bfq: Fix bfq linkage error
[linux-block.git] / block / blk-mq.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
75bb4625
JA
2/*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
320ae51f
JA
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/backing-dev.h>
11#include <linux/bio.h>
12#include <linux/blkdev.h>
f75782e4 13#include <linux/kmemleak.h>
320ae51f
JA
14#include <linux/mm.h>
15#include <linux/init.h>
16#include <linux/slab.h>
17#include <linux/workqueue.h>
18#include <linux/smp.h>
19#include <linux/llist.h>
20#include <linux/list_sort.h>
21#include <linux/cpu.h>
22#include <linux/cache.h>
23#include <linux/sched/sysctl.h>
105ab3d8 24#include <linux/sched/topology.h>
174cd4b1 25#include <linux/sched/signal.h>
320ae51f 26#include <linux/delay.h>
aedcd72f 27#include <linux/crash_dump.h>
88c7b2b7 28#include <linux/prefetch.h>
320ae51f
JA
29
30#include <trace/events/block.h>
31
32#include <linux/blk-mq.h>
33#include "blk.h"
34#include "blk-mq.h"
9c1051aa 35#include "blk-mq-debugfs.h"
320ae51f 36#include "blk-mq-tag.h"
986d413b 37#include "blk-pm.h"
cf43e6be 38#include "blk-stat.h"
bd166ef1 39#include "blk-mq-sched.h"
c1c80384 40#include "blk-rq-qos.h"
320ae51f 41
34dbad5d
OS
42static void blk_mq_poll_stats_start(struct request_queue *q);
43static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
720b8ccc
SB
45static int blk_mq_poll_stats_bkt(const struct request *rq)
46{
47 int ddir, bytes, bucket;
48
99c749a4 49 ddir = rq_data_dir(rq);
720b8ccc
SB
50 bytes = blk_rq_bytes(rq);
51
52 bucket = ddir + 2*(ilog2(bytes) - 9);
53
54 if (bucket < 0)
55 return -1;
56 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58
59 return bucket;
60}
61
320ae51f 62/*
85fae294
YY
63 * Check if any of the ctx, dispatch list or elevator
64 * have pending work in this hardware queue.
320ae51f 65 */
79f720a7 66static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 67{
79f720a7
JA
68 return !list_empty_careful(&hctx->dispatch) ||
69 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 70 blk_mq_sched_has_work(hctx);
1429d7c9
JA
71}
72
320ae51f
JA
73/*
74 * Mark this ctx as having pending work in this hardware queue
75 */
76static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77 struct blk_mq_ctx *ctx)
78{
f31967f0
JA
79 const int bit = ctx->index_hw[hctx->type];
80
81 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
82 sbitmap_set_bit(&hctx->ctx_map, bit);
1429d7c9
JA
83}
84
85static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
86 struct blk_mq_ctx *ctx)
87{
f31967f0
JA
88 const int bit = ctx->index_hw[hctx->type];
89
90 sbitmap_clear_bit(&hctx->ctx_map, bit);
320ae51f
JA
91}
92
f299b7c7
JA
93struct mq_inflight {
94 struct hd_struct *part;
95 unsigned int *inflight;
96};
97
7baa8572 98static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
f299b7c7
JA
99 struct request *rq, void *priv,
100 bool reserved)
101{
102 struct mq_inflight *mi = priv;
103
6131837b 104 /*
e016b782 105 * index[0] counts the specific partition that was asked for.
6131837b
OS
106 */
107 if (rq->part == mi->part)
108 mi->inflight[0]++;
7baa8572
JA
109
110 return true;
f299b7c7
JA
111}
112
e016b782 113unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
f299b7c7 114{
e016b782 115 unsigned inflight[2];
f299b7c7
JA
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
b8d62b3a 118 inflight[0] = inflight[1] = 0;
f299b7c7 119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
e016b782
MP
120
121 return inflight[0];
f299b7c7
JA
122}
123
7baa8572 124static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
bf0ddaba
OS
125 struct request *rq, void *priv,
126 bool reserved)
127{
128 struct mq_inflight *mi = priv;
129
130 if (rq->part == mi->part)
131 mi->inflight[rq_data_dir(rq)]++;
7baa8572
JA
132
133 return true;
bf0ddaba
OS
134}
135
136void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
137 unsigned int inflight[2])
138{
139 struct mq_inflight mi = { .part = part, .inflight = inflight, };
140
141 inflight[0] = inflight[1] = 0;
142 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
143}
144
1671d522 145void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 146{
7996a8b5
BL
147 mutex_lock(&q->mq_freeze_lock);
148 if (++q->mq_freeze_depth == 1) {
3ef28e83 149 percpu_ref_kill(&q->q_usage_counter);
7996a8b5 150 mutex_unlock(&q->mq_freeze_lock);
344e9ffc 151 if (queue_is_mq(q))
055f6e18 152 blk_mq_run_hw_queues(q, false);
7996a8b5
BL
153 } else {
154 mutex_unlock(&q->mq_freeze_lock);
cddd5d17 155 }
f3af020b 156}
1671d522 157EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 158
6bae363e 159void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 160{
3ef28e83 161 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 162}
6bae363e 163EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 164
f91328c4
KB
165int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
166 unsigned long timeout)
167{
168 return wait_event_timeout(q->mq_freeze_wq,
169 percpu_ref_is_zero(&q->q_usage_counter),
170 timeout);
171}
172EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 173
f3af020b
TH
174/*
175 * Guarantee no request is in use, so we can change any data structure of
176 * the queue afterward.
177 */
3ef28e83 178void blk_freeze_queue(struct request_queue *q)
f3af020b 179{
3ef28e83
DW
180 /*
181 * In the !blk_mq case we are only calling this to kill the
182 * q_usage_counter, otherwise this increases the freeze depth
183 * and waits for it to return to zero. For this reason there is
184 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
185 * exported to drivers as the only user for unfreeze is blk_mq.
186 */
1671d522 187 blk_freeze_queue_start(q);
f3af020b
TH
188 blk_mq_freeze_queue_wait(q);
189}
3ef28e83
DW
190
191void blk_mq_freeze_queue(struct request_queue *q)
192{
193 /*
194 * ...just an alias to keep freeze and unfreeze actions balanced
195 * in the blk_mq_* namespace
196 */
197 blk_freeze_queue(q);
198}
c761d96b 199EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 200
b4c6a028 201void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 202{
7996a8b5
BL
203 mutex_lock(&q->mq_freeze_lock);
204 q->mq_freeze_depth--;
205 WARN_ON_ONCE(q->mq_freeze_depth < 0);
206 if (!q->mq_freeze_depth) {
bdd63160 207 percpu_ref_resurrect(&q->q_usage_counter);
320ae51f 208 wake_up_all(&q->mq_freeze_wq);
add703fd 209 }
7996a8b5 210 mutex_unlock(&q->mq_freeze_lock);
320ae51f 211}
b4c6a028 212EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 213
852ec809
BVA
214/*
215 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
216 * mpt3sas driver such that this function can be removed.
217 */
218void blk_mq_quiesce_queue_nowait(struct request_queue *q)
219{
8814ce8a 220 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
852ec809
BVA
221}
222EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
223
6a83e74d 224/**
69e07c4a 225 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
226 * @q: request queue.
227 *
228 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
229 * callback function is invoked. Once this function is returned, we make
230 * sure no dispatch can happen until the queue is unquiesced via
231 * blk_mq_unquiesce_queue().
6a83e74d
BVA
232 */
233void blk_mq_quiesce_queue(struct request_queue *q)
234{
235 struct blk_mq_hw_ctx *hctx;
236 unsigned int i;
237 bool rcu = false;
238
1d9e9bc6 239 blk_mq_quiesce_queue_nowait(q);
f4560ffe 240
6a83e74d
BVA
241 queue_for_each_hw_ctx(q, hctx, i) {
242 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 243 synchronize_srcu(hctx->srcu);
6a83e74d
BVA
244 else
245 rcu = true;
246 }
247 if (rcu)
248 synchronize_rcu();
249}
250EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
251
e4e73913
ML
252/*
253 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
254 * @q: request queue.
255 *
256 * This function recovers queue into the state before quiescing
257 * which is done by blk_mq_quiesce_queue.
258 */
259void blk_mq_unquiesce_queue(struct request_queue *q)
260{
8814ce8a 261 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
f4560ffe 262
1d9e9bc6
ML
263 /* dispatch requests which are inserted during quiescing */
264 blk_mq_run_hw_queues(q, true);
e4e73913
ML
265}
266EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
267
aed3ea94
JA
268void blk_mq_wake_waiters(struct request_queue *q)
269{
270 struct blk_mq_hw_ctx *hctx;
271 unsigned int i;
272
273 queue_for_each_hw_ctx(q, hctx, i)
274 if (blk_mq_hw_queue_mapped(hctx))
275 blk_mq_tag_wakeup_all(hctx->tags, true);
276}
277
320ae51f
JA
278bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
279{
280 return blk_mq_has_free_tags(hctx->tags);
281}
282EXPORT_SYMBOL(blk_mq_can_queue);
283
fe1f4526
JA
284/*
285 * Only need start/end time stamping if we have stats enabled, or using
286 * an IO scheduler.
287 */
288static inline bool blk_mq_need_time_stamp(struct request *rq)
289{
290 return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
291}
292
e4cdf1a1 293static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
6f816b4b 294 unsigned int tag, unsigned int op, u64 alloc_time_ns)
320ae51f 295{
e4cdf1a1
CH
296 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
297 struct request *rq = tags->static_rqs[tag];
bf9ae8c5 298 req_flags_t rq_flags = 0;
c3a148d2 299
e4cdf1a1
CH
300 if (data->flags & BLK_MQ_REQ_INTERNAL) {
301 rq->tag = -1;
302 rq->internal_tag = tag;
303 } else {
d263ed99 304 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
bf9ae8c5 305 rq_flags = RQF_MQ_INFLIGHT;
e4cdf1a1
CH
306 atomic_inc(&data->hctx->nr_active);
307 }
308 rq->tag = tag;
309 rq->internal_tag = -1;
310 data->hctx->tags->rqs[rq->tag] = rq;
311 }
312
af76e555 313 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
314 rq->q = data->q;
315 rq->mq_ctx = data->ctx;
ea4f995e 316 rq->mq_hctx = data->hctx;
bf9ae8c5 317 rq->rq_flags = rq_flags;
ef295ecf 318 rq->cmd_flags = op;
1b6d65a0
BVA
319 if (data->flags & BLK_MQ_REQ_PREEMPT)
320 rq->rq_flags |= RQF_PREEMPT;
e4cdf1a1 321 if (blk_queue_io_stat(data->q))
e8064021 322 rq->rq_flags |= RQF_IO_STAT;
7c3fb70f 323 INIT_LIST_HEAD(&rq->queuelist);
af76e555
CH
324 INIT_HLIST_NODE(&rq->hash);
325 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
326 rq->rq_disk = NULL;
327 rq->part = NULL;
6f816b4b
TH
328#ifdef CONFIG_BLK_RQ_ALLOC_TIME
329 rq->alloc_time_ns = alloc_time_ns;
330#endif
fe1f4526
JA
331 if (blk_mq_need_time_stamp(rq))
332 rq->start_time_ns = ktime_get_ns();
333 else
334 rq->start_time_ns = 0;
544ccc8d 335 rq->io_start_time_ns = 0;
af76e555
CH
336 rq->nr_phys_segments = 0;
337#if defined(CONFIG_BLK_DEV_INTEGRITY)
338 rq->nr_integrity_segments = 0;
339#endif
af76e555 340 /* tag was already set */
af76e555 341 rq->extra_len = 0;
079076b3 342 WRITE_ONCE(rq->deadline, 0);
af76e555 343
f6be4fb4
JA
344 rq->timeout = 0;
345
af76e555
CH
346 rq->end_io = NULL;
347 rq->end_io_data = NULL;
af76e555 348
e4cdf1a1 349 data->ctx->rq_dispatched[op_is_sync(op)]++;
12f5b931 350 refcount_set(&rq->ref, 1);
e4cdf1a1 351 return rq;
5dee8577
CH
352}
353
d2c0d383 354static struct request *blk_mq_get_request(struct request_queue *q,
f9afca4d
JA
355 struct bio *bio,
356 struct blk_mq_alloc_data *data)
d2c0d383
CH
357{
358 struct elevator_queue *e = q->elevator;
359 struct request *rq;
e4cdf1a1 360 unsigned int tag;
c05f4220 361 bool clear_ctx_on_error = false;
6f816b4b 362 u64 alloc_time_ns = 0;
d2c0d383
CH
363
364 blk_queue_enter_live(q);
6f816b4b
TH
365
366 /* alloc_time includes depth and tag waits */
367 if (blk_queue_rq_alloc_time(q))
368 alloc_time_ns = ktime_get_ns();
369
d2c0d383 370 data->q = q;
21e768b4
BVA
371 if (likely(!data->ctx)) {
372 data->ctx = blk_mq_get_ctx(q);
c05f4220 373 clear_ctx_on_error = true;
21e768b4 374 }
d2c0d383 375 if (likely(!data->hctx))
f9afca4d 376 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
8ccdf4a3 377 data->ctx);
f9afca4d 378 if (data->cmd_flags & REQ_NOWAIT)
03a07c92 379 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
380
381 if (e) {
382 data->flags |= BLK_MQ_REQ_INTERNAL;
383
384 /*
385 * Flush requests are special and go directly to the
17a51199
JA
386 * dispatch list. Don't include reserved tags in the
387 * limiting, as it isn't useful.
d2c0d383 388 */
f9afca4d
JA
389 if (!op_is_flush(data->cmd_flags) &&
390 e->type->ops.limit_depth &&
17a51199 391 !(data->flags & BLK_MQ_REQ_RESERVED))
f9afca4d 392 e->type->ops.limit_depth(data->cmd_flags, data);
d263ed99
JW
393 } else {
394 blk_mq_tag_busy(data->hctx);
d2c0d383
CH
395 }
396
e4cdf1a1
CH
397 tag = blk_mq_get_tag(data);
398 if (tag == BLK_MQ_TAG_FAIL) {
c05f4220 399 if (clear_ctx_on_error)
1ad43c00 400 data->ctx = NULL;
037cebb8
CH
401 blk_queue_exit(q);
402 return NULL;
d2c0d383
CH
403 }
404
6f816b4b 405 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns);
f9afca4d 406 if (!op_is_flush(data->cmd_flags)) {
037cebb8 407 rq->elv.icq = NULL;
f9cd4bfe 408 if (e && e->type->ops.prepare_request) {
e2b3fa5a
DLM
409 if (e->type->icq_cache)
410 blk_mq_sched_assign_ioc(rq);
44e8c2bf 411
f9cd4bfe 412 e->type->ops.prepare_request(rq, bio);
5bbf4e5a 413 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 414 }
037cebb8
CH
415 }
416 data->hctx->queued++;
417 return rq;
d2c0d383
CH
418}
419
cd6ce148 420struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 421 blk_mq_req_flags_t flags)
320ae51f 422{
f9afca4d 423 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
bd166ef1 424 struct request *rq;
a492f075 425 int ret;
320ae51f 426
3a0a5299 427 ret = blk_queue_enter(q, flags);
a492f075
JL
428 if (ret)
429 return ERR_PTR(ret);
320ae51f 430
f9afca4d 431 rq = blk_mq_get_request(q, NULL, &alloc_data);
3280d66a 432 blk_queue_exit(q);
841bac2c 433
bd166ef1 434 if (!rq)
a492f075 435 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
436
437 rq->__data_len = 0;
438 rq->__sector = (sector_t) -1;
439 rq->bio = rq->biotail = NULL;
320ae51f
JA
440 return rq;
441}
4bb659b1 442EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 443
cd6ce148 444struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 445 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 446{
f9afca4d 447 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
1f5bd336 448 struct request *rq;
6d2809d5 449 unsigned int cpu;
1f5bd336
ML
450 int ret;
451
452 /*
453 * If the tag allocator sleeps we could get an allocation for a
454 * different hardware context. No need to complicate the low level
455 * allocator for this for the rare use case of a command tied to
456 * a specific queue.
