blk-mq: remove blk_mq_wait_for_tags
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
320ae51f
JA
1#include <linux/kernel.h>
2#include <linux/module.h>
3#include <linux/backing-dev.h>
4#include <linux/bio.h>
5#include <linux/blkdev.h>
6#include <linux/mm.h>
7#include <linux/init.h>
8#include <linux/slab.h>
9#include <linux/workqueue.h>
10#include <linux/smp.h>
11#include <linux/llist.h>
12#include <linux/list_sort.h>
13#include <linux/cpu.h>
14#include <linux/cache.h>
15#include <linux/sched/sysctl.h>
16#include <linux/delay.h>
17
18#include <trace/events/block.h>
19
20#include <linux/blk-mq.h>
21#include "blk.h"
22#include "blk-mq.h"
23#include "blk-mq-tag.h"
24
25static DEFINE_MUTEX(all_q_mutex);
26static LIST_HEAD(all_q_list);
27
28static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
320ae51f
JA
30static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31 unsigned int cpu)
32{
33 return per_cpu_ptr(q->queue_ctx, cpu);
34}
35
36/*
37 * This assumes per-cpu software queueing queues. They could be per-node
38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
39 * care about preemption, since we know the ctx's are persistent. This does
40 * mean that we can't rely on ctx always matching the currently running CPU.
41 */
42static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
43{
44 return __blk_mq_get_ctx(q, get_cpu());
45}
46
47static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
48{
49 put_cpu();
50}
51
52/*
53 * Check if any of the ctx's have pending work in this hardware queue
54 */
55static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
56{
57 unsigned int i;
58
1429d7c9
JA
59 for (i = 0; i < hctx->ctx_map.map_size; i++)
60 if (hctx->ctx_map.map[i].word)
320ae51f
JA
61 return true;
62
63 return false;
64}
65
1429d7c9
JA
66static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
67 struct blk_mq_ctx *ctx)
68{
69 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
70}
71
72#define CTX_TO_BIT(hctx, ctx) \
73 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
74
320ae51f
JA
75/*
76 * Mark this ctx as having pending work in this hardware queue
77 */
78static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
79 struct blk_mq_ctx *ctx)
80{
1429d7c9
JA
81 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
82
83 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
84 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
85}
86
87static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
88 struct blk_mq_ctx *ctx)
89{
90 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
91
92 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
320ae51f
JA
93}
94
320ae51f
JA
95static int blk_mq_queue_enter(struct request_queue *q)
96{
97 int ret;
98
99 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
100 smp_wmb();
101 /* we have problems to freeze the queue if it's initializing */
102 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
103 return 0;
104
105 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
106
107 spin_lock_irq(q->queue_lock);
108 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
43a5e4e2
ML
109 !blk_queue_bypass(q) || blk_queue_dying(q),
110 *q->queue_lock);
320ae51f 111 /* inc usage with lock hold to avoid freeze_queue runs here */
43a5e4e2 112 if (!ret && !blk_queue_dying(q))
320ae51f 113 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
43a5e4e2
ML
114 else if (blk_queue_dying(q))
115 ret = -ENODEV;
320ae51f
JA
116 spin_unlock_irq(q->queue_lock);
117
118 return ret;
119}
120
121static void blk_mq_queue_exit(struct request_queue *q)
122{
123 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
124}
125
43a5e4e2
ML
126static void __blk_mq_drain_queue(struct request_queue *q)
127{
128 while (true) {
129 s64 count;
130
131 spin_lock_irq(q->queue_lock);
132 count = percpu_counter_sum(&q->mq_usage_counter);
133 spin_unlock_irq(q->queue_lock);
134
135 if (count == 0)
136 break;
137 blk_mq_run_queues(q, false);
138 msleep(10);
139 }
140}
141
320ae51f
JA
142/*
143 * Guarantee no request is in use, so we can change any data structure of
144 * the queue afterward.
145 */
146static void blk_mq_freeze_queue(struct request_queue *q)
147{
148 bool drain;
149
150 spin_lock_irq(q->queue_lock);
151 drain = !q->bypass_depth++;
152 queue_flag_set(QUEUE_FLAG_BYPASS, q);
153 spin_unlock_irq(q->queue_lock);
154
43a5e4e2
ML
155 if (drain)
156 __blk_mq_drain_queue(q);
157}
320ae51f 158
43a5e4e2
ML
159void blk_mq_drain_queue(struct request_queue *q)
160{
161 __blk_mq_drain_queue(q);
320ae51f
JA
162}
163
164static void blk_mq_unfreeze_queue(struct request_queue *q)
165{
166 bool wake = false;
167
168 spin_lock_irq(q->queue_lock);
169 if (!--q->bypass_depth) {
170 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
171 wake = true;
172 }
173 WARN_ON_ONCE(q->bypass_depth < 0);
174 spin_unlock_irq(q->queue_lock);
175 if (wake)
176 wake_up_all(&q->mq_freeze_wq);
177}
178
179bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
180{
181 return blk_mq_has_free_tags(hctx->tags);
182}
183EXPORT_SYMBOL(blk_mq_can_queue);
184
94eddfbe
JA
185static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
186 struct request *rq, unsigned int rw_flags)
320ae51f 187{
94eddfbe
JA
188 if (blk_queue_io_stat(q))
189 rw_flags |= REQ_IO_STAT;
190
af76e555
CH
191 INIT_LIST_HEAD(&rq->queuelist);
192 /* csd/requeue_work/fifo_time is initialized before use */
193 rq->q = q;
320ae51f 194 rq->mq_ctx = ctx;
0d2602ca 195 rq->cmd_flags |= rw_flags;
af76e555
CH
196 rq->cmd_type = 0;
197 /* do not touch atomic flags, it needs atomic ops against the timer */
198 rq->cpu = -1;
199 rq->__data_len = 0;
200 rq->__sector = (sector_t) -1;
201 rq->bio = NULL;
202 rq->biotail = NULL;
203 INIT_HLIST_NODE(&rq->hash);
204 RB_CLEAR_NODE(&rq->rb_node);
205 memset(&rq->flush, 0, max(sizeof(rq->flush), sizeof(rq->elv)));
206 rq->rq_disk = NULL;
207 rq->part = NULL;
0fec08b4 208 rq->start_time = jiffies;
af76e555
CH
209#ifdef CONFIG_BLK_CGROUP
210 rq->rl = NULL;
0fec08b4 211 set_start_time_ns(rq);
af76e555
CH
212 rq->io_start_time_ns = 0;
213#endif
214 rq->nr_phys_segments = 0;
215#if defined(CONFIG_BLK_DEV_INTEGRITY)
216 rq->nr_integrity_segments = 0;
217#endif
218 rq->ioprio = 0;
219 rq->special = NULL;
220 /* tag was already set */
221 rq->errors = 0;
222 memset(rq->__cmd, 0, sizeof(rq->__cmd));
223 rq->cmd = rq->__cmd;
224 rq->cmd_len = BLK_MAX_CDB;
225
226 rq->extra_len = 0;
227 rq->sense_len = 0;
228 rq->resid_len = 0;
229 rq->sense = NULL;
230
231 rq->deadline = 0;
232 INIT_LIST_HEAD(&rq->timeout_list);
233 rq->timeout = 0;
234 rq->retries = 0;
235 rq->end_io = NULL;
236 rq->end_io_data = NULL;
237 rq->next_rq = NULL;
238
320ae51f
JA
239 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
240}
241
5dee8577
CH
242static struct request *
243__blk_mq_alloc_request(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
244 struct blk_mq_ctx *ctx, int rw, gfp_t gfp, bool reserved)
245{
246 struct request *rq;
247 unsigned int tag;
248
249 tag = blk_mq_get_tag(hctx, &ctx->last_tag, gfp, reserved);
250 if (tag != BLK_MQ_TAG_FAIL) {
