef28e83 87void blk_freeze_queue(struct request_queue *q)
f3af020b 88{
3ef28e83
DW
89 /*
90 * In the !blk_mq case we are only calling this to kill the
91 * q_usage_counter, otherwise this increases the freeze depth
92 * and waits for it to return to zero. For this reason there is
93 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
94 * exported to drivers as the only user for unfreeze is blk_mq.
95 */
f3af020b
TH
96 blk_mq_freeze_queue_start(q);
97 blk_mq_freeze_queue_wait(q);
98}
3ef28e83
DW
99
100void blk_mq_freeze_queue(struct request_queue *q)
101{
102 /*
103 * ...just an alias to keep freeze and unfreeze actions balanced
104 * in the blk_mq_* namespace
105 */
106 blk_freeze_queue(q);
107}
c761d96b 108EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 109
b4c6a028 110void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 111{
4ecd4fef 112 int freeze_depth;
320ae51f 113
4ecd4fef
CH
114 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
115 WARN_ON_ONCE(freeze_depth < 0);
116 if (!freeze_depth) {
3ef28e83 117 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 118 wake_up_all(&q->mq_freeze_wq);
add703fd 119 }
320ae51f 120}
b4c6a028 121EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 122
6a83e74d
BVA
123/**
124 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
125 * @q: request queue.
126 *
127 * Note: this function does not prevent that the struct request end_io()
128 * callback function is invoked. Additionally, it is not prevented that
129 * new queue_rq() calls occur unless the queue has been stopped first.
130 */
131void blk_mq_quiesce_queue(struct request_queue *q)
132{
133 struct blk_mq_hw_ctx *hctx;
134 unsigned int i;
135 bool rcu = false;
136
137 blk_mq_stop_hw_queues(q);
138
139 queue_for_each_hw_ctx(q, hctx, i) {
140 if (hctx->flags & BLK_MQ_F_BLOCKING)
141 synchronize_srcu(&hctx->queue_rq_srcu);
142 else
143 rcu = true;
144 }
145 if (rcu)
146 synchronize_rcu();
147}
148EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
149
aed3ea94
JA
150void blk_mq_wake_waiters(struct request_queue *q)
151{
152 struct blk_mq_hw_ctx *hctx;
153 unsigned int i;
154
155 queue_for_each_hw_ctx(q, hctx, i)
156 if (blk_mq_hw_queue_mapped(hctx))
157 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
158
159 /*
160 * If we are called because the queue has now been marked as
161 * dying, we need to ensure that processes currently waiting on
162 * the queue are notified as well.
163 */
164 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
165}
166
320ae51f
JA
167bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
168{
169 return blk_mq_has_free_tags(hctx->tags);
170}
171EXPORT_SYMBOL(blk_mq_can_queue);
172
2c3ad667
JA
173void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
174 struct request *rq, unsigned int op)
320ae51f 175{
af76e555
CH
176 INIT_LIST_HEAD(&rq->queuelist);
177 /* csd/requeue_work/fifo_time is initialized before use */
178 rq->q = q;
320ae51f 179 rq->mq_ctx = ctx;
ef295ecf 180 rq->cmd_flags = op;
e8064021
CH
181 if (blk_queue_io_stat(q))
182 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
183 /* do not touch atomic flags, it needs atomic ops against the timer */
184 rq->cpu = -1;
af76e555
CH
185 INIT_HLIST_NODE(&rq->hash);
186 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
187 rq->rq_disk = NULL;
188 rq->part = NULL;
3ee32372 189 rq->start_time = jiffies;
af76e555
CH
190#ifdef CONFIG_BLK_CGROUP
191 rq->rl = NULL;
0fec08b4 192 set_start_time_ns(rq);
af76e555
CH
193 rq->io_start_time_ns = 0;
194#endif
195 rq->nr_phys_segments = 0;
196#if defined(CONFIG_BLK_DEV_INTEGRITY)
197 rq->nr_integrity_segments = 0;
198#endif
af76e555
CH
199 rq->special = NULL;
200 /* tag was already set */
201 rq->errors = 0;
af76e555 202
6f4a1626
TB
203 rq->cmd = rq->__cmd;
204
af76e555
CH
205 rq->extra_len = 0;
206 rq->sense_len = 0;
207 rq->resid_len = 0;
208 rq->sense = NULL;
209
af76e555 210 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
211 rq->timeout = 0;
212
af76e555
CH
213 rq->end_io = NULL;
214 rq->end_io_data = NULL;
215 rq->next_rq = NULL;
216
ef295ecf 217 ctx->rq_dispatched[op_is_sync(op)]++;
320ae51f 218}
2c3ad667 219EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
320ae51f 220
2c3ad667
JA
221struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
222 unsigned int op)
5dee8577
CH
223{
224 struct request *rq;
225 unsigned int tag;
226
cb96a42c 227 tag = blk_mq_get_tag(data);
5dee8577 228 if (tag != BLK_MQ_TAG_FAIL) {
bd166ef1
JA
229 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
230
231 rq = tags->static_rqs[tag];
5dee8577 232
bd166ef1
JA
233 if (data->flags & BLK_MQ_REQ_INTERNAL) {
234 rq->tag = -1;
235 rq->internal_tag = tag;
236 } else {
200e86b3
JA
237 if (blk_mq_tag_busy(data->hctx)) {
238 rq->rq_flags = RQF_MQ_INFLIGHT;
239 atomic_inc(&data->hctx->nr_active);
240 }
bd166ef1
JA
241 rq->tag = tag;
242 rq->internal_tag = -1;
243 }
244
ef295ecf 245 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
5dee8577
CH
246 return rq;
247 }
248
249 return NULL;
250}
2c3ad667 251EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
5dee8577 252
6f3b0e8b
CH
253struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
254 unsigned int flags)
320ae51f 255{
5a797e00 256 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 257 struct request *rq;
a492f075 258 int ret;
320ae51f 259
6f3b0e8b 260 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
261 if (ret)
262 return ERR_PTR(ret);
320ae51f 263
bd166ef1 264 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
841bac2c 265
bd166ef1
JA
266 blk_mq_put_ctx(alloc_data.ctx);
267 blk_queue_exit(q);
268
269 if (!rq)
a492f075 270 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
271
272 rq->__data_len = 0;
273 rq->__sector = (sector_t) -1;
274 rq->bio = rq->biotail = NULL;
320ae51f
JA
275 return rq;
276}
4bb659b1 277EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 278
1f5bd336
ML
279struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
280 unsigned int flags, unsigned int hctx_idx)
281{
282 struct blk_mq_hw_ctx *hctx;
283 struct blk_mq_ctx *ctx;
284 struct request *rq;
285 struct blk_mq_alloc_data alloc_data;
286 int ret;
287
288 /*
289 * If the tag allocator sleeps we could get an allocation for a
290 * different hardware context. No need to complicate the low level
291 * allocator for this for the rare use case of a command tied to
292 * a specific queue.
293 */
294 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
295 return ERR_PTR(-EINVAL);
296
297 if (hctx_idx >= q->nr_hw_queues)
298 return ERR_PTR(-EIO);
299
300 ret = blk_queue_enter(q, true);
301 if (ret)
302 return ERR_PTR(ret);
303
c8712c6a
CH
304 /*
305 * Check if the hardware context is actually mapped to anything.
306 * If not tell the caller that it should skip this queue.
307 */
1f5bd336 308 hctx = q->queue_hw_ctx[hctx_idx];
c8712c6a
CH
309 if (!blk_mq_hw_queue_mapped(hctx)) {
310 ret = -EXDEV;
311 goto out_queue_exit;
312 }
1f5bd336
ML
313 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
314
315 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
ef295ecf 316 rq = __blk_mq_alloc_request(&alloc_data, rw);
1f5bd336 317 if (!rq) {
c8712c6a
CH
318 ret = -EWOULDBLOCK;
319 goto out_queue_exit;
1f5bd336
ML
320 }
321
322 return rq;
c8712c6a
CH
323
324out_queue_exit:
325 blk_queue_exit(q);
326 return ERR_PTR(ret);
1f5bd336
ML
327}
328EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
329
bd166ef1
JA
330void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
331 struct request *rq)
320ae51f 332{
bd166ef1 333 const int sched_tag = rq->internal_tag;
320ae51f
JA
334 struct request_queue *q = rq->q;
335
e8064021 336 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 337 atomic_dec(&hctx->nr_active);
87760e5e
JA
338
339 wbt_done(q->rq_wb, &rq->issue_stat);
e8064021 340 rq->rq_flags = 0;
0d2602ca 341
af76e555 342 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 343 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
344 if (rq->tag != -1)
345 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
346 if (sched_tag != -1)
347 blk_mq_sched_completed_request(hctx, rq);
50e1dab8 348 blk_mq_sched_restart_queues(hctx);
3ef28e83 349 blk_queue_exit(q);
320ae51f
JA
350}
351
bd166ef1 352static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
16a3c2a7 353 struct request *rq)
320ae51f
JA
354{
355 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
356
357 ctx->rq_completed[rq_is_sync(rq)]++;
bd166ef1
JA
358 __blk_mq_finish_request(hctx, ctx, rq);
359}
360
361void blk_mq_finish_request(struct request *rq)
362{
363 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
7c7f2f2b 364}
7c7f2f2b
JA
365
366void blk_mq_free_request(struct request *rq)
367{
bd166ef1 368 blk_mq_sched_put_request(rq);
320ae51f 369}
1a3b595a 370EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 371
c8a446ad 372inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 373{
0d11e6ac
ML
374 blk_account_io_done(rq);
375
91b63639 376 if (rq->end_io) {
87760e5e 377 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 378 rq->end_io(rq, error);
91b63639
CH
379 } else {
380 if (unlikely(blk_bidi_rq(rq)))
381 blk_mq_free_request(rq->next_rq);
320ae51f 382 blk_mq_free_request(rq);
91b63639 383 }
320ae51f 384}
c8a446ad 385EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 386
c8a446ad 387void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
388{
389 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
390 BUG();
c8a446ad 391 __blk_mq_end_request(rq, error);
63151a44 392}
c8a446ad 393EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 394
30a91cb4 395static void __blk_mq_complete_request_remote(void *data)
320ae51f 396{
3d6efbf6 397 struct request *rq = data;
320ae51f 398
30a91cb4 399 rq->q->softirq_done_fn(rq);
320ae51f 400}
320ae51f 401
ed851860 402static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
403{
404 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 405 bool shared = false;
320ae51f
JA
406 int cpu;
407
38535201 408 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
409 rq->q->softirq_done_fn(rq);
410 return;
411 }
320ae51f
JA
412
413 cpu = get_cpu();
38535201
CH
414 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
415 shared = cpus_share_cache(cpu, ctx->cpu);
416
417 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 418 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
419 rq->csd.info = rq;
420 rq->csd.flags = 0;
c46fff2a 421 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 422 } else {
30a91cb4 423 rq->q->softirq_done_fn(rq);
3d6efbf6 424 }
320ae51f
JA
425 put_cpu();
426}
30a91cb4 427
cf43e6be
JA
428static void blk_mq_stat_add(struct request *rq)
429{
430 if (rq->rq_flags & RQF_STATS) {
431 /*
432 * We could rq->mq_ctx here, but there's less of a risk
433 * of races if we have the completion event add the stats
434 * to the local software queue.