457 */
458 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
459 return ERR_PTR(-EINVAL);
460
461 if (hctx_idx >= q->nr_hw_queues)
462 return ERR_PTR(-EIO);
463
3a0a5299 464 ret = blk_queue_enter(q, flags);
1f5bd336
ML
465 if (ret)
466 return ERR_PTR(ret);
467
c8712c6a
CH
468 /*
469 * Check if the hardware context is actually mapped to anything.
470 * If not tell the caller that it should skip this queue.
471 */
6d2809d5
OS
472 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
473 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
474 blk_queue_exit(q);
475 return ERR_PTR(-EXDEV);
c8712c6a 476 }
20e4d813 477 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
6d2809d5 478 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 479
f9afca4d 480 rq = blk_mq_get_request(q, NULL, &alloc_data);
3280d66a 481 blk_queue_exit(q);
c8712c6a 482
6d2809d5
OS
483 if (!rq)
484 return ERR_PTR(-EWOULDBLOCK);
485
486 return rq;
1f5bd336
ML
487}
488EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
489
12f5b931
KB
490static void __blk_mq_free_request(struct request *rq)
491{
492 struct request_queue *q = rq->q;
493 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 494 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
12f5b931
KB
495 const int sched_tag = rq->internal_tag;
496
986d413b 497 blk_pm_mark_last_busy(rq);
ea4f995e 498 rq->mq_hctx = NULL;
12f5b931
KB
499 if (rq->tag != -1)
500 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
501 if (sched_tag != -1)
502 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
503 blk_mq_sched_restart(hctx);
504 blk_queue_exit(q);
505}
506
6af54051 507void blk_mq_free_request(struct request *rq)
320ae51f 508{
320ae51f 509 struct request_queue *q = rq->q;
6af54051
CH
510 struct elevator_queue *e = q->elevator;
511 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 512 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
6af54051 513
5bbf4e5a 514 if (rq->rq_flags & RQF_ELVPRIV) {
f9cd4bfe
JA
515 if (e && e->type->ops.finish_request)
516 e->type->ops.finish_request(rq);
6af54051
CH
517 if (rq->elv.icq) {
518 put_io_context(rq->elv.icq->ioc);
519 rq->elv.icq = NULL;
520 }
521 }
320ae51f 522
6af54051 523 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 524 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 525 atomic_dec(&hctx->nr_active);
87760e5e 526
7beb2f84
JA
527 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
528 laptop_io_completion(q->backing_dev_info);
529
a7905043 530 rq_qos_done(q, rq);
0d2602ca 531
12f5b931
KB
532 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
533 if (refcount_dec_and_test(&rq->ref))
534 __blk_mq_free_request(rq);
320ae51f 535}
1a3b595a 536EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 537
2a842aca 538inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 539{
fe1f4526
JA
540 u64 now = 0;
541
542 if (blk_mq_need_time_stamp(rq))
543 now = ktime_get_ns();
522a7775 544
4bc6339a
OS
545 if (rq->rq_flags & RQF_STATS) {
546 blk_mq_poll_stats_start(rq->q);
522a7775 547 blk_stat_add(rq, now);
4bc6339a
OS
548 }
549
ed88660a
OS
550 if (rq->internal_tag != -1)
551 blk_mq_sched_completed_request(rq, now);
552
522a7775 553 blk_account_io_done(rq, now);
0d11e6ac 554
91b63639 555 if (rq->end_io) {
a7905043 556 rq_qos_done(rq->q, rq);
320ae51f 557 rq->end_io(rq, error);
91b63639 558 } else {
320ae51f 559 blk_mq_free_request(rq);
91b63639 560 }
320ae51f 561}
c8a446ad 562EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 563
2a842aca 564void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
565{
566 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
567 BUG();
c8a446ad 568 __blk_mq_end_request(rq, error);
63151a44 569}
c8a446ad 570EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 571
30a91cb4 572static void __blk_mq_complete_request_remote(void *data)
320ae51f 573{
3d6efbf6 574 struct request *rq = data;
c7bb9ad1 575 struct request_queue *q = rq->q;
320ae51f 576
c7bb9ad1 577 q->mq_ops->complete(rq);
320ae51f 578}
320ae51f 579
453f8341 580static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
581{
582 struct blk_mq_ctx *ctx = rq->mq_ctx;
c7bb9ad1 583 struct request_queue *q = rq->q;
38535201 584 bool shared = false;
320ae51f
JA
585 int cpu;
586
af78ff7c 587 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
36e76539
ML
588 /*
589 * Most of single queue controllers, there is only one irq vector
590 * for handling IO completion, and the only irq's affinity is set
591 * as all possible CPUs. On most of ARCHs, this affinity means the
592 * irq is handled on one specific CPU.
593 *
594 * So complete IO reqeust in softirq context in case of single queue
595 * for not degrading IO performance by irqsoff latency.
596 */
c7bb9ad1 597 if (q->nr_hw_queues == 1) {
36e76539
ML
598 __blk_complete_request(rq);
599 return;
600 }
601
4ab32bf3
JA
602 /*
603 * For a polled request, always complete locallly, it's pointless
604 * to redirect the completion.
605 */
606 if ((rq->cmd_flags & REQ_HIPRI) ||
607 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
c7bb9ad1 608 q->mq_ops->complete(rq);
30a91cb4
CH
609 return;
610 }
320ae51f
JA
611
612 cpu = get_cpu();
c7bb9ad1 613 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
38535201
CH
614 shared = cpus_share_cache(cpu, ctx->cpu);
615
616 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 617 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
618 rq->csd.info = rq;
619 rq->csd.flags = 0;
c46fff2a 620 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 621 } else {
c7bb9ad1 622 q->mq_ops->complete(rq);
3d6efbf6 623 }
320ae51f
JA
624 put_cpu();
625}
30a91cb4 626
04ced159 627static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
b7435db8 628 __releases(hctx->srcu)
04ced159
JA
629{
630 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
631 rcu_read_unlock();
632 else
05707b64 633 srcu_read_unlock(hctx->srcu, srcu_idx);
04ced159
JA
634}
635
636static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
b7435db8 637 __acquires(hctx->srcu)
04ced159 638{
08b5a6e2
JA
639 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
640 /* shut up gcc false positive */
641 *srcu_idx = 0;
04ced159 642 rcu_read_lock();
08b5a6e2 643 } else
05707b64 644 *srcu_idx = srcu_read_lock(hctx->srcu);
04ced159
JA
645}
646
30a91cb4
CH
647/**
648 * blk_mq_complete_request - end I/O on a request
649 * @rq: the request being processed
650 *
651 * Description:
652 * Ends all I/O on a request. It does not handle partial completions.
653 * The actual completion happens out-of-order, through a IPI handler.
654 **/
16c15eb1 655bool blk_mq_complete_request(struct request *rq)
30a91cb4 656{
12f5b931 657 if (unlikely(blk_should_fake_timeout(rq->q)))
16c15eb1 658 return false;
12f5b931 659 __blk_mq_complete_request(rq);
16c15eb1 660 return true;
30a91cb4
CH
661}
662EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 663
973c0191
KB
664int blk_mq_request_started(struct request *rq)
665{
5a61c363 666 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
973c0191
KB
667}
668EXPORT_SYMBOL_GPL(blk_mq_request_started);
669
aa306ab7
ML
670int blk_mq_request_completed(struct request *rq)
671{
672 return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
673}
674EXPORT_SYMBOL_GPL(blk_mq_request_completed);
675
e2490073 676void blk_mq_start_request(struct request *rq)
320ae51f
JA
677{
678 struct request_queue *q = rq->q;
679
680 trace_block_rq_issue(q, rq);
681
cf43e6be 682 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
544ccc8d
OS
683 rq->io_start_time_ns = ktime_get_ns();
684#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
685 rq->throtl_size = blk_rq_sectors(rq);
686#endif
cf43e6be 687 rq->rq_flags |= RQF_STATS;
a7905043 688 rq_qos_issue(q, rq);
cf43e6be
JA
689 }
690
1d9bd516 691 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
538b7534 692
1d9bd516 693 blk_add_timer(rq);
12f5b931 694 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
49f5baa5
CH
695
696 if (q->dma_drain_size && blk_rq_bytes(rq)) {
697 /*
698 * Make sure space for the drain appears. We know we can do
699 * this because max_hw_segments has been adjusted to be one
700 * fewer than the device can handle.
701 */
702 rq->nr_phys_segments++;
703 }
320ae51f 704}
e2490073 705EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 706
ed0791b2 707static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
708{
709 struct request_queue *q = rq->q;
710
923218f6
ML
711 blk_mq_put_driver_tag(rq);
712
320ae51f 713 trace_block_rq_requeue(q, rq);
a7905043 714 rq_qos_requeue(q, rq);
49f5baa5 715
12f5b931
KB
716 if (blk_mq_request_started(rq)) {
717 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
da661267 718 rq->rq_flags &= ~RQF_TIMED_OUT;
e2490073
CH
719 if (q->dma_drain_size && blk_rq_bytes(rq))
720 rq->nr_phys_segments--;
721 }
320ae51f
JA
722}
723
2b053aca 724void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 725{
ed0791b2 726 __blk_mq_requeue_request(rq);
ed0791b2 727
105976f5
ML
728 /* this request will be re-inserted to io scheduler queue */
729 blk_mq_sched_requeue_request(rq);
730
7d692330 731 BUG_ON(!list_empty(&rq->queuelist));
2b053aca 732 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
733}
734EXPORT_SYMBOL(blk_mq_requeue_request);
735
6fca6a61
CH
736static void blk_mq_requeue_work(struct work_struct *work)
737{
738 struct request_queue *q =
2849450a 739 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
740 LIST_HEAD(rq_list);
741 struct request *rq, *next;
6fca6a61 742
18e9781d 743 spin_lock_irq(&q->requeue_lock);
6fca6a61 744 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 745 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
746
747 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
aef1897c 748 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
6fca6a61
CH
749 continue;
750
e8064021 751 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 752 list_del_init(&rq->queuelist);
aef1897c
JW
753 /*
754 * If RQF_DONTPREP, rq has contained some driver specific
755 * data, so insert it to hctx dispatch list to avoid any
756 * merge.
757 */
758 if (rq->rq_flags & RQF_DONTPREP)
759 blk_mq_request_bypass_insert(rq, false);
760 else
761 blk_mq_sched_insert_request(rq, true, false, false);
6fca6a61
CH
762 }
763
764 while (!list_empty(&rq_list)) {
765 rq = list_entry(rq_list.next, struct request, queuelist);
766 list_del_init(&rq->queuelist);
9e97d295 767 blk_mq_sched_insert_request(rq, false, false, false);
6fca6a61
CH
768 }
769
52d7f1b5 770 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
771}
772
2b053aca
BVA
773void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
774 bool kick_requeue_list)
6fca6a61
CH
775{
776 struct request_queue *q = rq->q;
777 unsigned long flags;
778
779 /*
780 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 781 * request head insertion from the workqueue.
6fca6a61 782 */
e8064021 783 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
784
785 spin_lock_irqsave(&q->requeue_lock, flags);
786 if (at_head) {
e8064021 787 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
788 list_add(&rq->queuelist, &q->requeue_list);
789 } else {
790 list_add_tail(&rq->queuelist, &q->requeue_list);
791 }
792 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
793
794 if (kick_requeue_list)
795 blk_mq_kick_requeue_list(q);
6fca6a61 796}
6fca6a61
CH
797
798void blk_mq_kick_requeue_list(struct request_queue *q)
799{
ae943d20 800 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
6fca6a61
CH
801}
802EXPORT_SYMBOL(blk_mq_kick_requeue_list);
803
2849450a
MS
804void blk_mq_delay_kick_requeue_list(struct request_queue *q,
805 unsigned long msecs)
806{
d4acf365
BVA
807 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
808 msecs_to_jiffies(msecs));
2849450a
MS
809}
810EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
811
0e62f51f
JA
812struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
813{
88c7b2b7
JA
814 if (tag < tags->nr_tags) {
815 prefetch(tags->rqs[tag]);
4ee86bab 816 return tags->rqs[tag];
88c7b2b7 817 }
4ee86bab
HR
818
819 return NULL;
24d2f903
CH
820}
821EXPORT_SYMBOL(blk_mq_tag_to_rq);
822
3c94d83c
JA
823static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
824 void *priv, bool reserved)
ae879912
JA
825{
826 /*
3c94d83c
JA
827 * If we find a request that is inflight and the queue matches,
828 * we know the queue is busy. Return false to stop the iteration.
ae879912 829 */
3c94d83c 830 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
ae879912
JA
831 bool *busy = priv;
832
833 *busy = true;
834 return false;
835 }
836
837 return true;
838}
839
3c94d83c 840bool blk_mq_queue_inflight(struct request_queue *q)
ae879912
JA
841{
842 bool busy = false;
843
3c94d83c 844 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
ae879912
JA
845 return busy;
846}
3c94d83c 847EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
ae879912 848
358f70da 849static void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 850{
da661267 851 req->rq_flags |= RQF_TIMED_OUT;
d1210d5a
CH
852 if (req->q->mq_ops->timeout) {
853 enum blk_eh_timer_return ret;
854
855 ret = req->q->mq_ops->timeout(req, reserved);
856 if (ret == BLK_EH_DONE)
857 return;
858 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
46f92d42 859 }
d1210d5a
CH
860
861 blk_add_timer(req);
87ee7b11 862}
5b3f25fc 863
12f5b931 864static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
81481eb4 865{
12f5b931 866 unsigned long deadline;
87ee7b11 867
12f5b931
KB
868 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
869 return false;
da661267
CH
870 if (rq->rq_flags & RQF_TIMED_OUT)
871 return false;
a7af0af3 872
079076b3 873 deadline = READ_ONCE(rq->deadline);
12f5b931
KB
874 if (time_after_eq(jiffies, deadline))
875 return true;
a7af0af3 876
12f5b931
KB
877 if (*next == 0)
878 *next = deadline;
879 else if (time_after(*next, deadline))
880 *next = deadline;
881 return false;
87ee7b11
JA
882}
883
7baa8572 884static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1d9bd516
TH
885 struct request *rq, void *priv, bool reserved)
886{
12f5b931
KB
887 unsigned long *next = priv;
888
889 /*
890 * Just do a quick check if it is expired before locking the request in
891 * so we're not unnecessarilly synchronizing across CPUs.
892 */
893 if (!blk_mq_req_expired(rq, next))
7baa8572 894 return true;
12f5b931
KB
895
896 /*
897 * We have reason to believe the request may be expired. Take a
898 * reference on the request to lock this request lifetime into its
899 * currently allocated context to prevent it from being reallocated in
900 * the event the completion by-passes this timeout handler.
901 *
902 * If the reference was already released, then the driver beat the
903 * timeout handler to posting a natural completion.