251 rq = hctx->tags->rqs[tag];
252
253 rq->cmd_flags = 0;
254 if (blk_mq_tag_busy(hctx)) {
255 rq->cmd_flags = REQ_MQ_INFLIGHT;
256 atomic_inc(&hctx->nr_active);
257 }
258
259 rq->tag = tag;
260 blk_mq_rq_ctx_init(q, ctx, rq, rw);
261 return rq;
262 }
263
264 return NULL;
265}
266
320ae51f
JA
267static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
268 int rw, gfp_t gfp,
269 bool reserved)
270{
a3bd7756 271 bool gfp_mask = gfp & ~__GFP_WAIT;
320ae51f
JA
272 struct request *rq;
273
274 do {
275 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
276 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
277
a3bd7756 278 rq = __blk_mq_alloc_request(q, hctx, ctx, rw, gfp_mask,
4bb659b1 279 reserved);
5dee8577 280 if (rq)
320ae51f 281 break;
320ae51f 282
a3bd7756 283 if (!(gfp & __GFP_WAIT)) {
e4043dcf 284 blk_mq_put_ctx(ctx);
959a35f1 285 break;
e4043dcf 286 }
959a35f1 287
a3bd7756
CH
288 __blk_mq_run_hw_queue(hctx);
289 blk_mq_put_ctx(ctx);
290 gfp_mask = gfp;
320ae51f
JA
291 } while (1);
292
293 return rq;
294}
295
4ce01dd1
CH
296struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
297 bool reserved)
320ae51f
JA
298{
299 struct request *rq;
300
301 if (blk_mq_queue_enter(q))
302 return NULL;
303
4ce01dd1 304 rq = blk_mq_alloc_request_pinned(q, rw, gfp, reserved);
959a35f1
JM
305 if (rq)
306 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
307 return rq;
308}
4bb659b1 309EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 310
320ae51f
JA
311static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
312 struct blk_mq_ctx *ctx, struct request *rq)
313{
314 const int tag = rq->tag;
315 struct request_queue *q = rq->q;
316
0d2602ca
JA
317 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
318 atomic_dec(&hctx->nr_active);
319
af76e555 320 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
0d2602ca 321 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
320ae51f
JA
322 blk_mq_queue_exit(q);
323}
324
325void blk_mq_free_request(struct request *rq)
326{
327 struct blk_mq_ctx *ctx = rq->mq_ctx;
328 struct blk_mq_hw_ctx *hctx;
329 struct request_queue *q = rq->q;
330
331 ctx->rq_completed[rq_is_sync(rq)]++;
332
333 hctx = q->mq_ops->map_queue(q, ctx->cpu);
334 __blk_mq_free_request(hctx, ctx, rq);
335}
336
8727af4b
CH
337/*
338 * Clone all relevant state from a request that has been put on hold in
339 * the flush state machine into the preallocated flush request that hangs
340 * off the request queue.
341 *
342 * For a driver the flush request should be invisible, that's why we are
343 * impersonating the original request here.
344 */
345void blk_mq_clone_flush_request(struct request *flush_rq,
346 struct request *orig_rq)
347{
348 struct blk_mq_hw_ctx *hctx =
349 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
350
351 flush_rq->mq_ctx = orig_rq->mq_ctx;
352 flush_rq->tag = orig_rq->tag;
353 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
354 hctx->cmd_size);
355}
356
63151a44 357inline void __blk_mq_end_io(struct request *rq, int error)
320ae51f 358{
0d11e6ac
ML
359 blk_account_io_done(rq);
360
91b63639 361 if (rq->end_io) {
320ae51f 362 rq->end_io(rq, error);
91b63639
CH
363 } else {
364 if (unlikely(blk_bidi_rq(rq)))
365 blk_mq_free_request(rq->next_rq);
320ae51f 366 blk_mq_free_request(rq);
91b63639 367 }
320ae51f 368}
63151a44
CH
369EXPORT_SYMBOL(__blk_mq_end_io);
370
371void blk_mq_end_io(struct request *rq, int error)
372{
373 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
374 BUG();
375 __blk_mq_end_io(rq, error);
376}
377EXPORT_SYMBOL(blk_mq_end_io);
320ae51f 378
30a91cb4 379static void __blk_mq_complete_request_remote(void *data)
320ae51f 380{
3d6efbf6 381 struct request *rq = data;
320ae51f 382
30a91cb4 383 rq->q->softirq_done_fn(rq);
320ae51f 384}
320ae51f 385
30a91cb4 386void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
387{
388 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 389 bool shared = false;
320ae51f
JA
390 int cpu;
391
38535201 392 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
393 rq->q->softirq_done_fn(rq);
394 return;
395 }
320ae51f
JA
396
397 cpu = get_cpu();
38535201
CH
398 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
399 shared = cpus_share_cache(cpu, ctx->cpu);
400
401 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 402 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
403 rq->csd.info = rq;
404 rq->csd.flags = 0;
c46fff2a 405 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 406 } else {
30a91cb4 407 rq->q->softirq_done_fn(rq);
3d6efbf6 408 }
320ae51f
JA
409 put_cpu();
410}
30a91cb4
CH
411
412/**
413 * blk_mq_complete_request - end I/O on a request
414 * @rq: the request being processed
415 *
416 * Description:
417 * Ends all I/O on a request. It does not handle partial completions.
418 * The actual completion happens out-of-order, through a IPI handler.
419 **/
420void blk_mq_complete_request(struct request *rq)
421{
95f09684
JA
422 struct request_queue *q = rq->q;
423
424 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 425 return;
95f09684
JA
426 if (!blk_mark_rq_complete(rq)) {
427 if (q->softirq_done_fn)
428 __blk_mq_complete_request(rq);
429 else
430 blk_mq_end_io(rq, rq->errors);
431 }
30a91cb4
CH
432}
433EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 434
49f5baa5 435static void blk_mq_start_request(struct request *rq, bool last)
320ae51f
JA
436{
437 struct request_queue *q = rq->q;
438
439 trace_block_rq_issue(q, rq);
440
742ee69b 441 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
442 if (unlikely(blk_bidi_rq(rq)))
443 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 444
320ae51f
JA
445 /*
446 * Just mark start time and set the started bit. Due to memory
447 * ordering, we know we'll see the correct deadline as long as
c22d9d8a
JA
448 * REQ_ATOMIC_STARTED is seen. Use the default queue timeout,
449 * unless one has been set in the request.
320ae51f 450 */
c22d9d8a
JA
451 if (!rq->timeout)
452 rq->deadline = jiffies + q->rq_timeout;
453 else
454 rq->deadline = jiffies + rq->timeout;
87ee7b11
JA
455
456 /*
457 * Mark us as started and clear complete. Complete might have been
458 * set if requeue raced with timeout, which then marked it as
459 * complete. So be sure to clear complete again when we start
460 * the request, otherwise we'll ignore the completion event.
461 */
320ae51f 462 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
87ee7b11 463 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
464
465 if (q->dma_drain_size && blk_rq_bytes(rq)) {
466 /*
467 * Make sure space for the drain appears. We know we can do
468 * this because max_hw_segments has been adjusted to be one
469 * fewer than the device can handle.
470 */
471 rq->nr_phys_segments++;
472 }
473
474 /*
475 * Flag the last request in the series so that drivers know when IO
476 * should be kicked off, if they don't do it on a per-request basis.
477 *
478 * Note: the flag isn't the only condition drivers should do kick off.
479 * If drive is busy, the last request might not have the bit set.