435 */
436 struct blk_mq_ctx *ctx;
437
438 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
439 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
440 }
441}
442
1fa8cc52 443static void __blk_mq_complete_request(struct request *rq)
ed851860
JA
444{
445 struct request_queue *q = rq->q;
446
cf43e6be
JA
447 blk_mq_stat_add(rq);
448
ed851860 449 if (!q->softirq_done_fn)
c8a446ad 450 blk_mq_end_request(rq, rq->errors);
ed851860
JA
451 else
452 blk_mq_ipi_complete_request(rq);
453}
454
30a91cb4
CH
455/**
456 * blk_mq_complete_request - end I/O on a request
457 * @rq: the request being processed
458 *
459 * Description:
460 * Ends all I/O on a request. It does not handle partial completions.
461 * The actual completion happens out-of-order, through a IPI handler.
462 **/
f4829a9b 463void blk_mq_complete_request(struct request *rq, int error)
30a91cb4 464{
95f09684
JA
465 struct request_queue *q = rq->q;
466
467 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 468 return;
f4829a9b
CH
469 if (!blk_mark_rq_complete(rq)) {
470 rq->errors = error;
ed851860 471 __blk_mq_complete_request(rq);
f4829a9b 472 }
30a91cb4
CH
473}
474EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 475
973c0191
KB
476int blk_mq_request_started(struct request *rq)
477{
478 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
479}
480EXPORT_SYMBOL_GPL(blk_mq_request_started);
481
e2490073 482void blk_mq_start_request(struct request *rq)
320ae51f
JA
483{
484 struct request_queue *q = rq->q;
485
bd166ef1
JA
486 blk_mq_sched_started_request(rq);
487
320ae51f
JA
488 trace_block_rq_issue(q, rq);
489
742ee69b 490 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
491 if (unlikely(blk_bidi_rq(rq)))
492 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 493
cf43e6be
JA
494 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
495 blk_stat_set_issue_time(&rq->issue_stat);
496 rq->rq_flags |= RQF_STATS;
87760e5e 497 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
498 }
499
2b8393b4 500 blk_add_timer(rq);
87ee7b11 501
538b7534
JA
502 /*
503 * Ensure that ->deadline is visible before set the started
504 * flag and clear the completed flag.
505 */
506 smp_mb__before_atomic();
507
87ee7b11
JA
508 /*
509 * Mark us as started and clear complete. Complete might have been
510 * set if requeue raced with timeout, which then marked it as
511 * complete. So be sure to clear complete again when we start
512 * the request, otherwise we'll ignore the completion event.
513 */
4b570521
JA
514 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
515 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
516 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
517 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
518
519 if (q->dma_drain_size && blk_rq_bytes(rq)) {
520 /*
521 * Make sure space for the drain appears. We know we can do
522 * this because max_hw_segments has been adjusted to be one
523 * fewer than the device can handle.
524 */
525 rq->nr_phys_segments++;
526 }
320ae51f 527}
e2490073 528EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 529
ed0791b2 530static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
531{
532 struct request_queue *q = rq->q;
533
534 trace_block_rq_requeue(q, rq);
87760e5e 535 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 536 blk_mq_sched_requeue_request(rq);
49f5baa5 537
e2490073
CH
538 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
539 if (q->dma_drain_size && blk_rq_bytes(rq))
540 rq->nr_phys_segments--;
541 }
320ae51f
JA
542}
543
2b053aca 544void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 545{
ed0791b2 546 __blk_mq_requeue_request(rq);
ed0791b2 547
ed0791b2 548 BUG_ON(blk_queued_rq(rq));
2b053aca 549 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
550}
551EXPORT_SYMBOL(blk_mq_requeue_request);
552
6fca6a61
CH
553static void blk_mq_requeue_work(struct work_struct *work)
554{
555 struct request_queue *q =
2849450a 556 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
557 LIST_HEAD(rq_list);
558 struct request *rq, *next;
559 unsigned long flags;
560
561 spin_lock_irqsave(&q->requeue_lock, flags);
562 list_splice_init(&q->requeue_list, &rq_list);
563 spin_unlock_irqrestore(&q->requeue_lock, flags);
564
565 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 566 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
567 continue;
568
e8064021 569 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 570 list_del_init(&rq->queuelist);
bd6737f1 571 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
572 }
573
574 while (!list_empty(&rq_list)) {
575 rq = list_entry(rq_list.next, struct request, queuelist);
576 list_del_init(&rq->queuelist);
bd6737f1 577 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
578 }
579
52d7f1b5 580 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
581}
582
2b053aca
BVA
583void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
584 bool kick_requeue_list)
6fca6a61
CH
585{
586 struct request_queue *q = rq->q;
587 unsigned long flags;
588
589 /*
590 * We abuse this flag that is otherwise used by the I/O scheduler to
591 * request head insertation from the workqueue.
592 */
e8064021 593 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
594
595 spin_lock_irqsave(&q->requeue_lock, flags);
596 if (at_head) {
e8064021 597 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
598 list_add(&rq->queuelist, &q->requeue_list);
599 } else {
600 list_add_tail(&rq->queuelist, &q->requeue_list);
601 }
602 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
603
604 if (kick_requeue_list)
605 blk_mq_kick_requeue_list(q);
6fca6a61
CH
606}
607EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
608
609void blk_mq_kick_requeue_list(struct request_queue *q)
610{
2849450a 611 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
612}
613EXPORT_SYMBOL(blk_mq_kick_requeue_list);
614
2849450a
MS
615void blk_mq_delay_kick_requeue_list(struct request_queue *q,
616 unsigned long msecs)
617{
618 kblockd_schedule_delayed_work(&q->requeue_work,
619 msecs_to_jiffies(msecs));
620}
621EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
622
1885b24d
JA
623void blk_mq_abort_requeue_list(struct request_queue *q)
624{
625 unsigned long flags;
626 LIST_HEAD(rq_list);
627
628 spin_lock_irqsave(&q->requeue_lock, flags);
629 list_splice_init(&q->requeue_list, &rq_list);
630 spin_unlock_irqrestore(&q->requeue_lock, flags);
631
632 while (!list_empty(&rq_list)) {
633 struct request *rq;
634
635 rq = list_first_entry(&rq_list, struct request, queuelist);
636 list_del_init(&rq->queuelist);
637 rq->errors = -EIO;
638 blk_mq_end_request(rq, rq->errors);
639 }
640}
641EXPORT_SYMBOL(blk_mq_abort_requeue_list);
642
0e62f51f
JA
643struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
644{
88c7b2b7
JA
645 if (tag < tags->nr_tags) {
646 prefetch(tags->rqs[tag]);
4ee86bab 647 return tags->rqs[tag];
88c7b2b7 648 }
4ee86bab
HR
649
650 return NULL;
24d2f903
CH
651}
652EXPORT_SYMBOL(blk_mq_tag_to_rq);
653
320ae51f 654struct blk_mq_timeout_data {
46f92d42
CH
655 unsigned long next;
656 unsigned int next_set;
320ae51f
JA
657};
658
90415837 659void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 660{
f8a5b122 661 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 662 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
663
664 /*
665 * We know that complete is set at this point. If STARTED isn't set
666 * anymore, then the request isn't active and the "timeout" should
667 * just be ignored. This can happen due to the bitflag ordering.
668 * Timeout first checks if STARTED is set, and if it is, assumes
669 * the request is active. But if we race with completion, then
670 * we both flags will get cleared. So check here again, and ignore
671 * a timeout event with a request that isn't active.
672 */
46f92d42
CH
673 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
674 return;
87ee7b11 675
46f92d42 676 if (ops->timeout)
0152fb6b 677 ret = ops->timeout(req, reserved);
46f92d42
CH
678
679 switch (ret) {
680 case BLK_EH_HANDLED:
681 __blk_mq_complete_request(req);
682 break;
683 case BLK_EH_RESET_TIMER:
684 blk_add_timer(req);
685 blk_clear_rq_complete(req);
686 break;
687 case BLK_EH_NOT_HANDLED:
688 break;
689 default:
690 printk(KERN_ERR "block: bad eh return: %d\n", ret);
691 break;
692 }
87ee7b11 693}
5b3f25fc 694
81481eb4
CH
695static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
696 struct request *rq, void *priv, bool reserved)
697{
698 struct blk_mq_timeout_data *data = priv;
87ee7b11 699
eb130dbf
KB
700 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
701 /*
702 * If a request wasn't started before the queue was
703 * marked dying, kill it here or it'll go unnoticed.
704 */
a59e0f57
KB
705 if (unlikely(blk_queue_dying(rq->q))) {
706 rq->errors = -EIO;
707 blk_mq_end_request(rq, rq->errors);
708 }
46f92d42 709 return;
eb130dbf 710 }
87ee7b11 711
46f92d42
CH
712 if (time_after_eq(jiffies, rq->deadline)) {
713 if (!blk_mark_rq_complete(rq))
0152fb6b 714 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
715 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
716 data->next = rq->deadline;
717 data->next_set = 1;
718 }
87ee7b11
JA
719}
720
287922eb 721static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 722{
287922eb
CH
723 struct request_queue *q =
724 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
725 struct blk_mq_timeout_data data = {
726 .next = 0,
727 .next_set = 0,
728 };
81481eb4 729 int i;
320ae51f 730
71f79fb3
GKB
731 /* A deadlock might occur if a request is stuck requiring a
732 * timeout at the same time a queue freeze is waiting
733 * completion, since the timeout code would not be able to
734 * acquire the queue reference here.
735 *
736 * That's why we don't use blk_queue_enter here; instead, we use
737 * percpu_ref_tryget directly, because we need to be able to
738 * obtain a reference even in the short window between the queue
739 * starting to freeze, by dropping the first reference in
740 * blk_mq_freeze_queue_start, and the moment the last request is
741 * consumed, marked by the instant q_usage_counter reaches
742 * zero.
743 */
744 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
745 return;
746
0bf6cd5b 747 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 748
81481eb4
CH
749 if (data.next_set) {
750 data.next = blk_rq_timeout(round_jiffies_up(data.next));
751 mod_timer(&q->timeout, data.next);
0d2602ca 752 } else {
0bf6cd5b
CH
753 struct blk_mq_hw_ctx *hctx;
754
f054b56c
ML
755 queue_for_each_hw_ctx(q, hctx, i) {
756 /* the hctx may be unmapped, so check it here */
757 if (blk_mq_hw_queue_mapped(hctx))
758 blk_mq_tag_idle(hctx);
759 }
0d2602ca 760 }
287922eb 761 blk_queue_exit(q);
320ae51f
JA
762}
763
764/*
765 * Reverse check our software queue for entries that we could potentially
766 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
767 * too much time checking for merges.