904 */
905 if (!refcount_inc_not_zero(&rq->ref))
7baa8572 906 return true;
12f5b931 907
1d9bd516 908 /*
12f5b931
KB
909 * The request is now locked and cannot be reallocated underneath the
910 * timeout handler's processing. Re-verify this exact request is truly
911 * expired; if it is not expired, then the request was completed and
912 * reallocated as a new request.
1d9bd516 913 */
12f5b931 914 if (blk_mq_req_expired(rq, next))
1d9bd516 915 blk_mq_rq_timed_out(rq, reserved);
12f5b931
KB
916 if (refcount_dec_and_test(&rq->ref))
917 __blk_mq_free_request(rq);
7baa8572
JA
918
919 return true;
1d9bd516
TH
920}
921
287922eb 922static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 923{
287922eb
CH
924 struct request_queue *q =
925 container_of(work, struct request_queue, timeout_work);
12f5b931 926 unsigned long next = 0;
1d9bd516 927 struct blk_mq_hw_ctx *hctx;
81481eb4 928 int i;
320ae51f 929
71f79fb3
GKB
930 /* A deadlock might occur if a request is stuck requiring a
931 * timeout at the same time a queue freeze is waiting
932 * completion, since the timeout code would not be able to
933 * acquire the queue reference here.
934 *
935 * That's why we don't use blk_queue_enter here; instead, we use
936 * percpu_ref_tryget directly, because we need to be able to
937 * obtain a reference even in the short window between the queue
938 * starting to freeze, by dropping the first reference in
1671d522 939 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
940 * consumed, marked by the instant q_usage_counter reaches
941 * zero.
942 */
943 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
944 return;
945
12f5b931 946 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
320ae51f 947
12f5b931
KB
948 if (next != 0) {
949 mod_timer(&q->timeout, next);
0d2602ca 950 } else {
fcd36c36
BVA
951 /*
952 * Request timeouts are handled as a forward rolling timer. If
953 * we end up here it means that no requests are pending and
954 * also that no request has been pending for a while. Mark
955 * each hctx as idle.
956 */
f054b56c
ML
957 queue_for_each_hw_ctx(q, hctx, i) {
958 /* the hctx may be unmapped, so check it here */
959 if (blk_mq_hw_queue_mapped(hctx))
960 blk_mq_tag_idle(hctx);
961 }
0d2602ca 962 }
287922eb 963 blk_queue_exit(q);
320ae51f
JA
964}
965
88459642
OS
966struct flush_busy_ctx_data {
967 struct blk_mq_hw_ctx *hctx;
968 struct list_head *list;
969};
970
971static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
972{
973 struct flush_busy_ctx_data *flush_data = data;
974 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
975 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 976 enum hctx_type type = hctx->type;
88459642 977
88459642 978 spin_lock(&ctx->lock);
c16d6b5a 979 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
e9a99a63 980 sbitmap_clear_bit(sb, bitnr);
88459642
OS
981 spin_unlock(&ctx->lock);
982 return true;
983}
984
1429d7c9
JA
985/*
986 * Process software queues that have been marked busy, splicing them
987 * to the for-dispatch
988 */
2c3ad667 989void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 990{
88459642
OS
991 struct flush_busy_ctx_data data = {
992 .hctx = hctx,
993 .list = list,
994 };
1429d7c9 995
88459642 996 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 997}
2c3ad667 998EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 999
b347689f
ML
1000struct dispatch_rq_data {
1001 struct blk_mq_hw_ctx *hctx;
1002 struct request *rq;
1003};
1004
1005static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1006 void *data)
1007{
1008 struct dispatch_rq_data *dispatch_data = data;
1009 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1010 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 1011 enum hctx_type type = hctx->type;
b347689f
ML
1012
1013 spin_lock(&ctx->lock);
c16d6b5a
ML
1014 if (!list_empty(&ctx->rq_lists[type])) {
1015 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
b347689f 1016 list_del_init(&dispatch_data->rq->queuelist);
c16d6b5a 1017 if (list_empty(&ctx->rq_lists[type]))
b347689f
ML
1018 sbitmap_clear_bit(sb, bitnr);
1019 }
1020 spin_unlock(&ctx->lock);
1021
1022 return !dispatch_data->rq;
1023}
1024
1025struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1026 struct blk_mq_ctx *start)
1027{
f31967f0 1028 unsigned off = start ? start->index_hw[hctx->type] : 0;
b347689f
ML
1029 struct dispatch_rq_data data = {
1030 .hctx = hctx,
1031 .rq = NULL,
1032 };
1033
1034 __sbitmap_for_each_set(&hctx->ctx_map, off,
1035 dispatch_rq_from_ctx, &data);
1036
1037 return data.rq;
1038}
1039
703fd1c0
JA
1040static inline unsigned int queued_to_index(unsigned int queued)
1041{
1042 if (!queued)
1043 return 0;
1429d7c9 1044
703fd1c0 1045 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
1046}
1047
8ab6bb9e 1048bool blk_mq_get_driver_tag(struct request *rq)
bd166ef1
JA
1049{
1050 struct blk_mq_alloc_data data = {
1051 .q = rq->q,
ea4f995e 1052 .hctx = rq->mq_hctx,
8ab6bb9e 1053 .flags = BLK_MQ_REQ_NOWAIT,
f9afca4d 1054 .cmd_flags = rq->cmd_flags,
bd166ef1 1055 };
d263ed99 1056 bool shared;
5feeacdd 1057
81380ca1
OS
1058 if (rq->tag != -1)
1059 goto done;
bd166ef1 1060
415b806d
SG
1061 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1062 data.flags |= BLK_MQ_REQ_RESERVED;
1063
d263ed99 1064 shared = blk_mq_tag_busy(data.hctx);
bd166ef1
JA
1065 rq->tag = blk_mq_get_tag(&data);
1066 if (rq->tag >= 0) {
d263ed99 1067 if (shared) {
200e86b3
JA
1068 rq->rq_flags |= RQF_MQ_INFLIGHT;
1069 atomic_inc(&data.hctx->nr_active);
1070 }
bd166ef1 1071 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
1072 }
1073
81380ca1 1074done:
81380ca1 1075 return rq->tag != -1;
bd166ef1
JA
1076}
1077
eb619fdb
JA
1078static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1079 int flags, void *key)
da55f2cc
OS
1080{
1081 struct blk_mq_hw_ctx *hctx;
1082
1083 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1084
5815839b 1085 spin_lock(&hctx->dispatch_wait_lock);
e8618575
JA
1086 if (!list_empty(&wait->entry)) {
1087 struct sbitmap_queue *sbq;
1088
1089 list_del_init(&wait->entry);
1090 sbq = &hctx->tags->bitmap_tags;
1091 atomic_dec(&sbq->ws_active);
1092 }
5815839b
ML
1093 spin_unlock(&hctx->dispatch_wait_lock);
1094
da55f2cc
OS
1095 blk_mq_run_hw_queue(hctx, true);
1096 return 1;
1097}
1098
f906a6a0
JA
1099/*
1100 * Mark us waiting for a tag. For shared tags, this involves hooking us into
ee3e4de5
BVA
1101 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1102 * restart. For both cases, take care to check the condition again after
f906a6a0
JA
1103 * marking us as waiting.
1104 */
2278d69f 1105static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
f906a6a0 1106 struct request *rq)
da55f2cc 1107{
e8618575 1108 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
5815839b 1109 struct wait_queue_head *wq;
f906a6a0
JA
1110 wait_queue_entry_t *wait;
1111 bool ret;
da55f2cc 1112
2278d69f 1113 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
684b7324 1114 blk_mq_sched_mark_restart_hctx(hctx);
f906a6a0 1115
c27d53fb
BVA
1116 /*
1117 * It's possible that a tag was freed in the window between the
1118 * allocation failure and adding the hardware queue to the wait
1119 * queue.
1120 *
1121 * Don't clear RESTART here, someone else could have set it.
1122 * At most this will cost an extra queue run.
1123 */
8ab6bb9e 1124 return blk_mq_get_driver_tag(rq);
eb619fdb 1125 }
eb619fdb 1126
2278d69f 1127 wait = &hctx->dispatch_wait;
c27d53fb
BVA
1128 if (!list_empty_careful(&wait->entry))
1129 return false;
1130
e8618575 1131 wq = &bt_wait_ptr(sbq, hctx)->wait;
5815839b
ML
1132
1133 spin_lock_irq(&wq->lock);
1134 spin_lock(&hctx->dispatch_wait_lock);
c27d53fb 1135 if (!list_empty(&wait->entry)) {
5815839b
ML
1136 spin_unlock(&hctx->dispatch_wait_lock);
1137 spin_unlock_irq(&wq->lock);
c27d53fb 1138 return false;
eb619fdb
JA
1139 }
1140
e8618575 1141 atomic_inc(&sbq->ws_active);
5815839b
ML
1142 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1143 __add_wait_queue(wq, wait);
c27d53fb 1144
da55f2cc 1145 /*
eb619fdb
JA
1146 * It's possible that a tag was freed in the window between the
1147 * allocation failure and adding the hardware queue to the wait
1148 * queue.
da55f2cc 1149 */
8ab6bb9e 1150 ret = blk_mq_get_driver_tag(rq);
c27d53fb 1151 if (!ret) {
5815839b
ML
1152 spin_unlock(&hctx->dispatch_wait_lock);
1153 spin_unlock_irq(&wq->lock);
c27d53fb 1154 return false;
eb619fdb 1155 }
c27d53fb
BVA
1156
1157 /*
1158 * We got a tag, remove ourselves from the wait queue to ensure
1159 * someone else gets the wakeup.
1160 */
c27d53fb 1161 list_del_init(&wait->entry);
e8618575 1162 atomic_dec(&sbq->ws_active);
5815839b
ML
1163 spin_unlock(&hctx->dispatch_wait_lock);
1164 spin_unlock_irq(&wq->lock);
c27d53fb
BVA
1165
1166 return true;
da55f2cc
OS
1167}
1168
6e768717
ML
1169#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1170#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1171/*
1172 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1173 * - EWMA is one simple way to compute running average value
1174 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1175 * - take 4 as factor for avoiding to get too small(0) result, and this
1176 * factor doesn't matter because EWMA decreases exponentially
1177 */
1178static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1179{
1180 unsigned int ewma;
1181
1182 if (hctx->queue->elevator)
1183 return;
1184
1185 ewma = hctx->dispatch_busy;
1186
1187 if (!ewma && !busy)
1188 return;
1189
1190 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1191 if (busy)
1192 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1193 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1194
1195 hctx->dispatch_busy = ewma;
1196}
1197
86ff7c2a
ML
1198#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1199
1f57f8d4
JA
1200/*
1201 * Returns true if we did some work AND can potentially do more.
1202 */
de148297 1203bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
eb619fdb 1204 bool got_budget)
320ae51f 1205{
81380ca1 1206 struct blk_mq_hw_ctx *hctx;
6d6f167c 1207 struct request *rq, *nxt;
eb619fdb 1208 bool no_tag = false;
fc17b653 1209 int errors, queued;
86ff7c2a 1210 blk_status_t ret = BLK_STS_OK;
320ae51f 1211
81380ca1
OS
1212 if (list_empty(list))
1213 return false;
1214
de148297
ML
1215 WARN_ON(!list_is_singular(list) && got_budget);
1216
320ae51f
JA
1217 /*
1218 * Now process all the entries, sending them to the driver.
1219 */
93efe981 1220 errors = queued = 0;
81380ca1 1221 do {
74c45052 1222 struct blk_mq_queue_data bd;
320ae51f 1223
f04c3df3 1224 rq = list_first_entry(list, struct request, queuelist);
0bca799b 1225
ea4f995e 1226 hctx = rq->mq_hctx;
0bca799b
ML
1227 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1228 break;
1229
8ab6bb9e 1230 if (!blk_mq_get_driver_tag(rq)) {
3c782d67 1231 /*
da55f2cc 1232 * The initial allocation attempt failed, so we need to
eb619fdb
JA
1233 * rerun the hardware queue when a tag is freed. The
1234 * waitqueue takes care of that. If the queue is run
1235 * before we add this entry back on the dispatch list,
1236 * we'll re-run it below.
3c782d67 1237 */
2278d69f 1238 if (!blk_mq_mark_tag_wait(hctx, rq)) {
0bca799b 1239 blk_mq_put_dispatch_budget(hctx);
f906a6a0
JA
1240 /*
1241 * For non-shared tags, the RESTART check
1242 * will suffice.
1243 */
1244 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1245 no_tag = true;
de148297
ML
1246 break;
1247 }
1248 }
1249
320ae51f 1250 list_del_init(&rq->queuelist);
320ae51f 1251
74c45052 1252 bd.rq = rq;
113285b4
JA
1253
1254 /*
1255 * Flag last if we have no more requests, or if we have more
1256 * but can't assign a driver tag to it.
1257 */
1258 if (list_empty(list))
1259 bd.last = true;
1260 else {
113285b4 1261 nxt = list_first_entry(list, struct request, queuelist);
8ab6bb9e 1262 bd.last = !blk_mq_get_driver_tag(nxt);
113285b4 1263 }
74c45052
JA
1264
1265 ret = q->mq_ops->queue_rq(hctx, &bd);
86ff7c2a 1266 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
6d6f167c
JW
1267 /*
1268 * If an I/O scheduler has been configured and we got a
ff821d27
JA
1269 * driver tag for the next request already, free it
1270 * again.
6d6f167c
JW
1271 */
1272 if (!list_empty(list)) {
1273 nxt = list_first_entry(list, struct request, queuelist);
1274 blk_mq_put_driver_tag(nxt);
1275 }
f04c3df3 1276 list_add(&rq->queuelist, list);
ed0791b2 1277 __blk_mq_requeue_request(rq);
320ae51f 1278 break;
fc17b653
CH
1279 }
1280
1281 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1282 errors++;
2a842aca 1283 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1284 continue;
320ae51f
JA
1285 }
1286
fc17b653 1287 queued++;
81380ca1 1288 } while (!list_empty(list));
320ae51f 1289
703fd1c0 1290 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1291
1292 /*
1293 * Any items that need requeuing? Stuff them into hctx->dispatch,
1294 * that is where we will continue on next queue run.
1295 */
f04c3df3 1296 if (!list_empty(list)) {
86ff7c2a
ML
1297 bool needs_restart;
1298
d666ba98
JA
1299 /*
1300 * If we didn't flush the entire list, we could have told
1301 * the driver there was more coming, but that turned out to
1302 * be a lie.
1303 */
1304 if (q->mq_ops->commit_rqs)
1305 q->mq_ops->commit_rqs(hctx);
1306
320ae51f 1307 spin_lock(&hctx->lock);
c13660a0 1308 list_splice_init(list, &hctx->dispatch);
320ae51f 1309 spin_unlock(&hctx->lock);
f04c3df3 1310
9ba52e58 1311 /*
710c785f
BVA
1312 * If SCHED_RESTART was set by the caller of this function and
1313 * it is no longer set that means that it was cleared by another
1314 * thread and hence that a queue rerun is needed.
9ba52e58 1315 *
eb619fdb
JA
1316 * If 'no_tag' is set, that means that we failed getting
1317 * a driver tag with an I/O scheduler attached. If our dispatch
1318 * waitqueue is no longer active, ensure that we run the queue
1319 * AFTER adding our entries back to the list.
bd166ef1 1320 *
710c785f
BVA
1321 * If no I/O scheduler has been configured it is possible that
1322 * the hardware queue got stopped and restarted before requests
1323 * were pushed back onto the dispatch list. Rerun the queue to
1324 * avoid starvation. Notes:
1325 * - blk_mq_run_hw_queue() checks whether or not a queue has
1326 * been stopped before rerunning a queue.