480 */
481 if (last)
482 rq->cmd_flags |= REQ_END;
320ae51f
JA
483}
484
ed0791b2 485static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
486{
487 struct request_queue *q = rq->q;
488
489 trace_block_rq_requeue(q, rq);
490 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
49f5baa5
CH
491
492 rq->cmd_flags &= ~REQ_END;
493
494 if (q->dma_drain_size && blk_rq_bytes(rq))
495 rq->nr_phys_segments--;
320ae51f
JA
496}
497
ed0791b2
CH
498void blk_mq_requeue_request(struct request *rq)
499{
ed0791b2
CH
500 __blk_mq_requeue_request(rq);
501 blk_clear_rq_complete(rq);
502
ed0791b2 503 BUG_ON(blk_queued_rq(rq));
6fca6a61 504 blk_mq_add_to_requeue_list(rq, true);
ed0791b2
CH
505}
506EXPORT_SYMBOL(blk_mq_requeue_request);
507
6fca6a61
CH
508static void blk_mq_requeue_work(struct work_struct *work)
509{
510 struct request_queue *q =
511 container_of(work, struct request_queue, requeue_work);
512 LIST_HEAD(rq_list);
513 struct request *rq, *next;
514 unsigned long flags;
515
516 spin_lock_irqsave(&q->requeue_lock, flags);
517 list_splice_init(&q->requeue_list, &rq_list);
518 spin_unlock_irqrestore(&q->requeue_lock, flags);
519
520 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
521 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
522 continue;
523
524 rq->cmd_flags &= ~REQ_SOFTBARRIER;
525 list_del_init(&rq->queuelist);
526 blk_mq_insert_request(rq, true, false, false);
527 }
528
529 while (!list_empty(&rq_list)) {
530 rq = list_entry(rq_list.next, struct request, queuelist);
531 list_del_init(&rq->queuelist);
532 blk_mq_insert_request(rq, false, false, false);
533 }
534
535 blk_mq_run_queues(q, false);
536}
537
538void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
539{
540 struct request_queue *q = rq->q;
541 unsigned long flags;
542
543 /*
544 * We abuse this flag that is otherwise used by the I/O scheduler to
545 * request head insertation from the workqueue.
546 */
547 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
548
549 spin_lock_irqsave(&q->requeue_lock, flags);
550 if (at_head) {
551 rq->cmd_flags |= REQ_SOFTBARRIER;
552 list_add(&rq->queuelist, &q->requeue_list);
553 } else {
554 list_add_tail(&rq->queuelist, &q->requeue_list);
555 }
556 spin_unlock_irqrestore(&q->requeue_lock, flags);
557}
558EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
559
560void blk_mq_kick_requeue_list(struct request_queue *q)
561{
562 kblockd_schedule_work(&q->requeue_work);
563}
564EXPORT_SYMBOL(blk_mq_kick_requeue_list);
565
24d2f903
CH
566struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
567{
568 return tags->rqs[tag];
569}
570EXPORT_SYMBOL(blk_mq_tag_to_rq);
571
320ae51f
JA
572struct blk_mq_timeout_data {
573 struct blk_mq_hw_ctx *hctx;
574 unsigned long *next;
575 unsigned int *next_set;
576};
577
578static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
579{
580 struct blk_mq_timeout_data *data = __data;
581 struct blk_mq_hw_ctx *hctx = data->hctx;
582 unsigned int tag;
583
584 /* It may not be in flight yet (this is where
585 * the REQ_ATOMIC_STARTED flag comes in). The requests are
586 * statically allocated, so we know it's always safe to access the
587 * memory associated with a bit offset into ->rqs[].
588 */
589 tag = 0;
590 do {
591 struct request *rq;
592
24d2f903
CH
593 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
594 if (tag >= hctx->tags->nr_tags)
320ae51f
JA
595 break;
596
24d2f903
CH
597 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
598 if (rq->q != hctx->queue)
599 continue;
320ae51f
JA
600 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
601 continue;
602
603 blk_rq_check_expired(rq, data->next, data->next_set);
604 } while (1);
605}
606
607static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
608 unsigned long *next,
609 unsigned int *next_set)
610{
611 struct blk_mq_timeout_data data = {
612 .hctx = hctx,
613 .next = next,
614 .next_set = next_set,
615 };
616
617 /*
618 * Ask the tagging code to iterate busy requests, so we can
619 * check them for timeout.
620 */
621 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
622}
623
87ee7b11
JA
624static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
625{
626 struct request_queue *q = rq->q;
627
628 /*
629 * We know that complete is set at this point. If STARTED isn't set
630 * anymore, then the request isn't active and the "timeout" should
631 * just be ignored. This can happen due to the bitflag ordering.
632 * Timeout first checks if STARTED is set, and if it is, assumes
633 * the request is active. But if we race with completion, then
634 * we both flags will get cleared. So check here again, and ignore
635 * a timeout event with a request that isn't active.
636 */
637 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
638 return BLK_EH_NOT_HANDLED;
639
640 if (!q->mq_ops->timeout)
641 return BLK_EH_RESET_TIMER;
642
643 return q->mq_ops->timeout(rq);
644}
645
320ae51f
JA
646static void blk_mq_rq_timer(unsigned long data)
647{
648 struct request_queue *q = (struct request_queue *) data;
649 struct blk_mq_hw_ctx *hctx;
650 unsigned long next = 0;
651 int i, next_set = 0;
652
484b4061
JA
653 queue_for_each_hw_ctx(q, hctx, i) {
654 /*
655 * If not software queues are currently mapped to this
656 * hardware queue, there's nothing to check
657 */
658 if (!hctx->nr_ctx || !hctx->tags)
659 continue;
660
320ae51f 661 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
484b4061 662 }
320ae51f 663
0d2602ca
JA
664 if (next_set) {
665 next = blk_rq_timeout(round_jiffies_up(next));
666 mod_timer(&q->timeout, next);
667 } else {
668 queue_for_each_hw_ctx(q, hctx, i)
669 blk_mq_tag_idle(hctx);
670 }
320ae51f
JA
671}
672
673/*
674 * Reverse check our software queue for entries that we could potentially
675 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
676 * too much time checking for merges.
677 */
678static bool blk_mq_attempt_merge(struct request_queue *q,
679 struct blk_mq_ctx *ctx, struct bio *bio)
680{
681 struct request *rq;
682 int checked = 8;
683
684 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
685 int el_ret;
686
687 if (!checked--)
688 break;
689
690 if (!blk_rq_merge_ok(rq, bio))
691 continue;
692
693 el_ret = blk_try_merge(rq, bio);
694 if (el_ret == ELEVATOR_BACK_MERGE) {
695 if (bio_attempt_back_merge(q, rq, bio)) {
696 ctx->rq_merged++;
697 return true;
698 }
699 break;
700 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
701 if (bio_attempt_front_merge(q, rq, bio)) {
702 ctx->rq_merged++;
703 return true;
704 }
705 break;
706 }
707 }
708
709 return false;
710}
711
1429d7c9
JA
712/*
713 * Process software queues that have been marked busy, splicing them
714 * to the for-dispatch
715 */
716static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
717{
718 struct blk_mq_ctx *ctx;
719 int i;
720
721 for (i = 0; i < hctx->ctx_map.map_size; i++) {
722 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
723 unsigned int off, bit;
724
725 if (!bm->word)
726 continue;
727
728 bit = 0;
729 off = i * hctx->ctx_map.bits_per_word;
730 do {
731 bit = find_next_bit(&bm->word, bm->depth, bit);
732 if (bit >= bm->depth)
733 break;
734
735 ctx = hctx->ctxs[bit + off];
736 clear_bit(bit, &bm->word);
737 spin_lock(&ctx->lock);
738 list_splice_tail_init(&ctx->rq_list, list);
739 spin_unlock(&ctx->lock);
740
741 bit++;
742 } while (1);
743 }
744}
745
320ae51f
JA
746/*
747 * Run this hardware queue, pulling any software queues mapped to it in.
748 * Note that this function currently has various problems around ordering
749 * of IO. In particular, we'd like FIFO behaviour on handling existing
750 * items on the hctx->dispatch list. Ignore that for now.
751 */
752static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
753{
754 struct request_queue *q = hctx->queue;
320ae51f
JA
755 struct request *rq;
756 LIST_HEAD(rq_list);
1429d7c9 757 int queued;
320ae51f 758
fd1270d5 759 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 760
5d12f905 761 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
762 return;
763
764 hctx->run++;
765
766 /*
767 * Touch any software queue that has pending entries.
768 */
1429d7c9 769 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
770
771 /*
772 * If we have previous entries on our dispatch list, grab them
773 * and stuff them at the front for more fair dispatch.
774 */
775 if (!list_empty_careful(&hctx->dispatch)) {
776 spin_lock(&hctx->lock);
777 if (!list_empty(&hctx->dispatch))
778 list_splice_init(&hctx->dispatch, &rq_list);
779 spin_unlock(&hctx->lock);
780 }
781
320ae51f
JA
782 /*
783 * Now process all the entries, sending them to the driver.