768 */
769static bool blk_mq_attempt_merge(struct request_queue *q,
770 struct blk_mq_ctx *ctx, struct bio *bio)
771{
772 struct request *rq;
773 int checked = 8;
774
775 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
776 int el_ret;
777
778 if (!checked--)
779 break;
780
781 if (!blk_rq_merge_ok(rq, bio))
782 continue;
783
784 el_ret = blk_try_merge(rq, bio);
bd166ef1
JA
785 if (el_ret == ELEVATOR_NO_MERGE)
786 continue;
787
788 if (!blk_mq_sched_allow_merge(q, rq, bio))
789 break;
790
320ae51f
JA
791 if (el_ret == ELEVATOR_BACK_MERGE) {
792 if (bio_attempt_back_merge(q, rq, bio)) {
793 ctx->rq_merged++;
794 return true;
795 }
796 break;
797 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
798 if (bio_attempt_front_merge(q, rq, bio)) {
799 ctx->rq_merged++;
800 return true;
801 }
802 break;
803 }
804 }
805
806 return false;
807}
808
88459642
OS
809struct flush_busy_ctx_data {
810 struct blk_mq_hw_ctx *hctx;
811 struct list_head *list;
812};
813
814static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
815{
816 struct flush_busy_ctx_data *flush_data = data;
817 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
818 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
819
820 sbitmap_clear_bit(sb, bitnr);
821 spin_lock(&ctx->lock);
822 list_splice_tail_init(&ctx->rq_list, flush_data->list);
823 spin_unlock(&ctx->lock);
824 return true;
825}
826
1429d7c9
JA
827/*
828 * Process software queues that have been marked busy, splicing them
829 * to the for-dispatch
830 */
2c3ad667 831void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 832{
88459642
OS
833 struct flush_busy_ctx_data data = {
834 .hctx = hctx,
835 .list = list,
836 };
1429d7c9 837
88459642 838 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 839}
2c3ad667 840EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 841
703fd1c0
JA
842static inline unsigned int queued_to_index(unsigned int queued)
843{
844 if (!queued)
845 return 0;
1429d7c9 846
703fd1c0 847 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
848}
849
bd6737f1
JA
850bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
851 bool wait)
bd166ef1
JA
852{
853 struct blk_mq_alloc_data data = {
854 .q = rq->q,
bd166ef1
JA
855 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
856 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
857 };
858
859 if (blk_mq_hctx_stopped(data.hctx))
860 return false;
861
862 if (rq->tag != -1) {
863done:
864 if (hctx)
865 *hctx = data.hctx;
866 return true;
867 }
868
869 rq->tag = blk_mq_get_tag(&data);
870 if (rq->tag >= 0) {
200e86b3
JA
871 if (blk_mq_tag_busy(data.hctx)) {
872 rq->rq_flags |= RQF_MQ_INFLIGHT;
873 atomic_inc(&data.hctx->nr_active);
874 }
bd166ef1
JA
875 data.hctx->tags->rqs[rq->tag] = rq;
876 goto done;
877 }
878
879 return false;
880}
881
99cf1dc5
JA
882static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
883 struct request *rq)
884{
885 if (rq->tag == -1 || rq->internal_tag == -1)
886 return;
887
888 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
889 rq->tag = -1;
890
891 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
892 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
893 atomic_dec(&hctx->nr_active);
894 }
895}
896
bd166ef1
JA
897/*
898 * If we fail getting a driver tag because all the driver tags are already
899 * assigned and on the dispatch list, BUT the first entry does not have a
900 * tag, then we could deadlock. For that case, move entries with assigned
901 * driver tags to the front, leaving the set of tagged requests in the
902 * same order, and the untagged set in the same order.
903 */
904static bool reorder_tags_to_front(struct list_head *list)
905{
906 struct request *rq, *tmp, *first = NULL;
907
908 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
909 if (rq == first)
910 break;
911 if (rq->tag != -1) {
912 list_move(&rq->queuelist, list);
913 if (!first)
914 first = rq;
915 }
916 }
917
918 return first != NULL;
919}
920
f04c3df3 921bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
320ae51f
JA
922{
923 struct request_queue *q = hctx->queue;
320ae51f 924 struct request *rq;
74c45052
JA
925 LIST_HEAD(driver_list);
926 struct list_head *dptr;
f04c3df3 927 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
320ae51f 928
74c45052
JA
929 /*
930 * Start off with dptr being NULL, so we start the first request
931 * immediately, even if we have more pending.
932 */
933 dptr = NULL;
934
320ae51f
JA
935 /*
936 * Now process all the entries, sending them to the driver.
937 */
1429d7c9 938 queued = 0;
f04c3df3 939 while (!list_empty(list)) {
74c45052 940 struct blk_mq_queue_data bd;
320ae51f 941
f04c3df3 942 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
943 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
944 if (!queued && reorder_tags_to_front(list))
945 continue;
3c782d67
JA
946
947 /*
948 * We failed getting a driver tag. Mark the queue(s)
949 * as needing a restart. Retry getting a tag again,
950 * in case the needed IO completed right before we
951 * marked the queue as needing a restart.
952 */
bd166ef1 953 blk_mq_sched_mark_restart(hctx);
3c782d67
JA
954 if (!blk_mq_get_driver_tag(rq, &hctx, false))
955 break;
bd166ef1 956 }
320ae51f 957 list_del_init(&rq->queuelist);
320ae51f 958
74c45052
JA
959 bd.rq = rq;
960 bd.list = dptr;
f04c3df3 961 bd.last = list_empty(list);
74c45052
JA
962
963 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
964 switch (ret) {
965 case BLK_MQ_RQ_QUEUE_OK:
966 queued++;
52b9c330 967 break;
320ae51f 968 case BLK_MQ_RQ_QUEUE_BUSY:
99cf1dc5 969 blk_mq_put_driver_tag(hctx, rq);
f04c3df3 970 list_add(&rq->queuelist, list);
ed0791b2 971 __blk_mq_requeue_request(rq);
320ae51f
JA
972 break;
973 default:
974 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 975 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 976 rq->errors = -EIO;
c8a446ad 977 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
978 break;
979 }
980
981 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
982 break;
74c45052
JA
983
984 /*
985 * We've done the first request. If we have more than 1
986 * left in the list, set dptr to defer issue.
987 */
f04c3df3 988 if (!dptr && list->next != list->prev)
74c45052 989 dptr = &driver_list;
320ae51f
JA
990 }
991
703fd1c0 992 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
993
994 /*
995 * Any items that need requeuing? Stuff them into hctx->dispatch,
996 * that is where we will continue on next queue run.
997 */
f04c3df3 998 if (!list_empty(list)) {
320ae51f 999 spin_lock(&hctx->lock);
c13660a0 1000 list_splice_init(list, &hctx->dispatch);
320ae51f 1001 spin_unlock(&hctx->lock);
f04c3df3 1002
9ba52e58
SL
1003 /*
1004 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1005 * it's possible the queue is stopped and restarted again
1006 * before this. Queue restart will dispatch requests. And since
1007 * requests in rq_list aren't added into hctx->dispatch yet,
1008 * the requests in rq_list might get lost.
1009 *
1010 * blk_mq_run_hw_queue() already checks the STOPPED bit
bd166ef1
JA
1011 *
1012 * If RESTART is set, then let completion restart the queue
1013 * instead of potentially looping here.
1014 */
1015 if (!blk_mq_sched_needs_restart(hctx))
1016 blk_mq_run_hw_queue(hctx, true);
320ae51f 1017 }
f04c3df3
JA
1018
1019 return ret != BLK_MQ_RQ_QUEUE_BUSY;
1020}
1021
6a83e74d
BVA
1022static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1023{
1024 int srcu_idx;
1025
1026 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1027 cpu_online(hctx->next_cpu));
1028
1029 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1030 rcu_read_lock();
bd166ef1 1031 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1032 rcu_read_unlock();
1033 } else {
1034 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
bd166ef1 1035 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1036 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1037 }
1038}
1039
506e931f
JA
1040/*
1041 * It'd be great if the workqueue API had a way to pass
1042 * in a mask and had some smarts for more clever placement.
1043 * For now we just round-robin here, switching for every
1044 * BLK_MQ_CPU_WORK_BATCH queued items.
1045 */
1046static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1047{
b657d7e6
CH
1048 if (hctx->queue->nr_hw_queues == 1)
1049 return WORK_CPU_UNBOUND;
506e931f
JA
1050
1051 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1052 int next_cpu;
506e931f
JA
1053
1054 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1055 if (next_cpu >= nr_cpu_ids)
1056 next_cpu = cpumask_first(hctx->cpumask);
1057
1058 hctx->next_cpu = next_cpu;
1059 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1060 }
1061
b657d7e6 1062 return hctx->next_cpu;
506e931f
JA
1063}
1064
320ae51f
JA
1065void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1066{
5d1b25c1
BVA
1067 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1068 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
1069 return;
1070
1b792f2f 1071 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1072 int cpu = get_cpu();
1073 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1074 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1075 put_cpu();
398205b8
PB
1076 return;
1077 }
e4043dcf 1078
2a90d4aa 1079 put_cpu();
e4043dcf 1080 }
398205b8 1081
27489a3c 1082 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
320ae51f
JA
1083}
1084
b94ec296 1085void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1086{
1087 struct blk_mq_hw_ctx *hctx;
1088 int i;
1089
1090 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1091 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1092 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1093 continue;
1094
b94ec296 1095 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1096 }
1097}
b94ec296 1098EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1099
fd001443
BVA
1100/**
1101 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1102 * @q: request queue.
1103 *
1104 * The caller is responsible for serializing this function against
1105 * blk_mq_{start,stop}_hw_queue().