1327 * - Some but not all block drivers stop a queue before
fc17b653 1328 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1329 * and dm-rq.
86ff7c2a
ML
1330 *
1331 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1332 * bit is set, run queue after a delay to avoid IO stalls
1333 * that could otherwise occur if the queue is idle.
bd166ef1 1334 */
86ff7c2a
ML
1335 needs_restart = blk_mq_sched_needs_restart(hctx);
1336 if (!needs_restart ||
eb619fdb 1337 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1338 blk_mq_run_hw_queue(hctx, true);
86ff7c2a
ML
1339 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1340 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1f57f8d4 1341
6e768717 1342 blk_mq_update_dispatch_busy(hctx, true);
1f57f8d4 1343 return false;
6e768717
ML
1344 } else
1345 blk_mq_update_dispatch_busy(hctx, false);
f04c3df3 1346
1f57f8d4
JA
1347 /*
1348 * If the host/device is unable to accept more work, inform the
1349 * caller of that.
1350 */
1351 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1352 return false;
1353
93efe981 1354 return (queued + errors) != 0;
f04c3df3
JA
1355}
1356
6a83e74d
BVA
1357static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1358{
1359 int srcu_idx;
1360
b7a71e66
JA
1361 /*
1362 * We should be running this queue from one of the CPUs that
1363 * are mapped to it.
7df938fb
ML
1364 *
1365 * There are at least two related races now between setting
1366 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1367 * __blk_mq_run_hw_queue():
1368 *
1369 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1370 * but later it becomes online, then this warning is harmless
1371 * at all
1372 *
1373 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1374 * but later it becomes offline, then the warning can't be
1375 * triggered, and we depend on blk-mq timeout handler to
1376 * handle dispatched requests to this hctx
b7a71e66 1377 */
7df938fb
ML
1378 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1379 cpu_online(hctx->next_cpu)) {
1380 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1381 raw_smp_processor_id(),
1382 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1383 dump_stack();
1384 }
6a83e74d 1385
b7a71e66
JA
1386 /*
1387 * We can't run the queue inline with ints disabled. Ensure that
1388 * we catch bad users of this early.
1389 */
1390 WARN_ON_ONCE(in_interrupt());
1391
04ced159 1392 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1393
04ced159
JA
1394 hctx_lock(hctx, &srcu_idx);
1395 blk_mq_sched_dispatch_requests(hctx);
1396 hctx_unlock(hctx, srcu_idx);
6a83e74d
BVA
1397}
1398
f82ddf19
ML
1399static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1400{
1401 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1402
1403 if (cpu >= nr_cpu_ids)
1404 cpu = cpumask_first(hctx->cpumask);
1405 return cpu;
1406}
1407
506e931f
JA
1408/*
1409 * It'd be great if the workqueue API had a way to pass
1410 * in a mask and had some smarts for more clever placement.
1411 * For now we just round-robin here, switching for every
1412 * BLK_MQ_CPU_WORK_BATCH queued items.
1413 */
1414static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1415{
7bed4595 1416 bool tried = false;
476f8c98 1417 int next_cpu = hctx->next_cpu;
7bed4595 1418
b657d7e6
CH
1419 if (hctx->queue->nr_hw_queues == 1)
1420 return WORK_CPU_UNBOUND;
506e931f
JA
1421
1422 if (--hctx->next_cpu_batch <= 0) {
7bed4595 1423select_cpu:
476f8c98 1424 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
20e4d813 1425 cpu_online_mask);
506e931f 1426 if (next_cpu >= nr_cpu_ids)
f82ddf19 1427 next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
1428 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1429 }
1430
7bed4595
ML
1431 /*
1432 * Do unbound schedule if we can't find a online CPU for this hctx,
1433 * and it should only happen in the path of handling CPU DEAD.
1434 */
476f8c98 1435 if (!cpu_online(next_cpu)) {
7bed4595
ML
1436 if (!tried) {
1437 tried = true;
1438 goto select_cpu;
1439 }
1440
1441 /*
1442 * Make sure to re-select CPU next time once after CPUs
1443 * in hctx->cpumask become online again.
1444 */
476f8c98 1445 hctx->next_cpu = next_cpu;
7bed4595
ML
1446 hctx->next_cpu_batch = 1;
1447 return WORK_CPU_UNBOUND;
1448 }
476f8c98
ML
1449
1450 hctx->next_cpu = next_cpu;
1451 return next_cpu;
506e931f
JA
1452}
1453
7587a5ae
BVA
1454static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1455 unsigned long msecs)
320ae51f 1456{
5435c023 1457 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1458 return;
1459
1b792f2f 1460 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1461 int cpu = get_cpu();
1462 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1463 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1464 put_cpu();
398205b8
PB
1465 return;
1466 }
e4043dcf 1467
2a90d4aa 1468 put_cpu();
e4043dcf 1469 }
398205b8 1470
ae943d20
BVA
1471 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1472 msecs_to_jiffies(msecs));
7587a5ae
BVA
1473}
1474
1475void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1476{
1477 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1478}
1479EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1480
79f720a7 1481bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 1482{
24f5a90f
ML
1483 int srcu_idx;
1484 bool need_run;
1485
1486 /*
1487 * When queue is quiesced, we may be switching io scheduler, or
1488 * updating nr_hw_queues, or other things, and we can't run queue
1489 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1490 *
1491 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1492 * quiesced.
1493 */
04ced159
JA
1494 hctx_lock(hctx, &srcu_idx);
1495 need_run = !blk_queue_quiesced(hctx->queue) &&
1496 blk_mq_hctx_has_pending(hctx);
1497 hctx_unlock(hctx, srcu_idx);
24f5a90f
ML
1498
1499 if (need_run) {
79f720a7
JA
1500 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1501 return true;
1502 }
1503
1504 return false;
320ae51f 1505}
5b727272 1506EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1507
b94ec296 1508void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1509{
1510 struct blk_mq_hw_ctx *hctx;
1511 int i;
1512
1513 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 1514 if (blk_mq_hctx_stopped(hctx))
320ae51f
JA
1515 continue;
1516
b94ec296 1517 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1518 }
1519}
b94ec296 1520EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1521
fd001443
BVA
1522/**
1523 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1524 * @q: request queue.
1525 *
1526 * The caller is responsible for serializing this function against
1527 * blk_mq_{start,stop}_hw_queue().
1528 */
1529bool blk_mq_queue_stopped(struct request_queue *q)
1530{
1531 struct blk_mq_hw_ctx *hctx;
1532 int i;
1533
1534 queue_for_each_hw_ctx(q, hctx, i)
1535 if (blk_mq_hctx_stopped(hctx))
1536 return true;
1537
1538 return false;
1539}
1540EXPORT_SYMBOL(blk_mq_queue_stopped);
1541
39a70c76
ML
1542/*
1543 * This function is often used for pausing .queue_rq() by driver when
1544 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1545 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1546 *
1547 * We do not guarantee that dispatch can be drained or blocked
1548 * after blk_mq_stop_hw_queue() returns. Please use
1549 * blk_mq_quiesce_queue() for that requirement.
1550 */
2719aa21
JA
1551void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1552{
641a9ed6 1553 cancel_delayed_work(&hctx->run_work);
280d45f6 1554
641a9ed6 1555 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1556}
641a9ed6 1557EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1558
39a70c76
ML
1559/*
1560 * This function is often used for pausing .queue_rq() by driver when
1561 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1562 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1563 *
1564 * We do not guarantee that dispatch can be drained or blocked
1565 * after blk_mq_stop_hw_queues() returns. Please use
1566 * blk_mq_quiesce_queue() for that requirement.
1567 */
2719aa21
JA
1568void blk_mq_stop_hw_queues(struct request_queue *q)
1569{
641a9ed6
ML
1570 struct blk_mq_hw_ctx *hctx;
1571 int i;
1572
1573 queue_for_each_hw_ctx(q, hctx, i)
1574 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1575}
1576EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1577
320ae51f
JA
1578void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1579{
1580 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1581
0ffbce80 1582 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1583}
1584EXPORT_SYMBOL(blk_mq_start_hw_queue);
1585
2f268556
CH
1586void blk_mq_start_hw_queues(struct request_queue *q)
1587{
1588 struct blk_mq_hw_ctx *hctx;
1589 int i;
1590
1591 queue_for_each_hw_ctx(q, hctx, i)
1592 blk_mq_start_hw_queue(hctx);
1593}
1594EXPORT_SYMBOL(blk_mq_start_hw_queues);
1595
ae911c5e
JA
1596void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1597{
1598 if (!blk_mq_hctx_stopped(hctx))
1599 return;
1600
1601 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1602 blk_mq_run_hw_queue(hctx, async);
1603}
1604EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1605
1b4a3258 1606void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1607{
1608 struct blk_mq_hw_ctx *hctx;
1609 int i;
1610
ae911c5e
JA
1611 queue_for_each_hw_ctx(q, hctx, i)
1612 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1613}
1614EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1615
70f4db63 1616static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1617{
1618 struct blk_mq_hw_ctx *hctx;
1619
9f993737 1620 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1621
21c6e939 1622 /*
15fe8a90 1623 * If we are stopped, don't run the queue.
21c6e939 1624 */
15fe8a90 1625 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
0196d6b4 1626 return;
7587a5ae
BVA
1627
1628 __blk_mq_run_hw_queue(hctx);
1629}
1630
cfd0c552 1631static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1632 struct request *rq,
1633 bool at_head)
320ae51f 1634{
e57690fe 1635 struct blk_mq_ctx *ctx = rq->mq_ctx;
c16d6b5a 1636 enum hctx_type type = hctx->type;
e57690fe 1637
7b607814
BVA
1638 lockdep_assert_held(&ctx->lock);
1639
01b983c9
JA
1640 trace_block_rq_insert(hctx->queue, rq);
1641
72a0a36e 1642 if (at_head)
c16d6b5a 1643 list_add(&rq->queuelist, &ctx->rq_lists[type]);
72a0a36e 1644 else
c16d6b5a 1645 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
cfd0c552 1646}
4bb659b1 1647
2c3ad667
JA
1648void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1649 bool at_head)
cfd0c552
ML
1650{
1651 struct blk_mq_ctx *ctx = rq->mq_ctx;
1652
7b607814
BVA
1653 lockdep_assert_held(&ctx->lock);
1654
e57690fe 1655 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1656 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1657}
1658
157f377b
JA
1659/*
1660 * Should only be used carefully, when the caller knows we want to
1661 * bypass a potential IO scheduler on the target device.
1662 */
b0850297 1663void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
157f377b 1664{
ea4f995e 1665 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
157f377b
JA
1666
1667 spin_lock(&hctx->lock);
1668 list_add_tail(&rq->queuelist, &hctx->dispatch);
1669 spin_unlock(&hctx->lock);
1670
b0850297
ML
1671 if (run_queue)
1672 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
1673}
1674
bd166ef1
JA
1675void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1676 struct list_head *list)
320ae51f
JA
1677
1678{
3f0cedc7 1679 struct request *rq;
c16d6b5a 1680 enum hctx_type type = hctx->type;
3f0cedc7 1681
320ae51f
JA
1682 /*
1683 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1684 * offline now
1685 */
3f0cedc7 1686 list_for_each_entry(rq, list, queuelist) {
e57690fe 1687 BUG_ON(rq->mq_ctx != ctx);
3f0cedc7 1688 trace_block_rq_insert(hctx->queue, rq);
320ae51f 1689 }
3f0cedc7
ML
1690
1691 spin_lock(&ctx->lock);
c16d6b5a 1692 list_splice_tail_init(list, &ctx->rq_lists[type]);
cfd0c552 1693 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1694 spin_unlock(&ctx->lock);
320ae51f
JA
1695}
1696
3110fc79 1697static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
320ae51f
JA
1698{
1699 struct request *rqa = container_of(a, struct request, queuelist);
1700 struct request *rqb = container_of(b, struct request, queuelist);
1701
3110fc79
JA
1702 if (rqa->mq_ctx < rqb->mq_ctx)
1703 return -1;
1704 else if (rqa->mq_ctx > rqb->mq_ctx)
1705 return 1;
1706 else if (rqa->mq_hctx < rqb->mq_hctx)
1707 return -1;
1708 else if (rqa->mq_hctx > rqb->mq_hctx)
1709 return 1;
1710
1711 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
320ae51f
JA
1712}
1713
1714void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1715{
67cae4c9 1716 struct blk_mq_hw_ctx *this_hctx;
320ae51f
JA
1717 struct blk_mq_ctx *this_ctx;
1718 struct request_queue *this_q;
1719 struct request *rq;
1720 LIST_HEAD(list);
67cae4c9 1721 LIST_HEAD(rq_list);
320ae51f
JA
1722 unsigned int depth;
1723
1724 list_splice_init(&plug->mq_list, &list);
1725
ce5b009c
JA
1726 if (plug->rq_count > 2 && plug->multiple_queues)
1727 list_sort(NULL, &list, plug_rq_cmp);
320ae51f 1728
bcc816df
DZ
1729 plug->rq_count = 0;
1730
320ae51f 1731 this_q = NULL;
67cae4c9 1732 this_hctx = NULL;
320ae51f
JA
1733 this_ctx = NULL;
1734 depth = 0;
1735
1736 while (!list_empty(&list)) {
1737 rq = list_entry_rq(list.next);
1738 list_del_init(&rq->queuelist);
1739 BUG_ON(!rq->q);
67cae4c9
JA
1740 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1741 if (this_hctx) {
587562d0 1742 trace_block_unplug(this_q, depth, !from_schedule);
67cae4c9
JA
1743 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1744 &rq_list,
bd166ef1 1745 from_schedule);
320ae51f
JA
1746 }
1747
320ae51f 1748 this_q = rq->q;
67cae4c9
JA
1749 this_ctx = rq->mq_ctx;
1750 this_hctx = rq->mq_hctx;
320ae51f
JA
1751 depth = 0;
1752 }
1753
1754 depth++;
67cae4c9 1755 list_add_tail(&rq->queuelist, &rq_list);
320ae51f
JA
1756 }
1757
1758 /*
67cae4c9
JA
1759 * If 'this_hctx' is set, we know we have entries to complete
1760 * on 'rq_list'. Do those.
320ae51f 1761 */
67cae4c9 1762 if (this_hctx) {
587562d0 1763 trace_block_unplug(this_q, depth, !from_schedule);
67cae4c9 1764 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
bd166ef1 1765 from_schedule);
320ae51f
JA
1766 }
1767}
1768
14ccb66b
CH
1769static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1770 unsigned int nr_segs)
320ae51f 1771{
f924cdde
CH
1772 if (bio->bi_opf & REQ_RAHEAD)
1773 rq->cmd_flags |= REQ_FAILFAST_MASK;
1774
1775 rq->__sector = bio->bi_iter.bi_sector;
1776 rq->write_hint = bio->bi_write_hint;
14ccb66b 1777 blk_rq_bio_prep(rq, bio, nr_segs);
4b570521 1778
6e85eaf3 1779 blk_account_io_start(rq, true);
320ae51f
JA
1780}
1781
0f95549c
MS
1782static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1783 struct request *rq,
be94f058 1784 blk_qc_t *cookie, bool last)
f984df1f 1785{
f984df1f 1786 struct request_queue *q = rq->q;
f984df1f
SL
1787 struct blk_mq_queue_data bd = {
1788 .rq = rq,
be94f058 1789 .last = last,
f984df1f 1790 };
bd166ef1 1791 blk_qc_t new_cookie;
f06345ad 1792 blk_status_t ret;
0f95549c
MS
1793
1794 new_cookie = request_to_qc_t(hctx, rq);
1795
1796 /*
1797 * For OK queue, we are done. For error, caller may kill it.