784 */
1429d7c9 785 queued = 0;
320ae51f
JA
786 while (!list_empty(&rq_list)) {
787 int ret;
788
789 rq = list_first_entry(&rq_list, struct request, queuelist);
790 list_del_init(&rq->queuelist);
320ae51f 791
49f5baa5 792 blk_mq_start_request(rq, list_empty(&rq_list));
320ae51f
JA
793
794 ret = q->mq_ops->queue_rq(hctx, rq);
795 switch (ret) {
796 case BLK_MQ_RQ_QUEUE_OK:
797 queued++;
798 continue;
799 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 800 list_add(&rq->queuelist, &rq_list);
ed0791b2 801 __blk_mq_requeue_request(rq);
320ae51f
JA
802 break;
803 default:
804 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 805 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 806 rq->errors = -EIO;
320ae51f
JA
807 blk_mq_end_io(rq, rq->errors);
808 break;
809 }
810
811 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
812 break;
813 }
814
815 if (!queued)
816 hctx->dispatched[0]++;
817 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
818 hctx->dispatched[ilog2(queued) + 1]++;
819
820 /*
821 * Any items that need requeuing? Stuff them into hctx->dispatch,
822 * that is where we will continue on next queue run.
823 */
824 if (!list_empty(&rq_list)) {
825 spin_lock(&hctx->lock);
826 list_splice(&rq_list, &hctx->dispatch);
827 spin_unlock(&hctx->lock);
828 }
829}
830
506e931f
JA
831/*
832 * It'd be great if the workqueue API had a way to pass
833 * in a mask and had some smarts for more clever placement.
834 * For now we just round-robin here, switching for every
835 * BLK_MQ_CPU_WORK_BATCH queued items.
836 */
837static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
838{
839 int cpu = hctx->next_cpu;
840
841 if (--hctx->next_cpu_batch <= 0) {
842 int next_cpu;
843
844 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
845 if (next_cpu >= nr_cpu_ids)
846 next_cpu = cpumask_first(hctx->cpumask);
847
848 hctx->next_cpu = next_cpu;
849 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
850 }
851
852 return cpu;
853}
854
320ae51f
JA
855void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
856{
5d12f905 857 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
858 return;
859
e4043dcf 860 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
320ae51f 861 __blk_mq_run_hw_queue(hctx);
e4043dcf 862 else if (hctx->queue->nr_hw_queues == 1)
70f4db63 863 kblockd_schedule_delayed_work(&hctx->run_work, 0);
e4043dcf
JA
864 else {
865 unsigned int cpu;
866
506e931f 867 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63 868 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
e4043dcf 869 }
320ae51f
JA
870}
871
872void blk_mq_run_queues(struct request_queue *q, bool async)
873{
874 struct blk_mq_hw_ctx *hctx;
875 int i;
876
877 queue_for_each_hw_ctx(q, hctx, i) {
878 if ((!blk_mq_hctx_has_pending(hctx) &&
879 list_empty_careful(&hctx->dispatch)) ||
5d12f905 880 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
881 continue;
882
e4043dcf 883 preempt_disable();
320ae51f 884 blk_mq_run_hw_queue(hctx, async);
e4043dcf 885 preempt_enable();
320ae51f
JA
886 }
887}
888EXPORT_SYMBOL(blk_mq_run_queues);
889
890void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
891{
70f4db63
CH
892 cancel_delayed_work(&hctx->run_work);
893 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
894 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
895}
896EXPORT_SYMBOL(blk_mq_stop_hw_queue);
897
280d45f6
CH
898void blk_mq_stop_hw_queues(struct request_queue *q)
899{
900 struct blk_mq_hw_ctx *hctx;
901 int i;
902
903 queue_for_each_hw_ctx(q, hctx, i)
904 blk_mq_stop_hw_queue(hctx);
905}
906EXPORT_SYMBOL(blk_mq_stop_hw_queues);
907
320ae51f
JA
908void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
909{
910 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf
JA
911
912 preempt_disable();
320ae51f 913 __blk_mq_run_hw_queue(hctx);
e4043dcf 914 preempt_enable();
320ae51f
JA
915}
916EXPORT_SYMBOL(blk_mq_start_hw_queue);
917
2f268556
CH
918void blk_mq_start_hw_queues(struct request_queue *q)
919{
920 struct blk_mq_hw_ctx *hctx;
921 int i;
922
923 queue_for_each_hw_ctx(q, hctx, i)
924 blk_mq_start_hw_queue(hctx);
925}
926EXPORT_SYMBOL(blk_mq_start_hw_queues);
927
928
1b4a3258 929void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
930{
931 struct blk_mq_hw_ctx *hctx;
932 int i;
933
934 queue_for_each_hw_ctx(q, hctx, i) {
935 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
936 continue;
937
938 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 939 preempt_disable();
1b4a3258 940 blk_mq_run_hw_queue(hctx, async);
e4043dcf 941 preempt_enable();
320ae51f
JA
942 }
943}
944EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
945
70f4db63 946static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
947{
948 struct blk_mq_hw_ctx *hctx;
949
70f4db63 950 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 951
320ae51f
JA
952 __blk_mq_run_hw_queue(hctx);
953}
954
70f4db63
CH
955static void blk_mq_delay_work_fn(struct work_struct *work)
956{
957 struct blk_mq_hw_ctx *hctx;
958
959 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
960
961 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
962 __blk_mq_run_hw_queue(hctx);
963}
964
965void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
966{
967 unsigned long tmo = msecs_to_jiffies(msecs);
968
969 if (hctx->queue->nr_hw_queues == 1)
970 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
971 else {
972 unsigned int cpu;
973
506e931f 974 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63
CH
975 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
976 }
977}
978EXPORT_SYMBOL(blk_mq_delay_queue);
979
320ae51f 980static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 981 struct request *rq, bool at_head)
320ae51f
JA
982{
983 struct blk_mq_ctx *ctx = rq->mq_ctx;
984
01b983c9
JA
985 trace_block_rq_insert(hctx->queue, rq);
986
72a0a36e
CH
987 if (at_head)
988 list_add(&rq->queuelist, &ctx->rq_list);
989 else
990 list_add_tail(&rq->queuelist, &ctx->rq_list);
4bb659b1 991
320ae51f
JA
992 blk_mq_hctx_mark_pending(hctx, ctx);
993
994 /*
995 * We do this early, to ensure we are on the right CPU.
996 */
87ee7b11 997 blk_add_timer(rq);
320ae51f
JA
998}
999
eeabc850
CH
1000void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1001 bool async)
320ae51f 1002{
eeabc850 1003 struct request_queue *q = rq->q;
320ae51f 1004 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
1005 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1006
1007 current_ctx = blk_mq_get_ctx(q);
1008 if (!cpu_online(ctx->cpu))
1009 rq->mq_ctx = ctx = current_ctx;
320ae51f 1010
320ae51f
JA
1011 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1012
eeabc850
CH
1013 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
1014 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
320ae51f
JA
1015 blk_insert_flush(rq);
1016 } else {
320ae51f 1017 spin_lock(&ctx->lock);
72a0a36e 1018 __blk_mq_insert_request(hctx, rq, at_head);
320ae51f 1019 spin_unlock(&ctx->lock);
320ae51f
JA
1020 }
1021
320ae51f
JA
1022 if (run_queue)
1023 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
1024
1025 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1026}
1027
1028static void blk_mq_insert_requests(struct request_queue *q,
1029 struct blk_mq_ctx *ctx,
1030 struct list_head *list,
1031 int depth,
1032 bool from_schedule)
1033
1034{
1035 struct blk_mq_hw_ctx *hctx;
1036 struct blk_mq_ctx *current_ctx;
1037
1038 trace_block_unplug(q, depth, !from_schedule);
1039
1040 current_ctx = blk_mq_get_ctx(q);
1041
1042 if (!cpu_online(ctx->cpu))
1043 ctx = current_ctx;
1044 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1045
1046 /*
1047 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1048 * offline now
1049 */
1050 spin_lock(&ctx->lock);
1051 while (!list_empty(list)) {
1052 struct request *rq;
1053
1054 rq = list_first_entry(list, struct request, queuelist);
1055 list_del_init(&rq->queuelist);
1056 rq->mq_ctx = ctx;
72a0a36e 1057 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
1058 }
1059 spin_unlock(&ctx->lock);
1060
320ae51f 1061 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 1062 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1063}
1064
1065static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1066{
1067 struct request *rqa = container_of(a, struct request, queuelist);
1068 struct request *rqb = container_of(b, struct request, queuelist);
1069
1070 return !(rqa->mq_ctx < rqb->mq_ctx ||
1071 (rqa->mq_ctx == rqb->mq_ctx &&
1072 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1073}
1074
1075void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1076{
1077 struct blk_mq_ctx *this_ctx;
1078 struct request_queue *this_q;
1079 struct request *rq;
1080 LIST_HEAD(list);
1081 LIST_HEAD(ctx_list);
1082 unsigned int depth;
1083
1084 list_splice_init(&plug->mq_list, &list);
1085
1086 list_sort(NULL, &list, plug_ctx_cmp);
1087
1088 this_q = NULL;
1089 this_ctx = NULL;
1090 depth = 0;
1091
1092 while (!list_empty(&list)) {
1093 rq = list_entry_rq(list.next);
1094 list_del_init(&rq->queuelist);
1095 BUG_ON(!rq->q);
1096 if (rq->mq_ctx != this_ctx) {
1097 if (this_ctx) {
1098 blk_mq_insert_requests(this_q, this_ctx,
1099 &ctx_list, depth,
1100 from_schedule);
1101 }
1102
1103 this_ctx = rq->mq_ctx;
1104 this_q = rq->q;
1105 depth = 0;
1106 }
1107
1108 depth++;
1109 list_add_tail(&rq->queuelist, &ctx_list);
1110 }
1111
1112 /*
1113 * If 'this_ctx' is set, we know we have entries to complete
1114 * on 'ctx_list'. Do those.