1106 */
1107bool blk_mq_queue_stopped(struct request_queue *q)
1108{
1109 struct blk_mq_hw_ctx *hctx;
1110 int i;
1111
1112 queue_for_each_hw_ctx(q, hctx, i)
1113 if (blk_mq_hctx_stopped(hctx))
1114 return true;
1115
1116 return false;
1117}
1118EXPORT_SYMBOL(blk_mq_queue_stopped);
1119
320ae51f
JA
1120void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1121{
27489a3c 1122 cancel_work(&hctx->run_work);
70f4db63 1123 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
1124 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1125}
1126EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1127
280d45f6
CH
1128void blk_mq_stop_hw_queues(struct request_queue *q)
1129{
1130 struct blk_mq_hw_ctx *hctx;
1131 int i;
1132
1133 queue_for_each_hw_ctx(q, hctx, i)
1134 blk_mq_stop_hw_queue(hctx);
1135}
1136EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1137
320ae51f
JA
1138void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1139{
1140 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1141
0ffbce80 1142 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1143}
1144EXPORT_SYMBOL(blk_mq_start_hw_queue);
1145
2f268556
CH
1146void blk_mq_start_hw_queues(struct request_queue *q)
1147{
1148 struct blk_mq_hw_ctx *hctx;
1149 int i;
1150
1151 queue_for_each_hw_ctx(q, hctx, i)
1152 blk_mq_start_hw_queue(hctx);
1153}
1154EXPORT_SYMBOL(blk_mq_start_hw_queues);
1155
ae911c5e
JA
1156void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1157{
1158 if (!blk_mq_hctx_stopped(hctx))
1159 return;
1160
1161 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1162 blk_mq_run_hw_queue(hctx, async);
1163}
1164EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1165
1b4a3258 1166void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1167{
1168 struct blk_mq_hw_ctx *hctx;
1169 int i;
1170
ae911c5e
JA
1171 queue_for_each_hw_ctx(q, hctx, i)
1172 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1173}
1174EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1175
70f4db63 1176static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1177{
1178 struct blk_mq_hw_ctx *hctx;
1179
27489a3c 1180 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
e4043dcf 1181
320ae51f
JA
1182 __blk_mq_run_hw_queue(hctx);
1183}
1184
70f4db63
CH
1185static void blk_mq_delay_work_fn(struct work_struct *work)
1186{
1187 struct blk_mq_hw_ctx *hctx;
1188
1189 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1190
1191 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1192 __blk_mq_run_hw_queue(hctx);
1193}
1194
1195void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1196{
19c66e59
ML
1197 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1198 return;
70f4db63 1199
7e79dadc 1200 blk_mq_stop_hw_queue(hctx);
b657d7e6
CH
1201 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1202 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
1203}
1204EXPORT_SYMBOL(blk_mq_delay_queue);
1205
cfd0c552 1206static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1207 struct request *rq,
1208 bool at_head)
320ae51f 1209{
e57690fe
JA
1210 struct blk_mq_ctx *ctx = rq->mq_ctx;
1211
01b983c9
JA
1212 trace_block_rq_insert(hctx->queue, rq);
1213
72a0a36e
CH
1214 if (at_head)
1215 list_add(&rq->queuelist, &ctx->rq_list);
1216 else
1217 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1218}
4bb659b1 1219
2c3ad667
JA
1220void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1221 bool at_head)
cfd0c552
ML
1222{
1223 struct blk_mq_ctx *ctx = rq->mq_ctx;
1224
e57690fe 1225 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1226 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1227}
1228
bd166ef1
JA
1229void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1230 struct list_head *list)
320ae51f
JA
1231
1232{
320ae51f
JA
1233 /*
1234 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1235 * offline now
1236 */
1237 spin_lock(&ctx->lock);
1238 while (!list_empty(list)) {
1239 struct request *rq;
1240
1241 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1242 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1243 list_del_init(&rq->queuelist);
e57690fe 1244 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1245 }
cfd0c552 1246 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1247 spin_unlock(&ctx->lock);
320ae51f
JA
1248}
1249
1250static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1251{
1252 struct request *rqa = container_of(a, struct request, queuelist);
1253 struct request *rqb = container_of(b, struct request, queuelist);
1254
1255 return !(rqa->mq_ctx < rqb->mq_ctx ||
1256 (rqa->mq_ctx == rqb->mq_ctx &&
1257 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1258}
1259
1260void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1261{
1262 struct blk_mq_ctx *this_ctx;
1263 struct request_queue *this_q;
1264 struct request *rq;
1265 LIST_HEAD(list);
1266 LIST_HEAD(ctx_list);
1267 unsigned int depth;
1268
1269 list_splice_init(&plug->mq_list, &list);
1270
1271 list_sort(NULL, &list, plug_ctx_cmp);
1272
1273 this_q = NULL;
1274 this_ctx = NULL;
1275 depth = 0;
1276
1277 while (!list_empty(&list)) {
1278 rq = list_entry_rq(list.next);
1279 list_del_init(&rq->queuelist);
1280 BUG_ON(!rq->q);
1281 if (rq->mq_ctx != this_ctx) {
1282 if (this_ctx) {
bd166ef1
JA
1283 trace_block_unplug(this_q, depth, from_schedule);
1284 blk_mq_sched_insert_requests(this_q, this_ctx,
1285 &ctx_list,
1286 from_schedule);
320ae51f
JA
1287 }
1288
1289 this_ctx = rq->mq_ctx;
1290 this_q = rq->q;
1291 depth = 0;
1292 }
1293
1294 depth++;
1295 list_add_tail(&rq->queuelist, &ctx_list);
1296 }
1297
1298 /*
1299 * If 'this_ctx' is set, we know we have entries to complete
1300 * on 'ctx_list'. Do those.
1301 */
1302 if (this_ctx) {
bd166ef1
JA
1303 trace_block_unplug(this_q, depth, from_schedule);
1304 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1305 from_schedule);
320ae51f
JA
1306 }
1307}
1308
1309static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1310{
1311 init_request_from_bio(rq, bio);
4b570521 1312
6e85eaf3 1313 blk_account_io_start(rq, true);
320ae51f
JA
1314}
1315
274a5843
JA
1316static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1317{
1318 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1319 !blk_queue_nomerges(hctx->queue);
1320}
1321
07068d5b
JA
1322static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1323 struct blk_mq_ctx *ctx,
1324 struct request *rq, struct bio *bio)
320ae51f 1325{
e18378a6 1326 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1327 blk_mq_bio_to_request(rq, bio);
1328 spin_lock(&ctx->lock);
1329insert_rq:
1330 __blk_mq_insert_request(hctx, rq, false);
1331 spin_unlock(&ctx->lock);
1332 return false;
1333 } else {
274a5843
JA
1334 struct request_queue *q = hctx->queue;
1335
07068d5b
JA
1336 spin_lock(&ctx->lock);
1337 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1338 blk_mq_bio_to_request(rq, bio);
1339 goto insert_rq;
1340 }
320ae51f 1341
07068d5b 1342 spin_unlock(&ctx->lock);
bd166ef1 1343 __blk_mq_finish_request(hctx, ctx, rq);
07068d5b 1344 return true;
14ec77f3 1345 }
07068d5b 1346}
14ec77f3 1347
fd2d3326
JA
1348static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1349{
bd166ef1
JA
1350 if (rq->tag != -1)
1351 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1352
1353 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1354}
1355
066a4a73 1356static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
f984df1f 1357{
f984df1f 1358 struct request_queue *q = rq->q;
f984df1f
SL
1359 struct blk_mq_queue_data bd = {
1360 .rq = rq,
1361 .list = NULL,
1362 .last = 1
1363 };
bd166ef1
JA
1364 struct blk_mq_hw_ctx *hctx;
1365 blk_qc_t new_cookie;
1366 int ret;
f984df1f 1367
bd166ef1 1368 if (q->elevator)
2253efc8
BVA
1369 goto insert;
1370
bd166ef1
JA
1371 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1372 goto insert;
1373
1374 new_cookie = request_to_qc_t(hctx, rq);
1375
f984df1f
SL
1376 /*
1377 * For OK queue, we are done. For error, kill it. Any other
1378 * error (busy), just add it to our list as we previously
1379 * would have done
1380 */
1381 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1382 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1383 *cookie = new_cookie;
2253efc8 1384 return;
7b371636 1385 }
f984df1f 1386
7b371636
JA
1387 __blk_mq_requeue_request(rq);
1388
1389 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1390 *cookie = BLK_QC_T_NONE;
1391 rq->errors = -EIO;
1392 blk_mq_end_request(rq, rq->errors);
2253efc8 1393 return;
f984df1f 1394 }
7b371636 1395
2253efc8 1396insert:
bd6737f1 1397 blk_mq_sched_insert_request(rq, false, true, true, false);
f984df1f
SL
1398}
1399
07068d5b
JA
1400/*
1401 * Multiple hardware queue variant. This will not use per-process plugs,
1402 * but will attempt to bypass the hctx queueing if we can go straight to
1403 * hardware for SYNC IO.
1404 */
dece1635 1405static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1406{
ef295ecf 1407 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1408 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1409 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1410 struct request *rq;
6a83e74d 1411 unsigned int request_count = 0, srcu_idx;
f984df1f 1412 struct blk_plug *plug;
5b3f341f 1413 struct request *same_queue_rq = NULL;
7b371636 1414 blk_qc_t cookie;
87760e5e 1415 unsigned int wb_acct;
07068d5b
JA
1416
1417 blk_queue_bounce(q, &bio);
1418
1419 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1420 bio_io_error(bio);
dece1635 1421 return BLK_QC_T_NONE;
07068d5b
JA
1422 }
1423
54efd50b
KO
1424 blk_queue_split(q, &bio, q->bio_split);
1425
87c279e6
OS
1426 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1427 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1428 return BLK_QC_T_NONE;
f984df1f 1429
bd166ef1
JA
1430 if (blk_mq_sched_bio_merge(q, bio))
1431 return BLK_QC_T_NONE;
1432
87760e5e
JA
1433 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1434
bd166ef1
JA
1435 trace_block_getrq(q, bio, bio->bi_opf);
1436
1437 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1438 if (unlikely(!rq)) {
1439 __wbt_done(q->rq_wb, wb_acct);
dece1635 1440 return BLK_QC_T_NONE;
87760e5e
JA
1441 }
1442
1443 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1444
fd2d3326 1445 cookie = request_to_qc_t(data.hctx, rq);
07068d5b
JA
1446
1447 if (unlikely(is_flush_fua)) {
bd6737f1 1448 blk_mq_put_ctx(data.ctx);
07068d5b 1449 blk_mq_bio_to_request(rq, bio);
bd166ef1 1450 blk_mq_get_driver_tag(rq, NULL, true);
07068d5b 1451 blk_insert_flush(rq);
bd6737f1
JA
1452 blk_mq_run_hw_queue(data.hctx, true);
1453 goto done;
07068d5b
JA
1454 }
1455
f984df1f 1456 plug = current->plug;
e167dfb5
JA
1457 /*
1458 * If the driver supports defer issued based on 'last', then
1459 * queue it up like normal since we can potentially save some
1460 * CPU this way.
1461 */
f984df1f
SL
1462 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1463 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1464 struct request *old_rq = NULL;
07068d5b
JA
1465
1466 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1467
1468 /*
6a83e74d 1469 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1470 * Otherwise the existing request in the plug list will be
1471 * issued. So the plug list will have one request at most
07068d5b 1472 */
f984df1f 1473 if (plug) {
5b3f341f
SL
1474 /*
1475 * The plug list might get flushed before this. If that
b094f89c
JA
1476 * happens, same_queue_rq is invalid and plug list is
1477 * empty
1478 */
5b3f341f
SL
1479 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1480 old_rq = same_queue_rq;
f984df1f 1481 list_del_init(&old_rq->queuelist);
07068d5b 1482 }
f984df1f
SL
1483 list_add_tail(&rq->queuelist, &plug->mq_list);
1484 } else /* is_sync */
1485 old_rq = rq;
1486 blk_mq_put_ctx(data.ctx);
1487 if (!old_rq)
7b371636 1488 goto done;
6a83e74d
BVA
1489
1490 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1491 rcu_read_lock();
066a4a73 1492 blk_mq_try_issue_directly(old_rq, &cookie);
6a83e74d
BVA
1493 rcu_read_unlock();
1494 } else {
1495 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
066a4a73 1496 blk_mq_try_issue_directly(old_rq, &cookie);
6a83e74d
BVA
1497 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1498 }
7b371636 1499 goto done;
07068d5b
JA
1500 }
1501
bd166ef1
JA
1502 if (q->elevator) {
1503 blk_mq_put_ctx(data.ctx);
1504 blk_mq_bio_to_request(rq, bio);
0abad774 1505 blk_mq_sched_insert_request(rq, false, true,
bd6737f1 1506 !is_sync || is_flush_fua, true);
bd166ef1
JA
1507 goto done;
1508 }
07068d5b
JA
1509 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1510 /*
1511 * For a SYNC request, send it to the hardware immediately. For
1512 * an ASYNC request, just ensure that we run it later on. The
1513 * latter allows for merging opportunities and more efficient
1514 * dispatching.