1798 * Any other error (busy), just add it to our list as we
1799 * previously would have done.
1800 */
1801 ret = q->mq_ops->queue_rq(hctx, &bd);
1802 switch (ret) {
1803 case BLK_STS_OK:
6ce3dd6e 1804 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1805 *cookie = new_cookie;
1806 break;
1807 case BLK_STS_RESOURCE:
86ff7c2a 1808 case BLK_STS_DEV_RESOURCE:
6ce3dd6e 1809 blk_mq_update_dispatch_busy(hctx, true);
0f95549c
MS
1810 __blk_mq_requeue_request(rq);
1811 break;
1812 default:
6ce3dd6e 1813 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1814 *cookie = BLK_QC_T_NONE;
1815 break;
1816 }
1817
1818 return ret;
1819}
1820
fd9c40f6 1821static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
0f95549c 1822 struct request *rq,
396eaf21 1823 blk_qc_t *cookie,
fd9c40f6 1824 bool bypass_insert, bool last)
0f95549c
MS
1825{
1826 struct request_queue *q = rq->q;
d964f04a
ML
1827 bool run_queue = true;
1828
23d4ee19 1829 /*
fd9c40f6 1830 * RCU or SRCU read lock is needed before checking quiesced flag.
23d4ee19 1831 *
fd9c40f6
BVA
1832 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1833 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1834 * and avoid driver to try to dispatch again.
23d4ee19 1835 */
fd9c40f6 1836 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a 1837 run_queue = false;
fd9c40f6
BVA
1838 bypass_insert = false;
1839 goto insert;
d964f04a 1840 }
f984df1f 1841
fd9c40f6
BVA
1842 if (q->elevator && !bypass_insert)
1843 goto insert;
2253efc8 1844
0bca799b 1845 if (!blk_mq_get_dispatch_budget(hctx))
fd9c40f6 1846 goto insert;
bd166ef1 1847
8ab6bb9e 1848 if (!blk_mq_get_driver_tag(rq)) {
0bca799b 1849 blk_mq_put_dispatch_budget(hctx);
fd9c40f6 1850 goto insert;
88022d72 1851 }
de148297 1852
fd9c40f6
BVA
1853 return __blk_mq_issue_directly(hctx, rq, cookie, last);
1854insert:
1855 if (bypass_insert)
1856 return BLK_STS_RESOURCE;
1857
1858 blk_mq_request_bypass_insert(rq, run_queue);
1859 return BLK_STS_OK;
1860}
1861
1862static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1863 struct request *rq, blk_qc_t *cookie)
1864{
1865 blk_status_t ret;
1866 int srcu_idx;
1867
1868 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1869
1870 hctx_lock(hctx, &srcu_idx);
1871
1872 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1873 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1874 blk_mq_request_bypass_insert(rq, true);
1875 else if (ret != BLK_STS_OK)
1876 blk_mq_end_request(rq, ret);
1877
1878 hctx_unlock(hctx, srcu_idx);
1879}
1880
1881blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1882{
1883 blk_status_t ret;
1884 int srcu_idx;
1885 blk_qc_t unused_cookie;
1886 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1887
1888 hctx_lock(hctx, &srcu_idx);
1889 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
04ced159 1890 hctx_unlock(hctx, srcu_idx);
7f556a44
JW
1891
1892 return ret;
5eb6126e
CH
1893}
1894
6ce3dd6e
ML
1895void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1896 struct list_head *list)
1897{
1898 while (!list_empty(list)) {
fd9c40f6 1899 blk_status_t ret;
6ce3dd6e
ML
1900 struct request *rq = list_first_entry(list, struct request,
1901 queuelist);
1902
1903 list_del_init(&rq->queuelist);
fd9c40f6
BVA
1904 ret = blk_mq_request_issue_directly(rq, list_empty(list));
1905 if (ret != BLK_STS_OK) {
1906 if (ret == BLK_STS_RESOURCE ||
1907 ret == BLK_STS_DEV_RESOURCE) {
1908 blk_mq_request_bypass_insert(rq,
c616cbee 1909 list_empty(list));
fd9c40f6
BVA
1910 break;
1911 }
1912 blk_mq_end_request(rq, ret);
1913 }
6ce3dd6e 1914 }
d666ba98
JA
1915
1916 /*
1917 * If we didn't flush the entire list, we could have told
1918 * the driver there was more coming, but that turned out to
1919 * be a lie.
1920 */
fd9c40f6 1921 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
d666ba98 1922 hctx->queue->mq_ops->commit_rqs(hctx);
6ce3dd6e
ML
1923}
1924
ce5b009c
JA
1925static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1926{
1927 list_add_tail(&rq->queuelist, &plug->mq_list);
1928 plug->rq_count++;
1929 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1930 struct request *tmp;
1931
1932 tmp = list_first_entry(&plug->mq_list, struct request,
1933 queuelist);
1934 if (tmp->q != rq->q)
1935 plug->multiple_queues = true;
1936 }
1937}
1938
dece1635 1939static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1940{
ef295ecf 1941 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1942 const int is_flush_fua = op_is_flush(bio->bi_opf);
7809167d 1943 struct blk_mq_alloc_data data = { .flags = 0};
07068d5b 1944 struct request *rq;
f984df1f 1945 struct blk_plug *plug;
5b3f341f 1946 struct request *same_queue_rq = NULL;
14ccb66b 1947 unsigned int nr_segs;
7b371636 1948 blk_qc_t cookie;
07068d5b
JA
1949
1950 blk_queue_bounce(q, &bio);
14ccb66b 1951 __blk_queue_split(q, &bio, &nr_segs);
f36ea50c 1952
e23947bd 1953 if (!bio_integrity_prep(bio))
dece1635 1954 return BLK_QC_T_NONE;
07068d5b 1955
87c279e6 1956 if (!is_flush_fua && !blk_queue_nomerges(q) &&
14ccb66b 1957 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
87c279e6 1958 return BLK_QC_T_NONE;
f984df1f 1959
14ccb66b 1960 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
bd166ef1
JA
1961 return BLK_QC_T_NONE;
1962
d5337560 1963 rq_qos_throttle(q, bio);
87760e5e 1964
7809167d 1965 data.cmd_flags = bio->bi_opf;
f9afca4d 1966 rq = blk_mq_get_request(q, bio, &data);
87760e5e 1967 if (unlikely(!rq)) {
c1c80384 1968 rq_qos_cleanup(q, bio);
893a1c97
JA
1969
1970 cookie = BLK_QC_T_NONE;
1971 if (bio->bi_opf & REQ_NOWAIT_INLINE)
1972 cookie = BLK_QC_T_EAGAIN;
1973 else if (bio->bi_opf & REQ_NOWAIT)
03a07c92 1974 bio_wouldblock_error(bio);
893a1c97 1975 return cookie;
87760e5e
JA
1976 }
1977
d6f1dda2
XW
1978 trace_block_getrq(q, bio, bio->bi_opf);
1979
c1c80384 1980 rq_qos_track(q, rq, bio);
07068d5b 1981
fd2d3326 1982 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1983
970d168d
BVA
1984 blk_mq_bio_to_request(rq, bio, nr_segs);
1985
b49773e7 1986 plug = blk_mq_plug(q, bio);
07068d5b 1987 if (unlikely(is_flush_fua)) {
923218f6
ML
1988 /* bypass scheduler for flush rq */
1989 blk_insert_flush(rq);
1990 blk_mq_run_hw_queue(data.hctx, true);
b2c5d16b
JA
1991 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1992 /*
1993 * Use plugging if we have a ->commit_rqs() hook as well, as
1994 * we know the driver uses bd->last in a smart fashion.
1995 */
5f0ed774 1996 unsigned int request_count = plug->rq_count;
600271d9
SL
1997 struct request *last = NULL;
1998
676d0607 1999 if (!request_count)
e6c4438b 2000 trace_block_plug(q);
600271d9
SL
2001 else
2002 last = list_entry_rq(plug->mq_list.prev);
b094f89c 2003
600271d9
SL
2004 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2005 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
2006 blk_flush_plug_list(plug, false);
2007 trace_block_plug(q);
320ae51f 2008 }
b094f89c 2009
ce5b009c 2010 blk_add_rq_to_plug(plug, rq);
2299722c 2011 } else if (plug && !blk_queue_nomerges(q)) {
07068d5b 2012 /*
6a83e74d 2013 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
2014 * Otherwise the existing request in the plug list will be
2015 * issued. So the plug list will have one request at most
2299722c
CH
2016 * The plug list might get flushed before this. If that happens,
2017 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 2018 */
2299722c
CH
2019 if (list_empty(&plug->mq_list))
2020 same_queue_rq = NULL;
4711b573 2021 if (same_queue_rq) {
2299722c 2022 list_del_init(&same_queue_rq->queuelist);
4711b573
JA
2023 plug->rq_count--;
2024 }
ce5b009c 2025 blk_add_rq_to_plug(plug, rq);
ff3b74b8 2026 trace_block_plug(q);
2299722c 2027
dad7a3be 2028 if (same_queue_rq) {
ea4f995e 2029 data.hctx = same_queue_rq->mq_hctx;
ff3b74b8 2030 trace_block_unplug(q, 1, true);
2299722c 2031 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
fd9c40f6 2032 &cookie);
dad7a3be 2033 }
6ce3dd6e
ML
2034 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2035 !data.hctx->dispatch_busy)) {
fd9c40f6 2036 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
ab42f35d 2037 } else {
8fa9f556 2038 blk_mq_sched_insert_request(rq, false, true, true);
ab42f35d 2039 }
320ae51f 2040
7b371636 2041 return cookie;
320ae51f
JA
2042}
2043
cc71a6f4
JA
2044void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2045 unsigned int hctx_idx)
95363efd 2046{
e9b267d9 2047 struct page *page;
320ae51f 2048
24d2f903 2049 if (tags->rqs && set->ops->exit_request) {
e9b267d9 2050 int i;
320ae51f 2051
24d2f903 2052 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
2053 struct request *rq = tags->static_rqs[i];
2054
2055 if (!rq)
e9b267d9 2056 continue;
d6296d39 2057 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 2058 tags->static_rqs[i] = NULL;
e9b267d9 2059 }
320ae51f 2060 }
320ae51f 2061
24d2f903
CH
2062 while (!list_empty(&tags->page_list)) {
2063 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 2064 list_del_init(&page->lru);
f75782e4
CM
2065 /*
2066 * Remove kmemleak object previously allocated in
273938bf 2067 * blk_mq_alloc_rqs().
f75782e4
CM
2068 */
2069 kmemleak_free(page_address(page));
320ae51f
JA
2070 __free_pages(page, page->private);
2071 }
cc71a6f4 2072}
320ae51f 2073
cc71a6f4
JA
2074void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2075{
24d2f903 2076 kfree(tags->rqs);
cc71a6f4 2077 tags->rqs = NULL;
2af8cbe3
JA
2078 kfree(tags->static_rqs);
2079 tags->static_rqs = NULL;
320ae51f 2080
24d2f903 2081 blk_mq_free_tags(tags);
320ae51f
JA
2082}
2083
cc71a6f4
JA
2084struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2085 unsigned int hctx_idx,
2086 unsigned int nr_tags,
2087 unsigned int reserved_tags)
320ae51f 2088{
24d2f903 2089 struct blk_mq_tags *tags;
59f082e4 2090 int node;
320ae51f 2091
7d76f856 2092 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
59f082e4
SL
2093 if (node == NUMA_NO_NODE)
2094 node = set->numa_node;
2095
2096 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 2097 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
2098 if (!tags)
2099 return NULL;
320ae51f 2100
590b5b7d 2101 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
36e1f3d1 2102 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 2103 node);
24d2f903
CH
2104 if (!tags->rqs) {
2105 blk_mq_free_tags(tags);
2106 return NULL;
2107 }
320ae51f 2108
590b5b7d
KC
2109 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2110 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2111 node);
2af8cbe3
JA
2112 if (!tags->static_rqs) {
2113 kfree(tags->rqs);
2114 blk_mq_free_tags(tags);
2115 return NULL;
2116 }
2117
cc71a6f4
JA
2118 return tags;
2119}
2120
2121static size_t order_to_size(unsigned int order)
2122{
2123 return (size_t)PAGE_SIZE << order;
2124}
2125
1d9bd516
TH
2126static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2127 unsigned int hctx_idx, int node)
2128{
2129 int ret;
2130
2131 if (set->ops->init_request) {
2132 ret = set->ops->init_request(set, rq, hctx_idx, node);
2133 if (ret)
2134 return ret;
2135 }
2136
12f5b931 2137 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1d9bd516
TH
2138 return 0;
2139}
2140
cc71a6f4
JA
2141int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2142 unsigned int hctx_idx, unsigned int depth)
2143{
2144 unsigned int i, j, entries_per_page, max_order = 4;
2145 size_t rq_size, left;
59f082e4
SL
2146 int node;
2147
7d76f856 2148 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
59f082e4
SL
2149 if (node == NUMA_NO_NODE)
2150 node = set->numa_node;
cc71a6f4
JA
2151
2152 INIT_LIST_HEAD(&tags->page_list);
2153
320ae51f
JA
2154 /*
2155 * rq_size is the size of the request plus driver payload, rounded
2156 * to the cacheline size
2157 */
24d2f903 2158 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 2159 cache_line_size());
cc71a6f4 2160 left = rq_size * depth;
320ae51f 2161
cc71a6f4 2162 for (i = 0; i < depth; ) {
320ae51f
JA
2163 int this_order = max_order;
2164 struct page *page;
2165 int to_do;
2166 void *p;
2167
b3a834b1 2168 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
2169 this_order--;
2170
2171 do {
59f082e4 2172 page = alloc_pages_node(node,
36e1f3d1 2173 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 2174 this_order);
320ae51f
JA
2175 if (page)
2176 break;
2177 if (!this_order--)
2178 break;
2179 if (order_to_size(this_order) < rq_size)
2180 break;
2181 } while (1);
2182
2183 if (!page)
24d2f903 2184 goto fail;
320ae51f
JA
2185
2186 page->private = this_order;
24d2f903 2187 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
2188
2189 p = page_address(page);
f75782e4
CM
2190 /*
2191 * Allow kmemleak to scan these pages as they contain pointers
2192 * to additional allocations like via ops->init_request().
2193 */
36e1f3d1 2194 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 2195 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 2196 to_do = min(entries_per_page, depth - i);
320ae51f
JA
2197 left -= to_do * rq_size;
2198 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
2199 struct request *rq = p;
2200
2201 tags->static_rqs[i] = rq;
1d9bd516
TH
2202 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2203 tags->static_rqs[i] = NULL;
2204 goto fail;
e9b267d9
CH
2205 }
2206
320ae51f
JA
2207 p += rq_size;
2208 i++;
2209 }
2210 }
cc71a6f4 2211 return 0;
320ae51f 2212
24d2f903 2213fail:
cc71a6f4
JA
2214 blk_mq_free_rqs(set, tags, hctx_idx);
2215 return -ENOMEM;
320ae51f
JA
2216}
2217
e57690fe
JA
2218/*
2219 * 'cpu' is going away. splice any existing rq_list entries from this
2220 * software queue to the hw queue dispatch list, and ensure that it
2221 * gets run.