1115 */
1116 if (this_ctx) {
1117 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1118 from_schedule);
1119 }
1120}
1121
1122static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1123{
1124 init_request_from_bio(rq, bio);
1125 blk_account_io_start(rq, 1);
1126}
1127
07068d5b
JA
1128static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1129 struct blk_mq_ctx *ctx,
1130 struct request *rq, struct bio *bio)
320ae51f 1131{
07068d5b 1132 struct request_queue *q = hctx->queue;
320ae51f 1133
07068d5b
JA
1134 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
1135 blk_mq_bio_to_request(rq, bio);
1136 spin_lock(&ctx->lock);
1137insert_rq:
1138 __blk_mq_insert_request(hctx, rq, false);
1139 spin_unlock(&ctx->lock);
1140 return false;
1141 } else {
1142 spin_lock(&ctx->lock);
1143 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1144 blk_mq_bio_to_request(rq, bio);
1145 goto insert_rq;
1146 }
320ae51f 1147
07068d5b
JA
1148 spin_unlock(&ctx->lock);
1149 __blk_mq_free_request(hctx, ctx, rq);
1150 return true;
14ec77f3 1151 }
07068d5b 1152}
14ec77f3 1153
07068d5b
JA
1154struct blk_map_ctx {
1155 struct blk_mq_hw_ctx *hctx;
1156 struct blk_mq_ctx *ctx;
1157};
1158
1159static struct request *blk_mq_map_request(struct request_queue *q,
1160 struct bio *bio,
1161 struct blk_map_ctx *data)
1162{
1163 struct blk_mq_hw_ctx *hctx;
1164 struct blk_mq_ctx *ctx;
1165 struct request *rq;
1166 int rw = bio_data_dir(bio);
320ae51f 1167
07068d5b 1168 if (unlikely(blk_mq_queue_enter(q))) {
320ae51f 1169 bio_endio(bio, -EIO);
07068d5b 1170 return NULL;
320ae51f
JA
1171 }
1172
1173 ctx = blk_mq_get_ctx(q);
1174 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1175
07068d5b 1176 if (rw_is_sync(bio->bi_rw))
27fbf4e8 1177 rw |= REQ_SYNC;
07068d5b 1178
320ae51f 1179 trace_block_getrq(q, bio, rw);
5dee8577
CH
1180 rq = __blk_mq_alloc_request(q, hctx, ctx, rw, GFP_ATOMIC, false);
1181 if (unlikely(!rq)) {
320ae51f
JA
1182 blk_mq_put_ctx(ctx);
1183 trace_block_sleeprq(q, bio, rw);
18741986
CH
1184 rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
1185 false);
320ae51f
JA
1186 ctx = rq->mq_ctx;
1187 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1188 }
1189
1190 hctx->queued++;
07068d5b
JA
1191 data->hctx = hctx;
1192 data->ctx = ctx;
1193 return rq;
1194}
1195
1196/*
1197 * Multiple hardware queue variant. This will not use per-process plugs,
1198 * but will attempt to bypass the hctx queueing if we can go straight to
1199 * hardware for SYNC IO.
1200 */
1201static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1202{
1203 const int is_sync = rw_is_sync(bio->bi_rw);
1204 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1205 struct blk_map_ctx data;
1206 struct request *rq;
1207
1208 blk_queue_bounce(q, &bio);
1209
1210 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1211 bio_endio(bio, -EIO);
1212 return;
1213 }
1214
1215 rq = blk_mq_map_request(q, bio, &data);
1216 if (unlikely(!rq))
1217 return;
1218
1219 if (unlikely(is_flush_fua)) {
1220 blk_mq_bio_to_request(rq, bio);
1221 blk_insert_flush(rq);
1222 goto run_queue;
1223 }
1224
1225 if (is_sync) {
1226 int ret;
1227
1228 blk_mq_bio_to_request(rq, bio);
1229 blk_mq_start_request(rq, true);
1230
1231 /*
1232 * For OK queue, we are done. For error, kill it. Any other
1233 * error (busy), just add it to our list as we previously
1234 * would have done
1235 */
1236 ret = q->mq_ops->queue_rq(data.hctx, rq);
1237 if (ret == BLK_MQ_RQ_QUEUE_OK)
1238 goto done;
1239 else {
1240 __blk_mq_requeue_request(rq);
1241
1242 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1243 rq->errors = -EIO;
1244 blk_mq_end_io(rq, rq->errors);
1245 goto done;
1246 }
1247 }
1248 }
1249
1250 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1251 /*
1252 * For a SYNC request, send it to the hardware immediately. For
1253 * an ASYNC request, just ensure that we run it later on. The
1254 * latter allows for merging opportunities and more efficient
1255 * dispatching.
1256 */
1257run_queue:
1258 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1259 }
1260done:
1261 blk_mq_put_ctx(data.ctx);
1262}
1263
1264/*
1265 * Single hardware queue variant. This will attempt to use any per-process
1266 * plug for merging and IO deferral.
1267 */
1268static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1269{
1270 const int is_sync = rw_is_sync(bio->bi_rw);
1271 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1272 unsigned int use_plug, request_count = 0;
1273 struct blk_map_ctx data;
1274 struct request *rq;
1275
1276 /*
1277 * If we have multiple hardware queues, just go directly to
1278 * one of those for sync IO.
1279 */
1280 use_plug = !is_flush_fua && !is_sync;
1281
1282 blk_queue_bounce(q, &bio);
1283
1284 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1285 bio_endio(bio, -EIO);
1286 return;
1287 }
1288
1289 if (use_plug && !blk_queue_nomerges(q) &&
1290 blk_attempt_plug_merge(q, bio, &request_count))
1291 return;
1292
1293 rq = blk_mq_map_request(q, bio, &data);
320ae51f
JA
1294
1295 if (unlikely(is_flush_fua)) {
1296 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1297 blk_insert_flush(rq);
1298 goto run_queue;
1299 }
1300
1301 /*
1302 * A task plug currently exists. Since this is completely lockless,
1303 * utilize that to temporarily store requests until the task is
1304 * either done or scheduled away.
1305 */
1306 if (use_plug) {
1307 struct blk_plug *plug = current->plug;
1308
1309 if (plug) {
1310 blk_mq_bio_to_request(rq, bio);
92f399c7 1311 if (list_empty(&plug->mq_list))
320ae51f
JA
1312 trace_block_plug(q);
1313 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1314 blk_flush_plug_list(plug, false);
1315 trace_block_plug(q);
1316 }
1317 list_add_tail(&rq->queuelist, &plug->mq_list);
07068d5b 1318 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1319 return;
1320 }
1321 }
1322
07068d5b
JA
1323 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1324 /*
1325 * For a SYNC request, send it to the hardware immediately. For
1326 * an ASYNC request, just ensure that we run it later on. The
1327 * latter allows for merging opportunities and more efficient
1328 * dispatching.