1515 */
07068d5b
JA
1516 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1517 }
07068d5b 1518 blk_mq_put_ctx(data.ctx);
7b371636
JA
1519done:
1520 return cookie;
07068d5b
JA
1521}
1522
1523/*
1524 * Single hardware queue variant. This will attempt to use any per-process
1525 * plug for merging and IO deferral.
1526 */
dece1635 1527static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1528{
ef295ecf 1529 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1530 const int is_flush_fua = op_is_flush(bio->bi_opf);
e6c4438b
JM
1531 struct blk_plug *plug;
1532 unsigned int request_count = 0;
5a797e00 1533 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1534 struct request *rq;
7b371636 1535 blk_qc_t cookie;
87760e5e 1536 unsigned int wb_acct;
07068d5b 1537
07068d5b
JA
1538 blk_queue_bounce(q, &bio);
1539
1540 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1541 bio_io_error(bio);
dece1635 1542 return BLK_QC_T_NONE;
07068d5b
JA
1543 }
1544
54efd50b
KO
1545 blk_queue_split(q, &bio, q->bio_split);
1546
87c279e6
OS
1547 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1548 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1549 return BLK_QC_T_NONE;
1550 } else
1551 request_count = blk_plug_queued_count(q);
07068d5b 1552
bd166ef1
JA
1553 if (blk_mq_sched_bio_merge(q, bio))
1554 return BLK_QC_T_NONE;
1555
87760e5e
JA
1556 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1557
bd166ef1
JA
1558 trace_block_getrq(q, bio, bio->bi_opf);
1559
1560 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1561 if (unlikely(!rq)) {
1562 __wbt_done(q->rq_wb, wb_acct);
dece1635 1563 return BLK_QC_T_NONE;
87760e5e
JA
1564 }
1565
1566 wbt_track(&rq->issue_stat, wb_acct);
320ae51f 1567
fd2d3326 1568 cookie = request_to_qc_t(data.hctx, rq);
320ae51f
JA
1569
1570 if (unlikely(is_flush_fua)) {
bd6737f1 1571 blk_mq_put_ctx(data.ctx);
320ae51f 1572 blk_mq_bio_to_request(rq, bio);
bd166ef1 1573 blk_mq_get_driver_tag(rq, NULL, true);
320ae51f 1574 blk_insert_flush(rq);
bd6737f1
JA
1575 blk_mq_run_hw_queue(data.hctx, true);
1576 goto done;
320ae51f
JA
1577 }
1578
1579 /*
1580 * A task plug currently exists. Since this is completely lockless,
1581 * utilize that to temporarily store requests until the task is
1582 * either done or scheduled away.
1583 */
e6c4438b
JM
1584 plug = current->plug;
1585 if (plug) {
600271d9
SL
1586 struct request *last = NULL;
1587
e6c4438b 1588 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1589
1590 /*
1591 * @request_count may become stale because of schedule
1592 * out, so check the list again.
1593 */
1594 if (list_empty(&plug->mq_list))
1595 request_count = 0;
676d0607 1596 if (!request_count)
e6c4438b 1597 trace_block_plug(q);
600271d9
SL
1598 else
1599 last = list_entry_rq(plug->mq_list.prev);
b094f89c
JA
1600
1601 blk_mq_put_ctx(data.ctx);
1602
600271d9
SL
1603 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1604 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1605 blk_flush_plug_list(plug, false);
1606 trace_block_plug(q);
320ae51f 1607 }
b094f89c 1608
e6c4438b 1609 list_add_tail(&rq->queuelist, &plug->mq_list);
7b371636 1610 return cookie;
320ae51f
JA
1611 }
1612
bd166ef1
JA
1613 if (q->elevator) {
1614 blk_mq_put_ctx(data.ctx);
1615 blk_mq_bio_to_request(rq, bio);
0abad774 1616 blk_mq_sched_insert_request(rq, false, true,
bd6737f1 1617 !is_sync || is_flush_fua, true);
bd166ef1
JA
1618 goto done;
1619 }
07068d5b
JA
1620 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1621 /*
1622 * For a SYNC request, send it to the hardware immediately. For
1623 * an ASYNC request, just ensure that we run it later on. The
1624 * latter allows for merging opportunities and more efficient
1625 * dispatching.
1626 */
07068d5b 1627 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1628 }
1629
07068d5b 1630 blk_mq_put_ctx(data.ctx);
bd166ef1 1631done:
7b371636 1632 return cookie;
320ae51f
JA
1633}
1634
cc71a6f4
JA
1635void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1636 unsigned int hctx_idx)
95363efd 1637{
e9b267d9 1638 struct page *page;
320ae51f 1639
24d2f903 1640 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1641 int i;
320ae51f 1642
24d2f903 1643 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1644 struct request *rq = tags->static_rqs[i];
1645
1646 if (!rq)
e9b267d9 1647 continue;
2af8cbe3 1648 set->ops->exit_request(set->driver_data, rq,
24d2f903 1649 hctx_idx, i);
2af8cbe3 1650 tags->static_rqs[i] = NULL;
e9b267d9 1651 }
320ae51f 1652 }
320ae51f 1653
24d2f903
CH
1654 while (!list_empty(&tags->page_list)) {
1655 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1656 list_del_init(&page->lru);
f75782e4
CM
1657 /*
1658 * Remove kmemleak object previously allocated in
1659 * blk_mq_init_rq_map().
1660 */
1661 kmemleak_free(page_address(page));
320ae51f
JA
1662 __free_pages(page, page->private);
1663 }
cc71a6f4 1664}
320ae51f 1665
cc71a6f4
JA
1666void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1667{
24d2f903 1668 kfree(tags->rqs);
cc71a6f4 1669 tags->rqs = NULL;
2af8cbe3
JA
1670 kfree(tags->static_rqs);
1671 tags->static_rqs = NULL;
320ae51f 1672
24d2f903 1673 blk_mq_free_tags(tags);
320ae51f
JA
1674}
1675
cc71a6f4
JA
1676struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1677 unsigned int hctx_idx,
1678 unsigned int nr_tags,
1679 unsigned int reserved_tags)
320ae51f 1680{
24d2f903 1681 struct blk_mq_tags *tags;
320ae51f 1682
cc71a6f4 1683 tags = blk_mq_init_tags(nr_tags, reserved_tags,
24391c0d
SL
1684 set->numa_node,
1685 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1686 if (!tags)
1687 return NULL;
320ae51f 1688
cc71a6f4 1689 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1690 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
a5164405 1691 set->numa_node);
24d2f903
CH
1692 if (!tags->rqs) {
1693 blk_mq_free_tags(tags);
1694 return NULL;
1695 }
320ae51f 1696
2af8cbe3
JA
1697 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1698 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1699 set->numa_node);
1700 if (!tags->static_rqs) {
1701 kfree(tags->rqs);
1702 blk_mq_free_tags(tags);
1703 return NULL;
1704 }
1705
cc71a6f4
JA
1706 return tags;
1707}
1708
1709static size_t order_to_size(unsigned int order)
1710{
1711 return (size_t)PAGE_SIZE << order;
1712}
1713
1714int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1715 unsigned int hctx_idx, unsigned int depth)
1716{
1717 unsigned int i, j, entries_per_page, max_order = 4;
1718 size_t rq_size, left;
1719
1720 INIT_LIST_HEAD(&tags->page_list);
1721
320ae51f
JA
1722 /*
1723 * rq_size is the size of the request plus driver payload, rounded
1724 * to the cacheline size
1725 */
24d2f903 1726 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1727 cache_line_size());
cc71a6f4 1728 left = rq_size * depth;
320ae51f 1729
cc71a6f4 1730 for (i = 0; i < depth; ) {
320ae51f
JA
1731 int this_order = max_order;
1732 struct page *page;
1733 int to_do;
1734 void *p;
1735
b3a834b1 1736 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1737 this_order--;
1738
1739 do {
a5164405 1740 page = alloc_pages_node(set->numa_node,
36e1f3d1 1741 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1742 this_order);
320ae51f
JA
1743 if (page)
1744 break;
1745 if (!this_order--)
1746 break;
1747 if (order_to_size(this_order) < rq_size)
1748 break;
1749 } while (1);
1750
1751 if (!page)
24d2f903 1752 goto fail;
320ae51f
JA
1753
1754 page->private = this_order;
24d2f903 1755 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1756
1757 p = page_address(page);
f75782e4
CM
1758 /*
1759 * Allow kmemleak to scan these pages as they contain pointers
1760 * to additional allocations like via ops->init_request().
1761 */
36e1f3d1 1762 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1763 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1764 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1765 left -= to_do * rq_size;
1766 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1767 struct request *rq = p;
1768
1769 tags->static_rqs[i] = rq;
24d2f903
CH
1770 if (set->ops->init_request) {
1771 if (set->ops->init_request(set->driver_data,
2af8cbe3 1772 rq, hctx_idx, i,
a5164405 1773 set->numa_node)) {
2af8cbe3 1774 tags->static_rqs[i] = NULL;
24d2f903 1775 goto fail;
a5164405 1776 }
e9b267d9
CH
1777 }
1778
320ae51f
JA
1779 p += rq_size;
1780 i++;
1781 }
1782 }
cc71a6f4 1783 return 0;
320ae51f 1784
24d2f903 1785fail:
cc71a6f4
JA
1786 blk_mq_free_rqs(set, tags, hctx_idx);
1787 return -ENOMEM;
320ae51f
JA
1788}
1789
e57690fe
JA
1790/*
1791 * 'cpu' is going away. splice any existing rq_list entries from this
1792 * software queue to the hw queue dispatch list, and ensure that it
1793 * gets run.