2222 */
9467f859 2223static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 2224{
9467f859 2225 struct blk_mq_hw_ctx *hctx;
484b4061
JA
2226 struct blk_mq_ctx *ctx;
2227 LIST_HEAD(tmp);
c16d6b5a 2228 enum hctx_type type;
484b4061 2229
9467f859 2230 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 2231 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
c16d6b5a 2232 type = hctx->type;
484b4061
JA
2233
2234 spin_lock(&ctx->lock);
c16d6b5a
ML
2235 if (!list_empty(&ctx->rq_lists[type])) {
2236 list_splice_init(&ctx->rq_lists[type], &tmp);
484b4061
JA
2237 blk_mq_hctx_clear_pending(hctx, ctx);
2238 }
2239 spin_unlock(&ctx->lock);
2240
2241 if (list_empty(&tmp))
9467f859 2242 return 0;
484b4061 2243
e57690fe
JA
2244 spin_lock(&hctx->lock);
2245 list_splice_tail_init(&tmp, &hctx->dispatch);
2246 spin_unlock(&hctx->lock);
484b4061
JA
2247
2248 blk_mq_run_hw_queue(hctx, true);
9467f859 2249 return 0;
484b4061
JA
2250}
2251
9467f859 2252static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 2253{
9467f859
TG
2254 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2255 &hctx->cpuhp_dead);
484b4061
JA
2256}
2257
c3b4afca 2258/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
2259static void blk_mq_exit_hctx(struct request_queue *q,
2260 struct blk_mq_tag_set *set,
2261 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2262{
8ab0b7dc
ML
2263 if (blk_mq_hw_queue_mapped(hctx))
2264 blk_mq_tag_idle(hctx);
08e98fc6 2265
f70ced09 2266 if (set->ops->exit_request)
d6296d39 2267 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 2268
08e98fc6
ML
2269 if (set->ops->exit_hctx)
2270 set->ops->exit_hctx(hctx, hctx_idx);
2271
9467f859 2272 blk_mq_remove_cpuhp(hctx);
2f8f1336
ML
2273
2274 spin_lock(&q->unused_hctx_lock);
2275 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2276 spin_unlock(&q->unused_hctx_lock);
08e98fc6
ML
2277}
2278
624dbe47
ML
2279static void blk_mq_exit_hw_queues(struct request_queue *q,
2280 struct blk_mq_tag_set *set, int nr_queue)
2281{
2282 struct blk_mq_hw_ctx *hctx;
2283 unsigned int i;
2284
2285 queue_for_each_hw_ctx(q, hctx, i) {
2286 if (i == nr_queue)
2287 break;
477e19de 2288 blk_mq_debugfs_unregister_hctx(hctx);
08e98fc6 2289 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 2290 }
624dbe47
ML
2291}
2292
7c6c5b7c
ML
2293static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2294{
2295 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2296
2297 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2298 __alignof__(struct blk_mq_hw_ctx)) !=
2299 sizeof(struct blk_mq_hw_ctx));
2300
2301 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2302 hw_ctx_size += sizeof(struct srcu_struct);
2303
2304 return hw_ctx_size;
2305}
2306
08e98fc6
ML
2307static int blk_mq_init_hctx(struct request_queue *q,
2308 struct blk_mq_tag_set *set,
2309 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 2310{
7c6c5b7c
ML
2311 hctx->queue_num = hctx_idx;
2312
2313 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2314
2315 hctx->tags = set->tags[hctx_idx];
2316
2317 if (set->ops->init_hctx &&
2318 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2319 goto unregister_cpu_notifier;
08e98fc6 2320
7c6c5b7c
ML
2321 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2322 hctx->numa_node))
2323 goto exit_hctx;
2324 return 0;
2325
2326 exit_hctx:
2327 if (set->ops->exit_hctx)
2328 set->ops->exit_hctx(hctx, hctx_idx);
2329 unregister_cpu_notifier:
2330 blk_mq_remove_cpuhp(hctx);
2331 return -1;
2332}
2333
2334static struct blk_mq_hw_ctx *
2335blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2336 int node)
2337{
2338 struct blk_mq_hw_ctx *hctx;
2339 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2340
2341 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2342 if (!hctx)
2343 goto fail_alloc_hctx;
2344
2345 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2346 goto free_hctx;
2347
2348 atomic_set(&hctx->nr_active, 0);
08e98fc6 2349 if (node == NUMA_NO_NODE)
7c6c5b7c
ML
2350 node = set->numa_node;
2351 hctx->numa_node = node;
08e98fc6 2352
9f993737 2353 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2354 spin_lock_init(&hctx->lock);
2355 INIT_LIST_HEAD(&hctx->dispatch);
2356 hctx->queue = q;
2404e607 2357 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 2358
2f8f1336
ML
2359 INIT_LIST_HEAD(&hctx->hctx_list);
2360
320ae51f 2361 /*
08e98fc6
ML
2362 * Allocate space for all possible cpus to avoid allocation at
2363 * runtime
320ae51f 2364 */
d904bfa7 2365 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
7c6c5b7c 2366 gfp, node);
08e98fc6 2367 if (!hctx->ctxs)
7c6c5b7c 2368 goto free_cpumask;
320ae51f 2369
5b202853 2370 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
7c6c5b7c 2371 gfp, node))
08e98fc6 2372 goto free_ctxs;
08e98fc6 2373 hctx->nr_ctx = 0;
320ae51f 2374
5815839b 2375 spin_lock_init(&hctx->dispatch_wait_lock);
eb619fdb
JA
2376 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2377 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2378
5b202853 2379 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
7c6c5b7c 2380 gfp);
f70ced09 2381 if (!hctx->fq)
7c6c5b7c 2382 goto free_bitmap;
320ae51f 2383
6a83e74d 2384 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2385 init_srcu_struct(hctx->srcu);
7c6c5b7c 2386 blk_mq_hctx_kobj_init(hctx);
6a83e74d 2387
7c6c5b7c 2388 return hctx;
320ae51f 2389
08e98fc6 2390 free_bitmap:
88459642 2391 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2392 free_ctxs:
2393 kfree(hctx->ctxs);
7c6c5b7c
ML
2394 free_cpumask:
2395 free_cpumask_var(hctx->cpumask);
2396 free_hctx:
2397 kfree(hctx);
2398 fail_alloc_hctx:
2399 return NULL;
08e98fc6 2400}
320ae51f 2401
320ae51f
JA
2402static void blk_mq_init_cpu_queues(struct request_queue *q,
2403 unsigned int nr_hw_queues)
2404{
b3c661b1
JA
2405 struct blk_mq_tag_set *set = q->tag_set;
2406 unsigned int i, j;
320ae51f
JA
2407
2408 for_each_possible_cpu(i) {
2409 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2410 struct blk_mq_hw_ctx *hctx;
c16d6b5a 2411 int k;
320ae51f 2412
320ae51f
JA
2413 __ctx->cpu = i;
2414 spin_lock_init(&__ctx->lock);
c16d6b5a
ML
2415 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2416 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2417
320ae51f
JA
2418 __ctx->queue = q;
2419
320ae51f
JA
2420 /*
2421 * Set local node, IFF we have more than one hw queue. If
2422 * not, we remain on the home node of the device
2423 */
b3c661b1
JA
2424 for (j = 0; j < set->nr_maps; j++) {
2425 hctx = blk_mq_map_queue_type(q, j, i);
2426 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2427 hctx->numa_node = local_memory_node(cpu_to_node(i));
2428 }
320ae51f
JA
2429 }
2430}
2431
cc71a6f4
JA
2432static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2433{
2434 int ret = 0;
2435
2436 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2437 set->queue_depth, set->reserved_tags);
2438 if (!set->tags[hctx_idx])
2439 return false;
2440
2441 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2442 set->queue_depth);
2443 if (!ret)
2444 return true;
2445
2446 blk_mq_free_rq_map(set->tags[hctx_idx]);
2447 set->tags[hctx_idx] = NULL;
2448 return false;
2449}
2450
2451static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2452 unsigned int hctx_idx)
2453{
4e6db0f2 2454 if (set->tags && set->tags[hctx_idx]) {
bd166ef1
JA
2455 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2456 blk_mq_free_rq_map(set->tags[hctx_idx]);
2457 set->tags[hctx_idx] = NULL;
2458 }
cc71a6f4
JA
2459}
2460
4b855ad3 2461static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2462{
b3c661b1 2463 unsigned int i, j, hctx_idx;
320ae51f
JA
2464 struct blk_mq_hw_ctx *hctx;
2465 struct blk_mq_ctx *ctx;
2a34c087 2466 struct blk_mq_tag_set *set = q->tag_set;
320ae51f
JA
2467
2468 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2469 cpumask_clear(hctx->cpumask);
320ae51f 2470 hctx->nr_ctx = 0;
d416c92c 2471 hctx->dispatch_from = NULL;
320ae51f
JA
2472 }
2473
2474 /*
4b855ad3 2475 * Map software to hardware queues.
4412efec
ML
2476 *
2477 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2478 */
20e4d813 2479 for_each_possible_cpu(i) {
7d76f856 2480 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
4412efec
ML
2481 /* unmapped hw queue can be remapped after CPU topo changed */
2482 if (!set->tags[hctx_idx] &&
2483 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2484 /*
2485 * If tags initialization fail for some hctx,
2486 * that hctx won't be brought online. In this
2487 * case, remap the current ctx to hctx[0] which
2488 * is guaranteed to always have tags allocated
2489 */
7d76f856 2490 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
4412efec
ML
2491 }
2492
897bb0c7 2493 ctx = per_cpu_ptr(q->queue_ctx, i);
b3c661b1 2494 for (j = 0; j < set->nr_maps; j++) {
bb94aea1
JW
2495 if (!set->map[j].nr_queues) {
2496 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2497 HCTX_TYPE_DEFAULT, i);
e5edd5f2 2498 continue;
bb94aea1 2499 }
e5edd5f2 2500
b3c661b1 2501 hctx = blk_mq_map_queue_type(q, j, i);
8ccdf4a3 2502 ctx->hctxs[j] = hctx;
b3c661b1
JA
2503 /*
2504 * If the CPU is already set in the mask, then we've
2505 * mapped this one already. This can happen if
2506 * devices share queues across queue maps.
2507 */
2508 if (cpumask_test_cpu(i, hctx->cpumask))
2509 continue;
2510
2511 cpumask_set_cpu(i, hctx->cpumask);
2512 hctx->type = j;
2513 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2514 hctx->ctxs[hctx->nr_ctx++] = ctx;
2515
2516 /*
2517 * If the nr_ctx type overflows, we have exceeded the
2518 * amount of sw queues we can support.
2519 */
2520 BUG_ON(!hctx->nr_ctx);
2521 }
bb94aea1
JW
2522
2523 for (; j < HCTX_MAX_TYPES; j++)
2524 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2525 HCTX_TYPE_DEFAULT, i);
320ae51f 2526 }
506e931f
JA
2527
2528 queue_for_each_hw_ctx(q, hctx, i) {
4412efec
ML
2529 /*
2530 * If no software queues are mapped to this hardware queue,
2531 * disable it and free the request entries.
2532 */
2533 if (!hctx->nr_ctx) {
2534 /* Never unmap queue 0. We need it as a
2535 * fallback in case of a new remap fails
2536 * allocation
2537 */
2538 if (i && set->tags[i])
2539 blk_mq_free_map_and_requests(set, i);
2540
2541 hctx->tags = NULL;
2542 continue;
2543 }
484b4061 2544
2a34c087
ML
2545 hctx->tags = set->tags[i];
2546 WARN_ON(!hctx->tags);
2547
889fa31f
CY
2548 /*
2549 * Set the map size to the number of mapped software queues.
2550 * This is more accurate and more efficient than looping
2551 * over all possibly mapped software queues.
2552 */
88459642 2553 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2554
484b4061
JA
2555 /*
2556 * Initialize batch roundrobin counts
2557 */
f82ddf19 2558 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
2559 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2560 }
320ae51f
JA
2561}
2562
8e8320c9
JA
2563/*
2564 * Caller needs to ensure that we're either frozen/quiesced, or that
2565 * the queue isn't live yet.
2566 */
2404e607 2567static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2568{
2569 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2570 int i;
2571
2404e607 2572 queue_for_each_hw_ctx(q, hctx, i) {
97889f9a 2573 if (shared)
2404e607 2574 hctx->flags |= BLK_MQ_F_TAG_SHARED;
97889f9a 2575 else
2404e607
JM
2576 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2577 }
2578}
2579
8e8320c9
JA
2580static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2581 bool shared)
2404e607
JM
2582{
2583 struct request_queue *q;
0d2602ca 2584
705cda97
BVA
2585 lockdep_assert_held(&set->tag_list_lock);
2586
0d2602ca
JA
2587 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2588 blk_mq_freeze_queue(q);
2404e607 2589 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2590 blk_mq_unfreeze_queue(q);
2591 }
2592}
2593
2594static void blk_mq_del_queue_tag_set(struct request_queue *q)
2595{
2596 struct blk_mq_tag_set *set = q->tag_set;
2597
0d2602ca 2598 mutex_lock(&set->tag_list_lock);
705cda97 2599 list_del_rcu(&q->tag_set_list);
2404e607
JM
2600 if (list_is_singular(&set->tag_list)) {
2601 /* just transitioned to unshared */
2602 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2603 /* update existing queue */
2604 blk_mq_update_tag_set_depth(set, false);
2605 }
0d2602ca 2606 mutex_unlock(&set->tag_list_lock);
a347c7ad 2607 INIT_LIST_HEAD(&q->tag_set_list);
0d2602ca
JA
2608}
2609
2610static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2611 struct request_queue *q)
2612{
0d2602ca 2613 mutex_lock(&set->tag_list_lock);
2404e607 2614
ff821d27
JA
2615 /*
2616 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2617 */
2618 if (!list_empty(&set->tag_list) &&
2619 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2404e607
JM
2620 set->flags |= BLK_MQ_F_TAG_SHARED;
2621 /* update existing queue */
2622 blk_mq_update_tag_set_depth(set, true);
2623 }
2624 if (set->flags & BLK_MQ_F_TAG_SHARED)
2625 queue_set_hctx_shared(q, true);
705cda97 2626 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2627
0d2602ca
JA
2628 mutex_unlock(&set->tag_list_lock);
2629}
2630
1db4909e
ML
2631/* All allocations will be freed in release handler of q->mq_kobj */
2632static int blk_mq_alloc_ctxs(struct request_queue *q)
2633{
2634 struct blk_mq_ctxs *ctxs;
2635 int cpu;
2636
2637 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2638 if (!ctxs)
2639 return -ENOMEM;
2640
2641 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2642 if (!ctxs->queue_ctx)
2643 goto fail;
2644
2645 for_each_possible_cpu(cpu) {
2646 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2647 ctx->ctxs = ctxs;
2648 }
2649
2650 q->mq_kobj = &ctxs->kobj;
2651 q->queue_ctx = ctxs->queue_ctx;
2652
2653 return 0;
2654 fail:
2655 kfree(ctxs);
2656 return -ENOMEM;
2657}
2658
e09aae7e
ML
2659/*
2660 * It is the actual release handler for mq, but we do it from
2661 * request queue's release handler for avoiding use-after-free
2662 * and headache because q->mq_kobj shouldn't have been introduced,
2663 * but we can't group ctx/kctx kobj without it.