1329 */
1330run_queue:
1331 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1332 }
1333
07068d5b 1334 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1335}
1336
1337/*
1338 * Default mapping to a software queue, since we use one per CPU.
1339 */
1340struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1341{
1342 return q->queue_hw_ctx[q->mq_map[cpu]];
1343}
1344EXPORT_SYMBOL(blk_mq_map_queue);
1345
24d2f903 1346struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *set,
f14bbe77
JA
1347 unsigned int hctx_index,
1348 int node)
320ae51f 1349{
f14bbe77 1350 return kzalloc_node(sizeof(struct blk_mq_hw_ctx), GFP_KERNEL, node);
320ae51f
JA
1351}
1352EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1353
1354void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1355 unsigned int hctx_index)
1356{
1357 kfree(hctx);
1358}
1359EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1360
24d2f903
CH
1361static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1362 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1363{
e9b267d9 1364 struct page *page;
320ae51f 1365
24d2f903 1366 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1367 int i;
320ae51f 1368
24d2f903
CH
1369 for (i = 0; i < tags->nr_tags; i++) {
1370 if (!tags->rqs[i])
e9b267d9 1371 continue;
24d2f903
CH
1372 set->ops->exit_request(set->driver_data, tags->rqs[i],
1373 hctx_idx, i);
e9b267d9 1374 }
320ae51f 1375 }
320ae51f 1376
24d2f903
CH
1377 while (!list_empty(&tags->page_list)) {
1378 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1379 list_del_init(&page->lru);
320ae51f
JA
1380 __free_pages(page, page->private);
1381 }
1382
24d2f903 1383 kfree(tags->rqs);
320ae51f 1384
24d2f903 1385 blk_mq_free_tags(tags);
320ae51f
JA
1386}
1387
1388static size_t order_to_size(unsigned int order)
1389{
4ca08500 1390 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1391}
1392
24d2f903
CH
1393static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1394 unsigned int hctx_idx)
320ae51f 1395{
24d2f903 1396 struct blk_mq_tags *tags;
320ae51f
JA
1397 unsigned int i, j, entries_per_page, max_order = 4;
1398 size_t rq_size, left;
1399
24d2f903
CH
1400 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1401 set->numa_node);
1402 if (!tags)
1403 return NULL;
320ae51f 1404
24d2f903
CH
1405 INIT_LIST_HEAD(&tags->page_list);
1406
1407 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1408 GFP_KERNEL, set->numa_node);
1409 if (!tags->rqs) {
1410 blk_mq_free_tags(tags);
1411 return NULL;
1412 }
320ae51f
JA
1413
1414 /*
1415 * rq_size is the size of the request plus driver payload, rounded
1416 * to the cacheline size
1417 */
24d2f903 1418 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1419 cache_line_size());
24d2f903 1420 left = rq_size * set->queue_depth;
320ae51f 1421
24d2f903 1422 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1423 int this_order = max_order;
1424 struct page *page;
1425 int to_do;
1426 void *p;
1427
1428 while (left < order_to_size(this_order - 1) && this_order)
1429 this_order--;
1430
1431 do {
24d2f903
CH
1432 page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1433 this_order);
320ae51f
JA
1434 if (page)
1435 break;
1436 if (!this_order--)
1437 break;
1438 if (order_to_size(this_order) < rq_size)
1439 break;
1440 } while (1);
1441
1442 if (!page)
24d2f903 1443 goto fail;
320ae51f
JA
1444
1445 page->private = this_order;
24d2f903 1446 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1447
1448 p = page_address(page);
1449 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1450 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1451 left -= to_do * rq_size;
1452 for (j = 0; j < to_do; j++) {
24d2f903
CH
1453 tags->rqs[i] = p;
1454 if (set->ops->init_request) {
1455 if (set->ops->init_request(set->driver_data,
1456 tags->rqs[i], hctx_idx, i,
1457 set->numa_node))
1458 goto fail;
e9b267d9
CH
1459 }
1460
320ae51f
JA
1461 p += rq_size;
1462 i++;
1463 }
1464 }
1465
24d2f903 1466 return tags;
320ae51f 1467
24d2f903
CH
1468fail:
1469 pr_warn("%s: failed to allocate requests\n", __func__);
1470 blk_mq_free_rq_map(set, tags, hctx_idx);
1471 return NULL;
320ae51f
JA
1472}
1473
1429d7c9
JA
1474static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1475{
1476 kfree(bitmap->map);
1477}
1478
1479static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1480{
1481 unsigned int bpw = 8, total, num_maps, i;
1482
1483 bitmap->bits_per_word = bpw;
1484
1485 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1486 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1487 GFP_KERNEL, node);
1488 if (!bitmap->map)
1489 return -ENOMEM;
1490
1491 bitmap->map_size = num_maps;
1492
1493 total = nr_cpu_ids;
1494 for (i = 0; i < num_maps; i++) {
1495 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1496 total -= bitmap->map[i].depth;
1497 }
1498
1499 return 0;
1500}
1501
484b4061
JA
1502static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1503{
1504 struct request_queue *q = hctx->queue;
1505 struct blk_mq_ctx *ctx;
1506 LIST_HEAD(tmp);
1507
1508 /*
1509 * Move ctx entries to new CPU, if this one is going away.
1510 */
1511 ctx = __blk_mq_get_ctx(q, cpu);
1512
1513 spin_lock(&ctx->lock);
1514 if (!list_empty(&ctx->rq_list)) {
1515 list_splice_init(&ctx->rq_list, &tmp);
1516 blk_mq_hctx_clear_pending(hctx, ctx);
1517 }
1518 spin_unlock(&ctx->lock);
1519
1520 if (list_empty(&tmp))
1521 return NOTIFY_OK;
1522
1523 ctx = blk_mq_get_ctx(q);
1524 spin_lock(&ctx->lock);
1525
1526 while (!list_empty(&tmp)) {
1527 struct request *rq;
1528
1529 rq = list_first_entry(&tmp, struct request, queuelist);
1530 rq->mq_ctx = ctx;
1531 list_move_tail(&rq->queuelist, &ctx->rq_list);
1532 }
1533
1534 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1535 blk_mq_hctx_mark_pending(hctx, ctx);
1536
1537 spin_unlock(&ctx->lock);
1538
1539 blk_mq_run_hw_queue(hctx, true);
1540 blk_mq_put_ctx(ctx);
1541 return NOTIFY_OK;
1542}
1543
1544static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1545{
1546 struct request_queue *q = hctx->queue;
1547 struct blk_mq_tag_set *set = q->tag_set;
1548
1549 if (set->tags[hctx->queue_num])
1550 return NOTIFY_OK;
1551
1552 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1553 if (!set->tags[hctx->queue_num])
1554 return NOTIFY_STOP;
1555
1556 hctx->tags = set->tags[hctx->queue_num];
1557 return NOTIFY_OK;
1558}
1559
1560static int blk_mq_hctx_notify(void *data, unsigned long action,
1561 unsigned int cpu)
1562{
1563 struct blk_mq_hw_ctx *hctx = data;
1564
1565 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1566 return blk_mq_hctx_cpu_offline(hctx, cpu);
1567 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1568 return blk_mq_hctx_cpu_online(hctx, cpu);
1569
1570 return NOTIFY_OK;
1571}
1572
624dbe47
ML
1573static void blk_mq_exit_hw_queues(struct request_queue *q,
1574 struct blk_mq_tag_set *set, int nr_queue)
1575{
1576 struct blk_mq_hw_ctx *hctx;
1577 unsigned int i;
1578
1579 queue_for_each_hw_ctx(q, hctx, i) {
1580 if (i == nr_queue)
1581 break;
1582
1583 if (set->ops->exit_hctx)
1584 set->ops->exit_hctx(hctx, i);
1585
1586 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1587 kfree(hctx->ctxs);
1588 blk_mq_free_bitmap(&hctx->ctx_map);
1589 }
1590
1591}
1592
1593static void blk_mq_free_hw_queues(struct request_queue *q,
1594 struct blk_mq_tag_set *set)
1595{
1596 struct blk_mq_hw_ctx *hctx;
1597 unsigned int i;
1598
1599 queue_for_each_hw_ctx(q, hctx, i) {
1600 free_cpumask_var(hctx->cpumask);
1601 set->ops->free_hctx(hctx, i);
1602 }
1603}
1604