1794 */
9467f859 1795static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1796{
9467f859 1797 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1798 struct blk_mq_ctx *ctx;
1799 LIST_HEAD(tmp);
1800
9467f859 1801 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1802 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1803
1804 spin_lock(&ctx->lock);
1805 if (!list_empty(&ctx->rq_list)) {
1806 list_splice_init(&ctx->rq_list, &tmp);
1807 blk_mq_hctx_clear_pending(hctx, ctx);
1808 }
1809 spin_unlock(&ctx->lock);
1810
1811 if (list_empty(&tmp))
9467f859 1812 return 0;
484b4061 1813
e57690fe
JA
1814 spin_lock(&hctx->lock);
1815 list_splice_tail_init(&tmp, &hctx->dispatch);
1816 spin_unlock(&hctx->lock);
484b4061
JA
1817
1818 blk_mq_run_hw_queue(hctx, true);
9467f859 1819 return 0;
484b4061
JA
1820}
1821
9467f859 1822static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1823{
9467f859
TG
1824 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1825 &hctx->cpuhp_dead);
484b4061
JA
1826}
1827
c3b4afca 1828/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1829static void blk_mq_exit_hctx(struct request_queue *q,
1830 struct blk_mq_tag_set *set,
1831 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1832{
f70ced09
ML
1833 unsigned flush_start_tag = set->queue_depth;
1834
08e98fc6
ML
1835 blk_mq_tag_idle(hctx);
1836
f70ced09
ML
1837 if (set->ops->exit_request)
1838 set->ops->exit_request(set->driver_data,
1839 hctx->fq->flush_rq, hctx_idx,
1840 flush_start_tag + hctx_idx);
1841
08e98fc6
ML
1842 if (set->ops->exit_hctx)
1843 set->ops->exit_hctx(hctx, hctx_idx);
1844
6a83e74d
BVA
1845 if (hctx->flags & BLK_MQ_F_BLOCKING)
1846 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1847
9467f859 1848 blk_mq_remove_cpuhp(hctx);
f70ced09 1849 blk_free_flush_queue(hctx->fq);
88459642 1850 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1851}
1852
624dbe47
ML
1853static void blk_mq_exit_hw_queues(struct request_queue *q,
1854 struct blk_mq_tag_set *set, int nr_queue)
1855{
1856 struct blk_mq_hw_ctx *hctx;
1857 unsigned int i;
1858
1859 queue_for_each_hw_ctx(q, hctx, i) {
1860 if (i == nr_queue)
1861 break;
08e98fc6 1862 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1863 }
624dbe47
ML
1864}
1865
1866static void blk_mq_free_hw_queues(struct request_queue *q,
1867 struct blk_mq_tag_set *set)
1868{
1869 struct blk_mq_hw_ctx *hctx;
1870 unsigned int i;
1871
e09aae7e 1872 queue_for_each_hw_ctx(q, hctx, i)
624dbe47 1873 free_cpumask_var(hctx->cpumask);
624dbe47
ML
1874}
1875
08e98fc6
ML
1876static int blk_mq_init_hctx(struct request_queue *q,
1877 struct blk_mq_tag_set *set,
1878 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1879{
08e98fc6 1880 int node;
f70ced09 1881 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1882
1883 node = hctx->numa_node;
1884 if (node == NUMA_NO_NODE)
1885 node = hctx->numa_node = set->numa_node;
1886
27489a3c 1887 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1888 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1889 spin_lock_init(&hctx->lock);
1890 INIT_LIST_HEAD(&hctx->dispatch);
1891 hctx->queue = q;
1892 hctx->queue_num = hctx_idx;
2404e607 1893 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1894
9467f859 1895 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1896
1897 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1898
1899 /*
08e98fc6
ML
1900 * Allocate space for all possible cpus to avoid allocation at
1901 * runtime
320ae51f 1902 */
08e98fc6
ML
1903 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1904 GFP_KERNEL, node);
1905 if (!hctx->ctxs)
1906 goto unregister_cpu_notifier;
320ae51f 1907
88459642
OS
1908 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1909 node))
08e98fc6 1910 goto free_ctxs;
320ae51f 1911
08e98fc6 1912 hctx->nr_ctx = 0;
320ae51f 1913
08e98fc6
ML
1914 if (set->ops->init_hctx &&
1915 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1916 goto free_bitmap;
320ae51f 1917
f70ced09
ML
1918 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1919 if (!hctx->fq)
1920 goto exit_hctx;
320ae51f 1921
f70ced09
ML
1922 if (set->ops->init_request &&
1923 set->ops->init_request(set->driver_data,
1924 hctx->fq->flush_rq, hctx_idx,
1925 flush_start_tag + hctx_idx, node))
1926 goto free_fq;
320ae51f 1927
6a83e74d
BVA
1928 if (hctx->flags & BLK_MQ_F_BLOCKING)
1929 init_srcu_struct(&hctx->queue_rq_srcu);
1930
08e98fc6 1931 return 0;
320ae51f 1932
f70ced09
ML
1933 free_fq:
1934 kfree(hctx->fq);
1935 exit_hctx:
1936 if (set->ops->exit_hctx)
1937 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1938 free_bitmap:
88459642 1939 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1940 free_ctxs:
1941 kfree(hctx->ctxs);
1942 unregister_cpu_notifier:
9467f859 1943 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
1944 return -1;
1945}
320ae51f 1946
320ae51f
JA
1947static void blk_mq_init_cpu_queues(struct request_queue *q,
1948 unsigned int nr_hw_queues)
1949{
1950 unsigned int i;
1951
1952 for_each_possible_cpu(i) {
1953 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1954 struct blk_mq_hw_ctx *hctx;
1955
1956 memset(__ctx, 0, sizeof(*__ctx));
1957 __ctx->cpu = i;
1958 spin_lock_init(&__ctx->lock);
1959 INIT_LIST_HEAD(&__ctx->rq_list);
1960 __ctx->queue = q;
cf43e6be
JA
1961 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1962 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
320ae51f
JA
1963
1964 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1965 if (!cpu_online(i))
1966 continue;
1967
7d7e0f90 1968 hctx = blk_mq_map_queue(q, i);
e4043dcf 1969
320ae51f
JA
1970 /*
1971 * Set local node, IFF we have more than one hw queue. If
1972 * not, we remain on the home node of the device
1973 */
1974 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 1975 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
1976 }
1977}
1978
cc71a6f4
JA
1979static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1980{
1981 int ret = 0;
1982
1983 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1984 set->queue_depth, set->reserved_tags);
1985 if (!set->tags[hctx_idx])
1986 return false;
1987
1988 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1989 set->queue_depth);
1990 if (!ret)
1991 return true;
1992
1993 blk_mq_free_rq_map(set->tags[hctx_idx]);
1994 set->tags[hctx_idx] = NULL;
1995 return false;
1996}
1997
1998static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1999 unsigned int hctx_idx)
2000{
bd166ef1
JA
2001 if (set->tags[hctx_idx]) {
2002 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2003 blk_mq_free_rq_map(set->tags[hctx_idx]);
2004 set->tags[hctx_idx] = NULL;
2005 }
cc71a6f4
JA
2006}
2007
5778322e
AM
2008static void blk_mq_map_swqueue(struct request_queue *q,
2009 const struct cpumask *online_mask)
320ae51f 2010{
d1b1cea1 2011 unsigned int i, hctx_idx;
320ae51f
JA
2012 struct blk_mq_hw_ctx *hctx;
2013 struct blk_mq_ctx *ctx;
2a34c087 2014 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2015
60de074b
AM
2016 /*
2017 * Avoid others reading imcomplete hctx->cpumask through sysfs
2018 */
2019 mutex_lock(&q->sysfs_lock);
2020
320ae51f 2021 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2022 cpumask_clear(hctx->cpumask);
320ae51f
JA
2023 hctx->nr_ctx = 0;
2024 }
2025
2026 /*
2027 * Map software to hardware queues
2028 */
897bb0c7 2029 for_each_possible_cpu(i) {
320ae51f 2030 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 2031 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
2032 continue;
2033
d1b1cea1
GKB
2034 hctx_idx = q->mq_map[i];
2035 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2036 if (!set->tags[hctx_idx] &&
2037 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2038 /*
2039 * If tags initialization fail for some hctx,
2040 * that hctx won't be brought online. In this
2041 * case, remap the current ctx to hctx[0] which
2042 * is guaranteed to always have tags allocated
2043 */
cc71a6f4 2044 q->mq_map[i] = 0;
d1b1cea1
GKB
2045 }
2046
897bb0c7 2047 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2048 hctx = blk_mq_map_queue(q, i);
868f2f0b 2049
e4043dcf 2050 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2051 ctx->index_hw = hctx->nr_ctx;
2052 hctx->ctxs[hctx->nr_ctx++] = ctx;
2053 }
506e931f 2054
60de074b
AM
2055 mutex_unlock(&q->sysfs_lock);
2056
506e931f 2057 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2058 /*
a68aafa5
JA
2059 * If no software queues are mapped to this hardware queue,
2060 * disable it and free the request entries.
484b4061
JA
2061 */
2062 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2063 /* Never unmap queue 0. We need it as a
2064 * fallback in case of a new remap fails
2065 * allocation
2066 */
cc71a6f4
JA
2067 if (i && set->tags[i])
2068 blk_mq_free_map_and_requests(set, i);
2069
2a34c087 2070 hctx->tags = NULL;
484b4061
JA
2071 continue;
2072 }
2073
2a34c087
ML
2074 hctx->tags = set->tags[i];
2075 WARN_ON(!hctx->tags);
2076
889fa31f
CY
2077 /*
2078 * Set the map size to the number of mapped software queues.
2079 * This is more accurate and more efficient than looping
2080 * over all possibly mapped software queues.
2081 */
88459642 2082 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2083
484b4061
JA
2084 /*
2085 * Initialize batch roundrobin counts
2086 */
506e931f
JA
2087 hctx->next_cpu = cpumask_first(hctx->cpumask);
2088 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2089 }
320ae51f
JA
2090}
2091
2404e607 2092static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2093{
2094 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2095 int i;
2096
2404e607
JM
2097 queue_for_each_hw_ctx(q, hctx, i) {
2098 if (shared)
2099 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2100 else
2101 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2102 }
2103}
2104
2105static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2106{
2107 struct request_queue *q;
0d2602ca
JA
2108
2109 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2110 blk_mq_freeze_queue(q);
2404e607 2111 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2112 blk_mq_unfreeze_queue(q);
2113 }
2114}
2115
2116static void blk_mq_del_queue_tag_set(struct request_queue *q)
2117{
2118 struct blk_mq_tag_set *set = q->tag_set;
2119
0d2602ca
JA
2120 mutex_lock(&set->tag_list_lock);
2121 list_del_init(&q->tag_set_list);
2404e607
JM
2122 if (list_is_singular(&set->tag_list)) {
2123 /* just transitioned to unshared */
2124 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2125 /* update existing queue */
2126 blk_mq_update_tag_set_depth(set, false);
2127 }
0d2602ca 2128 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
2129}
2130
2131static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2132 struct request_queue *q)
2133{
2134 q->tag_set = set;
2135
2136 mutex_lock(&set->tag_list_lock);
2404e607
JM
2137
2138 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2139 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2140 set->flags |= BLK_MQ_F_TAG_SHARED;
2141 /* update existing queue */
2142 blk_mq_update_tag_set_depth(set, true);
2143 }
2144 if (set->flags & BLK_MQ_F_TAG_SHARED)
2145 queue_set_hctx_shared(q, true);
0d2602ca 2146 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 2147
0d2602ca
JA
2148 mutex_unlock(&set->tag_list_lock);
2149}
2150
e09aae7e
ML
2151/*
2152 * It is the actual release handler for mq, but we do it from
2153 * request queue's release handler for avoiding use-after-free
2154 * and headache because q->mq_kobj shouldn't have been introduced,
2155 * but we can't group ctx/kctx kobj without it.