2664 */
2665void blk_mq_release(struct request_queue *q)
2666{
2f8f1336
ML
2667 struct blk_mq_hw_ctx *hctx, *next;
2668 int i;
e09aae7e 2669
fbc2a15e
ML
2670 cancel_delayed_work_sync(&q->requeue_work);
2671
2f8f1336
ML
2672 queue_for_each_hw_ctx(q, hctx, i)
2673 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2674
2675 /* all hctx are in .unused_hctx_list now */
2676 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2677 list_del_init(&hctx->hctx_list);
6c8b232e 2678 kobject_put(&hctx->kobj);
c3b4afca 2679 }
e09aae7e
ML
2680
2681 kfree(q->queue_hw_ctx);
2682
7ea5fe31
ML
2683 /*
2684 * release .mq_kobj and sw queue's kobject now because
2685 * both share lifetime with request queue.
2686 */
2687 blk_mq_sysfs_deinit(q);
e09aae7e
ML
2688}
2689
24d2f903 2690struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2691{
2692 struct request_queue *uninit_q, *q;
2693
6d469642 2694 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
b62c21b7
MS
2695 if (!uninit_q)
2696 return ERR_PTR(-ENOMEM);
2697
737eb78e
DLM
2698 /*
2699 * Initialize the queue without an elevator. device_add_disk() will do
2700 * the initialization.
2701 */
2702 q = blk_mq_init_allocated_queue(set, uninit_q, false);
b62c21b7
MS
2703 if (IS_ERR(q))
2704 blk_cleanup_queue(uninit_q);
2705
2706 return q;
2707}
2708EXPORT_SYMBOL(blk_mq_init_queue);
2709
9316a9ed
JA
2710/*
2711 * Helper for setting up a queue with mq ops, given queue depth, and
2712 * the passed in mq ops flags.
2713 */
2714struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2715 const struct blk_mq_ops *ops,
2716 unsigned int queue_depth,
2717 unsigned int set_flags)
2718{
2719 struct request_queue *q;
2720 int ret;
2721
2722 memset(set, 0, sizeof(*set));
2723 set->ops = ops;
2724 set->nr_hw_queues = 1;
b3c661b1 2725 set->nr_maps = 1;
9316a9ed
JA
2726 set->queue_depth = queue_depth;
2727 set->numa_node = NUMA_NO_NODE;
2728 set->flags = set_flags;
2729
2730 ret = blk_mq_alloc_tag_set(set);
2731 if (ret)
2732 return ERR_PTR(ret);
2733
2734 q = blk_mq_init_queue(set);
2735 if (IS_ERR(q)) {
2736 blk_mq_free_tag_set(set);
2737 return q;
2738 }
2739
2740 return q;
2741}
2742EXPORT_SYMBOL(blk_mq_init_sq_queue);
2743
34d11ffa
JW
2744static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2745 struct blk_mq_tag_set *set, struct request_queue *q,
2746 int hctx_idx, int node)
2747{
2f8f1336 2748 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
34d11ffa 2749
2f8f1336
ML
2750 /* reuse dead hctx first */
2751 spin_lock(&q->unused_hctx_lock);
2752 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2753 if (tmp->numa_node == node) {
2754 hctx = tmp;
2755 break;
2756 }
2757 }
2758 if (hctx)
2759 list_del_init(&hctx->hctx_list);
2760 spin_unlock(&q->unused_hctx_lock);
2761
2762 if (!hctx)
2763 hctx = blk_mq_alloc_hctx(q, set, node);
34d11ffa 2764 if (!hctx)
7c6c5b7c 2765 goto fail;
34d11ffa 2766
7c6c5b7c
ML
2767 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2768 goto free_hctx;
34d11ffa
JW
2769
2770 return hctx;
7c6c5b7c
ML
2771
2772 free_hctx:
2773 kobject_put(&hctx->kobj);
2774 fail:
2775 return NULL;
34d11ffa
JW
2776}
2777
868f2f0b
KB
2778static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2779 struct request_queue *q)
320ae51f 2780{
e01ad46d 2781 int i, j, end;
868f2f0b 2782 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2783
fb350e0a
ML
2784 /* protect against switching io scheduler */
2785 mutex_lock(&q->sysfs_lock);
24d2f903 2786 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2787 int node;
34d11ffa 2788 struct blk_mq_hw_ctx *hctx;
868f2f0b 2789
7d76f856 2790 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
34d11ffa
JW
2791 /*
2792 * If the hw queue has been mapped to another numa node,
2793 * we need to realloc the hctx. If allocation fails, fallback
2794 * to use the previous one.
2795 */
2796 if (hctxs[i] && (hctxs[i]->numa_node == node))
2797 continue;
868f2f0b 2798
34d11ffa
JW
2799 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2800 if (hctx) {
2f8f1336 2801 if (hctxs[i])
34d11ffa 2802 blk_mq_exit_hctx(q, set, hctxs[i], i);
34d11ffa
JW
2803 hctxs[i] = hctx;
2804 } else {
2805 if (hctxs[i])
2806 pr_warn("Allocate new hctx on node %d fails,\
2807 fallback to previous one on node %d\n",
2808 node, hctxs[i]->numa_node);
2809 else
2810 break;
868f2f0b 2811 }
320ae51f 2812 }
e01ad46d
JW
2813 /*
2814 * Increasing nr_hw_queues fails. Free the newly allocated
2815 * hctxs and keep the previous q->nr_hw_queues.
2816 */
2817 if (i != set->nr_hw_queues) {
2818 j = q->nr_hw_queues;
2819 end = i;
2820 } else {
2821 j = i;
2822 end = q->nr_hw_queues;
2823 q->nr_hw_queues = set->nr_hw_queues;
2824 }
34d11ffa 2825
e01ad46d 2826 for (; j < end; j++) {
868f2f0b
KB
2827 struct blk_mq_hw_ctx *hctx = hctxs[j];
2828
2829 if (hctx) {
cc71a6f4
JA
2830 if (hctx->tags)
2831 blk_mq_free_map_and_requests(set, j);
868f2f0b 2832 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2833 hctxs[j] = NULL;
868f2f0b
KB
2834 }
2835 }
fb350e0a 2836 mutex_unlock(&q->sysfs_lock);
868f2f0b
KB
2837}
2838
392546ae
JA
2839/*
2840 * Maximum number of hardware queues we support. For single sets, we'll never
2841 * have more than the CPUs (software queues). For multiple sets, the tag_set
2842 * user may have set ->nr_hw_queues larger.
2843 */
2844static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2845{
2846 if (set->nr_maps == 1)
2847 return nr_cpu_ids;
2848
2849 return max(set->nr_hw_queues, nr_cpu_ids);
2850}
2851
868f2f0b 2852struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
737eb78e
DLM
2853 struct request_queue *q,
2854 bool elevator_init)
868f2f0b 2855{
66841672
ML
2856 /* mark the queue as mq asap */
2857 q->mq_ops = set->ops;
2858
34dbad5d 2859 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2860 blk_mq_poll_stats_bkt,
2861 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2862 if (!q->poll_cb)
2863 goto err_exit;
2864
1db4909e 2865 if (blk_mq_alloc_ctxs(q))
41de54c6 2866 goto err_poll;
868f2f0b 2867
737f98cf
ML
2868 /* init q->mq_kobj and sw queues' kobjects */
2869 blk_mq_sysfs_init(q);
2870
392546ae
JA
2871 q->nr_queues = nr_hw_queues(set);
2872 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
868f2f0b
KB
2873 GFP_KERNEL, set->numa_node);
2874 if (!q->queue_hw_ctx)
1db4909e 2875 goto err_sys_init;
868f2f0b 2876
2f8f1336
ML
2877 INIT_LIST_HEAD(&q->unused_hctx_list);
2878 spin_lock_init(&q->unused_hctx_lock);
2879
868f2f0b
KB
2880 blk_mq_realloc_hw_ctxs(set, q);
2881 if (!q->nr_hw_queues)
2882 goto err_hctxs;
320ae51f 2883
287922eb 2884 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2885 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f 2886
a8908939 2887 q->tag_set = set;
320ae51f 2888
94eddfbe 2889 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
cd19181b
ML
2890 if (set->nr_maps > HCTX_TYPE_POLL &&
2891 set->map[HCTX_TYPE_POLL].nr_queues)
6544d229 2892 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
320ae51f 2893
1be036e9
CH
2894 q->sg_reserved_size = INT_MAX;
2895
2849450a 2896 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2897 INIT_LIST_HEAD(&q->requeue_list);
2898 spin_lock_init(&q->requeue_lock);
2899
254d259d 2900 blk_queue_make_request(q, blk_mq_make_request);
07068d5b 2901
eba71768
JA
2902 /*
2903 * Do this after blk_queue_make_request() overrides it...
2904 */
2905 q->nr_requests = set->queue_depth;
2906
64f1c21e
JA
2907 /*
2908 * Default to classic polling
2909 */
29ece8b4 2910 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
64f1c21e 2911
24d2f903 2912 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 2913 blk_mq_add_queue_tag_set(set, q);
4b855ad3 2914 blk_mq_map_swqueue(q);
4593fdbe 2915
737eb78e
DLM
2916 if (elevator_init)
2917 elevator_init_mq(q);
d3484991 2918
320ae51f 2919 return q;
18741986 2920
320ae51f 2921err_hctxs:
868f2f0b 2922 kfree(q->queue_hw_ctx);
73d9c8d4 2923 q->nr_hw_queues = 0;
1db4909e
ML
2924err_sys_init:
2925 blk_mq_sysfs_deinit(q);
41de54c6
JS
2926err_poll:
2927 blk_stat_free_callback(q->poll_cb);
2928 q->poll_cb = NULL;
c7de5726
ML
2929err_exit:
2930 q->mq_ops = NULL;
320ae51f
JA
2931 return ERR_PTR(-ENOMEM);
2932}
b62c21b7 2933EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f 2934
c7e2d94b
ML
2935/* tags can _not_ be used after returning from blk_mq_exit_queue */
2936void blk_mq_exit_queue(struct request_queue *q)
320ae51f 2937{
624dbe47 2938 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2939
0d2602ca 2940 blk_mq_del_queue_tag_set(q);
624dbe47 2941 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2942}
320ae51f 2943
a5164405
JA
2944static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2945{
2946 int i;
2947
cc71a6f4
JA
2948 for (i = 0; i < set->nr_hw_queues; i++)
2949 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2950 goto out_unwind;
a5164405
JA
2951
2952 return 0;
2953
2954out_unwind:
2955 while (--i >= 0)
cc71a6f4 2956 blk_mq_free_rq_map(set->tags[i]);
a5164405 2957
a5164405
JA
2958 return -ENOMEM;
2959}
2960
2961/*
2962 * Allocate the request maps associated with this tag_set. Note that this
2963 * may reduce the depth asked for, if memory is tight. set->queue_depth
2964 * will be updated to reflect the allocated depth.
2965 */
2966static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2967{
2968 unsigned int depth;
2969 int err;
2970
2971 depth = set->queue_depth;
2972 do {
2973 err = __blk_mq_alloc_rq_maps(set);
2974 if (!err)
2975 break;
2976
2977 set->queue_depth >>= 1;
2978 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2979 err = -ENOMEM;
2980 break;
2981 }
2982 } while (set->queue_depth);
2983
2984 if (!set->queue_depth || err) {
2985 pr_err("blk-mq: failed to allocate request map\n");
2986 return -ENOMEM;
2987 }
2988
2989 if (depth != set->queue_depth)
2990 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2991 depth, set->queue_depth);
2992
2993 return 0;
2994}
2995
ebe8bddb
OS
2996static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2997{
59388702 2998 if (set->ops->map_queues && !is_kdump_kernel()) {
b3c661b1
JA
2999 int i;
3000
7d4901a9
ML
3001 /*
3002 * transport .map_queues is usually done in the following
3003 * way:
3004 *
3005 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3006 * mask = get_cpu_mask(queue)
3007 * for_each_cpu(cpu, mask)
b3c661b1 3008 * set->map[x].mq_map[cpu] = queue;
7d4901a9
ML
3009 * }
3010 *
3011 * When we need to remap, the table has to be cleared for
3012 * killing stale mapping since one CPU may not be mapped
3013 * to any hw queue.
3014 */
b3c661b1
JA
3015 for (i = 0; i < set->nr_maps; i++)
3016 blk_mq_clear_mq_map(&set->map[i]);
7d4901a9 3017
ebe8bddb 3018 return set->ops->map_queues(set);
b3c661b1
JA
3019 } else {
3020 BUG_ON(set->nr_maps > 1);
7d76f856 3021 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
b3c661b1 3022 }
ebe8bddb
OS
3023}
3024
a4391c64
JA
3025/*
3026 * Alloc a tag set to be associated with one or more request queues.
3027 * May fail with EINVAL for various error conditions. May adjust the
c018c84f 3028 * requested depth down, if it's too large. In that case, the set
a4391c64
JA
3029 * value will be stored in set->queue_depth.
3030 */
24d2f903
CH
3031int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3032{
b3c661b1 3033 int i, ret;
da695ba2 3034
205fb5f5
BVA
3035 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3036
24d2f903
CH
3037 if (!set->nr_hw_queues)
3038 return -EINVAL;
a4391c64 3039 if (!set->queue_depth)
24d2f903
CH
3040 return -EINVAL;
3041 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3042 return -EINVAL;
3043
7d7e0f90 3044 if (!set->ops->queue_rq)
24d2f903
CH
3045 return -EINVAL;
3046
de148297
ML
3047 if (!set->ops->get_budget ^ !set->ops->put_budget)
3048 return -EINVAL;
3049
a4391c64
JA
3050 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3051 pr_info("blk-mq: reduced tag depth to %u\n",
3052 BLK_MQ_MAX_DEPTH);
3053 set->queue_depth = BLK_MQ_MAX_DEPTH;
3054 }
24d2f903 3055
b3c661b1
JA
3056 if (!set->nr_maps)
3057 set->nr_maps = 1;
3058 else if (set->nr_maps > HCTX_MAX_TYPES)
3059 return -EINVAL;
3060
6637fadf
SL
3061 /*
3062 * If a crashdump is active, then we are potentially in a very
3063 * memory constrained environment. Limit us to 1 queue and
3064 * 64 tags to prevent using too much memory.