320ae51f 1605static int blk_mq_init_hw_queues(struct request_queue *q,
24d2f903 1606 struct blk_mq_tag_set *set)
320ae51f
JA
1607{
1608 struct blk_mq_hw_ctx *hctx;
624dbe47 1609 unsigned int i;
320ae51f
JA
1610
1611 /*
1612 * Initialize hardware queues
1613 */
1614 queue_for_each_hw_ctx(q, hctx, i) {
320ae51f
JA
1615 int node;
1616
1617 node = hctx->numa_node;
1618 if (node == NUMA_NO_NODE)
24d2f903 1619 node = hctx->numa_node = set->numa_node;
320ae51f 1620
70f4db63
CH
1621 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1622 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
320ae51f
JA
1623 spin_lock_init(&hctx->lock);
1624 INIT_LIST_HEAD(&hctx->dispatch);
1625 hctx->queue = q;
1626 hctx->queue_num = i;
24d2f903
CH
1627 hctx->flags = set->flags;
1628 hctx->cmd_size = set->cmd_size;
320ae51f
JA
1629
1630 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1631 blk_mq_hctx_notify, hctx);
1632 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1633
24d2f903 1634 hctx->tags = set->tags[i];
320ae51f
JA
1635
1636 /*
1637 * Allocate space for all possible cpus to avoid allocation in
1638 * runtime
1639 */
1640 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1641 GFP_KERNEL, node);
1642 if (!hctx->ctxs)
1643 break;
1644
1429d7c9 1645 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
320ae51f
JA
1646 break;
1647
320ae51f
JA
1648 hctx->nr_ctx = 0;
1649
24d2f903
CH
1650 if (set->ops->init_hctx &&
1651 set->ops->init_hctx(hctx, set->driver_data, i))
320ae51f
JA
1652 break;
1653 }
1654
1655 if (i == q->nr_hw_queues)
1656 return 0;
1657
1658 /*
1659 * Init failed
1660 */
624dbe47 1661 blk_mq_exit_hw_queues(q, set, i);
320ae51f
JA
1662
1663 return 1;
1664}
1665
1666static void blk_mq_init_cpu_queues(struct request_queue *q,
1667 unsigned int nr_hw_queues)
1668{
1669 unsigned int i;
1670
1671 for_each_possible_cpu(i) {
1672 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1673 struct blk_mq_hw_ctx *hctx;
1674
1675 memset(__ctx, 0, sizeof(*__ctx));
1676 __ctx->cpu = i;
1677 spin_lock_init(&__ctx->lock);
1678 INIT_LIST_HEAD(&__ctx->rq_list);
1679 __ctx->queue = q;
1680
1681 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1682 if (!cpu_online(i))
1683 continue;
1684
e4043dcf
JA
1685 hctx = q->mq_ops->map_queue(q, i);
1686 cpumask_set_cpu(i, hctx->cpumask);
1687 hctx->nr_ctx++;
1688
320ae51f
JA
1689 /*
1690 * Set local node, IFF we have more than one hw queue. If
1691 * not, we remain on the home node of the device
1692 */
1693 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1694 hctx->numa_node = cpu_to_node(i);
1695 }
1696}
1697
1698static void blk_mq_map_swqueue(struct request_queue *q)
1699{
1700 unsigned int i;
1701 struct blk_mq_hw_ctx *hctx;
1702 struct blk_mq_ctx *ctx;
1703
1704 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1705 cpumask_clear(hctx->cpumask);
320ae51f
JA
1706 hctx->nr_ctx = 0;
1707 }
1708
1709 /*
1710 * Map software to hardware queues
1711 */
1712 queue_for_each_ctx(q, ctx, i) {
1713 /* If the cpu isn't online, the cpu is mapped to first hctx */
e4043dcf
JA
1714 if (!cpu_online(i))
1715 continue;
1716
320ae51f 1717 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1718 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1719 ctx->index_hw = hctx->nr_ctx;
1720 hctx->ctxs[hctx->nr_ctx++] = ctx;
1721 }
506e931f
JA
1722
1723 queue_for_each_hw_ctx(q, hctx, i) {
484b4061
JA
1724 /*
1725 * If not software queues are mapped to this hardware queue,
1726 * disable it and free the request entries
1727 */
1728 if (!hctx->nr_ctx) {
1729 struct blk_mq_tag_set *set = q->tag_set;
1730
1731 if (set->tags[i]) {
1732 blk_mq_free_rq_map(set, set->tags[i], i);
1733 set->tags[i] = NULL;
1734 hctx->tags = NULL;
1735 }
1736 continue;
1737 }
1738
1739 /*
1740 * Initialize batch roundrobin counts
1741 */
506e931f
JA
1742 hctx->next_cpu = cpumask_first(hctx->cpumask);
1743 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1744 }
320ae51f
JA
1745}
1746
0d2602ca
JA
1747static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1748{
1749 struct blk_mq_hw_ctx *hctx;
1750 struct request_queue *q;
1751 bool shared;
1752 int i;
1753
1754 if (set->tag_list.next == set->tag_list.prev)
1755 shared = false;
1756 else
1757 shared = true;
1758
1759 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1760 blk_mq_freeze_queue(q);
1761
1762 queue_for_each_hw_ctx(q, hctx, i) {
1763 if (shared)
1764 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1765 else
1766 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1767 }
1768 blk_mq_unfreeze_queue(q);
1769 }
1770}
1771
1772static void blk_mq_del_queue_tag_set(struct request_queue *q)
1773{
1774 struct blk_mq_tag_set *set = q->tag_set;
1775
1776 blk_mq_freeze_queue(q);
1777
1778 mutex_lock(&set->tag_list_lock);
1779 list_del_init(&q->tag_set_list);
1780 blk_mq_update_tag_set_depth(set);
1781 mutex_unlock(&set->tag_list_lock);
1782
1783 blk_mq_unfreeze_queue(q);
1784}
1785
1786static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1787 struct request_queue *q)
1788{
1789 q->tag_set = set;
1790
1791 mutex_lock(&set->tag_list_lock);
1792 list_add_tail(&q->tag_set_list, &set->tag_list);
1793 blk_mq_update_tag_set_depth(set);
1794 mutex_unlock(&set->tag_list_lock);
1795}
1796
24d2f903 1797struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
320ae51f
JA
1798{
1799 struct blk_mq_hw_ctx **hctxs;
1800 struct blk_mq_ctx *ctx;
1801 struct request_queue *q;
f14bbe77 1802 unsigned int *map;
320ae51f
JA
1803 int i;
1804
320ae51f
JA
1805 ctx = alloc_percpu(struct blk_mq_ctx);
1806 if (!ctx)
1807 return ERR_PTR(-ENOMEM);
1808
24d2f903
CH
1809 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1810 set->numa_node);
320ae51f
JA
1811
1812 if (!hctxs)
1813 goto err_percpu;
1814
f14bbe77
JA
1815 map = blk_mq_make_queue_map(set);
1816 if (!map)
1817 goto err_map;
1818
24d2f903 1819 for (i = 0; i < set->nr_hw_queues; i++) {
f14bbe77
JA
1820 int node = blk_mq_hw_queue_to_node(map, i);
1821
1822 hctxs[i] = set->ops->alloc_hctx(set, i, node);
320ae51f
JA
1823 if (!hctxs[i])
1824 goto err_hctxs;
1825
e4043dcf
JA
1826 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1827 goto err_hctxs;
1828
0d2602ca 1829 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 1830 hctxs[i]->numa_node = node;
320ae51f
JA
1831 hctxs[i]->queue_num = i;
1832 }
1833
24d2f903 1834 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
320ae51f
JA
1835 if (!q)
1836 goto err_hctxs;
1837
3d2936f4
ML
1838 if (percpu_counter_init(&q->mq_usage_counter, 0))
1839 goto err_map;
1840
320ae51f
JA
1841 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1842 blk_queue_rq_timeout(q, 30000);
1843
1844 q->nr_queues = nr_cpu_ids;
24d2f903 1845 q->nr_hw_queues = set->nr_hw_queues;
f14bbe77 1846 q->mq_map = map;
320ae51f
JA
1847
1848 q->queue_ctx = ctx;
1849 q->queue_hw_ctx = hctxs;
1850
24d2f903 1851 q->mq_ops = set->ops;
94eddfbe 1852 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1853
1be036e9
CH
1854 q->sg_reserved_size = INT_MAX;
1855
6fca6a61
CH
1856 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1857 INIT_LIST_HEAD(&q->requeue_list);
1858 spin_lock_init(&q->requeue_lock);
1859
07068d5b
JA
1860 if (q->nr_hw_queues > 1)
1861 blk_queue_make_request(q, blk_mq_make_request);
1862 else
1863 blk_queue_make_request(q, blk_sq_make_request);
1864
87ee7b11 1865 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
24d2f903
CH
1866 if (set->timeout)
1867 blk_queue_rq_timeout(q, set->timeout);
320ae51f 1868
eba71768
JA
1869 /*
1870 * Do this after blk_queue_make_request() overrides it...