2156 */
2157void blk_mq_release(struct request_queue *q)
2158{
2159 struct blk_mq_hw_ctx *hctx;
2160 unsigned int i;
2161
bd166ef1
JA
2162 blk_mq_sched_teardown(q);
2163
e09aae7e 2164 /* hctx kobj stays in hctx */
c3b4afca
ML
2165 queue_for_each_hw_ctx(q, hctx, i) {
2166 if (!hctx)
2167 continue;
2168 kfree(hctx->ctxs);
e09aae7e 2169 kfree(hctx);
c3b4afca 2170 }
e09aae7e 2171
a723bab3
AM
2172 q->mq_map = NULL;
2173
e09aae7e
ML
2174 kfree(q->queue_hw_ctx);
2175
2176 /* ctx kobj stays in queue_ctx */
2177 free_percpu(q->queue_ctx);
2178}
2179
24d2f903 2180struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2181{
2182 struct request_queue *uninit_q, *q;
2183
2184 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2185 if (!uninit_q)
2186 return ERR_PTR(-ENOMEM);
2187
2188 q = blk_mq_init_allocated_queue(set, uninit_q);
2189 if (IS_ERR(q))
2190 blk_cleanup_queue(uninit_q);
2191
2192 return q;
2193}
2194EXPORT_SYMBOL(blk_mq_init_queue);
2195
868f2f0b
KB
2196static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2197 struct request_queue *q)
320ae51f 2198{
868f2f0b
KB
2199 int i, j;
2200 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2201
868f2f0b 2202 blk_mq_sysfs_unregister(q);
24d2f903 2203 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2204 int node;
f14bbe77 2205
868f2f0b
KB
2206 if (hctxs[i])
2207 continue;
2208
2209 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2210 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2211 GFP_KERNEL, node);
320ae51f 2212 if (!hctxs[i])
868f2f0b 2213 break;
320ae51f 2214
a86073e4 2215 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2216 node)) {
2217 kfree(hctxs[i]);
2218 hctxs[i] = NULL;
2219 break;
2220 }
e4043dcf 2221
0d2602ca 2222 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2223 hctxs[i]->numa_node = node;
320ae51f 2224 hctxs[i]->queue_num = i;
868f2f0b
KB
2225
2226 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2227 free_cpumask_var(hctxs[i]->cpumask);
2228 kfree(hctxs[i]);
2229 hctxs[i] = NULL;
2230 break;
2231 }
2232 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2233 }
868f2f0b
KB
2234 for (j = i; j < q->nr_hw_queues; j++) {
2235 struct blk_mq_hw_ctx *hctx = hctxs[j];
2236
2237 if (hctx) {
cc71a6f4
JA
2238 if (hctx->tags)
2239 blk_mq_free_map_and_requests(set, j);
868f2f0b
KB
2240 blk_mq_exit_hctx(q, set, hctx, j);
2241 free_cpumask_var(hctx->cpumask);
2242 kobject_put(&hctx->kobj);
2243 kfree(hctx->ctxs);
2244 kfree(hctx);
2245 hctxs[j] = NULL;
2246
2247 }
2248 }
2249 q->nr_hw_queues = i;
2250 blk_mq_sysfs_register(q);
2251}
2252
2253struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2254 struct request_queue *q)
2255{
66841672
ML
2256 /* mark the queue as mq asap */
2257 q->mq_ops = set->ops;
2258
868f2f0b
KB
2259 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2260 if (!q->queue_ctx)
c7de5726 2261 goto err_exit;
868f2f0b
KB
2262
2263 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2264 GFP_KERNEL, set->numa_node);
2265 if (!q->queue_hw_ctx)
2266 goto err_percpu;
2267
bdd17e75 2268 q->mq_map = set->mq_map;
868f2f0b
KB
2269
2270 blk_mq_realloc_hw_ctxs(set, q);
2271 if (!q->nr_hw_queues)
2272 goto err_hctxs;
320ae51f 2273
287922eb 2274 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2275 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2276
2277 q->nr_queues = nr_cpu_ids;
320ae51f 2278
94eddfbe 2279 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2280
05f1dd53
JA
2281 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2282 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2283
1be036e9
CH
2284 q->sg_reserved_size = INT_MAX;
2285
2849450a 2286 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2287 INIT_LIST_HEAD(&q->requeue_list);
2288 spin_lock_init(&q->requeue_lock);
2289
07068d5b
JA
2290 if (q->nr_hw_queues > 1)
2291 blk_queue_make_request(q, blk_mq_make_request);
2292 else
2293 blk_queue_make_request(q, blk_sq_make_request);
2294
eba71768
JA
2295 /*
2296 * Do this after blk_queue_make_request() overrides it...
2297 */
2298 q->nr_requests = set->queue_depth;
2299
64f1c21e
JA
2300 /*
2301 * Default to classic polling
2302 */
2303 q->poll_nsec = -1;
2304
24d2f903
CH
2305 if (set->ops->complete)
2306 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2307
24d2f903 2308 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2309
5778322e 2310 get_online_cpus();
320ae51f 2311 mutex_lock(&all_q_mutex);
320ae51f 2312
4593fdbe 2313 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2314 blk_mq_add_queue_tag_set(set, q);
5778322e 2315 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2316
4593fdbe 2317 mutex_unlock(&all_q_mutex);
5778322e 2318 put_online_cpus();
4593fdbe 2319
d3484991
JA
2320 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2321 int ret;
2322
2323 ret = blk_mq_sched_init(q);
2324 if (ret)
2325 return ERR_PTR(ret);
2326 }
2327
320ae51f 2328 return q;
18741986 2329
320ae51f 2330err_hctxs:
868f2f0b 2331 kfree(q->queue_hw_ctx);
320ae51f 2332err_percpu:
868f2f0b 2333 free_percpu(q->queue_ctx);
c7de5726
ML
2334err_exit:
2335 q->mq_ops = NULL;
320ae51f
JA
2336 return ERR_PTR(-ENOMEM);
2337}
b62c21b7 2338EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2339
2340void blk_mq_free_queue(struct request_queue *q)
2341{
624dbe47 2342 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2343
0e626368
AM
2344 mutex_lock(&all_q_mutex);
2345 list_del_init(&q->all_q_node);
2346 mutex_unlock(&all_q_mutex);
2347
87760e5e
JA
2348 wbt_exit(q);
2349
0d2602ca
JA
2350 blk_mq_del_queue_tag_set(q);
2351
624dbe47
ML
2352 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2353 blk_mq_free_hw_queues(q, set);
320ae51f 2354}
320ae51f
JA
2355
2356/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2357static void blk_mq_queue_reinit(struct request_queue *q,
2358 const struct cpumask *online_mask)
320ae51f 2359{
4ecd4fef 2360 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2361
67aec14c
JA
2362 blk_mq_sysfs_unregister(q);
2363
320ae51f
JA
2364 /*
2365 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2366 * we should change hctx numa_node according to new topology (this
2367 * involves free and re-allocate memory, worthy doing?)
2368 */
2369
5778322e 2370 blk_mq_map_swqueue(q, online_mask);
320ae51f 2371
67aec14c 2372 blk_mq_sysfs_register(q);
320ae51f
JA
2373}
2374
65d5291e
SAS
2375/*
2376 * New online cpumask which is going to be set in this hotplug event.
2377 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2378 * one-by-one and dynamically allocating this could result in a failure.
2379 */
2380static struct cpumask cpuhp_online_new;
2381
2382static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2383{
2384 struct request_queue *q;
320ae51f
JA
2385
2386 mutex_lock(&all_q_mutex);
f3af020b
TH
2387 /*
2388 * We need to freeze and reinit all existing queues. Freezing
2389 * involves synchronous wait for an RCU grace period and doing it
2390 * one by one may take a long time. Start freezing all queues in
2391 * one swoop and then wait for the completions so that freezing can
2392 * take place in parallel.
2393 */
2394 list_for_each_entry(q, &all_q_list, all_q_node)
2395 blk_mq_freeze_queue_start(q);
415d3dab 2396 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2397 blk_mq_freeze_queue_wait(q);
2398
320ae51f 2399 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2400 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2401
2402 list_for_each_entry(q, &all_q_list, all_q_node)
2403 blk_mq_unfreeze_queue(q);
2404
320ae51f 2405 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2406}
2407
2408static int blk_mq_queue_reinit_dead(unsigned int cpu)
2409{
97a32864 2410 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2411 blk_mq_queue_reinit_work();
2412 return 0;
2413}
2414
2415/*
2416 * Before hotadded cpu starts handling requests, new mappings must be
2417 * established. Otherwise, these requests in hw queue might never be
2418 * dispatched.
2419 *
2420 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2421 * for CPU0, and ctx1 for CPU1).
2422 *
2423 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2424 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2425 *
2c3ad667
JA
2426 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2427 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2428 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2429 * ignored.
65d5291e
SAS
2430 */
2431static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2432{
2433 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2434 cpumask_set_cpu(cpu, &cpuhp_online_new);
2435 blk_mq_queue_reinit_work();
2436 return 0;
320ae51f
JA
2437}
2438
a5164405
JA
2439static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2440{
2441 int i;
2442
cc71a6f4
JA
2443 for (i = 0; i < set->nr_hw_queues; i++)
2444 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2445 goto out_unwind;
a5164405
JA
2446
2447 return 0;
2448
2449out_unwind:
2450 while (--i >= 0)
cc71a6f4 2451 blk_mq_free_rq_map(set->tags[i]);
a5164405 2452
a5164405
JA
2453 return -ENOMEM;
2454}
2455
2456/*
2457 * Allocate the request maps associated with this tag_set. Note that this
2458 * may reduce the depth asked for, if memory is tight. set->queue_depth
2459 * will be updated to reflect the allocated depth.
2460 */
2461static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2462{
2463 unsigned int depth;
2464 int err;
2465
2466 depth = set->queue_depth;
2467 do {
2468 err = __blk_mq_alloc_rq_maps(set);
2469 if (!err)
2470 break;
2471
2472 set->queue_depth >>= 1;
2473 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2474 err = -ENOMEM;
2475 break;
2476 }
2477 } while (set->queue_depth);
2478
2479 if (!set->queue_depth || err) {
2480 pr_err("blk-mq: failed to allocate request map\n");
2481 return -ENOMEM;
2482 }
2483
2484 if (depth != set->queue_depth)
2485 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2486 depth, set->queue_depth);
2487
2488 return 0;
2489}
2490
a4391c64
JA
2491/*
2492 * Alloc a tag set to be associated with one or more request queues.