3065 */
3066 if (is_kdump_kernel()) {
3067 set->nr_hw_queues = 1;
59388702 3068 set->nr_maps = 1;
6637fadf
SL
3069 set->queue_depth = min(64U, set->queue_depth);
3070 }
868f2f0b 3071 /*
392546ae
JA
3072 * There is no use for more h/w queues than cpus if we just have
3073 * a single map
868f2f0b 3074 */
392546ae 3075 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
868f2f0b 3076 set->nr_hw_queues = nr_cpu_ids;
6637fadf 3077
392546ae 3078 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
24d2f903
CH
3079 GFP_KERNEL, set->numa_node);
3080 if (!set->tags)
a5164405 3081 return -ENOMEM;
24d2f903 3082
da695ba2 3083 ret = -ENOMEM;
b3c661b1
JA
3084 for (i = 0; i < set->nr_maps; i++) {
3085 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
07b35eb5 3086 sizeof(set->map[i].mq_map[0]),
b3c661b1
JA
3087 GFP_KERNEL, set->numa_node);
3088 if (!set->map[i].mq_map)
3089 goto out_free_mq_map;
59388702 3090 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
b3c661b1 3091 }
bdd17e75 3092
ebe8bddb 3093 ret = blk_mq_update_queue_map(set);
da695ba2
CH
3094 if (ret)
3095 goto out_free_mq_map;
3096
3097 ret = blk_mq_alloc_rq_maps(set);
3098 if (ret)
bdd17e75 3099 goto out_free_mq_map;
24d2f903 3100
0d2602ca
JA
3101 mutex_init(&set->tag_list_lock);
3102 INIT_LIST_HEAD(&set->tag_list);
3103
24d2f903 3104 return 0;
bdd17e75
CH
3105
3106out_free_mq_map:
b3c661b1
JA
3107 for (i = 0; i < set->nr_maps; i++) {
3108 kfree(set->map[i].mq_map);
3109 set->map[i].mq_map = NULL;
3110 }
5676e7b6
RE
3111 kfree(set->tags);
3112 set->tags = NULL;
da695ba2 3113 return ret;
24d2f903
CH
3114}
3115EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3116
3117void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3118{
b3c661b1 3119 int i, j;
24d2f903 3120
392546ae 3121 for (i = 0; i < nr_hw_queues(set); i++)
cc71a6f4 3122 blk_mq_free_map_and_requests(set, i);
484b4061 3123
b3c661b1
JA
3124 for (j = 0; j < set->nr_maps; j++) {
3125 kfree(set->map[j].mq_map);
3126 set->map[j].mq_map = NULL;
3127 }
bdd17e75 3128
981bd189 3129 kfree(set->tags);
5676e7b6 3130 set->tags = NULL;
24d2f903
CH
3131}
3132EXPORT_SYMBOL(blk_mq_free_tag_set);
3133
e3a2b3f9
JA
3134int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3135{
3136 struct blk_mq_tag_set *set = q->tag_set;
3137 struct blk_mq_hw_ctx *hctx;
3138 int i, ret;
3139
bd166ef1 3140 if (!set)
e3a2b3f9
JA
3141 return -EINVAL;
3142
e5fa8140
AZ
3143 if (q->nr_requests == nr)
3144 return 0;
3145
70f36b60 3146 blk_mq_freeze_queue(q);
24f5a90f 3147 blk_mq_quiesce_queue(q);
70f36b60 3148
e3a2b3f9
JA
3149 ret = 0;
3150 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
3151 if (!hctx->tags)
3152 continue;
bd166ef1
JA
3153 /*
3154 * If we're using an MQ scheduler, just update the scheduler
3155 * queue depth. This is similar to what the old code would do.
3156 */
70f36b60 3157 if (!hctx->sched_tags) {
c2e82a23 3158 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60
JA
3159 false);
3160 } else {
3161 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3162 nr, true);
3163 }
e3a2b3f9
JA
3164 if (ret)
3165 break;
77f1e0a5
JA
3166 if (q->elevator && q->elevator->type->ops.depth_updated)
3167 q->elevator->type->ops.depth_updated(hctx);
e3a2b3f9
JA
3168 }
3169
3170 if (!ret)
3171 q->nr_requests = nr;
3172
24f5a90f 3173 blk_mq_unquiesce_queue(q);
70f36b60 3174 blk_mq_unfreeze_queue(q);
70f36b60 3175
e3a2b3f9
JA
3176 return ret;
3177}
3178
d48ece20
JW
3179/*
3180 * request_queue and elevator_type pair.
3181 * It is just used by __blk_mq_update_nr_hw_queues to cache
3182 * the elevator_type associated with a request_queue.
3183 */
3184struct blk_mq_qe_pair {
3185 struct list_head node;
3186 struct request_queue *q;
3187 struct elevator_type *type;
3188};
3189
3190/*
3191 * Cache the elevator_type in qe pair list and switch the
3192 * io scheduler to 'none'
3193 */
3194static bool blk_mq_elv_switch_none(struct list_head *head,
3195 struct request_queue *q)
3196{
3197 struct blk_mq_qe_pair *qe;
3198
3199 if (!q->elevator)
3200 return true;
3201
3202 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3203 if (!qe)
3204 return false;
3205
3206 INIT_LIST_HEAD(&qe->node);
3207 qe->q = q;
3208 qe->type = q->elevator->type;
3209 list_add(&qe->node, head);
3210
3211 mutex_lock(&q->sysfs_lock);
3212 /*
3213 * After elevator_switch_mq, the previous elevator_queue will be
3214 * released by elevator_release. The reference of the io scheduler
3215 * module get by elevator_get will also be put. So we need to get
3216 * a reference of the io scheduler module here to prevent it to be
3217 * removed.
3218 */
3219 __module_get(qe->type->elevator_owner);
3220 elevator_switch_mq(q, NULL);
3221 mutex_unlock(&q->sysfs_lock);
3222
3223 return true;
3224}
3225
3226static void blk_mq_elv_switch_back(struct list_head *head,
3227 struct request_queue *q)
3228{
3229 struct blk_mq_qe_pair *qe;
3230 struct elevator_type *t = NULL;
3231
3232 list_for_each_entry(qe, head, node)
3233 if (qe->q == q) {
3234 t = qe->type;
3235 break;
3236 }
3237
3238 if (!t)
3239 return;
3240
3241 list_del(&qe->node);
3242 kfree(qe);
3243
3244 mutex_lock(&q->sysfs_lock);
3245 elevator_switch_mq(q, t);
3246 mutex_unlock(&q->sysfs_lock);
3247}
3248
e4dc2b32
KB
3249static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3250 int nr_hw_queues)
868f2f0b
KB
3251{
3252 struct request_queue *q;
d48ece20 3253 LIST_HEAD(head);
e01ad46d 3254 int prev_nr_hw_queues;
868f2f0b 3255
705cda97
BVA
3256 lockdep_assert_held(&set->tag_list_lock);
3257
392546ae 3258 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
868f2f0b
KB
3259 nr_hw_queues = nr_cpu_ids;
3260 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3261 return;
3262
3263 list_for_each_entry(q, &set->tag_list, tag_set_list)
3264 blk_mq_freeze_queue(q);
f5bbbbe4
JW
3265 /*
3266 * Sync with blk_mq_queue_tag_busy_iter.
3267 */
3268 synchronize_rcu();
d48ece20
JW
3269 /*
3270 * Switch IO scheduler to 'none', cleaning up the data associated
3271 * with the previous scheduler. We will switch back once we are done
3272 * updating the new sw to hw queue mappings.
3273 */
3274 list_for_each_entry(q, &set->tag_list, tag_set_list)
3275 if (!blk_mq_elv_switch_none(&head, q))
3276 goto switch_back;
868f2f0b 3277
477e19de
JW
3278 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3279 blk_mq_debugfs_unregister_hctxs(q);
3280 blk_mq_sysfs_unregister(q);
3281 }
3282
e01ad46d 3283 prev_nr_hw_queues = set->nr_hw_queues;
868f2f0b 3284 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 3285 blk_mq_update_queue_map(set);
e01ad46d 3286fallback:
868f2f0b
KB
3287 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3288 blk_mq_realloc_hw_ctxs(set, q);
e01ad46d
JW
3289 if (q->nr_hw_queues != set->nr_hw_queues) {
3290 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3291 nr_hw_queues, prev_nr_hw_queues);
3292 set->nr_hw_queues = prev_nr_hw_queues;
7d76f856 3293 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
e01ad46d
JW
3294 goto fallback;
3295 }
477e19de
JW
3296 blk_mq_map_swqueue(q);
3297 }
3298
3299 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3300 blk_mq_sysfs_register(q);
3301 blk_mq_debugfs_register_hctxs(q);
868f2f0b
KB
3302 }
3303
d48ece20
JW
3304switch_back:
3305 list_for_each_entry(q, &set->tag_list, tag_set_list)
3306 blk_mq_elv_switch_back(&head, q);
3307
868f2f0b
KB
3308 list_for_each_entry(q, &set->tag_list, tag_set_list)
3309 blk_mq_unfreeze_queue(q);
3310}
e4dc2b32
KB
3311
3312void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3313{
3314 mutex_lock(&set->tag_list_lock);
3315 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3316 mutex_unlock(&set->tag_list_lock);
3317}
868f2f0b
KB
3318EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3319
34dbad5d
OS
3320/* Enable polling stats and return whether they were already enabled. */
3321static bool blk_poll_stats_enable(struct request_queue *q)
3322{
3323 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
7dfdbc73 3324 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
34dbad5d
OS
3325 return true;
3326 blk_stat_add_callback(q, q->poll_cb);
3327 return false;
3328}
3329
3330static void blk_mq_poll_stats_start(struct request_queue *q)
3331{
3332 /*
3333 * We don't arm the callback if polling stats are not enabled or the
3334 * callback is already active.
3335 */
3336 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3337 blk_stat_is_active(q->poll_cb))
3338 return;
3339
3340 blk_stat_activate_msecs(q->poll_cb, 100);
3341}
3342
3343static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3344{
3345 struct request_queue *q = cb->data;
720b8ccc 3346 int bucket;
34dbad5d 3347
720b8ccc
SB
3348 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3349 if (cb->stat[bucket].nr_samples)
3350 q->poll_stat[bucket] = cb->stat[bucket];
3351 }
34dbad5d
OS
3352}
3353
64f1c21e
JA
3354static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3355 struct blk_mq_hw_ctx *hctx,
3356 struct request *rq)
3357{
64f1c21e 3358 unsigned long ret = 0;
720b8ccc 3359 int bucket;
64f1c21e
JA
3360
3361 /*
3362 * If stats collection isn't on, don't sleep but turn it on for
3363 * future users
3364 */
34dbad5d 3365 if (!blk_poll_stats_enable(q))
64f1c21e
JA
3366 return 0;
3367
64f1c21e
JA
3368 /*
3369 * As an optimistic guess, use half of the mean service time
3370 * for this type of request. We can (and should) make this smarter.
3371 * For instance, if the completion latencies are tight, we can
3372 * get closer than just half the mean. This is especially
3373 * important on devices where the completion latencies are longer
720b8ccc
SB
3374 * than ~10 usec. We do use the stats for the relevant IO size
3375 * if available which does lead to better estimates.
64f1c21e 3376 */
720b8ccc
SB
3377 bucket = blk_mq_poll_stats_bkt(rq);
3378 if (bucket < 0)
3379 return ret;
3380
3381 if (q->poll_stat[bucket].nr_samples)
3382 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
3383
3384 return ret;
3385}
3386
06426adf 3387static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 3388 struct blk_mq_hw_ctx *hctx,
06426adf
JA
3389 struct request *rq)
3390{
3391 struct hrtimer_sleeper hs;
3392 enum hrtimer_mode mode;
64f1c21e 3393 unsigned int nsecs;
06426adf
JA
3394 ktime_t kt;
3395
76a86f9d 3396 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
64f1c21e
JA
3397 return false;
3398
3399 /*
1052b8ac 3400 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
64f1c21e 3401 *
64f1c21e
JA
3402 * 0: use half of prev avg
3403 * >0: use this specific value
3404 */
1052b8ac 3405 if (q->poll_nsec > 0)
64f1c21e
JA
3406 nsecs = q->poll_nsec;
3407 else
3408 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3409
3410 if (!nsecs)
06426adf
JA
3411 return false;
3412
76a86f9d 3413 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
06426adf
JA
3414
3415 /*
3416 * This will be replaced with the stats tracking code, using
3417 * 'avg_completion_time / 2' as the pre-sleep target.
3418 */
8b0e1953 3419 kt = nsecs;
06426adf
JA
3420
3421 mode = HRTIMER_MODE_REL;
3422 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3423 hrtimer_set_expires(&hs.timer, kt);
3424
3425 hrtimer_init_sleeper(&hs, current);
3426 do {
5a61c363 3427 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
06426adf
JA
3428 break;
3429 set_current_state(TASK_UNINTERRUPTIBLE);
3430 hrtimer_start_expires(&hs.timer, mode);
3431 if (hs.task)
3432 io_schedule();
3433 hrtimer_cancel(&hs.timer);
3434 mode = HRTIMER_MODE_ABS;
3435 } while (hs.task && !signal_pending(current));
3436
3437 __set_current_state(TASK_RUNNING);
3438 destroy_hrtimer_on_stack(&hs.timer);
3439 return true;
3440}
3441
1052b8ac
JA
3442static bool blk_mq_poll_hybrid(struct request_queue *q,
3443 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
bbd7bb70 3444{
1052b8ac
JA
3445 struct request *rq;
3446
29ece8b4 3447 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
1052b8ac
JA
3448 return false;
3449
3450 if (!blk_qc_t_is_internal(cookie))
3451 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3452 else {
3453 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3454 /*
3455 * With scheduling, if the request has completed, we'll
3456 * get a NULL return here, as we clear the sched tag when
3457 * that happens. The request still remains valid, like always,
3458 * so we should be safe with just the NULL check.
3459 */
3460 if (!rq)
3461 return false;
3462 }
3463
3464 return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3465}
3466
529262d5
CH
3467/**
3468 * blk_poll - poll for IO completions
3469 * @q: the queue
3470 * @cookie: cookie passed back at IO submission time
3471 * @spin: whether to spin for completions
3472 *
3473 * Description:
3474 * Poll for completions on the passed in queue. Returns number of
3475 * completed entries found. If @spin is true, then blk_poll will continue
3476 * looping until at least one completion is found, unless the task is
3477 * otherwise marked running (or we need to reschedule).
3478 */
3479int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
1052b8ac
JA
3480{
3481 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
3482 long state;
3483
529262d5
CH
3484 if (!blk_qc_t_valid(cookie) ||
3485 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
1052b8ac
JA
3486 return 0;
3487
529262d5
CH
3488 if (current->plug)
3489 blk_flush_plug_list(current->plug, false);
3490
1052b8ac
JA
3491 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3492
06426adf
JA
3493 /*
3494 * If we sleep, have the caller restart the poll loop to reset
3495 * the state. Like for the other success return cases, the
3496 * caller is responsible for checking if the IO completed. If
3497 * the IO isn't complete, we'll get called again and will go
3498 * straight to the busy poll loop.
3499 */
1052b8ac 3500 if (blk_mq_poll_hybrid(q, hctx, cookie))
85f4d4b6 3501 return 1;
06426adf 3502
bbd7bb70
JA
3503 hctx->poll_considered++;
3504
3505 state = current->state;
aa61bec3 3506 do {
bbd7bb70
JA
3507 int ret;
3508
3509 hctx->poll_invoked++;
3510
9743139c 3511 ret = q->mq_ops->poll(hctx);
bbd7bb70
JA
3512 if (ret > 0) {
3513 hctx->poll_success++;
849a3700 3514 __set_current_state(TASK_RUNNING);
85f4d4b6 3515 return ret;
bbd7bb70
JA
3516 }
3517
3518 if (signal_pending_state(state, current))
849a3700 3519 __set_current_state(TASK_RUNNING);
bbd7bb70
JA
3520
3521 if (current->state == TASK_RUNNING)
85f4d4b6 3522 return 1;
0a1b8b87 3523 if (ret < 0 || !spin)
bbd7bb70
JA
3524 break;
3525 cpu_relax();
aa61bec3 3526 } while (!need_resched());
bbd7bb70 3527
67b4110f 3528 __set_current_state(TASK_RUNNING);
85f4d4b6 3529 return 0;
bbd7bb70 3530}
529262d5 3531EXPORT_SYMBOL_GPL(blk_poll);
bbd7bb70 3532
9cf2bab6
JA
3533unsigned int blk_mq_rq_cpu(struct request *rq)
3534{
3535 return rq->mq_ctx->cpu;
3536}
3537EXPORT_SYMBOL(blk_mq_rq_cpu);
3538
320ae51f
JA
3539static int __init blk_mq_init(void)
3540{
9467f859
TG
3541 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3542 blk_mq_hctx_notify_dead);
320ae51f
JA
3543 return 0;
3544}
3545subsys_initcall(blk_mq_init);