1871 */
1872 q->nr_requests = set->queue_depth;
1873
24d2f903
CH
1874 if (set->ops->complete)
1875 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 1876
320ae51f 1877 blk_mq_init_flush(q);
24d2f903 1878 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 1879
24d2f903
CH
1880 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1881 set->cmd_size, cache_line_size()),
1882 GFP_KERNEL);
18741986 1883 if (!q->flush_rq)
320ae51f
JA
1884 goto err_hw;
1885
24d2f903 1886 if (blk_mq_init_hw_queues(q, set))
18741986
CH
1887 goto err_flush_rq;
1888
320ae51f
JA
1889 mutex_lock(&all_q_mutex);
1890 list_add_tail(&q->all_q_node, &all_q_list);
1891 mutex_unlock(&all_q_mutex);
1892
0d2602ca
JA
1893 blk_mq_add_queue_tag_set(set, q);
1894
484b4061
JA
1895 blk_mq_map_swqueue(q);
1896
320ae51f 1897 return q;
18741986
CH
1898
1899err_flush_rq:
1900 kfree(q->flush_rq);
320ae51f 1901err_hw:
320ae51f
JA
1902 blk_cleanup_queue(q);
1903err_hctxs:
f14bbe77 1904 kfree(map);
24d2f903 1905 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
1906 if (!hctxs[i])
1907 break;
e4043dcf 1908 free_cpumask_var(hctxs[i]->cpumask);
24d2f903 1909 set->ops->free_hctx(hctxs[i], i);
320ae51f 1910 }
f14bbe77 1911err_map:
320ae51f
JA
1912 kfree(hctxs);
1913err_percpu:
1914 free_percpu(ctx);
1915 return ERR_PTR(-ENOMEM);
1916}
1917EXPORT_SYMBOL(blk_mq_init_queue);
1918
1919void blk_mq_free_queue(struct request_queue *q)
1920{
624dbe47 1921 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1922
0d2602ca
JA
1923 blk_mq_del_queue_tag_set(q);
1924
624dbe47
ML
1925 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1926 blk_mq_free_hw_queues(q, set);
320ae51f 1927
3d2936f4
ML
1928 percpu_counter_destroy(&q->mq_usage_counter);
1929
320ae51f
JA
1930 free_percpu(q->queue_ctx);
1931 kfree(q->queue_hw_ctx);
1932 kfree(q->mq_map);
1933
1934 q->queue_ctx = NULL;
1935 q->queue_hw_ctx = NULL;
1936 q->mq_map = NULL;
1937
1938 mutex_lock(&all_q_mutex);
1939 list_del_init(&q->all_q_node);
1940 mutex_unlock(&all_q_mutex);
1941}
320ae51f
JA
1942
1943/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1944static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1945{
1946 blk_mq_freeze_queue(q);
1947
1948 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1949
1950 /*
1951 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1952 * we should change hctx numa_node according to new topology (this
1953 * involves free and re-allocate memory, worthy doing?)
1954 */
1955
1956 blk_mq_map_swqueue(q);
1957
1958 blk_mq_unfreeze_queue(q);
1959}
1960
f618ef7c
PG
1961static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1962 unsigned long action, void *hcpu)
320ae51f
JA
1963{
1964 struct request_queue *q;
1965
1966 /*
9fccfed8
JA
1967 * Before new mappings are established, hotadded cpu might already
1968 * start handling requests. This doesn't break anything as we map
1969 * offline CPUs to first hardware queue. We will re-init the queue
1970 * below to get optimal settings.
320ae51f
JA
1971 */
1972 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1973 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1974 return NOTIFY_OK;
1975
1976 mutex_lock(&all_q_mutex);
1977 list_for_each_entry(q, &all_q_list, all_q_node)
1978 blk_mq_queue_reinit(q);
1979 mutex_unlock(&all_q_mutex);
1980 return NOTIFY_OK;
1981}
1982
24d2f903
CH
1983int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1984{
1985 int i;
1986
1987 if (!set->nr_hw_queues)
1988 return -EINVAL;
1989 if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
1990 return -EINVAL;
1991 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1992 return -EINVAL;
1993
1994 if (!set->nr_hw_queues ||
1995 !set->ops->queue_rq || !set->ops->map_queue ||
1996 !set->ops->alloc_hctx || !set->ops->free_hctx)
1997 return -EINVAL;
1998
1999
48479005
ML
2000 set->tags = kmalloc_node(set->nr_hw_queues *
2001 sizeof(struct blk_mq_tags *),
24d2f903
CH
2002 GFP_KERNEL, set->numa_node);
2003 if (!set->tags)
2004 goto out;
2005
2006 for (i = 0; i < set->nr_hw_queues; i++) {
2007 set->tags[i] = blk_mq_init_rq_map(set, i);
2008 if (!set->tags[i])
2009 goto out_unwind;
2010 }
2011
0d2602ca
JA
2012 mutex_init(&set->tag_list_lock);
2013 INIT_LIST_HEAD(&set->tag_list);
2014
24d2f903
CH
2015 return 0;
2016
2017out_unwind:
2018 while (--i >= 0)
2019 blk_mq_free_rq_map(set, set->tags[i], i);
2020out:
2021 return -ENOMEM;
2022}
2023EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2024
2025void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2026{
2027 int i;
2028
484b4061
JA
2029 for (i = 0; i < set->nr_hw_queues; i++) {
2030 if (set->tags[i])
2031 blk_mq_free_rq_map(set, set->tags[i], i);
2032 }
2033
981bd189 2034 kfree(set->tags);
24d2f903
CH
2035}
2036EXPORT_SYMBOL(blk_mq_free_tag_set);
2037
e3a2b3f9
JA
2038int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2039{
2040 struct blk_mq_tag_set *set = q->tag_set;
2041 struct blk_mq_hw_ctx *hctx;
2042 int i, ret;
2043
2044 if (!set || nr > set->queue_depth)
2045 return -EINVAL;
2046
2047 ret = 0;
2048 queue_for_each_hw_ctx(q, hctx, i) {
2049 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2050 if (ret)
2051 break;
2052 }
2053
2054 if (!ret)
2055 q->nr_requests = nr;
2056
2057 return ret;
2058}
2059
676141e4
JA
2060void blk_mq_disable_hotplug(void)
2061{
2062 mutex_lock(&all_q_mutex);
2063}
2064
2065void blk_mq_enable_hotplug(void)
2066{
2067 mutex_unlock(&all_q_mutex);
2068}
2069
320ae51f
JA
2070static int __init blk_mq_init(void)
2071{
320ae51f
JA
2072 blk_mq_cpu_init();
2073
2074 /* Must be called after percpu_counter_hotcpu_callback() */
2075 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
2076
2077 return 0;
2078}
2079subsys_initcall(blk_mq_init);