2493 * May fail with EINVAL for various error conditions. May adjust the
2494 * requested depth down, if if it too large. In that case, the set
2495 * value will be stored in set->queue_depth.
2496 */
24d2f903
CH
2497int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2498{
da695ba2
CH
2499 int ret;
2500
205fb5f5
BVA
2501 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2502
24d2f903
CH
2503 if (!set->nr_hw_queues)
2504 return -EINVAL;
a4391c64 2505 if (!set->queue_depth)
24d2f903
CH
2506 return -EINVAL;
2507 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2508 return -EINVAL;
2509
7d7e0f90 2510 if (!set->ops->queue_rq)
24d2f903
CH
2511 return -EINVAL;
2512
a4391c64
JA
2513 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2514 pr_info("blk-mq: reduced tag depth to %u\n",
2515 BLK_MQ_MAX_DEPTH);
2516 set->queue_depth = BLK_MQ_MAX_DEPTH;
2517 }
24d2f903 2518
6637fadf
SL
2519 /*
2520 * If a crashdump is active, then we are potentially in a very
2521 * memory constrained environment. Limit us to 1 queue and
2522 * 64 tags to prevent using too much memory.
2523 */
2524 if (is_kdump_kernel()) {
2525 set->nr_hw_queues = 1;
2526 set->queue_depth = min(64U, set->queue_depth);
2527 }
868f2f0b
KB
2528 /*
2529 * There is no use for more h/w queues than cpus.
2530 */
2531 if (set->nr_hw_queues > nr_cpu_ids)
2532 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2533
868f2f0b 2534 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2535 GFP_KERNEL, set->numa_node);
2536 if (!set->tags)
a5164405 2537 return -ENOMEM;
24d2f903 2538
da695ba2
CH
2539 ret = -ENOMEM;
2540 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2541 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2542 if (!set->mq_map)
2543 goto out_free_tags;
2544
da695ba2
CH
2545 if (set->ops->map_queues)
2546 ret = set->ops->map_queues(set);
2547 else
2548 ret = blk_mq_map_queues(set);
2549 if (ret)
2550 goto out_free_mq_map;
2551
2552 ret = blk_mq_alloc_rq_maps(set);
2553 if (ret)
bdd17e75 2554 goto out_free_mq_map;
24d2f903 2555
0d2602ca
JA
2556 mutex_init(&set->tag_list_lock);
2557 INIT_LIST_HEAD(&set->tag_list);
2558
24d2f903 2559 return 0;
bdd17e75
CH
2560
2561out_free_mq_map:
2562 kfree(set->mq_map);
2563 set->mq_map = NULL;
2564out_free_tags:
5676e7b6
RE
2565 kfree(set->tags);
2566 set->tags = NULL;
da695ba2 2567 return ret;
24d2f903
CH
2568}
2569EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2570
2571void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2572{
2573 int i;
2574
cc71a6f4
JA
2575 for (i = 0; i < nr_cpu_ids; i++)
2576 blk_mq_free_map_and_requests(set, i);
484b4061 2577
bdd17e75
CH
2578 kfree(set->mq_map);
2579 set->mq_map = NULL;
2580
981bd189 2581 kfree(set->tags);
5676e7b6 2582 set->tags = NULL;
24d2f903
CH
2583}
2584EXPORT_SYMBOL(blk_mq_free_tag_set);
2585
e3a2b3f9
JA
2586int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2587{
2588 struct blk_mq_tag_set *set = q->tag_set;
2589 struct blk_mq_hw_ctx *hctx;
2590 int i, ret;
2591
bd166ef1 2592 if (!set)
e3a2b3f9
JA
2593 return -EINVAL;
2594
70f36b60
JA
2595 blk_mq_freeze_queue(q);
2596 blk_mq_quiesce_queue(q);
2597
e3a2b3f9
JA
2598 ret = 0;
2599 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2600 if (!hctx->tags)
2601 continue;
bd166ef1
JA
2602 /*
2603 * If we're using an MQ scheduler, just update the scheduler
2604 * queue depth. This is similar to what the old code would do.
2605 */
70f36b60
JA
2606 if (!hctx->sched_tags) {
2607 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2608 min(nr, set->queue_depth),
2609 false);
2610 } else {
2611 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2612 nr, true);
2613 }
e3a2b3f9
JA
2614 if (ret)
2615 break;
2616 }
2617
2618 if (!ret)
2619 q->nr_requests = nr;
2620
70f36b60
JA
2621 blk_mq_unfreeze_queue(q);
2622 blk_mq_start_stopped_hw_queues(q, true);
2623
e3a2b3f9
JA
2624 return ret;
2625}
2626
868f2f0b
KB
2627void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2628{
2629 struct request_queue *q;
2630
2631 if (nr_hw_queues > nr_cpu_ids)
2632 nr_hw_queues = nr_cpu_ids;
2633 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2634 return;
2635
2636 list_for_each_entry(q, &set->tag_list, tag_set_list)
2637 blk_mq_freeze_queue(q);
2638
2639 set->nr_hw_queues = nr_hw_queues;
2640 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2641 blk_mq_realloc_hw_ctxs(set, q);
2642
2643 if (q->nr_hw_queues > 1)
2644 blk_queue_make_request(q, blk_mq_make_request);
2645 else
2646 blk_queue_make_request(q, blk_sq_make_request);
2647
2648 blk_mq_queue_reinit(q, cpu_online_mask);
2649 }
2650
2651 list_for_each_entry(q, &set->tag_list, tag_set_list)
2652 blk_mq_unfreeze_queue(q);
2653}
2654EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2655
64f1c21e
JA
2656static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2657 struct blk_mq_hw_ctx *hctx,
2658 struct request *rq)
2659{
2660 struct blk_rq_stat stat[2];
2661 unsigned long ret = 0;
2662
2663 /*
2664 * If stats collection isn't on, don't sleep but turn it on for
2665 * future users
2666 */
2667 if (!blk_stat_enable(q))
2668 return 0;
2669
2670 /*
2671 * We don't have to do this once per IO, should optimize this
2672 * to just use the current window of stats until it changes
2673 */
2674 memset(&stat, 0, sizeof(stat));
2675 blk_hctx_stat_get(hctx, stat);
2676
2677 /*
2678 * As an optimistic guess, use half of the mean service time
2679 * for this type of request. We can (and should) make this smarter.
2680 * For instance, if the completion latencies are tight, we can
2681 * get closer than just half the mean. This is especially
2682 * important on devices where the completion latencies are longer
2683 * than ~10 usec.
2684 */
2685 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2686 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2687 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2688 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2689
2690 return ret;
2691}
2692
06426adf 2693static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2694 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2695 struct request *rq)
2696{
2697 struct hrtimer_sleeper hs;
2698 enum hrtimer_mode mode;
64f1c21e 2699 unsigned int nsecs;
06426adf
JA
2700 ktime_t kt;
2701
64f1c21e
JA
2702 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2703 return false;
2704
2705 /*
2706 * poll_nsec can be:
2707 *
2708 * -1: don't ever hybrid sleep
2709 * 0: use half of prev avg
2710 * >0: use this specific value
2711 */
2712 if (q->poll_nsec == -1)
2713 return false;
2714 else if (q->poll_nsec > 0)
2715 nsecs = q->poll_nsec;
2716 else
2717 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2718
2719 if (!nsecs)
06426adf
JA
2720 return false;
2721
2722 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2723
2724 /*
2725 * This will be replaced with the stats tracking code, using
2726 * 'avg_completion_time / 2' as the pre-sleep target.
2727 */
8b0e1953 2728 kt = nsecs;
06426adf
JA
2729
2730 mode = HRTIMER_MODE_REL;
2731 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2732 hrtimer_set_expires(&hs.timer, kt);
2733
2734 hrtimer_init_sleeper(&hs, current);
2735 do {
2736 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2737 break;
2738 set_current_state(TASK_UNINTERRUPTIBLE);
2739 hrtimer_start_expires(&hs.timer, mode);
2740 if (hs.task)
2741 io_schedule();
2742 hrtimer_cancel(&hs.timer);
2743 mode = HRTIMER_MODE_ABS;
2744 } while (hs.task && !signal_pending(current));
2745
2746 __set_current_state(TASK_RUNNING);
2747 destroy_hrtimer_on_stack(&hs.timer);
2748 return true;
2749}
2750
bbd7bb70
JA
2751static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2752{
2753 struct request_queue *q = hctx->queue;
2754 long state;
2755
06426adf
JA
2756 /*
2757 * If we sleep, have the caller restart the poll loop to reset
2758 * the state. Like for the other success return cases, the
2759 * caller is responsible for checking if the IO completed. If
2760 * the IO isn't complete, we'll get called again and will go
2761 * straight to the busy poll loop.
2762 */
64f1c21e 2763 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2764 return true;
2765
bbd7bb70
JA
2766 hctx->poll_considered++;
2767
2768 state = current->state;
2769 while (!need_resched()) {
2770 int ret;
2771
2772 hctx->poll_invoked++;
2773
2774 ret = q->mq_ops->poll(hctx, rq->tag);
2775 if (ret > 0) {
2776 hctx->poll_success++;
2777 set_current_state(TASK_RUNNING);
2778 return true;
2779 }
2780
2781 if (signal_pending_state(state, current))
2782 set_current_state(TASK_RUNNING);
2783
2784 if (current->state == TASK_RUNNING)
2785 return true;
2786 if (ret < 0)
2787 break;
2788 cpu_relax();
2789 }
2790
2791 return false;
2792}
2793
2794bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2795{
2796 struct blk_mq_hw_ctx *hctx;
2797 struct blk_plug *plug;
2798 struct request *rq;
2799
2800 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2801 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2802 return false;
2803
2804 plug = current->plug;
2805 if (plug)
2806 blk_flush_plug_list(plug, false);
2807
2808 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2809 if (!blk_qc_t_is_internal(cookie))
2810 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2811 else
2812 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
bbd7bb70
JA
2813
2814 return __blk_mq_poll(hctx, rq);
2815}
2816EXPORT_SYMBOL_GPL(blk_mq_poll);
2817
676141e4
JA
2818void blk_mq_disable_hotplug(void)
2819{
2820 mutex_lock(&all_q_mutex);
2821}
2822
2823void blk_mq_enable_hotplug(void)
2824{
2825 mutex_unlock(&all_q_mutex);
2826}
2827
320ae51f
JA
2828static int __init blk_mq_init(void)
2829{
07e4fead
OS
2830 blk_mq_debugfs_init();
2831
9467f859
TG
2832 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2833 blk_mq_hctx_notify_dead);
320ae51f 2834
65d5291e
SAS
2835 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2836 blk_mq_queue_reinit_prepare,
2837 blk_mq_queue_reinit_dead);
320ae51f
JA
2838 return 0;
2839}
2840subsys_initcall(blk_mq_init);